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Abstract 

Shear-induced nanocrystallization in bent ribbons of Pd40Cu30Ni10P20 metallic glass has been 

quantitatively investigated via synchrotron  radiation. The formed nanocrystals volume fraction 

during deformation has been directly estimated from X-ray diffraction spectra using peaks area 

integration. The nanocrystallization process during deformation was found to be strongly linked 

with the microstructure configuration of shear bands in  amorphous alloys. A constitutive model 

based on free volume approach has been introduced to describe the kinetic of mechanically 

induced nanocrystallization. The solution of the coupled constitutive equations of the model, 

fitted to experimental data, permits to determine the physical and mechanical parameters 

governing the phenomena of shear-induced crystallization in metallic glasses.  

Keywords: Metallic glass, Deformation-induced nanocrystallization, Crystal volume fraction, 

Free volume, Activation energy. 
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1. Introduction 

Metallic glasses (MGs) are attractive and promising new structural materials. The absence of 

long range atomic order, lattice and crystal defects provides them a unique service 

performances, including high mechanical strength, high hardness, large elastic strain limit, high 

wear and corrosion resistance and low magnetic energy loss [1,2]. However, at ambient 

temperature, MGs exhibit poor ductility. Unfortunately, they tend to break after yielding 

leading to a catastrophic failure. The poor plastic deformation results from highly localized 

shear banding as well as shear softening [3-5]. The catastrophic brittle deformation becomes 

the major weakness for wide structural application of MGs as engineering materials [6-8]. To 

circumvent the problem of room-temperature brittleness, several post treatment methods have 

been introduced including surface mechanical treatment [9], defect printing [10], ion irradiation 

[11], notching [12], and ultrasonic excitation [13]. Other attempts aimed to hinder localized 

shear band formation by ex-situ mixing or in-situ generating a micro/nano-scale crystallites 

embedded in amorphous matrixes to produce a composite structure, consisting of a crystalline 

phase embedded in an amorphous matrix [14-17]. Numerous experimental data showed an 

improvement of the material’s properties due to the effect of the introduced second phase [18-

21]. It was found that nanocrystals act as an arrest barriers to shear band propagation, improving 

thus the global ductility. The size, volume fraction, and microstructural transformation of the 

second phase have proven critical in optimizing the ductility of these materials. Recently, there 

has been considerable interest in the shear induced nanocrystallization and structural 

transformation in MGs which provide a novel way for further improving ductility compared to 

monolithic bulk-MGs [22-25]. This phenomenon was detected first by Chen et al [26] in bent 

ribbons of Al-based metallic glass. Latterly, other studies have suggested that ambient-

temperature mechanical deformation can induce crystallization achieved by rolling [27], ball 

milling [28], high-pressure torsion [29], nanoindentation [30] and uniaxial compression [31]. 



Therefore, the understanding of crystallization mechanism/kinetics in metallic glass systems 

during deformation is essential for the preparation, synthesizing and engineering application of 

metallic glasses in various scientific fields. Previous transmission electron microscopy (TEM) 

experiments study in deformed metallic glasses have largely been limited to qualitative imaging 

studies with high enough resolution to examine shear bands [14,15,22,23], but have difficulties 

in quantitative interpretations. Recent advancements in XRD techniques have, however, 

allowed the observation of the evolution of locally resolved atomic short and medium range 

order, with nanometer resolution [32,33], providing much more valuable quantitative 

information on crystallization processes of metallic glass materials during in-situ deformation. 

To quantitatively highlight this issue, metallic glass ribbons of Pd40Cu30Ni10P20 were deformed 

at room temperature by means of bending test. X-ray diffraction using synchrotron radiation is 

used to map out the structure changes in the Pd-based glassy ribbon and quantitatively analyze 

the shear induced nanocrystallization mechanism. This work deal with the results from the same 

experiment as in the previous investigation [33]. A micro-mechanical model is employed as 

well to investigate the evolution of the nanoparticles volume fraction during the deformation 

route of metallic glasses. 

2. Experimental and results 

Pd40Cu30Ni10P20 (in at %) alloy ingots were achieved by arc melting the high purity alloy 

components under Ti-purified Ar atmosphere. Rapidly solidified ribbon specimens were 

prepared by re-melting an appropriate amount of the ingot in quartz crucible by induction heater 

and ejecting through a 0.5 mm-diameter circular nozzle onto a copper wheel rotating with a 

surface speed of 1000 to 2000 rpm. The resulting specimens have a thickness of 30–70 μm 

depending on wheel rotation speed. The specimens were then strained by bending them to a 

curvature radius R such that it generates plastic deformation in the specimen. The morphology 

of side surfaces after bending deformation are shown in SEM image of figure 1 (JEOL JSM-



6400). Extrados and intrados sustain purely tension and compression, respectively. Consider a 

flat ribbon of metallic glass of thickness d. If this ribbon is bent to a curvature radius R, the 

strain on the tension (or compressive) side of the bent specimen can be approximated by [34, 

35]: 

 

 = y/R           (Eq. 1) 

 

where y is the distance from the neutral axis (see figure 1 (b)). For this strain to be over the 

elastic limit (i.e.  ela  2%), the radius of curvature R must be in the range of R < y/ela  50 y. 

For metallic glass ribbons with thickness 35 m, a curvature bending radius of approximately 

30 m is used. This curvature corresponds to maximum stain of 58 % at the edge of the ribbon. 

The strain may reach up to the estimated values because of its local character and the bending 

confinements. The strained zones in the cross section along the width of the bent ribbon was 

scanned by X-ray in transmission at the ESRF ID11 beamline [36]. A focused 92.5 KeV photon 

energy corresponding to an X-ray wave length of 0.0134 nm was used with a spot size of 2x2 

m. The diffracted intensity in transmission was recorded by a 2-d CCD camera placed 

perpendicular to the incident beam away from the specimen of about 1 mm. Figure 2 presents 

a scanning electron microscope (SEM) image together with a representative CCD screen images 

of the microprofiling in transmission taken in both sides of the neutral axis. Very fine rings (see 

arrows) due to nanometer-scale crystallites (of the order of 5-10 nm [37]) formation during 

deformation is seen only in the compressed part of the ribbon thickness. The shear-induced 

nanocrystallization in analogous complex stress states has been also reported in many previous 

published works [30, 38-40] and was attributed to the role of the hydrostatic component of the 

stress and the free volume distribution. Radial integration of these concentric rings yields to the 

XRD profile changes along the width of the ribbon. Figure 3 shows typical diffraction patterns 



of Pd40Cu30Ni10P20 amorphous alloy corresponding to a series of successive diffraction profile 

recorded along the width of the ribbon.  In going from the upper part (D0) towards the extremity 

of ribbon (D20), qualitative and quantitative changes are revealed from the superposition of 

diffracted profiles. Nanocrystals appear with peak positions correspond to Cu3Pd precipitates 

as reported during thermal crystallization of Pd–Cu–Ni–P Alloys [41]. Diffraction patterns 

were obtained every approximately 4 m incremental displacement during scanning of strained 

zones. The position of the beam spot is denoted by D0, D4 (in tensile side), D8 (neutral axis), 

D12, D16, D20 (in compression side) as shown in figure 2. 

 

3. Measurement of crystals volume fraction during deformation 

 

Structural analysis reveals that deformation induced partial nanocrystallization with kinetics 

that depend on the extent of plastic deformation. To our knowledge, no quantitative 

measurement of the crystallization process during deformation is available. Quantification of 

crystal volume fraction evolution during straining can be determined from the changes in 

diffraction patterns shown in figure 3. The integrated areas of the amorphous and crystalline 

peaks could be used to calculate the crystal volume fraction according to the equation [42, 43]: 

 ∅� =
�������                   (Eq. 2) 

 

Where s is the volume fraction of precipitated nanocrystals, Aa is the total integrated area 

corresponding to the amorphous phase and Ac is the total integrated area corresponding to the 

crystalline phase as illustrated in figure 4 (a). These results of crystal volume fraction versus 

deformation are then obtained from equation 1 and 2 and are presented in the figure 4(b). 

Nanocrystallization took place after specimen was deformed for  13%, which is close to 



previous works where they showed that the crystalline phases may congregate at dominant 

shear bands after the macroscopic strain reached over 5-20% [44-45]. Obviously, the 

nanocrystallization is a function of deformation within the shear bands and the fraction of the 

nanocrystalline phase increases with shear strains and deformation time. 

 

4- Discussions and modelling approach 

 

The microscopic mechanisms of strain-induced nanocrystallization in metallic glasses are of 

significant fundamental interest and have yet to be conclusively explained. A number of 

suggestions have been advanced and can be grouped into two categories: suggestions that 

assume a local temperature rise in shear bands resulting from deformation [46] or/and 

suggestions that assume an increase of atomic mobility in the shear bands due to the increase 

of free volume within such localized regions [30,47]. However, none of these approaches could 

conclusively explained the opposite trends of nanocrystallization behavior observed in tensile 

and compression regions. Furthermore, since a similar temperature increase could be expected 

in compression or tension, the suggestion of temperature spike as the cause of crystallization 

may be rapidly excluded. Our finding and other published experimental results showed that the 

mechanically induced nanocrystallization is a general physical phenomenon, since it has been 

observed in many different amorphous alloy compositions such as Al-, Zr-, Pd and Fe-based 

alloys. Also, nanocrystallization occurs preferentially in the predominantly compressive region 

of deformed sample and may depend on the extent of plastic deformation. Jiang et al [48] have 

shown that ball milling for 1 h could form nanocrystallites in Al-based amorphous alloys, while 

ball milling, for 5 h, could not cause the formation of nanocrystallites.  

Based on the above and other experimental observations, the presence or absence of 

nanocrystallites during straining could be strongly linked with the microstructure configuration 



of shear bands in  amorphous alloys. Indeed, based on nanovoids measurements inside shear 

bands during deformation [38, 49], it has been established a negative correlation between the 

nanovoids distribution and nanocrystallization development. In the compressive region  where 

nanocrystallization is induced, a few residual nanovoids were observed in shear bands whereas 

in the tensile region, shear bands contain a higher density of nanovoids coupled with the absence 

of nanocrystals [38, 49]. Besides, Wright et al [50] have used the thermodynamics of nucleation 

to demonstrate that these nanovoids are predicted from dynamic evolution of highly unstable 

free volume in shear bands. During deformation of metallic glasses, the free volume in a shear 

bands is expected to increase; once a critical size is reached (of the order of tenths of Angstroms 

[50]) a driving force enhance voids nucleation via free volume coalescence. In tension, void 

growth and coarsen with the help of tensile stress state, leading to rapid shear bands propagation 

and premature fracture [51], whereas in compression, stress state (hydrostatic component) 

would hinder void formation.  

 

Now, since the formation of nanocrystals within the narrow shear bands during deformation is 

attributed to local atomic mobility and diffusion inside shear bands [52], the above descriptions 

point out that the cause of the absence of nanocrystallization in shear bands at tension regions 

is that the excess free volume condenses rapidly into nanovoids during deformation, resulting 

in its reduced availability to enhance atomic mobility. In shear bands in which 

nanocrystallization exist, the available amount of excess free volume, which does not coalesce 

into nanovoids, can assist atomic transport, and thus makes nanocrystallization possible. Our 

analysis, hence, predict a transition of microstructure behaviour in shear band from 

nanocrystallization to voids nucleation depending on a critical size of accumulated free volume. 

This optimum critical size could be strongly affected by the intrinsic materials properties and 

the deformation conditions (i.e., stress state). 



With this background, one may conclude that the activated atomic mobility moderated by an 

optimum/critical amount of free volume is the main reason for mechanically induced 

crystallization. The opposite trends observed in tensile and compression regions can be 

rationalized as follow: during deformation, the free volume progressively increases in both 

compression and tension due to the flow dilatation [53, 54]. Once an optimum/critical volume 

size is reached, excess free volume rapidly condense into nanovoids and no crystallization could 

happen due to the reduced atomic diffusion rate; this is the case for the tensile stress state. In 

compression regions, stress state hamper excess free volume to reach a critical value and voids 

formation is retarded. Consequently, the available free volume governs atomic transport that 

could induce nanocrystallization, assisted by local shear stress. That explicitly, justifies the 

presence or absence of nanocrystallites in compression and tensile sides.  

 

The present letter shows unambiguously that for describing the process of shear-induced 

nanocrystals formation inside the shear bands of metallic glasses, approaches based on 

assuming enhanced nucleation kinetics due to enhanced atomic mobility inside the shear bands 

are favorable. So, any proposed model should capture the principal feature of structural 

evolution in shear band described above. Crystallization process of amorphous alloy can be 

considered as a phenomenon describing via classic crystal nucleation and subsequent growth. 

The overall rate of transformation can be derived from the kinetic law based on Johnson–Mehl–

Avrami (JMA) model [55]: 

 

�∅��� = n (�� exp �− ∆���� �)� (
��̇)��� exp (−(�� exp �− ∆���� � ��̇)�)      (Eq. 3) 

 

Where s is the fraction of nucleated crystals, k0 is a material constant, R is gas constant and 

Gc is the activation energy for overall crystallization process, n is Avrami exponent and T is 



the temperature . γ̇ is the total shear strain rate which can be decomposed into the elastic and 

plastic parts: 

 γ̇ = �̇� + γ̇�           (Eq. 4) 

 

Where µ is the shear modulus. The homogeneous plastic flow is derived from the well-known 

equation of Speapen [53]: 

 γ̇� = 2 f . exp �− ��∗�� � exp �− ∆������ sinh � �� � ����     (Eq. 5) 

 

where ΔGm is the activation energy for an atomic jump, f is the jump frequency, τ is the applied 

shear stress, kB is the Boltzmann’s constant, Ω is the atomic volume,  is the geometrical factor 

of order 1, v∗ is the critical free volume and v� is the average free volume per atom. The dynamic 

evolution of free volume during straining under applied shear stress  can be obtained from the 

free volume theory [56]. The net increase of the free volume is presented by the general 

equation: 

 

����� = v∗ exp �− ��∗�� � exp �− ∆������ �� �.��.���.���� �cosh � ��� ���� − 1� − ����  (Eq. 6) 

 

Where nD is the number of atomic jumps required to annihilate free volume, Ceff is the effective 

elastic modulus (Ceff = E/3(1-), E is the Young’s modulus and  is the Poisson’s ratio). The 

equations (3)–(6) provide a closed constitutive model for the shear induced-crystallization 

under an applied shear stress. These coupled non-linear equations are solved using fourth order 

Runge-Kutta scheme to highlight the variation of shear stress, free volume and subsequently 



the crystal volume fraction. The solution is, then, fitted to experimental data of figure 4(b) using 

an appropriate optimization algorithm. Figure 5 shows the experimentally obtained strain 

dependence of crystal volume fraction in the studied glassy alloy, together with the best-fit 

curve obtained on the basis of equations (3)–(6).The corresponding fitting parameters are 

summarized in table 1. Figure 5 shows that the fitting route yields satisfactory results and the 

almost adjustable model parameters are physically meaningful and comparable to the literature. 

The figure shows that the crystalline phase does not transform all at once; the free volume 

content increases gradually and, after an incubation period, the crystallized volume fraction 

increases concurrently with the extent of deformation. The incubation period corresponds to the 

time for which the excess of free volume is sufficient to enhance atomic mobility helping 

nanocrystals nucleation. Figure 5 predicts also a saturation period for which the crystal fraction 

remains almost constant. 

 

5. Activation energy for nanocrystallization 

 

The activation energy is the most important parameter which governs crystallization rate 

because it represents the barrier energy for the phase transformation from an amorphous to a 

crystalline phase under plastic deformation. This means that as long as the activation energy is 

low, the nanocrystallization rate becomes faster, suggesting that additional mechanical energy 

can promote the precipitation of nanocrystallites. The value of activation energy for 

nanocrystallization reported in table 1 is close to 350kJ/mol. This value remains lower than 

those reported in the literature for non-deformed Pd-based amorphous alloys (452 kJ/mol for 

Pd79Cu6Si10P5 [57] and 395 kJ/mol for Pd76B24 [58]) which are derived from Kissinger and 

Johnson-Mehl-Avrami (JMA) methods. The decrease of activation energy for crystallization is 

plausible and confirms that high deformation has an effect on the subsequent crystallization 



behavior. It can enhance atomic rearrangement and local fluctuation, favorable for easier 

nanocrystallization process with less required energy for atomic diffusion. The markedly 

decreasing of activation energy with the degree of deformation has been also confirmed in 

various Cu-based glassy alloys. Ma et el [59] have experimentally found that with increasing 

degree of pre-deformation induced by cold-rolling, the crystallization activation energy for the 

CuZr-based BMG alloy decreases gradually. Wang et al [45] have recently established a 

negative relationship between the crystallized activation energy and the plastic strain of CuZr 

based bulk metallic glasses. 

 

6. Conclusion 

 

Deformation-induced nanocrystallization during bending has been quantitatively investigated 

in Pd-based metallic glass via a direct measurement of crystals volume fraction versus the extent 

of plastic deformation. The opposite trends of nanocrystallization behavior observed in tensile 

and compression regions has been  reasonably explained by the negative correlation between 

the nanovoids distribution and nanocrystallization development in shear bands.  A micro-

mechanism-inspired constitutive model based on atomic structure in shear bands has been 

presented to capture the evolution of crystal volume fraction during straining. The effects of 

shear strain on the free volume and crystallization process have been accounted. The proposed 

model showed a good ability to reproduce the experimental data including several physical 

parameters, namely the activation energy for nanocrystallization. 
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Tables  : 

Parameters Values 

f (s-1) 1013 

 0.15 

Gm (J) 10-19 �� (10-24J/K) 13.8 

T(K) 298 � (10-29m3) 1.64 

 0.39 

 (GPa) 33 

nD 3 

k0 0.08 

Gc (kJ/mol) 350 

n 3.64 

R (J/mol K) 8.314 

 

Table 1. Fitting parameters obtained from simulation of crystal volume fraction during 

deformation. 

 

 

 

 

 

 

 



Figure Captions 

 

Figure 1. (a) SEM micrograph in the center of the bent Pd40Cu30Ni10P20 metallic glass ribbon: 

both tensile and compressive sides, (b) graphic illustration of the curvature radius, R, distance 

y and the strains within a ribbon subjected to a bending moment. 

 

Figure 2. Diffraction pattern taken on both sides of the neutral axis of the bent Pd40Cu30Ni10P20 

glassy ribbon using synchrotron light in transmission. Detection of very fine rings in the 

compressed side indicating the presence of nanocrystals. 

 

Figure 3: Synchrotron XRD diffraction profiling of deformed area of bent ribbon; the 

annotations D0, D4, D8.......D20, correspond to the steps during scanning of the deformed zones 

with the X-ray beam. 

 

Figure 4: a) The relative areas of the deconvoluted amorphous and crystalline peaks in XRD 

diffraction pattern, (b) nanocrystal volume fraction versus strain determined from XRD 

analyses. 

 

Figure 5. Crystal volume fraction versus stain deformation of Pd-based metallic glass. The dash 

curve is obtained from the best fit to equations (3)–(6). 
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