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Abstract In this study, the problem of time-optimal reconnaissance trajectory design for the

aeroassisted vehicle is considered. Different from most works reported previously, we explore the

feasibility of applying a high-order aeroassisted vehicle dynamic model to plan the optimal flight

trajectory such that the gap between the simulated model and the real system can be narrowed.

A highly-constrained optimal control model containing six-degree-of-freedom vehicle dynamics is

established. To solve the formulated high-order trajectory planning model, a pipelined optimization

strategy is illustrated. This approach is based on the variable order Radau pseudospectral method,

indicating that the mesh grid used for discretizing the continuous system experiences several adap-

tion iterations. Utilization of such a strategy can potentially smooth the flight trajectory and

improve the algorithm convergence ability. Numerical simulations are reported to demonstrate

some key features of the optimized flight trajectory. A number of comparative studies are also pro-

vided to verify the effectiveness of the applied method as well as the high-order trajectory planning

model.
� 2020 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, aeroassisted vehicles have attracted consider-
able attention in aerospace industry due to their potential
and reliability for long-endurance, low-energy and

propellent-free applications1,2. One important feature of this
type of vehicle is that they have the flexibility to only use aero-
dynamic forces to execute maneuvers3, thereby completing

various atmospheric flight missions4,5. Among these applica-
tions, the problem of inaccessible area reconnaissance has been
recently recognised as an important research subject6,7. Since

different mission-related requirements need to be considered8,
the observation flight trajectory planning tends to play a key
role in the success of the mission9,10. This is because a well-
planned maneuver trajectory is of particular importance to

guarantee safety issues and provide enhanced control
performance.
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During the last couple of decades, significant amount of
efforts have been devoted by researchers and aerospace engi-
neers on developing promising trajectory planning methods.

By reviewing the literature, we are able to find numerous effec-
tive trajectory planners reported especially for space vehicle
atmospheric flights. For example, the authors in Ref. 11 studied

and addressed the hypersonic vehicle atmospheric entry prob-
lem. In this paper, a global collocation method was adopted
and the problem was formulated with an emphasis on multiple

no-fly zone constraints. Similarly, a constrained Particle
Swarm Optimization-based (PSO) trajectory planner was pro-
posed in Ref. 12 to search the end-to-end trajectory for hyper-
sonic reentry vehicles. To rapidly construct the landing

footprint, an interpolation model was also utilized for the
bank angle profile.

To obtain enhanced convergence performance of the opti-

mization process, an improved PSO-based trajectory planning
algorithm was constructed in Ref. 13. Subsequently, this
approach was used to optimize the glide trajectory of the

hypersonic reentry vehicle. Taking into account multiple pro-
cess constraints and terminal constraints, a Gauss pseudo spec-
tral method-oriented trajectory generator was designed in

Ref. 14 for a solar-powered aircraft. In addition, by combining
genetic algorithm, PSO and simulate annealing, a hyper heuris-
tic trajectory generator was suggested in Ref. 15 to optimize the
flight trajectory of the satellite launch vehicle.

It should be noted that most of these reported works apply
the so-called direct transcription strategy where a finite set of
mesh grids connecting the initial and terminal pose is firstly

applied to discretize the searching space. Then numerical opti-
mization techniques are used to explore the optimal vehicle
state/control solutions at these temporal nodes. Based on the

reported simulation results, it is undeniable that all the afore-
mentioned planners have the capability of exploring feasible
and near-optimal flight trajectories for aircrafts or spacecrafts.

However, most of them only formulated the trajectory opti-
mization problems using the Three-Degree-Of-Freedom (3-
DOF) dynamic model, which means the model fidelity tends
to be decreased.

Model fidelity can be referred to the degree to which a
model reproduces the characteristics of a practical system16.
In atmospheric trajectory optimization problems, research-

ers/engineers often apply a lower-fidelity dynamics to describe
the movement of a flight vehicle17,18. For example, it is com-
mon to consider the vehicle as a point-mass. The resulting

solutions are therefore used for preliminary analysis or for
approximating solutions to higher-order dynamics. Although
using a lower-fidelity dynamic model can be suitable for plan-
ning feasible trajectories with respect to the vehicle position

and velocity variables, these trajectories can be unrealizable
for a physical system (e.g., with respect to forces and
moments). In addition, compared to high-fidelity models,

atmospheric trajectory planning algorithms based on low-
fidelity models might pose a potential safety concern. Hence,
in this paper we are interested in exploring the feasibility of

applying a high-fidelity vehicle dynamic model to plan the
optimal trajectory.

In Ref. 6 and Ref. 19 we have investigated the 3-DOF

aeroassisted vehicle reconnaissance mission by applying a typ-
ical global collocation method (e.g., the Radau pseudospectral
method developed in Ref. 20). The applied method builds the
optimal flight trajectory between the pre-assigned initial point

and the target position on a fixed set of mesh grid. This work
provides improvement in terms of model fidelity, solution
accuracy as well as result analysis. More precisely, the specific

research object, along with the main contributions of this
paper, can be summarised below:

(1) We extend the original problem formulation to a Six-
Degree-Of-Freedom (6-DOF) aeroassisted vehicle
reconnaissance trajectory planning model with flight
time minimization.

(2) Due to the complexity of vehicle dynamics and con-
straints, we apply a pipelined optimization strategy
based on a variable order Radau pseudospectral method

to tackle the problem.
(3) Detailed comparative results are provided to analyze the

difference of the two models and to illustrate the validity

of applying the variable order pseudospectral method
for the considered problem.

The remaining parts of this article are outlined as follows.
In Section 2, we build the time-optimal reconnaissance maneu-
ver optimization problem. The translational and rotational
dynamics of the aeroassisted vehicle are introduced. Various

constraints and the main objective function are also formu-
lated in this section. In Section 3, the Radau pseudospectral
method, together with the mesh grid adaptive strategy is

recalled. A detailed simulation study including the obtained
optimal trajectory and comparative results will be presented
in Section 4. Finally, concluding remarks are given in Section 5.

2. Time-optimal reconnaissance maneuver optimization problem

In this section, two sets of differential equations are firstly pre-

sented to formulate the 3-DOF and 6-DOF model of the
aeroassisted vehicle. Following that, mission constraints
required to be considered during the time-optimal reconnais-

sance maneuver are introduced. Finally, an overall trajectory
optimization formulation is established.

2.1. Model dynamics

The following three assumptions are used for formulating the
dynamic model of the aeroassisted vehicle:

Assumption 1. The aeroassisted vehicle is considered as a

rigid-body, thereby eliminating the distortional effects (e.g.,
the elastic DOF introduced by the flexible-body).

Assumption 2. During the reconnaissance maneuver phase,

since we are interested in finding a strictly gliding descent tra-
jectory, it is assumed that the engine is switched off and no
thrust is provided.

Assumption 3. We consider the earth as a symmetrical
sphere and ignore the effect caused by Earth’s rotation.

Then, the following set of differential equations can be
applied to describe the 3-DOF motion of the aeroassisted

vehicle6:



Table 1 Definition of aeroassisted vehicle-related parameters.

Notation Physical meaning

b The sideslip angle of the vehicle

p The roll rate of the vehicle

q The pitch rate of the vehicle

m The yaw rate of the vehicle

m The mass of the vehicle

S The reference area of the vehicle

Mi ði ¼ x; y; zÞ The angular moments act on the vehicle

Iij ði; j ¼ x; y; zÞ The inertia moments act on the vehicle
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dr
dt
¼ V sin c

d/
dt
¼ V cosw cos c

r

dh
dt
¼ V sinw cos c

r cos/

dV
dt
¼ � SqCDðaÞV2

2m
� g sin c

dc
dt
¼ SqCLðaÞV2 cos r

2Vm
þ V2�rg

Vr

� �
cos c

dw
dt
¼ SqCLðaÞV2 sinr

2Vm cos c þ V
r
tan/ cos c sinw

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

Eq. (1) is also referred to the translational Equations of
Motion (EMOs). Variables appeared in this equation are

r;/; h;V; c;w; a; r;S;CD; g;CL; q, representing the radius, lati-
tude, longitude, speed, Flight Path Angle (FPA), azimuth
angle, Angle Of Attack (AOA), bank angle, reference area,

drag coefficient, gravity, lift coefficient, and atmosphere den-
sity, respectively.

If the flight trajectory is built on the 3-DOF model given by

Eq. (1), the effects caused by considering forces and moments
have not been fully analyzed. As a result, the accuracy of the
result might be reduced. To construct a high-order 6-DOF
model of the aeroassisted vehicle, the rotational EMOs for

the aeroassisted vehicle should be adhered, which can be writ-
ten as the following set of differential equations:

da
dt
¼ q� p tan b cos a� m tanb sin aþ sin r

cosb ð _w cos c

� _/ sinw sin cþ _h cos/ cosw sin c� _h sin/ cos cÞ
� cos r

cos b ð _c� _/ cosw� _h cos/ sinwÞ
dr
dt
¼ �p cos a cos b� q sin b� m sin a cos bþ _a sin b

� _w sin c� _/ sinw cos cþ _h sin/ sin c

þ _h cosw cos/ cos c
db
dt
¼ p sin a� m cos aþ sinr½ _c� _/ coswþ _h cos/ sinw

þ cos rð _w cos c� _/ sinw sin c

� _h cos/ cosw sin c� _h sin/ cos cÞ�
dp
dt
¼ Mx

IxxIzz�I2xz
Izz þ Ixz

Mz

IxxIzz�I2xz
þ qp

IxxþIzz�Iyy

IxxIzz�I2xz

� �
þqm ðIyyIzz�IzzIzz�IxzÞ

IxxIzz�I2xz

dq
dt
¼ Ixz

Iyy
ðm2 � p2Þ þ My

Iyy
þ pm Izz�Ixx

Iyy

dm
dt
¼ Ixz

Mx

IxxIzz�I2xz
þ qmðIyy�Ixx�IzzÞ

IxxIzz�I2xz

h i
þIxx

Mz

IxxIzz�I2xz
þ pq

I2xx�IyyIxxþI2xz
IzzIxx�I2xz

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ
Rotational variables appeared in these EMOs are b; p; q,

and m, respectively. To better describe these aeroassisted

vehicle-related parameters, their notations as well as physical
meanings are summarised and tabulated in Table 1.

2.2. Flight constraints and objective

In the reconnaissance mission, the aeroassisted vehicle should
only travel within a safe corridor which is determined by the
following three path constraints:

kq ¼ kcq
0:5V3:15 6 kmax

q ð3Þ

kp ¼ 0:5qV2 6 kmax
p ð4Þ
kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SqCDðaÞV2

2m

� �2

þ SqCLðaÞV2

2m

� �2
s

6 kmax
n ð5Þ

In Eqs. (3)–(5), kc ¼ 9:4369� 10�5, while kmax
q ; kmax

p , and

kmax
n denote the upper bounds of kq; kp, and kn, respectively.

Apart from the flight path constraints, variable physical limits
are also required to be considered. That is, the system-related

variables should only vary in their tolerable regions. As a
result, we have the following box constraints:

r 2 ½rmin; rmax�; / 2 ½/min;/max�
h 2 ½hmin; hmax�; V 2 ½Vmin;Vmax�
c 2 ½cmin; cmax�; w 2 ½wmin;wmax�
a 2 ½amin; amax�; b 2 ½bmin; bmax�
r 2 ½rmin; rmax�; p 2 ½pmin; pmax�
_a 2 ½ _amin; _amax�; _r 2 ½ _rmin; _rmax�
q 2 ½qmin; qmax�; m 2 ½mmin; mmax�
Mi 2 ½Mmin

i ;Mmax
i �; t 2 ½0; tmax�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð6Þ

rðtfÞ ¼ rf; /ðtfÞ ¼ /f; hðtfÞ ¼ hf
cðtfÞ ¼ cf; VðtfÞ ¼ Vf; bðtfÞ ¼ bf

pðtfÞ ¼ pf; qðtfÞ ¼ qf; mðtfÞ ¼ mf

8><
>: ð7Þ

In the reconnaissance mission, the primary objective is to
overfly a target point specified by the final boundary condi-
tions (e.g., in Eq. (7)) with the total flight time being mini-
mized. Therefore, the mission objective function is given by:

minimize J ¼ tf ð8Þ
2.3. Overall trajectory optimization formulation

Summarizing all the mission-related information stated in pre-
vious subsections, an overall trajectory optimization formula-

tion can be established which has the general form of

Search x ¼ x�ðtÞ; u ¼ u�ðtÞ
minimize J ¼ UðxðtfÞ; tfÞ
subject to 8t 2 ½t0; tf�

dx
dt
¼ fðxðtÞ; uðtÞÞ

gðxðtÞ; uðtÞÞ 6 0

bðx0; t0; xf; tfÞ ¼ 0

x 2 ½xmin; xmax�
u 2 ½umin; umax�

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð9Þ
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in which U; fð�; �Þ; gð�Þ; bð�Þ denote the objective function Eq.

(8) in Mayer form, EMOs, path constraints, and boundary
constraints given by Eq. (1), Eq. (2), Eqs. (3)–(5)), and Eq.

(6), respectively. x ¼ ½r;/; h;V; c;w; a; r; b; p; q; m� 2 R12is the

system state vector and u ¼ ½Mx;My;Mz� 2 R3 is the control

vector. ðx�ðtÞ; u�ðtÞÞ stands for the optimal solution to be
searched.

3. Solution method

Exploring the optimal flight trajectory for the aeroassisted
vehicle reconnaissance mission constructed in Section 2 can

be referred to an optimal control problem. One particular
method which has been commonly applied to solve problem
Eq. (9) is the pseudospectral direct transcription approach21,22.

This approach benefits from its suitability for various aero-
space applications and adopts orthogonal collocation tech-
nique so as to achieve higher polynomial approximation

accuracy21,22. By using different collocation points, various
pseudospectral methods have been proposed in the
Refs. 23,24. In this paper, we explore the capability of applying
the Radau Pseudospectral Method (RPM) for the considered

high-order trajectory optimization problem.

3.1. Radau pseudospectral method

In the RPM, a key transcription process is to use a unique
polynomial to characterize the continuous-time state and con-
trol variables. However, priori to parameterize the system state

and control variables, a transformation regarding the time
domain should be performed. That is, the original time interval

t 2 ½t0; tf� is mapped to s 2 ½�1; 1Þ by using s ¼ t�tf
tf�t0

þ t�t0
tf�t0

.

Now suppose a finite set of Legendre–Gauss–Radau (LGR)

temporal points is given (e.g., s 2 fs0; s2; . . . ; sNk
g in which

Nk denotes the size of the temporal set). An approximation
of the system state and control variables can be written as:

xðsÞ �
XNk

k¼0

xðskÞLkðsÞ

uðsÞ �
XNk

k¼1

uðskÞLkðsÞ

8>>>><
>>>>:

ð10Þ

where Lk stands for the Lagrange polynomials. Using Eq. (10),
an approximation with respect to the derivative of the state can

be obtained via:

dx

ds
�

XNk

k¼0

xðskÞdŁk

ds
¼

XNk

k¼0

xðskÞDjkðskÞ ð11Þ

in which Djk represents the differentiation matrix related to the

LGR nodes. As a consequence, the dynamic constraint is

equivalent to:

XNk

k¼0

xðskÞDjkðskÞ � tf � t0
2

fðxk; ukÞ ¼ 0 ð12Þ

More specifically, for the considered high-fidelity recon-
naissance trajectory design problem, the two sets of EMOs
of the aeroassisted vehicle are transformed to algebraic equal-

ity constraints. For example, the translational EMOs are fur-
ther written as
XNk

k¼0

Djkrk � tf�t0
2

Vk sinck ¼ 0

XNk

k¼0

Djk/k � tf�t0
2

� Vk coswk cosck
rk

¼ 0

XNk

k¼0

Djkhk � tf�t0
2

� Vk cosck sinwk

rk cos/k
¼ 0

XNk

k¼0

DjkVk þ tf�t0
2

SqCDðakÞV2
k

2m
� gsinck

� �
¼ 0

XNk

k¼0

Djkck � tf�t0
2

� SqCLðakÞV2
k
cosrk

2Vkm
� tf�t0

2
� V2

k
�rkg

Vkrk
cosck ¼ 0

XNk

k¼0

Djkwk � tf�t0
2

� SqCLðakÞV2
k
sinrk

2Vkmcosck
� tf�t0

2
� Vk

rk
tan/k cosck sinwk ¼ 0

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ
As for the rotational EMOs, the corresponding approxima-

tion equations can be achieved analogically. Similar to the sys-
tem dynamics, the path constraints can also be approximated
in the same way, and the original problem is rewritten as a

finite-dimensional NonLinear Programming (NLP) problem,
which is solvable for mature nonlinear optimization
algorithms.
3.2. A pipelined optimization strategy

Due to the complexity of vehicle dynamics and constraints, a

direct implementation of RPM on the considered problem
might encounter numerical difficulties. This section discusses

a pipelined optimization strategy based on a variable order
RPM in order to alleviate this problem.
3.2.1. Pre-solve process

The pipelined optimization strategy contains three steps: the

pre-solve process, the main optimization process, and the mesh

grid update process. For most numerical optimal control soft-
wares, the initial guess value at temporal nodes is obtained via
linear interpolation between the user-specified boundary guess

value. However, this may result in large constraint violation
value, thus restricting the searching space significantly. We
attempt to address this issue by adding a pre-solve process,

where a PSO-based optimal control method proposed in
Ref. 25 is applied to optimize the following unconstrained opti-
mization model:

min
u

J ¼ maxfgðxðsi; uÞ; uÞ; 0g þUðxðsNk
; uÞÞ ð14Þ

where UðxðsNk
; uÞÞ ¼ ðxðsNk

; uÞ � xfÞ2, while gðx; uÞ � 0 is the

compressed form of the path constraints defined in Section 2.
In Eq. (14), xðsi; uÞ denotes the state which is obtained via

control discretization and numerical integration of the
system equations. Minimizing the objective function defined
in Eq. (14) is equivalent to minimizing the constraint

violation of the original problem, thus quickly generating a
feasible flight trajectory for the aeroassisted vehicle (e.g.,
u ¼ ðu0; u1; . . . ; uNk�1Þ and x ¼ ðx0; x1; . . . ; xNk

Þ). Then this

solution will be used to warmly-trigger the main optimization
process which is detailed in the next subsections.
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3.2.2. Variable order adaptive process

Since the vehicle dynamics become much more complicated in

comparison with the widely-applied 3-DOF model, the mesh
grid used to discretize the continuous time system becomes
more sensitive with respect to the quality of the flight trajec-

tory. Usually, a large-scale mesh grids is desired to represent
the flight trajectory. However, a large-scale fixed mesh grids
may result in failures in terms of the algorithm convergence.

On the other hand, although a small-scale mesh grid can
improve the convergence of the optimization process, key
characteristics of the optimal flight trajectory may not be cap-
tured. Consequently, the mesh grid adaption becomes a vital

role in the success of solution finding.
Different from the mesh adaptive strategy used in Ref. 19,26,

in this work the mesh adaptive process is fulfilled by further

exploiting the Legendre polynomial series as suggested in
Ref. 23,24. Specifically, assume that we are using a Nk order
Legendre polynomial to approximate the function xðsÞ:

xðsÞ �
XNk

i¼0

liRiðsÞ ð15Þ

in which RiðsÞ is the basis of the Legendre polynomial. The
core idea of this mesh adaptive strategy is to apply the decay

rate li to assess the smoothness of the function xðsÞ. Note that
if xðsÞ is a smooth bounded function, then it can be accurately
represented by

xðsÞ �
X1
i¼0

�liRiðsÞ ð16Þ

If we apply the Nk order approximation given by (15), the
error term e can be written as

e ¼ jP1
i¼0

l
�
iRiðsÞ �

PNk

i¼0

liRiðsÞ
����

����j
¼ j P1

i¼Nkþ1

l
�
iRiðsÞ þ

PNk

i¼0

ðli � l
�
iÞRiðsÞ

�����
�����j

ð17Þ

Using the triangle inequality, we have

e 6
X1

i¼Nkþ1

�liRiðsÞ
�����

�����þ
XNk

i¼0

ðli ��liÞRiðsÞ
�����

����� ð18Þ

In Eq. (17) and Eq. (18), the norm is defined by the inner
product. For example,

kek ¼< e; e>
1
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1

eðsÞ2ds
s

Let e1 ¼
P1

i¼Nkþ1
�liRiðsÞ

��� ��� and e2 ¼
PNk

i¼0ðli ��liÞRiðsÞ
�� ��.

Based on the orthogonality property of Legendre polynomials,

we have the following relation

< RiðsÞ;RjðsÞ >¼ 2

2iþ 1
dij ð19Þ

where

dij ¼
1 i ¼ j

0 i– j

	
ð20Þ

Then the two error terms (e1 and e2) can be represented
by
e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
i¼Nkþ1

2�l2i
2iþ 1

vuut ð21Þ

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNk

i¼0

2ðli ��liÞ2
2iþ 1

vuut ð22Þ

From Ref. 27,24, it was shown that li � �li, which means e2 is

relatively small in comparison to e1 and can be ignored27.
Moreover, using the convergence result shown in Ref. 23,24,

we can obtain an estimation of k�lik ¼ c10�ri; r > 0. Based on
this estimation, the error e ¼ e1 þ e2 can be further written as

e 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
i¼Nkþ1

2

2iþ 1
�l2i

vuut 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
i¼Nkþ1

�l2i

vuut 6 �e ð23Þ

where �e ¼ c10�rðNkþ1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10�2r

p
. Thus we find an upper

bound �e of the error term e. It should be noted that in the pre-

vious subsection, although Lagrange interpolation is applied
to represent xðsÞ, the Legendre coefficient li can be directly
obtained by applying

Rli ¼ xðsiÞ ð24Þ
where

R ¼

R0ðs1Þ R1ðs1Þ � � � RNk
ðs1Þ

R0ðs2Þ R1ðs2Þ � � � RNk
ðs2Þ

..

. . .
. ..

.

R0ðsNkþ1Þ R1ðsNkþ1Þ � � � RNk
ðsNkþ1Þ

2
66664

3
77775 ð25Þ

Suppose a tolerance value �r is provided by the user. We

define that xðsÞ is smooth if r > �r and vice versa. If we detect
that a mesh interval is not smooth, then the current mesh inter-
val is divided into subintervals. On the other hand, if the cur-

rent mesh is smooth, the approximation can be further
improved by enlarging the polynomial degrees. More precisely,
if r > �r, we intend to increase the number of nodes in the cur-
rent mesh interval and this number is calculated by

N
ðHþ1Þ
k ¼ N

ðHÞ
k þ lg

e
ðHÞ
k

�

,
r ð26Þ

where H denotes the index of the mesh grid, while � is the user-
specified accuracy tolerance. If r < �r, we intend to divide the
current mesh grid. This is achieved via two steps. Firstly, we

calculate the total number of nodes of the new mesh grid via

�Nk ¼ N
ðHÞ
k þ lg

e
ðHÞ
k

�

,
�r ð27Þ

Secondly, we calculate the number of subintervals Ns:

Ns ¼ �Nk=N
ðHÞ
k ð28Þ
3.2.3. Design parameter selection

It is true that the implementation of the variable order pseu-

dospectral method will introduce some design parameters
which may have impacts on the algorithm performance and
convergence ability. Therefore, a proper design parameter
selection process is needed to start the solution-finding itera-



Table 3 Variable terminal values.

Variable Value

Altitude, hf (km) 50

Longitude, hf (	) 17.88

Latitude, /f (
	) 4.30

Velocity, Vf (km/s) 4.27

FPA, cf (
	) 0

Slide slip angle, bf (
	) 0

Roll rate, pf (ð	Þ/s) 0

Pitch rate, qf (ð	Þ/s) 0

Yaw rate, mf (ð	Þ/s) 0
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tion. This process becomes even more important for the trajec-
tory optimization in the real application. However, selecting
proper design parameters (e.g., �r and �) might be problem-

dependent. Here, we present an interactive strategy for the
design parameter selection process. By setting an initial �r,
the problem can be solved and the results will be presented

to the designer. If the designer is not satisfied with the planning
results, the design parameters can be reassigned based on the
behaviour of the obtained solution. Specifically, if the current

results oscillate significantly or contain some discontinuities, it
would be beneficial to reassign a larger �r and vice versa. On the
other hand, � can be initially set to a large value (e.g.,

� ¼ 1� 10�3). This will improve the convergence rate of the

optimization process. Subsequently, the designer can use the
low-accuracy solution as the starting point and tighter the tol-
erance level to obtain more accurate results.

4. Simulation results

4.1. Simulation setting

As indicated in Section 2, some task-related and vehicle-

dependent parameters should be assigned to construct the
high-fidelity aeroassisted vehicle reconnaissance trajectory
optimization model. For example, the variable initial condi-
tions and targeted final states are provided in Table 2 and

Table 3, respectively.
The variable physical limits, rate/path constraints are set as

follows:

50 km 6 h 6 80 km; �180	 6 / 6 180	

�180	 6 h 6 180	; 4 km=s 6 V 6 8 km=s

�10	 6 c 6 10	; �180	 6 w 6 180	

0	 6 a 6 40	; �0:5	 6 b 6 0:5	

�90	 6 r 6 0	; �5 ð	=sÞ 6 p 6 5 ðð	Þ=sÞ
�1 ðð	Þ=sÞ 6 _a 6 1 ðð	Þ=sÞ; �1 ðð	Þ=sÞ 6 _r 6 1 ðð	Þ=sÞ
�5 ðð	Þ=sÞ 6 q 6 5 ðð	Þ=sÞ; �5 ðð	=sÞÞ 6 m 6 5 ðð	Þ=sÞ

�1� 105 lb � ft 6 Mi 6 1� 105 lb � ft; 0 6 kq 6 150 Btu=ft2=s

0 6 kp 6 280 slug=ft2; 0 6 kn 6 2:5 g

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Note that 1 lb = 0.45359 kg, 1 ft = 0.3048 m, 1 Btu/ft2/

s = 1.135654 W/cm2/s, 1 slug/ft2 = 1.35582 kg/m2, g =
9.81 m/s2 and 1 lb � ft = 1.35582 N � m.
Table 2 Variable initial conditions.

Variable Value

Altitude, h0 (km) 79.24

Longitude, h0 (	) 0

Latitude, /0 (	) 0

Velocity, V0 (km/s) 7.80

FPA, c0 (	) �1

Azimuth, w0 (	) 90

AOA, a0 (	) 17

Bank angle, r0 (	) �75

Slide slip angle, b0 (ð	Þ=s) 0

Roll rate, p0 (ð	Þ/s) 0

Pitch rate, q0 (ð	Þ/s) 0

Yaw rate, m0 (ð	Þ/s) 0
The vehicle parameters are set as follows:

m ¼ 92079 kg; S ¼ 250 m2

Ixx ¼ 588791:0 kg �m2; Ixz ¼ 23211:6 kg �m2

Iyy ¼ 1303212:2 kg �m2; Izz ¼ 1534163:6 kg �m2

Ixy ¼ 0 kg �m2; Iyz ¼ 0 kg �m2

8>>><
>>>:

The simulations were performed under Windows 7 and
Intel(R) i7-4790 CPU, 2.90 GHz, with 8.00 GB RAM, while

the MATLAB version is R2019a. To run the simulation, the
initial mesh grid contains 40 points and the accuracy tolerance

value is assigned to � ¼ 10�6.

4.2. Optimized results of using different models

In this subsection, the optimized results obtained using the
low-fidelity 3-DOF model as well as the high-fidelity 6-DOF

model are firstly analyzed. More precisely, the optimized trans-
lational state and control profiles of these two models are pre-
sented in Fig. 1 and Fig. 2, respectively. The corresponding

heating rate, dynamic pressure, and normal load profiles are
visualized in Fig. 3. In addition, for the 6-DOF model results,
the rotational state profiles and the corresponding control
moment curves are shown in Fig. 4 and Fig. 5, respectively.

As can be seen from Fig. 1 to Fig. 5, both cases accurately
meet the initial and terminal boundary conditions while
achieving the same level of accuracy threshold. However, dif-

ferences can be detected in the obtained solutions. These differ-
ences are particulary obvious in terms of path constraint
profiles for the low/high-fidelity formulations. This implies

that the low-fidelity trajectory results might not be realizable
for a high-fidelity system, which means the importance of con-
sidering the forces and moments (e.g., rotational variables) in

the trajectory optimization process should be emphasized.
Although using a lower-fidelity model can be suitable for

planning feasible trajectories with respect to the vehicle trans-
lational variables, it might pose a potential safety concern.

Therefore, in order to generate a promising solution, it is advo-
cate to apply the investigated high-fidelity model to plan the
aeroassisted vehicle reconnaissance trajectory.

Furthermore, a comparison of the trajectory optimization
using the pseudospectral method to a convex optimization
method is also carried out. It is worth noting that this combi-

national strategy has become increasingly popular in recent
years28,29. The obtained results are displayed in Fig. 1 to



Fig. 1 Position and Velocity Profiles: 3-DOF Model and 6-DOF Model.

Fig. 2 Path, azimuth, AOA and bank angle profiles: 3-DOF model and 6-DOF model.
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Fig. 3 (denoted as ‘‘Con results”). Analysis has been made
from two aspects: the optimization strategy simplicity and
the algorithm performance.

As for the optimization strategy simplicity, this can be
reflected by comparing the required computational time.
Specifically, 5.42 s is required for the adaptive pseudospectral
method while only 2.07 s is required for the convex optimiza-

tion. Benefiting from the polynomial complexity of the convex
optimization, a roughly 68.81% reduction in terms of the com-
putational time can be achieved.

Regarding the algorithm performance, the solutions
obtained using these two strategies generally follow the same
trend. However, slight differences can be detected in the state

trajectories. This can be attributed to multiple reasons such
as the linearization process used to convexify the problem,
and the final mesh grid obtained via the strategy introduced
in Section 3.3.2.

We have also tested the performance of applying these two
methods for the 6-DOF case. However, this attempt is failed as
the convex optimization-based method suffers from conver-
gence issues. One potential reason can be identified. That is,

the successive linearization process may result in large accumu-
lation of errors for higher order system. Therefore, although
obvious benefits can be obtained using convex optimization-

based methods, certain treatment regarding the convergence
issue should be designed and future research can be carried
out along this direction especially for high-order trajectory

optimization problems.
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Fig. 3 Path constraint profiles: 3-DOF model and 6-DOF

model.

Fig. 5 Control moment profiles: 6-DOF model solutions.
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4.3. Results with and without mesh adaptive process

In this subsection, the performance of the algorithm with and

without the mesh adaptive process is further tested and ana-
lyzed. It should be noted that based on our experiments, a
direct application of the pseudospectral method might encoun-

ter numerical difficulties for solving the 6-DOF reconnaissance
trajectory optimization problem. To overcome this issue and
improve the algorithm convergence, the pre-solve process

introduced in Section 3 is applied on a small-scale temporal
set. Subsequently, two test cases were performed with and
without the mesh adaptive process introduced in Section 3

on the 6-DOF aeroassisted vehicle reconnaissance trajectory
optimization model. The obtained results are presented in
Fig. 6 to Fig. 10. Specifically, Fig. 6 and Fig. 7 illustrate the
translational state profiles for the two cases, while Fig. 8 pre-

sents the corresponding constraint evolutions. In Fig. 9, the
Fig. 4 Angular rate profiles
rotational state profiles are presented, whereas Fig. 10 displays
the optimized control moments for the two cases.

From the presented results, one thing needs to be high-
lighted is that the impose of heating and dynamic pressure con-
straints tends to prevent the vehicle from descending during

the entire mission. That is, the aeroassisted vehicle has a hop
at around 210 s in order to decrease the generated heat load
and dynamic pressure, thereby protecting the structural

integrity.
By comparing the results for the two cases, it is certainly

true that the mesh adaptive process and a relatively-large set
of mesh grid points are necessary for obtaining smooth and

promising reconnaissance trajectories. This is more apparent
for the rotational state variables shown in Fig. 9. Conse-
quently, the advantages of applying the mesh adaptive process

can be verified.

4.4. Comparative results and analysis

In this subsection, we are interested in comparing the applied
algorithm with other high precision pseudospectral-based
methods existing in the literature such that the advantage of

applying the decay rate-based mesh refinement strategy can
be further appreciated. Specifically, the ph method suggested
: 6-DOF model solutions.



Fig. 6 Position and velocity profiles: With and without mesh updates.

Fig. 7 Path, azimuth, AOA and bank Angle profiles: With and without mesh updates.
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in Ref. 30 and the hp method reported in Ref. 23 are selected to
form the comparative study. Early studies suggested that these

two methods have the capability of producing high precision
results for a wide range of aerospace-related trajectory opti-
mization problems. By assigning the mesh adaptive tolerance

values as � ¼ ð�1; �2; �3; �4Þ=ð10�5; 10�6; 10�7; 10�8Þ, the com-

parative results were obtained. The results for different meth-
ods are displayed in Table 4, where Na denotes the mesh
adaptive iteration times, Nk indicates the total number of

nodes among the final mesh grid, and tc reflects the computa-
tion time in second required for the algorithm. Note that in
this table, the notation ‘‘�” indicates a failure (e.g., the algo-
rithm fails to converge).

From Table 4, we can notice that for the �1 and �2 cases, the
ph method tends to have a relatively-large number of mesh
iterations. Also, the computation time required for the ph

method convergence is much greater than the others. More-
over, for tighter mesh adaptive tolerance cases (e.g., �3 and
�4), the ph method even fails to converge. This can be

explained by the fact that in the ph method, decreasing the
polynomial error largely depends on enlarging the polynomial
degrees. One main disadvantage of this strategy is that it might
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Fig. 8 Path constraint profiles: With and without mesh updates.

Fig. 9 Angular rate profiles: With and without mesh updates.

Fig. 10 Control moment profiles: With and without mesh

updates.

Table 4 Comparative results.

High precision methods �1 �2

Na Nk tc Na Nk tc

Method in Ref. 30 10 285 11.11 24 412 37.2

Method in Ref. 23 6 164 4.24 11 261 5.92

Proposed method 5 152 3.18 9 208 4.47

High precision methods �3 �4

Na Nk tc Na Nk tc

Method in Ref. 30

Method in Ref. 23 14 239 7.73

Proposed method 9 210 5.42 10 213 5.78
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Fig. 11 Position and velocity profiles: Comparative study.

Fig. 12 Path, azimuth, AOA and bank angle profiles: Comparative study.

Table 5 Case specifications.

Test cases h0 (km) V0 (km/s) c0 (	) w0 (	)

Case 1 79.08 7.83 �1.01 90.57

Case 2 78.85 7.81 �1.08 90.81

Case 3 78.20 7.82 �0.92 89.77

Case 4 78.71 7.88 �1.01 89.61

Case 5 78.97 7.75 �0.90 89.06

Case 6 78.19 7.77 �1.10 90.77

Case 7 78.20 7.83 �0.96 89.54

Case 8 79.37 7.91 �1.04 90.41
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Fig. 13 Position and velocity profiles: Noise-perturbed cases.

Fig. 14 Path, azimuth, AOA and bank angle profiles: Noise-perturbed cases.
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result in a slow decrease in the error and create a large number
of unnecessary collocation points. Similarly, compared with

the algorithm introduced in this paper, the hp method tends
to consume more adaptive iterations and computation time
to achieve the required mesh accuracy. This is obvious for

�1; �2, and �3 cases. This is because in the hp method, the mesh
adaptive process might add too many node points in a sub-
interval due to conservative estimation of the required polyno-
mial degree. This will inevitably increase the time required for
algorithm convergence or even result in a failure.

The trajectory profiles corresponding to the data reported
in Table 4 are visualized. Specifically, position and velocity
profiles are displayed in Fig. 11, whereas the path, azimuth,

AOA and bank angle profiles are presented in Fig. 12. By view-
ing the trajectory profiles presented in Fig. 11 and Fig. 12, it is
obvious that the method introduced in this work can success-



Fig. 15 Path constraint profiles: Noise-perturbed cases.
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Fig. 16 Angular rate profiles: Noise-perturbed cases.
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fully converge to a solution for all pre-specified cases. The
obtained trajectory profiles, together with the mesh and com-
putational results provided in Table 4, confirm the effective-
ness of the introduced method. Moreover, the enhanced
computation performance of applying this method over other
high precision methods can also be appreciated.



Fig. 17 Control moment profiles: Noise-perturbed cases.

Table 6 Results of different cases.

Test cases J� (s) Na Nk Vl

Case 1 331.55 9 217 0

Case 2 332.70 9 193 0

Case 3 330.35 12 223 0

Case 4 330.39 11 235 0

Case 5 330.94 9 219 0

Case 6 333.36 12 237 0

Case 7 329.86 10 237 0

Case 8 332.65 13 238 0
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4.5. Case studies with noise-perturbed initial conditions

In this subjection, case studies with noise-perturbed vehicle ini-
tial conditions were designed and performed to further validate
the effectiveness and robustness of the applied method. Eight

test cases were considered with perturbed initial conditions
and their detailed settings are tabulated in Table 5. By apply-
ing the variable-order RPM method, the results for different

cases are obtained and visualized in Fig. 13–17.
Apart from the optimized trajectories for different cases,

detailed results are summarised in Table 6, where J� indicates

the optimized final time value, Na and Nk again stand for the
number of mesh adaptive iterations and the total number of
the temporal nodes in the final adaptive iteration, respectively.

Vl denotes the constraint violation value of the final solution.
From these presented trajectory profiles (e.g., see Fig. 13 to

Fig. 17), one can find that the variation of initial conditions
has an impact on the aeroassisted vehicle reconnaissance tra-

jectory. However, all the cases can be successfully optimized
via the variable-order RPM method. This can be reflected by
the fact that the optimization process for all the test cases
can successfully converge with the required accuracy tolerance

satisfied and constraint violation nullified (see Table 6). More-
over, all the trajectory profiles are maintained relatively-
smooth during the entire flying mission. This further confirms

the effectiveness and robustness of the applied method for the
considered problem.

5. Conclusions

In this work, we investigated and solved a high-fidelity recon-
naissance trajectory optimization problem for aeroassisted

vehicles using a variable order pseudospectral method. The
formulated trajectory optimization model consists of both
translational and rotational equations of motion, aerodynamic
model, atmospheric model, and various constraints, thereby

further narrowing the gap to the real system. A pipelined strat-
egy based on a variable order Radau pseudospectral method
was introduced to explore the optimal solution. After analyz-

ing the simulation results, we found that:
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(1) It is beneficial to include the both the translational and

rotational dynamics in the trajectory planning phase,
as the low-fidelity 3-DOF model might pose a potential
safety concern.

(2) Direct application of the pseudospectral method might
encounter numerical difficulties for solving the 6-DOF
reconnaissance trajectory optimization problem. A
potential recovery can be achieved by warmly start the

optimization process on an initial small-scale mesh grid
and gradually update the mesh grid to achieve the
required accuracy level.

(3) The planned state and control trajectories tend to be
smoother if the fixed mesh grid-based method can be
replaced by the variable order strategy.

For future work, it would be worthwhile to devote efforts
on addressing the convergence issue and improving the conver-
gence rate of applying convex optimization-based trajectory

design methods. This is of particular interest due to the fact
that reduced computation time can be achieved by applying
this type of approach (as indicated in Section 4.2). Besides,

more sophistic and systematic design parameter selection strat-
egy is desired such that the performance and convergence abil-
ity of the algorithm can be further enhanced.
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