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Cardiotocography data uncertainty is a critical task for the classification in biomedical field. Constructing good and efficient
classifier via machine learning algorithms is necessary to help doctors in diagnosing the state of fetus heart rate. *e proposed
neutrosophic diagnostic system is an Interval Neutrosophic Rough Neural Network framework based on the backpropagation
algorithm. It benefits from the advantages of neutrosophic set theory not only to improve the performance of rough neural
networks but also to achieve a better performance than the other algorithms. *e experimental results visualize the data using the
boxplot for better understanding of attribute distribution. *e performance measurement of the confusion matrix for the
proposed framework is 95.1, 94.95, 95.2, and 95.1 concerning accuracy rate, precision, recall, and F1-score, respectively. WEKA
application is used to analyse cardiotocography data performance measurement of different algorithms, e.g., neural network,
decision table, the nearest neighbor, and rough neural network. *e comparison with other algorithms shows that the proposed
framework is both feasible and efficient classifier. Additionally, the receiver operation characteristic curve displays the proposed
framework classifications of the pathologic, normal, and suspicious states by 0.93, 0.90, and 0.85 areas that are considered high and
acceptable under the curve, respectively. Improving the performance measurements of the proposed framework by removing
ineffective attributes via feature selection would be suitable advancement in the future. Moreover, the proposed framework can
also be used in various real-life problems such as classification of coronavirus, social media, and satellite image.

1. Introduction

Vulnerability is the focal, basic reality in the medical field.
Patients’ feelings, specialists’ observations, and lab results
cannot be exactly reported. Clinical scientists cannot ac-
curately characterize how illnesses adjust the ordinary
working of the body. Generally, uncertainty [1] is a serious
challenge for decision-makers at any organization and
especially in the medical field. Doctors need to handle fast
and accurate decisions, which are critical to human health.
Cardiotocography (CTG) [2, 3] is a significant medical
device early monitoring fetus distress by gynecologist. It is

a graphical recording for both fetus heart rate and uterine
contraction at the same time. Hence, it is necessary to
analyse and interpret the CTG recordings of fetus health.
*e CTG dataset is commonly used by machine learning
and classification researchers [4]. Gynecologists are in-
terested, in most states, in classifying “fetus well-being.”
*ey used two healthy or pathologic classes, but they,
practically, classify fetus state into three classes: normal,
suspicious, and pathologic (NSP). *e CTG dataset is
composed of 21 input attributes and 3 output classes
(normal, suspicious, and pathologic). *e total of datasets
includes 2126 instances, and it is publicly available at the
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data-mining repository of the University of California,
Irvine (UCI) [5].

Neutrosophic set theory (NS) [6, 7] is an improved,
mathematical model that deals with uncertain and ambig-
uous data. It was firstly presented in 1995 by Smarandache,
as an extension of the fuzzy system [4–7]. Fuzzy classifiers
deal with uncertain data by degrees of truth. Neutrosophic
classifier defines three functions; they are as follows: true,
false, and indeterminacy degrees of handling uncertainty.
*ese functions take a ratio between 0 and 1. Handling
uncertain data by neutrosophic technique gives it a more
accurate description and reduces the degree of randomness
in data leading to make the most optimal decisions. NS
theory has applications [6] in many fields such as mathe-
matics, computer science, medical, physics, and others.

Many data-mining researchers generally decided to face
these challenges of uncertainty in medical data and the CTG
dataset, especially via various algorithms and techniques
such as classification, clustering, association, and regression
[8, 9], to analyse large amounts of data and achieve high
accuracy. *is research proposes a neutrosophic diagnostic
system for classifying the uncertain medical CTG data; the
proposed model is an integration of multilayer RNN [10, 11]
and the interval neutrosophic set (INS) [12] concepts. RNN
is built on neural network (NN) structure [13, 14] and rough
set (RS) [10, 11] theory. NN is characterized by various
advantages such as fault tolerance, simple structure, the
capability of parallel processing of both datasets, and self-
adaption. RS has various advantages as it performs sus-
tainable amount of uncertain data and reduction attributes
without losing information whereas INS is an extension of
the NS, and it depends on three functions of truth, inde-
terminacy, and falsity-memberships. *ey are expressed by
interval values not the binary ones. Obviously, INS can
conveniently describe complex information.

*e proposed research is important as it provides an
efficient framework for multiclassification of CTG data
concerning the fetus heart rate. Moreover, comparing its
results with different fuzzy algorithms and techniques is to
ensure that it achieves a good performance measurement in
accuracy rate, precision, recall, and F-measure [15, 16]. It
also provides an analysis of CTG attributes using WEKA
mining tool to visualize it. *e implementation model and
the performance measurement on the CTG dataset are
shown in the experiments, which prove the feasibility of the
proposed neutrosophic diagnostic system.

*e rest of the study is organized as follows: Section 2
discusses literature review and preliminaries of both theories
and techniques used in the proposed model. Section 3
presents the proposed neutrosophic diagnostic system and
its advantages. Section 4 provides the experimental result of
the system and an analysis for other classification tech-
niques. Also, it presents the comparisons between different
measurement performances. Finally, Section 5 is the con-
clusion and future work.

2. Related Work and Preliminaries

*is section gives a quick review on most relevant studies
done into the medical field and a theoretical background of
RNN and INS used in building the neutrosophic diagnostic
framework.

2.1. Related Work. Many data-mining scientists and re-
searchers presented studies for dealing with the uncertainty
and ambiguity of medical data. *ey aimed at analysing and
classifying data in an efficient manner as well as achieving
good performance measurements such as accuracy rate,
precision, and recall. *ese studies help doctors in priori-
tizing critical cases that need quick intervention to save
them, where they are at the back of their concerns due to
self-diagnosis in comparison with other more stable cases,
which are in their priority.

Sunder et al. [17] simulate a machine learning classifi-
cation model for classifying CTG dataset using supervised
artificial neural network (ANN) and support vector machine
(SVM). Afterwards, they compared their performance with
the unsupervised clustering techniques fuzzy C-means, K-
means, and supervised SVM classification. *e ANN clas-
sification model achieves a better performance than other
classification and clustering techniques. Unfortunately, the
implemented model did not classify the suspicious state as
good performance as the other two states of normal and
pathological fetus heart rate.

Kocamaz and Cömert [18] provide a comparison be-
tween various classification techniques of machine learning
such as ANN [13, 14], SVM [19], extreme learning machine
[20], radial basis function network [21], and random forest
[22] in performance measurement using confusion matrix
[23]. He proved that ANN is the most efficient in the recall
and specificity measures. Nevertheless, he did not specify
which algorithm is the best in general.

Joshi et al. [24] present two hybrid neurofuzzy schemes
for classification and they cluster different real-world
datasets to pattern recognition applications. *ey actually
achieved a good statistical measure rather than the other
traditional machine learning algorithms; however, they did
not calculate accuracy rate in their algorithm.

Postorino and Versaci [25] designed neurofuzzy simu-
lation of user-mode transportation with extensive roads that
depend on estimating different rules and membership
function to help travel users take optimal decisions. *ey
also presented fuzzy curves and surfaces for this problem;
the limitation in the model is not efficient with a large
number of features. *ey did not compare their simulation
results with other machine learning algorithms.

Cacciola et al. [26] provide a hybrid neurofuzzy model to
predict hydrocarbons and other particular pollutant con-
centrations of air pollution in urban environments due to
their danger on human health. *e provided model has
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efficient tools as it holds the nonlinear universal approxi-
mation property. *ey improved the traditional neural
network model by introducing fuzzy learning within the
neuronal layers. However, they did not compare the sta-
tistical measurements of their model to other learning
algorithms.

Mathur et al. [27] present an adaptive neurofuzzy in-
ference strategy (ANFIS) to predict the in-socket residual
limb temperature. It was simulated using MATLAB’s Fuzzy
Logic Toolbox and the GUI editor used to analyse its per-
formance. *e proposed strategy results show that the
modelling technique has comparable performance metrics
with the predictive ability with an accuracy of ±0.5°C and it is
most efficient for noninvasive temperature monitoring.*ey
did not measure other performances, e.g., precision, recall,
and F1-score.

Das et al. [28] simulated a hybrid neurofuzzy and feature
reduction (NF-FR) model to analyse data.*e proposed NF-
FR model uses a feature-based class pertinence fuzzification
process for all patterns. *ey compare the proposed model
NF-FR to other machine learning models ANN, NF, and
ANNFR models. Various statistical performance measures
such as accuracy rate, root-mean-square error, precision,
recall, and F-measure prove a better performance for ten
real-world datasets as well as the efficiency in eliminating
redundant and noisy information with the least time of
learning.

Price et al. [29] provide a new layer called the fuzzy layer
into a structure of deep learning methods to investigate the
powerful aggregation properties, which appear in fuzzy
techniques. *ey added various advantages for fuzzy ag-
gregation techniques such as flexibility and capability of
implementation. On the other hand, it needs more im-
provement in the fuzzy layer for deep learning.

Ahmed Abou El-Fetouh et al. [10] present a rough neural
network model (RNN) to classify and analyse the perfor-
mance of breast cancer dataset depending on training data
with different sizes. *ey compared the accuracy rate of the
implemented model with neural network algorithm using
the WEKA [30] tool to estimate its accuracy rate. However,
they did not estimate the consumption time of the RNN
[10, 11] model and they did not use more algorithms to be
compared with the proposed model.

Gafar [31] proposes a diagnosing system of breast cancer
using a hybrid of fuzzy rough feature selection and RNN.
*e fuzzy rough feature selection algorithm is used to find
the best reduction, and the RNN is trained by the reduced
dataset to learn the connection weights iteratively. *e
experimental comparisons show the proposed model ac-
curacy and time complexities. Again, the research needed
more comparisons with literature algorithms.

Amin et al. [32] provide an implementation of the RNN
[10, 11] algorithm not only to classify CTG dataset but also
to estimate each accuracy rate and time consumption of the
proposed model. *ey used the WEKA tool to estimate the
accuracy rates and time consumptions for various algo-
rithms such as ANN [13, 14], decision table [33], bagging
[34], the nearest neighbor [35], decision stump [36], and
least square support vector machine algorithm [37]. And

then, they compared the proposed model to these various
algorithms; this comparison showed that the proposed
model achieved the most efficient performance. Neverthe-
less, they did not estimate the other performance mea-
surement of the RNN model such as precision and recall.

Kraipeerapun et al. [12] propose a model, which com-
bines fuzzy neural networks and interval neutrosophic sets
to classify uncertainty map cell data. *e binary classes
constitute deposits and barren based on input feature vectors
representing exploration data. *e model is limited to
classify only two classes.

Kraipeerapun et al. [38] dealt with the limitations in the
previous paper; they implemented a new model that com-
bines neural networks and interval neutrosophic sets to have
multiclassification. *ey presented an assessment of un-
certainty classical datasets, e.g., balance, ecoli, glass, lenses,
wine, yeast, and zoo from the UCI machine learning re-
pository. Although they improved the performance of
classification technique, they did not estimate confusion
matrix and its measurements of performance.

2.2. Rough Neural Networks. Rough set theory [10, 11] is
characterized by its capability to process sustainable amount
of uncertain data, and it reduces the features of a dataset
without losing its information. It classifies uncertain data
space into two disjoint approximation sets (lower and up-
per); this classification is based on the values of the features
of NN [13, 14, 17] that are distinguished by high capability
on fault tolerance, simple structure, parallel processing of big
data, and self-adapted. RNNs are a combination of rough set
theory and NN to benefit from their advantages. RNNs
[10, 11, 31] are inspired by the concepts of traditional NN in
both their learning algorithm and structure of connections.
*e essential difference is the neuron, which is used in RNN
formed from a pair of neurons. One neuron represents the
upper approximation and the other represents the lower
approximation of rough neuron. *e overlap between upper
and lower neurons helps them to exchange information.

RNN is a multilayered supervised machine learning
technique; it is composed of one input layer, one or more
hidden layers, and one output layer. Both input and output
layers are formed from the traditional neurons. *e input
layer represents features of a dataset, while the output layer
corresponds to the data classes. *e hidden layers contain
the rough core of the RNN, and they are formed from a
number of rough neurons. *us, these hidden layers of
rough neurons are determined by the Baum–Haussler rule
[39] in

Nhn �
Nts ∗Te

Ni + No

, (1)

where Nhn is the number of hidden neurons; Nts is the
number of training samples, Te is the tolerance error, Ni is
the number of inputs (attributes or features), and No is the
number of the output.

RNN [10–32] applies feedforward algorithm where the
values of CTG features are multiplied by randomly
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generated weights in both directions of upper and lower
neurons using

ILn � 􏽘
n

J�1
WLnjOnj,

IUn � 􏽘
n

J�1
WUnjOnj.

(2)

*e following equations compute the upper and lower
neuron output by the maximum and minimum values of
activation function, respectively:

OLn � Min f ILn( 􏼁, f IUn( 􏼁( 􏼁,

OUn � Max f ILn( 􏼁, f IUn( 􏼁( 􏼁.
(3)

*e sigmoid function

f(x) �
1

1 + e
−λx

, (4)

where λ is a constant, is used as an activation function. *e
rough neuron output is computed by

O � OLn + OUn. (5)

*e actual class of RNN is compared with the target class
of the CTG dataset. In case there is an error, the back-
propagation algorithm computes the difference by

E � T − O. (6)

*e backpropagation is applied to adjust the weights to
get optimal ones. *e upper and lower weights of the
network are updated by

newwi � oldwi + c∗
zE

zwi

, (7)

where c is the learning rate. *e model repeats equations
(2)–(7) until it reaches to the optimal weight RNN.

2.3. Interval Neutrosophic Set. Neutrosophic set theory [40]
was introduced by Smarandache, as a generalization of other
classical uncertainty theories such as fuzzy set theory,
intuitionistic fuzzy set [4–7], an interval-valued intuition-
istic fuzzy set [41, 42], dialetheist set, and paradoxist set [43].
Neutrosophic set continues to represent uncertainty, am-
biguity, and incompleteness of data.

INS [12] is a paradigm of neutrosophic set where any
element of the dataset is distinct by three values of true (T),
indeterminacy (I), and false membership degrees (F), T, I,
and F values ∈. [0, 1]. Hence, the general definition of INS is
as follows: let Z is a space of instances of the dataset. INS in Z
is defined as P � Z: (Tp(Z); Ip(Z); Fp(Z))|z ∈ Z∧􏽮

Tp: X⟶ [0, 1]
∧
,

Ip: X⟶ [0, 1]
∧
,

Fp: X⟶ [0, 1]
∧
,

0≤Tp(z) + Ip(z) + Fp(z)≤ 3.

(8)

*e three memberships’ values are the most independent
cases.

3. The Proposed Interval Neutrosophic RNN
Framework for Classifying CTG Data

IN-RNN is a proposed framework combining the rough
concepts represented by RNN and indeterminacy concepts of
interval neutrosophic set to handle uncertainty in CTG data.
*e IN-RNNprovides a feasible postprocessing for uncertainty
in predicting values of the RNN model using neutrosophic
concepts for multiple classes. *e framework is used to de-
termine the state of fetal heart rate and other performance
measurements, e.g., precision, recall, and f-score.

IN-RNNs are built on two independent feedforward
backpropagation RNNs with the same architecture and
behavior to predict scaling values of output classes; also, they
are trained by the same attributes as input vectors. *e first
RNN predicts true membership values (T), and the other
predicts false membership values (F). *e results of both
networks produce uncertainty boundary zone to calculate
indeterminacy values (I), (TIF) values form interval neu-
trosophic set (INS), so the final decision of such classification
is characterized by INS-TIF values, as illustrated in Figure 1.

*e main difference between the two RNNs is the false
RNN train for predicting the complement target value
(code-word) of true RNNs. *e code-word length equals the
number of output classes. For instance, provided the code-
word of k-th class has a value as 1 at the kth bit and the rest is
equal to 0 in training true RNNs, the code-word of kth class
at kth bit in false RNNs will have a value 0 and the rest equals
1. In the IN-RNN model, the binary prediction of multiple
classifications depends significantly on the true membership
code-word by the equation in Step III (12) in the algorithm
presented in Figure 2. In cases of inconsistency where code-
word is 0 or more than one bit that equals 1 in the same
code-word, equations in Step III (13-14) are used to make
the final decision.

*e predicted values of true and false membership RNN
are nearly opposite to each other, in case the predicted value
of true RNN is high and then the predicted value of false
membership RNN should be low. Consequently, the un-
certainty boundary zone appears from the inconsistency of
them. Based on the INS definition, in Section 2.3, equations
(8), indeterminacy membership value can be estimated from
the difference between true and false membership values.
*e uncertainty is high if the difference between them is low
and vice versa.

*e proposed IN-RNN framework is established from
four main phases: preprocessing, RNN classifier, INS
characterization, and performance evaluation phases. Fig-
ure 2 illustrates the sequence of the IN-RNN phases in al-
gorithmic shape.

Preprocessing phase: the medical data are normalized
not only to preprocess irregularity in the attributed
values but also to improve the performance of RNN in
the implemented state.
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RNN classifier phase: the RNN model is trained to get
the best weights on true and false membership RNNs to
estimate scale values of their networks by using the
backpropagation algorithm. *e normalized input data
are multiplied by its weight and computed in the
sigmoid activation function:

f(x) �
1

1 + e
−λx

. (9)

INS characterization phase: indeterminacy member-
ship degree is calculated using true and false mem-
bership values to form an interval neutrosophic set
(INS). *is phase makes the framework more infor-
mative by setting the indeterminacy of instances’
classes to improve the performance of multi-
classification of the CTG dataset.
Performance evaluation phase: the IN-RNN framework
is tested using unseen cases to calculate performance
measurements such as accuracy rate, precision, sensi-
tivity, and F1-score. *e efficiency of IN-RNNs is de-
termined with respect to other classification algorithms.

4. Experimental Results

4.1. Dataset Visualization and Boxplot. *e cardiotocog-
raphy (CTG) dataset is used to train and test the IN-RNN
framework and other machine learning algorithms, in the
literature during the comparative study. *e CTG dataset is
downloaded from the website of the University of California,
Irvine (UCI), machine learning repository. CTG has 2126
instances, and 21 inputs attribute to determine the state of
fetal heart rate and uterine contraction at the same time.
Depending on these attribute values, gynecologists could
classify the state of fetal as normal, pathologic, or suspicious
state (NSP) class. *erefore, it is critical to visualize [44]
CTG attributes by using WEKA version 3.8.4 [30–45] tools,
as in Figure 3. *e attribute is drawn to illustrate a visual
qualitative understanding of the distribution.

A boxplot [46] is a graphical statistical manner to
summarize large amounts of data per each attribute and
display five important statistic measurements such as
minimum, maximum, median, range, and distribution of
data. Likewise, it displays data symmetry as well as the upper
and lower quartiles, which represent the numbers above and

Start

Read CTG features as input 

Compute true membership values Compute false membership values

End

Construct true and false RNNs

Normalized CTG dataset features 

Use feedforward RNN algorithmUse feedforward RNN algorithm

Is true values Is false values 

Use backpropagation RNN Use backpropagation RNN 

Get best false valuesGet best true values

End two RNN classifiers

Compute indeterminacy 

Set up INS-TIF values

Evaluate performance metrics

NoNo

YesYes

Figure 1: Flowchart of the proposed IN-RNN framework steps for classifying the CTG dataset.
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Input: training CTG data, Testing unseen cases.
Output: estimated classes of unseen cases as INS, framework performance measures.
Step I: preprocessing phase

1. Read features of all elements in dataset
2. Normalize all values of data by the following equation:

Nor = (x– min/max–min)
Step II: RNN classifier phase

3. Initialize random upper and lower weight (Uw, Lw) of RNN
4. Using feed forward of attribute values by multiplying by (Uw, Lw) in both directions
5. Calculate (IU, IL) of hidden layers by the following equations:

ILn = ∑n
J=1 WLnjOnj

IUn = ∑n
J=1 WUnjOnj

6. Calculate (OU, OL) of hidden layers by the following equations:
OLn = Min (f (ILn), f(IUn))
OUn = Max (f (ILn), f(IUn))

7. Calculate the predicted output of RNN by the following equation, and compared with actual 
output: O = OLn + OUn

8. If output is error, then use back propagation algorithm, and compute error
Δ = T – O

9. Update upper and lower weight of RNN by derivation of activation function:
new weight = old weight + ( Δ ∗ η ∗derivative∗ activation of ( input))

where η is learning rate of model
10. Repeat 4, 5, 6, 7, and 8 steps until reduction error as possible as in both of true and false 

membership RNN and recorded (Tk, Fk) scale values of their. 
Step III: INS characterazation phase

11. Calculate indeterminacy membership value by: Ik = 1 – |Tk – Fk|.
12. If Tk > Fk, code-word = 1 else code word = 0.

13. If all code-wordk of all classes output = 0, then Max
n

n
k = 1

14. If two classes or more have bit-codek = 1 then Min
k = 1

Step V: evaluation phase
1. Find IN class of unseen samples.
2. Construct confusion matrix. 
3. Calculate accuracy rate, precision, sensitivity and f1-score using equations 24-30 from section

4.2 
Return IN classes of unseen cases 
Return accuracy rate, precision, sensitivity and f1-score for the IN-RNN framework

(Ik (x)) = 1 and the rest = 0.

(Ik (1)) = 1 and the rest = 0

Figure 2: Description of the main phases of the IN-RNN framework algorithm.
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Figure 3: Visualization of CTG attributes using WEKA application tools.
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below the high and lower quarters of data. A boxplot of the
CTG dataset is shown in Figure 4.

4.2. Experimental Setup and Results. *e proposed IN-RNN
framework for multiclassification is simulated by python 3.8
programming language on 64-bit operating Windows ma-
chine, processor Intel ®core™ i5 and RAM 4GB.

Standard performance measures (e.g., accuracy rate,
precision, recall (sensitivity), and F1-score) [4–38] derived
from the confusionmatrix [23] can be utilized for measuring
IN-RNN framework efficiency.

4.2.1. Confusion Matrix. Confusion matrix, Table 1, is a
simplematrix for visualizing themulticlassification results of
data related to predicted classes (P) and actual classes (A).

From the confusion matrix, the performance of a clas-
sifier can be estimated based on four important outcomes:

(1) True positive (TP): if both predicted and actual
classes are true.

(2) True negative (TN): if both predicted and actual
classes are false

(3) False positive (FP): if predicted class is true and
actual class is false.

(4) False negative (FN): if predicted class is false and
actual class is true.

4.2.2. Accuracy Rate. *e accuracy rate is a very traditional
measure in evaluating the efficiency of a classifier; the
general formula for estimating the accuracy rate is

accuracy �
􏽐

n
i�1(TPi + TNi)/(TPi + TNi + FPi + FNi)

k
,

(10)

where k is number of data samples.

4.2.3. Precision. Precision is interested in the positive pre-
diction of each individual class only. It can be estimated on
the whole testing data as a weighted averaged:

precision(i) �
TPi

TPi + FPi
, (11)

where i� 1,2,3, . . ..., n class,

precisionweighted average �
􏽐

m
i�1 yi(TPI/(TPi + FPi))

􏽐
m
i�1 yi

. (12)

4.2.4. Recall. Recall is the ratio between true positive pre-
diction observations to the total observations with respect to
each actual class individually. It can be estimated on the
whole testing data as a weighted average:

recall(i) �
TPi

TPi + FNi
, (13)

recallweighted average �
􏽐

n
i�1 yi(TPI/(TPi + FNi))

􏽐
n
i�1 yi

. (14)

4.2.5. F1-Score Measurement. F1-score depends on preci-
sion and recall measurement, and it considers the weighted
average of them. *erefore, false positive and false negative
samples are used in the evaluation. Intuitively, it is not as
easy to understand it as accuracy. F1-score is useful more
than accuracy rate in a state of disparate distribution of
classification. It can be evaluated individually for each class
and for the whole testing data by the following equations:

F1 − score(i) �
2xprecisionixsensitivityi

precisioni + sensitivityi
, (15)

F1 − scoreweighted average �
2xprecisionweighted Xsensitivityweighted
precisionweighted + sensitivityweighted

. (16)

4.3. Result Analysis. *e performance of the IN-RNN
framework was estimated in terms of overall classifica-
tion performance measurements using the 5-fold cross-
validation (CV) method [4–18]. *e CTG dataset is
randomly distributed into five equal size subsets while
keeping the proportion of data from NSP classes in each
fold is approximately the same as the whole dataset. Four
subsets of data are used for training while the fifth subset
is mutually used for testing. At the end, the result of these
five-folds is considered the average of accuracy on whole
folds.

*e IN-RNN framework processes CTG data in four
phases. While preprocessing, CTG data attributes are

normalized to avoid irregularity of values. In RNN classifier
phase, true and false RNNs are established. *e networks
learn their weights using the backpropagation algorithm.
After achieving the best predicted scaled weights, the net-
work’s output is passed to the next phase. *e INS char-
acterization process estimates the indeterminacy values of
the predicted classes depending on the INS definition to
make decisions more informative in the uncertainty
boundary zone. From T, F, and I membership values, the
final predicted classification of dataset samples is measured
as illustrated in Tables 2–6. In these tables, the CTG classes
are coded as N, S, and P that are normal, suspicious, and
pathologic, respectively.
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Table 2 shows the scaled values of T, I, and F mem-
bership. T and F membership values are estimated via two
RNNs and Imembership values for the three classes as in the
equation in Step III (11). Binary classification of each class of
the CTG dataset can be determined using the equation in
Step III (12) based on code-words as shown in Tables 3–5.
Table 6 shows the results of binary classification for the new
instances; in the same table, three code-words are equal to
“000” in the first and third instances. According to the
equation in Step III (13), the maximum indeterminacy
membership code-word should be equal to 1 and the rest
equals to 0. From INS values for all classes in Table 2, the
final decision of classification for the first and third instances
can be determined as normal (N) and suspicious (S),
respectively.

*e final process evaluates the framework performance
by testing unseen cases. Here, the performance of the IN-
RNN framework is measured, e.g., accuracy rate, precision,
recall, and F1-score depending on the confusion matrix.

*e confusion matrix is constructed to analyse the
overall performance of the proposed model by presenting
the classification report, and Table 7 presents the number of
correctly and incorrectly classified instances from the CTG
data.

According to the comparisons with literature algorithms,
WEKA application [20–40] is used to analyse the CTG
dataset using different machine learning models such as
nearest neighbor [23], neural network [12, 13], and decision
table [23]. *e estimated performance metrics for these
models are shown in Table 8. *e performance metric values
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Figure 4: Boxplot of CTG attributes.

Table 1: Confusion matrix form.

Actual An. . ...Aj. . .. . .A1

Predicted
P1 . . . . . . Pi . . . . . . Pn

x11. . .. . ..x1j. . .. . ...x1n
xi1. . .. . ...xij. . .. . .. . .xin
xn1. . .. . ..xnj. . .. . .. . .xnn

where xij represents the number of samples belonging to class Pi but predicted as class Aj.

Table 2: *e interval neutrosophic set (INS).

True membership values Indeterminacy membership values False membership values
Nt St Pt Ni Si Pi Nf Sf Pf
0.50031 0.22042 0.02296 0.91964 0.33285 0.08015 0.58067 0.88756 0.94281
0.99950 0.00634 0.00000 0.08838 0.01891 0.02225 0.08788 0.98743 0.97775
0.19951 0.60074 0.12381 0.22239 0.72470 0.69965 0.97712 0.87604 0.42416
0.13034 0.57034 0.19766 0.23205 0.81184 0.25765 0.89829 0.38218 0.94000
0.14003 0.00432 0.98561 0.64750 0.00455 0.18190 0.49253 0.99977 0.16750
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show that the proposed model IN-RNNs achieves a better
and more efficient performance than the other machine
learning models.

Figure 5 represents a comparative chart between the IN-
RNN framework and different machine learning models in
their performance metrics.

Receiver operation characteristic (ROC) [6–33] is a
pictorial tool for analysing the performance of the multi-
classification models and estimates the area under the curve

(AUC) for each class individually. AUC combines measures
of recall (true positive) and specificity (true negative). In case
AUC� 1 or approximate to 1, the classification model test is
perfect without errors.

In the IN-RNN model, the ROC tool displays that the
classification of CTG data is efficient for three classes, where
it classifies pathologic, normal, and suspicious states by high
AUC 0.93, 0.90, and 0.85 respectively, as shown in Figure 6.

Table 3: Binary-code of N-class.

Nt Ni Nf Binary N-class
0.50031 0.91964 0.58067 0
0.99950 0.08838 0.08788 1
0.19951 0.22239 0.97712 0
0.13034 0.23205 0.89829 0
0.14003 0.64750 0.49253 0

Table 4: Binary-code of S-class.

St Si Sf Binary S-class
0.22042 0.33285 0.88756 0
0.00634 0.01891 0.98743 0
0.60074 0.72470 0.87604 0
0.57034 0.81184 0.38218 1
0.00432 0.00455 0.99977 0

Table 5: Binary-code of P-class.

Pt Pi Pf Binary P-class

0.02296 0.08015 0.94281 0
0.00000 0.02225 0.97775 0
0.12381 0.69965 0.42416 0
0.19766 0.25765 0.94000 0
0.98561 0.18190 0.16750 1

Table 6: Neutrosophic classification of NSP class.

Binary N-class Binary S-class Binary P-class INS of N-class INS of S-class INS of P-class Predicted class Actual class State
0 0 0 1 0 0 N N True
1 0 0 1 0 0 N N True
0 0 0 0 1 0 S S True
0 1 0 0 1 0 S S True
0 0 1 0 0 1 P P True

Table 7: Confusion matrix of the IN-RNN model.

Predicted classes
Normal Suspicious Pathologic Total

Actual
classes

Normal 335 6 1 342
Suspicious 11 41 0 52
Pathologic 0 3 28 31

Total 346 50 29 425

Table 8: Comparison between different machine learning models
in performance metrics in (%).

Models Accuracy rate Precision Recall F1-score
IN-RNNs 95.1 94.95 95.2 95.1
RNNs 92.9 91.2 91.4 91.3
NNs 92.7 92.5 92.7 92.6
Nearest neighbor 90.8 90.6 90.8 90.5
Decision table 90.5 90.1 90.5 89.9
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5. Conclusion and Future Work

Uncertainty boundary zone in classifying CTG data is a vital
issue. Neutrosophic theory is interested in estimating the
uncertainty boundaries of data based on membership, truth,
and indeterminacy values. Moreover, rough neural networks
prove their ability to find uncertainty boundaries of the
uncertain classes. While the proposed IN-RNNs consist of a
hybrid framework between neutrosophic and rough theo-
ries, IN-RNN classifies multiple class CTG data in terms of
neutrosophic set. *e architecture of IN-RNNs is built via
two independent backpropagation RNNs for evaluating the
true and false memberships’ values. *e inconsistency be-
tween true and false values forms an indeterminacy

membership value, while the three memberships form the
interval neutrosophic decision class.

*e experimental results present a distribution and
boxplot visualization of CTG attributes by WEKA applica-
tion. Concerning the performance evaluation, a cross vali-
dation is used to estimate the performance measurement of
the IN-RNN framework with confusion matrix while ROC is
employed in unseen cases of CTG data. In addition, different
metrics, e.g., accuracy rate, precision, recall, and F1-score, are
used to determine the efficiency of IN-RNN. WEKA appli-
cation is employed to estimate performance metrics of several
algorithms such as neural network, nearest neighbor, and
decision table algorithm. *e comparison between the IN-
RNN model and other different machine learning models
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Figure 5: Comparison chart between the IN-RNN framework and fuzzy machine learning models in performance metrics.
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proves that the proposed model achieved more efficient and
feasible performance in classifying CTG data.

In the future work, feature selection methods would be
applied to remove ineffective attributes for improving
performance measurement of the proposed model.

Data Availability

*e cardiotocography data in experiments are on the website
with the following link http://archive.ics.uci.edu/ml/
datasets/cardiotocography. (Accessed February 2019).
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