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Abstract

Serotyping of Streptococcus pneumoniae is a critical tool in the surveillance of the pathogen and in the development and evalu-
ation of vaccines. Whole-genome DNA sequencing and analysis is becoming increasingly common and is an effective method 
for pneumococcal serotype identification of pure isolates. However, because of the complexities of the pneumococcal capsular 
loci, current analysis software requires samples to be pure (or nearly pure) and only contain a single pneumococcal serotype. 
We introduce a new software tool called SeroCall, which can identify and quantitate the serotypes present in samples, even 
when several serotypes are present. The sample preparation, library preparation and sequencing follow standard laboratory 
protocols. The software runs as fast as or faster than existing identification tools on typical computing servers and is freely 
available under an open source licence at https://​github.​com/​knightjimr/​serocall. Using samples with known concentrations 
of different serotypes as well as blinded samples, we were able to accurately quantify the abundance of different serotypes of 
pneumococcus in mixed cultures, with 100 % accuracy for detecting the major serotype and up to 86 % accuracy for detecting 
minor serotypes. We were also able to track changes in serotype frequency over time in an experimental setting. This approach 
could be applied in both epidemiological field studies of pneumococcal colonization and experimental laboratory studies, and 
could provide a cheaper and more efficient method for serotyping than alternative approaches.

DATA SUMMARY

The PneumoCaT serotype datasets can be accessed through 

the European Nucleotide Archive (ENA) under project 

PRJEB14267. The known mixture and replicate sample 

datasets can be accessed through the National Center for 

Biotechnology Information (NCBI) Sequence Read Archive 

under project PRJNA561126. The software is freely available 

under an open source licence at https://​github.​com/​knight-

jimr/​serocall.

INTRODUCTION
Streptococcus pneumoniae (the pneumococcus) is a bacte-
rial pathogen that causes a large burden of disease glob-
ally. Currently available protein–polysaccharide conjugate 
vaccines target 13 of the more than 95 identified serotypes. 
The vaccines reduce the frequency of colonization due to 
vaccine-targeted serotypes and subsequently reduce disease 
[1]. There is a need to perform surveillance to monitor declines 
in vaccine-targeted serotypes as well as to detect increases 
in disease caused by serotypes not targeted by the vaccine 
(serotype replacement). The gold standard is to monitor the 
incidence of invasive pneumococcal disease, a rare but severe 
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outcome where the bacteria are isolated from a normally 
sterile site, such as the blood or cerebrospinal fluid. However, 
conducting such disease surveillance in low-resource settings 
is often not feasible. Therefore, it is often necessary to use 
other indirect measures of serotype epidemiology and vaccine 
effects. One such indirect measure is to track the prevalence of 
serotypes among healthy children who carry pneumococcus 
in the nasopharynx [2]. Because pneumococci are commonly 
detected among healthy children, point prevalence studies 
can be used to track changes in exposure to the different 
serotypes [3, 4].

Carriage-based surveillance typically involves collecting a 
nasopharyngeal swab from a child, culturing it in the labora-
tory, isolating a pneumococcal colony and then performing 
a traditional serotyping method such as the Quellung reac-
tion, an antibody-based assay to determine the serotype of the 
isolate [5]. Quellung is relatively time-consuming to perform, 
particularly when trying to test multiple colonies per sample. 
More recently, DNA-based approaches have been used to 
determine the serotype of the isolated strain; for example, 
conventional and real-time PCR assays have been developed 
to identify common serotypes and/or serogroups [6–8].

Whole-genome sequencing can effectively determine the 
serotype of single isolates, and several pipelines (PneumoCaT 
and SeroBA) have been developed [9, 10]. A microarray-
based platform can detect and quantify the relative abundance 
of all serotypes in a sample [11]. This is a highly sensitive 
and accurate method and outperforms many other serotyping 
approaches [12]. The downside of this technology is that it 
requires specialized equipment that cannot be readily imple-
mented by different laboratories. An ideal solution could be 
a sequencing-based approach that could be used to identify 
multiple serotypes in mixed samples and quantify their 
abundance. Sequencing equipment is now widely available 
on standard platforms, making these methods portable and 
readily comparable between laboratories. Low-cost Illumina 
sequencing library preparation protocols make such an 
approach feasible and cost-effective [13], and whole-genome 
sequencing is increasingly being adopted for diagnostic and 
public health applications [14]. The major challenge is a 
bioinformatic one: how to accurately identify and quantify 
serotypes in mixed samples.

The bioinformatic challenge revolves around the similarity 
of portions of the sequences in the capsular biosynthesis 
cassette in multiple serotypes. Only 25 of the 94 serotype 
capsular sequences are genetically distinct, while the rest 
form ‘serogroups’ of genetically similar but phenotypically 
different serotypes [9]. The similarity is such that over 70 % 
of error-free reads from those groups cannot uniquely map 
to a specific serotype, and several phenotypically distinct 
serotypes differ by only a single base pair over their 10–25 kb 
capsular sequence. Thus, traditional read mapping approaches 
fail, as they assume that nearly all informative reads will map 
uniquely. PneumoCaT and SeroBA can accurately identify 
serotypes from Illumina whole-genome sequencing reads. 
However, they expect ‘pure’ samples (95 % or more of the 

sample consists of a single serotype), do not provide quantita-
tion and will simply report ‘mixed’ if the sample is found to 
contain multiple serotypes. In this study we develop and test 
an analysis approach and a software tool, SeroCall, for quan-
tifying serotype abundance based on raw Illumina sequencing 
reads. Its output will report all serotypes identified from the 
sample data, along with percentage estimates for each sero-
type. We first use existing datasets and spiked samples in the 
laboratory to develop and test the pipeline. We then test the 
performance of this approach using a reference set of blinded 
gold standard laboratory-prepared samples that have known 
quantities of different serotypes.

RESULTS
Single-serotype calls using sequences in the 
PneumoCaT database
The development and validation datasets used to test the 
PneumoCaT and SeroBA software in [9, 10] were processed 
locally by SeroCall, PneumoCaT and SeroBA to test the 
concordance and speed of the SeroCall software (testing the 
method described in the Methods section). For the 871 devel-
opment samples, the calls made by SeroCall had a concord-
ance rate of 96.4 % (840/871) at the serotype level and 98.9 % 
(862/871) at the serogroup level, with 819 exactly matching 
calls, 21 matching calls with a low-fraction ‘minor’ call below 
5 % (for example, the SeroCall output for PHESPD0784, a 
serotype 2 sample, was 98.3 % serotype 2 and 1.7% serotype 

Impact Statement

Streptococcus pneumoniae is a bacterial pathogen 
responsible for causing a range of severe disease, 
including pneumonia, meningitis and bloodstream infec-
tions. Pneumococcus is diverse, having over 90 different 
serotypes that help the bacteria evade immune recog-
nition. The serotypes are defined based on the capsular 
polysaccharides. A subset of the serotypes are targeted 
by pneumococcal conjugate vaccines. Therefore, there 
is a need to track changes in the epidemiology of sero-
types in the population. The capsular polysaccharides 
themselves are encoded by genes located in a biosyn-
thetic cassette, and the sequences of this cassette can 
be used to identify the serotype. A number of methods 
have been developed to identify the serotype of clin-
ical samples, including next-generation sequencing. 
However, the current methods can either only detect 
a subset of the serotypes or require that the samples 
contain a single serotype. This is a problem for samples 
from the upper respiratory tract, where there are often 
multiple serotypes present at once. We present a whole-
genome sequencing approach and software tool that is 
able to identify and quantitate mixed samples of multiple 
serotypes and that is able to identify the range of known 
serotypes.
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3), 22 samples with calls within the same serogroup but 
different from the determined serotype, and 9 samples that 
were ‘discrepant’ with any other non-matching calls.

For the 2065 validation samples, the concordance rate was 
96.8 % (2000/2065) at the serotype level and 98.8 % (2041/2065) 
at the serogroup level, with 1923 exactly matching calls, 77 
matching calls with ‘minor’ second calls, 41 samples with calls 
within the serogroup but different from the serotype, and 24 
‘discrepant’ samples. The details of all non-matching samples 
for both datasets can be found in File S2 (available in the 
online version of this article).

The minimum, mean and maximum execution times for Sero-
Call, SeroBA and PneumoCaT are given in Table 1, for the 
analysis of the development samples (the validation sample 
running times were similar). For this dataset on these servers, 

SeroCall ran three times faster than SeroBA and twice as fast 
as PneumoCaT. The computation in SeroCall is dominated 
by the BWA MEM alignment, which scales linearly in the 
number of cores. So, on compute servers with eight or more 
cores, SeroCall is expected to run as fast as or faster than 
SeroBA.

All software was run on 20 core, 121 GB memory, ‘2× E5-2660 
v3’ computer servers, where the software was run with 
exclusive access to the server. The SeroCall and PneumoCaT 
command lines were passed ‘-t 20’ options, allowing them to 
use 20 parallel threads.

All-by-all, in silico pairwise mixtures using 
different ratios
All pairwise mixtures of serotypes were performed using 
samples from the PneumoCaT database, as described in the 
Methods section, testing SeroCall calling at 1, 5, 10, 25, 50, 
75, 90 and 95 % for each serotype (against all other serotypes), 
as well as testing using different numbers of sequencing reads 
(results using 3.5 million reads shown in Fig. 1, results for 
0.5–3.0 million reads can be found in Figs S1–S6).

For most of the serotypes (the left three columns of Fig. 1), 
SeroCall made highly accurate calls for fractions >=5 % (58 

Table 1. Comparison of run times for SeroCall, SeroBA and PneumoCaT

Running time (MM : SS) SeroCall SeroBA PneumoCaT

Minimum 0 : 14 0 : 26 0 : 17

Mean 0 : 35 1 : 43 1 : 16

Maximum 1 : 06 2 : 39 2 : 49

Fig. 1. Call accuracy for all-by-all, in silico mixtures of 3.5 million reads. Accuracy of SeroCall for each serotype/percentage combination, 
displayed as vertical barcharts evaluating the calls from pairwise mixing the serotype at the given percentage against each of the other 
serotypes. Each call was evaluated to see if SeroCall made the correct call, did not call that serotype, had additional serotype calls or 
called a different serotype. Correct calls were also evaluated as to whether the reported percentage was within 15 % of that serotype’s 
input percentage or not. Missing (or white) barcharts reflect samples with too few reads to perform the in silico mixture (i.e. the serotype 
10C data contained 688 206 reads, so mixtures of 3.5 million reads using percentages >=25 % could not be generated).
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of 59 serotypes were correctly called in all 5–99 % mixtures, 
with 32A/32F called in all except 7 of 52 mixtures at 5 %). 
SeroCall also made many accurate calls at 1 % (50 of 59 
serotypes were correctly called in all mixtures at 1 %). The 
exceptions were that (1) one mixture of 35F at 5 % and at 
10 % had an additional call of 47F at 1–2 %, and (2) four 
serotypes had additional, low fraction calls when mixed 
at a high fraction, where all additional calls were less than 
1/20th of the expected serotype call fraction, with 15A/15F 
having extra 15B/15C calls, 34 having 33A/33F calls, 35B 
having 19A calls and 9L having 9A calls. An example of a 
low-fraction additional call is the mixture of 34 at 75 % and 
13 at 25 %, where SeroCall reported serotypes 34 at 79.2 %, 
13 at 20.4 % and 33F at 0.4 %.

For some serogroups, (the right two columns of Fig. 1), 
SeroCall has a lower rate of correct calls and a higher rate 
of group-level calls, additional serotype calls and different 
serotype calls. However, all of the additional/different calls 
were within the same serogroup (i.e. a 18B serotype either 
had an additional 18C call or was called as 18C, but had 
no other calls outside the serogroup). Also, excluding 
serotypes 6E, 18B/18C, 33F, 42 and 46, for which there 
is difficulty in distinguishing between members of their 

serogroups, SeroCall was accurate for fractions >=25 % 
(>99.5 % of mixture tests at 50–99 %, and 98.3 % of the 
mixture tests at 25 %, resulted in the correct call of the 
specific serotype). File S2 contains the full counts of the 
call evaluations and details of mixtures with additional or 
different calls.

The sensitivity of lower-fraction serotypes is reduced as the 
number of sequencing reads are reduced (as shown in Figs 
S1–S6). For example, at 2 million reads, only 54 of 59 sero-
types not in serogroups were always called in 5 % mixtures, 
and only 2 of 59 were always called in 1 % mixtures. Simi-
larly, we would expect to see an increase in sensitivity for 
low-fraction serotypes as the number of reads is increased.

Mixed samples with known concentrations
Mixtures of input DNA were prepared using predetermined 
concentration fractions of 2, 3 and 5 different serotypes. 
Those mixed samples were processed, sequenced and called. 
SeroCall was able to accurately recover the true fraction of 
each serotype, including serotypes that were present at a low 
fraction (Fig. 2).

Fig. 2. Comparison of true and estimated serotype percentage. Comparison of the true and estimated percentage of each individual 
serotype in multiple mixed samples using two serotypes (blue), a mixed sample with three serotypes (red) and a mixed sample with five 
serotypes (yellow). (Note: two 20 % serotypes from the five-serotype mix were reported as 20.9 and 21.0 %, and so overlay each other in 
the figure.)
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Blind testing of mixed serotype samples from the 
PneuCarriage consortium
The PneuCarriage consortium has developed a panel of highly 
characterized samples, and makes available a blinded testing 
process for serotyping protocols, which provides the samples, 
analyses the serotyping results produced by the protocol, and 
then returns summary reports of the sensitivity and accuracy 
of the protocol (keeping the details of the panel blinded for 
future protocol testing). An 80-sample panel was provided for 
testing the SeroCall process and software. Fifteen of the 80 
PneuCarriage samples either failed to grow (n=9) or had other 
technical issues during library preparation (n=6). In keeping 
with the blind testing, the results from all samples were 
returned to the PneuCarriage project and evaluated. Here we 
outline the results for the 65 samples that were successfully 
cultured, prepared and sequenced. The full evaluation of all 
80 samples is detailed in Table S2.

Fig. 3(a) shows the sensitivity of the assay, both with a first 
round of sequencing, and with a second round of sequencing 
that increased the average reads per sample. The sensitivity 
for detecting the major serotype was 98 and 100 % for the 
first and second rounds of sequencing, respectively. Samples 
containing serotype 12F were misidentified as 12B, as the 
version of SeroCall used in this testing was based on the 
original CTV database from the PneumoCaT paper [9]. The 
sensitivity for detecting minor serotypes was 59 % using only 
the 1.9 million reads per sample (first round), and improved 
to 81 % with 4.67 million reads per sample (second round). 
However, that came at the cost of an increase in false-positive 
identifications. Excluding 12F/12B misidentifications, there 
was one false positive in the first round [resulting in a positive 

predictive value (PPV) of 96 %] but six false positives in the 
second round (PPV of 95 %).

Finally, the quantitation of the serotype calls was evaluated 
against the known spiked levels for 32 multi-serotype samples 
called correctly (using the second round data). The correlation 
between the two was strong (Spearman’s P=0.762, P<0.0001), 
and the mean absolute difference between the known level 
and the SeroCall quantitation was 4.0 % (Fig. 3b).

Longitudinal monitoring of mixed samples and 
replicates
Additionally, we sought to evaluate the ability of this 
approach to track changes in serotype frequency over time, 
approximating the setup with longitudinal carriage sampling. 
Mixtures of 2 to 10 clinical isolates, representing different 
serotypes, were grown in vitro (in duplicate) and sampled at 
2, 4, 6 and 8 h. These replicate samples were prepared and 
sequenced, testing both longitudinal monitoring of changes 
in serotype frequency and testing reproducibility. There was 
good agreement between replicate samples, and it was possible 
to track changes in the frequency of individual serotypes over 
time (Fig. 4). Note, because of a primer failure, only single 
results were generated for the 10-serotype sample at 6 and 8 h.

DISCUSSION
We developed and validated the whole-genome sequencing 
method and analysis software SeroCall for the identifica-
tion and quantification of S. pneumoniae. The software 
was tested using both internally and externally generated 
samples and datasets, and returned concordant results with 

Fig. 3. SeroCall accuracy for PneuCarriage samples. (a) Serotype calling accuracy for the 65 PneuCarriage blind testing samples, using a 
first round of 1.9 million reads per sample and a second round of 4.6 million reads per sample. (b) Comparison of SeroCall quantification 
[‘abundance (sequencing)’] and known PneuCarriage abundances [‘abundance (actual)’], for 32 mixed samples.
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other serotyping methodologies and other whole-genome 
sequencing-based serotype identification software. It also 
showed good agreement between replicates in tracking 
changes in the proportion of serotypes over time in mixed 
cultures in an experimental setting. SeroCall is the first 
sequencing-based method to perform serotype quantitation 
on mixed samples. Its computational performance matches 
or exceeds that of other software, and could be implemented 
efficiently to enable high-throughput surveillance of popula-
tion serotypes.

Antibody-based serotyping (Quellung and latex agglutination 
kits) are easy and quick to use when checking the serotype of 
one colony. However, understanding multiple carriage is diffi-
cult with Quellung [15]. Scaling to a large number of samples 
can also be labour-intensive with antibody-based methods. 
The existing DNA-based methods have insufficient sensitivity 
or specificity to identify multiple serotypes, or are microarray-
based. Compared to microarrays, access to/use of sequencing 
is increasing for public health surveillance, and costs are going 
down. Hence implementing carriage surveillance with a low-
cost sequence-based multiple carriage surveillance is timely.

Our simulation analysis demonstrates the strong performance 
of this approach as well as the limitations. There are certain 
serotypes that are difficult to distinguish from other members 
of the serogroup, and this is particularly an issue when the 
minority serotype is at a low frequency. Performance of the 
method also clearly depends on read depth and will be less 
accurate with lower depth. Therefore results from samples 
with low-frequency serotype calls or low read depth should 
be interpreted with caution and validated with other methods.

While the method was concordant with other methodologies, 
there are still some limitations. As for all serotyping methods, 
upstream aspects, including sample storage and culture, 
remain important; this is reflected in the fact that we could 
not obtain results from nine culture-negative samples from 
the PneuCarriage set. The in vitro culture step prior to DNA 
extraction, as well as the DNA extraction protocol itself, could 
influence the detected proportion of serotypes. The quanti-
fication methods use the current set of capsular sequences 
as a core ‘truth set’ from which to compare the sequencing 

results. If there are CPS biosynthesis loci recombinations 
that are not present in the current dataset, serotypes might 
be misquantified or misclassified. SeroCall uses the entire 
genetic sequence to perform its classifications and quanti-
fications, and for samples where the phenotypic serotype 
differs from the overall genetic serotype ancestry, misclas-
sifications may occur. Also, complex mixtures of very closely 
related serotypes may be more difficult to quantify accurately 
than more genetically distinct serotypes. Additionally, non-
pneumococcal streptococci present in the nasopharynx can 
confound sequenced-based serotyping [16]. As such, future 
work will evaluate SeroCall using nasopharyngeal samples, 
for example the PneuCarriage field samples (aliquots of STGG 
from NP swabs). Finally, improvements and increased testing 
of the laboratory methodologies, including the use of non-
duplicate Illumina index primers and potentially side-by-side 
comparison of microarray and sequencing of the same DNA, 
to explore differences in DNA extraction efficiency, may 
increase the robustness of the method.

One experimental parameter that affects the results is the 
read depth. Using the blinded samples, we found that with a 
low read depth, the sensitivity for detecting minor serotypes 
was greatly reduced. We recommend obtained a read depth 
of 2–3 million reads per sample to obtain similar sensitivity 
to that reported here, and possibly higher depth if looking 
for very low-abundance serotypes. The ‘cost’ of increased 
read depth was an increase in the number of false-positive 
identifications of rare serotypes. One possible explanation for 
the false positives is Illumina ‘barcode hopping’ [17], as the 
library preparation used standard multiplex primer sequences 
that have been found to be susceptible to that. Using unique 
barcode pairs for each sample could help to avoid this issue 
and allow for the detection of low-abundance serotypes 
without an increase in false positivity.

The library preparation protocol that we use, which was 
developed by Baym et al. [13], can produce high-quality, 
low-cost sequences when multiplexing samples. Provided 
that an investigator has access to an Illumina sequencer, this 
makes performing sequence-based serotyping cost-effective 
compared with traditional serotyping methods.

Fig. 4. Quantitation of replicate mixtures. Replicate testing using mixtures of 2, 3, 5 and 10 serotypes. Replicates were cultured for 2, 4, 
6 or 8 h before selection for sequencing.
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During sample preparation we lost several samples. Nine of 
the blinded samples failed to culture. This could have been 
an issue with sample transport or with the culture condi-
tions in the laboratory. We also lost several samples due to a 
primer failure during the library preparation. Confirming the 
concentration of each sample prior to pooling would catch 
this issue sufficiently early to allow for regeneration of the 
libraries for the affected samples.

In conclusion, we describe the development of an analytical 
tool that can be used to quantify the abundance of multiple 
serotypes in mixed cultures using a sequencing-based 
approach. We do this by addressing a bioinformatic challenge 
in assigning Illumina reads from a mixed sample to the correct 
serotype. This method could be applied to epidemiological 
studies of pneumococcal carriage that seek to evaluate the 
carriage frequency of dominant and sub-dominant serotypes 
and can be used to monitor changes associated with the intro-
duction of conjugate vaccines.

METHODS
Experiments with known serotype composition
The first set of dilution and competition experiments used 
invasive pneumococcal disease isolates that were obtained 
from the Centers for Disease Control and Prevention’s 
(CDC’s) Active Bacterial Core surveillance system isolate 
bank (1, 3, 4, 6B, 7F, 9V, 14, 18C, 19F, 23F). The strains were 
grown overnight on TSAII plates with 5 % sheep’s blood at 
37 °C with 5 % CO2.

Mixture with known concentrations of DNA
Overnight growth was harvested in phosphate-buffered saline 
(PBS), and genomic DNA was extracted using a DNEasy 
blood and tissue kit (Qiagen) with the Gram-positive pretreat-
ment protocol. DNA was quantified using a NanoDrop reader 
(Thermo Fisher). Serotypes were then mixed together at 
the following ratios: 19F : 23F [1 : 2], 19F:23F [1 : 4], 19F:23F 
[1 : 8], 19F:23F [1 : 10], 19F:23F [1 : 100], 19F:23F:1 [1 : 4 : 1], 
19F:23F:1 : 4 : 18C [1 : 2 : 4 : 2 : 1]. These samples were sequenced 
to an average of 2.76 million reads per sample on an Illumina 
HiSeq.

Longitudinal growth experiment
Overnight growth on TSAII plates was resuspended in PBS, 
and the optical density (OD) at 600 nm was adjusted to 0.05. 
These stocks were then diluted 1 : 20 into a diluted broth of 
7.5 ml PBS, 2.5 ml brain heart infusion (BHI), 8.25 μl sheep 
blood, and 125 μl horse serum. The strains were grown indi-
vidually for several hours until the lowest concentration strain 
reached OD ~0.15. All strains were adjusted down to match 
this value. The strains were then mixed at equal concentration 
and diluted 1 : 20 into fresh broth in deep-well plates (800 μl 
broth+40 μl bacteria) with a separate replicate well for each 
time point. The plate was then incubated at 37 °C with 5 % 
CO2. Forty microlitres from each well of the 6 h time point 
was used to seed a new row of 800 μl broth to allow another 

2 h of growth. This passaging step is important because in the 
limited-nutrient broth, pneumococcal population tends to 
crash after 6 h. At the indicated time points, the full volume 
of the well was transferred to the −80 °C freezer. At the end of 
the experiment, DNA from all wells was extracted at the same 
time using a Qiagen DNEasy blood and tissue kit with the 
Gram-positive pretreatment protocol (Qiagen). The experi-
ment was performed in duplicate.

Single-serotype, in silico mixture testing and 
benchmarking against other serotyping software
The development and validation whole-genome sequencing 
datasets that were used previously [9] to develop and test 
the PneumoCaT and SeroBA software were used similarly 
here. Eight hundred and seventy-one development samples, 
covering all 94 serotypes, were used in the development of 
the SeroCall software, and then the 2065 validation samples 
covering 72 serotypes were evaluated using the final version of 
the software. Also, the current versions of PneumoCaT (v1.2) 
and SeroBA (v1.0.1) were run locally on all samples, and the 
‘gold standard’ calls used for benchmarking were the majority 
vote of the original laboratory serotyping, the PneumoCaT 
call and the SeroBA call. This accounts for updates to the 
software that correct for serotypes reported at the time of the 
PneumoCaT publications (most notably, a change in the 12B 
vs 12F typing that was discovered after the publication of [9]).

For the all-by-all, in silico mixture testing, a sample for each 
serotype was chosen from the PneumoCaT database, based 
on the sample with the largest number of reads (to ensure 
the most mixtures could be tested), where all four testing 
methods (SeroCall, PneumoCaT, SeroBA and serotyping) 
identified the same serotype for the sample. For four sero-
types, no sample was called the same by all four methods, 
and the following samples were selected for three of those: 
PHESPV1446 was chosen for serotype 7A, as it was called as 
7A by SeroCall, PneumoCaT and serotyping (SeroBA called 
it as mixed 7A/7F); PHESPD0013 was chosen for 11D, as it 
was called as 11D by SeroCall, SeroBA and serotyping (Pneu-
moCaT called it as 11A); PHESPD0234 was chosen for 33A, 
as it was called as 33A by SeroCall, SeroBA and serotyping 
(PneumoCaT called it as 33F). No sample with sufficiently 
concordant calls was made for serotype 44, so it was not 
used in the testing. File S2 lists the samples chosen for each 
serotype along with the number of reads in each sample’s data 
and the percentage of those reads that align to any of the 
capsular sequences.

All pairs of serotypes were mixed at percentages of 1, 5, 10, 25, 
50, 75, 90, 95 and 99 % (with the reciprocal percentage tested 
for the other serotype in the pair) and by randomly selecting 
reads to generate 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 million reads 
of the appropriate mixture. However, because the percentages 
of capsular sequences to the number of reads was different for 
different samples (possibly due to genomic/plasmid differ-
ences between samples, and which would skew the in silico 
mixture ratios and affect the ability to distinguish sample 
fluctuations from software quantification errors), the random 
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selection ensured that the ratio of capsular reads matched the 
percentages for the pair, instead of the ratio of total reads. The 
resulting datasets of over 250 000 mixtures were processed 
by SeroCall.

Evaluation with blinded samples
The PneuCarriage Project [12] was a multi-centre study to 
evaluate pneumococcal serotyping methods. A set of standard 
laboratory-prepared sample mixtures has been evaluated 
using a large number of serotyping methods. Eighty of these 
samples, containing mixtures of 0–4 serotypes, were evalu-
ated using our analysis pipeline. The laboratory personnel 
processing the samples and the bioinformatic analysts were 
blinded to the serotype composition of the samples.

The samples were provided as frozen aliquots. Samples were 
thawed and 10-fold dilutions were spread on a TSAII plate 
with 5 % sheep’s blood and incubated overnight at 37 °C with 
5 % CO2. The most concentrated non-confluent dilution was 
harvested into PBS, and DNA was extracted as described 
above. During the culturing and preparation, nine of the 
serotype-positive samples failed to culture, and a further six 
samples failed amplification due to an existing primer failure. 
The remaining 65 samples were sequenced to an average of 
1.90 million reads per sample; a second round of sequencing 
increased the average reads to 4.67 million per sample. Sero-
type calls and quantifications were returned for all samples 
and evaluated by PneuCarriage Project personnel.

Library preparation
Illumina libraries were prepared using the protocol described 
by Baym et. al. [13]. The exception was that the final cleanup 
was performed using Qiagen PCR purification columns 
rather than the bead-based assay described in the original 
paper. The sequencing indices that were used are listed in 
Table S3. Each plate of up to 96 samples was multiplexed and 
run on an Illumina HiSeq with a read length of 2×150 bp.

Bioinformatic approach
The overall steps of the SeroCall software follow those of 
PneumoCaT and SeroBA, but apply different algorithms in 
order to quantify all serotypes found in a sample. All of the 
tools (1) align the read data to the set of serotype capsular 
sequences, (2) identify serogroups and distinct serotypes that 
are present in the sample and (3) distinguish serotypes within 
the serogroups, using serotype-specific variants or regions of 
the capsular sequences.

Step 1 – read alignments
Sequence read data are first aligned using BWA MEM [18] to 
a ‘reference’ that combines the serotype capsular sequences 
from 94 serotypes with the non-capsular sequences from 3  
S. pneumoniae genomes: R6, SPNA45 and ATCC700669 
(where the capsular sequence from each has been masked). 
File S1 details the capsular reference sequences used, most of 
which are the same as the PneumoCaT reference sequences, 
but several have been modified to work with this algorithm. 

The genome sequences mainly serve as a ‘decoy’, so that 
genomic reads will align to the genome sequences instead 
of to the capsular sequences, and so will not affect the read 
depths for the serotypes.

The read alignments produced by BWA MEM are used to 
compute ‘bin counts,’ counting the total and uniquely mapped 
reads across the serotype capsular sequences. Each sequence 
is partitioned into 500 bp bins, denoted Si,b for serotype i and 
bin b. The choice of 500 bp ensures that local depth variations 
resulting from sequencing are smoothed in the bin counts. 
Read alignments are processed in read pairs, and are first 
filtered for (1) any genomic alignments, (2) any unmapped 
alignments (if either read in a read pair is unaligned, then 
both reads in the pair are filtered), (3) any chimeric reads 
aligning to two different serotypes, or (4) any read pairs with a 
combined 10 or more differing or soft clipped bases, as this is 
a sign of a genomic read pair mistakenly aligned to a serotype 
sequence.

The remaining read pair alignments add to bin counts, incre-
menting the counts of any bin which overlaps with either of 
the read alignments. The ‘total bin counts’ count both uniquely 
mapping reads (reads whose MQ >=0) and repetitively 
mapping reads (could map equally well to multiple locations 
in the serotype sequences, where the BWA MEM software 
randomly chooses a location from those best locations). The 
‘unique bin counts’ only count uniquely mapping reads. For 
an input sequence dataset, this results in Ti,b and Ui,b matrices 
containing the bin counts for that data.

Step 2 – serotype/serogroup quantification
The second step takes the bin counts from the input data, 
treating them as the ‘observed’ counts OTi,b and OUi,b, and 
compares them against the sets of ‘expected’ counts ETy,i,b and 
EUy,i,b for all serotypes y (because of the similarity between 
serotype sequences, reads from a serotype y will align to sero-
type i, and so will contribute to the bin counts for serotype i). 
These expected counts were determined by generating simu-
lated reads for each serotype and computing the bin counts 
for those reads. Specifically, a simulated 2×100 bp read pair 
(with an insert size of 200 bp) was generated at every position 
of a serotype’s capsular sequence, so that each location of the 
capsular sequence is covered by 200 reads across the whole 
sequence, except at the ends. Generating bin counts in this 
way results in expected bin counts for an equal 200x sampling 
of each serotype.

The comparison involves an optimization computation using 
gradient descent, to compute ‘factor levels’ Fy, for each sero-
type y, which optimize the equations:

	﻿‍ OTi,b ∼=
∑

y(ETy,i,b ∗ Fy)‍�

	﻿‍ OUi,b ∼=
∑

y(EUy,i,b ∗ Fy)‍�
In other words, it computes the factor levels that result in a 
mixture of the expected serotype bin counts that most closely 
resembles the observed bin counts. Initially, all Fy are set to 
1.0, and then 100 rounds of a gradient descent algorithm 
are performed, computing the expected mixture bin counts, 
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comparing them to the observed counts and adjusting the 
factor levels up or down.

Specifically, each round of the algorithm first computes:

	﻿‍ MTi,b ∼=
∑

y

(
ETy,i,b ∗ Fy

)
‍�

	﻿‍ MUi,b ∼=
∑

y

(
EUy,i,b ∗ Fy

)
‍�

using the current Fy values. Then the algorithm computes bin 
ratios RTi,b=OTi,b/MTi,b and RUi,b=OUi,b/MUi,b. Ideally, all of 
the ratios should equal 1.0, if the computed mixture matches 
the observed counts across all of the bins. Per-serotype factor 
ratios, ratioTi and ratioUi, are then computed using a weighted 
median of the bin ratios for the serotype, where the weights 
for each bin are ETi,i,b/maxET and EUi,i,b/maxEU (i.e. the frac-
tion of total/unique reads coming from serotype i and bin 
b that were actually counted in the bin). This gives higher 
weight to the more unique, or less repetitive, regions of each 
serotype’s capsular sequence. And the median is used instead 
of the mean in order to prevent genome contamination and 
local genetic differences (serotype samples whose actual 
capsular sequence mainly matches the reference, but contains 
a local region unique to another serotype) from skewing the 
quantitation.

Final serotype ratios are computed by combining the ratioT 
and ratioU values based on the bin with the highest unique 
weight:

	﻿‍
MWi = max

b

(
EUi,i,b
maxEU

)
‍�

	﻿‍ ratioi = MWi ∗ ratioUi +
(
1.0−MWi

)
∗ ratioTi‍�

New factor levels Fy′ are computed as Fy′=Fy+(Fy−Fy* ratioy)/2, 
adjusting the factor level by half of the computed observed 
over expected ratio, in each round of the gradient descent. 
Also, if at any point, Fy′ falls below 0.002, it is set to 0.0 (this 
threshold is a computational speed optimization, to stop 
evaluating samples whose factors fall far below the 1 % frac-
tion range, but have not yet reached 0.0 through the descent 
process). The new Fy′ values then become the factor levels Fy 
in the next round of the computation.

Step 3 – serogroup refinement
The third and final step readjusts the factor levels for the sero-
types within serogroups that cannot be distinguished based on 
bin-sized read depth differences. The methods of steps 1 and 
2 are able to distinguish 56 of the serotypes without further 
refinement, and the groups of serotypes that require further 
refinement by this method are: 6A/6B/6C/6D/6E; 7A/7F; 
7B/40; 9A/9V; 11A/11D; 11B/11C; 12A/12B/12F/44/46; 
15B/15C; 18B/18C/18F; 24B/24F; 25A/25F/38; 32A/32F; 
33A/33F/37; 35A/35C/42.

Serotypes 15B and 15C can interconvert [19] and so are 
reported as 15B/15C. In keeping with the reporting performed 
by PneumoCaT, serogroups 24 and 32 are reported at the 
group level. For the other groups, the CTV database in Pneu-
moCaT was used to identify variants and genes/alleles that 
differ between serotypes in the groups. Each of those differ-
ences was translated into the sets of locations within the full 

capsular sequence references, instead of the CTV database’s 
reporting of a gene position or gene sequence. For example, 
the CTV database identifies a SNP in wcjE at position 721 
where serotypes 9A and 9V are different. This is translated 
into the locations 18 534 and 18 852 in the 9A and 9V capsular 
sequences, respectively. The list of all differences used is given 
in the Table S1.

The reason for the translation is that this step of the algorithm 
takes advantage of the sensitivity of BWA MEM in aligning 
reads to near-identical locations in the reference. If there is a 
single location whose alignment contains more identities than 
all other locations, that ‘best match’ location will be chosen. 
Even a single nucleotide difference is sufficient for BWA MEM 
to consistently align reads to the proper serotype’s sequence, 
and so the read depths at those difference locations provide 
an accurate measure of the differences between serotypes. So, 
instead of performing a separate variant calling, mapping or 
de novo assembly to resolve serotypes, the computation of step 
1 computes ‘bin’ counts at these specific difference locations, 
and then this step compares the observed counts at those 
locations against the expected counts.

Since these locations are where the serotypes are genetically 
different, and alignment ‘bleed’ is not an issue, this step just 
computes depth ratios for each serotype and difference loca-
tion in a group, where OU/EU is used if EU is greater than 0, 
and OT/ET is used otherwise. The ratio for a serotype is the 
minimum of the computed depth ratios across the difference 
locations (if the serotype is present in the sample, each of these 
locations should have a non-zero read depth). Then, those 
ratios are summed, and serotype percentages are computed 
by dividing the serotype ratio by the sum of the ratios.

If the sum of the ratios is 0, this means that there is no read 
evidence distinguishing the serotypes in the group, and an 
ambiguous call like ‘09A/09V’ is made, with a factor level 
equal to the sum of the factor levels computed in step 2, for the 
serotypes in the group. If the sum is greater than 0, then the 
factor levels from step 2 (again, for the serotypes in the group) 
are reapportioned using the serotype percentages computed 
in this step. So, for example, if 09A and 09V had step 2 factor 
levels of 0.13 and 0.11, but the step 3 serotype percentages 
were 80 % 09A and 20 % 09V, then the factor levels would be 
changed to 0.192 for 09A and 0.048 for 09V (to maintain the 
09A/09V levels compared to all other serotypes, but reset the 
serotype-specific levels to the identified percentages).

Once the final factor levels are computed, they are converted 
to percentages by dividing each by the sum of all factor levels. 
Then, any serotype with a percentage less than 0.2 % is filtered 
out, and the percentages are recomputed using only the 
remaining serotypes. Those serotypes and percentages form 
the output calls produced by the software.

Data and software availability
The PneumoCaT serotype datasets can be accessed through 
the European Nucleotide Archive (ENA) under project 
PRJEB14267. The known mixture and replicate sample 
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datasets can be accessed through the National Center for 
Biotechnology Information (NCBI) Sequence Read Archive 
under project PRJNA561126. The software is freely available 
under an open source licence at https://​github.​com/​knight-
jimr/​serocall.
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