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Abstract 

As our epistemic ambitions grow, the common and scientific endeavours are becoming 

increasingly dependent on Machine Learning (ML). The field rests on a single 

experimental paradigm, which consists of splitting the available data into a training and 

testing set and using the latter to measure how well the trained ML model generalises to 

unseen samples. If the model reaches acceptable accuracy, an a posteriori contract comes 

into effect between humans and the model, supposedly allowing its deployment to target 

environments. Yet the latter part of the contract depends on human inductive predictions 

or generalisations, which infer a uniformity between the trained ML model and the 

targets. The paper asks how we justify the contract between human and machine learning. 

It is argued that the justification becomes a pressing issue when we use ML to reach 

‘elsewheres’ in space and time or deploy ML models in non-benign environments. The 

paper argues that the only viable version of the contract can be based on optimality 

(instead of on reliability which cannot be justified without circularity) and aligns this 

position with Schurz’s optimality justification. It is shown that when dealing with 

inaccessible/unstable ground-truths (‘elsewheres’ and non-benign targets), the 

optimality justification undergoes a slight change, which should reflect critically on our 

epistemic ambitions. Therefore, the study of ML robustness should involve not only 

heuristics that lead to acceptable accuracies on testing sets. The justification of human 

inductive predictions or generalisations about the uniformity between ML models and 

targets should be included as well. Without it, the assumptions about inductive risk 

minimisation in ML are not addressed in full. 
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1 Introduction 

By delivering exceedingly powerful results, Machine Learning (ML), and its most 

successful paradigm presently available, Deep Learning (LeCun et al. 2015; Schmidhuber 

2015), established itself as the focal point within the study of Artificial Intelligence (AI). 

The (seemingly) strong empirical results had emerged from the interplay between large 

volumes of available data and the continuous increases in computational resources, which 

reinvigorated the end-to-end generalisation learning by artificial neural networks. These 

rather recent developments continue to prompt all sorts of reactions. Some argue that 

they provide a renewed justification for the study of existential risks, which supposedly 

stem, among other things, from the hypothetical instances of AI such as Artificial General 

Intelligence (Sotala and Yampolskiy 2014) or from the largely disputed notion of 

Superintelligence (Bostrom 2014). Others are likely to feel that more practical concerns 

should dominate the study of consequences brought about by the exceedingly successful 

ML. Therefore, we observe a vibrant activity going on in AI ethics (Dignum 2018), in the 

study of transcending bias and achieving fair ML (Barocas et al. 2019), in explainable ML 

(Miller 2019), not to mention also the inquiries into safety and security of ML seeking to 

deliver robustness (Amodei et al. 2016). From a bird’s-eye view, aware of the possibility 

that both the near- and far-term outcomes of ML/AI might be unfavourable (cf. 

Yampolskiy 2019), we seek a rapprochement guaranteeing the philosophical and 

technical alignment of ML/AI with human intentions and needs, securing our future 

flourishing. 

Yet as we analysed the consequences, we lost track of varieties of assumptions in ML. 

They are hypotheses formed to justify that a ML model and some data would be together 

sufficient to achieve the desired aim. That is, learning generalisations which support 

inferences allowing the ML model to reliably perform the task at hand under various 

conditions. The assumptions reflect a variety of human epistemic viewpoints that inform 

how we reason about the plausibility/implausibility of machine learning in view of 

various empirical situations. Put differently, the assumptions are like a variety of hinges, 

each allowing for a different kind of learning, and thus serving as the nexus between 

anthropic and artificial. The hinges are where we put the inductive inferences and 

generalisations, which capture our expectations about the performance of ML models in 

different empirical situations. 

The hinges, and thus the Human-Machine Nexus, are presently overshadowed by the 

plethora of earlier mentioned research areas. Therefore, the paper seeks to ameliorate 

this lack of attention and explain why it has become desirable to bring some light over to 

this domain. The lack of attention is, however, only partially the result of a scholarly 

neglect. First, the accessibility of the assumptions is made difficult by the fact that the 

epistemology of machine learning still receives comparatively less attention than other 

areas. There are only few works attempting to provide an epistemological treatment of 

statistical learning theory (cf. Harman and Kulkarni 2007; Corfield et al. 2009; Corfield 

2010; von Luxburg and Schölkopf 2011; Spelda 2018), which, moreover, captures only a 

part of the story. Second, the recent history of ML has been dominated by an empiricist 

practice that derives estimates of performance from the a posteriori evaluation. More 

daunting problems connected to robustness of ML models under changing conditions (cf. 

e.g. Arjovsky et al. 2019) call this flavour of empiricism into question and provide a stage 
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for the renewed interest in varieties of assumptions in ML. Finally, the state-of-the-art 

deep artificial neural networks seems to defy classical results from statistical learning 

theory (cf. Zhang et al. 2017). The a priori guarantees (generalisation bounds) provided 

by the theory thus require further empirical qualifications (cf. Kawaguchi et al. 2019; 

Nagarajan and Kolter 2019). Though supposedly resolving the issue, the landscape of 

assumptions grows even more complex and becomes almost impenetrable to non-

experts. 

To advance understanding of varieties of human assumptions in ML, including their 

justification, the paper approaches the problem as a two-tier procedure. First, humans 

commit to assumptions, either inductive predictions or generalisations (first tier), which 

then enable ML models to learn generalisations (second tier) supposedly applicable 

beyond training data (the definitions of inductive prediction and generalisation are 

provided in Subsection 1.1). It is crucial to study the justification of the first tier human 

assumptions since they cause successes or failures of the trained ML models. Our 

contribution lies in showing what is the only viable option (Schurz’s optimality 

justification of the first tier assumptions; the link between justification of inductive 

predictions/generalisations and Schurz’s optimality, including its definition, is provided 

in Subsection 1.1) if we cannot justify that the human assumptions, inductive predictions 

or generalisations (first tier), can be considered reliable. 

By showing that varieties of assumption in ML (first tier) can be rendered as human 

inductive predictions/generalisations, the paper seeks a clearer picture that would 

emphasise the human role in ML and elucidate the true shape of the Human-Machine 

Nexus. The rest of the paper is organised as follows. Subsection 1.1 offers a formal 

definition of the assumptions problem. Section 2 discusses the factors that make the 

exposition of varieties of assumptions in ML a timely endeavour. Section 3 then provides 

an analysis of the assumptions, which is directed towards the goal of Section 4. Section 4 

outlines the distinction between the future reliability and present optimality of human 

inductive inferences and the consequence it has for ML in general and for ML in specific, 

epistemically challenging situations. 

1.1 The Formal Definition of the Assumptions Problem 

For the Definition 1.1 of inductive prediction and 1.2 of inductive generalisation, we rely 

directly on Gerhard Schurz’s formulations 1 and 2 respectively (2019, p. 2): 
 

1.1 Inductive prediction: r% of all so far observed Fs have been Gs. Therefore, with a 
(subjective) probability of approximately r%, the next F will be a G – and thus will be 
predicted to be a G, provided r is greater than 1/2 and F is the total evidence 
regarding the next observed individual. 
 

1.2 Inductive generalization: r% of all so far observed Fs have been Gs. Therefore, 
with high (subjective) probability, approximately r% of all Fs are Gs. 
 

Concerning the first tier (human) assumptions introduced above, Gs from Definition 1.1 

and 1.2, whose probability r is of concern to us, represent target environments that 

preserved uniformity with training/evaluation environments used to produce the 

deployed ML model. A genuine justification of either of the inductive inferences on Gs, 
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performed by humans according to Definition 1.1 or 1.2, would give us a chance to 

estimate the likelihoods of distribution shifts, which disrupt uniformities between 

training/evaluation and target datasets. 

Concerning the second tier (machine) inductive inferences, Gs from Definition 1.1 

represent correct predictions produced by a trained ML model on individual samples 

from a holdout (test set) measured by some loss function and decision threshold. Once all 

predictions on the holdout samples have been collected, r from Definition 1.2 becomes 

an approximation of the ML model’s generalisation performance according to the selected 

accuracy metric. 

 

Proposition 1: For the second tier r from Definition 1.2 (of any trained ML model) to hold 

for targets past the holdout, the first tier r, either from Definition 1.1 or 1.2, must hold as 

well. 

 

The first tier r reflects the level of support available to human predictions on (Definition 

1.1) or generalisations about (Definition 1.2) distribution shifts past the observed targets. 

Even though at the first tier humans infer on targets while at the second ML models infer 

on samples from targets, the problem remains the same: the justification of projections 

from observed to unobserved. This has two immediate corollaries. First, if the concern is 

with the justification, the functional distinction between human and ML inductive 

predictions or generalisations ceases to play any role. Second, in light of Proposition 1, it 

needs to be determined whether a non-circular justification of the first tier r (for both 

Definition 1.1 and 1.2) is possible for dynamic environments which cause distribution 

shifts. 

If statistical learning theory is used, which is the obvious starting point, the first tier r 

from Proposition 1 depends on probabilistic justifications which require samples to be 

either independent and identically distributed (Vapnik 1999) or exchangeable (i.e. ground-

truths must be invariant to permutations of the samples which are, however, no longer 

required to be independent and identically distributed, cf. Arjovsky et al. 2019). The 

former requirement, which underpins Empirical Risk Minimisation, presupposes that 

training, holdout, and target samples come from a single, yet not necessarily known, 

probability distribution (Vapnik 1999; as per Definition 1.1, the uniformity among targets 

is predicted because the first tier r, based on samples from a single distribution, does not 

support generalisations about distribution shifts). The latter requirement, which 

underpins Invariant Risk Minimisation, presupposes a mixture of multiple distributions 

(Arjovsky et al. 2019; as per Definition 1.2, the uniformity among targets becomes a 

generalisation because the first tier r, based on samples from multiple distributions, 

presupposes a limit to distribution shifts). Training, holdout, and target samples are no 

longer required to come from a single distribution and to be independent and identically 

distributed (ibid.). However, to satisfy exchangeability ground-truths underlying the 

mixture must remain invariant to permutations of the samples. Gerhard Schurz (2019, 

Chapter 4) showed that these probabilistic justifications, underpinning Empirical and 

Invariant Risk Minimisation, are inductive inferences. Therefore, using statistical learning 

theory to justify the first tier r from Proposition 1 generates a circle and thus a failure for 
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our purposes. More profoundly, as noted by Vladimir Vovk (2015, pp. 163-64), 

exchangeability (as well as the ‘independent and identically distributed’ requirement) 

represents a ground-truth itself. Ergo, in case of inaccessible/unstable ground-truths 

(‘elsewheres’ and non-benign targets), which do not remain invariant under 

permutations of samples (nor produce independent and identically distributed samples), 

a non-circular justification of the first tier r from Proposition 1 becomes impossible. 

However, the first tier r from Proposition 1 can be replaced with a meta-inductive 

evaluation of the first-order risk minimisation methods (candidate methods further) 

based on their past successes and failures recorded as uniformities and disuniformities 

among targets. Such a replacement will become independent of any ground-truth and can 

be acquired by proving that there is a long-run no regret risk minimisation strategy which 

can adapt to arbitrary distribution shifts. The strategy meeting such requirements is 

Schurz’s exponential attractivity-weighted meta-induction (eMI, 2019). Its optimality is 

defined strictly in relation to the presently available success records. This allows eMI to 

avoid the inductive inferences involved in the first tier r from Proposition 1 (Definition 

1.1 or 1.2) that cannot be justified under inaccessible/unstable ground-truths. Let us 

recap Schurz’s result to provide the definition of optimality and its relation to online 

learning with expert advice. 

Formally, Schurz’s eMI satisfies the same (short-run) upper bound on regret (the worst 

case deterioration of eMI’s predictive success rate on target uniformities compared to the 

maximal success rate of non-meta-inductive candidate methods) as Cesa-Bianchi’s and 

Lugosi’s exponentially weighted average forecaster (Schurz 2019, Theorem 6.9 (ii) and 

Cesa-Bianchi and Lugosi 2006, Theorem 2.3, pp. 17-20 respectively). Following Schurz 

(2019, Definition 6.4 for the class of weighted-average meta-induction; Section 6.6.2 for 

its version utilising exponential weights based on absolute successes of the candidate 

methods – 6.8 (i), also Schurz and Thorn 2020, Definition 9), for the round n + 1 eMI 

predicts a weighted average of the candidate methods’ predictions: 
 

∑  wn(Pi) ∙ predn+1(Pi)1≤i≤m

∑  wn(Pi)1≤i≤m

 

 

where m equals the number of candidate methods at the round n, predn+1Pi corresponds 

to a candidate method prediction for the round n + 1, and wn(Pi) to the weight (the regret-

based attractivity of Pi assigned by eMI) of that method in the round n defined as: 
 

eη ∙ absn(Pi)
 

 

where absn(Pi) equals the absolute success of that method accumulated during past 

rounds until the round n (value between [0, n]). Setting the time-varying exponential 

potential 
 

η = √8 ∙ ln(m)/(n + 1) 

 

yields the upper bound on eMI’s regret that holds uniformly over time for n ≥ 1, assuming 

a loss function which receives values between [0, 1] and remains convex in its first 
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argument (Schurz 2019, Theorem 6.9 (ii); Schurz and Thorn 2020, Theorem 10 (i); Cesa-

Bianchi and Lugosi 2006, Theorem 2.3): 
 

maxsucn − sucn(eMI) ≤ 1.78 ∙ √ln(m) /n  
 

Since, considering the candidate methods, we are dealing with a maximisation of the 

success rate max
1≤i≤m

absn(Pi)/n rather than with a minimisation of the cumulative loss 

min
1≤i≤m

Ln(Pi), as in Cesa-Bianchi’s and Lugosi’s (2006) Theorem 2.3, the upper bound on 

eMI’s short-run regret remains equivalent to the upper bound given by Cesa-Bianchi’s and 

Lugosi’s (2006) Theorem 2.3 (also cf. Schurz 2008, p. 298). In the long run, eMI transforms 

into a no regret prediction strategy (Schurz 2019, Theorem 6.9 (iii)): 
 

lim
n→∞

sup(maxsucn − sucn(eMI)) ≤ 0 

 

and becomes the universally optimal evaluation procedure of first-order risk minimisation 

methods free of any dependence on ground-truths and other presuppositions about 

uniformities among targets. Therefore, it can replace the first tier r from Proposition 1 

and provide a solution to the problem of assumptions formally defined in this subsection 

and fully elaborated in the rest of the paper. 

2 Elsewheres in Space & Time and Non-Benign Environments 

Varieties of assumptions in ML become crucial if there is a likelihood that the training and 

evaluation of a ML model might incorrectly capture the phenomena which form the 

subject of the learning. In these situations, we rely on varieties of uniformity assumptions, 

which seek to predict that the next environments/datasets will be sufficiently like the data 

used to train/evaluate the ML model, thus providing an epistemic justification for its 

usage. According to the range afforded, these assumptions are either inductive 

predictions or generalisations (first tier). The former expects the ML model to be reliable 

in domains (immediately) adjacent to the training/evaluation data (first tier prediction), 

the latter presumes robustness across the whole range of domains that might contain the 

phenomena addressed by the learning in various contexts (first tier generalisation). In 

this sense, machine learning is as much a human endeavour as it is the effort to devise 

increasingly self-directed machine learning of generalisations. Therefore, the human part 

of the Nexus is equally, if not more, important as the progress of its artificial counterpart. 

This issue is most pressing in situations where the human uniformity assumptions remain 

insufficiently justified. By applying machine learning in these situations, ML models 

become exposed to distribution shifts between training/evaluation and target 

(deployment) data. The gap might diminish robustness of the ML models and produce 

inaccurate results. There are two particularly sensitive areas, which call for a clear-cut 

exposition of varieties of assumptions that constitute the Human-Machine Nexus. The first 

one is the application of ML models to reach elsewhere in space and time. In this case, we 

extend our reach by training ML models on noisy, incomplete or proxy data in order to 

enable empirical reconstructions of phenomena predicted by our theories (those 

phenomena are, however, directly unobservable). Recent examples of this practice can be 



7 

 

observed in astrophysics (Bouman et al. 2016; Fish et al. 2016) or geosciences (Haywood 

et al. 2009; Karpatne et al. 2018). The second area comprises deployments of ML models 

to non-benign environments populated by bounded and/or unbounded adversaries, who 

generate data aimed to maximise distribution shifts, thus diminishing robustness of the 

deployed ML models (Laskov and Lippmann 2010; Barreno et al. 2010; Amodei et al. 

2016, pp. 16-20). The rest of this section intends to briefly introduce the most revealing 

applications of ML in these two areas allowing to build a connection to varieties of 

assumptions in ML, which will be analysed in Section 3. 

2.1 Elsewheres in Space and Time 

The first area is defined by using machine learning to reconstruct unobservable 

phenomena, which are distant from our present either in space or time. Such a practice 

seeks to extend reference frames of spatiotemporally situated observers by incorporating 

phenomena from remote epistemic locations. Generally, inductive inferences are based 

on inferring from the observed to the unobserved, regardless whether the unobserved 

lies in the past (i.e. retrodictions and generalisations [about the past]), in the future (i.e. 

predictions and generalisations [about the future]), or ‘elsewheres’ (inferences about 

spatially distant locations). The data that can be obtained from such remote epistemic 

locations are (extremely) sparse and noisy, in some cases representing mere proxies. As 

a result, the reconstructive tasks face empirical underdetermination. It produces an 

inverse and ill-posed learning problem described by a one-to-many relation between 

many possible phenomena fitting the available data. By training on some synthetic or 

natural data, both coming from the observer’s present, the applied ML model seeks to 

learn an inductive schema capable of retrodiction in order to reconstruct the 

unobservable phenomenon. The training procedure seeks to establish prior assumptions 

restricting the set of possible phenomena that can be reconstructed from the available 

data (for visual data e.g. Zoran and Weiss 2011). The ML model reconstructs the 

phenomenon so that it is likely under the prior assumptions (ibid.). The assumptions are 

derived from synthetic or local data, in both cases reflecting our acquaintance with the 

present spatiotemporal location. 

Whether we prefer to base the assumptions on synthetic data, stemming from the 

prevailing theoretical persuasion about the phenomenon, or natural data (e.g. natural 

scenes if reconstructing images) remains beside the point. Rather, the critical focus lies 

on a different kind of assumption. Namely, how we justify the inductive inference 

predicting that there will be an identical, or sufficiently close, uniformity, as that between 

the training and evaluation data, in deployment? This uniformity warrants our belief that 

if a ML model exhibits a decent performance on the held-out evaluation data, it learned a 

generalisation. Yet the default form of this ML assumption (cf. Vapnik 1999), i.e. 

independent and identically distributed (i.i.d) phenomena sampled from a fixed 

distribution, does not furnish an awful lot of leeway. First, without any restrictions 

imposed on the minimisation of empirical risk the present-day ML models incorporate 

highly predictive, yet non-robust, patterns which are exceedingly likely to exist only in the 

training-evaluation pair (cf. Ilyas et al. 2019). This makes the attained generalisation 

(second tier) brittle, the furnished inferences unreliable, and our uniformity assumptions 

(first tier) unwarranted and severely limited. Second, contrary to our inductive prediction 
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there might be no uniformity because the held-out evaluation dataset and the next, i.e. 

deployment environment (target dataset), will be disjoint due to dataset shifts. These 

shifts are similar to dataset and covariate shifts that might affect any presumed uniformity 

between training and held-out validation datasets (cf. Quiñonero-Candela et al. 2009).  

When speaking about dataset shifts further on, we mean changes to the joint distribution 

of inputs and outputs, covariate shifts on the other hand signify changes in the input 

distribution only (Quiñonero-Candela et al. 2009, p. XI). Considering finite datasets and 

disposing of prior uniformity assumptions, the only guarantee that can be provided is 

relative, i.e. a bound on the difference between the optimal ML model error and a baseline, 

given the training and evaluation (held-out) dataset (Ben-David 2009). Such a bound will 

remain loose and could be always superseded by knowledge about any kind of uniformity 

between the two datasets (cf. Ben-David 2009, p. 82). 

Facing dataset shifts and generalisations entailing highly predictive yet non-robust 

regularities, the only empirical evidence about uniformity can be derived a posteriori 

from the evaluation (test) set error confidence interval. Such evidence for the uniformity, 

however, still depends on the human assumption that data generating processes 

underlying deployment environments/data will be sufficiently like the process which 

produced the training and evaluation (test) data. For learning to be successful and 

generalisation (second tier) applicable beyond evaluation (held-out) data, it is necessary 

to inductively predict or generalise (first tier) that distribution shifts, causing changes to 

data generating processes in a given domain, are sparse and uniformities abundant. 

Without this prior human inductive assumption, any generalisation learning becomes a 

subject to No Free Lunch theorem, which makes its performance (i.e. accuracy) a priori 

indistinguishable from alternatives (Wolpert 1996). 

Under Empirical Risk Minimisation (ERM), which pursues an unconstrained 

minimisation of error (i.e. incorporating also non-robust regularities) over i.i.d training 

data (Vapnik 1999), we are left with no assumption-free a priori guarantees that could 

underpin our inductive prediction regarding uniformity between the evaluation and 

upcoming data (deployment environments). The generalisation capability of a ML model 

is measured in terms of its error given as the accuracy gap between the evaluation (held-

out test) and training data. Under ERM, any justification of a human inductive inference 

on the uniformity between the evaluation and deployment environment/data depends on 

the i.i.d phenomena, as presumably observed in the training data, and ‘sparse distribution 

shifts’ assumptions, not on the generalisation gap of the ML model itself, provided that 

training minimised the generalisation gap to the greatest possible extent. Such a 

dependence can turn into a serious epistemological issue if the uniformity-establishing 

inductive inferences (predictions, generalisations – first tier) involve unobservable 

elsewheres in space and time where we cannot establish the ground-truth. 

The vulnerability stems from an unfavourable signal-to-noise ratio afflicting the 

reconstructive tasks, which renders the problem ill-posed. Recent efforts to solve such 

tasks by ML include novel imaging methods designed to harness data acquired by Very 

Long Baseline Interferometry (VLBI, Barmby 2019). VLBI records radiation emitted by 

distant celestial bodies by several geographically separated radio telescopes, achieving an 

angular resolution impossible for a single device (for novel imaging methods e.g. CHIRP 

[Continuous High-resolution Image Reconstruction using Patch priors], Bouman et al. 
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2016; Fish et al. 2016). Meeting VLBI and the possibility of processing extended 

emissions, traditional non-ML reconstructive methods begin to struggle due to sparsity of 

the data and the level of noise within (ibid.). A possible solution lies in learning a prior 

from locally available synthetic or natural images, segment the underdetermined image 

under reconstruction into patches, and retrodict an image in which all the patches are 

likely under the prior yet aligned with the incomplete and noisy VLBI data (cf. Zoran and 

Weiss 2011; Bouman et al. 2016; Fish et al. 2016). The resulting image shows a 

retrodicted spatiotemporal elsewhere, which is furnished by a generalisation acquired 

from synthetic or local data. The pressing epistemological question remains. What 

validates our assumption that the uniformity between the training and evaluation (test) 

data will be preserved also between the latter and target (deployment) 

environments/data? More precisely, what kind of human inductive 

prediction/generalisation, underpinning the feasibility of ML inductive risk minimisation, 

can justify existence of such a uniformity? We will return to this question in Section 3. 

Similar epistemological puzzles affect also efforts which use ML models to reach 

unobservable elsewheres in time. In geosciences, inquiries into past states of the Earth 

system involve retrodictive inferences furnished by ML generalisations learned from 

noisy proxies and/or synthetic data (Karpatne et al. 2018). For example, efforts to paint a 

future picture of the Earth system shaped by anthropogenic changes often involve 

reconstructions of climates which occurred in the planet’s deep past, i.e. paleoclimate 

reconstructions (e.g. Haywood et al. 2009). As with the unobservable elsewheres in space, 

elsewheres in time reach the present only as traces deposited in suitable carriers, e.g. 

deep ice cores, tree rings, corals or lake sediments (Karpatne et al. 2018). The 

reconstructions are thus empirically underdetermined by paucity of data, ground-truths, 

and noise affecting the evidence (ibid.). As a result, any ML-based approach to 

paleoclimate reconstruction will become retrodictive, i.e. inverse and ill-posed. From this 

setting emerges the epistemically adverse one-to-many relation between evidence and 

many learnable generalisations (second tier), which furnish the inferences to the 

unobservable past. The relation can be narrowed, and its adverse effects attenuated, only 

by assuming a uniformity between the present and elsewheres in time. In specific terms, 

such an assumption depends on uniformitarianism, positing identity between past and 

present geological processes (Haywood et al. 2009, p. 5), or more deeply on presentism 

arguing that interpretations of the past can be based on the observable present (cf. 

Oreskes 2013). In general terms, these uniformity assumptions depend on human 

inductive predictions (retrodictions) and generalisations about the present. 

When using ML models to reach elsewheres in space and time, the domain-specific 

uniformity assumptions meet presumed uniformities between training and evaluation 

(held-out) data, and uniformities between the latter and upcoming target/deployment 

data. Yet the epistemological puzzle persists. What justifies our assumption that the 

supposed uniformity between the training and evaluation (held-out) data will be 

preserved also between the latter and target (deployment) environments/data? Section 

3 will analyse varieties of human inductive assumptions in ML, above all carefully 

unpacking their limits, which were suggested already in this subsection. The upshot will 

entail that despite the existence of domain-specific uniformity assumptions we should not 

treat ML generalisations about elsewheres as reliable but merely optimal regarding the 
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observable present. Mere optimality stems from the lack of ground-truths that could 

anchor human inductive predictions/generalisations. In turn, not reliability but mere 

optimality underlies the uniformity assumptions (first tier) which facilitate ML of 

generalisations for the retrodictive reconstructions of elsewheres in space or time. 

2.2 Non-Benign Environments 

The second issue threatening human inductive predictions/generalisations about 

uniformities that facilitate ML lies in adverse environments. Distribution (dataset) or 

covariate shifts leading to disjoints instead of uniformities may come not only from 

reaching elsewheres in space or time but can be also caused by adversaries. While in the 

former case inductive inferences to uniformity lack ground-truths, in the latter situation 

we lack guarantees regarding their stability. Two basic types of attacks against existing 

uniformities can be defined. The first type involves adversaries who choose to attack the 

uniformity between training and evaluation (held-out) data (cf. Barreno 2010, p. 127). 

Depending on the practical limits of the adversaries, the outcomes range from altering the 

uniformity, so that ML generalisations accommodate erroneous inferences, to complete 

breakdowns of ML caused by dataset or covariate shifts precluding learning and/or 

evaluation (cf. Laskov and Lippmann 2010). Considering the worst-case scenario in the 

supervised learning context, training and evaluation (held-out) data would become 

disjoint, as if sampled from two different distributions (i.e. statistical independence), and 

labels (the ground-truth) would become independent of the training/evaluation data. 

Such a scenario breaches the epistemic warrant of any uniformity, as the underlying 

human inductive predictions/generalisations cannot discern an a priori assumption that 

would facilitate reliable learning. The consequences become identical to the assumption-

free investigation of the off-training set error (Wolpert 1996) because in neither case 

there are a priori (accuracy) distinctions among the constructible ML models (cf. ibid.). 

The first type of attack establishes a basis for security and safety concerns over ML. The 

second type of attack reveals the instability of ground-truths under certain uniformity 

assumptions. The instability is caused by adversaries who attack deployed ML models and 

break the uniformity between evaluation (held-out) and target (deployment) data. The 

underlying human inductive predictions/generalisations fail because the adversaries 

exploit ERM’s assumption of independent and identically distributed phenomena 

sampled from a single distribution. Founded on the i.i.d assumption, ERM-based ML 

cannot distinguish between robust and non-robust regularities. Due to being highly 

predictive (but unstable), the latter kind of regularity contributes to the minimisation of 

error of the ML model during training. As a consequence of providing a signal for 

improving the accuracy of the model, non-robust regularities are not ignored during 

learning (cf. Ilyas et al. 2019). The crucial point here is that non-robust regularities cannot 

be covered by human inductive inferences about the uniformity between the evaluation 

(held-out) and target (deployment) data. The reason for this lies in the features of the data 

that establish the non-robust regularities. They are incomprehensible to humans and as 

such their existence will be most likely confined to the training-evaluation data pair (cf. 

ibid.). Such a conflation between the two types of regularity offers opportunities for 

creating ‘adversarial examples’ (i.e. perturbed samples, Goodfellow et al. 2018; Ilyas et al. 

2019) designed to collapse the uniformity between the evaluation (held-out) and target 
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(deployment) data. The adversary seeks to draw the examples so that they either exploit 

the non-robust regularities, creating samples that manipulate non-robust patterns to 

malicious ends (e.g. misclassification of the perturbed samples), or draws samples from a 

distribution that breaks the uniformity altogether, rendering the ML model under attack 

(entirely) unreliable (cf. ibid.). In both cases, the adversary changes the target 

(deployment) environment in a way that seeks to negate the human inductive inference 

about the uniformity which facilitates reliable use of the ML model. 

Considering varieties of assumptions in ML, the instability of ground-truths in non-

benign environments manifests itself as the agents’ attempts to discern a position 

between the two following extreme scenarios (cf. Gilmer et al. 2018, pp. 17-8). First, the 

inductive inferences might take the naïve form of predicting adversary-free deployment 

environments (ibid.). This means fortuitously stable ground-truths, which might 

purchase, even under ERM’s i.i.d assumption, certain predictive mileage regarding 

uniformity of the evaluation (held-out) and target (deployment) data. However, the 

instability will quickly return with dataset (distribution) shifts, since under ERM the ML 

model incorporated non-robust regularities which make the human inductive inferences 

about the uniformity unreliable. Second, the human inferences might also reflect the 

worst-case scenario where the target (deployment) environment hosts an unknown 

number of unbounded adversaries (cf. ibid.). In this situation, it is necessary to expect that 

the evaluation (test) and target (deployment) data will be disjoint. The possibility of 

unbounded adversaries renders any prior uniformity assumptions equally uninstructive 

to guide the selection of a fitting, a priori inductive inference about the ground-truths 

stability. The situation then becomes subsumed under No Free Lunch theorem. 

The upshot of the worst-case scenario entails that despite the possibility of an a priori 

inference (first tier) to a uniformity between the evaluation and target data we should not 

treat ML generalisations deployed in adverse environments as reliable. Instead, the 

human inductive predictions/generalisations to uniformity can be epistemically justified 

as merely optimal. In situations dominated by inaccessible or unstable ground-truths, 

optimality turns to be a relational notion. Elsewheres in space and time become furnished 

with help of ML generalisations which depend on the uniformity between the evaluation 

and target data. By noise, sparsity, and inaccessibility of the latter, such a uniformity, 

facilitating ML of generalisations, cannot be epistemically justified as reliable. It is merely 

optimal in relation to the observed present as captured by the uniformity between the 

training and evaluation (held-out) data. The human inductive justification of ML models 

deployed in non-benign environments should be identical. The presumed uniformity 

between evaluation and target data remains unstable due to bounded and unbounded 

adversaries. The human inductive prediction/generalisation to uniformity thus lacks 

future reliability. As a result, the uniformity, and inductive inferences which underlie it, 

remain merely optimal to our present model of the adversaries. The assumptions of the 

model itself are located somewhere between the two extreme scenarios mentioned above, 

depending on the prior knowledge the modeller has on the likely capabilities of the 

adversaries. This knowledge might be of course ill-informed and disproportionately 

biased to either of the extremes further showing the difference between reliability and 

optimality justification. 



12 

 

The paper now proceeds to show that the dilemma of justifying inductive inferences, 

which facilitate ML of generalisations and their uses in target domains, remains an open 

problem rendered clearer by the concerns over elsewheres and non-benign 

environments. The dilemma is unpacked by recasting technical assumptions in ML as 

either human inductive predictions or generalisations about uniformities in data, i.e. 

about inductive inferences to a low likelihood of distribution (dataset or covariate) shifts. 

3 Varieties of Assumptions in Machine Learning 

In the present circumstances, machine learning becomes impossible if not interconnected 

with human inductive inferences. Gauged by positive performances of ML at an ever-

growing number of tasks, human intelligence seems capable to discern fitting ML 

architectures, effective optimisation methods, and other hyper-parameters (cf. 

Kawaguchi et al. 2019, pp. 15-6). By combining a priori assumptions with the a posteriori 

evaluation, humans can work out efficacious heuristics which lead to ML models that 

generalise beyond the sample constituting the training data. A low error on the held-out 

evaluation data indicates a successful minimisation of empirical (inductive) risk. The 

human inductive schema, which underpins the heuristics, represents an immediately 

obvious dimension of the Human-Machine Nexus. Planning for a deployment, especially 

in situations of inaccessible or unstable ground-truths, the second, arguably more 

important, dimension of the Nexus comprises inductive inferences to a uniformity 

between the evaluation (held-out) and target (deployment) data. Without this uniformity, 

we lose any guarantee that the ML generalisation acquired by learning from the training 

data still minimises empirical (inductive) risk in target environments. Once deployed, the 

success of any ML model depends on a particular a priori assumption about the 

minimisation of empirical risk and its correspondence to the empirical realities of target 

environments; or more importantly, in the inaccessible/unstable ground-truths 

situations, the correspondence to our domain-specific suppositions about the targets. At 

surface level, the correspondence seemingly justifies that an observed uniformity 

between the training (evidence) and held-out (evaluation) data can serve as a basis for 

human predictions or generalisations about the relation of the evaluation set to target 

environments. Any such human inference will lack the epistemic justification if we fail to 

unpack the assumptions which control the individual flavours of the empirical (inductive) 

risk minimisation utilised in ML. 

The rest of the section pursues this goal by comparing the already mentioned Empirical 

Risk Minimisation with recently proposed Invariant Risk Minimisation (IRM, Arjovsky et 

al. 2019). The paper will show that the effort to justify the second anthropic dimension of 

the Nexus, i.e. human inductive inferences to uniformity, remains unsatisfied. The 

situation is rendered clearer, yet also worse, for targets based on inaccessible/unstable 

ground-truths, which comprise elsewheres in space and time and non-benign 

environments. The issue at hand is a manifestation of Hume’s Problem of Induction 

(1739/1978). Therefore, a recently proposed optimality-based solution (Schurz 2008; 

2019) will be used to sketch the epistemic limit of the Human-Machine Nexus. 
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3.1 Empirical versus Invariant Risk Minimisation 

Under ERM, ML models take in patterns existing in the training data, i.e. features, that 

contribute to minimisation of the loss function which describes the task at hand (cf. 

Vapnik 1999, pp. 988-9). In the most straightforward, supervised learning case (e.g. 

pattern recognition), ERM-based models incorporate any data features which are 

correlated with the training data labels (ground-truth) and thus facilitate minimisation of 

the models’ classification loss (cf. ibid.). The aim is to minimise the risk of predicting 

incorrect class labels for samples coming from the held-out (evaluation) dataset. 

Without any restriction as to which data features to include in the model’s 

representations, the attained minimisation of empirical (inductive) risk will depend on 

two kinds of features. Apart from the robust kind, supposedly aligned with human 

perception (e.g. cf. Kaur et al. 2019), the model will also incorporate highly predictive yet 

non-robust features, which are incomprehensible to humans (cf. Ilyas et al. 2019). Not 

only the latter kind invites adversarial examples (see above; created by flipping the non-

robust features to cause erroneous predictions, ibid.), it also makes the human predicted 

uniformity between the held-out and target data dependent on features which are 

incomprehensible or, even worse, imperceptible to humans. As a consequence, ERM 

requires a fixed (unknown) distribution generating independent and identically 

distributed training, evaluation, and target samples, and a fixed (unknown) conditional 

distribution producing labels for those samples (Vapnik 1999, p. 998)2. 

This means that the human inductive inference underpinning ERM presupposes 

uniformities rather than disjoints. Confronted with dataset and covariate shifts caused by 

inaccessible/unstable ground truths, ERM may seem divorced from the real-world 

dynamics. Therefore, ERM can be justified only by understanding the human inductive 

inference, in this case a prediction, which underpins it. Despite the likely dynamics and 

variance of target environments, the human predicts that the target data (environment) 

will comprise solely i.i.d samples coming from the distribution which generated the 

training and held-out (evaluation) data. Such an inference presupposes a remarkably 

induction-friendly world where the human becomes justified to count on the 

extraordinary version of uniformity required by ERM. To reconcile this assumption with 

real-world dataset/covariate shifts, possibly in target environments lacking 

accessible/stable ground-truths, the human needs to treat the ML-enabling inductive 

inference as mere prediction. A prediction to uniformity between the held-out 

(evaluation) data and a single target environment (data) which comes immediately after 

the former (held-out) without any change in the underlying data generating process. A 

stronger inference, e.g. a human inductive generalisation entailing more than one target 

environment, cannot be justified. Not only because ERM, treated as an inductive principle, 

does not approximate the observed nature of our world, but also because ERM represents 

an assumption of local prediction methods (cf. Schurz 2010, pp. 268-9). As such, ERM’s 

reliability depends on an empirical presupposition that cannot change without also 

voiding ERM’s epistemic warrant provided as any justification of the underlying human 

inductive prediction which facilitates ML (e.g. a uniformity among some material facts, cf. 

Norton 2003). 
 

2 ERM depends on further assumptions, which are unrelated to the concern over the uniformity between held-out and target data, and deal with the 

justification of generalisation bounds for machine learning (Vapnik 1999). 
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Thus, the Human-Machine Nexus based on ERM becomes ill-suited to be applied in 

dynamic environments, and especially in those dominated by inaccessible/unstable 

ground truths. The reason for this lies in the human part of the Nexus. Seeking to satisfy 

ERM’s requirements, the human cannot justify reliability of the ML-enabling inference in 

more than just a few local, and thus predictable, target environments. In a bid to address 

this issue, Invariant Risk Minimisation was introduced (Arjovsky et al. 2019). 

IRM considerably relaxes the ERM’s requirement of i.i.d training, evaluation, and target 

samples drawn from a fixed distribution. IRM presupposes that the training/evaluation 

samples span a set of diverse target environments, each underlaid by a different data 

distribution (ibid.). Except for invariant relations between labels and their corresponding 

phenomena, the training, evaluation, and target environments (data) might be disjoint. 

The lack of uniformity can be result of disparate conditions in individual environments. 

The phenomena, whose labels are predicted by an IRM-based ML model, might be 

captured at different times and/or locations, or could result from interventions shifting 

the underlying data generating process (e.g. in the case of visual pattern recognition, an 

object on a variety of non-uniform backgrounds, cf. Arjovsky et al. 2019, p. 2). 

Unlike the ERM-based ML, incorporating any data feature correlated with the labels, 

the IRM-based ML includes only features which remain invariant across the environments 

and facilitate minimisation of the model’s loss function (i.e. classification loss). Compared 

to ERM, IRM, as a principle of inductive risk minimisation, encourages learning only data 

features which remain stable across the full range of training environments (Arjovsky et 

al. 2019, pp. 5-9). The rest needs to be discarded, even if contributing to the risk 

minimisation locally (i.e. on a particular training data [environment]). Otherwise, the 

across-environment uniformity would become threatened once again by highly predictive 

yet non-robust features, evading human comprehension, and thus leaving the human 

inductive inference to uniformity vulnerable. The IRM-based ML achieves invariance if 

the trained predictor, a ML model producing labels for the observed phenomena (a 

classification task), becomes simultaneously optimal for all training environments/data 

(cf. Arjovsky et al. 2019, p. 5). Practically, this is achieved by finding a favourable trade-

off between the predictive optimality across all environments and a local optimality in 

individual environments separately (IRMv1, cf. ibid.). The predictive optimality is 

attainable solely in virtue of the disjoints (variability) among the individual training 

environments. Nonetheless, they are still unified by the invariant phenomenon-class label 

dependency, which holds across the environments and the IRM-based ML models seek to 

capture it. It is the hope and aim of IRM that by learning invariances, holding across a 

sufficiently rich landscape of environments, the ML models would be able to robustly 

generalise about yet unobserved targets containing the captured invariant dependencies. 

The human inductive inference underpinning the most expansive interpretation of IRM 

differs from that of ERM. Relying on diverse sets of training data (environments), and 

invariances holding across, the human inference to the uniformity between the held-out 

(evaluation) data and target environments assumes the form of an inductive 

generalisation. Its justification relies on the fact that the supposed uncovered invariance, 

which underpins the generalisation (first tier), will remain stable in possibly all the so far 

unobserved target environments containing the phenomenon-class label dependency, i.e. 

the supposed invariance. Epistemologically, Arjovsky et al. 2019 base their argument for 
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stability on the supposed causal nature of the phenomenon-class label dependency. While 

this is far from uncontested (cf. Kilbertus et al. 2018), for justifying the human inductive 

inference underpinning IRM such a manoeuvre does nothing at all as systematically 

demonstrated for the first time by Hume (i.e. induction cannot be justified by causality, cf. 

Schurz 2019, pp. 5-6). Rather, the justification of such a human inductive generalisation 

depends on the assumption that the observed relative frequency of what is presumably 

an invariance, i.e. a phenomenon-class label dependency as discerned across the training 

environments, is close or will uniformly converge to the relative frequency limit, i.e. will 

not keep randomly oscillating. If by applying IRM to the available training sets, featuring 

the phenomenon-class label dependency in different empirical settings, the ML model 

cannot reach the limit, the attained invariance becomes bogus and divorced from the 

human inductive generalisation. The limit, and thus invariance, cannot be reached unless 

the observed variance among the training sets supports it. A negative outcome is expected 

when some of the empirical settings, featuring the phenomenon-class label dependency 

in radically different ways, are missing from among the training datasets. The 

incompleteness then lowers the likelihood that the predictor is simultaneously global and 

local Bayes optimal with respect to the target environments. Whether IRM can in fact 

compensate for dataset and covariate shifts depends on the human inductive 

generalisation conjecturing that the phenomenon-class label dependency in the target 

environments will stay within the bounds of the so far observed variance, hence yielding 

an invariance. Any attempt to justify such an inductive inference in situations of 

inaccessible/unstable ground-truths, i.e. elsewheres in space and time and non-benign 

environments, will face insurmountable obstacles. 

The difficulties, however, stem only partially from empirical matters. As in case of ERM, 

IRM still represents a local prediction strategy. IRM, however, seeks to expand its range 

by enumerating the phenomenon-class label dependency across various empirical 

settings with the aim of attaining invariance as the relative frequency limit of the 

underlying dependency. Therefore, the human generalisation to the uniformity between 

held-out (evaluation) and target environments can be justified only if it is possible to 

reach, by enumerating the dependency at the object-level, the limit of variance and thus 

discern an invariance. This approach to justifying inductive inferences follows 

Reichenbach’s pragmatic justification of induction (Reichenbach 1949, pp. 469-82). Here, 

the core of IRM, that is the enumeration of the phenomenon-class label dependency across 

diverse environments, is represented by the straight rule (cf. ibid.). If there are discernible 

relative frequency limits, there are uniformities, the world is thus induction-friendly, and 

the straight rule leads to justifiable human inductive generalisations. If the opposite is 

true, human inductive generalisations to uniformities tend fail (cf. ibid.), thus bringing 

down IRM as well. This train of reasoning underpins the justification of IRM as well, only 

here it is assumed that relative frequency limits prevail, uniformities are abundant, and 

IRM-based ML models will thus achieve phenomenon-class label invariances during 

training. This clearly creates a circle which justifies the IRM-facilitating inductive 

inference by yet another inductive inference. The straight rule avoided such an outcome 

by remaining agnostic over the ultimate future reliability of induction (cf. ibid.). 

Criticisms of Reichenbach’s approach are profound as well as many, and arguably best 

summarised in Schurz’s works on the optimality of meta-induction (Schurz 2008; 2019, 
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pp. 81-5). Conceding to Hume’s objection against a non-circular justification of the future 

reliability of induction, Schurz showed that at the meta-level, i.e. induction applied to the 

accessible predictive methods, induction remains optimal (ibid.). Schurz proved that from 

the present point of view we are justified to prefer induction over other predictive 

methods because meta-induction always selects the best available prediction method in 

the long run, and induction performed better than any non-inductive method in the past 

(ibid.). Schurz thus frustrated the attempt to prove the optimality of induction at the level 

of object-induction (and the reliability of object-induction as well), which Reichenbach 

implied while responding to some of the objections to the straight rule (ibid.). Because 

Schurz’s justification of the object-level induction can be provided only a posteriori, and 

only in terms of its present optimality, the a priori future reliability of the human inductive 

inferences which underpin IRM, and by extension also ERM, cannot be justified. Yet the 

importance of Schurz’s result is unmatched not merely because it provides a non-circular 

justification of object-induction by proving the optimality of meta-induction in all possible 

worlds (hence breaking the circularity). Without the optimality of meta-induction, one 

might argue that ERM/IRM, or in fact any other approach to the ML-based minimisation 

of predictive risk, could be equally justified by clairvoyant predictions/generalisations. 

These non- or even anti-inductive inferences would pick up the training environments, 

which maximise the uniformity with targets, by an inscrutable supernatural inspiration. 

Besides showing some of the difficulties which affect the epistemic justification of the 

Human-Machine Nexus, our ability to prove merely the present optimality of induction 

has also a practical side. The latter comes plainly forward if we consider the Nexus in 

situations defined by inaccessible/unstable ground-truths. 

4 The Contract between the Human and Machine Learning 

The present-day Human-Machine Nexus is based on a fragile contract (cf. Bottou 2015). 

After applying some heuristics which enable training of an ML model, its generalisation 

capability, i.e. the accuracy at a given task, is established by testing the model on an 

evaluation dataset. If the model reaches an acceptable error, an a posteriori contract 

between the human and the ML model comes into effect and constitutes an instance of the 

Nexus. The validity of the contract derives from that specific evaluation set and is 

guaranteed to hold in the future only if there is a uniformity between the evaluation and 

target data, i.e. distribution shifts are unlikely occur. By assuming a fixed distribution, this 

presupposition is problematic in general and perhaps indefensible if the targets comprise 

inaccessible/unstable ground-truths. These circumstances create a peculiar situation 

concerning the justification of the contract. We cannot make the contract reliable because 

human inductive inferences suffering from Hume’s Problem can only create ML models 

which in turn suffer from Wolpert’s No Free Lunch theorem. Therefore, the contract is 

intrinsically fragile, and the Nexus can only produce local prediction methods one at a 

time. Their justification should be thus based on a contract based on optimality rather 

than on reliability. 

An optimal local predictive method is one which achieves the best possible 

acquaintance with the presently available states of affairs. Imagine, for a moment, the 

Human-ML Nexus as a meta-inductive enterprise over globally available objective success 

records of (empirical/invariant/etc./) risk minimisation (as in Schurz 2008; 2019 only 
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limited to ML-based local prediction methods). Every a posteriori result of the risk 

minimisation by an ML model evaluated on a test set, up to now successful or unsuccessful 

in target environments, would update the success records. To select the presently optimal 

local predictive methods, humans would simply need to follow Schurz’s strategy of 

attractivity-weighted meta-induction over the success records, which is provably optimal 

in all possible worlds (ibid.). It could be argued that by following a single experimental 

paradigm (train/test splits), whose results for ML model/task pairs are published in 

publicly available accuracy leaderboards (i.e. success records), this is already the case. 

However, for reasons associated with the availability of records of successful target 

deployments the whole affair is likely better captured by the local version of meta-

induction (Schurz 2012). 

From the formal point of view, Schurz’s attractivity-weighted meta-induction, 

producing exponentially weighted averages of the predictions of candidate local methods 

(Schurz 2019, pp. 138-145), remains universally optimal because it approximates the 

maximal long-run predictive success of arbitrarily unreliable methods (ibid.). In 

situations where we cannot gauge the local methods’ reliability, following advice of the 

attractivity-weighted meta-inductivist can never deteriorate but only improve the local 

method selection process. Even if all candidate local methods were arbitrarily unreliable, 

which cannot be detected a priori, the meta-induction-based method selection is 

guaranteed to identify the best among such deceivers, because its attractivity-weighted 

average predicted in every round approximates the deceivers’ maximal success in the 

long-run and can be used to determine which local method got closest to it. In terms of 

practical recommendations, establishing ML leaderboards of local methods’ success 

records should be widely encouraged, as the epistemic power of the attractivity-weighted 

meta-induction increases with a decreasing portion of targets where the success records 

remain private. Such an empirical practice remains beneficial even if facing 

inaccessible/unstable ground-truths3, i.e. noisy, incomplete, proxy data or data generated 

by adversaries, because the attractivity-weighted meta-induction approximates the 

maximal long-run predictive success of arbitrarily unreliable methods. 

There is, however, a hidden side to optimality-based contracts, which becomes relevant 

if inaccessible/unstable ground-truths take the centre stage. Optimality-based contracts 

depend on a posteriori updates of the success records that determine which option, i.e. 

the combination of a risk minimisation approach, training data, a ML model and its 

hyperparameters, to follow further considering the changes observed in the target 

(deployment) environments. Because the updates arrive delayed, optimality-based 

contracts can work only with the presently available past success records. In case of ML-

based reconstructions of elsewheres in space and time, reachable only by sparse, noisy or 

proxy data, any success depends on local and/or synthetic data, which constitute the 

uniformity between training and evaluation datasets and thus replace the missing 

updates from inaccessible ground-truths. In case of non-benign environments, 

adversaries could induce ‘demonic world’ conditions characterised by unstable ground-

truths where the only uniformity, which can justify a ML model’s deployment to the target 

environment, stems from our present assumptions about the adversaries. In both cases, 

 
3 A less common example of such a good practice is the leaderboard (scoreboard) of algorithms for VLBI data reconstructions 

(http://vlbiimaging.csail.mit.edu/).  

http://vlbiimaging.csail.mit.edu/
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the success records play a lesser role because the updates to the human assumptions 

about a training, evaluation, and target dataset uniformity cannot be satisfied by the 

ground-truths (this of course does not affect the optimality of meta-induction). 

The contract between human and machine learning thus transforms from the best 

possible acquaintance with the available states of affairs, crucially including past success 

records, to an optimality contract based on the present observable by the humans co-

constituting the Nexus. In these circumstances, we lack a transparent or stable access to 

the ground-truths. The human inductive inferences, which seek to minimise the loss (risk) 

by maximising the uniformity of ML models with targets, use instead of ground-truths-

based updates the second-best thing – our acquaintance with the present, i.e. a reference 

frame of spatiotemporally situated observers. 

Within the bounds of presently available success records, such an incompleteness and 

indefiniteness of our reference frame (inaccessible and unstable ground-truths 

respectively) leaves the universal optimality of the attractivity-weighted meta-induction 

unaffected. The incompleteness might, however, also involve scenarios where our 

reference frame, and with it also the success records, receive updates that are delayed by 

physical limits or technical imperfections of the means of information transmission as 

implied above4. In such a case, the optimality-based contract, utilising the attractivity-

weighted meta-induction for method selection purposes, might incur increased short-run 

regrets caused by missing updates to the success records that are yet to arrive. Evaluated 

with the benefit of hindsight, experiencing finite delays of success records updates will 

translate into a deterioration of the upper bound on short-run losses manifested as a 

period of decreased uniformity between ML models and targets. During this interim 

period, human inductive inferences will depend on surrogate data (local, synthetic data 

or generally data reflecting assumptions about uniformities whose reliability depends on 

circular justifications) which might fail to maximise the uniformity between ML models 

and targets, judged from the epistemic position including the delayed updates. Crucially, 

from the long-run point of view, the contract between human and machine learning based 

on the attractivity-weighted meta-induction remains universally optimal because it 

approximates the maximal long-run predictive success of arbitrarily unreliable methods, 

provided that success records, i.e. leaderboards, are kept public and meticulously updated 

even on longer time scales. 

5 Conclusion 

The contract which constitutes the Human-Machine Nexus is fragile because the inductive 

inferences, which underpin varieties of assumptions in ML, can be justified as merely 

optimal. The optimality-based contract refers to constant inflow of updates, which, by 

chronicling failures and successes of the previous attempts, permit maximising the 

uniformity between ML models and target environments to the best of our present 

knowledge, crucially including past success records. In case of inaccessible/unstable 

ground-truths, the contract shifts and begins to depend on our acquaintance with the 

present, or more generally on reference frames of spatiotemporally situated observers. 

 
4 We are indebted to a referee for the journal who suggested this addition and pointed out yet another valuable perspective from which to appreciate the 

universal long-run optimality of Schurz’s attractivity-weighted meta-induction. 



19 

 

This version of optimality-based contract invites a kind of presentism. Under its aegis, 

reconstructions of distant elsewheres and resilient ML models can be obtained if we 

replace the inaccessible/unstable ground-truths with present information stemming 

from our local environment. Yet the Nexus should help us to extend ourselves and to do 

so in a resilient manner. By augmenting our cognition with ML, we seek to reach distant 

epistemic locations and become resilient in the face of adversity. It is perhaps a fitting 

paradox that when facing inaccessible/unstable ground-truths we transform ourselves 

into ‘resilient super-observers’ constituted by the Human-Machine Nexus. This is fine 

because ML has become our best chance to move forward and satisfy our epistemic 

ambitions, common and scientific alike. While pursuing the Nexus further we should, 

however, never lose sight of the fragile contract which justifies the varieties of human 

assumptions enabling ML. For now, moving forward is likely to remain a matter of careful 

interplays in the Nexus of human and machine learning. And for that, the epistemology of 

machine learning will become a useful instrument. 
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