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Abstract—This paper investigates the UAV-assisted wireless
powered IoT system, where a UAV takes off from a data center,
flies to each of the ground sensor nodes (SNs) in order to transfer
energy and collect data form the SNs, and then returns to the data
center. For such a system, an optimization problem is formulated
to minimize the average age of information (AoI) of the data
collected from all ground SNs. Since the average AoI depends
on the UAV’s trajectory, the time required for energy harvesting
(EH) and data collection for each SN, these factors need to be
optimized jointly. Moreover, instead of the traditional linear EH
model, we employ a non-linear model because the behavior of the
EH circuits are non-linear by nature. To solve this non-convex
problem, we propose to decompose it into two sub-problems,
i.e., a joint energy transfer and data collection time allocation
problem and a UAV’s trajectory planning problem. For the first
sub-problem, we prove that it is convex and give an optimal
solution by using Karush-Kuhn-Tucker (KKT) conditions. This
solution is used as the input for the second sub-problem, and we
solve optimally it by designing dynamic programming (DP) and
ant colony (AC) heuristic algorithms. Simulation results show
that the DP-based algorithm obtains the minimal average AoI of
the system, and the AC-based heuristic finds solutions with near-
optimal average AoI. The results also reveal that the average AoI
increases as the flying altitude of the UAV increases and linearly
with the size of the collected data at each ground SN.

Index Terms—Age of Information, energy harvesting, Internet-
of-things (IoT), time allocation, trajectory design, UAV-assisted
networks.
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I. INTRODUCTION

A. Background

With the development of Internet of Things (IoT), various
real-time status information updating applications, such as
intelligent transportation [1], environmental monitoring [2],
safety protection and health monitoring [3], are spawned. In
such applications, the generated status information is required
to be delivered to the destination as quickly as possible
for online data analyzing and decision-making. The outdated
information may result in erroneous control, even causing big
disasters. Therefore, to guarantee the freshness of the received
data at the destination in status information updating systems
is extremely essential.

In order to characterize the freshness of information, a
new performance metric, i.e., age of information (AoI), was
proposed in [4]. AoI depicts the elapsed time since the
generation of the latest received update, which is able to
capture the freshness of the information from the perspective
of the destination [4]. Thus, it has attracted increasing attention
[4]–[14]. Among existing works, some ones focused on the
AoI of different queuing systems [4]–[6], some focused on
the AoI-based scheduling of update packet transmissions from
different source nodes [7]–[10], and some others focused on
the AoI performance of energy harvesting (EH) driven wireless
networks [11]–[14]. Their obtained results show that the AoI-
based design is able to guarantee the information freshness
of real-time status information updating systems and is much
different from traditional delay-based and throughput-based
network design.

On the other hand, due to the mobility and flexibility, un-
manned aerial vehicle (UAV) widely is regarded as a promising
approach to aid outdoor status information updating systems
in collecting data (CD) [15], which has been considered
as a candidate technology for future 6G networks and has
wide applications in various scenarios. For instance, in smart
agriculture systems and smart meadow systems, sensor nodes
(SNs) are deployed to monitor a variety of environmental
parameters and animals’ and plants’ status, where the sampled
data can be collected and carried to the data center by UAV for
analyzing and intelligent decision-making, see e.g., [16], [17].
In [16], a novel data acquisition framework was proposed to
increase the efficiency of the data gathering, where the UAV
was used as a relay to collect the sensed data from the SNs.
In [17], the SNs’ mechanism selection was studied to enhance
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reliable and energy-efficient data collection, where the UAV
was used as a mobile alarm clock to wake up the SNs.

It is a fact that by equipping with communication
transceivers, UAVs can be used as aerial relays or mobile base
stations to help improve the performance of terrestrial wireless
communication systems [18]–[20].

B. Related Works

Due to the significance of AoI and the popularity of UAV in
IoT systems, AoI-aware UAV-aided wireless network design
has attracted increasing interests [21]–[24]. In [21], the UAV’s
trajectory was optimized to minimize both the average AoI of
the system and the maximum AoI of different wireless sensors,
where the UAV was used to collect the SNs’ data. In [22],
the UAV’s trajectory and data acquisition mode were jointly
optimized to minimize average AoI of all the SNs, where the
UAV was allowed to acquire the data in hovering, flying or
hybrid mode. In [23], a UAV’s trajectory planning strategy was
proposed to minimize the maximum AoI of a UAV-enabled
wireless sensor network, where the balance between the SNs’
uploading time and the UAV’s flight time was achieved. In
[24], the UAV’s flight trajectory and service time allocation
were jointly optimized to minimize the overall peak AoI of
the system, where the UAV was used as a mobile relay to
help the information transmission between source-destination
pair.

However, in aforementioned works, the SN or the source
node was assumed to be with fixed energy supply and powered
by small-size batteries, which are with limited capacity and
require to be replaced or recharged periodically. In rigorous
environments including poisonous and dangerous areas, it may
be highly inefficient or even impractical to manually replace
or recharge batteries of the distributed SNs. Thereby, EH
technologies were introduced into UAV-assisted IoT systems
to power low-power devices [25]. Among different EH tech-
nologies, the frequency signal (RF)-based EH is artificially
controllable and able to provide stable power supply [26],
[27], so it is considered as a promising solution to power
future IoT and low-power wireless sensor networks [28]–[31].
Although UAVs are self-energy-limited, the energy required
by communication and RF energy transfer at the UAV is
much smaller than that required by its flying and hovering.
Therefore, UAVs are also used as mobile RF energy sources
for ground sensors in many recent works, see e.g., [32]–
[34]. As a result, some recent works began to study UAV-
aided wireless network with RF-based EH [35], [36]. In [35],
outage probability was derived for different urban environment
parameters, where the UAV acted as a relay to harvest energy
and collect data and then to forward data. In [36], the average
throughput was maximized subject to the energy causality
constraint with a generalized harvest-transmit-store model.

C. Motivations and Contributions

Nevertheless, the purpose of aforementioned works on UAV-
aided wireless network with RF-based EH, see e.g., [35], [36]
was to analyze the outage performance or maximize system
throughput. To the best of our knowledge, little attention has

been devoted to the AoI-based UAV-assisted wireless network
with RF-based EH.

To fill this gap, we investigate the joint optimization of
trajectory and time assignment for AoI-based UAV-assisted
wireless powered IoT system, where a UAV takes off from a
data center, flies to each SN in turn to transfer energy, then
collects data from the SN, and finally returns to the data center.
Different from existing works, see e.g., [35], [36], our goal is
to minimize the average AoI of the system. Moreover, our
considered model is also different from theirs. Particularly, in
[35], the UAV was assumed to be with very limited energy and
charged by ground base stations, but in our work, the UAV acts
as a mobile energy source and is used to charge ground low-
power IoT devices. Although, in [36], the UAV served as an
energy source, it was not used for data collection. Differently,
in our work, the UAV is used as not only an energy source
but also a mobile data collector. Besides, in [35] and [36],
the traditional ideal linear EH model was adopted, but in our
work, the non-linear EH model [37] presented based on real
data measurement is employed for system design. The main
contributions of this paper are summarized as follows.

• An optimization problem is formulated to minimize the
average AoI of the data collected from all ground SNs
by jointly optimizing UAV’s trajectory, the time required
for energy harvesting and the time required for data
collection at each SN.

• Since the problem is non-convex and has no known
solution, a solution framework is presented to solve it,
where the primary problem is first decomposed into
two sub-problems, i.e., a joint energy transfer and data
collection time allocation problem and a UAV’s trajectory
planning problem. It is proved that such a decomposition
does not loss the optimal solution to primary problem.
For the first subproblem, it is convex and solved by using
Karush-Kuhn-Tucker (KKT) conditions. For the second
subproblem, based on the obtained optimal solution to the
first subproblem, two different algorithms are designed to
solve it. Particularly, a dynamic programming (DP)-based
algorithm is designed to find the global optimal solution
by checking all candidate solutions, which may be too
complex when the number of SNs are large. Therefore,
as an alternative, an ant colony (AC)-based algorithm is
designed to find a suboptimal solution with low complex-
ity by employing a positive feedback mechanism to make
the iteration converge and finally approaches the optimal
solution.

• Simulation results are provided to show the performance
of the presented algorithms. It shows that the DP-based
algorithm obtains the minimal average AoI of the system,
and the AC-based algorithm finds the near-optimal aver-
age AoI. Moreover, compared with traditional linear EH
model, employing the non-linear EH model decreases the
average AoI as real systems are operated based on the EH
circuits with non-linear features. It is also observed that as
the flying altitude of the UAV increases, the average AoI
increases, and the gap between the average AoI achieved
by traditional linear EH model and the non-linear EH

Authorized licensed use limited to: Lancaster University. Downloaded on July 30,2020 at 11:05:21 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3012835, IEEE Internet of
Things Journal

3

S5

S4
S3

S2

S1 S0

V(3)

V(4)

V(1)

V(5)

EH

CD

Fig. 1. An illustrative model of UAV-assisted IoT networks: UAV flies in a
trajectory S0 → V(1) → V(2) → V(3) → V(4) → V(5) → S0 to transmit
energy and then collect the latest sensing information form each user Si

(i = 1, ..., 5), and flies back to the data center S0.

model is also enlarged.
The rest of this paper is organized as follows. In Section

II, we describe the system model for UVA-assisted energy
transfer and data collection, and formulate the average AoI
minimization problem. In Section III, we present our proposed
solution framework and the specific solution steps of the
two presented algorithms. In Section IV, we present some
simulation results to discuss the system performance. Finally,
this paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a UAV-assisted wireless
powered IoT system that consists of one UAV equipped
with a half-duplex hybrid access point (HAP), a data center
S0, and M ground sensor nodes (SNs) denoted by S =
{S1, S2, ..., SM}. M ground SNs are randomly distributed in
a large area to monitor a variety of physical processes, and
each node Si ∈ {S0} ∪ S with i ∈ {0, 1, 2, · · · ,M} is
located at the position of si = (xi, yi). The UAV performs
wireless energy transfer to power the SNs and also collects
data from them. Specifically, the UAV takes off from the
data center S0, and flies to the SN and transfers energy to
it. Then the SN uses the harvested energy to upload its data
to the UAV. The UAV completes the energy transfer and data
collection tasks for the M SNs one by one according to a pre-
determined flight trajectory, i.e., S0 → V(1) → V(2) → ......→
V(M) → S0, where V(i) is the i-th SN on flight trajectory and
{V(1), V(2), · · · , V(M)} is a permutation of {S1, S2, · · · , SM}.
We assume that the UAV flies at a fixed altitude H with a
constant speed denoted by v. The horizontal distance between
Si and Sj is denoted with di,j , i.e., di,j = ||si − sj ||,
∀i, j ∈ {1, 2, ...,M}.

In order to charge the SN with sufficient power, the UAV
needs to hover over the SN for some time. We denote the
hovering for EH time as teh

i and that for UAV to collect data

time as tcd
i , i ∈ {1, 2, · · · ,M}. The downlink power gain from

the UAV to Si and the uplink power gain from Si to the UAV
are denoted by |hi|2 and |gi|2, respectively. Since the channel
between UAV and SNs is dominated by the line-of-sight (LoS)
communication link, we have that |hi|2 = |gi|2 = κ0

Hκ , where
κ0 denotes the reference signal power gain at the distance of
one meter from the SN, and κ is the path loss factor [15].

B. Energy Harvesting Model and Data Collection Model

In the wireless power transfer stage, the UAV keeps trans-
mitting RF signals to the SN with a fixed transmit power Pu.
The power carried in the received RF signals at Si is

Pr = |hi|2Pu. (1)

Based on the traditional linear EH models, the harvested
power at Si can be described by Φ(P ) = ηiPr, where ηi ∈
(0, 1] is a constant. However, since the RF-EH circuits include
various non-linearities, such as the diode or diode-connected
transistor, the non-linear EH model presented in [37], [40] is
adopted in this paper to characterize the non-linear behavior of
the EH circuits and make our design closer to practice. With
the non-linear EH model [41], the harvested power at Si is
described by

Φ(Pr) =
Pmaxe

(ab) − Pmaxe
(−a(Pr−b))

e(ab)(1 + e(−a(Pr−b)))
, (2)

where Pmax denotes the maximum output DC power, which
is the saturation limitation of the EH circuits. a and b are
constants representing some properties of the EH system such
as the resistance, the capacitance and the circuit sensitivity. As
a result, the energy harvested at Si from the UAV during the
time interval teh

i is

Ei = Φ(Pr)t
eh
i . (3)

In the data collection stage, Si transmits its data to the UAV
with the harvested energy. Thus, the uploading data rate of Si
is expressed by

Ri = W log2

(
1 +
|hi|2Ei
tcd
i σ

2
w

)
,

where the harvested energy during teh
i is allocated uniformly

to the data uploading over tcd
i , and W is the system bandwidth.

σ2
w is the noise power at the UAV. Assume that the size of data

generated by Si is Di. To make sure Si successfully uploads
its data to the UAV within tcd

i , the following inequality needs
to be satisfied

tcd
i W log2

(
1 +
|hi|2Ei
tcd
i σ

2
w

)
≥ Di. (4)

Substituting (3) into (4), we have that

tcd
i W log2

(
1 +
|hi|2Φ(Pr)t

eh
i

tcd
i σ

2
w

)
≥ Di. (5)
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Fig. 2. The time sequence including the hovering and flying periods.

C. AoI Models

Let ∆(i)(t) be the AoI of the data collected from i-th V(i)

at time t. According to the definition of AoI [4], we have that

∆(i)(t) =
(
t− Ui

)+
, (6)

where (a)+ = max{0, a}, and Ui is the timestamp of starting
the data collection from i-th V(i). In fact, when t < Ui, SN
V(i) has not been visited at time t, we define ∆(i)(t) = 0. For
clarity, the working time framework of UAV is illustrated in
Fig. 2. It can be seen that at time Ui+1, the AoI of the data
collected from V(i) is given by

∆(i)(t = Ui+1) = tcd
(i) + tf(i) + teh

(i+1), i = 1, 2, · · · ,M − 1,
(7)

which is composed of three parts, where tf(i) is the flying time
of the UAV from V(i) to V(i+1), which is given by tf(i) =

d(i),(i+1)v
−1.

Let UT be the observation time at which all data has been
carried to the data center. When the UAV returns to the data
center S0 after gathering data from all the SNs, the AoI of the
data collected from V(i) can be given by

∆(i)(t = UT ) = ∆(i)(t = Ui+1) + ∆(i+1)(t = UT )

= ∆(i)(t = Ui+1) + ∆(i+1)(t = Ui+2)

+ ∆(i+2)(t = UT )

= ∆(i)(t = Ui+1) + ∆(i+1)(t = Ui+2)

+ · · ·+ ∆(M−1)(t = UM ) + ∆(M)(t = UT )

= tcd
(i) + tf(i) + teh

(i+1) + tcd
(i+1) + tf(i+1) + teh

(i+2)

+ · · ·+ tcd
(M−1) + tf(M−1) + teh

(M)

+ tcd
(M) + tf(M)

=

M−1∑
k=i

(
tcd
(k) + tf(k) + teh

(k+1)

)
+
(
tcd
(M) + tf(M)

)
=

M∑
k=i

(
teh
(k) + tcd

(k) + tf(k)

)
− teh

(i),

(8)

where i = 1, 2, · · · ,M .
The last term {−teh

(i)} in (8) indicates that teh
(i) does not

contribute to AoI of V(i), because V(i) harvests energy before

its data generating. In terms of (8), i.e., ∆(i)(t = UT ) =
∆(i)(t = Ui+1) + ∆(i+1)(t = UT ), and Fig. 2, one can draw
the following conclusion, i.e.,

∆(1)(t = UT ) > ∆(2)(t = UT ) > ∆(3)(t = UT ) > · · ·
> ∆(M−1)(t = UT ) > ∆(M)(t = UT ),

(9)

which presents that the AoI ∆(i)(t = UT ) of data collected
from the i-th SN has effects on ∆(1)(t = UT ),∆(2)(t =
UT ), · · · , and ∆(i−1)(t = UT ) but has no effect on
∆(i+1)(t = UT ),∆(i+2)(t = UT ), · · · , and ∆(M)(t = UT ).
The reason is that the AoI of data collected in the future is
irrelevant to the AoI of data collected in the past, but it will
affect the AoI of data collected in the observed time period.

The average AoI of all data collected from M SNs is defined
by

∆̄ =
1

M

M∑
i=1

∆(i)(t = UT ). (10)

Lemma 1. The average AoI of the considered UAV-assisted
wireless powered network can be expressed as

∆̄ =
M∑
i=1

i

M

(
teh
(i) + tcd

(i) + tf(i)

)
− 1

M

M∑
i=1

teh
(i). (11)

Proof. Substituting (8) into (10), we then derive ∆̄ as

∆̄ =
1

M

(
∆(1)(t = UT ) + ∆(2)(t = UT ) + ∆(3)(t = UT )

+ · · ·+ ∆(M−1)(t = UT ) + ∆(M)(t = UT )
)

=
1

M

[ M∑
k=1

(
teh
(k) + tcd

(k) + tf(k)

)
− teh

(1) +

M∑
k=2

(
teh
(k) + tcd

(k)

+ tf(k)

)
− teh

(2) + · · ·+
M∑
k=M

(
teh
(k) + tcd

(k) + tf(k)

)
− teh

(M)

]
=

1

M

[ M∑
i=1

i
(
teh
(i) + tcd

(i) + tf(i)

)
−

M∑
i=1

teh
(i)

]
=

M∑
i=1

i

M

(
teh
(i) + tcd

(i) + tf(i)

)
− 1

M

M∑
i=1

teh
(i).
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D. Problem Formulation

Our goal is to optimally plan a trajectory and also allocate
the time for EH and data collection for all SNs in order to
minimize the average AoI of the system, i.e., ∆̄. Let Q =
[V(1), V(2), ..., V(M)] denote a path composed of the ground
SNs, teh = [teh

(1), t
eh
(2), · · · , t

eh
(M)] be the energy harvesting time

vector associated with the path, and tcd = [tcd
(1), t

cd
(2), · · · , t

cd
(M)]

be the data collection time vector associated with the path. The
optimization problem is mathematically expressed by

P1 : min
(teh,tcd,Q)

M∑
i=1

i

M

(
teh
(i) + tcd

(i) + tf(i)

)
− 1

M

M∑
i=1

teh
(i)

s.t. teh
(i) ≥ 0, tcd

(i) ≥ 0, (12a)

tcd
(i)log2

(
1 +

γ(i)t
eh
(i)

tcd
(i)

)
≥ D̄(i), (12b)

tf(i) = d(i),(i+1)v
−1, i = 1, 2, · · · ,M, (12c)

where γ(i) =
|h(i)|2Φ(Pr)

σ2
w

and D̄(i) =
D(i)

W for i =
1, 2, · · · ,M . Constraint (12b) means that the total uploading
data size within tcd

(i) cannot be less than the data size generated
by V(i), and (12c) implies that the UAV’s flying time is
determined by the distance between the SNs.

It is difficult to directly solve Problem P1, because the visit-
ing order of all SNs is intertwined with the data collection time
and the energy transfer time at each SN. To efficiently solve
it, we propose a framework based on dynamic programming
(DP) and ant colony (AC) approach in the next section.

III. THE PROPOSED SOLUTION

A. Solution Framework

In term of (11), the average AoI is expressed as a weighted
sum of the energy transfer time and data collection time as
well as the UVA’s flying time. Since the energy transfer time
and data collection time of at each SN are independent of
the UAV’s flying trajectory, Problem P1 is decomposed into
two sub-problems, the time allocation problem and the optimal
average AoI trajectory design problem, i.e., Problem P2 and
Problem P3.

For Problem P2, the goal is to find the optimal energy
transfer time teh

i
∗ and data collection time tcd

i
∗ subject to the

energy and data causality constrains for Si, ∀Si ∈ S.

P2 : min
(teh
i , t

cd
i )

M∑
i=1

tcd
i + teh

i (13a)

s.t. teh
i > 0, tcd

i > 0, i = 1, 2, · · · ,M, (13b)

tcd
i log2

(
1 +

γit
eh
i

tcd
i

)
≥ D̄i, i = 1, 2, · · · ,M,

(13c)

where γ(i) =
|h(i)|2Φ(Pr)

σ2
w

and D̄i = Di
W for i = 1, 2, · · · ,M .

It is noticed that Problem P2 is actually a set of minimiza-
tion problems. Each is to minimize the sum of energy transfer
time and data collection time for one SN. Since the constraints
are independent for different SNs, minimizing the total time of

all SNs is equivalent to solving the M minimization problems
independently.

For Problem P3, the goal is to find the optimal trajectory,
visiting all the SNs in a sequence to minimize the average AoI
with the obtained optimal solution {teh

i
∗
, tcd
i
∗} to Problem P2.

P3 : min
Q

M∑
i=1

[ i
M

(
teh
(i)

∗
+ tcd

(i)

∗
+ tf(i)

)
− 1

M
teh
(i)

∗]
(14a)

s.t. tf(i) = d(i),(i+1)v
−1, i = 1, 2, · · · ,M. (14b)

Proposition 1. The decomposition of Problem P1 into Prob-
lem P2 and Problem P3 does not lose the optimality of
solution to Problem P1.

Proof. The minimal data collection time and the minimal
energy transfer time required by each SN is independent of
the flight path and its order on a path, as its required the
minimal data collection time and energy transfer time are only
determined by the data amount of the SN. That is to say,
no matter what path the SN is on, its required time for data
collection and energy harvesting is not changed. Therefore,
one can first obtain the optimal teh

i
∗ and tcd

i
∗ by solving

Problem P2, and then optimize the flight path based on the
obtained optimal teh

i
∗ and tcd

i
∗. Thus, the original Problem P1

can be decomposed into Problem P2 and Problem P3 without
loss of optimality.

Based on Proposition 1, we propose a two-stage solution
framework to solve Problem P1, as shown in Algorithm 1. In
the first stage, the optimal {teh

i
∗
, tcd
i
∗} for i ∈ {1, 2, · · · ,M},

are found by solving Problem P2. In the second stage,
based on the obtained optimal {teh

i
∗
, tcd
i
∗}, the optimal Q∗

is searched by solving Problem P3. The details of solving
Problem P2 and Problem P3 are described in the following
sections.

Algorithm 1 Solution framework for Problem P1.
Input: The system parameters (Di, κ0, W , σ2

w, Pu, H , ηi)
for all SN Si ∈ S;

1: Jointly optimize teh∗

i and tcd∗

i by solving Problem P2;
2: Optimize the trajectory Q∗ with the obtained teh∗

i and tcd∗

i

by solving Problem P3;
Output: The optimal average AoI.

B. Joint optimization of teh
i and tcd

i

Lemma 2. Problem P2 is a convex optimization problem.

Proof. First, the objective function of Problem P2 is an
affine function w.r.t {teh

i , t
cd
i }. Second, the left hand side

of constraint (13c) is a perspective function of the concave
function log2

(
1 + γit

eh
i

)
, i ∈M . As the perspective function

of concave function is also concave [38], −tcd
i log2

(
1+

γit
eh
i

tcd
i

)
is convex for i = 1, 2, · · · ,M . Consequently, constraint (13c)
is a convex set. So, we arrive at Lemma 2.

Based on Lemma 2, Problem P2 can be solved by using
convex optimization methods, and we obtain the following
Lemma 3.
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Lemma 3. The optimal data collection time tcd
i
∗

and the
optimal energy transfer time teh

i
∗

to Problem P2 satisfy
constraint (13c) with equality, i.e.,

tcd
i

∗
log2

(
1 +

γit
eh
i
∗

tcd
i
∗

)
= D̄i, i = 1, 2, · · · ,M. (15)

Proof. By observing (13c), one can find that the left hand side
of (13c) is a monotonically increasing function in both tcd

i and
teh
i . When the constraint (13c) takes “>”, teh

i and tcd
i can be

reduced to further decrease the system AoI. Therefore, the
optimal energy transfer time and data collection time satisfy
(15).

Based on Lemma 3, we have the following theorem.

Theorem 1. The optimal time assigned to collect data and
charge energy for Si, i.e., {teh

i
∗
, tcd
i
∗} satisfy

tcd
i

∗
=

ln2D̄i

W
(
γi−1
e

)
+ 1

, i = 1, 2, · · · ,M, (16)

and

teh
i

∗
=

(
2
D̄i
tcd
i
∗ − 1

)
tcd
i
∗

γi
, i = 1, 2, · · · ,M, (17)

respectively, where W(·) is the Lambert W function [39].

Proof. The Lagrangian of Problem P2 is

L(teh
i , t

cd
i , µi) =

∑M

i=1
tcd
i + teh

i

+

M∑
i=1

µi

[
D̄i − tcd

i log2

(
1 +

γit
eh
i

tcd
i

)]
,

(18)

where, µi is the non-negative Lagrangian dual variable associ-
ated with the constraint (13c). Applying KKT conditions and
(15), we have that

∂L

∂tcd
i

= 1− µ∗i

 D̄i

tcd
i
∗ −

1

ln2
· 2

D̄i
tcd
i
∗ − 1

2
D̄i
tcd
i
∗

 = 0, (19)

∂L

∂teh
i

= 1− µ∗i

 1

ln2
· γi

2
D̄i
tcd
i
∗

 = 0, (20)

with i ∈ {1, 2, 3, · · · ,M}. By solving (19) and (20), thus
Theorem 1 can be proved.

C. Optimization of Q with the obtained teh∗

i and tcd∗

i

Lemma 4. Problem P3 is an NP-hard problem.

Proof. Given M SNs and the optimal data collection time
and the optimal energy transfer time of each SN and
the distance each pair of SNs, i.e., [tcd∗

1 , tcd∗

2 , . . . , tcd∗

M ],
[teh∗

1 , teh∗

2 , . . . , teh∗

M ] and di,j , ∀i ∈ {0, 1, 2, . . . ,M}. Problem
P3 aims to find the shortest path that starts from S0 and
visits each SN once and returns S0. According to [42], if
we can reduce a well-known NP-Hard problem to Problem
P3, Problem P3 can be proved to be NP-Hard. As is known,
the traveling salesman problem (TSP) is a NP-hard problem
[43], which aims to find the shortest loop to visit each city

once and return to the starting city for a given set of cities
and the distances between any two of them. If we map each
city in the TSP problem to a SN with [teh∗

i , tcd∗

i ], the TSP
problem is reduced to our considered Problem P3. Thus, P3

is an NP-Hard problem.

As the feasible set of the trajectory is composed of vectors
formed by the sequence of the visiting SNs, and Problem P3

is an NP-hard problem, it cannot be solved by general convex
optimization theory. Therefore, we design two algorithm to
solve it. The first one is the DP-based algorithm, which
finds the global optimal solution by checking all candidate
solutions and may be too complex, especially, where M is
relatively large. So the second one algorithm, i.e., the AC-
based algorithm, is presented, as an alternative approach.

1) DP-based algorithm: In order to solve Problem P3

based on DP, we define the time interval from the moment
that UAV starts to collect data from V(i) to the moment that
the UAV starts to collect data from V(i+1) as the average AoI
increment, i.e.,

∆L(i),(i+1)
=

i

M

(
tcd
(i)

∗
+ teh

(i)

∗
+ tf(i)

)
− 1

M
teh
(i)

∗
, (21)

which is the time interval between Ui to Ui+1.
Let C(V(i)) represent the minimum AoI cost of the path

starting from V(i), passing all the rest SNs exactly once and
returning back to the data center S0. Then, the minimum
average AoI cost is given by

C(V(i)) =


∆L(M),(M+1)

, i = M ;
min{∆L(i),(i+1)

+ C(V(i+1))},
i = 1, 2, · · · ,M − 1.

(22)
Let Ŝ represent the set composed of the SNs that are still

not visited. Based on (21) and (22), a DP-based algorithm is
presented, as shown in Algorithm 2.

Algorithm 2 DP-based trajectory planning algorithm.
Input: The location of all SNs, the optimal data collection

time tcd
i
∗ and energy transfer time teh

i
∗ of Si, for i =

1, 2, · · · ,M .
1: Calculate the average AoI increment ∆L(i),(i+1)

of data
collected from V(i) to collect data to V(i+1) in terms of
(21);

2: for m = 1 to M do
3: Initialize i = 1, V(i) = Sm, and Ŝ = S;
4: while i ≤M do
5: Calculate Ŝ = Ŝ− {V(i)};
6: Calculate the minimum average AoI cost C(V(i))

according to (22);
7: Update i by i = i+ 1;
8: end while
9: end for

10: Add V(0) = V(M+1) = S0 to the paths and find the
minimum average AoI ∆̄;

11: Trace back to find the optimal path starting with the data
center S0 and ending with the data center S0;

Output: The optimal flying trajectory Q∗.
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It can be seen that DP-based algorithm actually finds the
optimal trajectory by calculating the AoI cost C(V(i)) and
comparing the age costs for all SNs. The DP-based algorithm
finds the optimal solution for each sub-problem in an iterative
manner, so the optimal solution to the original problem can
be derived. However, the computational complexity of the
DP-based algorithm is about O(2MM2). That is, the time
efficiency of the algorithm may be poor, and the computational
complexity will increase dramatically as the problem size
becomes larger.

2) AC-based algorithm: As is known, ant colony (AC) al-
gorithm adopts positive feedback mechanism, which achieves
good parallelism, cooperation, and robustness. Moreover, it
also has good searchability and strong dynamics, so it is often
used in track planning. The detailed information about AC
algorithm can be found in [44]. Here, we also present an
algorithm to solve Problem P3 based on AC.

The basic idea is that according to the habit, ants leave
pheromones along the path during the foraging process. The
shorter the path, the more pheromones remain, and the ants
are more likely to choose the path. This leads to more and
more pheromones on the optimal path, thus forming a positive
feedback mechanism to promote the system to find the optimal
path. However, in the process of constructing the solution
of AC algorithm, the random selection strategy slows down
the evolution of the algorithm. To reduce the probability of
the AC algorithm to a certain extent stuck in local optimum
solution and improve the convergence performance of the AC
algorithm, we introduce the pseudo-random proportional rule
into the standard AC algorithm [45]. For clarity, the presented
AC-based algorithm is summarized in Algorithm 3, where the
detailed process of its five steps are explained as follows.

Algorithm 3 AC-based AoI trajectory planning algorithm.
Input: The location of SNs, the optimal data collection

time tcd∗ and energy transfer time teh∗ of Si for
i ∈ M , and the AC Algorithm related parameters
{m,α, β, ρ,Q, η, itermax, q0}.

1: Initialize all parameters, place m ants on the network (M
SNs), establish the tabu matrix TABU(s) to record the
distance that has passed, and set n = 1;

2: Place all ants on the search starting point; select the next
node for the ant k (k = 1, · · · ,m) to arrive according to
(24); place the SNs that have been visited in TABUs;

3: Calculate the total path length Lk for ant k, after the n-
step trajectory planning for k = 1, · · · ,m;

4: Update τi,j in terms of (25);
5: If n < itermax, update n = n + 1, and then go to step

2, where itermax is maximum predetermined number of
iterations.

Output: The optimal flying trajectory Q∗.

Step 1: Initialize all parameters, place m ants on the
network (M SNs), establish the tabu matrix TABUs to record
the distance that has passed, and set n = 1.

Step 2: Place all ants on the search starting point, and the
ant k (k = 1, · · · ,m) selects the next node to arrive according

to the pseudo-random proportional rule. Let P ki,j(t) indicate
the probability that ant k transfers from Si to Sj at time t,

P kij(t) =

{
[τi,j(t)]

α[ηi,j(t)]
β∑

j /∈TABUs
[τi,j(t)]α[ηi,j(t)]β

, j ∈ allowedk;

0 , other,
(23)

where τi,j(t) represents the amount of pheromone content on
the path connect Si and Sj at time t. ηi,j(t) is a heuristic
function, which represents the visibility of the ant to the path,
with ηi,j(t) = 1

∆Li,j
and ∆Li,j = tcd

i
∗

+ di,jv
−1 + teh

j
∗.

α is the pheromone importance factor and β is the expected
heuristic factor. The set allowedk = {S−TABUs} represents
the available SNs that can be selected next time by ant k.
The SNs that have been visited are placed in TABUs, and the
initial moment are set t = 0.

The pseudo-random proportional rule is given by [45]:

j =

{
arg max

j∈allowedk

[τi,j(t)]
α[ηi,j(t)]

β , q ≤ q0;

j from (23) , other,
(24)

where q is a random variable uniformly distributed in the
interval [0, 1], and q0 ∈ [0, 1] is a parameter that represents
the probability that the ant chooses the current best possible
movement mode.

Step 3: After each ant has completed the n-step trajectory
planning, i.e., all ants arriving at the target point from the start
point, calculates the total path length Lk for k = 1, 2, · · · ,m.

Step 4: Each ant updates the pheromone, i.e., τi,j , according
to

τi,j(t+ n) = (1− ρ)τi,j(t) + ∆τi,j(t), (25)

∆τi,j(t) =
m∑
k=1

∆τki,j(t), (26)

where ρ represents pheromone volatilization coefficients, and
(1 − ρ) represents pheromone residual factor, and ∆τki,j(t)
is the increment of pheromone on path (Si, Sj) in current
iteration. Particularly, at the initial time, ∆τki,j(0) = 0, and

∆τki,j(t) =

{
Q
Lk
, if ant k passed though SNs (Si, Sj);

0 , otherwise.
(27)

where Q the pheromone concentration.
Step 5: If n ≥ itermax, algorithm stops. Otherwise, if n <

itermax, update n = n + 1, and then go to step 2, where
itermax is the predetermined maximum number of iterations.

IV. NUMERICAL RESULTS

This section provides some simulation results to discuss the
performance of our proposed algorithms. We simulated a UAV-
assisted wireless powered IoT network that consists of one
data center, one UAV and M SNs. The SNs are randomly
distributed in a circular area with a radius of 3000m. The data
center is located at the origin (0, 0). The flight height H and
speed v of the UAV are set as 10m and 20m/s, respectively.
The UAV’s transmit power is set as Pu = 0.5W and the data
size is set as Di = 1Mbits. The system bandwidth is set
as W = 1 MHz and the path loss factor is set as κ = 2.
The channel power gain at the reference distance 1m is set
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Fig. 3. The AoI ∆(i) of V(i) in the different trajectories.

as κ0 = −50 dB and the noise power σ2
w = −110 dBm

[46]. For the non-linear EH model, we set Pmax as 24 mW
which corresponds to the maximum harvested power at each
SN. Besides, we adopt a = 4 and b= 0.001. The AC related
parameters are set as m = M − 2, α = 1, β = 5, ρ = 0.5,
Q = 100, itermax = 30, and q0 = 0.9. For comparison,
the greedy (GD)-based algorithm and the random (RD)-based
algorithm are simulated as the benchmark methods. In the GD-
based algorithm, it starts from S0 to find the nearest SN, and
the process repeats until all M SNs are found. In the RD-
based algorithm, a random flight trajectory that visits all SNs
is adopted, i.e., Q = [S1, S2, · · · , SM ]. Suppose that the UAV
takes off at time t = 0.

Fig. 3 plots the AoI ∆(i)(t = Ut) of each V(i) achieved
by the four algorithms with M = 10. The simulation result
shows that compared with the RD-based method, our proposed
algorithms and the GD-based algorithm achieve much smaller
AoI for each SN. It implies that by optimally panning the
trajectory and allocating time, the AoI associated with each SN
can be greatly decreased. The reason is that if the AoI of V(i)

is relatively large, it will enlarge the AoI of the data collected
before accessing V(i). Therefore, by optimizing trajectory, the
AoI of Si is reduced greatly. In order to clearly observe the
benefits brought by optimizing the UAV trajectory, Fig. 4 plots
the ratio of the AoI ∆(i)(t = Ut) of each V(i) achieved by the
three algorithms normalized to the AoI achieved by RD-based.
It shows that the proposed algorithms and GD-based algorithm
reduce the AoI of data collected from the first eight SNs by
50%-72% of that achieved by the RD-based algorithm.

Fig. 5 plots four UAV trajectories achieved by the DP-
based, the AC-based, the GD-based and RD-based algorithms.
Clearly they look different. However, we see that the AC-based
algorithm finds a trajectory very similar to that by the DP-
based algorithm, which shows that the AC-based heuristic can
be very close to the optimal.

In order to clearly compare the average AoI achieved by the
DP-based, the AC-based and the GD-based algorithms, Fig. 6
is presented. It is seen that among the three algorithms, the DP-
based algorithm achieves the smallest AoI, because it is able
to find the optimal average AoI trajectory by comparing all
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Fig. 4. The ratio of the AoI ∆(i) of each SN V(i) achieved by the three
algorithms to the AoI achieved by RD-based.
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Fig. 5. An example of four trajectories: (a) DP-based algorithm; (b) AC-based
algorithm; (c) GD-based algorithm; (d) RD-based algorithm.

the candidate paths. The AC-based algorithm achieves the near
optimal solution to the DP-based one. The GD-based algorithm
achieves the highest AoI, as it finds the local optimal solution
each time, which is not necessarily the global optimal solution.

Fig. 7 shows the AoI ∆(i)(t = Ut) of each V(i) achieved
by the three algorithms under different data size, i.e., Di =
1 Mbits and Di = 3 Mbits, ∀i ∈ {1, 2, · · · ,M}. One can
observe that with the increase of data size Di, the AoI of Vi
increases, but the differences in the AoI obtained by the three
algorithms remain almost the same regardless of the data size.
The reason may be that the larger Di is, the longer the data
collection time tcd

i and the longer the energy transfer time teh
i ,

but this may not charge the visiting order obtained by three
algorithms.

Fig. 8 shows the average AoI achieved by the three al-
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gorithms versus the transmit power of the UAV. One can
observe that with the increase of transmit power at UAV, the
average AoI gradually decreases and eventually tends to be
flat, because more transmit energy, lower energy harvesting
time and data collection time, but according to Shannon
theorem, the information transmission rate cannot be increased
infinitely by increasing the transmit power. So, the AoI cannot
be decreased to zero by increasing the transmit power of UAV.
In addition, the average AoI achieved by three algorithms with
M = 10 are larger than that with M = 6. Because the more
SNs, the longer flying trajectory and the more data required
to be collected, resulting in large average AoI.

In order to provide deeper insights about the effect of M on
the average AoI, the average AoI versus the number of SNs
achieved by the AC-based and the GD-based algorithms are
plotted in Fig. 9, where more SNs are deployed in the system.
It is shown that the average AoI roughly linear increases with
the number of SNs, and it also shows that the AoI achieved
by the AC-based algorithm decreased by about 5% of the AoI
achieved by GD-based algorithm.

In addition, the running time and peak memory of the
AC-based and the GD-based algorithms versus the number
of SNs are shown in Table I and Table II, respectively.
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Fig. 9. The average AoI and the ratio of AoI versus the number of SN M .

It can be seen that as the number of SNs increases, the
running time and peak memory of the AC-based and the
GD-based algorithms increase. Moreover, compared with GD-
based algorithm, AC-based algorithm consumes more time and
more memory. Combined with Fig. 9, it can be inferred that if
the computing resources of the system is relatively abundant,
AC-based algorithm should be selected to achieve the smaller
AoI. Otherwise, GD-based one may be a better choice to save
computing resources by sacrificing some AoI performance.

Fig. 10 depicts the average AoI versus the UAV’s altitude
under the non-linear EH model and the linear EH model. In
the simulations, the UAV’s trajectory is obtained by DP-based
algorithm. It is noticed that in the simulations, the parameters
associated with the non-linear EH model are set according
to [47], [48], which were obtained by measuring practical
EH circuits. Moreover, the maximum conversion efficiency of
a EH circuit is limited by factors such as device parasitics,
harmonic generation, and impedance matching, resulting in a
maximum conversion efficiency of less than 90% [49]. That
is, in practice, ηi is not more than 0.9. Thus, we provide
some simulation results on linear EH model for comparison,
where ηi = 0.3, 0.6 and 0.9 in Fig. 10. One can observe that a
smaller average AoI is obtained under the non-linear EH model
than under the linear EH model, because the linear EH model
mismatches the non-linear feature of the system, resulting in
inaccurate optimization result. It is seen when ηi=0.9, the non-
linear EH model still outperforms the linear one. And when
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TABLE I
THE RUNNING TIME OF THE ALGORITHMS

M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 M=100

AC-based 0.1013s 0.2522s 0.5012s 0.9103s 1.4873s 2.0702s 2.9640s 4.1815s 5.3782s 6.9601s
GD-based 0.0133s 0.0138s 0.0143s 0.0145s 0.0147s 0.0149s 0.0152s 0.0157s 0.0163s 0.0168s

TABLE II
THE PEAK MEMORY OF THE ALGORITHMS

M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 M=100

AC-based 208.91Kb 275.45Kb 287.45Kb 301.14Kb 323.44Kb 353.95Kb 513.47Kb 748.18Kb 860.34Kb 968.20Kb
GD-based 11.72Kb 21.16Kb 34.97Kb 45.62Kb 49.75Kb 52.74Kb 54.86Kb 67.14Kb 78.92Kb 81.16Kb
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Fig. 10. The average AoI versus the flight altitude of the UAV.

ηi = 0.3, it is closer to the result obtained by the non-linear
EH model.

To clearly show the non-linear EH model and the linear EH
model with different energy harvesting efficiency ηi, Fig. 11 is
presented. In the simulations, the UAV’s flight height H is set
as 10m. It is observed that, compared with the non-linear EH
model, the higher the value of the conversion efficiency ηi, the
larger the bias of the output power caused by the linear EH
model. That is to say, linear EH model with higher energy
harvesting efficiency ηi may give a wrong AoI expectation,
but exactly results in the worse AoI performance (i.e., the
higher AoI). Fig. 10 also shows that the larger H , the larger
the achieved average AoI. Moreover, the difference between
the average AoI obtained with the linear EH model and the
non-linear EH model also increases with the increment of H .
The reason can be explained by Fig. 12, where it is shown
that as H increases, it requires longer time to harvest energy.
That is, even if the output power difference between the two
EH models decreases with the increase of H , the required
time for energy harvesting increases, resulting in the larger
gap between the two curves in Fig. 10.

Fig. 13 plots the average AoI versus the transmit power
of the UAV with the equal time allocation and our proposed
optimal time allocation. In the simulations, the data size of
all SNs are different, i.e., Di = 0.1 + 0.2(i − 1) Mbits for
i = 1, 2, · · · ,M . For the equal time allocation, the data collect
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Fig. 11. The harvested power versus the input power.
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Fig. 12. Time versus the flight altitude of the UAV.

time is set as tcd
i = tcd

2
∗ for all i = 1, 2, · · · ,M . It is observed

that the average AoI decreases with the increment of the
transmit power of UAV and finally tends to be stable, and the
gap between the two lines also decreases with the increment
the transmit power of UAV. This indicates that optimization of
the energy transfer time and the data collection time is helpful
in reducing the system average AoI, and the effect of the time
allocation on the average AoI seems unchanged versus the
transmit power of the UAV. From Fig. 14, one can observe
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Fig. 13. The average AoI versus transmit power of the UAV.
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Fig. 14. The percentage of AoI obtained at the optimization time to AoI
obtained at the equal time versus transmit power of the UAV.

that the average AoI obtained with optimized data collection
time and energy harvest time can be reduced to about 91% of
the average AoI obtained with equal time collection data.

Fig. 15 plots the average AoI versus the data size, where
the optimal trajectory is obtained by the DP-based algorithm.
One can observe that the average AoI roughly linearly in-
creases with the data size. To discuss the effect of the energy
harvesting time on the average AoI,

Fig. 16 plots the average energy transfer time versus the

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Data size (Mbits)

400

500

600

700

800

900

1000

1100

1200

1300

T
h

e
 a

v
e

ra
g

e
 A

o
I

Pu = 0.5 W

Pu = 0.8 W

Fig. 15. The average AoI versus transmit power of the UAV(Pu).
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Fig. 16. The average energy harvest time ¯tehi versus the data size.
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Fig. 17. The percentage of the average energy harvest time to the average
AoI ¯tehi /∆̄ versus the data size.

data size Di with Pu = 0.5 W and Pu = 0.8 W, and Fig. 17
plots the proportion of the energy transfer time in the average
AoI versus the data size Di with Pu = 0.5 W and Pu = 0.8
W. In the simulations, the UAV’s trajectory is obtained by DP-
based algorithm. It can be seen that the average energy transfer
time increases with the increase of data size and decreases
with the increases of transmit power of UAV. Moreover, the
proportion of the energy transfer time in the average AoI
increases logarithmically as the data size increases.

V. CONCLUSION

This paper studied the UAV-assisted wireless powered IoT
system. We formulated an optimization problem to minimize
the average AoI of the data collected from all ground SNs by
jointly optimizing the UAV’s trajectory and energy transfer
and data collection time for each SN. In order to solve
this problem, we proposed an efficient algorithm framework.
Simulation results shows that the DP-based algorithm obtains
the minimal average AoI of the system, and the AC-based and
the GD-based algorithms finds the near-optimal average AoI.
When the number of SNs is large, the AC-based algorithm is
the best choice. Moreover, compared with traditional linear EH
model, employing the non-linear EH model can decrease the
average AoI as the real systems are operated based on the EH
circuits with non-linear features. Besides, as the flying altitude
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of the UAV increases, the average AoI increases, and the
difference between the average AoI obtained by the linear EH
model and the non-linear EH model also increases. Moreover,
the average AoI increases basically linearly versus the data
size. These conclusions may be helpful to keep the SNs data
fresh in wireless sensor networks.
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