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Abstract Residual stresses in an unloaded configuration of an elastic material have a significant influence on the
response of the material from that configuration, but the effect of residual stress on the stability of the material,
whether loaded or unloaded, has only been addressed to a limited extent. In this paper we consider the level of
residual stress that can be supported in a thick-walled circular cylindrical tube of non-linearly elastic material
without loss of stability when subjected to fixed axial stretch and either internal or external pressure. In particular,
we consider the tube to have radial and circumferential residual stresses, with a simple form of elastic constitutive
law that accommodates the residual stress, and incremental deformations restricted to the cross section of the tube.
Results are described for a tube subject to a level of (internal or external) pressure characterized by the internal
azimuthal stretch. Subject to restrictions imposed by the strong ellipticity condition, the emergence of bifurcated
solutions is detailed for their dependence on the level of residual stress and mode number.

Keywords Nonlinear elasticity · Residual stress · Tube stability

1 Introduction

Residual stresses have a significant effect on the mechanical behaviour of materials in which they are supported,
as has been reported in a number of recent works, for example Merodio et al. [1] and Merodio and Ogden [2]
where the influence of the response of circular cylindrical tubes subject to residual stress under various loading
conditions was analysed. Residual stresses can have damaging consequences when generated in components during
the manufacturing process, for example. On the other hand, they can improve the properties of structures (for
example, in pre-stressed car windscreens). In biological tissues residual stresses are developed during growth and
remodelling and have an important influence on the mechanical response of the tissue in normal (or abnormal)
physiological conditions. Understanding the influence of residual stresses from a theoretical point of view therefore
has important practical consequences.
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A theoretical basis for non-linearly elastic solids with residual stress was developed in a series of papers by
Hoger, in particular in [3,4], while for a homogeneously initially stressed material (as distinct from a residually
stressed material) further contributions detailing the effect of the initial stress on the propagation of waves were
provided by Shams et al. [5], and Ogden and Singh [6], for example.

Although the basic analysis of the effect of residual stress on material response is now well developed, very little
has been done on the effect that residual stress has on stability, an exception being the paper by Ciarletta et al. [7],
which was concerned with the stability (in two dimensions) of an unloaded circular annulus carrying both radial
and circumferential residual stresses.

In the present paper we examine the effect of axial load, internal and external pressure and residual stress on
the stability of a circular cylindrical tube of incompressible elastic material based on the linear theory of elastic
increments superimposed on the (finitely deformed) circular cylindrical configuration, with attention restricted to
increments confined to the radial–circumferential plane.

We begin in Sect. 2 by providing the basic equations of elasticity with residual stress, while in Sect. 2.1 the
constitutive equation is specialized in terms of invariants. The theory is then applied in Sect. 3 to the basic con-
figuration of a residually stressed circular cylindrical tube subject to axial load and internal or external pressure.
Section 4 summarizes the required incremental equations, which are specialized in detail in Sect. 5 for the case of
planar increments (in the radial–circumferential plane). Specific forms of residual stress and constitutive equation
to be used for illustration are also provided along with consideration of the restrictions imposed by the strong
ellipticity condition. The numerical procedure used for solving the incremental equations and boundary conditions
is described in Sect. 6.

Results of the calculations are illustrated in Sect. 6.3 to show the relative influences of the residual stress, the
tube thickness, the deformed inner radius of the tube (as a measure of internal or external pressure) and the mode
number on the onset of bifurcation, with particular reference to the strong ellipticity condition.

Some brief concluding remarks are provided in Sect. 6.4.

2 Residual stress and elasticity

We consider a solid continuum which, when unloaded, is designated its reference configuration, denoted Br. Within
this configuration it possesses a residual stress distribution, with the residual (Cauchy) stress tensor denoted τ . By
definition [3,4] τ satisfies the equilibrium equation and zero traction boundary conditions

Div τ = 0 in Br, τN = 0 on ∂Br, (1)

where ∂Br is the boundary of Br, which has unit outward normal N, Div being the divergence operator in Br,
i.e. with respect to material position X ∈ Br. It is assumed that there are no intrinsic couple stresses so that τ is
symmetric. Note that residual stresses are necessarily non-uniform, i.e. depend on X, and the material that supports
them is inhomogeneous.

When loads are applied, the resulting deformation is measured from Br with deformation gradient F, associated
with which are the right and left Cauchy–Green deformation tensors, denoted C and B, respectively, and defined
by

C = FTF, B = FFT. (2)

The deformed configuration is denoted B and its boundary by ∂B, within which the material point X is located at
x, which is given by the deformation function χ , such that x = χ(X) and F = Grad x, Grad being the gradient
operator with respect to X.
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In this paper we shall assume that the material response relative to Br is incompressible, so the constraint

det F = det C = 1, (3)

is satisfied for each X ∈ Br.
We suppose that the response to applied loads is purely elastic and characterized in terms of a strain-energy

function W defined per unit volume in Br and measured therefrom. It depends not only on the deformation gradient
F but also the residual stress τ . Objectivity requires that W depends on F through C. The dependence on τ is
included explicitly in the arguments of W and we write

W = W (C, τ ), (4)

which is automatically objective since τ is unaffected by rotations in the deformed configuration B. Note that the
elastic properties of the material relative to Br are anisotropic, i.e. τ has an effect on the constitutive law analogous
to that of a structure tensor associated with preferred directions in fibre-reinforced materials, as for example, in [8].
In the special case that τ specializes to a rank-one tensor, say M ⊗ M, the invariants associated with transverse
isotropy are recovered. In general, we may refer to τ as a generalized structure tensor. The appropriate invariants
for a general τ will be listed in the following section.

Since W is measured from Br, we impose the condition

W (I, τ ) = 0. (5)

The formulas for the nominal and Cauchy stresses are the same as in standard non-linear elasticity, except by the
dependence of W on τ , which has a passive role since it is independent of the deformation. Thus, for the considered
incompressible elastic material the nominal stress tensor S and Cauchy stress tensor σ are given by

S = ∂W

∂F
(F, τ ) − pF−1, σ = FS = F

∂W

∂F
(F, τ ) − pI, (6)

where p is a Lagrange multiplier necessitated by the constraint (3) and I is now written for the identity tensor in B
(which we do not distinguish from that in Br). For equilibrium in B the equations

Div S = 0, div σ = 0 (7)

have to be satisfied in the absence of body forces.
When F = I, each of the expressions in (6) reduces to

τ = ∂W

∂F
(I, τ ) − p(r)I, (8)

where p(r) is the value of p in Br. The latter condition imposes restrictions on W in Br, which will be made explicit
in the following.

2.1 Invariant formulation

Based on the general theory of Spencer [9] it can be seen that, for an incompressible material, in three dimensions
W (C, τ ) depends on 9 invariants generated by the two tensors C and τ . With the invariant I3 = det C omitted
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because of the constraint (3), these are typically taken to be, for C,

I1 = tr C, I2 = 1

2
[(tr C)2 − tr (C2)], (9)

for the combination of C and τ ,

I5 = tr (τC), I6 = tr (τC2), I7 = tr (τ 2C), I8 = tr (τ 2C2), (10)

while for τ we denote the three invariants collectively as

I4 ≡
{

tr τ ,
1

2
[(tr τ )2 − tr (τ 2)], det τ

}
. (11)

The invariants of τ are not affected by the deformation, while in the configuration Br the other invariants reduce
to

I1 = I2 = 3, I3 = 1, I5 = I6 = tr τ , I7 = I8 = tr (τ 2). (12)

We emphasize that the above set of 9 invariants, or an equivalent set of alternative invariants, forms a complete set
of invariants of C and τ in three dimensions for an incompressible material. When the dimension of the considered
problem is reduced from three to two, such as for plane strain, the number of independent invariants is reduced.

In terms of the invariants the expressions in (6) for the nominal and Cauchy stresses can be expanded in the form

S =
∑
i ∈I

W̄i
∂ Ii
∂F

− pF−1, σ = FS, (13)

where I is the index set {1, 2, 5, 6, 7, 8}, the notation W̄i = ∂W̄/∂ Ii , i ∈ I has been adopted, and W is written
W̄ (I1, I2, I4, I5, I6, I7, I8) to reflect the dependence on the invariants. Note that the derivative of I4 with respect to
F vanishes and so is not included in the above expression, but I4 is included in the functional dependence of W̄ .

The expressions for ∂ Ii/∂F, i ∈ I, required in (13), are given by
∂ I1
∂F

= 2FT,
∂ I2
∂F

= 2(I1FT − CFT), (14)

∂ I5
∂F

= 2τFT,
∂ I6
∂F

= 2(τCFT + CτFT), (15)

∂ I7
∂F

= 2τ 2FT,
∂ I8
∂F

= 2(τ 2CFT + Cτ 2FT), (16)

the symmetry of τ having been used.
The Cauchy stress in (13) then expands in full as

σ = 2W̄1B + 2W̄2(I1B − B2) + 2W̄5Σ + 2W̄6(ΣB + BΣ)

+ 2W̄7ΣB−1Σ + 2W̄8(ΣB−1ΣB + BΣB−1Σ) − pI, (17)

wherein we have introduced the notation Σ = FτFT for the Eulerian tensor which is the push-forward of τ . We
also recall that B = FFT is the left Cauchy–Green tensor.

When evaluated in Br the latter reduces to the specialization of (8) as

τ = (2W̄1 + 4W̄2 − p(r))I + 2(W̄5 + 2W̄6)τ + 2(W̄7 + 2W̄8)τ
2, (18)

where each W̄i , i ∈ I, is evaluated for the invariants given by (12). Thus, following [5] with a slightly different
notation, we obtain the restrictions

2W̄1 + 4W̄2 − p(r) = 0, 2(W̄5 + 2W̄6) = 1, W̄7 + 2W̄8 = 0 (19)

on the strain-energy function in Br.
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Further details of the residual stress formulation are given in [5] and, for a material also containing a preferred
direction, in [6], while an application to a prototype problem involving an inhomogeneous deformation, that of
(plane strain) azimuthal shear of a circular cylindrical tube, for a residually stressed material, is provided in [1]. In
the following section we consider the specialization of the above equations to a circular cylindrical configuration
with the residual stress confined to the cross-sectional plane of the cylinder.

3 Application to a thick-walled tube with residual stress

We now consider a thick-walled circular cylindrical tube which is subject to a uniform axial stretch and radial
deformation. Let the cross-sectional geometry of the tube in the configuration Br be defined by 0 < A ≤ R ≤ B,
0 ≤ Θ ≤ 2π , with axial coordinate Z . After deformation the internal and external radii A and B become a and b
and since the material is incompressible the deformation is given in terms of cylindrical polar coordinates r, θ, z by

r2 = a2 + λ−1
z (R2 − A2), θ = Θ, z = λz Z , (20)

where the constant λz is the axial stretch, while b is given by b2 = a2 +λ−1
z (B2 − A2). The circumferential stretch,

denoted λ, is given by λ = r/R, and by incompressibility the radial stretch is λ−1λ−1
z .

The residual stress in Br is taken to consist of radial and circumferential components τ33 and τ11, respectively,
with axial component τ22 = 0. For the most part the components of tensors are signified with indices p, q, α, β, ...,
etc., which take values 1, 2, 3 in the general case. The components τ33 and τ11 satisfy the equilibrium equation

dτ33

dR
+ 1

R
(τ33 − τ11) = 0 for A < R < B, (21)

with the boundary condition (1)2 specializing to

τ33 = 0 on R = A and B. (22)

Note that τ11 and τ33 are the only components of the residual stress since the considered geometry can support
neither a shear nor an axial component of residual stress without Z dependence.

The first two invariants in I4 in (11) reduce to just τ11 + τ33 and τ11τ33 and the third vanishes, while I1 and I2
in (9) become

I1 = λ2 + λ2
z + λ−2λ−2

z , I2 = λ−2 + λ−2
z + λ2λ2

z , (23)

and I5, . . . , I8 can be expressed in terms of τ11, τ33 and the stretches as

I5 = λ−2λ−2
z τ33 + λ2τ11, I6 = λ−4λ−4

z τ33 + λ4τ11,

I7 = λ−2λ−2
z τ 2

33 + λ2τ 2
11, I8 = λ−4λ−4

z τ 2
33 + λ4τ 2

11. (24)

Since the invariants depend on only two independent stretches λ and λz together with the residual stress com-
ponents τ11 and τ33, we introduce the reduced form of the strain-energy function, denoted W̃ (λ, λz, τ11, τ33), and
using (17) we then obtain the Cauchy stress differences

σ11 − σ33 = λW̃λ, σ22 − σ33 = λz W̃λz , (25)

the indices 1, 2, 3 corresponding to the coordinates θ, z, r , respectively. In (25) the subscripts λ and λz signify
partial derivatives.
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For the considered geometry the equilibrium equation (7)2 reduces to

dσ33

dr
= 1

r
(σ11 − σ33) = 1

r
λW̃λ. (26)

For the moment we assume that the radial deformation is accompanied by both internal and external pressures,
denoted Pa and Pb on r = a and r = b, respectively. Thus, σ33 satisfies the boundary conditions

σ33 =
{

−Pa on r = a,

−Pb on r = b.
(27)

Integration of (26) then gives

P ≡ Pa − Pb =
∫ b

a
λW̃λ

dr

r
. (28)

Note that positive (negative) P corresponds to an effective internal (external) pressure.
Since τ22 = 0, when the expressions (25) are evaluated in Br, where λ = λz = 1, they reduce to

τ11 − τ33 = W̃λ(1, 1, τ11, τ33), −τ33 = W̃λz (1, 1, τ11, τ33), (29)

which provide restrictions on W̃ that specialize those in (19).
The corresponding expression for the reduced axial load on a cross section of the tube is

F = π

∫ b

a
(2λz W̃λz − λW̃λ)r dr.

The latter provides an expression for the reduced axial load required to maintain a fixed value of the axial stretch,
while (28) provides an expression for the pressure difference for a prescribed value of the inner radius a and the

axial stretch λz , on recalling that the outer radius is given by b =
√
a2 + λ−1

z (B2 − A2).

4 Incremental equations

In order to examine the linear stability of the basic configuration we need to consider incremental deformations
relative to that configuration. Incremental quantities are signified by a superposed dot, so that the incremental
displacement is denoted ẋ = χ̇(X) and the corresponding increment in the deformation gradient by Ḟ, with
Ḟ = Grad ẋ = LF, where L = grad u is the displacement gradient, u being the Eulerian counterpart of ẋ defined
by u(x) = χ̇(χ−1(x)). Then, on taking the increment of (6)1 we obtain the increment in the nominal stress

Ṡ = AḞ + pF−1ḞF−1 − ṗF−1, (30)

where ṗ is the incremental Lagrange multiplier and the fourth-order tensor of elastic moduliA is defined in symbolic
and index notation by

A = ∂2W

∂F∂F
, Aαiβ j = ∂2W

∂FiαFjβ
. (31)

The incremental equilibrium equation is Div Ṡ = 0.
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On updating the reference configuration from Br to B the incremental constitutive equation (30) becomes

Ṡ0 = A0L + pL − ṗI, (32)

where Ṡ0 is the push-forward version of Ṡ defined by Ṡ0 = FṠ and satisfying the Eulerian form div Ṡ0 = 0 of the
incremental equilibrium equation, while A0 is the corresponding push-forward of A defined in index notation by

A0piq j = FpαFqβAαiβ j . (33)

The incremental traction per unit area of the boundary ∂B is ṠT
0n and will be made explicit later for the considered

problem, n being the outward unit normal to ∂B.
Let e1, e2, e3 be unit basis vectors in an orthogonal curvilinear coordinate system. Then, in component form, the

equilibrium equation div Ṡ0 = 0 yields the three scalar equations

Ṡ0 j i, j + Ṡ0 j iek · e j,k + Ṡ0k jei · e j,k = 0, i = 1, 2, 3, (34)

as in Haughton and Ogden [10], in which summation over repeated indices j and k from 1 to 3 is implied and the
subscript notation, j represents the derivative associated with the j th curvilinear coordinate. These components
will be made explicit in the following section for the considered cylindrical polar coordinates. Equation (34) is valid
for any elastic material whether or not it carries residual stress.

In respect of the invariant expansion, the components A0piq j have been given in [5] in full generality for three
dimensions. These are very lengthy and not needed here, but we do note the general connection

A0piq j − A0i pq j = (σpq + pδpq)δi j − (σiq + pδiq)δpj (35)

coming from incremental rotational balance equation (see [5]), which will be used here together with the incremental
incompressibility condition in the form

div u = 0. (36)

5 Planar bifurcation

We now order the coordinates as θ, z, r , associated with the stretches λ, λz, λr , respectively, and for the associated
components of vectors and tensors we adopt the indices 1, 2, 3 in the same order, as already noted.

The unit basis vectors associated with the cylindrical polar coordinates θ , z, r are denoted e1, e2, e3, and the
derivatives (·),k in (34) denoted by subscripts with preceding commas become ∂/r∂θ , ∂/∂z, ∂/∂r for k = 1, 2, 3,
respectively. Here, however, we restrict attention to planar increments in the (r, θ) plane with all incremental
quantities independent of z. Then, for the cylindrical polar coordinates the only non-zero scalar products ei · e j,k in
(34) are

e1 · e3,1 = −e3 · e1,1 = 1

r
. (37)

In the absence of the incremental axial displacement the incremental displacement u may be written

u = ve1 + ue3, (38)
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with components u and v corresponding to the radial and circumferential directions, respectively, and are in general
dependent on both r and θ . The matrix of components of L = grad u with respect to the basis vectors e1, e2, e3 is

[Li j ] =
⎡
⎣(u + v,θ )/r 0 v,r

0 0 0
(u,θ − v)/r 0 u,r

⎤
⎦ , (39)

where the subscripts θ , r following a comma indicate the corresponding partial derivatives.
The incremental incompressibility condition (36) specializes to

(u + v,θ )/r + u,r = 0, (40)

which is satisfied by introducing a function φ(θ, r) such that

u = φ,θ

r
, v = −φ,r . (41)

The incremental equilibrium equations are now used to obtain the equation for φ. First, we note that the equilib-
rium equation for i = 2 in (34) is satisfied identically, while the equations for i = 1, 3 yield

Ṡ011,1 + Ṡ031,3 + 1

r
(Ṡ031 + Ṡ013) = 0, (42)

Ṡ013,1 + Ṡ033,3 + 1

r
(Ṡ033 − Ṡ011) = 0. (43)

For the considered underlying cylindrical configuration the components of Ṡ0 in the above two equations are given
by

Ṡ011 = A01111L11 + A01133L33 + pL11 − ṗ, (44)

Ṡ013 = A01313L31 + A01331L13 + pL13, (45)

Ṡ031 = A03131L13 + A03113L31 + pL31, (46)

Ṡ033 = A03311L11 + A03333L33 + pL33 − ṗ, (47)

where the components of the elastic modulus tensor A0 are specialized below.
On substitution of these expressions into (42) and (43) and use of the incompressibility condition (40) with (39)

we obtain

ṗ,θ = [r(A′
03113 + p′) + A01313](u,θ − v)/r + (rA′

03131 + A03131)v,r + A03131rv,rr

+(A01331 + A01133 − A01111)u,rθ , (48)

ṗ,r = [r(A′
03333 + p′ − A′

01133) + A03333 + A01111 − 2A01133]u,r/r

+(A03333 − A01133)u,rr + A01313(u,θθ − v,θ )/r
2 + A01331v,rθ /r, (49)

respectively, where a prime denotes differentiation with respect to r .
It is now convenient to define the reduced notations

α = A01313, 2β = A03333 + A01111 − 2A01331 − 2A01133, γ = A03131. (50)

Then, by eliminating ṗr and ṗθ from (48) and (49) by cross differentiation and then substituting for the expressions
(41) in the result, followed by some rearrangements, we obtain the required equation for φ, namely

γ r4φ,rrrr + 2βr2φ,rrθθ + αφ,θθθθ + 2(rγ ′ + γ )r3φ,rrr + 2(rβ ′ − β)rφ,rθθ

+(2β + α − 2rβ ′)φ,θθ + (r2γ ′′ + rγ ′ − γ )(r2φ,rr − rφ,r − φ,θθ ) = 0. (51)
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The transition to this equation makes use of the equilibrium equation (26), the connections

A01331 + p = A03131 − σ33 = γ − σ33, σ11 − σ33 = α − γ (52)

from (35), and

r(A01331 + p)′ = rγ ′ + γ − α, r2(A01331 + p)′′ + rα′ − α = r2γ ′′ + rγ ′ − γ. (53)

We now turn to the boundary conditions associated with Eq. (51). For the considered pressure boundary conditions
the incremental traction is given by

ṠT
0n =

{
PaLTn on r = a,

PbLTn on r = b,
(54)

no incremental pressure being admitted. Hence, in terms of components this gives

Ṡ031 =
{
PaL31 on r = a,

PbL31 on r = b,
Ṡ033 =

{
PaL33 on r = a,

PbL33 on r = b.
(55)

By considering the boundary conditions involving Ṡ031 with the expression (46) and the connection from (52)1

with the notation (50)3 and using the boundary conditions (27), we obtain

γ (L13 + L31) = 0 on r = a, b. (56)

In general, apart from isolated configurations, we may assume that γ �= 0. Then, in terms of φ, (56) becomes

r2φ,rr − rφ,r − φ,θθ = 0 on r = a, b. (57)

Next, on use of (47) and the incremental incompressibility condition in the form L11 + L33 = 0 the boundary
conditions involving Ṡ033 can be rewritten as

(A03333 − A01133 + p)L33 − ṗ = 0 on r = a, b. (58)

The term in ṗ is then eliminated by differentiating (58) with respect to θ and using (48). Then, by using the
expressions for the components Li j in terms of the function φ, the boundary conditions (27), and an application of
(57) this yields the boundary condition

γ r3φ,rrr + (2β + γ )(rφ,rθθ − φ,θθ ) = 0 on r = a, b. (59)

We now have a partial differential equation (51) for φ as a function of r and θ and two boundary conditions in
each of (57) and (59). To make further progress the system of equations and boundary conditions needs to be solved
numerically. Towards this we consider solutions for φ of the form

φ = fn(r) sin nθ, (60)

n being a non-negative integer.
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Fig. 1 Plots of the scaled
circumferential and radial
residual stress components,
τ11/ν (continuous curve)
and τ33/ν (dashed curve),
respectively, for
A ≤ R ≤ B 0

BA

−A(B − A)

B(B − A)

τ11/ν

τ33/ν

Equation (51) is now expressed in terms of the function fn(r) and its derivatives as

γ r4 f ′′′′
n + 2(rγ ′ + γ )r3 f ′′′

n + (r2γ ′′ + rγ ′ − γ − 2n2β)r2 f ′′
n

−[r2γ ′′ + rγ ′ − γ + 2n2(rβ ′ − β)]r f ′
n

+ n2(r2γ ′′ + rγ ′ − γ + 2rβ ′ − 2β − α + αn2) fn = 0 for a < r < b. (61)

The boundary conditions (57) and (59) become

r2 f ′′
n − r f ′

n + n2 fn = 0 on r = a, b, (62)

γ r3 f ′′′
n − n2(2β + γ )r f ′

n + n2(2β + γ ) fn = 0 on r = a, b. (63)

The foregoing equations and boundary conditions apply for any radial deformation with λ > 0 and axial stretch
λz > 0. However, to avoid buckling-type instabilities (z-dependent) associated with axial compression we restrict
attention to λz ≥ 1 since we are only considering prismatic bifurcations here.

5.1 Specialization of the residual stress and constitutive equation

At this point we specialize the form of the residual stress in order to provide explicit illustrations of the effect of
residual stress on the material response. First, we choose a simple form of τ33 satisfying the boundary conditions
(22) and then use (21) to determine τ11. Specifically, we take

τ33 = ν(R − A)(R − B), (64)

and hence

τ11 = ν[3R2 − 2(A + B)R + AB], (65)

where ν is a constant, which may be positive or negative.
Plots of τ11/ν and τ33/ν are shown in Fig. 1. For ν > 0, their behaviours are very similar to those arising from

the residual stresses calculated for a single-layer artery wall from the so-called ‘opening angle’ method [11] or
the assumption that the circumferential stress at a typical physiological pressure is uniform [12], and are therefore
realistic in this context. However, it is appropriate to allow for the possibility that ν be negative in other contexts.

In order to obtain explicit results we now consider a simple form of energy function, namely

W̄ = 1

2
μ(I1 − 3) + 1

2
(I5 − tr τ ) + 1

4
κ(I5 − tr τ )2, (66)

where μ > 0 is a constant and κ is a non-negative constant, as introduced in [5] in a slightly different notation, and
also adopted in [1] and [2], for example. Thus, W̄ = 0 and (19)1 is satisfied with p(r) = μ in Br.
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(a) (b)

Fig. 2 Plots of the scaled total energy W̄ = W/(2πμ) from (70) versus λ with λz = 1: a κ = 0 for the following values of ν̄ = νA2/μ:
5 (blue); 20 (green); 40 (black); 60 (red); b κ̄ = 0.5 with the following values of ν̄: 1 (red); 10 (blue); 20 (green); 40 (black)

From Sect. 3, for the considered deformation we have W̃ (λ, λz, τ11, τ33), which becomes

W̃ = 1

2
μ(λ2 + λ2

z + λ−2λ−2
z − 3) + 1

2
[(λ2 − 1)τ11 + (λ−2λ−2

z − 1)τ33]

+1

4
κ[(λ2 − 1)τ11 + (λ−2λ−2

z − 1)τ33]2, (67)

and the stress differences (25) become

σ11 − σ33 = μ(λ2 − λ−2λ−2
z ) + λ2τ11 − λ−2λ−2

z τ33 + κ[(λ2 − 1)τ11 + (λ−2λ−2
z − 1)τ33](λ2τ11 − λ−2λ−2

z τ33),

(68)

σ22 − σ33 = μ(λ2
z − λ−2λ−2

z ) − λ−2λ−2
z τ33 − κ[(λ2 − 1)τ11 + (λ−2λ−2

z − 1)τ33]λ−2λ−2
z τ33. (69)

Noting that the energy function (67) is inhomogeneous, the total energy per unit length of the tube, denoted W ,
is

W = 2π

∫ B

A
W̃ R dR, (70)

and this can be obtained explicitly on substitution from (67), use of (64), (65), (20)1 and λ = r/R for fixed λz

and given material constants. The resulting expressions are quite lengthy and not therefore included here. For the
case κ = 0, Fig. 2a shows example plots of the total energy W divided by 2πμ, denoted W̄ , for four values of
the dimensionless residual stress parameter ν̄ = νA2/μ with λz = 1 and B/A = 1.25. Thus, the total energy is
positive, although for some R and λ the local energy (67) can be slightly negative.

For κ > 0 the additional term is positive and the energy is greater than for the κ = 0 case. In dimensionless
form κ̄ = κμ. This is illustrated in Fig. 2b for κ̄ = 0.5 for four values of ν̄. In this case the local energy (67) is
positive for all λ except for a very small negative value near λ = 1. Example plots of the pressure from Eq. (28) for
the energy function (67) with λz = 1 using (64) and (65) are shown in Fig. 3.

5.2 The elasticity tensor and strong ellipticity

For the strain-energy function (66), we obtain, by specializing the general expressions given in [5],

A0piq j = μBpqδi j + Σpqδi j + κ(I5 − tr τ )Σpqδi j + 2κΣpiΣq j , (71)
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Fig. 3 Representative plots
of the dimensionless
pressure P∗ = P/μ versus
ā based on the formula (28)
for the energy function (67)
with λz = 1, B/A = 1.2
and the following values of
ν̄ and κ̄: ν̄ = 5, κ̄ = 0
(green); ν̄ = 6, κ̄ = 0.6
(blue): ν̄ = 7, κ̄ = 0.8
(black); ν̄ = 8, κ̄ = 1 (red)
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and, since τ13 = 0, it follows from (50) and (71) that

α = λ2{μ + τ11[1 + κ(I5 − tr τ )]}, γ = λ−2λ−2
z {μ + τ33[1 + κ(I5 − tr τ )]},

2β = α + γ + 2κ(λ2τ11 − λ−2λ−2
z τ33)

2. (72)

These expressions are required in Eq. (61) and the boundary conditions (63). Additionally, in (61), recalling that a
prime indicates differentiation with respect to r , we require the expressions

R′ = λλz, rλ′ = −λ(λ2λz − 1), τ ′
11 = 2ν[3R − (A + B)]R′, (73)

τ ′
33 = ν[2R − (A + B)]R′, τ ′′

33 = ν[2R − (A + B)]R′′ + 2ν(R′)2, (74)

α′ = 2λλ′(μ + τ11) + λ2τ ′
11, γ ′ = −2λ−3λ−2

z λ′(μ + τ33) + λ−2λ−2
z τ ′

33, (75)

γ ′′ = 2λ−4λ−2
z [3(λ′)2 − λλ′′](μ + τ33) − 4λ−3λ−2

z λ′τ ′
33 + λ−2λ−2

z τ ′′
33. (76)

Explicit forms of some of these expressions are fairly lengthy and not listed here but are easily obtained from
(72)–(74).

The strong ellipticity condition imposes restrictions on the material response (see, for example, [5]). In general
the strong ellipticity condition can be written

A0piq j n pnqmim j > 0, (77)

wheremi and ni , i = 1, 2, 3, are the components of non-zero vectorsm,n satisfying the incompressibility condition
m ·n = 0. For m and n restricted to the 1, 3 (θ, r ) plane we take n = (n1, 0, n3),m = (m1, 0,m3) = (n3, 0,−n1).
This yields

αn4
1 + 2βn2

1n
2
3 + γ n4

3 > 0 (78)

for all non-zero n1, n3. This requires α > 0 and γ > 0, and for the expressions given in (72) it follows that β > 0
(note that more generally the inequality β > −√

αγ would be required [13], but is automatically satisfied here).

6 Numerical solution

In order to solve Eq. (61) we form the system of first-order equations

y′ = My (79)
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with dependent variables y = (y1, y2, y3, y4), where y1 = fn, y2 = y′
1, y3 = y′

2, y4 = y′
3, the matrix M being

given by

M =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
c1 c2 c3 c4

⎤
⎥⎥⎦ (80)

with

c1 = −n2(r2γ ′′ + rγ ′ − γ + 2rβ ′ − 2β − α + αn2)/(γ r4), (81)

c2 = [r2γ ′′ + rγ ′ − γ + 2n2(rβ ′ − β)]/(γ r3), (82)

c3 = −(r2γ ′′ + rγ ′ − γ − 2n2β)/(γ r2), (83)

c4 = −2(rγ ′ + γ )/(γ r). (84)

The corresponding boundary conditions (62) and (63) become

By = 0 on r = a, b, (85)

where the 2 × 4 matrix B is

B =
[

n2 −r r2 0
(2β + γ )n2 −(2β + γ )n2r 0 γ r3

]
. (86)

6.1 Non-dimensionalization

For the numerical treatment it is convenient to introduce the non-dimensionalizations defined by

B̄ = B/A, R̄ = R/A, r̄ = r/A, ā = a/A, b̄ = b/A, (87)

ν̄ = νA2/μ, κ̄ = κμ, τ̄11 = τ11/μ, τ̄33 = τ33/μ, ᾱ = α/μ, β̄ = β/μ, γ̄ = γ /μ. (88)

Note that ν̄ and κ̄ were introduced earlier but are included here for completeness. The dimensionless forms of the
required derivatives are

τ̄ ′
11 = Aτ ′

11/μ, τ̄ ′
33 = Aτ ′

33/μ, ᾱ′ = Aα′/μ, γ̄ ′ = Aγ ′/μ, γ̄ ′′ = A2γ ′′/μ, (89)

where the prime attached to a quantity with an overbar denotes a derivative with respect to r̄ .
Equation (79) is then written in the dimensionless form

ȳ′ = M̄ȳ, (90)

where the components of ȳ are given by ȳ1 = y1, ȳ2 = Ay2, ȳ3 = A2y3, ȳ4 = A3y4,

M̄ =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
c̄1 c̄2 c̄3 c̄4

⎤
⎥⎥⎦ , (91)

and

c̄1 = A4c1, c̄2 = A3c2, c̄3 = A2c3, c̄4 = Ac4. (92)
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Fig. 4 Plot of ν̄ versus B̄
for the case κ = 0 based on
the strong ellipticity
restrictions (101)
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In dimensionless form the boundary conditions (93) become

B̄ȳ = 0 on r̄ = ā, b̄, (93)

where

B̄ =
[

n2 −r̄ r̄2 0
(2β̄ + γ̄ )n2 −(2β̄ + γ̄ )n2r̄ 0 γ̄ r̄3

]
. (94)

The coefficients in (92) have the forms

c̄1 = −n2(r̄2γ̄ ′′ + r̄ γ̄ ′ − γ̄ + 2r̄ β̄ ′ − 2β̄ − ᾱ + ᾱn2)/(γ̄ r̄4), (95)

c̄2 = [r̄2γ̄ ′′ + r̄ γ̄ ′ − γ̄ + 2n2(r̄ β̄ ′ − β̄)]/(γ̄ r̄3), (96)

c̄3 = −(r̄2γ̄ ′′ + r̄ γ̄ ′ − γ̄ − 2n2β̄)/(γ̄ r̄2), (97)

c̄4 = −2(r̄ γ̄ ′ + γ̄ )/(γ̄ r̄). (98)

6.2 Restrictions from strong ellipticity

From Sect. 5.2 and (72), the requirement α > 0 in dimensionless form yields

1 + ν̄[3R̄2 − 2(B̄ + 1)R̄ + B̄] + κ̄ ν̄2[3R̄2 − 2(B̄ + 1)R̄ + B̄]2(λ2 − 1)

+ κ̄ ν̄2[3R̄2 − 2(B̄ + 1)R̄ + B̄][R̄2 − (B̄ + 1)R̄ + B̄](λ−2λ−2
z − 1) > 0, (99)

and γ > 0 entails

1 + ν̄[R̄2 − (B̄ + 1)R̄ + B̄] + κ̄ ν̄2[3R̄2 − 2(B̄ + 1)R̄ + B̄][R̄2 − (B̄ + 1)R̄ + B̄](λ2 − 1)

+ κ̄ ν̄2[R̄2 − (B̄ + 1)R̄ + B̄]2(λ−2λ−2
z − 1) > 0. (100)

In each case the inequalities should be satisfied for all R̄ ∈ [1, B̄] and govern the allowed ranges of values of
ν̄, λ, λz . For κ = 0 these are independent of the deformation and reduce to

−1/[B̄(B̄ − 1)] < ν̄ <

{
1/(B̄ − 1) if B̄ ≤ 2,

3/(B̄2 − B̄ + 1) if B̄ ≥ 2,
(101)

which restricts significantly the allowable values of ν̄. For B̄ = 1.2, for example, this gives −25/6 < ν̄ < 5, and
the restrictions become tighter as B̄ increases, as Fig. 4 shows. Note that the upper condition on the right-hand side
of (101) was omitted from equation (62) in [2].
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(b)(a)

(d)(c)

ν̄

āā

ν̄

ā

ν̄

ν̄

ā

Fig. 5 Plots of ν̄ versus ā for the fixed value λz = 1 with B̄ = 1.2 for which the strong ellipticity conditions α > 0 and γ > 0 are
satisfied (within the shaded regions), for the following values of κ̄: a 0.1; b 0.5; c 1; d 5. Subject to ā ∈ [0.1, 3], outside these regions
either α < 0 or γ < 0, or both

When κ �= 0 the restrictions are different and depend on the deformation. Figure 5 provides example plots of ν̄

versus ā (the circumferential stretch on the inner boundary) showing the (shaded) regions where the strong ellipticity
condition is satisfied (i.e. α > 0, γ > 0). In particular, the representative plots are for λz = 1 and B̄ = 1.2 for
several values of κ̄ . Each value of R̄ ∈ [1, 1.2] yields a different region, and in each case the region shown is that
for which strong ellipticity holds for all R̄ ∈ [1, 1.2]. The character of the results is similar for other values of B̄.
Thus, in some cases, the quadratic term in the energy function increases the ranges of values of ν̄ and ā for which
strong ellipticity holds compared with the case κ = 0, while in other cases the ranges of allowable values of ν̄ of ā
are reduced. As κ̄ increases the area of the region where strong ellipticity holds becomes smaller and smaller.

The analogues of the case B̄ = 1.2 in Fig. 5b for B̄ = 1.1, 1.5 are shown in Fig. 6. As is the case with κ = 0
(Fig. 4), the region where strong ellipticity holds becomes smaller as B̄ increases.

6.3 Results

The aim now is to determine the numerical solution of the system of equations and boundary conditions (61)–(63) for
fn(r), n = 2, 3, ..., for different combinations of ν̄, B̄ and ā. Note that n = 1 is not included since this corresponds to
a rigid rotation, with f1 = cr for constant c and u = c cos θ, v = −c sin θ . The dependence of ν̄ on ā for given values
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(a) (b)

ν̄

ā

ν̄

ā

Fig. 6 Plots of ν̄ versus ā for the fixed value λz = 1 with κ̄ = 0.5 for which the strong ellipticity conditions α > 0 and γ > 0 are
satisfied (within the shaded regions): a B̄ = 1.1; b B̄ = 1.5. Subject to ā ∈ [0.1, 3], outside these regions either α < 0 or γ < 0, or
both

of B̄ at the point of onset of bifurcation is determined for different mode numbers, applied (internal or external)
pressure (as measured by the dimensionless internal radius ā) and fixed axial stretch (exemplified by λz = 1). The
system is solved for the dimensionless forms (90) with (93) using the routine NDSolve in Mathematica [14].

The results are illustrated for the model (66), first of all with κ = 0, in Fig. 7, for λz = 1, where the curves of
ν̄ versus ā for which bifurcation is possible are plotted for a series of values of the mode number n and for each
of B̄ = 1.1, 1.2, 1.5 separately. Results for other values of λz (> 1) are very similar and not shown separately. For
example, with λz = 1.5 the curves are essentially just shifted to the left with minor numerical differences. With
reference to the inequalities (101) the limits imposed by strong ellipticity are shown as horizontal red lines in Fig. 7.
The valid region in (ā, ν̄) space is between the lines in each case.

As can be seen from Fig. 7 most of the bifurcation curves in the strongly elliptic region are where ā < 1, i.e.
when there is no internal pressure, which is consistent with the situation where there is no residual stress discussed
in [10]. However, it can be seen from Fig. 7a, b that there is a small range of negative values of ν̄ where bifurcation
can occur for ā > 1, at least for mode number n = 2. This is not the case in Fig. 7c. In the domain ā < 1,
corresponding to external pressure, and subject to strong ellipticity, as ā is reduced from 1 the n = 2 mode occurs
first, followed by n = 3, 4, ... in sequence until there is some interchange of priorities for higher modes. This is
of minor theoretical interest since the mode n = 2 dominates. Note, in particular, with reference to Fig. 7a, b, that
within the strongly elliptic region bifurcation may arise for an unloaded cylinder, i.e. when ā = 1, for limited mode
numbers. In the region ā > 1 and outside the strongly elliptic domain, bifurcation is possible for higher-order mode
numbers, depending on the value of the residual stress parameter ν̄. To avoid overcrowding, each panel of Fig. 7
shows a representative selection of curves for a limited set of mode numbers n.

Figure 8 illustrates the corresponding results for the model (66) for a non-zero value of κ̄ , exemplified by κ̄ = 0.5,
again for B̄ = 1.1, 1.2, 1.5. There are significant similarities with Fig. 7 and this is also the case for larger values of
κ̄ (not shown). One difference is that the strong ellipticity domain depends on ā and spreads into a larger area where
ā > 1.2, as shown in more detail in Figs. 5b and 6 (for κ̄ = 0.5), the pressure then being internal. When ā = 1
(the unloaded case), the situation is different from that for κ = 0 as no bifurcation curves arise. Higher modes can
occur within the strongly elliptic region for ā greater than approximately 1.2, but these are not shown. The area of
the strongly elliptic domain decreases as B̄ increases, as with the case κ = 0.
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Fig. 7 Plot of ν̄ versus ā for κ = 0 with λz = 1 and the following values of B̄: a 1.1, b 1.2, c 1.5, for a selection of mode numbers n in
each case, indicated by the adjacent numerical value. The region of strong ellipticity lies between the two horizontal red lines. (Color
figure online)

6.4 Concluding remarks

The influence of residual stress on the incremental response and bifurcation of a circular cylindrical tube subject to
axial extension and internal or external pressure has been investigated. Incremental deformations superimposed on
the cylindrical configuration have been restricted to the planar cross section of the tube, i.e. independent of the axial
coordinate z. Results have been presented for an unstretched tube (λz = 1) only as results for λz > 1 are qualitatively
similar, while those for λz < 1 require consideration of possible buckling modes (axisymmetric or asymmetric)
that depend on z. The results are described for a prototype model of elasticity that incorporates residual stress, and
they quantify the dependence of the dimensionless residual stress parameter ν̄ on the dimensionless internal radius
ā of the tube, which provides a measure of the internal or external pressure, for different tube thickness ratios B̄ and
selected bifurcation mode numbers n. Restrictions imposed by the strong ellipticity condition form a framework
for the interpretation of the results. In particular, limits on the range of the allowable residual stress magnitude are
determined.

It has been found that, with limited exceptions, it is the case that bifurcation can only occur when the pressure
is external, and lower mode numbers have priority, as is the case for the situation without the presence of residual
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(a) (b)

(c)

Fig. 8 Plot of ν̄ versus ā for κ̄ = 0.5 with λz = 1 and the following values of B̄: a 1.1; b 1.2; c 1.5, for a selection of mode numbers n
in each case, indicated by the adjacent numerical value. The region of strong ellipticity lies between the two red curves. (Color figure
online)

stress [10], where it was shown that bifurcation under internal pressure was excluded. In particular, mode n = 2
occurs first as the deflation of the tube proceeds from the point where the internal radius is at its initial value (ā = 1).
For the considered model, higher modes, i.e. for n greater that about 48, can in principle arise within the strongly
elliptic domain, but these are of minor interest and can occur only for small values of ν̄. It is worth noting in passing
that for very large values of n → ∞ the only solution of the governing equations is the trivial solution fn(r) → 0.

For the special case in which the tube is unloaded (λz = 1 and ā = 1) bifurcation (wrinkling) solutions were
obtained for a different model from that adopted here and illustrated in the paper by Ciarletta et al. [7]. We have
also obtained solutions for their model and found results which are very similar to those in Figs. 7 and 8.

In a subsequent paper attention will be devoted to axisymmetric and asymmetric modes of bifurcation.
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