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Abstract: Texture analysis (TA) has shown promise as a surrogate marker for tissue structure, based
on conventional and quantitative MRI sequences. Chemical-shift-encoding-based MRI (CSE-MRI)-
derived proton density fat fraction (PDFF) of paraspinal muscles has been associated with various
medical conditions including lumbar back pain (LBP) and neuromuscular diseases (NMD). Its
application has been shown to improve the prediction of paraspinal muscle strength beyond muscle
volume. Since mean PDFF values do not fully reflect muscle tissue structure, the purpose of our
study was to investigate PDFF-based TA of paraspinal muscles as a predictor of muscle strength,
as compared to mean PDFF. We performed 3T-MRI of the lumbar spine in 26 healthy subjects
(age = 30 ± 6 years; 15 females) using a six-echo 3D spoiled gradient echo sequence for chemical-shift-
encoding-based water–fat separation. Erector spinae (ES) and psoas (PS) muscles were segmented
bilaterally from level L2–L5 to extract mean PDFF and texture features. Muscle flexion and extension
strength was measured with an isokinetic dynamometer. Out of the eleven texture features extracted
for each muscle, Kurtosis(global) of ES showed the highest significant correlation (r = 0.59, p = 0.001)
with extension strength and Variance(global) of PS showed the highest significant correlation (r = 0.63,
p = 0.001) with flexion strength. Using multivariate linear regression models, Kurtosis(global) of
ES and BMI were identified as significant predictors of extension strength (R2

adj = 0.42; p < 0.001),
and Variance(global) and Skewness(global) of PS were identified as significant predictors of flexion
strength (R2

adj = 0.59; p = 0.001), while mean PDFF was not identified as a significant predictor. TA
of CSE-MRI-based PDFF maps improves the prediction of paraspinal muscle strength beyond mean
PDFF, potentially reflecting the ability to quantify the pattern of muscular fat infiltration. In the
future, this may help to improve the pathophysiological understanding, diagnosis, monitoring and
treatment evaluation of diseases with paraspinal muscle involvement, e.g., NMD and LBP.

Keywords: magnetic resonance imaging; texture analysis; proton density fat fraction; paraspinal
muscles; muscle strength
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1. Introduction

The paraspinal muscles constitute important muscles for the stability, movement
and functionality of the lumbar spine [1]. Changes in paraspinal muscle volume and
composition have been shown to be influenced by multiple demographic and anatomical
factors: lumbar paravertebral muscle fat content is reported to be negatively associated
with aging and positively associated with body mass index (BMI), as assessed by CT-based
muscle density [2] and chemical-shift-encoding-based water–fat magnetic resonance imag-
ing (CSE-MRI) [3,4]. Furthermore, these studies found that women are more susceptible to
age-related changes than men, and paraspinal muscles are more susceptible to age-related
changes than leg muscles.

The relationship between exercise and MRI characteristics reflecting muscle volume
and composition have also been investigated previously. Early studies demonstrated
increased transverse relaxation times (T2) after muscle exercise in lower leg [5], quadri-
ceps [6,7] and ischiocrural muscles [8].

More importantly from a clinical perspective, a variety of medical conditions have
been investigated in the context of muscle volume and composition. Degenerative disc
disease and facet joint disease were shown to be positively associated with atrophy [9] and
fatty infiltration [10] of skeletal muscle. Measurements of paraspinal muscle fat infiltration
(MFI) were shown to agree well between CSE-MRI and magnetic resonance spectroscopy
(MRS) [11], and to be strongly correlated with lumbar back pain (LBP) [12,13]. Regarding
metabolic disorders, Karampinos et al. showed significant changes in the distribution of
regional intermuscular adipose tissue distribution in patients suffering from type-2 diabetes
mellitus [14]. A considerable amount of clinical research regarding changes in muscle
volume and composition has focused on neuromuscular diseases (NMD), demonstrating
an increased fat fraction, eventually resulting in extensive fatty replacement of paraspinal
muscle tissue [15,16]. These results, based on quantitative CT and MRI, could have the
potential to improve early diagnosis and monitoring of NMD patients, and, in the future,
provide a valuable tool to evaluate the efficacy of NMD treatments. However, advanced
quantitative imaging still has to find its way into the routine clinical management of
NMD patients.

As a tool for treatment evaluation, quantitative muscle imaging has already been
used successfully in patients with irreversible spinal cord injury, where an increase in
thigh muscle cross-sectional area (CSA) was demonstrated after electrical stimulation
therapy [17], exploiting the capability of 3D CT image segmentation to capture clinically
relevant changes in muscle size and quality [18].

The described relationships with demographic factors, exercise and the mentioned
medical conditions prove that imaging-based quantification of skeletal muscle has been
extensively investigated in the past, but still needs further development to become a viable
clinical tool. Therefore, there is an increasing interest in paraspinal muscle structure as
a potential prognostic and diagnostic marker for spine and muscle health, in addition to
muscle volume and composition.

Magnetic resonance imaging (MRI) constitutes a non-invasive method for the qual-
itative and quantitative characterization of muscle tissue. Among other things, it has
been applied to assess volume, MFI, and inflammation of muscle tissue. Measurement
of the proton density fat fraction (PDFF) by CSE-MRI has been shown to be robust and
reliable, validated with magnetic resonance spectroscopy (MRS) [11] and histology [19] and
therefore evolved as arguably the most promising imaging technique for the assessment of
MFI. However, mean PDFF ignores the variability in muscular structure and distribution
of muscle fat and may therefore not fully reflect muscle quality.

Texture analysis (TA) has emerged as an advanced analysis method in order to extract
more quantitative information contained in medical imaging data [20,21]. It has been used
in a variety of applications including neurologic and oncologic imaging [22–25].

So far, TA in musculoskeletal applications has mainly been based on non-quantitative
imaging data including sonography [26] and computed tomography [27]. Regarding MRI,
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conventional T2-weighted sequences have been used for TA in the context of lumbar spinal
stenosis (LSS) [28,29], and recently, Burian et al. demonstrated the feasibility of TA based
on CSE-MRI-derived PDFF maps in vertebral bone marrow [30].

Investigations, relating quantitative CT and MRI to strength measurements of skeletal
muscle, have been performed before. Recenti et al. extracted soft tissue parameters from
mid-femur CT scans to construct a machine leaning system which could predict isometric
leg strength [31]. Sinha et al. showed that four weeks of chronic unloading resulted in
significant atrophy reflected by CSA reduction of calf muscle, which could only partially
explain the observed reduction in muscle strength. Their results suggest that MRI-based
strain rate indices may provide additional determinants of muscle force loss independent of
muscle mass. Furthermore, the association of mean PDFF with strength measurements has
been investigated in healthy volunteers in paraspinal and thigh muscles where mean PDFF
has been shown to be a superior predictor of muscle strength compared to CSA [32,33]. In
conjunction with previous findings, demonstrating an association of increased paraspinal
MFI and decreased muscle function [1,34,35], this is another indicator that muscle quality
is a significant determinator of muscle function in addition to muscle mass. The quality of
muscular tissue is not only affected by its composition, but also by its structure. However,
muscle structure is not sufficiently represented by mean PDFF and its association with
paraspinal muscle function has not been studied before. In general, TA of muscle tissue
can be performed on non-quantitative as well as quantitative MRI data [28,30]. However,
TA based on PDFF maps can potentially yield information about muscular fat distribution
beyond mere fat content, thus enabling the differentiation of muscles with different patterns
of fat infiltration.

Therefore, the aim of the present study was to investigate whether quantification of
paraspinal muscle fat distribution improves the prediction of muscle strength beyond mean
PDFF. For this purpose, we analyzed the association between texture features of CSE-MRI-
derived PDFF maps with isometric strength, measured with an isokinetic dynamometer, in
healthy subjects.

2. Materials and Methods
2.1. Subjects

In total, 26 healthy subjects (15 women, 11 men; age = 30.27 ± 6.12 years, range: 21–42
years; BMI = 27.01 ± 2.69 kg/m2, range: 22.16–32.40 kg/m2) were recruited for this study
as outlined previously [32,33]. Inclusion and exclusion criteria are summarized in Table 1.

Table 1. Inclusion and exclusion criteria of the 26 recruited subjects; IPAQ-sf, International Physical
Activity Questionnaire—short form [36,37].

Inclusion Criteria

Age: 20–45 years
BMI: 20–33 kg/m2

Completion of the IPAQ-sf with a score referring to a moderate level of
physical activity (600–1500 metabolic equivalent of task-min/week)

Exclusion Criteria

Vertebral fractures
Severe anatomical or pathological alterations of the spine (e.g., scoliosis,

spondylolisthesis, degenerative disc disease, facet joint arthrosis)
Neuromuscular disease

Metabolic disease (e.g., diabetes mellitus)
History of high-performance sports

General MRI contraindications (e.g., cochlear implant,
severe claustrophobia)

Informed written consent was obtained from all subjects for MRI examination and
biometrical strength measurements. The study protocol was in accordance with the Decla-
ration of Helsinki and its later amendments and was approved by the local institutional
review board (‘Ethikkommission der TU München’; date of approval: 12 December 2015;
file number 482/15S).
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2.2. MR Imaging

All subjects underwent MRI on the same 3T system (Ingenia, Philips Healthcare, Best,
The Netherlands) using the built-in 12-channel posterior coil and a 16-channel anterior
coil placed upon the abdomen. Subjects were positioned head-first in a supine position.
An axially prescribed six-echo 3D spoiled gradient echo sequence was used for chemi-
cal shift encoding-based water–fat separation covering the lumbar spine. The sequence
acquired the six echoes in a single TR using non-flyback (bipolar) read-out gradients
with the following imaging parameters: TR/TEmin/∆TE = 6.4/1.1/0.8 ms, field of view
(FOV) = 220 × 401 × 252 mm3 (AP × LR × SI), voxel size = 3.2 × 2.0 × 4.0 mm3, frequency
encoding direction = LR, no SENSE, scan time = 1 min 25 s. A saturation slab with a
thickness of 80 mm was placed anterior to the FOV to minimize artifacts from breathing
motion. A flip angle of 3◦ was used to minimize T1-bias effects [38]. The gradient echo
imaging data was processed online using the vendor’s routines as described here: The
multi-echo mDIXON algorithm performs a phase error correction followed by a complex-
based water–fat decomposition using a pre-calibrated seven-peak fat spectrum and a single
T2* to model the signal variation with echo time. The imaging-based PDFF maps were
computed as the ratio of the fat signal over the sum of fat and water signals.

2.3. MR Image Segmentation

Segmentation of the paraspinal muscles was performed by drawing regions of interest
(ROIs) on each slice of the PDFF maps using the open-source software MITK (Medical
Imaging Interaction Toolkit, German Cancer Research Center, Division of Medical and Bio-
logical Informatics, Heidelberg, Germany) by a radiologist, resulting in three-dimensional
segmentation masks. Right and left erector spinae muscles (ES) as well as right and left
psoas muscles (PS) were segmented separately from the upper endplate level of L2 to the
lower endplate level of L5 as reported previously [32]. ROIs were placed at the muscle
contour to minimize the inclusion of subcutaneous fat or the muscle–fat interface. A repre-
sentative axial slice of a PDFF map with corresponding segmentation masks of ES and PS
muscles is shown in Figure 1. Mean PDFF of each of the four muscles was extracted. For
both muscle groups (ES and PS), right and left mean PDFF were averaged and weighted
by the respective muscle volumes to obtain bilateral mean PDFF values (PDFFES, PDFFPS).
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2.4. Texture Analysis of PDFF Maps

Texture analysis was performed on the PDFF maps of the segmented paraspinal
muscles. Three global features (variance, skewness, kurtosis) and the following eight
second-order features were extracted: energy, entropy, contrast, homogeneity, and cor-
relation were calculated according to [39], variance and sum-average according to [40]
and dissimilarity according to [41]. All texture features were calculated for each of the
four muscles. Analogously to mean PDFF values, for both muscle groups (ES and PS),
values were averaged over both sides, weighted by the respective muscle volumes to obtain
bilateral texture feature values (e.g., Variance(global)ES, Variance(global)PS).

Global features were extracted from intensity histograms. In histogram analysis, there
is no universal method for choosing the ideal number and size of bins. The number of
bins used in our analysis was calculated by taking the median of three different methods,
known as Sturges’ method, Scott’s method and the Freedman–Diaconis method since this
yielded the most reasonable results compared to visual inspection of the histograms and
showed the best representation of the relevant data characteristics [42–44].

Second-order features were extracted using gray-level GLCM analysis [39]. As a
preprocessing step, gray level quantization of the PDFF maps was performed to pre-
vent sparseness by normalizing the image intensities using 200 equally sized bins and
the minimum and maximum gray levels present, corresponding to values of 0% and
100%, respectively.

GLCM was obtained by computing the joint probability of two adjacent voxel intensi-
ties at a given offset d = (dx, dy, dz) and angular directions θ = (0◦, 45◦, 90◦, and 135◦). dx, dy
and dz denote the displacement along the x-, y- and z-axis, respectively.

For 3D-GLCM analysis, the co-occurrence probabilities of voxel intensities were
computed from the 26 neighbors, aligned in 13 directions taking into account discretization
length differences. The mean value of the features computed from the 13 directions
ensures the rotation invariance. Image preprocessing, including isotropic resampling,
gray level uniform quantization and texture analysis were performed using MATLAB
2018 (MathWorks Inc., Natick, MA, USA) and a radiomics toolbox (https://github.com/
mvallieres/radiomics/) [45–47].

2.5. Isometric Muscle Strength Measurements

Isometric muscle strength measurements of back extensors and flexors were per-
formed on two separate visits using an isokinetic rotational dynamometer (IsoMed Back
Module, D&R Ferstl GmbH, Hemau, Germany) [32]. On the first visit, the objective was
to familiarize the subject with the measurement procedure and train maximum isometric
strength activation. Five to eight repeated measurements at maximum voluntary isometric
contraction (MVIC) with 3 min breaks in-between were conducted. On the second visit, for
each direction of motion (flexion and extension), the actual MVIC was acquired for data
analysis as the maximum isometric torque [Nm] of three consecutive measurements with
3 min of recovery in-between. Subjects were instructed to be fully recovered for the actual
measurement (no physical activity for two days before these visits). On both dates, the
measurements were preceded by a standardized warm-up.

2.6. Statistical Analysis

Statistical analyses were performed with SPSS 26.0 (SPSS Inc., Chicago, IL, USA) using
a two-sided level of significance α = 0.05 for all statistical tests.

The Kolmogorov–Smirnov test indicated normally distributed data for the majority of
parameters. Mean and standard deviation (SD) of age, BMI, PDFFES, PDFFPS and texture
features were calculated for males and females and sex-dependent differences were com-
pared using unpaired t-tests. Pearson correlation coefficient r was calculated and Bonferroni
correction (corrected level of significance αcorr = α/24 = 0.0021) was applied to identify
sex-dependent differences of texture features as well as significant correlations of PDFFES,
PDFFPS and texture features vs. extension strength and flexion strength, respectively.

https://github.com/mvallieres/radiomics/
https://github.com/mvallieres/radiomics/
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Stepwise multivariate linear regression models were used to determine significant
predictors of extension and flexion strength. Independent variables were age, BMI, PDFFES,
PDFFPS and the eleven texture features for ES and PS, respectively, resulting in 26 potential
predicting variables. Inclusion (p < 0.05) and exclusion (p > 0.10) of independent variables
in the linear regression models were based on the p-values of the F-test. Adjusted regression
coefficients (R2

adj) were calculated for each model.

3. Results

In Table 2, mean ± SD of age, BMI, PDFFES, PDFFPS and the 22 calculated tex-
ture features (11 for each muscle group), grouped by sex, are displayed. Age and BMI
showed no significant difference between females and males (p > 0.05). Both PDFFES
and PDFFPS were higher in females compared to males, however the difference was only
significant for PDFFES (p = 0.015). After adjustment for multiple comparisons, eight of
the 22 texture features showed significant sex-dependent differences: Variance(global)ES,
Skewness(global)ES, Variance(global)PS and HomogeneityPS were greater in male subjects,
while ContrastPS, EntropyPS, VariancePS, and DissimilarityPS were greater in female subjects.

Table 2. Mean and standard deviation (mean ± SD) of subject characteristics (age and BMI), proton
density fat fraction, and analyzed texture parameters, separately for erector spinae (ES) and psoas
(PS) muscles and grouped by sex (male, n = 11; female, n = 15); p, p-value of unpaired t-test comparing
male and female subjects.

Male Female Total p

Age [years] 30.73 ± 4.82 29.93 ± 7.07 30.27 ± 6.12 0.751
BMI [kg/m2] 27.86 ± 3.48 26.38 ± 1.82 27.01 ± 2.69 0.171
PDFFES [%] 8.93 ± 2.10 11.65 ± 2.92 10.50 ± 2.90 0.015
PDFFPS [%] 4.22 ± 1.72 5.27 ± 1.81 4.83 ± 1.82 0.148

Variance(global)ES 335.72 ± 39.32 285.96 ± 25.84 307.01 ± 40.26 0.001
Skewness(global)ES 2.02 ± 0.20 1.71 ± 0.20 1.84 ± 0.25 0.001
Kurtosis(global)ES 4.71 ± 1.42 3.24 ± 1.31 3.86 ± 1.52 0.012
EnergyES [×102] 0.51 ± 0.26 0.29 ± 0.13 0.38 ± 0.22 0.008

ContrastES 84.08 ± 26.92 110.65 ± 27.09 99.41 ± 29.67 0.021
EntropyES 9.68 ± 0.63 10.36 ± 0.57 10.07 ± 0.68 0.008

HomogeneityES 0.38 ± 0.04 0.33 ± 0.04 0.35 ± 0.05 0.007
CorrelationES 0.86 ± 0.02 0.87 ± 0.02 0.86 ± 0.02 0.553

SumAverageES [×102] 0.18 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.322
VarianceES [×102] 0.77 ± 0.25 1.08 ± 0.35 0.95 ± 0.35 0.021

DissimilarityES 5.10 ± 1.01 6.22 ± 1.02 5.75 ± 1.15 0.010
Variance(global)PS 223.66 ± 44.36 138.94 ± 36.00 174.79 ± 57.75 <0.001
Skewness(global)PS 1.15 ± 0.68 1.07 ± 0.47 1.11 ± 0.56 0.728
Kurtosis(global)PS 5.90 ± 1.98 4.22 ± 1.09 4.93 ± 1.72 0.011
EnergyPS [×102] 0.19 ± 0.05 0.13 ± 0.04 0.16 ± 0.05 0.003

ContrastPS 104.98 ± 18.23 140.31 ± 27.83 125.36 ± 29.72 0.001
EntropyPS 10.28 ± 0.30 10.79 ± 0.29 10.57 ± 0.39 <0.001

HomogeneityPS 0.31 ± 0.02 0.28 ± 0.02 0.29 ± 0.03 <0.001
CorrelationPS 0.73 ± 0.03 0.73 ± 0.04 0.73 ± 0.04 0.945

SumAveragePS [×102] 0.19 ± 0.02 0.20 ± 0.01 0.19 ± 0.01 0.187
VariancePS [×102] 0.48 ± 0.06 0.65 ± 0.12 0.58 ± 0.12 <0.001

DissimilarityPS 5.95 ± 0.57 7.22 ± 0.82 6.68 ± 0.96 <0.001

Representative color-coded PDFF maps are shown in Figure 2. PDFFES and PDFFPS
showed no significant correlation with age (p = 0.991 for PDFFES, p = 0.594 for PDFFPS) or
BMI (p = 0.345 for PDFFES, p = 0.456 for PDFFPS). PDFFES showed no significant correlation
with PDFFPS (p = 0.221). Extension strength correlated with flexion strength (r = 0.62;
p < 0.001).
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Figure 2. Sample color-coded axial PDFF maps of two study subjects. (A): subject with low
strength (MVICext = 103.6 Nm, MVICflex = 112.5 Nm) and high mean PDFF values (PDFFES = 14.3%,
PDFFPS = 5.6%). (B): subject with high strength (MVICext = 335.9 Nm, MVICflex = 255.6 Nm) and low
mean PDFF values (PDFFES = 8.3%, PDFFPS = 3.9%). The upper limit of the color window was set to
30% to better depict the PDFF values within the paraspinal muscles. (PDFFES/PS, proton density fat
fraction of erector spinae and psoas muscles; MVICext/flex, maximum voluntary isometric contraction
of extension and flexion; Nm, newton meter).

Four of the 24 analyzed variables (PDFFES, PDFFPS, and 22 texture features) showed
significant correlations with strength measurements. Kurtosis(global)ES showed the highest
significant correlation (r = 0.59, p = 0.001) with extension strength and Variance(global)PS
showed the highest significant correlation (r = 0.63, p < 0.001) with flexion strength
(Supplementary Material Table S1). PDFFES and extension strength showed the high-
est correlation of mean PDFF and strength measurements, however not significant after
adjustment for multiple comparisons (r = −0.491, p = 0.011; αcorr = 0.05/24 = 0.0021). Scatter
plots of age, BMI, PDFFES, PDFFPS, and texture feature vs. extension strength and flexion
strength, respectively, are shown in Figure 3.

In the multivariate linear regression analyses (independent variables: age, BMI,
PDFFES, PDFFPS, texture features of ES and PS), Kurtosis(global)ES (p = 0.001) and BMI
(p = 0.042) were identified as statistically significant predictors of extension strength
(R2

adj = 0.42; p = 0.001), and Variance(global)PS (p < 0.001) and Skewness(global)PS
(p = 0.001) were identified as statistically significant predictors of flexion strength
(R2

adj = 0.59; p < 0.001). Of note, in these models, which predicted extension and flexion
strength best, PDFFES and PDFFPS were not identified as significant contributors. Age was
not identified as a statistically significant confounder in any of the models.
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4. Discussions

In the present study, we demonstrated that paraspinal muscle texture features, ex-
tracted from CSE-MRI-derived PDFF maps, significantly correlated with muscle strength.
Texture features better predicted paraspinal muscle strength than mean PDFF alone.

We observed significant sex-dependent differences for several of the extracted texture
features: Variance(global) was greater in males than females for both psoas and erector
spinae muscles. Current literature results have shown sex-dependent differences in muscle
cross sectional areas, muscle strength, and fatty muscle infiltration [3,4,48]. However, to
date, no comparable studies have reported on the sex-dependence of MR-based texture
features of paraspinal muscles and future studies are needed to confirm these initial results.

The use of texture features for quantitative medical imaging analysis has been in-
creasing in recent years, particularly in oncological imaging. Furthermore, Burian et al.
performed TA of vertebral bone marrow PDFF maps, demonstrating its feasibility and
ability to differentiate pre- from postmenopausal women equally well as mean PDFF [30].
In particular, the authors identified the texture features Contrast and Dissimilarity as best
discriminators. In contrast to the application in bone marrow, we performed PDFF-based
TA of muscle tissue. In comparison to bone marrow, muscle tissue has remarkably lower
fat content and higher heterogeneity of fat distribution. This potentially explains why the
mean values of the texture features Variance and Variance(global) are remarkably higher in
the study of Burian et al. as compared to our study in paraspinal muscles.

To the best of our knowledge, preliminary work on TA in this anatomical region
is very scarce. In the context of lumbar spinal stenosis (LSS), TA was shown to be a
reproducible tool with the potential to improve LSS detection compared to qualitative
assessment [28,29,49]. In our study, we performed paraspinal muscle TA on CSE-MRI-
derived PDFF maps, a fast-imaging technique exhibiting good reproducibility [32]. Com-
pared to semi-quantitative analysis of conventional T2-weighted sequences, PDFF extrac-
tion based on CSE-MRI offers a more reliable and comparable approach for the assessment
of water–fat composition. Both the T2-weighted approach and the CSE-MRI approach are
sensitive to muscular fat infiltration. However, the T2-weighted approach is limited in the
presence of other T2w-hyprintense alterations, e.g., muscular edema which occurs in NMD
and other inflammatory conditions of the muscle.

The association of muscle composition and isokinetic strength measurements has been
investigated before in paraspinal and thigh muscles [32,33]. In these studies, the authors
showed that CSE-MRI-derived mean PDFF measurements of erector spinae, quadriceps
and ischiocrural muscles improve the prediction of strength measurements beyond CSA,
indicating that, in addition to muscle mass, composition of contractile muscle has a major
effect on its function.

In the present study, multivariate linear regression analysis identified certain texture
features and BMI, but not mean PDFF, as significant predictors of extension and flexion
strength. The identified first-order features increase with increasing variation in PDFF
across the ROI and are particularly sensitive to extreme values relative to the mean. Those
outliers are more likely to be encountered in the presence of localized muscular and
perimuscular alterations, such as fat streaks, circumscribed edema, scarring and connective
tissue proliferation. Hence, our results suggest that muscle structure as well as the pattern
of MFI have a relevant impact on paraspinal muscle function and support the hypothesis
that TA of muscle tissue based on PDFF maps can quantify the distribution of MFI. Put more
figuratively, texture feature may better differentiate muscles with a rather homogeneous fat
infiltration from muscles with fat streaks which have a more heterogeneous fat infiltration,
although both have the same mean fat content. This is exemplified visually in Figure 4
which displays PDFF maps of subjects with comparable mean PDFF but a large difference in
the texture feature exhibiting the highest correlation with extension strength (Figure 4A,B),
and a large difference in the texture feature exhibiting the highest correlation with flexion
strength (Figure 4C,D), respectively.
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Figure 4. Sample color-coded axial PDFF maps of four study subjects visualizing inter-individual
differences in texture parameters. The upper limit of the color window was set to 30% to better depict
the PDFF values within the paraspinal muscles. (A,B): two subjects with comparable mean PDFFES

(PDFFES = 6.94 and 7.33) and large difference in Kurtosis(global)ES (Kurtosis(global)ES = 7.257 and
4.309). Note the existence of more outliers at both ends of the PDFF spectrum within the erector
spinae muscles in (A) reflected by a higher Kurtosis(global)ES as compared to (B). (C,D): two subjects
with comparable mean PDFFPS (PDFFPS = 5.81 and 5.67) and large difference in Variance(global)PS

(Variance (global)PS = 273.76 and 116.31). Note the more prominent fatty streaks within the psoas
muscles in (C) resulting from a more heterogeneous fat distribution and reflected by a higher
Variance(global)PS as compared to (D). ES, erector spinae muscles; PS, psoas muscles; PDFFES/PS,
proton density fat fraction of ES and PS.

Diffusion tensor imaging (DTI) represents another MRI technique for quantitative
assessment of tissue structure. Extension-to-flexion strength ratio of paraspinal muscles was
shown to be best predicted by DTI parameters as compared to CSA and mean PDFF [50]. To
some extent, these results can be considered to be in line with our findings, supporting the
hypothesis that changes in paraspinal muscle function are related to structural alterations,
such as the pattern of muscular fat infiltration.

The improved prediction of muscle strength by TA compared to mean PDFF is a very
promising finding. The present study, which is the first to perform CSE-MRI-based TA
of paraspinal muscles, supports the hypothesis that the pattern of MFI has a significant
effect on muscular function and indicates that advanced postprocessing could reveal new
insights into muscle structure and function in a time-efficient manner without the need for
additional data acquisition. The use of quantitative PDFF maps instead of non-quantitative
T2-weighted images is particularly appealing for the assessment of NMD, inflammatory
muscle diseases, and other conditions presenting with muscular edema as explained above.
Depending on the application, our approach may therefore serve as an analysis technique
to replace or complement established parameters, such as CSA and PDFF, for the evaluation
of aforementioned muscle conditions.

The present study is not without limitations. First, TA was performed on manually
segmented ROIs of erector spinae muscles. Since the respective muscles were segmented as
a whole, both intra- and intermuscular fat contributed to the PDFFES distribution and the
subsequent TA. Second, only young healthy subjects with relatively low muscle mean PDFF
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were included resulting in a rather low range and narrow distribution of PDFF values.
However, regardless of the low variance in muscle fat content, significant correlations
of texture features and strength measurements could be observed suggesting that small
changes in water–fat composition of the muscle are accompanied by structural changes that
have a relevant effect on the biomechanical function of the muscle. To further characterize
paraspinal muscle TA, particularly in a larger range of PDFF values, future studies are
needed. Those studies should include subjects with a greater age range as well as patients
suffering from conditions affecting muscle composition and structure, such as NMD or LBP.
A longitudinal study could also reveal training effects on muscle structure and function by
examining subjects before and after exercise intervention.

5. Conclusions

We showed that TA of CSE-MRI-based PDFF maps is feasible in paraspinal muscles.
Our initial results in this anatomic region demonstrate improved prediction of muscle
strength beyond mean PDFF, indicating that muscular function is related to muscle fat
distribution. TA of CSE-MRI-based PDFF maps thus has the potential to differentiate
muscles based on the pattern of MFI. As a consequence, it should be applied in relevant
patient groups, since it could reveal new pathophysiological insights and help to improve
diagnosis, monitoring, and treatment evaluation of certain medical conditions, such as
NMD and LBP.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-441
8/11/2/239/s1, Figure S1: Color-coded PDFF maps (sample axial slices) all 15 female subjects. The
upper limit of the color window was set to 30% to better depict the PDFF values of the paraspinal
muscles (PDFF, proton density fat fraction). Figure S2: Color-coded PDFF maps (sample axial
slices) all eleven male subjects. The upper limit of the color window was set to 30% to better
depict the PDFF values of the paraspinal muscles (PDFF, proton density fat fraction). Table S1:
Pearson correlation coefficient r and corresponding p-values p for mean PDFF and texture features
vs. extension strength (center column), and r and p for mean PDFF and texture features vs. flexion
strength (right column), respectively.
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Abbreviations

AP anterior-posterior direction
BMI body mass index
CSA cross-sectional area
CSE-MRI chemical shift encoding-based water-fat magnetic resonance imaging
DTI diffusion tensor imaging
ES erector spinae muscle
FOV field of view
GLCM gray-level co-occurrence matrix
IPACQ-SF International Physical Activity Questionnaire Short-Form
L2 second lumbar vertebra
L5 fifth lumbar vertebra
LSS lumbar spinal stenosis
LR left-right direction
MFI muscle fat infiltration
MITK Medical Imaging Interaction Toolkit
MRI magnetic resonance imaging
MRS magnetic resonance spectroscopy
MVIC maximum voluntary isometric contraction
MVICext/flex, MVIC of extension
MVICext/flex, MVIC of flexion
[Nm] newton meter
PDFF proton density fat fraction
PDFFES PDFF of erector spinae muscles
PDFFPS PDFF of psoas muscles
PS psoas muscle
r Pearson correlation coefficient
R2

adj adjusted coefficient of determination
ROI region of interest
SD standard deviation
SENSE sensitivity encoding
SI superior-inferior direction
T Tesla
T1 longitudinal relaxation time
T2 transverse relaxation time
T2* effective transverse relaxation time
TA texture analysis
TE echo time
∆TE echo time step
TR repetition time
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