
Leveraging Data-Driven Infrastructure
Management to Facilitate AIOps for Big
Data Applications and Operations

Richard McCreadie, John Soldatos, Jonathan Fuerst, Mauricio
Fadel Argerich, George Kousiouris, Jean-Didier Totow, Antonio
Castillo Nieto, Bernat Quesada Navidad, Dimosthenis Kyriazis,
Craig Macdonald, and Iadh Ounis

Abstract As institutions increasingly shift to distributed and containerized appli-
cation deployments on remote heterogeneous cloud/cluster infrastructures, the cost
and difficulty of efficiently managing and maintaining data-intensive applications
have risen. A new emerging solution to this issue is Data-Driven Infrastruc-
ture Management (DDIM), where the decisions regarding the management of
resources are taken based on data aspects and operations (both on the infrastructure
and on the application levels). This chapter will introduce readers to the core
concepts underpinning DDIM, based on experience gained from development
of the Kubernetes-based BigDataStack DDIM platform (https://bigdatastack.eu/).
This chapter involves multiple important BDV topics, including development,
deployment, and operations for cluster/cloud-based big data applications, as well
as data-driven analytics and artificial intelligence for smart automated infrastructure
self-management. Readers will gain important insights into how next-generation

R. McCreadie (�) · J. Soldatos · C. Macdonald · I. Ounis
University of Glasgow, Glasgow, United Kingdom
e-mail: richard.mcCreadie@glasgow.ac.uk; john.soldatos@glasgow.ac.uk;
craig.macdonald@glasgow.ac.uk; iadh.ounis@glasgow.ac.uk

J. Fuerst · M. F. Argerich
NEC Laboratories Europe, Heidelberg, Germany
e-mail: jonathan.fuerst@neclab.eu; mauricio.fadel@neclab.eu

J.-D. Totow · D. Kyriazis
University of Piraeus, Pireas, Greece
e-mail: totow@unipi.gr; dimos@unipi.gr

G. Kousiouris
Harokopio University of Athens, Moschato, Greece
e-mail: gkousiou@hua.gr

A. C. Nieto · B. Q. Navidad
ATOS/ATOS Worldline, Chennai, India
e-mail: antonio.castillo@atos.net; bernat.quesada@worldline.com

© The Author(s) 2022
E. Curry et al. (eds.), Technologies and Applications for Big Data Value,
https://doi.org/10.1007/978-3-030-78307-5_7

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78307-5_7&domain=pdf
https://bigdatastack.eu/
mailto:richard.mcCreadie@glasgow.ac.uk
mailto:john.soldatos@glasgow.ac.uk
mailto:craig.macdonald@glasgow.ac.uk
mailto:iadh.ounis@glasgow.ac.uk
mailto:jonathan.fuerst@neclab.eu
mailto:mauricio.fadel@neclab.eu
mailto:totow@unipi.gr
mailto:dimos@unipi.gr
mailto:gkousiou@hua.gr
mailto:antonio.castillo@atos.net
mailto:bernat.quesada@worldline.com
https://doi.org/10.1007/978-3-030-78307-5_7

136 R. McCreadie et al.

DDIM platforms function, as well as how they can be used in practical deployments
to improve quality of service for Big Data Applications.

This chapter relates to the technical priority Data Processing Architectures of the
European Big Data Value Strategic Research & Innovation Agenda [33], as well
as the Data Processing Architectures horizontal and Engineering and DevOps for
building Big Data Value vertical concerns. The chapter relates to the Reasoning and
Decision Making cross-sectorial technology enablers of the AI, Data and Robotics
Strategic Research, Innovation & Deployment Agenda [34].

Keywords Data processing architectures · Engineering and DevOps for big data

1 Introduction to Data-Driven Infrastructure

For nearly a decade, advances in cloud computing and infrastructure virtualization
have revolutionized the development, deployment, and operation of enterprise
applications. As a prominent example, the advent of containers and operating
system (OS) virtualization facilitates the packaging of complex applications within
isolated environments, in ways that raise the abstraction level towards application
developers, as well as boosting cost effectiveness and deployment flexibility [32].
Likewise, microservice architectures enable the provision of applications through
composite services that can be developed and deployed independently by different
IT teams [8]. In this context, modern industrial organizations are realizing a gradual
shift from conventional static and fragmented physical systems to more dynamic
cloud-based environments that combine resources from different on-premises and
cloud environments. As a result of better application isolation and virtualized
environments, basic semi-autonomous management of applications has become
possible. Indeed, current cloud/cluster management platforms can natively move
applications across physical machines in response to hardware failures as well
as perform scaling actions based on simple rules. However, while useful, such
basic autonomous decision making is insufficient given increasingly prevalent
complex big data applications [31]. In particular, such applications rely on complex
interdependent service ecosystems and stress the underlying hardware to its limits
and whose properties and workloads can vary greatly based on the changing state of
the world [4].

Hence, there is an increasing need for smarter infrastructure management
solutions, which will be able to collect, process, analyse, and correlate data from
different systems, modules, and applications that comprise modern virtualized
infrastructures. In this direction, recent works have developed and demonstrated
novel Data-Driven Infrastructure Management (DDIM) solutions. For instance,
experimental DDIM solutions exist that process infrastructure data streams to detect
errors and failures in physical systems (e.g. [16, 29]). In other cases, more advanced
data mining techniques like machine learning have been used to detect anomalies in
the operation of cloud infrastructures (e.g. [10]). This is complemented by works on

Data-Driven Infrastructure Management 137

data-driven performancemanagement of cloud infrastructures [9] and resources [5].
However, these solutions address individual optimization and resilience concerns,
where a more holistic Data-Driven InfrastructureManagement approach is required.

This chapter introduces a holistic DDIM approach, based on outcomes of
BigDataStack [15], a new end-to-end DDIM solution. The main contributions
and innovations of the presented DDIM approach are the following: (i) Data-
oriented modelling of applications and operations by analysing and predicting
the corresponding data flows and required data services, their interdependencies
with the application micro-services and the required underlying resources for
the respective data services and operations. Allowing the identification of the
applications data-related properties and their data needs, it enables the provision
of specific performance and quality guarantees. (ii) Infrastructure management
decisions based on the data aspects and the data operations governing and affecting
the interdependencies between storage, compute, and network resources, going
beyond the consideration of only computational requirements. The proposed DDIM
leverages AI and machine learning techniques to enable more efficient and more
adaptive management of the infrastructure, known as the AIOps (Artificial Intel-
ligence Operations) paradigm, considering the applications, resources, and data
properties across all resource management decisions (e.g. deployment configura-
tions optimizing data operations, orchestration of application and data services,
storage and analytics distribution across resources, etc.). (iii) Optimized runtime
adaptations for complex data-intensive applications throughout their full lifecycle,
from the detection of fault and performance issues to the (re)configuration of
the infrastructure towards optimal Quality of Service (QoS) according to data
properties. The latter is achieved through techniques that enable monitoring of all
aspects (i.e. applications, analytics, data operations, and resources) and enforcement
of optimal runtime adaptation actions through dynamic orchestration that addresses
not only resources but also data operations and data services adaptations. The
proposed DDIM approach has been deployed and validated in the context of three
enterprise application environments with pragmatic workloads for different vertical
industries, including retail, insurance, and shipping.

The rest of the chapter is structured to incrementally introduce the key building
blocks that enable DDIM in BigDataStack. In particular, Sect. 2 introduces the core
modelling of user applications, their environment, as well as additional concepts
needed to realize DDIM. Section 3 discusses how profiling of user applications can
be performed prior to putting them in production. In Sect. 4, we discuss how to
monitor applications in production, as well as measure quality of service. Section 5
introduces AIOps decision making within BigDataStack, while Sect. 6 discusses
how to operationalize the decisions made. Finally, we provide an illustrative
example of DDIM in action within BigDataStack for a real use case in Sect. 7.

138 R. McCreadie et al.

2 Modelling Data-Driven Applications

At a fundamental level, DDIM is concerned with altering the deployment of a user’s
application (to maintain some target state or quality of service objectives) [14, 22].
As such, the first question that needs to be asked is ‘what is a user application?’ From
a practical perspective, a user application is comprised of one or more programs,
each needing a compatible environment to run within. However, we cannot assume
any language or framework is being used if a general solution is needed. To solve
this, the programs comprising the user’s application and associated environments
need to be encapsulated into packaged units that are readily deployable without
additional manual effort. There are two common solutions to this, namely virtual
machines and containers [26]. For the purposes of DDIM, containers are generally
a better solution, as they have a smaller footprint, have fewer computational
overheads and are faster to deploy/alter at runtime [26]. We assume container-
based deployment for the remainder of this chapter.

Given container-based deployment, we can now model the user application in
terms of containers. It is good practice for a container to be mono-task, that is
each container runs only a single program, as this simplifies smarter scheduling
on the physical hardware [3]. A user application is then comprised of a series
of containers, each performing a different role. DDIM systems then configure,
deploy, and maintain these containers over large hardware clusters or clouds.
There are a range of commercial and open-source container management solutions
currently available, such as Docker Swarm and Kubernetes. The primary function
of these solutions is to schedule containers onto cloud or cluster infrastructures.
This involves finding machines with sufficient resources for each container, copying
the container (image) to those machine(s), mounting any required attached storage
resources, setting up networks for communication, starting the container(s), and
finally monitoring the container states and restarting them if necessary. At the time
of writing, the most popular container management solution is the open-source
Kubernetes platform, which is what we will assume is being used moving forward.
We discuss the most important Kubernetes concepts for DDIM systems below.

2.1 Application Modelling Concepts

Pods, Deployments, and Jobs For the purposes of modelling the user application
in a containerized cloud/cluster, it is reasonable to consider an application to be
comprised of a series of ‘Pods’, where a pod is comprised of one or more containers.
A pod abstraction here exists to provide a means to group multiple containers
into a single unit that can be deployed and managed together. In our experience,
it is useful to distinguish pods along two dimensions: lifespan and statefulness.
First, considering pod lifespan, ‘continuous’ pods are those that are expected to
run indefinitely, representing permanent services which may be user-facing (e.g. a
web host). Meanwhile, ‘finite’ pods are those that are aimed at performing a task,

Data-Driven Infrastructure Management 139

and will end once that task is complete (e.g. a batch learning or analytics task).
Continuous pods in effect have an implied Service-Level Objective, that is that they
must be kept running regardless of changes to the underlying infrastructure (e.g.
due to hardware failures), while finite pods do not. In Kubernetes, continuous pods
are managed using ‘Deployment’ objects, while finite pods are represented as ‘Job’
objects. Second, considering statefulness, a pod can be stateless meaning that it does
not retain any data between requests made to it. This type of pod is the easiest to
manage, it holds no critical data that could be lost if the pod needs to be restarted or
moved and can often be replicated without issue. On the other hand, stateful pods
maintain or build up data over time, which is lost if the pod fails or is killed. As such,
the ‘cost’ of altering the configuration of an application that is comprised of stateful
pods can be high, as data is lost when those pods are moved or restarted. In this case,
the lost data needs to either be regenerated requiring more time and computational
power or may simply be unrecoverable if the underlying input that created the data
is no longer available. For this reason, it is recommended that application architects
design their system to use only stateless pods where possible.

Services and Routes When scheduling a pod, a machine with the needed resources
is only selected at runtime, meaning the network address of that pod cannot be
known before then. Furthermore, that address may not be static, as changes in the
infrastructure environment may result in the pod being lost/deleted and then a new
copy spawned on a different physical node. This complicates the configuration
of user applications, as it is commonplace for user programs to expect to be
preconfigured with static URLs or IP addresses when two components need to talk
to one another. A ‘Service’ is the solution to this issue, as it is a special entity
in Kubernetes in that it has a static URL. Traffic directed at a service will then be
forwarded to one or more pods based on a service-to-podmapping, which is updated
over time if changes occur and can also be used for load-balancing requests across
multiple copies of a pod. A service can be paired with a ‘Route’ object to produce
an external end-point, enabling requests from the outside world to reach a pod.

Volumes and Volume Claims Containers by their nature are transient, that is
their state is lost when they exit. Hence, most pods need some form of persistent
storage to write to, for example for writing the final output of a batch operation or
as a means to achieve statelessness by reading/writing all state information to an
external store. This is handled in Kubernetes using volumes. A volume is simply
a definition of a directory within a storage medium that can be mounted to one or
more containers, such as an NFS directory or distributed file system like HDFS.
However, the available storage amounts and storage types available will vary from
cluster to cluster, and as such it is not good practice to directly specify a volume,
as this ties the pod to only clusters with that exact volume. Instead, Volume Claims
exist, which represent a generic request for a desired amount and type of storage.
If a pod specifies a volume claim, Kubernetes will attempt to automatically provide
the requested amount and types of storage from its available pool of volumes. In this
way, an application can still obtain storage, even if the application owner does not
know what exact storage volumes are available on the target cluster.

140 R. McCreadie et al.

2.2 Data-Driven Infrastructure Management Concepts

In this section, we will describe additional concepts that are required for DDIM
systems to function based on experience from developing BigDataStack, namely
Pod Level Objectives, Resource Templates, Workloads, and Actions.

Pod Level Objectives For DDIM systems to meaningfully function, they need a
set of objectives to achieve, representing the needs of the application owner. Given
the application modelling discussed above, we can consider that an application
component, represented by a running pod (and created via a Deployment or
Job), could have zero or more objectives associated with it. In the literature,
such objectives are typically referred to as Service-Level Objectives (SLOs) [24].
However, this may be somewhat confusing as in containerized environments a
‘Service’ means something different, as such we will instead refer to these as Pod-
Level Objectives (PLOs). A PLO defines a quality of service (QoS) target for a pod
to achieve, such as ‘cost less than 1.2 U.S. dollars per hour’, or ‘provide response
time less than 300ms’. A QoS target is comprised of three parts: (1) a metric (e.g.
response time), (2) a target value (e.g. 300ms), and (3) a comparator (e.g. less than).
Note an implicit assumption here is that the specified metric is measurable for the
pod, either because the pod exports it (e.g. response time), or it can be calculated
for the pod by a different component (e.g. cost). If so, a PLO can be checked by
comparing the current measured metric value against the QoS target, resulting in
a pass or failure. PLO failures are the primary drivers of DDIM systems, as they
indicate that changes in the user application or data infrastructure are needed.

Resource Templates To launch a Deployment or Job in a cluster or cloud
environment, sufficient computational resources need to be provided, that is CPU
capacity, system memory, and potentially GPUs or other specialized hardware [6].
The modelling of resources assigned to a pod is a critical part of DDIM systems,
as a lack (or in some cases excess) of such resources is the primary cause of PLO
failures. Moreover, the resource allocation for individual pods are often a variable
that the DDIM system has control over and hence can manage automatically.
In theory, resources, such as allocated system memory, are continuous variables,
where any value could be set up to a maximum defined by the target cluster.
However, predefined Resource Templates that instead define aggregate ‘bundles’
of resources for a fixed cost are very common, such as Amazon EC2 Instances.
Resource Templates exist as they both simplify the resource selection process for
the application owner, while also enabling the cluster owner to divide their available
resources in a modular fashion. A basic Resource Template needs to specify CPU
capacity and system memory for a pod, as all pods require some amount of these.
A Resource Template may optionally list more specialized hardware, such as
Nvidia GPUs or Quantum cores based on the requirements of the application and
cluster/cloud support available.

Workloads Another factor that DDIM systems often need to consider is the
application environment. Continuous applications will typically be serving requests,

Data-Driven Infrastructure Management 141

either from users or other applications. Meanwhile, finite applications most com-
monly will be concerned with processing very large datasets. We can consider these
environmental factors as sources of workload that is placed on pods, that is they
quantify the properties of the input to those pods over time. In the case of continuous
applications, this might manifest in the number of API calls being made per second
and may vary over time (e.g. for user-facing applications distinct day-night cycles
are commonly observable). On the other hand, for finite applications, the size of
the dataset or database table(s) being processed can be considered to define the
workload. Some types of DDIM systems will model such workloads and may even
condition their PLOs upon them, for example if the number of requests is less than
500 per second, then response latency should be less than 100ms.

Actions The final aspect of a user application that is critical to enable DDIM sys-
tems is how they can be altered. For a DDIM system to function, it requires a finite
set of actions that it can perform for an application. In effect, these actions form a
‘toolbox’ that the DDIM system can use to rectify PLO failures. Relatively simple
actions in containerized environments might include adding/removing replicas or
altering the Resource Template for a pod. However, as applications become more
complex, associated actions often require multiple steps. For example, scaling a
data-intensive API service might involve first replicating an underlying database to
provide increased throughput, followed by a reconfiguration step joining the new
database instance into the swarm, followed by a scaling action on the API pods to
make use of the increased capacity. Moreover, as actions become more complex,
the time taken to complete them will grow, hence DDIM systems need to track what
actions are currently in progress and their state to enable intelligent decision making.

3 Application Performance Modelling

Much of the emphasis for DDIM systems is on how to manage user applications
(semi-)automatically post-deployment. However, some types of DDIM systems,
including BigDataStack, support optional functionality to analyse the user appli-
cation pre-deployment. The core concept here is to gain some understanding of
the expected properties of the application, which can be used later to enable more
intelligent decision making. From a practical perspective, this is achieved via
benchmark tooling, whereby application components can be temporarily deployed
with resource templates, subjected to a variety of predefined workloads, in a
parameter sweep fashion, and their performance characteristics measured and
recorded. This enables the quantification at later stages of the effects of a workload
on the QoS metrics of this service.

How Does Benchmarking Function? Fundamentally, benchmarking has three
main aspects: (1) the deployment of part or all of the user application with a
defined set of resources; (2) the creation of a workload for that application; and
(3) measurement of the observed performance characteristics. Deployment in a

142 R. McCreadie et al.

containerized environment is greatly simplified, as the containers needing tested
can be deployed as pods directly upon the infrastructure if correctly configured.
On the other hand, generating a workload for the application is more complicated.
For continuous pods, typically an external service is needed to generate artificial
requests, for example to simulate user traffic patterns. Meanwhile, for finite pods,
use of a standard dataset or data sample is used for benchmarking. Finally,
measurement of the performance characteristics of an application typically comes
in three forms: application exported metrics, infrastructure reported metrics for
the application, and metrics about the infrastructure itself. As the name suggests,
application exported metrics are metrics directly reported by the application itself
based on logging integrated into it by the application engineer, for example request
processing time for a website host. Infrastructure metrics about the application
represent monitoring the management platform (e.g. Kubernetes) that is passively
performing, such as pod-level CPU and system memory consumption. Finally,
infrastructure metrics (which are not typically available on public clouds) can
provide information about the wider state of the cluster/cloud providing insights into
how busy it is. Metrics here might include node-level CPU and memory allocation
and information about node-to-node network traffic.

Benchmarking Tools in BigDataStack BigDataStack incorporates a Bench-
marking-as-a-Service framework (Flexibench), developed in the context of the
project, that exploits baseline tools such as Apache Jmeter and OLTPBench and
orchestrates their operation towards a target endpoint (database or otherwise).
Flexibench retrieves the necessary setup (type of client to use, workload to launch,
desired rate of requests, etc.) via a REST-based interface or a UI-based interface
and undertakes their execution. Multiple features are supported such as parallel
versus isolated execution of the experiment, trace-driven load injection (based
on historical data files), inclusion of the defined data service in the process, or
load injection towards an external datapoint. The tool offers REST interfaces for
test monitoring and result retrieval and is based on Node-RED, a visual flow
programming environment of node.js.

Predictive Benchmarking While undertaking actual benchmarking is the most
accurate way to determine the performance characteristics for an application, it can
be costly and time consuming to implement as the application needs to be physically
deployed and the parameter search space may be extensive. An alternative to this is
predictive benchmarking. The idea is to use machine learning to estimate what the
outcome of a benchmark run would look like, by considering the benchmarking
outcomes from other similar application deployments. BigDataStack also supports
the creation of predictive benchmarking models via Flexibench through the same
UI- or REST-based environment, therefore integrating the two processes (result
acquisition and model creation). The creation is performed following a REST- or
UI-based request, in which the test series is defined, as well as other parameters that
are necessary for result acquisition (such as the identifiers of related services to use
for predictions). The framework retrieves the relevant training data and launches
a containerized version of an automated model creation algorithm defined in [13].

Data-Driven Infrastructure Management 143

The resultant model is subsequently validated, and the respective results are made
available for the user to examine via the UI. Following, the model can be queried
if the relevant input values are supplied (e.g. type and size of workload, resource
used, etc.) and the predicted QoS metric (e.g. response time, throughput, etc.) will
be returned to the user.

4 Metric Collection and Quality of Service Monitoring

To enable the validation of the application PLOs that act as the triggers for DDIM,
constant quantitative performance measurement for pods is required. Therefore,
metrics must be collected, stored, and exposed. Indeed, the performance of applica-
tions running on platforms like BigDataStack is impacted by many factors, such
as infrastructure state, data transaction speeds, and application resourcing. For
this reason, the monitoring engine of BigDataStack was developed using a triple
monitoring approach. By triple monitoring we mean the collection of performance
indicators from: (1) the infrastructure, (2) data transactions, and (3) applications
exported metrics.

Metric Collection Strategies Any metric monitoring system can be considered as
comprised of multiple agents and a manager. The agents perform measurements
and prepare metrics for collection by the manager, which might be a pod within
the user application, a database, or Kubernetes itself. Most commonly, the manager
periodically requests metrics from the agents (known as polling) via standardized
metric end-points. An interval (scraping interval) then defines how frequently the
metrics are collected. An alternative approach is to have the agents directly post
metric updates to the manager or an intermediate storage location (known as the
push method). This can be useful for applications or services that do not/cannot
expose a metrics end-point that a manager can connect to. BigDataStack supports
both polling and push methods for data collection. The measurement data collected
by the manager is then typically held in a time-series database, enabling persistent
storage of performance history over time.

Triple Monitoring in BigDataStack BigDataStack’s monitoring solution is based
on Prometheus, which is the official monitoring tool of Kubernetes. Prometheus
requires a definition of target endpoints exposing metrics in its configuration file.
However, manually defining this for the many applications that are managed by
BigDataStack is infeasible. Instead, BigDataStack exploits the service discovery
functionality of Prometheus to automatically configure metric collection from
new pods as they are deployed. Under the hood, in this scenario Prometheus
periodically communicates with the Kubernetes API to retrieve a list of port
end-points exposed by running pods in the BigDataStack managed namespaces,
and checks them to see if they export metrics in a format that Prometheus can
understand. Some applications may wish to control their own metric collection via
their own Prometheus instance. In this context, the triple monitoring engine is able

144 R. McCreadie et al.

to aggregate metrics collection from multiple Prometheus instances concurrently
using Thanos. The monitoring engine of BigDataStack adopts a federated model
where several Prometheus instances can be added dynamically for reducing the
total scraping duration, thus allowing the collection of very large volumes of data
points from a large number of sources. This is coupled with metrics compression by
aggregation, minimizing the overhead when working with Big Data applications.
For the purposes of DDIM, three different groups of metrics are collected by the
triple monitoring engine: infrastructure information, data operations information
(i.e. data produced, exchanged, and analysed by applications), and all the data
involved in database transactions and object storage operations. Since these metrics
are produced by applications with different purposes, specifications, functionalities,
and technologies, the triple monitoring engine integrates a data sanitizer to prepare
incoming measurements such that they conform with a standard specification. The
triple monitoring engine also provides an output REST API for exposing data to
all services, as well as a publish/subscription service that enables the streaming
consumption of measurements by other applications.

Quality of Service Evaluation Within a DDIM system, the core reason to collect
measurements about a user application and infrastructure is to enable evaluation
of application Quality of Service (QoS). QoS represents the degree to which the
application is meeting the user needs. More precisely, QoS evaluation is concerned
with guaranteeing the compliance of a given KPI (Key Performance Indicator) as
defined in one or more PLOs (Pod-Level Objectives), typically for a given time
period or window. When a user requests a service from BigDataStack, a minimum
QoS is agreed between the user and the system, expressed as PLOs. At runtime,
metric data is collected by the Triple Monitoring Engine and evaluated against these
PLOs to determine whether the application is (or in some cases soon will be) failing
to meet the user needs. Such failures can then be used to trigger orchestration actions
aimed at rectifying such failures, as discussed in the next section.

5 Automated Decision Making

Having discussed the monitoring of user applications and how to determine when
failures have occurred that need to be rectified, we next discuss how DDIM systems
can solve these issues through automatic service orchestration.

QoS as an Optimization Problem Service orchestration in the context of Big Data
has usually the goal of a Quality of Service (QoS) or Quality of Experience (QoE)
sensitive optimization [27]. This optimization problem, under varying contexts,
is complex and considered an NP-hard problem [17]. Previous approaches have
tackled this optimization problem with heuristics [7, 30] or genetic algorithms [2]
that aim to find near-optimal configurations and service compositions, such as
configurations respecting overall QoS/QoE constraints, while maximizing a QoS
utility function. The composition of services in current cloud-edge Big Data/AI

Data-Driven Infrastructure Management 145

applications usually follows a pipeline pattern in which stream and batch data
(potentially recorded at the edge) is processed by multiple components in order to
derive the desired results. These new pipelines add new requirements and challenges
to service orchestration as they inherently contain complex trade-offs between
computation and performance (e.g. resulting accuracy), and errors introduced
in early components cascade through the overall pipeline, affecting end-to-end
performance and making it impossible to treat the problem as an independent
orchestration of components. Initial approaches have addressed the orchestration
problem with reasoning across the pipeline components in a probabilistic manner,
allowing the user to manually decide the adequate trade-off [25].

We model QoS as a constrained optimization problem. Specifically, (1) we model
requirements as constraints, for example to process documents with an end-to-end
latency less or equal than 1 s or to run at a cost of less or equal than 10 $ per
hour, and (2) we model service performance, such as precision, accuracy, or battery
consumption, as objective. There is an important difference between the objective
and the constraints: whereas the constraints define a minimum or maximum value
for the variable involved (e.g. latency, cost, etc.), the objective does not have a
minimum or maximum value expected. In this way, we can define the service
requirements as:

maximize
θ

O(θ)

subject to ci(θ) ≤ Ci, i = 1, . . . , N

where:

• θ : is the configuration of parameters used for all of the operators.
• O(θ): represents the objective of the service, which is determined by the

configuration of parameters used.
• ci(θ): is a constraint to the service (such as latency), also determined by θ .
• Ci : is the constraint target (e.g. 1 s).
• N : is the total number of constraints.

The developer is in charge of defining the service requirements along with the
metrics to monitor them, as well as the parameters that can be adapted and the
values they can assume. During runtime, the system is in charge of finding the best
configuration of parameter values that maximize (or minimize) the objective while
respecting the constraints.

Optimization via Reinforcement Learning Recently, reinforcement learning
(RL) has been successfully applied to node selection for execution [19] as well as
optimization of overall pipelines using, among others, meta-reasoning techniques
to ensure an overall optimization of the pipeline [1, 18, 21]. A key issue with
RL-based approaches is the bootstrapping problem, that is how to obtain sufficient
performance from the first moment the agent begins to operate. A simple solution
is to explore the state space randomly, but this approach is usually time consuming

146 R. McCreadie et al.

and costly when the state/action space is large, as illustrated in [1]. An alternative
approach is to gain experience more cheaply and faster via a sandbox simulation.
With enough computational resources, it is possible to produce large volumes of
experience data in a short time period, but it is difficult to ensure that the simulated
experiences are realistic enough to reflect an actual cloud/cluster environment. To
reduce the cost of training RL agents, some works have examined how to leverage
external knowledge to improve their exploration efficiency. For example, in [11, 23]
prior knowledge like pretrained models and policies are used to bootstrap the
exploration phase of an RL agent. However, this type of prior knowledge still
originates in previous training and is limited by the availability of such data. In
BigDataStack, we leverage Reinforcement Learning in conjunction with expert
knowledge to drive service orchestration decisions, as discussed next.

Dynamic Orchestrator in BigDataStack The Dynamic Orchestrator (DO) works
alongside the Triple Monitoring Engine (TME) to monitor and trigger the rede-
ployment of BigDataStack applications during runtime to ensure they comply with
their Service-Level Objectives (SLOs). The DO receives and manages monitoring
requests when a new application or service is deployed into the BigDataStack
platform, informing the TME and the Quality of Service (QoS) component what
metrics and PLOs should be monitored. When any violation to these PLOs occur,
the QoS informs the DO, and the DO is in charge of deciding what redeployment
change is necessary, if any. In BigDataStack, we developed flexible orchestration
logic that can be applied to any kind of application by applying Reinforcement
Learning (RL) that leverages external knowledge to bootstrap the exploration phase
of the RL agent. We call this method Tutor4RL. For Tutor4RL, we have modified
the RL framework by adding a component we call the Tutor. The tutor possesses
external knowledge and helps the agent to improve its decisions, especially in the
initial phase of learning when the agent is inexperienced. In each step, the tutor takes
as input the state of the environment and outputs the action to take, in a similar way
to the agent’s policy. However, the tutor is implemented as a series of programmable
functions that can be defined by domain experts and interacts with the agent during
the training phase. We call these functions knowledge functions and they can be of
two types:

• Constraint functions: are programmable functions that constrain the selection of
actions in a given state, ‘disabling’ certain options that must not be taken by the
agent. For example, if the developer of the application has decided a maximum
budget for the application, even if the application load is high and this could be
fixed by adding more resources to the deployment, this should not be done if the
budget of the user has already reached its maximum.

• Guide functions: are programmable functions that express domain heuristics
that the agent will use to guide its decisions, especially in moments of high
uncertainty, for example at the start of the learning process or when an unseen
state is given. Each guide function takes the current RL state and reward as the
inputs and then outputs a vector to represent the weight of each preferred action
according to the encoded domain knowledge. For example, a developer could

Data-Driven Infrastructure Management 147

Fig. 1 Overall Working of Tutor4RL

create a guide function that detects the number of current users for an application,
and if the number is higher than a certain threshold, more resources might be
deployed for the application (Fig. 1).

The benefit coming from using Tutor4RL is twofold. First, during training, the
tutor enables a faster bootstrapping to a reasonable performance level. Furthermore,
the experience generated by the tutor is important because it provides examples of
good behaviour, as it already uses domain knowledge for its decisions. Second, the
knowledge the tutor provides does not need to be perfect or extensive. The tutor
might have partial knowledge about the environment, that is know what should be
done in certain cases only, or might not have a perfectly accurate knowledge about
what actions should be taken for a given state. Instead, the tutor provides some ‘rules
of thumb’ the agent can follow during training, and based on experience, the agent
can improve upon the decisions of the tutor, achieving a higher reward than it.

Learning What Actions to Take Within BigDataStack, the application engineer
(i.e. the domain expert) defines sample guide and constraint functions for the learner.
These functions encode domain knowledge of the developer that can guide decision
making. Indeed, for some applications these guide functions will be sufficient to
manage the application without further effort. On the other hand, for cases where
the guide functions are insufficient, reinforcement learning can be enabled. During
RF training (i.e. pre-production), the RL agent will experiment with the different
available alteration actions that can be performed (discussed in the next section),
learning how each affects the metrics tracked by the triple monitoring engine, as
well as the downstream PLOs. After a period of exploration, the RF agent can be
deployed with the application in production, where it will intelligently manage the
application by triggering the optimal alteration action or actions in response to PLO
failures.

How Effective is Automatic Service Orchestration? We have compared
Tutor4RL performance against vanilla DQN [20] in a scenario where the DO
is in charge of controlling two metrics: cost per hour (which varies according to
resources used by application) and response time. These are two opposite objectives:
if we increase the use of resources, the response time decreases but the cost per hour
increases, and if we decrease the use of resources, the opposite is true. However,
the SLOs specify thresholds for each metric: cost per hour should be less or equal
to $0.03 and response time should be less than 200ms. The DO must find the
sweet spot that satisfies these two SLOs as long as the application allows it. In

148 R. McCreadie et al.

500
Vanilla DQN Tutor4RL

400

300

200

100

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0 500 1000 1500 2000 2500 3000 3500

500 responseTime

400

300

200

100

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0 500 1000 1500 2000 2500 3000 3500

responseTime

costPerHour costPerHour

Fig. 2 Tutor4RL Performance compared to Vanilla DQN [20]. DO performance to manage 2
SLOs: costPerHour <0.03 and responseTime <200. Vanilla DQN is shown on the left, while
Tutor4RL, with 2 guides and 1 constrain, is shown on the right. The horizontal blue dashed lines
show the SLO threshold for the metrics and the pink dotted line show the moment in which guides
are not used anymore

fact, it might happen that the application load is too high, and then there is no
way of satisfying both SLOs, in these cases the DO behaviour will tend to find the
configuration that violates the SLOs proportionally less. However, we believe these
are corner cases in which even a human might not be sure what to do, and therefore
we have not evaluated the DO’s performance in these situations. In Fig. 2, we see
the performance of the vanilla DQN agent (left) and the Tutor4RL agent (right) for
managing this scenario with two SLOs. Note that on the images we have marked
with horizontal lines the thresholds for SLOs and with a vertical line, the moment in
which the guide functions from the Tutor are not used anymore, until that point the
functions are used on and off with a diminishing frequency from 0.9 to 0. As we can
see, the Tutor4RL agent performs better than the vanilla agent by achieving a better
satisfaction of SLOs. We still see that once the guides are completely abandoned,
the agent commits some mistakes, but it can quickly correct its error. We can avoid
this by adding constraints such as not changing the deployment configuration if
no SLO is violated, but we wanted to show a case in which the agent is free in its
actions and therefore show its learned behaviour better.

Data-Driven Infrastructure Management 149

6 Operationalizing Application Alterations

Once the decision to alter the user application (as an attempt to rectify a failing PLO)
has been made, and the action to perform has been decided, the DDIM needs to
operationalize that alteration. In this section we discuss the types of alterations that
are possible, as well as how these can be encoded as actions within BigDataStack.

6.1 Types of Alteration Actions

Depending on the type and complexity of the deployed application, as well as the
level of permissions that the DDIM has with the infrastructure management system
(e.g. Kubernetes), there can be a wide range of alteration actions that might be
performed. A useful way to structure actions is based on what problem they aim
to solve. In general, there are four common types of problems that can arise as
follows:

Insufficient Resources for a Pod Based on unexpectedly poor performance
reported by a pod in conjunction with maximized utilization for that pod, the DDIM
might decide that a pod needs more resources. This can be solved by the allocation
of a different (in terms of resources) pod, which actually refers to a larger Resource
Template for that pod. Notably, in Kubernetes this is a destructive action, that is it
will involve the pod being killed. For continuous applications, this is typically not an
issue, as the pods involved are stateless. However, for Jobs performing this type of
operation might result in all progress up to that point being lost. In either scenario,
the alteration action involves the launching of a new copy of the target pod with
the new larger Resource Template, then halting the previous pod once the new one
reaches running status.

Insufficient Application Capacity In this scenario, one or more pods may be
reporting unexpectedly poor performance, but the resources are not saturated for
any of the application pods. This would indicate that the existing pods are working
correctly, but they are unable to keep up with the current workload. The solution here
is to scale-up the application to increase its capacity, if supported by the application.
For simple applications, this might only involve increasing the number of replicas
for one of the pods, which is a non-destructive action (load-balancing across
the replicas can be handled by a Service automatically). However, for complex
applications this may require multiple steps and can be destructive. For example,
consider the scaling of an Apache Spark Streaming application. First, the number of
Spark workers needs to be increased, which can be handled by a simple replication
factor change on the worker pods. These new workers will be automatically added
to the ‘Spark Cluster’ and will show ready for work. However, the streaming
application running on that Spark cluster will not automatically scale to use the
additional workers. Instead, the application must be killed and then resubmitted to
the Spark cluster before the workers will be allocated to the application.

150 R. McCreadie et al.

Insufficient Data Availability Not all issues that might cause PLO failures are
necessarily application-related. In this scenario, the DDIM might observe unex-
pectedly poor performance for the application and at the same time a saturation of
resources for one or more data infrastructure components in use by that application
(e.g. a database). In this case, the most efficient response would be to scale the
data infrastructure components (in the example above, the database) to provide the
required additional capacity. This is typically a costly action to perform, in terms of
both time and resources. First, appropriate data storage volumes need to be created
to hold the replicated data. Second, new infrastructure pods need to be started, and
when they are ready, the associated data needs to be imported. Note that this import
process is typically performed from some archive service, not via copying from
currently running data infrastructure instances, as those are already overloaded by
application requests.

Insufficient Network Bandwidth The last case represents failures in the net-
working/communication infrastructure. Within distributed cluster environments,
pod-to-pod as well as external service-to-pod communications are channelled across
physical communication links, which can become saturated. A classical example
of this is a Denial of Service attack, where external servers attempt to overload
an application with requests. While there is no easy fix for this type of failure,
specific DDIM setups can control traffic prioritization. In this case, some portion
of low-priority in-flight network traffic will be dropped to free up bandwidth for
high-priority traffic. This is achieved by re-configuring the cluster’s network routing
policies based on detected in-bound workloads.

6.2 Considerations When Modelling Alteration Actions

Given the above adaptation scenarios and their possible solutions, it is clear that
DDIM solutions require the means to perform complex alteration actions at runtime.
There are four key aspects that need to be considered when modelling these
alteration actions:

Sequencing and State Dependencies First, a single alteration action can be a
complex affair that involves multiple steps. Moreover, the individual steps may have
dependencies that require progression to wait until particular application states are
achieved. For example, for a scaling action on the data infrastructure, the alteration
action is not complete when the new infrastructure pods have started, but rather
once the data has finished importing. Hence, an action must be seen as a composite
set of lower-level operations that together form the desired action, where both the
application and operations have states that can be tracked to determine when new
operations can start (as well as when the action as a whole is complete).

Actions Are Application (Type) Dependent Second, it is worth stating that the
available alteration action set is not the same across applications. While there are

Data-Driven Infrastructure Management 151

standard operations that are built into management platforms like Kubernetes for
controlling factors such as pod replication, just because an operation is technically
valid, it does not mean that performing the operation would be efficient for the
current application. For example, for deployments where state loss is not an
issue, the option to perform destructive runtime resource template changes may
be desirable. But such an option might not be effective or cost too much for jobs
where progress is reset when the underlying pod is restarted, even if it is possible
to do so [28]. Moreover, any reasonably complex application will need support for
multistage alteration actions that are not supported natively by existing management
platforms. On the other hand, it is notable that applications that are of a similar type,
for example those that use a common framework like Apache Spark or Ray, may
be able to share actions, enabling common action sets to be shared among similar
applications.

Available Actions Can Change Over Time The set of available actions for an
application may change depending on that application’s state, or the states of
associated actions being performed. In the simplest case, once an alteration action
is triggered, it makes sense to remove that action from the available set until it
completes, as the DDIM system should wait to see the outcome of that alteration
before attempting the same action again.Meanwhile, in more complex scenarios, the
application engineer might want more control over what actions the DDIM system
will consider under different conditions, effectively providing the DDIM system
expert knowledge of what actions are reasonable given different application states.

Actions Are Data-Dependent Finally, the potential different actions to be applied
heavily depend on the data: Data volumes might highlight the need for altering
the data services settings tackling both storage (e.g. dynamic split or dynamic
migration of data regions) and analytics (e.g. triggering of scalability of a real-
time complex event processing engine). In this context, the DDIM system should
monitor and account for the data operations and the related workloads (of data-
intensive applications) and trigger the optimum adaptation actions during runtime -
including deployment configurations and orchestration decisions.

6.3 Alteration Actions in BigDataStack

BigDataStack delivers a solution for enabling complex alteration actions: the
Realization Engine. At its core, the Realization Engine has three roles: (1) to act
as a central point of reference by storing all application-related information, (2) to
maintain up-to-date state information about the application alteration actions, and
(3) to enable triggering and subsequent operationalization of alteration actions for
each application. Figure 3 illustrates the application model within BigDataStack.
In particular, under this model, the user account or ‘owner’ owns one or more
applications and can also define metrics. A single application has a state, zero or

152 R. McCreadie et al.

F
ig
.3

B
ig
D
at
aS
ta
ck

re
al
iz
at
io
n
en
gi
ne

ap
pl
ic
at
io
n
m
od
el

Data-Driven Infrastructure Management 153

more object (templates) representing the different components of the application,
zero or more operation sequences representing actions that can be performed for
the application, and a series of events generated about the application. An object
template (application component) can be instantiated multiple times, producing
object instances. Object instancesmay have an associated resource template describ-
ing the resources assigned to that object. An object instance contains a definition
of an underlying Kubernetes or OpenShift object that contains the deployment
information. Operation sequences represent actions to perform on the application
and contain multiple atomic operations. An operation targets either an object
template or instance, performing alteration or deployment actions upon it. Service-
level objectives can be attached to an object instance, which tracks a metric exported
by or about that object.

In this way, alteration actions and their stages have an explicit representation,
that is as Operation Sequences and Operations, respectively, which are associated
with an application. The application engineer can define any number of operation
sequences for their application by specifying the list of operations to perform and
their configuration (e.g. the target object(s) for that operation), and can condition
the availability of each operation sequence upon the application’s current state.
An Operation conceptionally performs a single change to a BigDataStack Object.
Examples of operations include: Deploy, Execute Command On, Build, Delete, and
Wait For. When an operation sequence is triggered within the Realization Engine,
internally this first takes the operation sequence template and generates an instance
from it that can be run and monitored separately. The Realization Engine then
creates a new Pod object on the Kubernetes cluster to run the operation sequence
targeting this new instance. Once the Pod object has been created, the responsibility
for that operation sequence is passed to the Pod. Once the new Pod reaches running
state, it will first load the target operation sequence instance, and subsequently it will
process each operation within the sequence in order. State updates are reported to
and stored by the Realization Engine within the operation sequence instance itself,
enabling BigDataStack mechanisms to track progress for it.

7 Example Use-Case: Live Grocery Recommendation

Finally, having discussed all of the concepts and components of DDIM systems,
in this section we summarize how this comes together in BigDataStack to enable
a use case: the connected consumer. The connected consumer use case utilizes the
BigDataStack environment to implement and offer a recommender system for the
grocery market. All of the data that are used for training the analytic algorithms of
the use case are corporate data provided by one of the top food retailers companies
in Spain. The goal from a DDIM perspective is to host and manage all aspects of
the underlying grocery recommendation system.

154 R. McCreadie et al.

Fig. 4 Overview of the connected consumer grocery recommender

The Grocery Recommendation System Fig. 4 provides an illustration of the
grocery recommendation system used by the use case. Each box in this diagram
represents a pod. From an external perspective, this system has two end-points:
recommendations, which respond with recommended products for a user, and
feedback, which receives click and purchase events generated by the user. When
a logged-in user opens a homepage on the grocery company store-front, a request is
sent to recommendations end-point, which retrieves cached grocery recommenda-
tions for that user from a transactional database (in the specific case, LeanXcale [12]
has been used as a transactional database). Meanwhile, when a user clicks or
purchases a product, an event is sent to the feedback end-point, which reformats the
data and sends it via Kafka queue into the main recommendation update component.
This is a continuous application component that runs in parallel over multiple
Apache Spark workers, which upon receiving item feedback for a user, updates their
cached recommendations in real time based on that feedback.

Metrics, Pod Level Objectives, and Workload Within this application, the user
cares about three main factors: (1) the response time for recommendations (e.g. less
than 100ms), (2) the delay between feedback being recorded and when the user’s
recommendations will finish updating (e.g. less than 1 s) and (3) the total cost of the
system (e.g. less than 2 US dollars per hour). The volume of both recommendation
requests and feedback varies over the course of each day (following the day/night
cycle for mainland Europe), with periodic bursts of activity that correspond to flash
sales.

Available Actions To achieve these goals, the DDIM system has access to the
following actions it can take: (1) increase/decrease replicas for the Feedback
Collector, Kafka and/or the Recommender, (2) increase/decrease table replication
within the transactional database, and (3) increase the number of Spark workers the
recommendation update service has access to.

A Day of Data-Driven Infrastructure Management In the early hours of the
morning, the DDIM system will have the application running in a minimal config-
uration (typically only one instance of each pod) to minimize cost (0.5 USD/hour)
when there is little traffic. Around 7am, the workload begins to increase, as online
shoppers order groceries before starting work. The triple monitoring engine reports
that response times and feedback updates are still within acceptable bounds. At

Data-Driven Infrastructure Management 155

8:30am, quality of service monitoring reports a POS failure on recommendation
updates of 1.1 s on average. The dynamic orchestrator determines based on resource
usage that the bottleneck is in the recommendation updater. It triggers an enlarge-
ment of the spark cluster, adding an additional worker, and once ready performs a
rapid restart of the recommendation updater such that it now leverages both workers.
The POS failure is rectified, although cost per hour has increased (0.6 USD/hour).
As traffic approaches its peak around mid-day, a second POS failure is reported this
time on average recommendation response time (115ms). In response, the dynamic
orchestrator increases the replication factor of the recommender component. After
a short delay to collect new measurements, the POS failure is still not resolved, and
hence the dynamic orchestrator instructs the database to increase its table replication
on the assumption that is where the bottleneck is occurring. This process takes
around 10 min to complete, during which the dynamic orchestrator refrains from
taking further action for that POS failure. Once the change action has completed, the
response time decreases once again, and the POS failure is resolved. Cost per hour
is now 1.2 USD/hour. After 6pm, the workloads decrease, and in response, the RL
agent within the dynamic orchestrator experiments with decreasing the replication
on the recommender to save cost, which results in a POS failure on recommendation
response time and so rolls back the change. It tries again a couple of hours later,
which does not result in any POS failure. As workloads continue to decrease as
the day ends, the dynamic orchestrator instructs the database and recommendation
updater to reduce their table replication and number of workers respectively.

8 Conclusions

The future of infrastructure management will be data driven, leveraging recent
advances in Big Data Analytics and AI technologies to provide exceptional automa-
tion and optimization in the management of diverse virtualized software-defined
cloud resources. This chapter has introduced the building blocks of data-driven
infrastructure management (DDIM) systems in general and a new DDIM platform,
BigDataStack, in particular. Contrary to state-of-the-art DDIM systems that focus
on specific optimization aspects (e.g. fault detection or resource allocation), the
BigDataStack platform takes a holistic, end-to-end approach to optimizing the con-
figuration of cloud environments. Specifically, BigDataStack-based DDIM includes
cutting-edge functionalities in three complementary areas:

• Deep Application and Action Modelling: Through deep data-oriented mod-
elling, BigDataStack maintains a more complete view of both data services, their
corresponding data flows and the alteration/action space for applications, backed
by a metric and state monitoring system that is both efficient and scalable for use
with high-parallelism Big Data applications. Indeed, a key take-home message
of BigDataStack is that DDIM systems need to not just model applications, but
the actions that can be performed on them and have the ability to monitor and
interpret the impacts from those actions.

156 R. McCreadie et al.

• Intelligent AIOps Decision Making: As cluster/cloud infrastructures have
become better instrumented and easier to manipulate programmatically, it is now
possible to have AI agents learn how to manage such infrastructures as well as
humans can (for a fraction of the cost). AI-based decision making enables fast
and adaptive management of the infrastructure based on real-time data about the
running applications, cluster resources, and data being processed.

• Complex Multistage Action Management: BigDataStack provides an atomic
operation set from which a wide variety of complex actions can be constructed.
Once defined, such actions form templates that can be used to drive fully
automated complex runtime adaptations by the AIOps system, enabling end-to-
end automated DDIM.

BigDataStack has been validated and evaluated in different real-life environ-
ments, including retail, insurance, and shipping, illustrating the efficiency, cost-
effectiveness, and flexibility of its DDIM approach. Overall, BigDataStack has
provided a novel AIOps showcase, which demonstrates the potential of DDIM
for monitoring, analysing, and optimizing the deployment of cloud applications.
Moving forward, we aim to extend BigDataStack with support for novel types of
cloud computing resources and services, such as the Function-as-a-Service (FaaS)
paradigm. Indeed, via FaaS support, we believe big data value chains can be more
efficiently enabled, as function-level DDIM is easier to reason about than broader
application-level DDIM, increasing precision while also reducing the time-to-
convergence to an effective configuration.We also plan to investigate the real-world
impact of service performance degradation vs. the cost of maintaining services at
different quality of service levels, with the aim of developing future AI models for
optimizing this trade-off for the business owner.

Acknowledgments The research leading to these results has received funding from the European
Community’s Horizon 2020 research and innovation programme under grant agreement n◦ 779747
(BigDataStack).

References

1. Argerich, M. F., Cheng, B., & Fürst, J. (2019). Reinforcement learning based orchestration
for elastic services. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things
(WF-IoT), IEEE (pp. 352–357).

2. Canfora, G., Di Penta, M., Esposito, R., & Villani, M. L. (2005). An approach for qos-aware
service composition based on genetic algorithms. In Proceedings of the 7th annual conference
on Genetic and evolutionary computation (pp. 1069–1075).

3. Chung, A., Park, J. W., & Ganger, G. R. (2018). Stratus: Cost-aware container scheduling in
the public cloud. In Proceedings of the ACM symposium on cloud computing (pp. 121–134).

4. Demchenko, Y., Filiposka, S., Tuminauskas, R., Mishev, A., Baumann, K., Regvart, D.,
& Breach, T. (2015). Enabling automated network services provisioning for cloud based
applications using zero touch provisioning. In 2015 IEEE/ACM 8th international conference
on utility and cloud computing (UCC). IEEE (pp. 458–464).

Data-Driven Infrastructure Management 157

5. Eramo, V., Cianfrani, A., Catena, T., Polverini, M., & Lavacca, F. (2019). Reconfiguration
of cloud and bandwidth resources in NFV architectures based on segment routing control/data
plane. In Proceedings of the 2019 21st international conference on transparent optical networks
(ICTON), IEEE (pp. 1–5).

6. Fard, M. V., Sahafi, A., Rahmani, A. M., & Mashhadi, P. S. (2020). Resource allocation
mechanisms in cloud computing: A systematic literature review. IET Software.

7. Fürst, J., Argerich, M. F., Cheng, B., & Papageorgiou, A. (2018). Elastic services for edge
computing. In Proceedings of the 2018 14th international conference on network and service
management (CNSM) , IEEE (pp. 358–362).

8. Gan, Y., & Delimitrou, C. (2018). The architectural implications of cloud microservices. IEEE
Computer Architecture Letters, 17(2), 155–158.

9. Grabarnik, G. Y., Tortonesi, M., & Shwartz, L. (2016). Data-driven cloud-based it services
performance forecasting. In Proceedings of the 2016 IEEE international conference on big
data (Big Data), IEEE (pp. 2081–2086).

10. Gulenko, A., Wallschläger, M., Schmidt, F., Kao, O., & Liu, F. (2016). Evaluating machine
learning algorithms for anomaly detection in clouds. In Proceedings of the 2016 IEEE
international conference on big data (Big Data), IEEE (pp. 2716–2721).

11. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, J.,
Sendonaris, A., Dulac-Arnold, G., et al. (2017). Deep q-learning from demonstrations. arXiv
preprint arXiv:1704.03732.

12. Kolev, B., Levchenko, O., Pacitti, E., Valduriez, P., Vilaça, R., Gonçalves, R. C., Jiménez-Peris,
R., & Kranas, P. (2018). Parallel Polyglot query processing on heterogeneous cloud data stores
with LeanXcale. In IEEE BigData, Seattle, United States, IEEE (p. 10).

13. Kousiouris, G., Menychtas, A., Kyriazis, D., Konstanteli, K., Gogouvitis, S. V., Katsaros, G., &
Varvarigou, T. A. (2012). Parametric design and performance analysis of a decoupled service-
oriented prediction framework based on embedded numerical software. IEEE Transactions on
Services Computing, 6(4), 511–524.

14. Kraemer, A., Maziero, C., Richard, O., & Trystram, D. (2018). Reducing the number
of response time service level objective violations by a cloud-hpc convergence scheduler.
Concurrency and Computation: Practice and Experience, 30(12), e4352.

15. Kyriazis, D., Doulkeridis, C., Gouvas, P., Jimenez-Peris, R., Ferrer, A. J., Kallipolitis, L.,
Kranas, P., Kousiouris, G., Macdonald, C., McCreadie, R., et al. (2018). Bigdatastack: A
holistic data-driven stack for big data applications and operations. In Proceedings of the 2018
IEEE international congress on big data (BigData Congress), IEEE (pp. 237–241).

16. Lin, Q., Hsieh, K., Dang, Y., Zhang, H., Sui, K., Xu, Y., Lou, J.-G., Li, C., Wu, Y., Yao, R.,
et al. (2018). Predicting node failure in cloud service systems. In Proceedings of the 2018
26th ACM joint meeting on European software engineering conference and symposium on the
foundations of software engineering (pp. 480–490).

17. Mabrouk, N. B., Beauche, S., Kuznetsova, E., Georgantas, N., & Issarny, V. (2009). Qos-
aware service composition in dynamic service oriented environments. In ACM/IFIP/USENIX
international conference on distributed systems platforms and open distributed processing,
Springer (pp. 123–142)

18. Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016). Resource management with deep
reinforcement learning. In Proceedings of the 15th ACM workshop on hot topics in networks
(pp. 50–56).

19. Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R., Zhou, Y., Kumar, N., Norouzi, M.,
Bengio, S., & Dean, J. (2017). Device placement optimization with reinforcement learning.
arXiv preprint arXiv:1706.04972.

20. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540), 529–533.

21. Modi, A., Dey, D., Agarwal, A., Swaminathan, A., Nushi, B., Andrist, S., & Horvitz, E. (2019).
Metareasoning in modular software systems: On-the-fly configuration using reinforcement
learning with rich contextual representations. arXiv preprint arXiv:1905.05179.

158 R. McCreadie et al.

22. Mohamed, M., Anya, O., Sakairi, T., Tata, S., Mandagere, N., & Ludwig, H. (2016). The RSLA
framework: Monitoring and enforcement of service level agreements for cloud services. In
Proceedings of the 2016 IEEE international conference on services computing (SCC), IEEE
(pp. 625–632).

23. Moreno, D. L., Regueiro, C. V., Iglesias, R., & Barro, S. (2004). Using prior knowledge
to improve reinforcement learning in mobile robotics. In Proceedings of the Towards
Autonomous Robotics Systems. University of Essex, UK.

24. Nastic, S., Morichetta, A., Pusztai, T., Dustdar, S., Ding, X., Vij, D., & Xiong, Y. (2020).
SLOC: Service level objectives for next generation cloud computing. IEEE Internet Comput-
ing, 24(3), 39–50.

25. Raman, K., Swaminathan, A., Gehrke, J., & Joachims, T. (2013). Beyond myopic inference
in big data pipelines. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 86–94).

26. Sharma, P., Chaufournier, L., Shenoy, P., & Tay, Y. (2016). Containers and virtual machines at
scale: A comparative study. In Proceedings of the 17th international Middleware conference
(pp. 1–13).

27. Syu, Y., Ma, S.-P., Kuo, J.-Y., & FanJiang, Y.-Y. (2012). A survey on automated service com-
position methods and related techniques. In Proceedings of the 2012 IEEE ninth international
conference on services computing, IEEE (pp. 290–297).

28. Voorsluys, W., Broberg, J., Venugopal, S., & Buyya, R. (2009). Cost of virtual machine live
migration in clouds: A performance evaluation. In IEEE international conference on cloud
computing, Springer (pp. 254–265).

29. Xu, Y., Sui, K., Yao, R., Zhang, H., Lin, Q., Dang, Y., Li, P., Jiang, K., Zhang, W., Lou, J.-G.,
et al. (2018). Improving service availability of cloud systems by predicting disk error. 2018
{USENIX} Annual Technical Conference ({USENIX} {ATC}, 18), 481–494.

30. Yu, T., Zhang, Y., & Lin, K.-J. (2007). Efficient algorithms for web services selection with
end-to-end QOS constraints. ACM Transactions on the Web (TWEB), 1(1), 6–es.

31. Zhang, D., Han, S., Dang, Y., Lou, J.-G., Zhang, H., & Xie, T. (2013). Software analytics in
practice. IEEE Software, 30(5), 30–37.

32. Zhu, H., & Bayley, I. (2018). If docker is the answer, what is the question? In Proceedings of
the 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), IEEE (pp. 152–
163).

33. Zillner, S., Curry, E., Metzger, A., Auer, S., & Seidl, R. (2017). European big data value
strategic research & innovation agenda. In Big Data Value Association.

34. Zillner, S., Bisset, D., Milano, M., Curry, E., Södergård, C., Tuikka, T., et al. (2020). Strategic
research, innovation and deployment agenda: AI, data and robotics partnership.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Leveraging Data-Driven Infrastructure Management to Facilitate AIOps for Big Data Applications and Operations
	1 Introduction to Data-Driven Infrastructure
	2 Modelling Data-Driven Applications
	2.1 Application Modelling Concepts
	2.2 Data-Driven Infrastructure Management Concepts

	3 Application Performance Modelling
	4 Metric Collection and Quality of Service Monitoring
	5 Automated Decision Making
	6 Operationalizing Application Alterations
	6.1 Types of Alteration Actions
	6.2 Considerations When Modelling Alteration Actions
	6.3 Alteration Actions in BigDataStack

	7 Example Use-Case: Live Grocery Recommendation
	8 Conclusions
	References

