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In this paper, closed loop characteristics with an incremental backstepping (IBKS) controller are 
investigated with consideration of measurement delays and model uncertainties. To judge absolute 
stability of the system, a systematic analysis framework is proposed which examines the existence 
of unstable poles from a derived characteristic equation with high nonlinearity due to the considered 
measurement delays. One of the key findings from the analysis results is that the system is stable only 
when a specific relationship between the measurement delays is satisfied and this stability condition is 
affected by the model uncertainty. Critical understandings about individual and integrated effects of the 
measurement delays and the model uncertainties to the system are suggested through a comparative 
study. Verification and validation of the obtained properties from the framework are performed through 
simulations.
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1. Introduction

Backstepping (BKS) control [1] is one of the most widely and 
successfully applied nonlinear methodologies for a flight control 
system design [2–10]. One of the issues about the classical back-
stepping controller is that it is sensitive to model uncertainties, 
because full model information is explicitly required for its im-
plementation. Note that it is difficult to get an accurate model 
from a wind tunnel test or an aeroprediction in general. To re-
duce model dependency of BKS, incremental backstepping (IBKS) 
controller [11–19] is proposed. Comparing to BKS, IBKS addition-
ally utilizes state derivative and control surface deflection angle 
measurements which replace required knowledge about a model 
except control effectiveness information. This algorithm becomes 
implicit, not totally relying on explicit model information for its 
implementation.

Since IBKS lies in between sensor based and model based ap-
proaches, it is essential to understand the effects of measurement 
defects such as bias, noise, and delay along with model uncertain-
ties to the closed loop system. There have been some researches 
investigating closed loop characteristics with IBKS only considering 
model uncertainties [11–16]. One of the key findings from theoret-
ical analyses in [15] and [16] is that the stability and performance 
of the system are not affected by any model uncertainties even in 
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control effectiveness information if a control command is calcu-
lated, transmitted and reflected fast enough to a real control sur-
face deflection. The limitation of the analyses in previous studies 
is that measurements are assumed to be ideal, which is impos-
sible in practice. [17] suggested closed loop analysis results with 
consideration of measurement biases together with model uncer-
tainties. This study indicates that measurement biases only cause 
additional steady state error. One of the interesting observations 
is that a model uncertainty in control effectiveness information 
starts to have an impact to the closed loop system when these 
measurement biases are additionally considered. To the best of our 
knowledge, there are no existing researches about IBKS analysis 
considering measurement delays along with model uncertainties.

Unlike IBKS, there have been some studies [20–22] on incre-
mental nonlinear dynamic inversion (INDI) with consideration of 
measurement delays. Note that INDI [20–25] is an incremental 
version of NDI [26], as IBKS to BKS. [20] and [21] only consider 
delay in the state derivative measurement induced by a filter to 
attenuate noise which is amplified during state differentiation pro-
cess. In [22], the induced delay from a filter for noise attenua-
tion together with sensor delays is considered during a flight test. 
[20–22] briefly mention that measurement delays have critical im-
pacts on the closed loop system with the incremental algorithm. 
[22] indicates that synchronization between state derivative and 
control surface deflection angle measurements is essential for a 
successful flight test with INDI. However, [20–22] just focused on 
algorithm designs to avoid delay issues without systematic analysis 
ss article under the CC BY-NC-ND license 
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or sufficient interpretations on the effects of measurement delays 
to the system.

Relevant studies with IBKS and INDI urge the needs of detailed 
analysis on the closed loop system with IBKS considering both 
measurement delays and model uncertainties. One of the biggest 
challenges in this analysis is that it is difficult to examine even ab-
solute stability of the system in an analytic way due to exponential 
terms in a characteristic equation generated from measurement 
delays. The simplest way to resolve this issue is to approximate 
the exponential terms with well-known methods like Taylor se-
ries expansion, as suggested by previous studies on analysis of 
delayed systems [27–29]. However, this approximation-based ap-
proach has following limitations. First, the approximation holds for 
small enough delay, but it is difficult to judge whether the existing 
delay is within an acceptable range for the approximation. Second, 
derived stability conditions become too sensitive to the order of 
the approximation and they do not match well with those of the 
real system as shown in [30].

This paper investigates stability characteristics of the closed 
loop system with IBKS under measurement delays and model un-
certainties through systematic analysis. Considering the limitations 
of the approximation based approach, the existence of the poles 
on the right half plane is examined by solving the highly nonlinear 
characteristic equation of the closed loop system numerically with-
out any approximation. A stability condition for the closed-loop 
system with IBKS is provided as a relationship between delays on 
state derivative and control surface deflection angle measurements, 
and it is shown that this condition is affected by the model un-
certainty. A comparative study is suggested which enables critical 
understandings about individual and integrated effects of measure-
ment delays and model uncertainties to the closed loop system.

The rest of this paper is organized as follows. In section 2, dy-
namics and derived control algorithm with IBKS are provided as 
preliminaries. The stability analysis framework is proposed in Sec-
tion 3 for the closed loop system with IBKS under measurement 
delays and model uncertainties. Section 4 addresses the analysis 
results obtained from the proposed framework and the results are 
verified by carrying out simulations.

2. Preliminaries

For the closed loop analysis in Section 3 and 4, dynamics and 
control algorithm are suggested in Section 2 as preliminaries. Short 
period mode dynamics and derived control law with IBKS are given 
in subsection 2.1 and 2.2 respectively. Note that this paper utilizes 
IBKS for the inner loop controller design and BKS for the outer 
loop controller design. As can be seen in [11,13,16,20] and [21], 
the incremental control algorithm is not generally applied for the 
outer loop, because more practical ways are available to compen-
sate the required model information without utilizing additional 
measurements in the outerloop.

2.1. Dynamics

For simplicity of the analysis, this paper considers short period 
mode dynamics (1) in [31]. Note that the short period mode is of 
paramount importance in the flight control design because one of 
the main purposes of a stability augmentation system (SAS) for an 
aircraft is to enhance this short period mode characteristics.

α̇ =Z∗
α (M,α)α + q + Z∗

δ (M,α) δ

q̇ =M∗
α (M,α)α + M∗

q (M,α)q + M∗
δ (M,α) δ

where
2
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m
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(1)

State variables α and q denote for an angle of attack and a pitch 
rate. Control input δ indicates a deflection angle of an elevator. 
q̄, U0 and M are dynamic pressure, constant velocity and Mach 
number of an aircraft. For notational convenience, aerodynamic 
derivatives which are given as functions of M and α will be repre-
sented in shorthand form as Z∗

α , Z∗
δ , M∗

α , M∗
q and M∗

δ . C(·) indicates 
dimensionless aerodynamic coefficients. S , c̄, m and I y denote ref-
erence area, reference length, mass and moment of inertia in y-
axis of an aircraft, respectively. Dynamics (1) describes a nonlinear 
system which can be expressed as a parameterized linear system 
where parameters vary with state variables.

Since IBKS is based on the backstepping algorithm which re-
quires that dynamics should be in strict feedback form, a fin sur-
face is assumed to be a pure moment generator. Note that this 
assumption is a reasonable for most of aircraft, often made in flight 
controller design, since C Zδ is generally small enough to be ne-
glected [31].

α̇ = Z∗
αα + q

q̇ = M∗
αα + M∗

qq + M∗
δ δ

(2)

For the inner-loop control algorithm design with IBKS, q dy-
namics in (2) is modified as (3), under the assumption that the 
states α, q and the control input δ can be represented as combina-
tions of reference points (·)0 and perturbations �(·) around them. 
This is valid assumption especially with a sufficiently high sam-
pling rate.

q̇ = M∗
α (α0 + �α) + M∗

q (q0 + �q) + M∗
δ (δ0 + �δ)

= q̇0 + M∗
α�α + M∗

q�q + M∗
δ�δ

(3)

As described in [11,16,20,23] and [24], the increments of states, 
�α and �q, have much less effects on q dynamics than the incre-
ments of control input, �δ. This results in the incremental dynam-
ics (4) for the inner loop control system design with IBKS, which 
is obtained by neglecting �α and �q in (3).

q̇ � q̇0 + M∗
δ�δ (4)

The final form of dynamics for the controller design is provided 
as (5).

α̇ = Z∗
αα + q

q̇ = q̇0 + M∗
δ�δ

(5)

State errors are defined as (6).
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z1 = α − αc

z2 = q − qc
(6)

where subscript c indicates a command.

2.2. Derivation of control law

Under the Lyapunov theory, a control command which achieves 
asymptotic stability of the system is derived from 2 cascaded de-
signing steps as follows.

First, for the outer loop controller design with BKS, Lyapunov 
function candidate V 1 considering only z1 is selected as

V 1 = 1

2
z2

1 (7)

which is positive definite except z1 = 0.
The derivative of V 1 is obtained as

V̇ 1 = z1 ż1

= z1
(

Z∗
αα + q − α̇c

) (8)

In order to satisfy the Lyapunov stability condition, a pseudo-
command qc is designed as

qc = −C1z1 − Z∗
αα + α̇c (9)

which makes negative definite V̇ 1 = −C1z2
1 except z1 = 0 with a 

positive design parameter C1. The state of the fast dynamics, q, is 
regarded as a control input for the slow dynamics.

Second, for the inner loop controller design with IBKS, Lya-
punov function candidate V 2 considering both z1 and z2 is defined 
as

V 2 = 1

2
z2

1 + 1

2
z2

2 (10)

which is positive definite except z1 = 0 and z2 = 0.
The derivative of V 2 can be calculated as (11), by utilizing the 

incremental dynamics of q in (4).

V̇ 2 = z1 ż1 + z2 ż2

= z1
(

Z∗
αα + q − α̇c

) + z2
(
q̇0 + M∗

δ�δ − q̇c
) (11)

From the pseudo-command (9), V̇ 2 becomes

V̇ 2 = z1 (−C1z1 + z2) + z2
(
q̇0 + M∗

δ�δ − q̇c
)

(12)

To satisfy Lyapunov stability condition, �δ is designed as

�δ = 1

Mδ

(−C2z2 − z1 − q̇0 + q̇c) (13)

which makes negative definite V̇ 2 = −C1z2
1 − C2z2

2 except z1 = 0
and z2 = 0 with positive design parameters C1 and C2.

The final form of the derived control algorithm can be sug-
gested as follows.

qc = −C1z1 − Ẑ∗
αα + α̇c

δ = δ0 + �δ

= 1

M̂∗
δ

(−C2z2 − z1 − q̇0 + q̇c) + δ0

(14)

Note that aerodynamic derivatives estimates ˆ(·) are utilized in (14)
instead of real Z∗

α and M∗
δ , because only estimated values for the 

model information are available in controller design phase. The 
pseudo-command qc makes the angle of attack α converge to its 
desired value αc , and q achieves qc by the designed control input 
3

δ. Comparing to a control command with pure BKS, explicit uti-
lization of M̂∗

α and M̂∗
q information is not required, since �α and 

�q are neglected in q dynamics (4) for the inner loop control al-
gorithm design with IBKS. This implies that model dependency is 
reduced because Ẑ∗

α and M̂∗
δ are only required for implementation 

of the algorithm. Instead, measurements about state derivative and 
control input in the inner loop, q̇0 and δ0, are additionally required 
to implement the control algorithm with IBKS.

A flight controller is designed to accomplish asymptotic sta-
bility under Lyapunov framework, assuming that there are no 
measurement defects like delays and model uncertainties. The ef-
fects of measurement delays and model uncertainties, which can 
make aimed performance and stability characteristics in this de-
sign phase difficult to be achieved, will be investigated in the 
closed loop analysis.

3. Stability analysis framework under measurement delays

Section 3 suggests the closed loop analysis framework for the 
system with IBKS under measurement delays and model uncer-
tainties. Comparing to classical BKS, state derivative and control 
surface deflection angle measurements are additionally utilized 
and consequently, model information about control effectiveness is 
only required for IBKS implementation. Hence, delays τq̇ and τδ on 
q̇0 and δ0 measurements together with the model uncertainty �

M∗
δ

on M̂∗
δ are mainly considered in the closed loop analysis. Note that 

the measurement delays in this paper are defined as final delays 
on the measurements for control command calculation, including 
delays from sensors, communication links, and processors with es-
timation algorithms. M̂∗

δ is assumed to have the same sign with 
M∗

δ .
The first step for the stability analysis framework is to derive 

the transfer function of the closed loop system with IBKS consid-
ering τq̇ and τδ along with �

M∗
δ

, resulting in (15).

α(s)

αc(s)
=

M∗
δ

M̂∗
δ

(C1C2 + 1)

φ1(s)s2 + φ2(s)s + φ3(s)

where

φ1(s) = 1 − e−τδ s + M∗
δ

M̂∗
δ

e−τq̇ s

φ2(s) = −(Z∗
α + M∗

q)(1 − e−τδ s)

+ M∗
δ

M̂∗
δ

(C1 + C2 + Z∗
α − Z∗

αe−τq̇ s)

φ3(s) = (Z∗
α M∗

q − M∗
α)(1 − e−τδ s)

+ M∗
δ

M̂∗
δ

(C1C2 + 1)

(15)

A detailed derivation of the transfer function (15) under the piece-
wise approach [32] is addressed in Appendix A.

The stability of the closed loop system can be examined by 
searching unstable poles from its characteristic equation in (15). 
The biggest challenge to obtain poles is that there exist expo-
nential functions from the considered measurement delays. If the 
exponential functions are approximated as in [27–30], it is difficult 
to figure out the feasible range of delay for the valid approxima-
tion. In addition, [30] addresses that the stability characteristics 
obtained with Taylor series expansion can be highly sensitive to 
the order of the approximation. The proposed analysis framework 
in this paper is based on a numerical approach without approxi-
mation, which will be shown in the rest of the steps.
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The second step is to reformulate the characteristic equation 
for numerical pole search. By substituting s = a + bi (a, b ∈R) and 
applying Euler’s formula, φ1, φ2 and φ3 in (15) can be rewritten as 
(16).

φ1 = (1 − xδ + �xq̇) + i(yδ − �yq̇)

φ2 = {−(Z∗
α + M∗

q)(1 − xδ) + �(C1 + C2 + Z∗
α − Z∗

αxq̇)
}

+ i
{−(Z∗

α + M∗
q)yδ + �Z∗

α yq̇
}

φ3 = {
(Z∗

α M∗
q − M∗

α)(1 − xδ) + �(C1C2 + 1)
}

+ i(Z∗
α M∗

q − M∗
α)yδ

(16)

where

xδ = e−τδacos(τδb) xq̇ = e−τq̇acos(τq̇b)

yδ = e−τδasin(τδb) yq̇ = e−τq̇asin(τq̇b) � = M∗
δ

M̂∗
δ

From (16) with s = a + bi (a, b ∈ R), the characteristic equation 
φ1s2 + φ2s + φ3 = 0 can be re-arranged as (17).

φ1s2 + φ2s + φ3 = Re(a,b) + Im(a,b)i = 0

where

Re(a,b) = (a2 − b2)
[
1 − {

e−τδacos(τδb) − �e−τq̇acos(τq̇b)
}]

− 2ab
{

e−τδasin(τδb) − �e−τq̇asin(τq̇b)
}

+ a
[−(Z∗

α + M∗
q) + �(C1 + C2 + Z∗

α) + M∗
q e−τδacos(τδb)

+Z∗
α

{
e−τδacos(τδb) − �e−τq̇acos(τq̇b))

}]
+ b

[
M∗

q e−τδasin(τδb)

+ Z∗
α

{
e−τδasin(τδb) − �e−τq̇asin(τq̇b)

}]
+ {

(Z∗
αM∗

q − M∗
α)(1 − e−τδacos(τδb)) + �(C1C2 + 1)

}
Im(a,b) = (a2 − b2)

{
e−τδasin(τδb) − �e−τq̇asin(τq̇b)

}
+ 2ab

[
1 − {

e−τδacos(τδb) − �e−τq̇acos(τq̇b)
}]

− a
[
M∗

q e−τδasin(τδb)

+ Z∗
α

{
e−τδasin(τδb) − �e−τq̇asin(τq̇b)

}]
+ b

[−(Z∗
α + M∗

q) + �(C1 + C2 + Z∗
α) + M∗

q e−τδacos(τδb)

+Z∗
α

{
e−τδacos(τδb) − �e−τq̇acos(τq̇b)

}]
+ (Z∗

αM∗
q − M∗

α)e−τδasin(τδb)

(17)

The last step is to find poles by searching a and b which make 
both Re(a, b) = 0 and Im(a, b) = 0 in (17). This is performed by 
solving the system of these nonlinear equations with a widely 
known and utilized numerical method [33]. The closed-loop sys-
tem with IBKS is unstable if there exist at least one solution with 
a > 0.

4. Stability analysis results under measurement delays

Closed loop stability analysis results under measurement delays 
along with model uncertainties are presented in Section 4, which 
are obtained by applying the numerical framework in Section 3. 
Simulations are performed for verification and validation of the 
identified properties from the framework. As illustrative examples, 
four different types of aircraft models are considered for analysis 
and simulation, and their aerodynamic derivatives at certain flight 
conditions [34] are provided in Table B.1 in Appendix B. The design 
parameters C1 and C2 for the control algorithm are set to be 1.5
respectively. An extensive range of τq̇ and τδ together with � ∗ is 
M
δ

4

Table 1
kmax for each �M̂∗

δ
.

kmax

�M̂∗
δ

Airplane A Airplane B Airplane C Airplane D

-0.5 0 0 0 0
-0.35 1 1 1 1
-0.2 1 1 1 1
0 1 1 1 1
0.25 2 2 2 2
1 3 3 3 3
2 5 5 5 4
3 6 6 6 5

introduced to obtain critical insights about the effects of measure-
ment delays along with a model uncertainty on the system. Note 
that considering the page limit, this paper shows some parts of the 
results that are representative. The presented cases are with τq̇ and 
τδ from 0s to 0.1s with 0.01s increment and from 0.1s to 0.2s with 
0.02s increment (i.e. [{0s : 0.01s : 0.1s} ∪ {0.1s : 0.02s : 0.2s}]) along 
with �

M∗
δ

= [− 50%, −35%, −20%, 0%, 25%, 100%, 200%, 300%
]
. 

Initial values for the state variables α and q, and the α-command 
αc , are set to be 0◦ , 0◦/s and 1.5◦ respectively.

τq̇ and τδ cases examined to be stable by the framework are il-
lustrated for each �

M∗
δ

in Fig. 1. Note that the markers �, �, �
and � in Fig. 1 denote the framework results of aircraft A, B, C and 
D, respectively. Fig. 1 shows that the closed loop system is stable 
if τq̇ = kτδ and the non-negative k has an upper bound kmax which 
varies with �M̂∗

δ
. kmax values in Fig. 1 are summarized as Table 1

which provides following observations. For �M̂∗
δ
= 0, kmax is 1, in-

dicating the system becomes stable when there is no delay on q̇0
measurement (i.e. τq̇ = 0) or when the additional measurements 
q̇0 and δ0 are synchronized with the same amount of delay (i.e. 
τq̇ = τδ). If M̂∗

δ is under-estimated (i.e. �M̂∗
δ
< 0), kmax gets smaller, 

resulting in reduced number of stable points. On contrary, if M̂∗
δ

is over-estimated (i.e. �M̂∗
δ

> 0), kmax becomes larger, resulting in 
increased number of stable points.

The simulation results appear to coincide with the framework 
results, as can be seen in Fig. 1. Note that the simulation results 
are given with markers �, �, � and � for each aircraft A, B, C 
and D in Fig. 1. For some representative cases with Aircraft A, time 
responses are presented in Fig. 2. It is shown in Fig. 2 that the 
closed-loop system is unstable if τq̇ and τδ do not satisfy τq̇ =
kτδ (k ≤ kmax) even with small deviation.

For better understandings on stability and robustness of the 
closed loop systems, gain margins under τq̇ and τδ together with 
�M̂∗

δ
are examined through simulations. For illustrative purpose, 

a part of results with Aircraft A under τδ = {0s : 0.01s : 0.05s} is 
given as Fig. 3, but the trend of all results is the same. Fig. 3
indicates that the gain margin increases as �M̂∗

δ
increases under 

the same τq̇ and τδ . For the same �M̂∗
δ

, the gain margin decreases 
when k approaches to its upper bound kmax .

The important findings from the framework results can be sum-
marized as Observation 4.1 and 4.2.

Observation 4.1 (Stability condition with τq̇ and τδ). The system with 
IBKS is stable only when τq̇ = kτδ with a non-negative integer k
which has an upper bound kmax . Otherwise, the closed loop system 
becomes unstable.

Observation 4.2 (Effect of �M̂∗
δ

to stability condition). kmax becomes 
smaller as the model uncertainty on control effectiveness informa-
tion � ˆ ∗ decreases.
Mδ
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Fig. 1. Relationships between τq̇ and τδ for system stability under �M̂∗
δ

. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)
5
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Fig. 2. Time response graphs for Aircraft A.
Fig. 3. Gain margin (GM) for stable closed-loop system under τq̇ and τδ together 
with �M̂∗

δ
.

Observation 4.1 and 4.2 can be understood as follows. q̇0 mea-
surement has critical influences on the system with IBKS because 
it contains the model information about M∗

α and M∗
q to be re-

placed. If there is no delay on this measurement (i.e. τq̇ = 0 with 
k = 0), the system with IBKS becomes stable. If q̇0 signal is delayed, 
the relationship between delays on q̇0 and δ0 becomes important 
for the system stability due to the following reason. Due to the 
considered delays on q̇0 and δ0, trigonometric functions whose fre-
6

quencies are τq̇ and τδ appear in the characteristic equation (17). 
The differences between trigonometric terms with frequencies of 
τq̇ and τδ are repeatedly shown in (17) and they have signifi-
cant impacts to the closed-loop system stability with IBKS. When 
τq̇ = kτδ with a positive integer k, these differences show a pe-
riodic pattern with the frequency of τδ like the case without τq̇ , 
resulting in the stable closed-loop response. k has its upper bound 
kmax determined by the model uncertainty on control effectiveness 
information �M̂∗

δ
, which can be explained as follows. k indicates 

how many times the cycle of the trigonometric term with τq̇ is 
repeated during one period of that with τδ . �M̂∗

δ
affects the am-

plitude of the trigonometric term with τq̇ , as can be seen in (17). 
The maximum magnitude of the differences between trigonomet-
ric terms with frequencies of τq̇ and τδ can be more amplified 
as k increases, and �M̂∗

δ
has an impact on the magnitude of this 

amplification. This implies that there exists an upper bound kmax

which makes the amplification to be within the range where the 
system is stable and this kmax is affected by �M̂∗

δ
. The reason why 

kmax decreases as �M̂∗
δ

gets smaller can be explained with loop 
gain point of view. In the derived control command (14), there 
exists a reciprocal of M̂∗

δ . This implies that a loop gain becomes 
smaller with over-estimated M̂∗

δ (i.e. �M̂∗
δ
> 0), while it gets larger 

with under-estimated M̂∗
δ (i.e. �M̂∗

δ
< 0). Thus, the closed-loop sys-

tem becomes less robust against the defects as �M̂∗
δ

decreases, 
resulting in smaller kmax . Instead, the time domain response of the 
system becomes faster as �M̂∗

δ
gets smaller since the loop gain in-

creases.
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The comparative study between the closed loop systems with 
and without measurement delays under model uncertainties is 
provided as follows. Note that critical understandings about indi-
vidual and integrated effects of measurement delays and model 
uncertainties to the system with IBKS can be facilitated by this 
comparative study. For the closed loop system with model uncer-
tainties and without measurement delays, the previous study in 
[16] shows that the system with IBKS is not affected by any model 
uncertainty even in M̂∗

δ and always stable with uniform perfor-
mance. When the closed loop system is under both measurement 
delays and model uncertainties, the relationship between τq̇ and τδ

for the system stability is provided, which is affected by �M̂∗
δ

. The 
framework result with �M̂∗

δ
= 0 indicates the case when τq̇ and τδ

are only considered. In this case, the system is stable only if τq̇ = 0
or τq̇ = τδ (i.e. kmax = 1). If �M̂∗

δ
is additionally considered, the 

number of stable points tends to decrease with 0 ≤ kmax ≤ 1 for 
under-estimated M̂∗

δ and increase with kmax ≥ 1 for over-estimated 
M̂∗

δ .

5. Conclusion

This paper suggests the closed loop characteristics with IBKS 
under the measurement delays along with the model uncertain-
ties. The analysis framework is proposed to assess absolute stabil-
ity of the system in a systematic manner by searching unstable 
poles from the derived characteristic equation with high nonlin-
earity due to the considered measurement delays. The critical un-
derstandings on system stability with IBKS are obtained with the 
proposed analysis framework as follows. The stability condition is 
derived as the relationship between the delays on the state deriva-
tive and the control surface deflection angle measurements. It is 
also shown that this condition is affected by the model uncertainty 
on the control effectiveness information. From the comparative 
study, the effects of the measurement delays and the model uncer-
tainties to the closed loop system can be understood in individual 
and integrated manner. The obtained properties from the proposed 
analysis framework are verified and validated through simulations. 
Based on the critical insights from the analysis in this paper, fur-
ther studies with 6 degree-of-freedom dynamics will be conducted 
as a future work.
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Appendix A. Derivation of transfer function for the system with 
IBKS under measurement delays and model uncertainties

Dynamics (2) can be expressed as a state space equation (A.1).

ẋ = Ax + Bu y = Cx

x = [
α q

]T u = δ

A =
[

Z∗
α 1

M∗
α M∗

q

]
B =

[
0

M∗
δ

]
C = [

1 0
] (A.1)
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Delays on q̇0 and δ0 measurements are mainly considered for 
the analysis with IBKS in this paper, and modellings of these de-
layed measurements are suggested for the closed loop analysis as 
(A.2) utilizing (2) for q̇0.

δ0 = δ (t − τδ)

q̇0 = q̇
(
t − τq̇

)
= M∗

αα
(
t − τq̇

) + M∗
qq

(
t − τq̇

) + M∗
δ δ

(
t − τq̇

) (A.2)

Since this paper focuses on IBKS, the model uncertainty �
M∗

δ

on M̂∗
δ is mainly considered in this closed loop analysis. Using (14)

with (2), (6) and (A.2) under the assumption of constant αc (i.e. 
α̇c = α̈c = 0) and zero �

Z∗
α

, δ can be rearranged as (A.3).

δ = − 1

M̂∗
δ

ναα − 1

M̂∗
δ

νqq + 1

M̂∗
δ

(C1C2 + 1)αc

− M∗
α

M̂∗
δ

α
(
t − τq̇

) − M∗
q

M̂∗
δ

q
(
t − τq̇

)

+
{

δ (t − τδ) − M∗
δ

M̂∗
δ

δ
(
t − τq̇

)}

where

να = {(
C1 + Z∗

α

) (
C2 + Z∗

α

) + 1
}

νq = (
C1 + C2 + Z∗

α

)

(A.3)

Applying Laplace transform to (A.3) and rearranging the equa-
tion with respect to δ,

δ(s) =
[ − 1

M̂∗
δ φ1(s)

μα(s) − 1
M̂∗

δ φ1(s)
μq(s)

]
X(s)

+ 1

M̂∗
δ φ1(s)

(C1C2 + 1)αc(s)

where

φ1(s) = 1 − e−τδ s + M∗
δ

M̂∗
δ

e−τq̇ s

μα(s) = να + M∗
αe−τq̇ s

μq(s) = νq + M∗
q e−τq̇ s

(A.4)

If Laplace transform is applied to (A.1) and δ(s) in (A.4) is sub-
stituted into that equation, the closed loop system can be derived 
as (A.5).

sX(s) = A(s)X(s) + B(s)αc(s) Y = C(s)X(s)

A(s) =
[

a11(s) a12(s)
a21(s) a22(s)

]

=
[

Z∗
α 1

M∗
α − M∗

δ

M̂∗
δ φ1(s)

μα(s) M∗
q − M∗

δ

M̂∗
δ φ1(s)

μq(s)

]

B(s) =
[

0
M∗

δ

M̂∗
δ φ1(s)

(C1C2 + 1)

]

C(s) = [
1 0

]

(A.5)

From (A.5), transfer function can be derived as (A.6).

α(s)

αc(s)
= C(s) (sI − A(s))−1 B(s)

=
a12

M∗
δ

M̂∗
δ φ1(s)

(C1C2 + 1)

2
s − (a11 + a22) s + (a11a22 − a12a21)
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=
M∗

δ

M̂∗
δ

(C1C2 + 1)

φ1(s)s2 + φ2(s)s + φ3

where

φ1(s) = 1 − e−τδ s + M∗
δ

M̂∗
δ

e−τq̇ s (A.6)

φ2(s) = −(Z∗
α + M∗

q)(1 − e−τδ s)

+ M∗
δ

M̂∗
δ

(C1 + C2 + Z∗
α − Z∗

αe−τq̇ s)

φ3(s) = (Z∗
α M∗

q − M∗
α)(1 − e−τδ s)

+ M∗
δ

M̂∗
δ

(C1C2 + 1)

Appendix B. Aerodynamic derivatives

Table B.1
Aerodynamic derivatives of aircraft.

Parameters Airplane A Airplane B Airplane C Airplane D

h (km) 7.6200 1.5240 1.5240 6.0960
U0 (m/s) 185.9280 67.0865 103.6320 205.1304
Z∗
α -1.9626 -0.8222 -2.4660 -0.5249

M∗
α -4.7488 -17.1690 -23.8147 -1.2473

M∗
q -3.9326 -6.8791 -5.8557 -0.6474

M∗
δ -26.6845 -35.2513 -28.4270 -1.6937
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