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Abstract 

Early detection of gastrointestinal cancer is crucial to increase the life span of patients. The 

implementation of new imaging modalities, such as fluorescence imaging, in traditional 

endoscopy is the key in the detection of early signs of cancer. Fluorescence imaging 

techniques for clinical applications can be divided in two groups defined as autofluorescence 

imaging and fluorescence-labelling imaging. The former exploits the natural green 

fluorescence emitted by human tissues when excited by blue or ultra-violet light. Detection 

of cancer through autofluorescence imaging relies on the fact that cancer tissues have a much 

lower autofluorescence signal than healthy tissues. On the other hand, fluorescence-labelling 

imaging is used when the difference in autofluorescence between cancer and healthy 

surroundings is too weak to detect. Therefore, external fluorescence agents are used to target 

and label cancer lesions. Although traditional endoscopy has been successfully equipped 

with fluorescence imaging capabilities, the discomfort caused in patients and the incapability 

to reach the small intestine represent two main limitations.  

Fluorescence capsule endoscopy can enhance diagnostic accuracy with less inconvenience 

for patients. The optical components in traditional endoscopes are bulky and implemented 

outside the body of the patients. Therefore, there is a demand to develop highly miniaturised 

optical components for integration in capsule endoscopy. This thesis describes the design, 

fabrication, characterisation, and testing of a 5 mm x 6 mm x 6 mm optical interference block 

with the capability of fluorescence imaging in capsule endoscopy. The block accommodates 

ultrathin filters for optical isolation and was successfully integrated with a sensitive 64 x 64 

pixels complementary metal oxide semiconductor single photon avalanche diode array to 

detect green fluorescence from Flavin Adenine Dinucleotide. This coenzyme is among the 

fluorophores responsible for autofluorescence in human tissues. The fluorescence-labelling 

capabilities of the imaging system were also tested to detect fluorescence from the cancer 

selective molecular probe ProteoGREEN-gGluTM which was used to label colorectal cancer 

cells. In vitro studies were also validated using a commercial ModulusTM Microplate reader. 

The potential use of the miniaturised block in capsule endoscopy was further demonstrated 

by imaging healthy and malignant resected human tissues from the colon to detect changes 

in autofluorescence signal that are crucial for cancer diagnosis. The results obtained 

demonstrated that the system successfully imaged the differences in the autofluorescence 

signal from resected healthy and malignant human tissues from the colon. Moreover, results 

from the in vitro tests showed that the system detected changes in the fluorescence signal 

induced in colorectal cancer cells after labelling with ProteoGREEN-gGluTM. 
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1 Introduction 

1.1 Motivation 

The development of miniature medical devices has become possible thanks to the rapid 

progress in electronics and digital systems. Capsule Endoscopy refers to the class of 

ingestible medical devices that has been widely used for the screening of the gastrointestinal 

(GI) tract [1].  The development of capsule endoscopy in 2001 was aimed at the exploration 

of the small bowel which was impossible to visualize by traditional endoscopy [2]. 

Nowadays, the use of capsule endoscopy has been expanded to the entire GI tract. Millions 

of endoscopic pills have been adopted worldwide for the clinical diagnosis of diseases such 

as obscure gastrointestinal bleeding (OGIB), Crohn’s disease, polyposis syndromes and 

cancerous lesions [3]–[5].  Biomedical multinational companies such as Medtronic and 

Olympus have a large product portfolio of capsule endoscopy devices [6], [7]. 

Scientific research in the field of capsule endoscopy has moved forward by introducing the 

idea of implementing new diagnostic and therapeutic modalities within the capsules. The 

idea behind the Sonopill research project at the University of Glasgow is the combination of 

different sensing modalities in capsule endoscopy [8]. Sonopill aims to integrate ultrasound, 

white light (WL) imaging and autofluorescence (AF) imaging in a capsule format in order 

to offer a multimodal device for a more precise diagnosis of cancer in the GI tract [9]. 

AF is the fluorescence emitted by endogenous fluorophores naturally occurring in human 

tissues [10]. The excitation of endogenous fluorophores with an external source of blue light 

produces a bright green fluorescence signal. The metabolic activity of cancer can change the 

concentration of endogenous fluorophores within tissues [11]. Moreover, the formation of 

new blood vessels in cancerous lesions, also known as angiogenesis, leads to an increase of 

blood concentration which through haemoglobin strongly absorbs light in the green region 

of the spectrum [12]. Consequently, the AF signal is strongly attenuated in cancer with 

respect to healthy tissues. Clinical AF imaging relies on the detection of differences in the 

AF signal between cancer and healthy tissues [13]. This imaging technique was successfully 

implemented in traditional endoscopes and has demonstrated a higher sensitivity than 

traditional WL imaging for the detection of cancer in its early stages [14], [15]. However, in 

some cases, the difference in the AF signal between cancer and its healthy surroundings is 

very weak and difficult to distinguish. Therefore, cancer-specific fluorescence probes have 

been proposed as an ‘optical aid’ in the endoscopic detection of small colonies of cancerous 

cells [16]. The probes are specifically designed to activate their fluorescence properties only 
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after binding to specific receptors overexpressed on the surface of cancer cells [17]. The use 

of cancer-specific fluorescence probes creates a different imaging scenario with respect to 

AF imaging because, after binding the probe, the tumour shows a fluorescence signal much 

higher than the background AF signal emitted by healthy tissues. 

In endoscopes with fluorescence imaging capabilities, specific excitation wavelengths are 

selected by using rotating optical filters that are mounted on the main unit of the instrument 

outside the body of the patient [18]. The excitation light is delivered inside the body by fibres 

that are bundled together within the endoscope tube. The fluorescence light emitted by the 

tissue is delivered back to the imaging detector on the main unit by a different bundle of 

optical fibres or imaged directly by a monochrome CCD. The main challenge in the 

integration of fluorescence imaging in capsule endoscopy is the miniaturization of an optical 

unit capable of simultaneously exciting the tissues and detecting the resulting fluorescence 

light emitted by them. This research is focused on the miniaturisation and testing of an 

optical block unit for fluorescence imaging to be coupled with an in-house very sensitive 64 

x 64 Complementary Metal Oxide Semiconductor (CMOS) Single Photon Avalanche Diode 

(SPAD) array sensor. Its dimensions were selected for integration in capsule endoscopy 

along with other electronic components and sensing modalities. 

1.2 Aim and Objectives 

The aim of this work is the miniaturisation and testing of a capsule endoscopy optical unit 

as well as its application to detect cancer by measuring the differences in AF signal between 

cancerous and healthy tissues from the colon. The optical block must meet specific 

dimensions and features to fit in the Sonopill multimodality capsule. Its imaging capabilities 

will be investigated on unlabelled resected healthy and cancerous tissues from the human 

colon and colorectal cancer cells labelled with cancer-specific fluorescence probes.  

The main objectives of this research work are: 

• To design and simulate a miniaturised optical block with the following features:  

- A volume smaller than 200 mm3 to be integrated in a pill with a 10 mm diameter 

and a length of 20 mm.  

- A capability of providing an excitation light with a wavelength between 450 nm 

and 490 nm. 

- Capability of successfully imaging and isolating the resulting green light, with 

a wavelength between 520 nm and 550 nm, from blue excitation light. 
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•  To fabricate a miniaturised optical block with mechanical and optical specifications 

based on the simulations.  

• To fabricate the miniaturised optical block by using “off-the-shelf” components, 

manufacturing techniques and high precision material processing techniques. 

• To test and integrate the optical unit with a sensitive SPAD array imager capable of 

detecting weak AF signals from the human body.  

• To characterise the integrated system with fluorophore phantom solutions. 

• To perform in vitro experiments on human colorectal cells labelled with cancer-

specific fluorescence probes. 

• To characterise the integrated system through ex-vivo experiments on unlabelled 

healthy and malignant human tissues from the colon. 

1.3 Thesis outline 

The rest of thesis is organised as follows: 

Chapter 2 begins with an introduction on the history of capsule endoscopy followed by a 

short description of the devices commercially available in the market. The chapter continues 

by presenting the science behind fluorescence. In particular, the molecular processes 

responsible for fluorescence are introduced through energy diagrams and important concepts 

such as absorption and emission spectra, and the fluorescence quantum yield. The theory 

behind the interaction of light with human tissues is also presented in order to introduce 

fluorophores and the phenomenon of AF in human tissues. The advantages of AF imaging 

in cancer detection are highlighted. The mechanical and optical principles of clinical 

endoscopes that use fluorescence imaging for the diagnosis of cancer are reviewed in order 

to understand how they can be applied and translated in capsule endoscopy. Finally, a review 

of the work that has been done by different research groups in implementing fluorescence 

modalities in capsule endoscopy is presented.  

Chapter 3 presents the design and fabrication of the optical unit. The “off-the-shelf” light 

source that is integrated in the final prototype is characterised through knife edge 

measurements to measure the beam profile. The simulation of the light source in Zemax 

Optics studio is also presented and the results from the simulations are compared to the knife-

edge measurements. At this point, the optical design and simulation of the entire final 

prototype is shown. The CAD design of the main body holding the optical components in 

place is also described. The optical filters and lenses that were purchased to realize the final 

prototype based on the results of the simulations are then presented. Furthermore, the 
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material processing techniques that were performed on the optical filters to make them 

suitable for integration in the final prototype are described. The comparison of the filters’ 

optical properties before and after the manufacturing processes are also discussed. The 

chapter ends by showing the final assembled prototype with all the optical components in 

place.  

Chapter 4 starts by presenting the characterisation of the excitation beam exiting the optical 

unit through knife-edge measurements. The comparison of the experimental results with 

simulations results is also discussed.   The chapter continues by describing the integration of 

the optical block onto a 64 x 64 SPAD array imager. The experiments performed on 

fluorophore phantom solutions to characterise the optical block coupled to the SPAD in 

fluorescence mode are also described.  

Chapter 5 describes the work that was performed in the Centre for Cell Engineering at the 

University of Glasgow to test the prototype on fluorescence-labelled cancer cells. The 

chapter begins by introducing cell lines and fluorescence probes that were used in the 

experiments. The full experimental protocol to culture and label the cells in 96-well plates 

is also shown. The experimental procedure to measure the fluorescence signal from the 

plates is described in detail. The results from the experiments are discussed along with the 

comparison between the two fluorescence probes performances. The chapter concludes with 

the validation of the results through comparison with a benchmark instrument.  

Chapter 6 discusses the experiments performed at the Western General Hospital in 

Edinburgh to measure the AF signal from fresh human resected malignant and healthy 

tissues from the colon. The chapter begins by describing the aim of the study and the 

procedures that were performed to obtain fresh samples at the hospital. The imaging protocol 

to scan the tissues with the optical prototype is presented in detail. The algorithm to 

reconstruct the final AF images of the tissues from the scan is also thoroughly described. 

The results from each patient are discussed to show the capability of the integrated imaging 

system to detect changes in AF signals between cancerous and healthy tissue samples.   

Chapter 7 summarizes the results from the previous chapter and presents potential future 

work. 
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2 Literature review 

2.1 The gastrointestinal tract is a complex system 

“The world is a much more interesting place if we look beyond what is visible to the naked 

eye - there is so much more to see!”- Julia Enders. 

Julia Enders, researcher at the Institute for Microbiology in Frankfurt, chose these words to 

debut in her book “GUT the inside story of our body’s most under-rated organ” [19]. Human 

gut or gastrointestinal tract (GI) is one of the most complex systems of human physiology 

(Fig. 2.1). GI tract consists of mouth, oesophagus, stomach, intestines, and anus with the 

primary purpose of digesting the food which can be easily absorbed by the body to provide 

energy for various metabolic processes.  

                 

Figure 2.1 Representation of human gastrointestinal (GI) tract [20].  

There are several diseases associated with GI including infection, inflammation, and cancer. 

Several symptoms such as occult GI bleeding and ulcers can be directly related to gastric 

cancer, angiodysplasia, and lymphomas [21], [22]. Therefore, an early diagnosis of these 

symptoms is very important before these pathologies become life-threatening.   

The research agency CANCERMondial stated that an estimated 14.1 million of new cancer 

cases arose globally in 2016 with more than 50% leading to death [22]. Cancers of the GI 

tract accounted for the 20% of the total cases. Although 50% of GI cancer cases were 
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diagnosed as colorectal cancer, mortal rates were higher in stomach and oesophageal cancer. 

The data showing the number of deaths in diagnosed cases for three types of cancer is shown 

in Fig. 2.2.     

 

Figure 2.2 GI cancer cases worldwide comparing the diagnosed versus mortal rates of 

colorectal, stomach and oesophageal cancer in 2012. Data obtained from [23]. 

Early diagnosis of cancer is quite difficult as most of the patients are asymptomatic at an 

early stage [24]. Moreover, many patients are referred to hospitals when the tumour has 

already progressed to its advanced stages [25]. The disease starts from the innermost layer 

of the GI walls also defined as mucosa as shown in Fig 2.3 [26]. A diagnosis can be made 

by means of various methods, such as physical examination, manometry, lab test, blood test, 

stool analysis, breath test, pH monitoring, imaging test such as Barium X-ray, computed 

tomography scan, magnetic resonance, endoscopy, abdominal ultrasound and other  

treatment options which are listed in the table 2.5 [27]. An early diagnosis of cancer is crucial 

to for the immediate and subsequent treatment. 
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Figure 2.3 Different stages of colorectal cancer [28]. 

 

Table 1 Diagnosis and treatment options for gastrointestinal cancer [27] 

Type of cancer Screening of cancer Treatment option 

 

 

 

 

Esophageal 

Cancer 

 

 

 

• Physical exam and history 

• Chest X-ray 

• Esophagoscopy 

• Endoscopic ultrasound 

• Scan (CT, MRI, PET) 

• Biopsy 

• Thoracoscopy 

• Laparoscopy 

• Ultrasound exam 

• Brush cytology 

• Balloon cytology 

• Chromoendoscopy 

• Fluorescence spectroscopy 

 

• Surgery 

• Radiation therapy (External, 

Internal) 

• Chemotherapy 

• Chemoradiation therapy 

• Laser therapy 

• Electrocoagulation 

• Targeted therapy (Monoclonal 

antibody therapy 

 

 

 

Stomach 

Cancer 

• Physical exam and health 

history 

• Barium-meal gastric 

photofluorography 

• Upper endoscopy 

• Serum pepsinogen levels 

• Carcinoembryonic antigen 

(CEA) assay and CA 19-9 

assay 

• Surgery (Subtotal gastrectomy, 

Total gastrectomy, Endoluminal 

stent placement, Endoluminal 

laser therapy, Gastrojejunostomy) 

• Endoscopic mucosal resection 

• Chemotherapy 

• Radiation therapy 

• Chemoradiation 

• Targeted therapy (Monoclonal 

antibody therapy, Multikinase 

inhibitors) 

• Immunotherapy (Immune 

checkpoint inhibitor therapy 
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Small Intestine 

Cancer 

• Physical exam and history 

• Blood chemistry studies 

• Liver function tests 

• Endoscopy (Upper 

endoscopy, Capsule 

endoscopy, Double balloon 

endoscopy) 

• Laparotomy 

• Biopsy 

• X-ray with Barium upper GI 

series with small bowel 

follow-through 

• Scan (CT, MRI) 

 

• Surgery (Resection, Bypass) 

• Radiation therapy (External, 

Internal) 

• Chemotherapy 

• Biologic therapy 

• Radiation therapy with 

radiosensitizers 

 

 

 

 

 

 

 

 

 

 

 

 

Colorectal 

Cancer 

• Fecal occult blood test or 

FBOT (Guaiac, 

Immunochemical) 

• Sigmoidoscopy 

• Colonoscopy 

• Virtual colonoscopy 

• DNA stool test 

• Surgery (Polypectomy, Local 

excision, Resection, 

Radiofrequency ablation, 

Cryosurgery, Pelvic exenteration 

• Radiation therapy (External, 

Internal) 

• Chemotherapy (Systemic, 

Regional) 

• Active surveillance (Digital rectal 

exam, MRI, Endoscopy, 

Sigmoidoscopy, CT scan, 

Carcinoembryonic antigen assay) 

• Targeted therapy (Monoclonal 

antibodies, Angiogenesis 

inhibitors) 

• Immunotherapy (Immune 

checkpoint inhibitor therapy) 

 

Colon Cancer 

• Surgery (Local excision, 

Resection of the colon with 

anastomosis, R esection of the 

colon with colostomy 

• Radiofrequency ablation 

• Cryosurgery 

• Chemotherapy (Systemic, 

Regional) 

• Radiation therapy (External, 

Internal) 

• Targeted therapy (Monoclonal 

antibodies, Angiogenesis 

inhibitors) 

• Immunotherapy (Immune 

checkpoint inhibitor therapy) 
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Gastrointestinal 

Stromal 

Tumours 

• Physical exam and health 

history 

• Scan (CT, MRI, PET) 

• Endoscopic ultrasound and 

biopsy 

• Immunohistochemistry 

• Mitotic rate 

• Chest x-ray 

• Bone scan 

 

• Surgery 

• Targeted therapy (Drugs, Tyrosine 

kinase inhibitors) 

• Watchful waiting 

• Supportive care 

 

 

 

Gastrointestinal 

Carcinoid 

Tumours 

• Physical exam and history 

• Blood chemistry studies 

• Tumour marker test 

• Twenty-four-hour urine test 

• Scan (MIBG, CT, MRI, 

PET) 

• Endoscopic ultrasound 

• Upper endoscopy 

• Colonoscopy 

• Capsule endoscopy 

• Biopsy 

 

• Surgery (Endoscopic resection, 

Local excision, Resection, 

Cryosurgery, Radiofrequency 

ablation, Liver transplant, Hepatic 

artery embolization) 

• Radiation therapy (External, 

Internal) 

• Chemotherapy (Systemic, 

Regional) 

• Hormone therapy 

• Trageted therapy 

 

2.2 Towards the exploration of the GI tract 

How can we investigate a multifaceted and complex system as the GI tract from the inside?  

In 1987, a movie called “Innerspace” introduced the idea of exploring the human body 

internally by taking an advantage of miniaturization. Although at that time the whole idea 

looked imaginary, recent advancement in the field of engineering, semiconductor industry, 

and wireless transmission have turned this concept into reality.   

The diagnosis of gastrointestinal cancer often requires endoscopy and biopsy [29]. 

Endoscopy is a continuous and efficient investigative method for direct observation and 

detection of anatomic abnormality of the gut.  The term endoscopy is derived from the Greek 

prefix ‘endo’ as within and the verb ‘skopein’ as to observe. It helps in the visualization and 

physical examination of those areas which are hidden from the external view such as the 

areas between body orifices. The development of wired endoscopy allowed the vision of the 

stomach, the upper small intestine, and colon [30]. Diseases associated with the upper 

gastrointestinal tract, including the esophagus, stomach, and duodenum, can also be easily 

visualized, diagnosed and treated using this technique. 
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To accomplish a safe and effective endoscopic procedure, several innovative techniques and 

product developments have been made in the past years. The history of visual exploration 

and examination inside the human body dates back to at least Egyptian and later Greco-

Roman times. During that period, mechanical specula were used to examine the vagina and 

anus for genitourinary (GU) related problems as the cavities were short and at a relatively 

straight distance from the body orifice. However, progress in the development of these 

instruments was delayed by the lack of both suitable fabrication materials and the integration 

of an illumination source. In 1805, Bozzini was the first to attempt to visualize the human 

body internally by fabricating a device called a ‘lichtleiter’ (light conductor) [31]. The 

instrument consisted of a tin tube illuminated by a candle. Concave mirrors were placed 

behind the candle to reflect the illumination to the eye of the observer. The device was used 

to examine the genitourinary tract but it was an impractical instrument that never gained 

wide acceptance. Afterwards, straight metal tubes were used by Segalas in France (1826) 

and Fisher in Boston (1827) but the lack of an illumination source still remained a major 

challenge. In 1855, Desormeaux developed an instrument similar to the device of Segalas 

using a lamp fuelled with alcohol and turpentine which worked as a light source. Several 

researchers continued to develop instruments capable of delivering suitable light sources to 

the inaccessible areas of the human gut. In 1868, Kussmaul was the first person to perform 

a gastroscopy by using a straight rigid metal tube passed over a flexible obturator and a 

cooperative sword swallower [32]. Since then, several attempts and innovations have been 

made simultaneously by the scientists to develop efficient light sources and methods to 

rectify the problems and difficulties associated with endoscopy. The advancement of fibre 

optics and its application to endoscopes has truly revolutionized the diagnostic and 

therapeutic capabilities of endoscopy. Innovations and developments that need notable 

appreciation for laying the foundations of the endoscopy techniques are summarized in Table 

2.1. 

Table 2 Summary of the milestones leading to endoscopy [30]–[32].  

Year Development/innovation Challenge/problem 

1805 Bonzini developed a tin tube 

illuminated by a candle from which 

light was reflected by a mirror and 

named the instrument as ‘lichtleiter’. 

The instrument was impractical 

and could visualize GU tract only 
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1826-1827 Segalas and Fisher developed straight 

metal tubes 

Lack of a satisfactory light source 

1855 Desormeaux used a lamp fueled with 

alcohol and turpentine as a light 

source 

The instrument was inadequate 

and unsatisfactory for the 

inaccessible areas of GI tract 

1868 Kussmaul invented gastroscope by 

using a straight rigid metal tube passed 

over a flexible obturator and a 

cooperative sword swallower. For a 

light source, he used a mirror 

reflecting light from the Desormeaux 

device 

Light illumination was inadequate 

and the tube had created problems 

to the gastric wall or gastric 

perforations. 

1882 Bruck and Milliot introduced a loop of 

platinum wire charged with direct 

current as a light source. 

Difficulties were encountered 

with the considerable heat 

generated, necessitating a water 

cooling system and the 

cumbersome batteries used for a 

power source 

1949 The Eder-Hufford rigid 

esophagoscope was introduced with a 

straight rigid tube and a rubber finger-

tipped obturator to make insertion 

safer. With the later addition of a 4X 

power lens on the proximal end and a 

distal incandescent bulb 

The instrument was not flexible, 

fragile and could be easily 

damaged. 

1911 Elsner introduced a rigid gastroscope 

with an outer tube through which a 

separate inner optical tube with a 

flexible rubber tip was inserted 

Assitance was required to use the 

instrument. 

1922 Schindler introduced an air channel to 

clear the lens of secretions 

Assistance required to create a 

straight path for the tube into 

eosophagus and stomach 
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1932 Wolf-Schindler semiflexible 

introduced a gastroscope with a rigid 

proximal portion and and an elastic 

distal portion made of coiled copper 

wire. The instrumentended with a 

rubber finger and later a small rubber 

ball. A distal incandescent light bulb 

was used as a light source. 

Poor quality of images 

1948 Benedict introduced the Benedict 

Operating Gastroscope incorporating a 

biopsy procedure 

Poor quality of images 

1950 Uji, Sugiura and Fukami developed 

the Gastrocamera 

Required more time to developed 

photographs and the operator 

could not see through the 

instrument directly 

1962 Hirschowitz introduced Hirschowitz 

Gastroduodenal Fiberscope which was 

a very flexible side-viewing 

instrument with an electric light on its 

distal end, an air channel, and an 

adjustable proximal focusing lens 

Fragile glass fibres, over-heating 

of light source causing thermal 

injury to the gastric mucosa and 

difficulty in moving the 

fiberscope through the pylorus 

and into the gut resulted in 

bowing in the gastric pouch 

1984 Welch Allyn, Inc. (Skaneateles Falls, 

NY) introduced Digital Endoscopy or 

video endoscopy 

High cost 

1991 Wiersema showed that endoscopic 

ultrasonography (EUS) could be used 

to nodes and lesions of the upper and 

lower GI tract 

Need for sedation, time taking 

process and need assistance 

during the application of the 

instrument 
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2.3 Endoscopy as the gold standard for GI tract exploration 

2.3.1 White Light Endoscopy 

The most diffused and standard endoscopy technique is white light endoscopy (WLE) which 

takes advantage of all the wavelength in the visible spectrum thanks to a xenon lamp 

mounted in a unit outside the body of the patients [33]. WLE detects lesions based on 

structural changes or discoloration of the epithelial surface and may be used to guide the 

acquisition of tissue biopsies. Light is carried inside the body through flexible optical fibres 

and shines on the gut tissues. Originally, another set of fibres was guiding back the light 

reflected from the gut walls outside the body to a unit where a high resolution charged 

coupled device (CCD) imager was placed. Nowadays, the advent of chip-on-tip endoscopes 

allowed the integration of CMOS image sensors directly on the distal end of the instruments 

[34]. An image of the mucosa on the sensor is formed thanks to an objective lens. Other 

lenses are often also used to magnify the areas of interest and provide a better visualization 

of the mucosa. In many instances, standard WLE has a miss rate of up to 25% for 

gastrointestinal pathology, specifically for detection of small and flat lesions within the colon 

[35]. 

2.3.2 Advanced imaging beyond white light endoscopy  

Recently, a variety of new techniques have been developed and implemented in medical 

endoscopy with the purpose of overcoming these limitations and eventually detecting lesions 

that are still indiscernible under traditional white light endoscopy [36], [37]. Although there 

are several types of imaging systems in the market, as shown in the Table 2.3, no single 

imaging modality is applicable in all clinical scenarios. However, novel image-enhanced 

endoscopic technologies have the potential to detect polyps/neoplasms and provide real-time 

histological diagnosis. Some of these methods such as Narrow band Imaging (NBI) improves 

visibility and identification of the surface and vascular structures of colon polyps. This 

technique uses optical interference filters to spectrally narrow the bandwidths used in 

conventional white light providing more visual details of the superficial mucosal structures 

thus enhancing visualization of the mucosal capillaries in neoplastic tissues. NBI exploits 

the enhancement and optimization of the images contrast [38]. Other modalities such as 

magnification endoscopy (ME) allow the visualization of tissues structure at microscopic 

level [39]. When fluorescence is used for diagnostic purposes, two directions are generally 

taken to generate and then detect fluorescence information. The first method is based on 

autofluorescence (AF) or fluorescence emitted by the endogenous fluorophores [11]. The 

second method relies on detecting fluorescence emitted by exogenous fluorescence agents 
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[40]. Application of fluorescent probes is more invasive because these external agents pose 

a risk of side effects when administered to patients [41]. On the other hand, AF 

measurements represent a preferred method over external fluorescent probes for GI tract 

cancer diagnostics as they are less invasive and more suitable for endoscopy. The design and 

development of the fluorescence endoscopy can never be possible without understanding the 

basic photophysical property of light and its interaction with the tissues. 

Table 3 Different types of optical imaging in endoscopy and advancement beyond WLE. 

Type Features Advantages Disadvantages 

Image enhanced endoscopy or field enhancement: NBI, I-scan, FICE and 

autofluorescence endoscopy 

 

 

 

 

 

Narrow 

Band 

Imaging 

(NBI), 

[42]–[44] 

 

It involves the 

placement of narrow 

band pass filters in 

front of a 

conventional white 

light source to obtain 

tissue illumination at 

selected narrow 

wavelength bands. 

• It can detect superficial 

vasculature and mucosal 

pit patterns in real-time 

• Enhanced dysplasia 

detection  

• It can be used in the 

ablation of Barrett’s, 

endoscopic mucosal 

resection, and therapeutic 

procedures where the 

assessment of the margin 

is critical 

• Highly useful in polyp’s 

assessment in colorectal 

cancer 

• Dimmer images 

as compared to 

WLE 

• Interpretation 

of contrast 

enhanced 

images require 

familiarity  

• The presence of 

blood or bile 

prevents 

optimal 

viewing 

 

 

 

 

 

Blue laser 

imaging 

(BLI), 

[45], [46] 

 

A 410 nm laser is 

used to detect 

vascular 

microarchitectures 

and a 450 nm laser 

provides white light 

by stimulating 

phosphor which is 

placed at the tip of 

the endoscope. 

• It can achieve a bright and 

clear image even at a 

distant view 

• It produces high-contrast 

images in oesophageal 

cancer with clear vision 

of intrapapillary capillary 

loops  

• It predicts the 

histopathological of 

colorectal neoplasms. 

• It has high polyp’s 

diagnostic sensitivity 

• It provides excellent 

vision of both 

microvascular and micro-

surface patterns 

 

• Physicians are 

not familiar 

with the 

technique 

• The endoscopic 

view is darker 

than with WLI 

 

 

Fujinon 

intelligent 

 

 

It uses 

postprocessing 

 

• It has enhanced adenoma 

detection rates   

 

 

• Expensive 
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chromoen

doscopy 

(FICE) / I-

Scan, 

[47]–[49] 

algorithms to 

digitally convert 

high definition WLE 

images into colour 

images composed of 

various wavelength 

combinations. 

• It provides topographical 

information and enhances 

mucosal vasculature by 

augmenting light contrast. 

• No optical filter needed 

• Time-

consuming 

• It requires 

experience to 

operate the 

system 

 

 

Autofluore

scence 

imaging 

(AF), [50] 

It detects the 

fluorescence of 

naturally occurring 

fluorophores within 

the gastrointestinal 

mucosa.  

• Less risk for the patient 

• It can distinguish 

neoplastic from non-

neoplastic tissues 

• Colour 

differentiation 

is poor 

• Low specificity 

• High rate of 

false positives  

Virtual histology or point enhancement for in vivo histological examination: Confocal 

laser endomicroscopy, OCT, Spectroscopic endoscopy 

 

 

 

 

 

 

 

Confocal 

laser 

endomicro

scopy 

(CLE), 

[50] 

 

 

It works by focusing 

blue laser light 

through a single lens 

onto a specific 

target. The reflected 

light is filtered 

through a pinhole 

reducing light 

scattering and 

creating highly 

detailed images from 

a thin focal plane. 

• It offers image details 

comparable to 

histopathological sections 

• It gives higher resolution, 

wider field of view and 

deeper imaging depth. 

• It provides real-time 

histological details 

• The operator 

requires 

training in CLE 

image 

acquisition and 

interpretation. 

• It requires an 

additional 

capital 

investment in 

equipment and 

accessories that 

limits its 

widespread use. 

• Time 

consuming 

• It requires 

contrast agents 

 

 

 

 

Optical 

Coherence 

Tomograp

hy (OCT), 

[51] 

 

It uses near infrared 

light on the target 

tissue. Differential 

light scatter is 

detected and 

interpreted to create 

a cross-sectional 

image. 

• It can scan depth of up to 

2 mm below the mucosal 

surface. 

• It can visualize histologic 

morphology in real time, 

especially the epithelial 

structures such as villi, 

crypts, and squamous and 

intestinal epithelium 

 

• Relatively high 

costs. 

• It needs 

standardized 

terminology 

and criteria for 

normal and 

neoplastic 

tissues 

•  Lack of 

prospective 

data on clinical 

outcomes 
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Fluorescen

t Tagged 

Molecular 

Probes, 

[52], [53] 

It employs the 

application of 

exogenous and 

targeted fluorescent 

contrast agents to 

highlight a 

biological process 

that is not regulated 

properly in the 

diseased area 

• Dynamic as well as 

quantitative visualization 

of specific biochemical 

processes is possible  

• It has been useful for 

early-stage cancer 

diagnosis 

• It lacks 

specificity for 

tumours which 

translates in a 

high 

background 

fluorescence 

noise and 

consequent 
difficult 

detection of 

diseased areas 

 

 

 

Spectrosco

py, [54], 

[55] 

 

 

It uses spectral 

differences in the 

optical signals based 

on the 

microstructure and 

biochemical nature 

of the tissues. 

• It can quantitatively 

measure the colour and 

intensity of reflected light 

• Training in image 

analysis is not needed 

• It is a rapid and almost 

real-time analysis  

• as chemical composition 

and nanoscale tissue 

structure can be assessed 

• It can differentiate 

between neoplastic and 

non-neoplastic tissues and 

can detect flat dysplasia 

in Barrett’s oesophagus 

 

• It has ability to 

only diagnose 

focal lesions. 

• It is a time-

consuming 

process because 

allows for 

interrogation of 

a single point at 

a time and 

 

2.4 The role of fluorescence in endoscopy 

2.4.1 The physics behind fluorescence 

Atoms and molecules are in their ground state in the absence of any excitation. The 

multiplicity of the energy levels in a molecule is given by Equation 2.1: 

  

𝑀 = 2𝑆 + 1 

                                         

(2.1) 

    

where: 

S is the total spin angular momentum 

Organic molecules do not have any unpaired electrons in their ground state. If the spins of 

the electrons in the orbitals are balanced, the total spin angular momentum is zero (S=1/2-
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1/2=0), the spin multiplicity M is equal to one and the energy state is defined as singlet (S0 

for the ground state) as defined by Equation 2.1. 

The absorption of a photon by a molecule does not merely imply a transfer from a ground 

state energy level to a higher one. If the electron in the excited state is paired (opposite spin) 

with the electron in the ground state or retaining its antiparallel configuration the spin 

angular momentum is zero, the multiplicity is one and the state is still a singlet (S1) with 

higher energy. However, if the electron in the excited state is paired (same spin or remain 

parallel) with the electron in the ground state, the spin angular momentum is one, the 

multiplicity is three and the excited state is defined as a triplet (T1). 

It must be stated that in diatomic and polyatomic molecules, there are several vibrational 

states within each electronic energy state. The Jablonski diagram proposed in 1935 illustrates 

all the molecular processes and transitions of a molecule between electronic states as shown 

in Fig. 2.4 [51]. When the continuous radiation passes through a chromophore, a portion of 

the radiation is absorbed by the molecule. As a result of light absorption, the electrons in the 

chromophore are excited from the ground vibrational level, S0 (low energy) to higher 

vibrational levels, S1 or S2 (high energy) in a very short span of time (timescale: 10-15 s).  

After the transition, molecule will undergo rapid relaxation (timescale: <10-12 s) and return 

to the ground vibrational level of S1. This phenomenon is known as vibrational relaxation 

and can only arise within the vibrational levels of a given electronic state. On the other hand, 

the relaxation of a molecule from a higher electronic singlet state to a lower single state can 

lead either to non-radiative decays known as internal conversions (IC) (timescale: 10-14 to 

10-11 s) or radiative decays such as fluorescence (F) (timescale: 10-9 s). Molecules in the 

excited S1 state can also transition to the first excited triplet state T1. This process is defined 

as intersystem crossing (ISC) (timescale: 10-11 to 10-6 s) and is linked to a spin conversion 

(a "flip") in the spin direction. Therefore, the electron in the excited triplet state is unpaired 

with the electron in the S0 state. According to the selection rules of quantum mechanics, 

transitions between the T1 and the S0 states have low probability of occurring and are 

considered as forbidden transition [52]. However, relaxation from the excited T1 state to the 

S0 ground state happens and the phenomenon of emission of light is named as 
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phosphorescence (P) (timescale: 10-3 to 100 s) which is weakly allowed through spin-orbit 

coupling.  

               

Figure 2.4 Jablonski diagram illustrating the several molecular processes which occur 

between energy states [56]. Here: hʋ is a generic term for photon energy with h = Planck's 

constant (6.63 × 10-34 Js) and ʋ = frequency of light. 

2.4.1.1 Frank Condon Principle 

A deeper understanding of fluorescence phenomena can be achieved through the analysis of 

the Frank Condon Principle [57]. In the excited state (S1), the internuclear distance between 

the atoms in the molecule is longer. This can be seen in Fig. 2.4 where the potential energy 

of the electronic states is plotted versus the internuclear distance and, the curve for the 

excited states is shifted right on the axis. When a photon is absorbed by a molecule the 

promotion of electrons from ground state to the excited state happens much faster with 

respect to vibrations of the nuclei. This is due to the fact the nuclei in molecules are 

enormously heavy compared to the electrons and thus they can be considered fixed. This 

assumption implies that there is no change in internuclear distance immediately before and 

after the promotion of an electron from the ground state to the excited state. Therefore, the 

transition can be considered vertical. Vibration levels of excited and ground state are 

equivalent and thus a mirror image is obtained. When a photon is absorbed, a change from 

one vibrational energy level to another will happen where the two vibrational wave functions 

overlap more significantly. As a matter of fact, during the absorption process, the molecule 

does not shift from v =0 to v’=0 but from v=0 to v’=2 (Fig. 2.5, A arrow) and starts vibrating 

as a spring. These vibrations occur periodically in the order of 10-13 or 10-12 s. Since the 
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typical lifetimes of excited electronic states are of the order of 10-9 s, there is enough time 

during the excitation period for many thousands of vibrations. The phenomenon of 

fluorescence occurs when the electronic deactivation from E0 to E1 causes the emission of a 

photon. As in the case of excitation, during fluorescence, the molecule does not shift from 

v’=0 to v=0 but from v’=0 to v=2 with some excitation energy converted into vibrational 

energy. This means that the fluorescence frequency is lower than the absorption frequency. 

Consequently, the energy of the emitted photon will be significantly lower than the absorbed 

photons. In other words, fluorescence light has a longer wavelength compared to the 

absorbed radiation. This phenomenon is known as Stokes' shift and was introduced in this 

chapter as it is the main cause of the human tissue emission of green fluorescence under the 

excitation of blue light. 

                                      

Figure 2.5 Energy diagram showing transitions in the vibrational levels of ground and 

excited energy states S0 and S1 [58]. During the absorbance of a photon (A) the molecule 

shifts from the vibrational level v = 0 in S0 to the vibrational level v’ =2 in S1. On the 

other hand, during fluorescence emission the molecule has already lost some vibrational 

energy and shifts from v’=0 in S1 to v =2 in S0. 

2.4.2 The interaction of light with biological tissues 

A deep understanding of fluorescence at tissue-level is necessary to design an efficient 

fluorescence optical system for medical applications. Each fluorescence measurement 

involves the interrogation of tissues with excitation light. This interaction is strongly 

dependent on the optical properties of the tissues. The absorption of a photon by a molecule 

can be described by the Beer’s Law [59]. 
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(2.1) 

 

where, A = absorbance, I0 = intensity of incident light, I = intensity of transmitted light, є = 

molar extinction coefficient or molar absorptivity (M-1cm-1), c = molar concentration of 

sample (M) and l = pathlength of sample cell (cm). 

However, Beer’s law shows certain deviations when it comes to tissue-light interactions 

because the index of refraction is variable within the tissues and both absorption and 

scattering phenomena occur [60]. In fact, tissues can be considered as turbid media and are 

characterized by both absorption and scattering coefficients which express the probability of 

absorption and scattering occurring per unit pathlength, respectively [61]. For example, the 

important molecules responsible for the absorption in tissues are oxyhaemoglobing (HbO2), 

deoxyhaemoglobin (Hb) and water (H2O) [62]. The absorption spectra of these molecules 

show a lower absorption in the range of wavelengths defined as “Therapeutic Spectral 

Window” [63]. This region extends from 600 nm to 1000 nm and scattering prevails over 

absorption (Fig.2.6). 

      

Figure 2.6 Absoption spectra of oxyhaemoglobing (HbO2), deoxyhaemoglobin (Hb) and 

water (H2O) [64]. In the region between 600 nm and 1000 nm the absorption is lower than 

the surrounding wavelenghts therefore scattering prevails. 

 

 

𝑨 = 𝐥𝐨𝐠 𝑰𝟎 𝑰 ⁄ = 𝛆𝒄𝒍 
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2.4.3 Fluorophore 

Fluorophores can absorb visible light and reemit it at longer wavelengths. Fluorescent probes 

or dyes offer vast opportunities to visualize and detect different dynamic events within living 

cells and tissues. Moreover, they also help in the quantification of various physiological and 

biochemical parameters inside the cells by in vivo, in vitro and in situ approaches.  

The efficiency of fluorescence emission from a fluorophore is defined in terms of 

fluorescence quantum yield (𝑄𝑓) which is described as the number of emitted fluorescence 

photons over the numbers of absorbed photons [65]. As reported previously, the absorption 

of a photon brings the molecules to a higher excited state but does not intrinsically lead to 

fluorescence. In fact, other process such as non-radiative decays and intersystem crossing 

affect the fluorescence quantum yield which can be defined as: 

   𝑄𝑓 =
𝑘𝑓

𝑘𝑓+𝑘𝑖+𝑘𝑛𝑟
      (2.2) 

Where,  

𝑄𝑓 : Fluorescence quantum yield  

𝑘𝑓  : Fluorescence decay rate; defined as the inverse of fluorescence lifetime (𝜏𝑓) or the time 

during which the molecule remains in the excited state before relaxation  

𝑘𝑖 is the decay for intersystem crossing  

𝑘𝑛𝑟 is the decay rate for non-radiative transitions 

 

If the decay rates 𝑘𝑖 and 𝑘𝑛𝑟 are much smaller than 𝑘𝑓 the quantum yield is closer to one. 

The closer the quantum yield is to one, the higher the fluorescence light emitted by the 

fluorophore. 

The quantum yield can be precisely measured in environments where all photons in the 

excitation source are focused on the fluorophore solution. Commonly, the quantum yield of 

a fluorophore is determined in comparison to a compound with known quantum yield as a 

reference. However, this method is not suitable when the sample consists of multiple 

molecular species because quenching can occur [66]. Quenching is a decrease of 

fluorescence intensity due to a wide variety of processes. In this case, the fluorophore can 

undergo collisional quenching due to the contact between the fluorophore and other 

molecules in the environment. 
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Fluorophores can be divided broadly into two main classes - intrinsic or endogenous 

fluorophore and extrinsic or exogenous fluorophore. Fluorophores that naturally occur in 

biological tissues, such as amino acids, proteins, etc are defined as endogenous fluorophores. 

Exogenous fluorophores are added to the sample to provide fluorescence or change the 

photophysical or spectral property of the sample. Propidium iodide, dansyl, fluorescein are 

few examples of exogenous fluorophores that are commonly used in medical science.  

Endogenous fluorophores are responsible for the phenomenon known as Autofluorescence 

(AF) [64]. They can absorb different wavelengths of light and emit light with longer 

wavelength. Although the intensity of AF light is not strong, it is often used to detect changes 

in the biological tissues. Fluorophores include the aromatic amino acids (tyrosine, 

tryptophan, and phenylalanine), enzyme cofactors (NADH, pyridoxyl phosphate), 

Riboflavin (Flavin mononucleotide, FMN and Flavin adenine dinucleotide, FAD), etc.   

Figure 2.7 shows the absorbance and emission spectra of the endogenous fluorophore 

exploited in most biomedical applications [67]. Tryptophan is an aromatic amino acid with 

fluorescence excitation and emission wavelengths of 295 nm and 353 nm, respectively. 

Collagen is a constituent protein of tissues matrix and shows fluorescence emission at 

400 nm when excited at 325 nm. Flavins are among the major electron acceptors and take 

part in the energy metabolism of cells. Flavin adenine dinucleotide (FAD) is an electron 

carrier and emits fluorescent light between 520 nm and 530 nm when excited at 450 nm. 

However, upon acceptance of two electrons, FAD is reduced to FADH2 which do not show 

any fluorescence emission. Flavin mononucleotide (FMN) and riboflavin (Vitamin B2) are 

other important flavins which are present in biological tissues capable of emitting 

fluorescence. NADH is the reduced form of the major electron acceptor nicotinamide 

adenine dinucleotide (NAD). Oppositely to FAD, NAD emits fluorescence in its reduced 

form (NADH) with fluorescence excitation and emission maxima of 340 nm and 460 nm, 

respectively. The brightness of fluorescence light emitted by specific fluorophore is 

proportional to the product between the extinction coefficient at the wavelength of the 

excitation light and the quantum yield of the fluorophore. 
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Figure 2.7 (a) Absorption spectra and (b) Emission spectra of endogenous fluorophores 

in human tissues [67]. 

 

The photophysical property of biological samples can be employed in the detection of cancer 

by exploiting the naturally occurring autofluorescence (AF). These endogenous fluorophores 

can also be used to observe the differences in AF spectra between normal and diseased 

tissues. Healthy epithelial tissue generally emits green autofluorescence when excited with 

blue light due to the presence of elastin and collagen as endogenous fluorophores in the 

submucosa layer. However, the abnormal tissue emits markedly dimmer autofluorescence 
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with a red-shifted spectrum. Therefore, changes in the intensity of tissue autofluorescence 

can be used to follow pathological processes such as carcinogenesis (Fig. 2.10). 

 

             

Figure 2.8 Illustration of tissue autofluorescence of healthy and cancerous tissues upon 

excitation [68].  

A comparative analysis between autofluorescence spectra of normal and pathological tissues 

could lead to the detection of early cancerous and precancerous lesions with an increase in 

fluorescence ratio between red region and green region of the fluorescence spectrum. 

Cancerous tissues show low fluorescence intensity and some changes in the spectral shape 

compared to normal tissues upon excitation with ultraviolet or visible light. The drop in 

fluorescence intensity in pathological tissue may be due to thickening of the epithelium. 

Therefore, less excitation light is delivered to the endogenous fluorophores in the submucosa 

and less fluorescence light is emitted by the same fluorophores. In 2019, Ehlen et al. run a 

pilot study on the potential of fluorescence and near-infrared spectroscopy for the 

discrimination of colorectal cancer malignancies.  Fluorescence emission spectra of ex-vivo 

normal and tumour tissues of resected colorectal cancer specimen were obtained by exciting 

the tissues at 473 nm and recording the fluorescence emission by means of fibre optics 

probes. Considerable spectral differences between normal tissues and cancer were 

discovered in the fluorescence spectra (Fig 2.10) [69]. 
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Figure 2.9 Fluorescence behaviour representation (mean spectra) of some colorectal 

tissues [69]. 

2.4.4 AF imaging 

The fundamental principle of AF imaging is to exploit the properties of the endogenous 

fluorophores within the tissues [70]. In AF imaging, tissues are excited with specific 

wavelengths in the blue spectrum to detect the tissues emission of longer wavelengths of 

light in the green spectrum. Flavins are the main targeted fluorophores. Specifically, FAD 

emits fluorescent light between 520 nm and 530 nm when excited at 465 nm. However, 

variations in the ratio between the oxidized form of FAD and its reduced form FADH2, 

which does not emit any fluorescence, are directly linked to the metabolic activity within the 

tissues during carcinogenesis [71]. Therefore, FADH2 is increased when cancer is present. 

Moreover, the growth of new blood vessels (angiogenesis) in cancerous tissues causes an 

increase in the levels of Haemoglobin which is responsible for a strong absorption of green 

wavelengths. This phenomenon leads to a strong attenuation in the autofluorescence signal 

in the presence of cancer [72]. Therefore, autofluorescence changes in neoplastic tissues are 

mainly due to three mechanisms: (1) increase in the nuclear-cytoplasmic ratio which 

consequently determines decreased autofluorescence as nuclei show no autofluorescence as 

compared with cytoplasm; (2) loss of collagen as submucosal collagen is the strongest 

fluorophore which disappears due to thickening of the mucosa; and (3) neovascularization: 

inducing increased haemoglobin concentration which absorbs autofluorescence light [72].  

In AFI endoscopy, white light generated by a xenon lamp is conducted through a rotational 

filter wheel to continuously produce blue (395–480 nm) and green (535–550 nm) light. An 

emission filter is placed in the proximity of CCD imagers to reject the blue excitation light 
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and permit tissue autofluorescence and reflected green light to impinge the sensitive area of 

the imagers [73]. In the resultant images, healthy mucosa will appear as green while 

dysplastic and neoplastic lesions as purple [74], [75] (Fig. 2.12). The challenge in AFI 

systems is the weakness of the AF signal which usually has an intensity three orders of 

magnitude lower than the intensity of the excitation light.   

                 

Figure 2.10 (a) White light imaging of a spreading tumour in the transverse colon. (b) 

Autofluorescence imaging of the lesion [74]. 

 

2.4.5 Confocal laser endomicroscopy (CLE) 

In contrast to AFI, CLE relies on the application of fluorescence agents to create a high 

resolution and better contrast image. This endoscopic technique is based on the exact same 

principle of standard confocal microscopy in which excitation and fluorescence detection 

take place on the same focal plane [76]. Excitation light from a blue laser is collimated and 

filtered onto a dichroic beam splitter which reflects the light towards the sample at a specific 

point and depth. The fluorescence light emitted by the sample is then imaged by the objective 

lens through a confocal pinhole on the detector. The pinhole rejects fluorescence light out of 

focus with the purpose that only a section of the sample is imaged. The main advantage of 

CLE is providing a wider field of view and deeper imaging depth, therefore, allowing for 

better capability to investigate tissues morphology down to cellular level [77].  

Implementation of confocal microscopy in endoscopy led to the development of two types 

of CLE systems defined as endoscope-based CLE (eCLE) and probe-based CLE (pCLE). In 

eCLE, a confocal scanner has been integrated into the distal tip of a flexible endoscope. This 

system is no longer commercially available, though, a hand-held system (FIVE1; Optiscan, 

Melbourne, Australia) is available for research applications [78] (Fig. 2.11). On the other 

hand, pCLE system (Cellvizio Endomicroscopy System; Mauna Kea Technologies, Paris, 

France) is commercially available and consists of a flexible miniprobe which may be 

introduced through the working channel of a standard endoscope [79]. In eCLE the 
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endoscope integrates the miniaturised confocal endomicroscope. The distal tip of the 

endoscope is equipped with two light guides and an objective lens for traditional endoscopy 

screening. The remaining volume is occupied by the confocal imaging window of the 

endomicroscope which is placed in contact with the tissue. The window integrates a 

microelectromechanical system (MEMS) scanning mirror which raster scans a beam of laser 

light (488 nm) delivered through a fibre from a confocal microscope placed outside the body 

of the patient. The fibre also works as pinhole and carries fluorescence light between 500 

nm and 580 nm to the detector. The fibre acting as excitation source, objective and pinhole 

makes the apertures automatically aligned. The scan of consecutive points on the tissue 

produces sections that can be seen at variable imaging depths by controlling a z-actuator. It 

offers a maximum depth of scanning of 250 μm beyond the limits of the confocal imaging 

window surface. A special channel is used to deliver the contrast agent while another channel 

is equipped with a tweezer for tissues biopsies. It has a variable image collection rate of 0.8 

or 1.6 frames per second. On the other hand, in pCLE (Fig. 2.12) many fibres are packed 

together and a small microscope objective with two scanning mirrors are placed at the 

proximal end of the package which has an external diameter of 2 mm and can be easily 

inserted in the working channel of the endoscope [80]. It has limited lifespan of only 20 

procedures. This increases the maintenance cost of the pCLE system. Laser excitation light 

is carried by individual fibres and focused to a point in the tissue using the miniature 

objective. Fluoresce light is focused by the objective through the same fibre to the detector. 

The fluorescence light is sequentially focused on all fibres to construct an image.  

The advantage of pCLE over eCLE is that the acquisition of the images is faster as well as 

more practical for inspecting narrow ducts due to the small diameter of the fibre bundle. On 

the other hand, in eCLE the user can change the depth of field as the scanner unit is integrated 

in the endoscope. This is not possible in pCLE which is characterized by a fixed depth of 

field (Table 2.4). The main exogenous fluorescence agents used in CLE can be administered 

either topically or systemically. The most common topical contrast agents that are applied 

topically by a spraying catheter are acriflavine and cresyl violet whereas the most widely 

used systemically administered fluorescent agent is fluorescein sodium. Fluorescein sodium 

is non-toxic and incapable of passing through cells nuclei [41]. On the other hand, acriflavine 

has been reported to be carcinogenic and thus its use must be limited [35]. Researchers have 
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shown that CLE could be useful in polyp assessment, microscopic colitis and Inflammatory 

Bowel Disease (IBD) mucosal healing in colon [81], [82].  

 

Figure 2.11 Schematic of the miniaturised confocal microscope implemented in a 

traditional endoscope. The mechanical and optical components on tip of the endoscope 

are shown on the top right pictured [78]. 

 

                    

Figure 2.12 Confocal microscopy probe inserted through the working channel of the 

endoscope [79]. 
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Table 4 Technical aspects of CLE systems [83]. 

Technical aspect Endoscope-based CLE 

(eCLE) 

Probe-based CLE 

(pCLE) 

Outer diameter (mm) 12.8 (scope) 1, 2.7, 2.6* 

Length (cm) 120, 180 300, 400* 

Field of view (m2) 475  475 240, 320, 600* 

Resolution (m) 0.7 1, 3.5* 

Magnification  1000  1000 

Imaging plane depth (m) 0-250 (dynamic) 40-70, 55-65, 70-130 

(fixed) * 

Acquisition rate Slow Fast  

Maintenance Less maintenance cost High maintenance cost 

Use or application Less use or limited 

application 

More practical for 

inspecting narrow ducts 

*depending on the probes 

2.4.6 Fluorescence imaging using molecular probes 

Two crucial points for a successful detection of cancer in the GI tract are the intensity of the 

fluorescence signal to be detected and the sensitivity of the detector used in the 

measurements. These aspects can be addressed and tailored through an optimal combination 

of chemical, electronic and optical engineering. The application of a exogenous and targeted 

fluorescent contrast agent, consisting of a fluorescent dye conjugated to a targeting moiety, 

designed to highlight a biological process that is not regulated properly in the diseased area, 

is referred to as “optical molecular imaging” (OMI). OMI was found to be promising in 

terms of better endoscopic inspection of the gastrointestinal tract [84]. The use of 

fluorescence agents for the enhancement of contrast in the images dates to 1960s when the 

FDA approved the use of Fluorescein isothiocynate (FITC), Indocyanine green (ICG) and 

Rhodamine B for medical applications [85]. However, the main drawback of generic 

fluorescence agents for medical screening is the lack of specificity for tumours which 

translates in a high background fluorescence noise and consequent difficult detection of 

diseased areas [86]. In the last decade, specific fluorescence molecular probes were 

engineered with the aim of aiding endoscopy by providing a higher specificity and sensitivity 

for tumours [67]. The strategy behind the engineering of these probes is to target precise 

biological pathways occurring at cellular and molecular level. This means that the probes do 

not show any fluorescence emission unless they are “fluorescently switched on” or activated 
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by specific cellular environments or by the presence of receptors overexpressed on the 

surface of cancer cells. This approach solves the problem of high background fluorescence 

noise allowing visualization of small lesions in dark background. In 2013, the peptide 

ASYNYDA was labelled with FITC and synthesized for selectively binding to esophageal 

neoplasia. Ex vivo and in vivo studies performed using confocal endomicroscopy confirmed 

the specificity of the probe with a maximum excitation wavelength of 471 nm and 

fluorescence emission of 519 nm. The peptide was also found to be safe for all the 25 patients 

in the study [87]. In 2014, the company Goryo chemical commercialized the Gamma-

glutamyl transpeptidase (GGT) selective fluorescence probe γ-glutamyl hydroxymethyl 

rhodamine green (gGlu-HMRG) with the name of ProteoGREEN-gGluTM [88]. The probe 

worked by reacting with the enzyme GGT which acts as catalyst in the cellular glutathione 

homeostasis. GGT expression is high on the membranes of several cancer cells and low in 

normal tissues. The probe (gGlu-HMRG) does not emit any fluorescence signal under low 

levels of GGT. However, the reaction with GGT on the membranes of cancer cells causes 

the hydrolysis of gGlu-HMRG into hydrophobic HMRG which emits fluorescence signal 

with a peak at 525 nm. The new fluorescence product permeates cells membranes and 

accumulates in lysosomes making the cells fluorescent (Fig. 2.13). The probe was 

successfully tested on several cancerous cells lines with promising results. Ex vivo 

experiments performed on colon tissues showed the capability of the probe to successfully 

bind to the tumours [53]. However, since GGT is also present in non-cancerous environment 

the probe is not efficient on the excised tissue specimen. As a result, in 2016 the same 

research group proposed a different probe (HMRef- βGlcNAc) for targeting human 

colorectal cancer [89]. The probe targets the enzyme hexosaminidase which is overexpressed 

in breast and colorectal carcinomas. The reaction of the probe with hexosaminidase leads to 

a highly fluorescence compound with excitation maxima of 479 nm and fluorescence 

emission of 518 nm. Tests carried out on excised specimen revealed the selectivity versus 

tumour lesions which showed a high fluorescence signal with respect to the lower 

fluorescence background of healthy tissues (Fig. 2.14). However, the probe is not available 

in the market.  
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Figure 2.13 Schematic illustration of the chemical reaction of the probe in the presence 

of GGT. (a) The fluorescence capabilities of the probe are activated by GGT. (b) After the 

reaction, the probe accumulates in the lysosomes of cells [89]. 

 

Figure 2.14 Application of HMRef-βGlcNAc to excised colorectal cancer tissues. (a) WL 

image of the tumour in the rectum. (b) Optical image of the excised tissue under WL [89]. 
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2.4.7 Optical sensors for fluorescence imaging  

2.4.7.1 Single Photon Avalanche Diodes  

Imaging detectors along with the type of excitation source and optical components are the 

most important part of a fluorescence imaging system. In fluorescence medical applications, 

the choice of detectors depends on the type of fluorescence signal to target (Table 2.5). If 

fluorescence from exogenous fluorophores is investigated, multichannel detectors like 

photodiode arrays (PDAs) can be used as the quantum yield of external fluorescence agents 

or molecular probes is usually high and close to unity [90]. On the other hand, in 

autofluorescence imaging the quantum yield of endogenous fluorophores is between 0.015 

and 0.030 and the use of more sensitive devices is necessary. In this scenario, charge coupled 

devices (CCDs) are recommended as they require lower electrical charges with respect to 

PDAs and have higher charge-to-voltage conversion efficiency. Therefore, CCDs are ideal 

for low-light-levels detection. The quantum efficiency of CCDs is quite high as compared 

to PDAs and can successfully read out by the devices for each incoming photon. This 

property is especially important for low-light imaging applications such as fluorescence 

microscopy where emission photon wavelengths are often in the 375-550 nm range and have 

a relatively high absorption coefficient in silicon. 

In endoscopes equipped with AF modalities, the optical sensors are used to detect the signal 

of autofluorescence light from the tissues. A filter is used to integrate the autofluorescence 

image over a range of wavelengths in which the autofluorescence intensity for normal tissues 

is different from that of diseased tissues. In AF endoscopy, CCD arrays are being used with 

the powerful xenon excitation lamps operating at 300 W [91]. Endoscopes are usually 

electrically connected to an external unit and power consumption does not represent a 

constraint. In the case of medical devices operating from inside the body power 

considerations must be made and high-power excitation sources would be unrealistic.  

Battery-powered light emitting diodes (LEDs) could be a solution. However, the use of a 

lower intensity excitation source results in a weaker autofluorescence signal which can only 

be measured by using very sensitive detectors. Photomultiplier tubes (PMTs) have been used 

to detect very weak light signals; however, high size cost and power make these devices 

unsuitable for applications in miniature medical devices [92].  

CCDs or CMOS image sensors can be integrated into the tip of the endoscope to record and 

transmit a video image [93]. However, the problem with integrating these image sensors into 

the small space at the tip of an endoscope often affects the resolution of the images.  
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Single photon avalanche detectors (SPADs) can detect single photons and easily substitute 

CCDs [94]. Moreover, SPADs are characterized by lower power consumption and can be 

fabricated by using commercially available CMOS technologies, while CCDs require 

precise and expensive silicon fabrication procedures [95]. The working principle behind 

SPADs can be understood by first describing Avalanche Photodiodes (APDs). 

APDs are reverse biased p/n or n/p silicon junctions functioning at high electric fields and 

thus characterized by an internal gain. The bias voltage can be applied either at the anode or 

at the cathode and the electric field increases with the voltage. In this configuration, if a 

photon with energy (Ephoton) higher than the energy gap between the valence and conduction 

bands of the bonding electrons in the lattice atoms hits the active area of the APD, an 

electron-hole pair will be generated. The high electric field will accelerate the new electron-

hole pair resulting in an avalanche of carriers. The value of the reverse bias voltage is critical 

in determining how to operate the APD. If the reverse bias is lower than the breakdown 

voltage (Vbreakdown), the number of generated electron-hole pairs is finite and proportional to 

the number of photons impinging the active area of the APD. On the other hand, if a bias 

voltage higher than Vbreakdoww is applied to the cathode (Vbreakdown+Vexcessbias) or to the anode 

(–(Vbreakdown+Vexcessbias)) the APD functions in Geiger mode and the electric field becomes 

very high. In this configuration, a single carrier injected in the depletion region can trigger a 

self-sustaining avalanche. This phenomenon results in a sharp increase in the current (Fig. 

2.15 (a)). The only way to extinguish the avalanche is to reduce the bias voltage below 

Vbreakdown. Although a decrease in the voltage is already achieved, thanks to the internal 

resistance of the diode, quenching circuits are used to decrease the voltage across the 

photodiode once a current pulse occurs. The simplest quenching circuit consists of a resistor 

placed in between the SPAD anode and the ground (Fig. 2.15 (b)). When an avalanche is 

triggered, the current passes through the resistor producing an electric potential which 

reduces the bias voltage. At this point the SPAD is out from the Geiger mode configuration 

and no current passes through the resistor. The bias voltage can, therefore, be raised above 

Vbreakdown again to detect another photon. The fundamental difference between SPADs and 

APDs is that SPADs are specifically designed to operate with a reverse bias voltage well 

above the breakdown voltage (on the contrary APDs operate at a bias lesser than the 

breakdown voltage). All SPADs are characterized by a noise component defined as dark 

count rate (DCR) which is independent from the signal. Specifically, DCR is defined as the 

number of counts per second recorder by the SPAD in the absence of any light source. The 

counts are not caused by incident photons but by other internal phenomena such as thermal 
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noise. SPADs were used in several applications including point of care diagnostic tools [95], 

fluorescence life-time imaging [96], proximity sensors [97] and X-ray detection [98].    

 

Figure 2.15 SPAD operation mechanism (a) Voltage versus current curve showing linear 

and Geiger mode. (b) Passive quenching circuit [99]. 

 

Table 5 Different types of optical sensors used in endoscopy. 

Type Features Advantages Disadvantages 

Image enhanced endoscopy or field enhancement: NBI, I scan, FICE and 

autofluorescence endoscopy 

 

 

 

 

 

Charge 

coupled 

devices 

(CCDs) 

Metal oxide semiconductors 

(MOS) are attached with an 

insulating oxide coating to 

silicon. MOS are 

photosensitive and convert 

light to electricity in. The 

accumulated electrical 

charge is proportional to the 

intensity of the incident 

light on the active area of 

the device. 

• It is ideal for low-

light-level 

detection 

• It gives improved 

resolution and 

high quality of the 

images 

 

• It is often 

cooled to 

increase signal 

to noise ratio 

and 

corresponding 

sensitivity 

•  It is 

cumbersome 

and power 

hungry 

• It is insensitive 

to UV light. 

 

 

 

 

 

 

 

Photodiod

e arrays 

(PDAs) 

It is a type of semi 

conducting device with PN 

junction and designed to 

operate in reverse bias. 

• Photon saturation 

charge is greater 

than CCD so the 

detection range of 

PDA is larger than 

CCD 

• It delivers lower 

noise than CCD.  

• It is applicable 

where higher 

• It is less 

sensitive than 

CCD 
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output accuracy is 

needed. 

• It offers peak 

measurement at all 

wavelengths 

 

 

Single 

photon 

avalanche 

detectors 

(SPADs) 

It is solid-state detector that 

offers imaging capabilities 

at the level of individual 

photons. The device is also 

known as Geiger-mode 

APDs (GmAPDs). It 

exploits avalanche 

multiplication as an internal 

gain mechanism. 

• It can be 

implemented in 

industry-standard 

CMOS technology 

• It is small with 

high sensitivity. 

• It can tolerate 

longer acquisition 

times due to 

scanning 

• It has lower 

photon 

detection 

efficiencies at 

longer 

wavelengths 

 

 

2.5 Capsule endoscopy to overcome the limits of traditional endoscopy 

The purpose behind the invention and fabrication of capsule endoscopy was to investigate 

the unreached and unexplored zones of the GI tract for efficient and extensive diagnoses 

[100].  

The first ingestible capsule emerged in 1957 and relied on radio frequency transmission for 

obtaining values of pressure and temperature from within the body [101]. Three years later, 

an easily ingestible pill capable of detecting pH variations within the stomach was developed 

by Noeller [102].    

In 2000, Iddan et al. successfully developed the first wireless capsule endoscopy [100]. The 

dimension of the pill was 11 x 30 mm. The device was equipped with an optical dome, 

encasing Light Emitting Diodes (LEDs) and lenses, a complementary metal–oxide–

semiconductor (CMOS) image sensor and an application specific integrated circuit (ASIC) 

transmitter. Once ingested by the patient, the capsule coated with special slithery material, 

was driven through the GI tract by peristalsis. The gut tissues were illuminated by the LEDs 

and images were taken via the CMOS image sensor using the respective short focal length 

lenses. Images were radiotelemetry transmitted by means of the ASIC transmitter and 

antenna to an array of aerials attached to the body. The elementary significance of telemetry 

is the transmission of data from one location to another by means of some medium or 

channel. Three characteristic constituents of a telemetry system are the transmitter, the 

channel, and the receiver. The measured signal is converted into a compatible format by the 

transmitter to be sent through the channel. The channel, consecutively, carries the signal and 

conveys it to the receiver sited in another spatial position with respect to the transmitter. In 
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capsule endoscopic configuration, there is no physical channel for the signal between the 

capsule and the data recorder. Therefore, the simplest way to transmit data from the device 

to the receiver is utilizing the concept of radiofrequency (RF) communication technology 

and its application. The transmitted data was then visualised in an image format. The images 

can be saved in the memory of a small transportable video recorder and can also be 

downloaded for further analysis. During these processes, the capsule was powered by two 

silver oxide batteries providing up to 5 hours of autonomy. The Food and Drug 

Administration (FDA) approved the clinical use of CE as a complementary method for the 

investigation of small intestine which was only visible up to half of its length with the 

traditional wired endoscopic techniques [103]. In the following years, the use of endoscopic 

pills has been expanded to the whole GI tract. Table 2.6 shows the advantages and 

disadvantages introduced by endoscopic capsules.  

Table 6 Advantages and disadvantages of capsule endoscopy [48]. 

Advantages Disadvantages Promising solution 

• Convenience 

• No need for sedation 

• Simple examination 

for patient 

• Less invasiveness 

• High diagnostics 

yield comparable to 

other imaging 

modality 

• Low quality image • 3D reconstruction 

• Uncontrolled air 

insufflation 

• Untethered controlled CO2 

insufflation 

• Retention or 

delayed transition 

• External real-time image viewer 

• Limited battery 

life 

• Frame rate modulation, video 

compression  

• Impulse Radio-Ultra-Wideband 

• Location  
• Software using 3D triangulation 

and Capsule-odometer 

• Impossibility of 

manoeuvre 

• A magnetic navigation system 

and Mobile robotic platform 

• Therapeutic or 

biopsy capability 

• Tagging 

•  Targeted drug delivery  

• Integration of miniaturised 

biopsy and therapeutic 

equipment within the capsule 
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• Delayed time of 

the interpretation 

• Software which excludes 

useless frames and optimize 

summarization of the 

findings 

 

2.5.1 Capsules launched in the market 

There are several CE available commercially in the market as shown in Figure 2.19.  

Information related to the commercially available capsules for endoscopy is summarized in 

the Table 2.2. The first pill available in the market was the Mouth to Anus (M2A) which 

was manufactured by Given Imaging with a field of view of 156° and named as PillCam 

Small Bowel (SB) in all its following generations [6](Fig. 2.19(a)). Other companies 

developed similar capsules for the small bowel such as the Olympus EndoCapsule, (Fig. 2. 

19 (b)) and  the Jianshan OMOM pill (Fig. 2. 19 (e)) with the unique difference of using a 

Charge Coupled Device (CCD) as an image sensor instead of a CMOS [7], [104]. On the 

other hand, the Intromedic Miro pill (Fig. 2. 19 (d)) was developed with a system found on 

the original type of telemetry technology identified as electric-field propagation [104]. This 

method takes advantage of the human body as a conductive medium for the transmission of 

the data. A different capsule called CapsoCam (Fig. 2. 19 (c)) was manufactured by 

Capovision and overcame two problems associated with the other models which were 

insufficient battery life, resulting in an incomplete examination, and impossibility of 

visualizing the side walls of the bowel [105]. CapsoCam is equipped with four cameras 

placed on the sides of the capsule’s body and a special motion technology that powers the 

capsule only during movement allowing the battery to last up to 15 hours. Interest towards 

exploiting endoscopic capsules was showed for determining both locations and causes of 

OGBI [105]. Traditional wired endoscopy often fails in this task because of the inability to 

reach the small bowel, the region from which the pathology usually originates. The 

advantage of capsule endoscopy in the diagnosis of OGIB is the capability of obtaining a 

complete view of the small bowel as well as providing high resolution images for recognition 

of small lesions at vascular level associated with patients suffering from OGIB. Other 

diseases that can be investigated using capsule endoscopy in the small bowel include Crohn’s 

Disease, malignant or benignant neoplastic lesions (polyps) and celiac disease [106]–[108]. 

CE enables the early diagnosis of Crohn’s disease due to its ability to detect superficial 

mucosal lesions, which often go unnoticed by radiology or cannot be accessed with 

ileocolonoscopy. Therefore, these characteristics of CE and its excellent level of safety, 
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define it as the best exploratory method for the study of inflammatory activity in the mucosa 

of the small intestine with Crohn’s disease [109]. 

The next generation of capsules (Fig. 2. 19 (f)) was developed to screen the oesophagus and 

look for signs of diseases such as gastroesophageal reflux disease, Barret’s oesophagus and 

oesophageal varices [110]. Finally, Pillcam Colon® marked the advent of a painless and 

sedative-free technique for colon screening (Fig. 2. 19 (g)). The capsule carries two optical 

domes with a total angular field of view of 344° and travels without requiring insufflation of 

the colon [109]. 

         

Figure 2.16 Comparative image of capsules for endoscopy available in the market [111]. 

(a) PillCam. (b) EndocCapsule. (c) CapsoCam. (d) Miro pill. (e) OMOM pill. (f) PillCam 

ESO®. (g) PillCam Colon®.           

Table 7 Commercially available capsule endoscopes 

Name of the product 

(Launched by) 

Year of 

launching 

Product specification Refere

nce 

 

        PillCam SB 

(Company: Given 

Imaging) 

 

 

 

2001 

 

 

• Capsule (size: 11 mm × 26 mm, 

weight: 3.64 g) consist of CMOS 

chip imager, a short focal lens, 6 

white light-emitting diode 

illumination sources, 2 watch 

[103], 

[112] 
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PillCam SB 

(Company: Given 

Imaging) 

 

 

 

     

    2001 

batteries, and ASIC transmitter is 

present. 

• Image features include a 140° field 

of view, 1:8 magnifications, 1 to 30 

mm depth of view, and a minimum 

size of detection of about 0.1 mm. 

• It provides images at a frequency of 

2 frames per second (f/s) until the 

battery expires, after about 8 h, 

which enables the device to take up 

to 55000 still images. 

• Approved by FDA in 2001. 

 

PillCam ESO 

(Company: Given 

Imaging) 

 

 

2004 

• Capsule (size: 11 mm × 26 mm; 

weight: 3.64 g) is similar to PillCam. 

• It has the capability of capturing 18 

f/s, the field of view is 169°, CMOS 

image sensor and its continuous 

working time is observed to be 20 ± 

5 minutes. 

• Approved by FDA in 2004. 

[113] 

 

 

 

 

PillCam COLON 

(Company: Given 

Imaging) 

 

 

 

 

 

2006 

• Capsule (size: 11 mm × 31 mm; 

weight: 2.9 g) is equipped with two 

image sensors on both ends and 

provides a near 360° view of the 

colon. 

• It has a bidirectional communication 

between the CE and the data 

recorder. Therefore, the image 

capture rate can be adjusted in real 

time from 4 f/s up to 35 f/s to 

maximize colon tissue coverage. 

• It can keep working approximately 

for 10 h. 

[113] 
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• Approved by CE in 2006. 

 

 

 

 

 

 

EndoCapsule 

(Company: Olympus) 

 

 

 

 

 

 

2005 

• Capsule (size: 11 mm × 26 mm; 

weight: 3.8 g) is equipped with 6 

white LEDs, a supersensitive CCD  

image sensor and an external real-

time image viewer (External Viewer) 

monitor. Radiofrequency is used for 

transmission of the data. 

• It has frame rate at 2 f/s. 

• VCE software has a Multiview 

capability added for reading the VCE 

recordings. This allows  for  the  

simultaneous  display  in  adjacent 

windows  of  four  consecutive  

images  from  the VCE recordings. 

• It also includes software that detects 

the colour red, which may help to 

identify bleeding in the small bowel. 

• Approved by FDA in 2007. 

[7], 

[103], 

[114] 

OMOM pill 

(Company: Jianshan 

Science & 

Technology (Group) 

Co., Ltd) 

 

 

2005 

• Capsule (size: 11 mm × 25.4 mm; 

weight 6 g) is equipped with a field 

of view of 140° and radiofrequency 

is the transmission mode. 

• The frame rate is 2 f/s, and the 

longest operation time is 6~8 h. 

• Approved by CE in 2007. 

[7], 

[103], 

[114] 

 

MiRoCam 

(Company: 

IntroMedic) 

 

 

2007 

• Capsule (size: 11 mm × 24 mm; 

weight 3.3 g) is equipped with a field 

of view of 150°. 

• It has a CMOS image sensor and a 

high-resolution image capture 

(102,000 pixels), with the highest 

[115] 
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frame rate that can be 3 f/s, and a 

system of data transmission using E-

field propagation instead of a high-

frequency transducer. 

• It has the longest operation time 

reaches more than 11 h. 

• Approved by CE in 2007. 

 

 

 

Norika 

(Company: RF 

System Lab) 

 

 

 

 

2001 

• Capsule (size: 9 mm × 23 mm) is 

equipped with a CCD image sensor 

with the frame rate of 30 f/s. 

• Its 4 illumination LEDs have 

different light wavelengths, which 

can generate simulative 3D images. 

The focus of the camera lens can be 

adjusted to obtain more clear images. 

• Wireless power transmitter (WPT) 

technique is used in Norika. 

• It is used in the in vivo drug delivery 

and sample extraction. 

[116] 

CapsoCam SV-1 

(Company: 

CapsoVision) 

 

    2011 

• Capsule (size: 11 mm × 31 mm) 

employs 4 CMOS cameras, each 

with an approximately 90° field of 

view, facing the sides of the capsule. 

• It provides a 360-degree panoramic 

lateral image. Each camera obtains 5 

f/s for the first 2 h and thereafter 3 

f/s, resulting in 20 and 12 f/s, 

respectively. 

• It has a battery life of 15 h. 

• Approved by FDA in 2016. 

[105]  
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2.6 Steps towards a fluorescence endoscopic capsule 

Nowadays, a revolutionary perspective has emerged since the scientific community has 

introduced the concept of multimodality in CE. The idea of smart pills capable of performing 

diagnosis and treatment of the GI tract tissues is simultaneously brilliant and convenient, 

though complex. The devices are supposed to supply a wide range of functions while 

maintaining a miniaturization approach to be easily ingested by the patients. The concept of 

multimodality can be simply thought as a partition of the capsule in several “compartments” 

each one devoted to a defined duty; literally ‘a lab in a pill’. The challenge is to develop a 

device which is able to perform a specific function while simultaneously responding to the 

criteria of low-power consumption and miniaturization. Smaller components lead to an 

easier ingestion of the devices by the patients. Moreover, low-power consumption allows for 

longer inspection of the tissues and thus the acquisition of more data.  

Diagnosis and therapy are essentially two main fields of research for the development of 

multimodality capsules. The therapeutic field is related to the capacity of the pills to perform 

actions such as targeted drug delivery and biopsy directly on the inspected tissues [117]. On 

the other hand, the diagnostic aspect is surely the most developed and involves the 

application of several imaging techniques coupled with the acquisition of other important 

physiological parameters (such as pH, temperature etc.) in order to achieve a better 

examination of the GI tract.  

Presently, all the endoscopic capsules available in the market use WL imaging to inspect the 

GI tract. As previously mentioned, the implementation of fluorescence imaging in traditional 

endoscopes has reported to improve the detection of cancerous lesions [118]. Therefore, the 

integration of new imaging modalities in endoscopic capsules could merge an enhanced 

diagnostic accuracy with a less painful procedure for patients.  

With the possibility of improving the current capsule endoscope, researchers have been 

attempting to incorporate the concept of fluorescence phenomenon.  

In 2008 Kfouri et al. proposed the first proof of concept of a wireless fluorescence imaging 

diagnostic system in cylindrical shape with a diameter of 20 mm and length of 100 mm 

[119], (Fig. 2.21(a)). The optics in the device consisted of eight LEDs placed circularly 

around two achromatic imaging lenses. Four LEDs emitted UV light at 360 nm whereas the 

other four shined white light with a wavelength spectrum between 400 nm to 700 nm. A 

conical mirror was placed at the top of the capsule, before the LED and the lenses, to project 
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the excitation light on the GI tract lumen. Autofluorescence emission was imaged by the two 

lenses on the active area of a CCD imager. An aperture with an adjustable diameter (0 to 

2 mm) was inserted between the two lenses to change the depth of view. Fluorescence 

imaging was performed by using two filters positioned in succession before the CCD imager. 

A long-pass filter was used to reject any light with a wavelength higher than 300 nm 

preventing any excitation light to hit the CCD detector (Fig. 2.21 (b)). A band pass filter was 

placed immediately before the image sensor to select only specific fluorescence wavelengths 

even though its transmission properties were not disclosed. The study was useful because 

two types of LEDs with centre wavelength of 365 nm and different power consumption were 

tested for integration in the platform. The first LED was characterized by a power of 100 

mW when biased at 500 mA. The second LED had an optical power of 2 mW and 20 mA 

bias current. The tests revealed an elevated heating of the device when the LED with higher 

power was used. The potential use of the system for detection of fluorescence was validated 

by imaging fresh porcine skin labelled with FITC. However, the size of the prototype was 

too large for further validations in human tissues. 

                                   

Figure 2.17 First proof of concept fluorescence pill proposed in 2008. (a) Assembled 

prototype  (b) Schematic of the optical component within the prototype [119]. 

Ferreira et al. addressed the issue of miniaturisation in 2011 proposing optical microsensors 

for detection of dysplasia in the GI tract [120]. The sensors were based on thin-film optical 

filters and CMOS photodiodes to collect fluorescence and tissues reflectance originated by 

collagen in the tissue matrix. The filters were realized with dielectric materials arranged in 

multilayer Fabry-Perot structure. The validation of the microsensors was performed by using 

spectroscopy data from cancerous and healthy GI tissues that were fitted through a 
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mathematical model using the transmittance properties of the filters. The idea of using thin 

film filters was very promising from a miniaturisation point of view. However, the fabricated 

fluorescence filters showed a transmittance lower than 50%. As discussed previously in the 

chapter, autofluorescence signals are usually very weak and the use of photodiodes coupled 

with low transmittance optical filters might lead to unsuccessful detection of the signal.  

Another approach was taken by Thomas D. O’Sullivan et al. who developed a tethered 

implantable biosensor for targeting fluorescence from the exogenous fluorophore Cyanine 

5.5 (Cy 5.5) which emits fluorescence at 710 nm when excited at 684 nm and can be bound 

to specific receptor for tumour targeting [121]. The device consisted of a vertical cavity 

surface emitting laser (VCSEL) with wavelength of 670 nm and optical power of 2 mW, two 

GaAs photodiodes, fluorescence filter and a readout circuit assembled on PCB (Fig. 2.22 

(a)). A lens was placed on top of the sensor to collimate the laser. Furthermore, 

biocompatible epoxy was used to coat the whole body of the device. The advantage of 

targeting NIR fluorophore is the low signal to background noise since autofluorescence from 

tissues is very low in this spectral region. The system was validated by implanting the sensor 

subcutaneously in a nude mouse injected with Cy5.5 (Fig. 2.12 (b)). The biosensor could 

detect a minimum concentration of 50nM.  

                                                           

Figure 2.18 Tethered implantable biosensor for fluorescence detection of Cyanine 5.5 (Cy 

5.5) (a) Assembled device. (b) Implantation of the sensor in a living mouse [121]. 

In 2013, a wireless capsule for autofluorescenec detection in biological tissues was proposed 

by Al-Rawhani et al [122]. The capsule consisted of one LED, three optical filters and a 

single pixel SPAD biased in Geiger Mode via a charge pump integrated on an ASIC (Fig 

2.23 (a)). The capsule was 15 mm in diameter and 40 mm long (Fig. 2.23 (b)). The optics in 

the capsule were chosen to successfully detect fluorescence emission from FAD at 520 nm. 
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The optical components comprisisng LED, optical filters and a SPAD were tested and 

characterized in two separate setups before full integration in the capsule. Firstly, a band-

pass excitation filter with a central wavelength of 460 nm, a bandwidth of 25 nm and 

maximum transmission of 85% was placed before the LED to meet the required 450 nm 

wavelength to excite FAD. Both LED and filter were placed above the SPAD. Furthermore, 

two identical long-pass filters with cut-off wavelength of 510 nm were positioned on top of 

the SPAD to reject any scattered excitation light allowing only fluorescence light detection 

(Fig. 2.24 (a)). An important figure of merit, defined as LED crosstalk, was measured by 

switching the LED on and evaluating the efficiency of the fluorescence filter thus measuring 

the LED photons impinging the active area of the detector. The illumination from the LED 

was responsible for an increase in the noise from 4000 counts/s, which was the 

experimentally measured dark count of the detector, to 89000 counts/s. A tissue specimen 

from an adult sheep’s small intestine with thickness of 100 µm was then placed between the 

LED and the SPAD in order to verify the capability of the system to generate and detect 

autofluorescence from the tissue (Fig. 2.24 (b)). The introduction of the specimen caused an 

increase in the number of events with a total of 737000 counts /s, suggesting that 

autofluorescence signal with equal spectral properties to the transmission band of the 

fluorescene filter was being detected. After this preliminary characterisations, the LED and 

SPAD with the corresponding filters were integrated next to each other on a PCB to simulate 

the optical setup chosen for integration in the capsule format. Both DCR and LED crosstalk 

were measured. As it was expected, the DCR matched the value obtained in the previous 

measurements. However, the LED crosstalk was 6500 counts/s thus an order of magnitude 

lower than in the previous setup. The small intestine of an adult sheep was positioned above 

the optical system and parallel to the PCB. The filter and the LED were tilted with respect 

to the PCB at an angle of 20° to better excite the tissue area under the SPAD detector (Fig. 

2.24 (c)). The same experiment was repeated for measuring autofluorescence fom a piece of 

lamb intestine. During the experiments the LED current supply was sequentially increased 

from 0 mA to 10 mA in order to determine the power consumption required to produce an 

autofluorescence emission from the tissues which could be distinguished from the 

background noise. Results showed that at 1mA current the autofluorescent response started 

to become noticeable with a clear distinction from the noise at 6mA (Fig. 2.25) . Moreover, 

further validation of the system was perfomed by placing aluminum foil to evaluate the 

detector’s response to any reflected excitation light. At current supplies higher than 1mA the 

reflected excitation light caused a signal higher than background noise. Autofluorescence 

signals from both animal tissues were higher and clearly distinguishable.   
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Figure 2.19 Al-Rawhani wireless capsule for AF detection in biological tissues. (a) 

Potential use of the pill in the human body. (b) Final assembled prototype [122].      

                         

Figure 2.20 Optical setup (a) Setup with LED on top on the SPAD without sample. (b) Setup 

with LED on top on the SPAD with sample. (c) Setup with LED and SPAD integrated side 

to side on the PCB and LED and filter  tilted at 20° [122]. 

                                

Figure 2.21 AF signal measured from animal small intestine at different LED current 

supplieS. Reflected light from aluminium foil is also showed in black [122]. 

One limitation of this system is that only one side of the GI tract lumen would be inspected 

during examination and implementation of the same optics on the other side of the pill might 

increase the power consumption of the device. From an optical point of view, the system is 

limited to one single pixel thus a higher resolution array would improve the imaging 
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capabilities. The use of a higher resolution system would require a lens to focus the image 

on the detector. Therefore, more calculations would have to be done in order to find the exact 

tilting angle for the LED in order to take into account the focal length of any lens added to 

the optical setup.  

In 2015 the same author proposed another proof of concept of a fluorescence wireless 

endoscopic pill [123]. The device changed from a single pixel to a SPAD array of 32 x 32 

pixels  biased by a charge pump. The device also incorporated a radio transmitter, an antenna, 

two silver oxide batteries and a filed-programmable gate array (FPGA) for converting the 

SPAD counts into images. The caspule body had a 16 mm diameter and was 48 mm long 

(Fig. 2.26). As in the previous device, the optics were designed to target green fluorescence 

from FAD. An LED with peak wavelenght  of 460 nm and a convex lens were placed before 

a circular excitation band-pass filter with transmission band from 430 nm to 490 nm. An  

objective lens was also used to image fluorescence light emitted by the sample down to the 

SPAD before passing through a circular fluorescence filter with transmission band between 

513 and 555 nm . Specifically, 11 mm in height, 9.6 mm in length and 8.6 mm in width were 

occupied by the aluminium casing holding the optical components. Both excitation and 

fluorescence filters have diameters of 5 mm. The main drawback of this system is the size 

of the pill and the optical block. As a matter of fact, the FDA released a document as 

guidance on the physical attributes of capsules [124]. They cannot be longer than 30 mm 

and the diameter must be kept shorter than 12 mm for easy ingestion. Therefore, important 

steps are required to further shrink the size of the optics while maintaining a good optical 

efficiency and sensititvity.  

                                                

Figure 2.22 Assembled proof of concept of AF capsule [123].  

A wireless capsule that met the dimension requirements released by FDA was developed by 

Nemiroski et al. in 2015 [125]. The device measured 11 mm x 27 mm and was specifically 

designed to detect GI bleeding after injection of fluorescein in the blood stream (Fig. 

2.27(a)). The fluorometer optics in the capsule were not designed to achieve imaging 
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capabilities but to detect minimum concentration of fluorescence agents in the body. This 

approach relied on faster screening without the requirement of performing any image 

analysis. Two pinholes were mounted perpendicularly with respect to each other in the 

optical tip of the capsule to define a minimum 0.2 μM volume of detection. One pinhole 

guided the light from a blue LED (460 nm) whereas the other directed the fluorescence 

emission down to a photodiode (Fig 2.27 (b)). Bench experiments demonstrated the potential 

use of the sensor with a minimum concentration of 20 nM fluorescein detected in aqueous 

solution. A similar approach was taken in 2018 by Demosthenous who developed a pill 

prototype capable of detecting infrared (IR) fluorescence from indocyanine green (ICG) 

exogenous fluorophore [126], (Fig. 2.28). The prototype was equipped with six excitation 

laser diodes and six photodiodes coupled with both a long-pass filter and six operation 

amplifiers to detect low concentrations of ICG at the nanomolar scale. The capsule measured 

measured 11 x 26 and met the standard requirements.  The main drawback of the system is 

the inability to detect AF wavelengths from the human body.  

          

Figure 2.23 Nemiroski capsule. (a) 3D prototype of the fluorometric capsule for detection 

of GI bleeding. (b) Fluorometric optical setup [125]. 

                            

Figure 2.24 Fluorometric capsule for detection of infrared fluorescence with six LEDs in 

the front end [126]. 
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2.7 Summary 

The aim of this chapter is to highlight the importance of studying the GI track. The chapter 

begins by introducing the problems caused by GI tract cancer worldwide. A brief history of 

wired endoscopy was discussed to introduce the current technologies for gut investigation. 

The different imaging systems currently used in clinics to make a diagnosis were described 

and compared in depth. Particular attention was given to fluorescence imaging by explaining 

fluorescence measurements already implemented in traditional endoscopy for the detection 

of GI cancer along with their advantages and limitations. 

Therefore, fluorescence theory was explained to understand the physical principles behind 

this phenomenon and how they are applied in cancer detection. Furthermore, changes in 

fluorescence signal from the GI tract in the presence of cancer were discussed by 

highlighting a distinction between the natural fluorescence emitted by biological tissues 

(AF) and fluorescence induced by external agents. For this purpose, Cancer-selective 

fluorescence molecular probes were presented as a beneficial tool for increasing 

fluorescence signal from malignant lesions.  

Suitable detectors for fluorescence imaging were introduced with a deeper focus on SPADs.  

SPADs are specifically suited for this type of application because they can detect single 

photons of light and thus image weak changes in AF signals from the human body.  

The chapter introduces then capsule endoscopy by covering its history since the 

implementation of the first capsule in 1957 to modern products available in the market that 

rely on WL imaging. Therefore, the potential implementation of fluorescence imaging in CE 

endoscopy is introduced by highlighting the increased diagnostic accuracy of this imaging 

technique in traditional endoscopy.  

Finally, works done by other research groups on the implementation of fluorescence sensing 

modalities in capsule endoscopy were presented. The main challenge lays in developing 

systems which meet the dimension requirements released by FDA. Proof of concepts 

prototypes implemented with fluorescence imaging modalities revealed to be too bulky. On 

the other hand, the devices that met the dimensions requirements are based on simple 

fluorometric measurements that would not allow doctors to have a complete scenario of the 

disease. 

The aim of this research work is to realize an optical interference block to be coupled with a 

sensitive SPAD array imager for AF and fluorescence labelling imaging in the GI tract. The 

block must meet specific dimensions to fit in a pill equipped with other sensing modalities. 
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All the limitations highlighted in the previous works both in terms of size and sensitivity 

need to be overcome. Therefore, the optical unit presented in this work must be the first 

fluorescence imaging system for CE capable of imaging human colorectal cancer cells and 

resected human tissues from the colon.  
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3 Simulation, measurements, and set-up of the optical block 

The chapter describes the steps undertaken to finalise the design of the optical block, as well 

as the experiments performed to process the individual parts of the block and assemble them. 

Table 3.1 summarises the requirements for the fluorescence optical block. As the block had 

to be fabricated to fit the Sonopill capsule, the final volume of the prototype was the first 

requirement of this research. During the brain storming sessions among the different 

universities working on the project, a volume of 200 mm3 was assigned to the fluorescence 

unit in the capsule by taking into considerations all the circuitry and components dedicated 

to the other sensing modalities. Therefore, the following choices were influenced by this 

constraint. A timeline of three years was assigned to realize and test the optical unit. 

Therefore, a choice to use off-the-shelf components was made to focus also on testing the 

prototype on a large and variable range of biological samples. Excitation and fluorescence 

wavelengths of operations were chosen based on AF imaging systems used in traditional 

endoscopy. Therefore, a small light source with a narrow footprint and a wavelength between 

460 and 480 nm was researched to fit in the block and excite fluorescence between 520 and 

550 nm. Different filters were investigated for the implementation of the unit. Since the 

fluorescence light excited by a small power source could be low in intensity, a detector high 

sensitivity for the wavelengths of interest and low noise was investigated.  

Table summarises the requirements for the fluorescence optical block.  

Table 8 

Volume 200 mm3 

Components Off the shelf 

Excitation wavelength 460 - 480 nm 

Fluorescence wavelength 520 - 550 nm 

Light source 
Narrow footprint  

(small illumination angle) 

Collimating Lens Adequate diameter to gather all the light 

coming from the source Objective Lens 

Detector High sensitivity and low noise 

Spatial resolution 2000 µm 

 

The software used to simulate the optical components of the set-up will be introduced. 

Simulations of different optical filters will be showed to justify the choice of the final set of 
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filters used in the prototype. The results from the characterisation of the optical source will 

then be presented, followed by the implementation of the final design for the entire optical 

block. The chapter will conclude by detailing the processes used to make the optical block, 

and the results from the characterisation of each optical filter needed in the block. 

 

3.1 Zemax Optics Studio 

Zemax Optics Studio is a software commonly used for the design and analysis of optical 

systems [127]. The software can be operated in two different modalities: 

• Sequential ray tracing. In this mode, rays are traced from the surface of an object 

to another surface in a predetermined sequence. Surfaces are also automatically 

numbered in sequence. Therefore, if four objects are modelled, rays are traced from 

one to two, two to three etc. It is not possible to trace rays from two to four or from 

four to two.  

• Non-sequential ray tracing. In this mode, rays can only be traced along a possible 

physical path until they intercept an object, with which some interaction takes place, 

e.g. refraction, reflection, or absorption depending upon the properties of the object. 

Rays then continue along a new path striking any group of objects in any order, or 

the same object repeatedly.  

The main difference between the two modes is that in the non-sequential mode, all the optical 

components are treated as three dimensional objects and thus it is possible to import CAD 

designs realised with other software tools such as SolidWorks.  

3.2 Optical Design in Zemax 

3.2.1 Light Source: Considerations 

The design for the miniaturised optical block for capsule endoscopy was realised in non-

sequential mode. The first step in the design was the choice of a light source for the system, 

and several aspects needed consideration. The main aspect was that the block needed to fit 

into a capsule with a diameter of approximately 10 mm and a length of 20 mm, thus 

dimensions and power consumption were the main constraints. With regard to the 

fluorescence aspect, the wavelength of the source was crucial.  

As discussed in the previous chapter, endogenous and exogenous fluorophores have different 

maxima excitation wavelengths. In order to excite tissue AF, illumination at wavelengths 

between 380 nm and 475 nm (violet-blue colour) is needed. Moreover, fluorescence light in 
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the green, with wavelength between 515 nm and 530 nm, resulted to be the highest 

attenuated fluorescence component in malignant tissues. Therefore, a choice to limit the 

operation of block to only a specific wavelength range was made. In this way, it was easier 

to meet the dimension requirements and limit power consumption by working at a specific 

band instead of the whole visible spectrum. Flavin adenine dinucleotide (FAD) was chosen 

as the target endogenous fluorophore. The maximum excitation wavelength of FAD is 

450 nm with fluorescence emission at 530 nm.  

A commercially available Indium Gallium Nitride (InGaN) based sub-miniature LED was 

purchased (part no. ASMT-BB20 PCB). As shown in Figure 3.1 (a), the LED is 2.4 mm x 

3.2 mm x 2.4 mm and is characterised by a peak wavelength of 468 nm (Figure 3.1 (b)) and 

a narrow print with a viewing angle of 7.5° (Figure 3.1 (c)). The LED operates at a bias of 

3.2 V with a forward current of 20 mA [128]. The output beam of the LED was first 

characterised by using the knife-edge technique (explained in the next paragraph) to confirm 

its emission was best approximated by a Gaussian beam and determine the beam size. The 

light source was then simulated in Zemax Optics Studio to compare the simulated and 

experimental beam profile and validate the simulations.  

3.2.2  Light Source: Knife-edge measurements 

A knife-edge measurement allows to obtain the size of a light beam (the so-called beam 

waist) by transversally scanning a blade. To perform the measurement, first the light source 

is placed at a fixed distance from a detector. A blade moving by fixed steps (Figure 3.2) then 

gradually shields the beam until it is completely obscured and the detected power drops to 

zero. In this case, the LED and the detector were fixed to an optical table at 2 mm from each 

other, and the blade was mounted between them. In the experiments, a pedestal pillar post 

held a manual translational stage to which the blade was mounted (Figure 3.3), and the stage 

was used to move the blade in steps of 200 µm, recording the power of the beam at every 

step. The exact same measurements were performed on both x and y directions.                  
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Figure 3.1 Light source specifications. (a) Technical drawing of the sub-miniature LED 

lamp in four different planes. (b) Relative intensity versus wavelengths for the InGaN LED 

chosen for the design, and the other type LEDs available for purchase. (c) Radiation pattern 

of the LED. All figures were imported from the LED data sheet. 

      

Figure 3.2 Conceptual diagram for knife-edge measurement. (a) Front view of the beam 

showing x and y directions for knife-edge measurements (b) Top view of the knife-edge setup 

with the blade shielding the beam in the x direction. 
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Figure 3.3 Knife-edge measurements setup. (a) Front view of the setup with LED blade and 

detector (b) Top view of setup. 

Following the measurement, the power scanned along one direction was plotted versus the 

distance travelled by the blade. As Figure 3.4 shows, the detected power progressively 

decreased until dropping to zero once the blade covered the whole beam. The experimental 

data were fitted to the power distribution model for the Gaussian beam: 

𝑃 = 𝑃0 +
𝑃𝑚𝑎𝑥

2
(1 − erf (

√2(𝑥 − 𝑥0)

𝑤
)) 

(5) 

Where 

 𝑃0 and 𝑃𝑚𝑎𝑥 are the minimum and the maximum measured powers, respectively. 

𝑥0 is the position in the x direction where the power is equal to half the maximum power.  

𝑤 is the waist of the beam.  

erf is the standard error function. 

The results from the fitting model showed an R2 higher than 99% in both x and y directions 

(Figure 3.4 (a) and (b)). Therefore, the waists (𝑤𝑥, 𝑤𝑦) and the centres (𝑥0, 𝑦0) of the beam 

were computed by using the coefficients from the fitting model in eq. 5. Calculations showed 

that the centre of the beam in the x direction was at 3.76 mm and the beam had a waist of 

1.17 mm. In the y direction, the beam was centred at 4.085 mm with a waist of 1.17 mm.  

 

 

The Gaussian beam profile was also directly derived by using the experimental data points 

into the following equation: 
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𝑑𝑃

𝑑𝑥
= 𝑃(𝑥𝑛 − 𝑥(𝑛−1))/(𝑥𝑛 − 𝑥(𝑛−1)) 

 

(6) 

 

Where  

𝑃𝑥𝑛 is the measured power of the LED when the blade was at a position 𝑥𝑛. 

The experimental data were fitted to the equation for the intensity of the Gaussian beam: 

 

𝐼 = 𝐼𝑚𝑎𝑥𝑒
(−(

2(𝑥−𝑥0)2

𝑤2 ))
 

 

(7) 

Where  

𝐼𝑚𝑎𝑥 is the maximum intensity (W/m). 

 

Figure 3.5 shows the Gaussian curve obtained by applying equation 6 to the experimental 

data superimposing the fitted Gaussian beam intensity distribution model from eq. 7. Table 1 

compares the R2 values between the experimental results and the fitting models. The 

parameters 𝑤𝑥,  𝑤𝑥 , 𝑥0 and 𝑦0 are also used as figures of merit for both models. Both models 

provided an excellent fit to the experimental data and the difference between them was 

negligible.  

Table 9 Comparison between parameters obtained from the two fitting models. 

 R2 Waist (mm) Centre (mm) 

 x direction y direction x0 y0 x0 y0 

𝑷

= 𝑷𝟎 +
𝑷𝒎𝒂𝒙

𝟐
(𝟏

− 𝐞𝐫𝐟 (
√𝟐(𝒙 − 𝒙𝟎)

𝒘
)) 

99% 99% 1.17 1.17 3.76 4.08 

𝑰 = 𝑰𝒎𝒂𝒙𝒆
(−(

𝟐(𝒙−𝒙𝟎)𝟐

𝒘𝟐 ))
 

99% 99% 1.17 1.13 3.85 4.18 
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Figure 3.4 Normalised power versus distance. (a) x direction. (b) y direction. Data were 

normalised with respect to the maximum value of 1.1 mW measured in both directions. 
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Figure 3.5 Gaussian beam profile. (a) x direction. (b) y direction. Data were normalised 

with respect to the maximum value obtained by applying equation 6 to the experimental data. 

3.2.3 Light Source: Simulation in Zemax Optics Studio 

Zemax Optics Studio was used to simulate the emission from the LED. The necessary data 

for the simulation were extracted from the datasheet of the LED. The interface of Zemax 

Optics Studio makes it straightforward to use. Figure 3.6 shows the typical interface of the 

software in non-sequential mode with a non-sequential component (NSC) editor window 
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(Figure 3.6 (a)), and an NSC shaded model window (Figure 3.6 (b)). The former window 

allows the user to choose the components in the design, whereas the latter shows the 

components in a three-dimensional space as they are added to the design. The non-sequential 

component editor is structured as a table. New rows are added to the table as components 

are introduced in the design by the user. Each row hence represents an object. The first cell 

of each row is the ‘Object Type’ (Figure 3.6 (a)). There are a different number of cells for 

each object depending on the parameters characterising the object itself. Photometric units 

and wavelengths can be changed through the System Explorer Window, shown in Figure 

3.6 (c).  

 

Figure 3.6 Zemax interface in non-sequential mode. (a) Non-sequential component editor 

(NSC). (b) NSC shaded Model. (c) System explorer windows. 

Zemax offers different type of sources among the objects available. In this case, the ‘Source 

Radial’ object was chosen as model for simulating the LED (Figure 3.7 (a)). A fixed number 

of points were used to reproduce the same angular displacement radiation pattern of the LED. 

As we can see in Figure 3.7 (a), the maximum and minimum angle in the simulation model 

were inserted under the cells ‘Minimum Angle’ and ‘Maximum angle’. The values of 

normalised intensities for each angle were retrieved from the LED radiation pattern diagram, 

previously shown in Figure 3.1 (c). In fact, the data points were extracted from the diagram 
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by using the online software WebPlotDigitizer. Moreover, since the intensity in the datasheet 

diagram is normalised from zero to one, each value was multiplied by a hundred to match 

the normalisation in the simulation software. As we can see from Table 2, a total of nineteen 

angles were introduced in the model with the respective normalised relative intensities.  

Table 10 Angles with respective relative intensities retrieved by the LED datasheet 

radiation pattern and inserted in the model. 

Points Angle (º) Relative Intensity 

1 0 100 

2 5 78 

3 10 26 

4 15 8 

5 20 4 

6 25 3.2 

7 30 1.9 

8 35 1.83 

9 40 1.46 

10 45 0.6 

11 50 0 

12 55 0 

13 60 0 

14 65 0 

15 70 0 

16 75 0 

17 80 0 

18 85 0 

19 90 0 
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The normalised intensities for each angle were inserted in the cells ‘I 0.0’, ‘I 5.0’, ‘I 10.0’ 

etc. with each point corresponding to an angle from 0 º to 90º (Figure 3.7 (a)). In the 

datasheet of the product, 1.8 mm was the diameter of the source. Therefore, 0.9 mm was 

introduced as value in the cells with names ‘X halfwidth’ and ‘Y halfwidth’ to give a size to 

the simulated source (Figure 3.7 (a)). Other parameters that were used in the model were the 

LED peak wavelength and the power emitted by the source. The maximum value of power 

emitted by the source that was measured during the knife-edge measurements was 1 mW. 

The peak wavelength of 468 nm was specified in the system explorer window under the 

panel ‘Wavelength’. At this point, a ‘Rectangular detector’ object was created and placed 

2 mm away in front of the source (Figure 3.7 (b)). The detector had 16384 pixels (128 x 128) 

and measured 7 mm on both sides. The three-dimensional model including both LED and 

detector is showed in Figure 3.7 (c). The model simply consists of several rays hitting the 

surface of the detector exactly in the centre.  

        

Figure 3.7 Zemax interface I. (a) Source radial object interface, (b) Detecor object 

interface. (c) Three- dimensional NSC model. 
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Once all parameters were set, a ray trace was launched to evaluate the simulated beam profile 

(Figure 3.8(a)).  The ‘Split NCS rays’ and ‘Use Polarization’ boxes in the ray trace control 

window were both checked to allow rays splitting during the ray trace. At the end of the ray 

trace analysis, the simulated beam was obtained, and is shown in Figure 3.8 (b). Zemax uses 

the value of Irradiance (W/cm2) as photometric unit to describe the spatial distribution of the 

beam. The detector viewer in Zemax also allowed separating the analysis of the irradiance 

along each transversal direction. Therefore, data for x and y directions were separately 

exported in a text file and fitted to a Gaussian beam intensity distribution model in eq. 7 

using Matlab. As Figure 3.9 (a) shows, the R2 of 99.8 % suggests an excellent match between 

the simulated beam and the Gaussian model. The simulations provided a beam waist value 

of 1.17 mm, corresponding to the value obtained from the knife-edge measurements. 

Simulations were also carried out to obtain the radiant intensity of the beam, and evaluate 

the angular radiation pattern along thex and y directions to compare them to the diagram in 

the data sheet. In the LED datasheet, 7.5 º is reported as the device viewing angle, which is 

defined as the angle at which the intensity is half of the peak intensity. The viewing angle 

obtained from the simulations is shown in Figure 3.9 (b), and again an excellent match 

between the simulated data and the angular radiation pattern given in the datasheet can be 

seen.  

                                                   

Figure 3.8 Zemax object interface II. (a) Ray trace window in Zemax (b) Detector viewer 

window showing the beam spot on the detector along two dimensions.  
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Figure 3.9 Beam profiles from simulation. (a) Gaussian beam profile of the simulated 

source is identical in both x and y directions. The diagram was normalised with respect to 

the maximum value of irradiance given in the simulation (b) Angular radiation pattern of 

the simulated source showing the viewing angle of 7.5 º. The diagram was normalised with 

respect to the maximum value of radiant intensity given in the simulation.  

3.2.4 Optical configuration 

The optical design for the miniaturised block was inspired from a typical in-line fluorescence 

microscope setup (Figure 3.10). The typical components in a fluorescence microscope are 

certainly the excitation, emission and dichroic filters. Most fluorescence microscopes use a 
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dichroic beam splitter that reflects shorter wavelengths to excite fluorophores and transmits 

longer fluorescence wavelengths. The combination of these optical filters avoids non-

fluorescent light hitting the microscope sensor. The most important parameters of a filter are 

the centre wavelength (CWL), transmission percentage, optical density (OD), and 

bandwidth. The choice of the filters for the setup was mainly based on these optical 

characteristics.   

               

Figure 3.10 In-line fluorescence microscope setup.  

The initial goal of the optical design was to maintain all the optical components in a cube 

with a volume of 25 mm3 and sides of 5 mm in each dimension. This choice was made to 

leave space for other electrical components within the capsule. Although the LED had a very 

small angle of view, dichroic beam splitters are designed to work with collimated light. 

Therefore, the first object that was added to the optical design after the light source was a 

lens to collimate the light from the LED. The lens was chosen by considering the size of the 

LED as well as the size of the lenses available in the market. A commercially available 

plano-convex lens from Edmund Optics, with diameter and focal length of 2 mm was 

chosen. The 3D CAD design of the lens was obtained from the manufacturer and imported 

in Zemax Optics Studio, where of the type of glass used for the lens (N-LASF9) was also 

specified. The lens was placed in front of the light source with the flat face facing the LED 

at 1.57 mm which is the back focal length of the lens.  

3.2.5 Choice of filters 

Filters were chosen based on the results from optical simulations. The setup for the 

simulations was created by placing a rectangular volume object with sides of 5 mm and 
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2 mm and thickness of 500 µm was after the collimating lens. The object was used to model 

an excitation filter.  The next element added to the optical design was the dichroic beam 

splitter. The beam splitter was placed at a 45º angle in front of the light source, collimating 

lens, and excitation filter to deflect all the light coming from the source upward at 90º. The 

dichroic beam splitter thickness was fixed at 200 µm whereas the sides of the filter measured 

2.1 mm and 5 mm. An objective lens with a diameter of 2 mm and a focal length of 3 mm 

was then positioned above the beam splitter at 1.1 mm from its centre. The purpose of the 

lens was to direct the excitation light on the sample as well as imaging any fluorescence light 

coming from the specimen. Finally, the fluorescence filter was modelled with a thickness of 

500 µm and placed under the beam splitter and objective lens at 3 mm from the end of the 

lens facing the beam splitter. In the simulations, a detector was placed in front of the 

objective lens at a distance equal to its focal length to determine the irradiance of the 

excitation source. Another detector was placed under the excitation filter to measure the level 

of noise as irradiance of the excitation source passing through the fluorescence filter (Fig. 

3.11).  Since Zemax allows to specify coatings for each object surface, the transmission 

properties of bandpass filters available in the market were simulated. Filters from three 

different manufactures were investigated as it is shown in table 11. In the case of excitation 

filters, two types of filter for each manufacturer were chosen. One type with a larger band 

and another type with a narrower band. In the case of beam splitters, two types of filter for 

each manufacturer were also investigated.  

                         

Figure 3.11 Optical setup in the Zemax Simulation. 
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The simulations were performed by using all the possible combinations of filters. In each 

simulation the average irradiance value of light hitting the detector on top of the objective 

lens was calculated. As it is showed in figure 3.12, the filters with larger band showed similar 

results. As it was expected a higher number of wavelengths can pass through the filter. 

However, among the filters with narrow band the substrate manufactured by Chroma showed 

better results in terms of light transmission.  

Table 11 Excitation and Beam splitter filters used in the simulations (For the excitation 

filters, the first number refers to centre wavelength, the second number refers to full 

width at half-maximum (FWHM)). 

 EXCITATION BEAM SPLEATTER 

 Type 1 Type 2 Type 1 

(cut-off) 

Type 2 

(cut-off) 

ALLUXA 447-60 nm 470-10 nm 498 nm 505 nm 

CHROMA 450-50 nm 470-40 nm 495 nm 505 nm 

SEMROCK 452-45 nm 480-17 nm 495 nm 506 nm 

 

  

 

Figure 3.12 Transmission band of excitation filters and beam splitters chosen for the 

simulations. 
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Figure 3.13 Values of average irradiance simulated on the detector placed on top of the 

objective lens in the optical setup.  

The second set of simulations involved the investigation of the crosstalk light hitting the 

detector placed under the fluorescence filter. Specifically, simulations were run similarly to 

the previous experiments. In this case several fluorescence filters were also added to the 

simulation to measure the level of excitation light passing through the fluorescence filter 

thus allowing to estimate the best fluorescence filter for our application. In the best scenario 

the excitation light passing through the fluorescence filters should be close to zero. A total 

of five fluorescence filters were investigated. The substrates of investigation are produced 

by Semrock, Alluxa and Chroma and their transmission properties are showed in figure 3.14. 

Transmission properties were chosen by taking into consideration the emission spectra of 

FAD which is the man fluorophore responsible of green AF in human tissues.  

                          

Figure 3.14 Transmission properties of fluorescence filters used in the simulations. 
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As it showed in figure 3.15, the level of  light irradiance were one order of magnitude lower 

in Semrock and Chroma substrates with respect to the fluorescence filters manufactured by 

Alluxa. Both Chroma and Semrock were contacted to ask for quotes. The budget available 

for the filters was only 2000 £ and Semrock offered to provide the filters with the same 

dimensions of the simulations except for the thickness. The company reported that the 

manufacture process to make the substrates in that thicknes was around 20000 £. Therefore, 

the filters were bought by semrock with standard dimensions at 250 £ pounds each.  

 

Figure 3.15 Values of average irradiance simulated on the detector placed under the 

fluorescence filter in the optical setup. 

 

3.3 Post-processing of optical filters 

3.3.1 Lapping and polishing process 

Semrock was contacted to request filters with the optical properties highlighted on the 

website and custom-made dimensions for fitting the miniaturised unit. Semrock provided 

filters with the same width and length chosen in simulation. On the other hand, the requested 

thickness was too small for the company that asked for a large batch outside the research 

budget limit. Therefore, lapping, and polishing techniques were adopted to reduce the 

thickness of the filters and make them compatible with the designed slots. As previously 

mentioned, two types of excitation filters and two types of fluorescence filters were 

purchased. The filters were provided with a width of 2 mm, a length of 5 mm and a thickness 

of 2 mm. In the case of the beam splitter, the original thickness of the filter was 1.1 mm 

whereas the width and length were 2.5 mm and 5 mm, respectively. Lapping and polishing 
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processes were carried out by using a Logitech machine that pushes an abrasive slurry across 

the surface of the filter to remove material and uniformly reduce its thickness (Fig. 3.21). 

The goal was to reduce the thickness of excitation and fluorescence filters to 0.5 mm and the 

thickness of the dichroic beam splitter to 0.2 mm.  

Filters were fixed to a support using vacuum. Support blocks of alumina loaded epoxy were 

used to protect the filters during the lapping process. The blocks were fabricated such that 

they had the same original thickness of the filters. The presence of the support blocks 

increased the surface area of the sample, reducing shear forces on the sample surface and 

promoting uniform removal of material (Fig. 3.22). A 3 µm Aluminium oxide powder was 

used in the process to remove material from the filters. 

The lapping process carried out to thin the filters can be summarised as follows: 

1) Measurement of the starting thickness of the filter. 

2) Assessment of the coated side of the filter under the optical microscope. 

3) Positioning of a glass substrate onto a hotplate atapproximately 75°. 

4) Deposition of a temporary bonding agent (Quartz wax) onto the substrate (melting 

point ~70°). 

5) Mounting of the filter and support blocks onto the wax to secure the filter onto the 

substrate. 

6) Assembly assessment, as the coated side of the filter must be in contact with the glass 

plate surface to avoid the coating being lapped and removed.  

7) Even distribution of the wax beneath the filter by gentle pressure.  

8) Substrate removal from the hotplate and substrate secure placement under the 

pressure jig in order to apply consistent pressure to the filter and wax, as the wax 

cooled and adhered to the filter securely  

9) Mounting of the glass substrate on the lapping jig via vacuum, after cooling of the 

wax and secure positioning of the filters (Fig. 3.22).  

10)  Spreading of an even layer of the 3 µm alumina abrasive onto the lapping plate 

11)  Placement of the lapping jig on the lapping plate to position the glass plate such that 

the abrasive slurry was pushed between the surface of the filter and the lapping plate, 

removing material from the filter. 

12)  Sample thickness measurement during lapping.  

13) Stopping of the process when the desired quantity of material was removed. 

14)  Measurement of the thickness of the filter.  

15)  Cleaning of the filters with Isopropyl Alcohol in ultrasonic bath.  
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16)  Polishing of the filters by using a polishing solution on a velvet plate (different from 

the plate used for lapping).  

In the process the filters were lapped at a velocity of 25 rpm with a resulting removal rate of 

0.8 µm/min. Table 3 shows the dimensions of the filters before and after lapping. Fig. 3.24 

shows an excitation filter under the optical microscope before and after the lapping process. 

                                                   

 

Figure 3.16 Logitech machine. (1) Lapping plate wet with aluminium oxide powder 

solution to decrease the thickness of materials secured on the (2) glass plate through the 

(3) lapping jig.  

 

Figure 3.17 Filters secured through wax on the glass plate of the lapping jig along with 

epoxy supports. (a) Schematic picture. (b) Real picture of the filter and support on the plate. 
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Table 12 Filters dimensions before and after the lapping process 

 

 

                  

Figure 3.18 Optical microscopy image of the excitation filter. (a) Before the lapping 

process. (b) After the lapping process. 

3.3.2 Optical characterisation of the filters 

The optical transmission properties of the filters were measured before and after the lapping 

process by using a micro-spectrophotometer (Foster + Freeman ffTA/MS). Among the two 

excitation filters, the filter with an original broader bandwidth lost its transmission properties 

showing even a larger bandwidth after lapping (Fig. 3.24 (a)), suggesting possible damage 

to the coating during lapping. On the other hand, the transmission properties of the excitation 

filter with the narrower band were not affected (Fig. 3.24 (b)). The fabrication process did 

not alter the reflection and transmission properties of the dichroic beam splitter (Fig. 3.25). 

As in the case of the excitation filters, the original bandwidth of the fluorescence emission 

filter with centre wavelength of 536 nm changed after the lapping process showing a higher 

transmission in the 400 nm region (Fig. 3.26 (a)). On the contrary, the transmission 

properties of the fluorescence emission filter with narrower bandwidth and central 

 

Excitation 

Filter 

 

Fluorescence 

Filter 

Dichroic Beam 

Splitter 

Before After Before After Before After 

Length (mm) 5 5 5 5 5 5 

Thickness (mm) 2 0.5 2 0.5 1.1 0.2 

Width (mm) 2 2 2 2 2.5 2.5 
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wavelength at 529 nm did not change after the lapping process (Fig. 3.26 (b)). Since 

Semrock did not disclose the coating-layers that were deposited on the substrates to achieve 

the desired transmission properties, it was not possible to give further information about the 

causes of the altered transmission bandwidths after lapping.    

 

Figure 3.19 Transmission properties of excitation filters before and after lapping. (a) 

FF01 452-45. (b) FF01 480-17. 

 



73 

 

                         

Figure 3.20 Dichroic beam splitter transmission properties before and after lapping. 

 

Figure 3.21 Transmission properties of fluorescence emission filters before and after 

lapping. (a) FF01 536-40. (b) FF01 529-28. 
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3.4 CAD design of miniaturised unit for the optical components  

The body that held the optical components in place was designed in Solidworks. The 3D 

optical components were imported from Zemax to Solidworks to maintain the dimensions 

exact and consistent. Fig. 3.17 shows different views of the unit that measured 6 mm x 5 mm 

x 6 mm (Fig. 3.17 (a)).  A square of 2.5 mm x 2.5 mm was designed on the front face of the 

block (Fig. 3.17 (b)). The square was extruded by 1.45 mm to create the space for 

accommodating the LED package (Fig. 3.17 (b)). The next step involved the creation of a 

counterbore 1 for inserting the collimation lens. The counterbore was designed with an 

external diameter of 2.1 mm, an internal diameter of 1.9 mm and a depth of 1 mm (Fig. 

3.17 (b)). The dimensions were chosen to keep the lens with a diameter of 2 mm and a 

thickness of 0.8 mm in place. The slots for the filters were extruded along the whole width 

of the body, measuring 5 mm to allow easy insertion and removal of the filters (Fig. 

3.17 (d)). The slots for the filters were designed with 0.1 mm tolerance. In fact, both slots 

for excitation and fluorescence filters measured 0.6 mm and 2.1 mm to accommodate filters 

with a thickness of 0.5 mm and a width of 2 mm. The same choice was made for the beam 

splitter slot which measured 0.3 mm x 2.60 mm for accommodating a filter with thickness 

of 0.2 mm and width of 2.5 mm. Another counterbore for accommodating the objective lens 

was created on top of the slot for the beam splitter (Fig. (3.17 (e)). Finally, a cylindrical 

opening with diameter of 1.9 mm matching the inner diameter of the counterbore was 

extended along the whole height of block passing through the slot for the fluorescence filter. 

The opening was designed to allow any fluorescence light imaged by the objective lens to 

pass through the fluorescence filter and hit the area of any imager sensor coupled with the 

block (Fig. 3.18 (e)). 

3.5 Fabrication of the miniaturised block  

The block was fabricated by wire erosion at the spark erosion centre in Glasgow. The 

technique was chosen because the features in the units were very difficult and complex to 

machine. In a wire erosion processes, specific shapes are created out of a workpiece by using 

electrical discharges or more literally sparks. A wire is fed through a metal workpiece that 

is usually immersed in a dielectric fluid. The wire is held between two guides which move 

in x and y direction. The application of a voltage between the wire and workpiece allows the 

generation of the sparks and hence the removal of material from the workpiece (Fig. 3.18). 

The final unit was fabricated out of aluminium. After fabrication, the final piece was 

 
1 A cylindrical flat-bottomed hole that enlarges another coaxial hole 
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anodised and painted black to prevent any reflection within the optical path. Fig. 3.19 shows 

the miniaturised holder after deionisation and black paint coating. The slots for the filters 

where imaged with an optical microscope to assess the precision of the fabrication process. 

Fig. 3.20 shows that all of the feature sizes were between 50 µm and 60 µm larger than the 

designed values.  

             

Figure 3.22 Figure 3.22 Technical drawing of the unit designed to accommodate the 

optical components. (a) 3D view of the block. (b) Front view of the block. (c) 3D section of 

the block highlighting the square-opening for the LED and the counterbore for 

accommodating the collimation lens. (d) Side view of the block showing the slots for the 

filters (e) Top view of the block showing the counterbore for accommodating the objective 

lens (f) Bottom view of the block showing the exit pupil. All data are in millimetres. 

 

                             

Figure 3.23 Schematic model of wire erosion technique.  
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Figure 3.24 Fabricated unit. (a) Objective lens counterbore and filter slots. (b) LED slot, 

exit pupil and filter slots.         

 

Figure 3.25 Optical microscopy image of the wire-eroded slots. (a) Excitation filter slot. 

(b) Fluorescence filter slot. (c) Beam splitter filters slot. 
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3.6 Assembly of the optical components within the miniaturised unit 

The filters that did not show any change in transmission properties after post-processing 

were integrated within the miniaturised unit. Filters and lenses were manually inserted within 

the designated slots under the optical microscope by using tweezers with carbon-fibre tips 

to avoid scratching or damaging (Fig. 3.27). The LED package was inserted inside the 

designed aperture. The body of the lamp was initially secured to the unit by using blue-tack 

and successively glued by using cyanoacrylate-based glue (Fig. 3.27 (d)). 

 

 

 

Figure 3.26 Miniaturised unit coupled with the optical components. (a) Real optical 

components outside unit. (b) Final assembled device (c) Final assembled device placed next 

to a ruler to show real dimensions (d) Front view of the device showing the sub-miniature 

PCB-lamp integrated within the unit.  
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3.7 Summary 

The aim of this chapter was to describe the software and techniques that were employed to 

design, fabricate and assemble the miniaturised optical unit. The optical design of the device 

was performed in Zemax Optics Studio. The light source that was purchased for integration 

in the device was simulated. The results from the simulations were compared with knife-

edge measurements performed on the actual device. The CAD design and the fabrication 

processes used to create the unit for holding the optical components were also addressed. 

Post-processing techniques performed on the off-the-shelf optical filters purchased for the 

optical setup were explained, and their effects on the optical properties of the filters were 

discussed. Finally, the assembly of the device was briefly described and the final unit 

equipped with the optical components was shown.  
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4 Integration and characterization of the optical unit 

As discussed in the previous chapter, the miniaturised optical unit operated in two different 

modalities defined as excitation and fluorescence modes. In excitation mode, the beam from 

the LED was collimated, filtered and then reflected by the beam splitter through the objective 

lens to excite the sample. In fluorescence mode, fluorescence light emitted by the sample 

was imaged by the objective lens through the fluorescence filter on the detector. Although, 

the two modalities were synchronous and mutually dependent, two different strategies were 

employed for characterizing the optical module in excitation and fluorescence modes. 

4.1 Excitation mode  

The shape and size of the excitation beam incident was characterized by knife-edge 

measurements (Fig. 4.1 (a)). The protocol for these measurements was discussed in detail in 

section 3.2.2. As in the case of the excitation source, the shape of the beam was also studied 

in Zemax by placing a detector on top of the optical unit at a distance equal to the focal 

length of the optical system, in order to compare the experimental data with simulated results 

(Fig. 4.1 (b)).   

                 

Figure 4.1 Characterisation of the excitation beam. (a) A blade was placed on top of the 

optical unit and knife-edge measurements were performed on the excitation beam. (b) The 

miniaturised unit for holding the optical components was simulated and a detector was 

placed on top of the unit to study the shape and size of beam.   
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Gaussian beam profiles in x and y directions were extracted from knife-edge measurements 

by appling equation 2.2 to the data. The profiles were then compared to those obtained from 

the simulations (Fig. 2.2). The results showed a strong correlation ( > 95%) between the 

simulated and the experimental results. In fact, the waist of the simulated beam was 

approximately 1.09 mm in both x and y directions against the 1.13 mm obtained from the 

experiments.   

     

Figure 4.2 Gaussian beam profiles in (a) x and (b) y directions obtained from knife-edge 

measurements and Zemax simulation.  
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4.2 Fluorescence mode 

4.2.1 CMOS 64 x 64 SPAD array 

The characterization in fluorescence mode was performed by coupling and integrating the 

optical unit with a 64 x 64 pixels SPAD array designed by another PhD candidate in the 

microsystem and technology (MST) group at University of Glasgow [129].  The array had a 

pixel pitch of 61.5 µm in both horizontal and vertical directions and a fill factor of 3.5%.  

The imager was designed with a global shutter architecture and operated with a power supply 

of 1.8 V (VDD) and a ground supply of 0 V (GND). The chip was coupled to a CPGA 208 

socket and integrated on a custom-made PCB board which interfaced a F334R8 

microcontroller (Mbed). The microcontroller was connected to a laptop via a USB cable and 

was programmed to provide the inputs and read the outputs of the chip (Fig. 4.3). A Matlab 

graphical user interface (GUI) was also developed to acquire data and reconstruct the image 

through the Mbed.  The interface allowed to select several sample intervals, also defined as 

integration times or gate times. Another feature of the graphic user interface was the 

capability of creating software masks and subtracting them from the data of interest in order 

to remove noise sources that could be misguiding in the measurements. The maximum frame 

rate was limited to 3 fps because of the USB serial protocol used to transfer data between 

the chip and the laptop. 

      

Figure 4.3 64 x 64 CMOS SPAD array. (a) Imager chip mounted on the PCB and Mbed 

board. (b) GUI interface for data acquisition. The interface was designed to select the 

integration window, the port that was connected to the imager and also to allow the user to 

load a DCR mask previously created. When loaded, the mask was subtracted in real time 

from the images during data acquisition.  
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4.2.2 Integration of the optical unit on the chip 

The SPAD chip was mounted on to the side of the optical block using a black-nylon disk. 

The disc was designed in Soidworks and 3D printed with a diameter of 40 mm and a 

thickness of 0.2 mm in order to sit on the 1849 mm2 chip carrier (Figs 4.4(a) and (b)). A 

square aperture with sides of 2 mm was also designed in the centre of the disc to match the 

exit pupil of the optical unit (Figs 4.4 (c) and (d)). Two wings were realized around the 

aperture at a distance of 5.5 mm from each other to accommodate and hold the optical unit 

firm in position. Two small copper-clad boards were also glued onto the wings of the spacer 

to facilitate soldering of the LED’s anode and a cathode wires.  Black nylon was chosen as 

the printing material in order to avoid any stray fluorescence light from hitting the active 

area of the imager. The whole imager assembly was then attached to an optical breadboard. 

Moreover, three transitional optical stages (Thorlabs, MTS50/M-Z8) were also secured on 

the breadboard in order to position and manipulate objects to be imaged with respect to the 

fluorescence imaging unit (Fig. 4.5 (a) and (b)). Several object holder arms were also 3D 

printed depending on the size of the samples to be imaged.       

                    

Figure 4.4 Spacer disk for integration of the optical unit on the SPAD array chip. (a) 

Optical unit assembled on the SPAD chip through the disk. (b) 3D assembly model of the 

optical block sitting on the disk. (c) Technical drawing showing disk’s dimensions in 

millimetres. (d) 3D printed spacer-disk.  
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Figure 4.5 Experimental setup for the measurements. (a) 3D model of the setup. (b) 

Measurements setup in the laboratory. 

4.2.3 Software mask  

As previously mentioned, the exit pupil of the optical block was 1.9 mm in diameter, whereas 

the SPAD imaging array was 3.9 mm x 3.9 mm. Therefore, after the integration of the optical 

unit on the imager, a mask was created to exclude the pixels in the outer region of the array. 

The experimental procedure for determining the diameter of the system’s circular field of 

view was performed by placing a petri dish containing a high concentrated FTCI solution 

(100 µM) on top of the imaging unit, at the focal length of the system (6 mm) (Fig. 4.6 (a)). 

The field of view of the system was determined by imaging the fluorescence. A Matlab 
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algorithm was written to create a software mask to use in all the experiments. The algorithm 

set all the pixels outside the field of view to zero and created a circle around the region with 

high fluorescence signal. The diameter of this circular region was 2.1 mm which covered 

exactly 37 pixels. Finally, all the pixels within the circle were set to one to create the software 

mask (Fig. 4.6 (c)). Since images are treated as matrices of numbers in Matlab, all obtained 

imaging data in the following experiments were multiplied by the software mask to account 

only for the pixels within the field of view.  

 

Figure 4.6 Software Mask. (a) A 100 µM FCTI solution placed on top of the imaging system 

(b) Signal from the solution delineated the field of view. (c) Created software mask by setting 

all pixels within the field of view to one and the pixels outside the circle to zero.  

4.2.4 DCR and LED-crosstalk measurements 

Before imaging any sample, the optical setup was placed in a closed dark space to evaluate 

the effect of the noise sources. As stated in section 2.5.4, the DCR is the number of events a 

SPAD reads in the absence of light arising from thermal excitation and band-to-band 

tunnelling.  In the imaging system, another component of noise was the cross-talk as a 

consequence of the small amount of excitation light coming from the LED that is scattered 

on to the SPAD. The DCR was measured at fourteen different integration times by acquiring 

the same number of frames for each integration time with the LED turned off. The integration 

time is defined in ms and indicates the time window used by the digital counter in the circuit 

to count the pulses generated in the detector during photons arrivals.  Specifically, ten frames 

were acquired for each integration time. A Matlab code was written to create an average 

DCR frame by averaging the ten frames. The algorithm also computed the average value of 

all the pixels in the frame to determine the DCR at each integration time. The standard 

deviation between the values of all pixels was also computed. The procedure was performed 

only for the pixels within the field of view of the system by applying the software mask. The 
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same process was repeated with the LED turned on to evaluate the noise introduced by the 

LED into the system. As it is shown in Fig. 4.7, the average DCR of the system increased 

with the increase of the gate time. Specifically, at low gate times the noise introduced by the 

LED is similar in unit to the DCR. However, as the integration time increases the crosstalk 

noise from the LED increases. This means that for signal with high fluorescence intensity 

short integration times must be used to prevent saturation of the counter. On the other hand, 

in the case of weak fluorescence signal, longer integration time windows must be chosen.  

      

Figure 4.7 Noise sources in the imaging system.  

4.2.5 FAD phantom solutions  

As discussed in section 2.4, FAD is an endogenous fluorophore expressed in human tissues 

that plays an important role in carcinogenesis. In fact, the oxidation of FAD to FADH2 in 

cancerogenic environment is one of the factors responsible for the decrease in the 

fluorescence signal from cancerous tissues. Measurements were carried out to determine the 

minimum concentration of fluorophore in solution which can be detected by the system. The 

protocol for the experiments involved the dissolution of FAD salt hydrate (molecular mass 

829.5 g/mol, purity> 95%, Sigma Aldrich) in Phosphate Buffer Saline (PBS) to obtain six 

separate solutions at concentrations of 250 µM, 125 µM, 60 µM, 30 µM, 15 µM, and 7.5 

µM respectively. For this purpose, a 7.6 cm x 7.6 cm positive fluorescent, 1951 USAF target 

mask (57-894, Edmund Optics) was used. The mask consisted of a layer of chrome into 

which transparent features were etched (Fig. 4.8(a)). A specific holder-stage was 3D printed 

for accommodating the target (Fig. 4.8(b)). The holder-stage was fixed to the Z motorized 

stage so that the target was placed on top of the imaging system. Using a 625 µm x 625 µm 
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feature in an USAF to form a regular mask (Fig. 4.8(c), the imaging system was tested to 

measure the fluorescence signal as a function of fluorophore’s concentration. 10 µL of 

solution were pipetted on to the 625 μm x 625 μm region of interest on the USAF mask (Fig. 

4.8 (d)).  The chrome coated surface reflected the incident radiation while the fluorescence 

signal from the solution in the etched feature was imaged by the optical unit and the SPAD.  

The process was repeated three times for all the six separate solutions with different 

concentrations. The average of all the pixels within the fluorescence feature was computed 

for each concentration. Experiments were replicated three times per concentration. The 

average software mask constructed considering the LED noise, as previously, described in 

section 4.2.3, was subtracted from the images to account only for the fluorescence signal 

emitted by the phantom solutions. As clearly illustrated in Fig. 4.9, data were reliably 

calculated indicating that the smallest measurable concentration was as low as 7.5µM.  The 

data obtained was also fitted to the exponential model with a resulting R2 higher than 99% 

in the concentration region of the experiments. However, it is expected that the average 

fluorescence intensity in pixel saturates at higher concentrations of the fluorophore. Since 

the main aim of at this experiment was to assess the sensitivity of the imaging system for 

this specific fluorophore, a higher number of data points was acquired at lower 

concentrations.  

                                  

Figure 4.8 Setup for fluorescence phantom solutions experiments. (a) USAF 1951 target 

with features etched on the chrome layer (b) 3D-printed holder-stage to accommodate the 
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target (c) Microscopy image of the feature used to image the fluorescence solutions (d) 

Schematic drawing of the experimental procedure.  

 

Figure 4.9 Response of the optical system to FAD at six different concentrations. (a) 

Images of FAD solutions masked by the feature of the USAF target at concentrations of 7.5 

µM, 15 µM, 30 µM, 60 µM, 125 µM, 250 µM. (b) Average fluorescence intensity of the pixels 

within the square feature for each concentration was computed to assess the optical 

sensitivity of the system as a function of concentration. The data shows the mean of 

independent experiments (n = 3) and the error bars show the standard deviation (SDT).  
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Experimental data was fitted to the exponential model 𝑓(𝑥) =  𝑎𝑥 + 𝑏 with an R2 > than 99 

%.  

4.2.6 FTCI phantom solutions 

 

Figure 4.10 Response of the optical system to FTCI at six different concentrations. (a) 

Images of FAD solutions masked by the feature of the USAF target at concentrations of 7.5 

nM, 15 nM, 30 nM, 60 nM, 125 nM, 250 nM. (b) Average fluorescence intensity of the pixels 

within the square feature for each concentration was computed to assess the optical 

sensitivity of the system as a function of concentration. The data shows the mean of 
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independent experiments (n = 3) and the error bars show the standard deviation (SDT).  

Experimental data were fitted to the exponential model f(x) = ax+b with an R2 > than 99 

%. 

The same experimental procedure was repeated by using FTCI to compare the performance 

of the two fluorophores. In contrast to FAD, FTCI is an exogenous fluorophore usually 

introduced as fluorescence agent to increase the contrast of specific lesions with respect to 

the autofluorescence background from tissues. As shown in Fig. 4.10, the experiments were 

performed in the nanomolar region because FTCI has a quantum yield of 0.79 in contrast to 

FAD that has a quantum yield of 0.025. The minimum detectable concentration was 7.5 nM. 

In this case, the results were displayed using a Matlab script that varied the colour in each 

line segment of the image matrix by interpolating the values across the line in order to obtain   

the images with higher resolution. In fact, in contract to the FAD images, each individual 

pixel in the images was indistinguishable from its neighbour pixels. This post-processing 

choice was made to show that higher quality images can be achieved also by using a low-

resolution system. Moreover, the average value of all the pixels within the fluorescence 

square-feature did not increase exponentially with increasing FTCI concentration and rather 

was fitted to a linear model with a resulting R2 higher than 99%. Linear behaviour can be 

due to fact that in this particular case the investigation was done in the nanomolar range. An 

exponential behaviour might appear at higher concentrations. The FDA approved 500 mg of 

FTCI at concentration of 300mM as the safe dosage in adults. However, side effects span 

from nausea to bronchospasm and cardiac arrest. The potential use of the imaging system in 

capsule endoscopy would require a lower dosage of the dye and hence a higher safety for 

patients.  

4.3 Summary 

The aim of this chapter was to describe the characterization of the imaging system in 

excitation and fluorescence mode. The excitation beam was characterized through knife-

edge measurements to determine the shape of the excitation beam and the results were 

compared to Zemax simulations. The detection of weak fluorescence signals from within the 

body in autofluorescence imaging is the main drawback of this technique. Therefore, the 

characterization of the module in fluorescence mode was performed by evaluating the 

minimum fluorescence signal detectable by the system.  For this purpose, fluorescence 

phantoms solutions were prepared by using FAD and FCTI fluorophores to mimic 

endogenous fluorescence from the human body and exogenous fluorescence induced by 

external agents. Results showed that the system could reliably detect FAD in the micromolar 
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range and FTCI in the nanomolar range. The findings were expected as FTCI has a quantum 

yield one order of magnitude higher than FAD. 

5 In vitro experiments 

Accuracy in assessing tumour lesions is critical to cancer diagnosis and treatment [130]. A 

precise early detection of cancer can be achieved by targeting specific cells or molecules that 

are overexpressed and metabolized in tissues undergoing carcinogenesis. This approach of 

targeting specific cells aims at inducing a fluorescence signal in cancerous lesions [16]. This 

method produces much higher and distinguishable signal from that of typical tissue 

autofluorescence. If the contrast agent is characterized by a high specificity towards cancer, 

it becomes easy to detect small colonies of cancerous cells and restrict progression of the 

disease resulting into better survival rate of patients. As discussed in section 2.5.3, several 

molecules were engineered for selectively binding to tumours. The target mechanisms span 

from simple antibody-based immunostaining methods to more complex chemical reactions 

[131], [132]. Another important aspect related to molecular probes for cancer detection is 

the molecule’s ability of ‘switching on’ after binding to the target. The use of probes that are 

‘always on’ showing fluorescence properties before reaching the target can sometimes be 

misleading because the time of binding or binding kinetics can vary from patient to patient 

as well as from condition to condition. Therefore, switchable probes have an ability to 

provide a more precise detection [133].    In this chapter, the optical module and the SPAD 

array were used to detect the fluorescence signal emitted by colorectal cancer cells cultured 

at different seeding densities and labelled with a gamma-glutamyl transpeptidase (GGT) 

selective fluorescence probe γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) 

that is sold as ProteoGreenGluTM [88], [134]. At first, we tried to find the probe HMRef-

GlcNAc which was used to target human colorectal cancer and whose results were published 

in 2016 [89]. However, after no response from the researchers who engineered the probe, 

we decided to buy off-the-shelf ProteoGreenGluTM which was engineered by the same group. 

The chemical reaction that describes the activation of the probe has been discussed in detail 

in section 2.5.3 and relies on targeting GGT that is an enzyme expressed on the membranes 

of cells and overexpressed on the surface of cancer cells. The fluorescence product of the 

reaction accumulated in cells with a maximum fluorescence emission peak at 525 nm when 

excited between 460 nm and 480 nm. The same cell line was also stained with CellTracker™ 

Green which is a fluorescence dye for monitoring cells location designed to work with all 

cell types [135]. This choice was made to compare the performance of the two molecular 

fluorescence probes and further characterise the system. All the measurements were carried 



91 

 

out simultaneously to benchmark the system comprising optical block and the SPAD array 

with a commercial microplate reader. The experiments were performed at the Center for Cell 

Engineering at the University of Glasgow after completing all the training required to use 

the tissue culture laboratory. The instrumentation for the measurements was placed in the 

room adjacent to the cells incubators to maintain the best possible conditions for the cells 

while performing the measurements. 

5.1 Cell lines 

5.1.1 LS 174T (ATCC® CL­188™) colorectal adenocarcinoma 

Cells were purchased from LGC STANDARD.  The cell line CL-188TM was initiated from 

a Duke's type B adenocarcinoma of the colon of a 58 years old Caucasian human female 

after mincing and culturing the tissues without transfer for 10 months. Studies on nude mice 

revealed that tumours advanced in 20 days upon injection of 107 cells.  The cells were 

delivered in frozen vials. The vials were thawed in 37°C water bath for approximately 2 

minutes and then removed from the water bath and decontaminated by spraying with 70% 

ethanol. The vial contents were transferred to a centrifuge tube with 9.0 mL of tissue culture 

Eagle's minimum essential medium (EMEM) (ATCC® 30-2003™) and centrifuged at 

approximately 1400 rpm for 7 minutes. After centrifugation the supernatant was decanted 

from the tube and the cell pellet was suspended with 9 mL of new medium. Three separate 

cell solutions of 3 mL each where then dispensed in 75 cm2 culture flasks to obtain three 

separate cultures. Fig. 5.1 shows the appearance of the cells under the microscope at both 

low- and high-density conditions.  

                                           

Figure 5.1 ATCC® CL­188™ colorectal adenocarcinoma cells at high density.       

5.1.2 BJ-5ta (ATCC® CRL-4001™) foreskin 

This specific cell line was purchased to work as a negative control for the cancer-selective 

probe. The hTERT-immortalized foreskin fibroblast cell line, BJ-5ta was derived by 

transfecting the BJ foreskin fibroblast cell line with the pGRN145 hTERT-expressing 
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plasmid (ATCC MBA-141) at population doubling 58. Cells were cultured in medium 

containing hygromycin B until stable clones were selected. The thawing process involved 

the steps described above for the previous cell line with the only exception that the medium 

was a 4:1 mixture of Dulbecco's medium and Medium 199.  Fig. 5.2 shows the appearance 

of the cells under the microscope at both low- and high-density conditions. 

                                               

Figure 5.2  BJ-5ta ATCC® CRL-4001™ foreskin fibroblasts high densities. 

5.2 Experimental Protocol  

The aim of the experiments was to detect fluorescence signal from cells cultured in 96 well 

plates at four different seeding densities and separately labelled with two different 

fluorescence probes. 

5.2.1 Measurement setup  

The measurement setup for the experiments discussed in the previous chapter was used with 

the sample holder designed and 3D printed to accommodate a 96 well plate (Figs. 5.3 (a)). 

The sample holder was mounted on the Z-motorized-stage to lay parallel on top of the 

imaging system ((Figs. 5.3 (b)). A spirit level was used to ensure that the holder was aligned 

with respect to table where the measurement setup was mounted (Figs. 5.3 (c)). The 

motorized stages were programmed to move the plate with respect to the imaging system. 

The scanning and acquisition imaging methods will be discussed later in this chapter. The 

whole imaging system was enclosed in a black hardboard optical enclosure to create a dark 

environment during the measurements 
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Figure 5.3 96-well plate holder. (a) 3D CAD model of the sample holder. (b) The holder 

with spirit-level was mounted on the Z-stage to lay parallel to the imaging setup. (c) Spirit 

level was placed on the optical breadboard to ensure the alignment of the system.  

5.2.2 Subculture protocol: Cells counting 

The cells were incubated in the 75 cm2 flasks for 48 hours to reach high confluency. The 

subculture protocol was performed as follows: 

1) The culture medium was removed from the flask and the flask surface in contact with 

the cells was rinsed with 5mL of hepes saline to remove any traces of cell growth 

medium from the flask.  

2) A trypsine/versene solution was prepared by mixing 20 mL of versene and 0.5 mL 

of trypsin together. 

3) Hepes saline was removed from the flask and the flask surface was rinsed with 5mL 

of the trypsine/versene solution to allow cells to detach from the surface.  

4) 5mL of culture medium was added to have a 10 mL cell suspension. 

5) The cell suspension was removed from the flask and pipetted into a sterile plastic 

universal pipette.  

6)  Cell suspension was centrifuged at 1400 rpm for 4 minutes 

7) Once the centrifugation process finished, the liquid part was poured off and 

substituted with 5 mL of medium to give a single cell suspension. 

8) The cell suspension was pipetted in and out of the vial to break the clumps of cells 

9) 10 µL of the solution is a device were taken and pipetted into the haemocytometer 

The haemocytometer was used for counting these cells. It contained two separate counting 

chambers with two supports on either side of the counting chamber (Fig. 5.4 (a)). A 

microscope slide was placed on top of the supports to create a depth of 0.1 mm in the 

chamber (Fig. 5.4 (b)). Each chamber was etched with a carefully crafted grid with exact 

and known dimensions. The grid consisted of 9 squares with areas of 1 mm2 (Fig. 5.4 (c)). 

Since the depth of the chamber was 0.1 mm, the volume in each square was 0.1mm3 or 
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0.001mL. For these experiments the calculations were performed by considering the four 

outer squares which are in turn dived in 16 smaller square with side of 0.25 mm. After 

counting the cells in each of the four squares, the average number of cells was computed and 

used in the following equation  

 

𝑪𝒆𝒍𝒍 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 =
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒄𝒆𝒍𝒍𝒔 𝒑𝒆𝒓 𝒔𝒎𝒂𝒍𝒍 𝒔𝒒𝒂𝒖𝒓𝒆

𝑽𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝒂 𝒔𝒒𝒖𝒂𝒓𝒆(𝒎𝑳)
 

     (5.1) 

  

If for instance the average number of cells was 93 as depicted in fig. 5.4 (d)), then the cell 

density was 9.3 x 105 cells/mL. 

   

Figure 5.4 Counting cells with the haemocytometer. (a) 3D model of the device. (b) Cross-

sectional view of the microscope slide on top of the device creating a depth of 0.1mm. (c) 

Square-grid patter etched on the two chambers (d) Cells were counted on the four outer 

squares.  
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5.2.3 Subculture protocol: 96-well plate cultures 

96-well plates were chosen for the experiments because the wells of these plates had the 

smallest diameter available. Each plate had 96 wells distributed in 8 rows and 12 columns 

with a bottom internal diameter and of 6.25 mm and an area of growth of 0.316 cm2. The 

centre-to-centre distance between the plates was also 6.25 mm. Each well can contain a 

volume of media from 0.1 ml to 0.2 ml. Cultures with specified seeding densities of 100000 

cells/well, 25000 cells/well, 6250 cells/well, and 1562 cells/well were replicated four times 

each within a 96 well plate (Fig. 5.5). Four additional wells per plate were pipetted with 

culture medium only, for control purposes. The seeding densities in each well was evaluated 

by following a simple calculation. Each well had to be filled with a volume 150µL containing 

both medium and cell suspension. Therefore, the total volume for four wells was 600 µL. At 

this point, the volume aliquots of cells suspension and medium to make the total volume of 

600 µL were pre-estimated depending on the seeding density. Equations 5.2 and 5.3 shows 

the calculations for 100000 cells/well.  

 

𝑪𝒆𝒍𝒍 𝒔𝒖𝒔𝒑𝒆𝒏𝒔𝒊𝒐𝒏 =
𝑺𝒆𝒆𝒅𝒊𝒏𝒈 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 𝒙 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒘𝒆𝒍𝒍𝒔

𝑪𝒆𝒍𝒍𝒔 𝒅𝒆𝒏𝒔𝒊𝒕𝒚
=

100000 𝑐𝑒𝑙𝑙𝑠 𝑥 4

9.2𝑥105𝑐𝑒𝑙𝑙𝑠/𝑚𝐿
=  430 µL  

 

(5.2) 

𝑴𝒆𝒅𝒊𝒖𝒎 = 𝑻𝒐𝒕 𝒗𝒐𝒍𝒖𝒎𝒆 − 𝒄𝒆𝒍𝒍𝒔 𝒔𝒖𝒔𝒑𝒆𝒏𝒔𝒊𝒐𝒏 = (650 −  430) µL = 220 µL  

 

(5.3) 

Each of the four wells with same seeding density represented a technical replicate for that 

specific seeding density. A total number of four technical replicates were prepared for each 

seeding density. After all the wells were cultured, the plates were incubated for 48 hours to 

allow the cells to attach to the surface of the plate. 

                   

Figure 5.5 Culture protocol for the experiments. Four different seeding densities were 

cultured four times in a 96 well plate with a total of four technical replicates per seeding 

density.  
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5.2.4 Fluorescence labelling with unselective Celltracker-greenTM 

The product purchased off-the shelf in the form of vials containing 50µg of the lyophilized 

powder was dissolved in 10.76µL of DMSO to prepare a 10mM stock solution. The stock 

solution was diluted to obtain three solutions at concentration of 1µM, 2µM and 5µM. For 

each concentration of probe three plates were cultured following the aforementioned 

protocol in order to have three experimental replicates per concentration of probe. The 

staining process involved pipetting 75µM of the stain solution in each well and incubating 

the plates for 30 minutes.  The plates were rinsed with PBS after incubation and filled with 

culture medium. In this case no negative control was needed because the product worked 

with all the cells types. 

5.2.5 Fluorescence Labelling with Cancer Selective Proteogreen-gGluTM 

The product was available off-the shelf as vials containing 10µg of the lyophilized powder 

probe and these were dissolved in 29.7µL of DMSO to prepare 1mM stock solution. The 

stock solution was diluted to obtain three solutions at concentration of 1µM, 2µM and 5µM. 

For each concentration of probe three plates were cultured following the protocol (described 

before) in order to have three experimental replicates per concentration of probe. The same 

process was performed for hTert cells that served as negative control. The staining process 

involved pipetting 75µM of the stain solution in each well and incubating the plates for 30 

minutes. The plates were rinsed with PBS after incubation and filled with culture medium. 

5.2.6 Measurement protocol  

The optical fluorescence signal from the cells stained with the fluorescence probes was 

expected to vary as a function of the cell density in the wells. Since the field of view of the 

imager was 2 mm and the well diameter was 6.25 mm, it was necessary to scan the wells 

over the imager to capture a representative signal.  A matlab code was written to move the 

96 well plates so that each well was scanned as shown in Fig. 5.6. During the scan, frames 

were acquired continuously through the GUI of the imager. A message appeared as soon as 

the scan was completed, and frame acquisition was stopped. At this point the x-y stage 

moved to the next well on top of the imaging system and a new scan was performed. The 

procedure was repeated until all 20 wells per plate were scanned.   
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Figure 5.6 Scanning pattern. Each well of interest for the measurements was scanned by 

using an optical lens of the optical unit on top at the focal length of the system in order to 

capture fluorescence signal from all the areas of the well. Frames were continuously 

acquired during scanning. 

The data from each pixel in each of the frame that made a single scan were averaged together. 

This procedure was also carried out for the wells containing only culture medium to 

determine control replicate 𝑴̅ which was subtracted from the data.  For each plate, the 

average fluorescence value 𝝁̅(𝒔) where s denotes the seeding density was calculated by 

averaging the values from all four wells cultured with the same seeding densities within the 

same plate. Three plates for each concentration of dye were measured. The final fluorescence 

value for each seeding density at a specific dye concentration was computed by averaging 

the values obtained from the three experiments for each seeding density. The procedure was 

also performed on three plates without any labelling probes to assess the fluorescence from 

the unstained cells cultured at the four seeding densities. 
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Figure 5.7 Measurement protocol. For each concentration of dye, three plates were 

prepared. Each plate was considered as an experimental replicate and the fluorescence 

value from each seeding density was forecasted as the average values of the four technical 

replicates within the same plate for the specific seeding density.  

All the plates were measured by using the optical block with the SPAD array (Fig. 5.8) and 

also a benchmark ModulusTM II Microplate Reader to validate the results (Fig. 5.9 (a)). In 

this case, no scanning of the wells was required as the system directly provided a 

representative fluorescence signal from each well. The instrument was specifically designed 

to perform fluorescence readings from wells in 96-well plates. The microplate reader also 

worked in luminescence, absorbance and UV-vis absorbance detection modes. As it is shown 

in fig. 5.8 (b), the interface of the instrument was designed to give the user the choice of 

selecting or deselecting the wells. The wells of interest were selected simply by touching the 

squares on the screen corresponding to the wells. In fluorescence mode, the light source was 

an LED with a spectral range between 400 nm and 800 nm. The instrument was coupled 
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with a kit of filters that were manually inserted by the user depending on the nature of the 

experiment. In these experiments the blue kit provided excitation at 490 nm and fluorescence 

detection between 510 and 570 nm. The instrument was equipped with a PiN photodiode as 

a detector and results were displayed in Relative Fluorescence Units (RFU) on the screen in 

the squares corresponding to the wells. 

 

Figure 5.8 Measurements setup. The measurements setup was powered using two power 

supplies. A laptop connected to a monitor allowed the control of both the stages and the 

imaging system. A black optical enclosure was placed on the optical breadboard covering 

the stages and the imager to ensure that all the experiments were performed in dark 

conditions.   
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Figure 5.9 Modulus™ II Microplate Multimode Reader. (a) Physical Instrument (b) 

Graphic interface to select specific wells in the measurements. 

5.3 Results 

Table 1 summarizes the conditions and cell types used for all the experiments that were 

carried out as a part of this thesis and performed in the Centre for Cell Engineering. The aim 

of these experiments was not to image single cells but to determine the minimum 

concentration of the labelled cells required to obtain detectable signal by the system. The 

results from the four technical replicates after staining in each single plate, after staining, 

will be displayed. The results from the technical replicates in the plates without any 

fluorescence probe will be also shown. Finally, the results obtained by averaging the values 

from the three plates for each concentration of dye will be also shown. Single frames 

acquired during scanning of the wells will be also displayed to demonstrate that the imaging 

system was capable of imaging the cells after performing fluorescence labelling.  

Table 13 Total number of experiments 

Condition Cell type Number of experimental 

replicates 

No labels hTert-fibroblasts 3 plates 

Adenocarcinoma colon 3 plates 

Generic CellTracker 

GreenTM 

Adenocarcinoma colon 3 plates 

Cancer-selective 

Proteogreen-gGLUTM 

Adenocarcinoma colon 3 plates 

hTERT-fibroblasts 3 plates 
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5.3.1 CellTrackerGreenTM (CTG) 

After performing the labelling protocol, the dye freely permeated the cells membranes and 

accumulated into the cells. At this point, a chemical reaction inside the cells made the 

product impermeant to cell membranes. Therefore, CTG was retained in the living cells. 

Each well from well plate was scanned on top of the imaging system as described previously 

in the chapter. Each scan comprised a total number of 153 frames. Fig. 5.10 shows single 

frames from the wells before and after labelling the plate with 5μM of CTG. The decrease 

in the number of fluorescence cells and hence fluorescence intensity on the surface of the 

well is clearly visible from higher to lower seeding densities after labelling. Cells without 

fluorescence probe were not fluorescing and hence were not visible.  Because of limited 

resolution of the imager, multiple frames were acquired from each pixel instead of depending 

on single frame measurements. Therefore, the average value of the pixels from all the frames 

of each well was evaluated to obtain a representative fluorescence value of the whole well. 

The four values from the wells with same seeding density were averaged and plotted versus 

the number of cells per well as it was shown in figs. 5.11, 5.12, and 5.13. The figs. show the 

average fluorescence signals from the plates labelled with CTG dye concentration of 5μM, 

2μM, and 1μM respectively. The seeding densities were plotted on a logarithmic scale for 

better visualization of the data trend. The error bars were also plotted to show the standard 

deviation between the four technical replicates in each plate. 

5.3.1.1 5 μM 

As it is shown in fig. 5.11 (a), (c), and (e) there was no difference in the fluorescence signals 

from the four seeding densities without the presence of any fluorescence label. In fact the 

average fluorescence value from the seeding densities was around 120 cps and the values for 

the standard deviations were not higher than 4 cps. On the other hand, after labelling the 

plates with 5µM of the probe, a distinctive increase in the fluorescence signal was noticeable 

in all the four seeding densities (Fig. 5.11 (b), (d) and (f)). Specifically, the fluorescence 

signal from the wells cultured with 1562 cells was triplicated. The wells cultured with 6250 

cells showed also an increase in the fluorescence signal that changed from 120 cps in no-

stain condition to around an average of 420 cps after staining. The same outcome was 

observed for the wells with 25000 that showed an increase of 500 cps in the fluorescence 

signals. Finally, the highest seeding density showed a fluorescence signal one order of 

magnitude higher after staining. The highest standard deviation was measured in plate 1 at 

seeding density of 100,000 cells. An uneven uptake of the dye in the wells cultured with 

100000 cells in plate 1 might have caused a high variation of the data. However, this 

variation in standard deviation was less in the other plates for the same seeding density.  
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5.3.1.2 2μM 

As it is shown in fig. 5.12 (b), (d), (f) the increase of the fluorescence signal in each of the 

four seeding densities was lower when 2µM of the probe were used to label the plates. 

However, the trend of the data in the plot is similar to the trend in the experiments with 5µM. 

The highest fluorescence value of 738 cps was measured in the wells with 100,000 cells.  

5.3.1.3 1μM 

The same data trend was again noticed at the lowest concentration of the probe in figs. 5.13 

(b), (d), (f). In this case the highest increase in the fluorescence signal was only three times 

higher than the fluorescence measured in no-stain condition.  

                          

Figure 5.10 Single frames acquired before and after labelling the wells with 5µM of CTG. 

(a), (b) 100000 cells/well. (c), (d) 25000 cells/well. (e), (f) 6250 cells/well. (g), (h) 1562 

cells/well. 
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Figure 5.11 CTG 5µM. (a),(c),(e) Fluorescence signals from three 96-well plates cultured 

with colon adenocarcinoma cancer cells at seeding densities of 1562 cells/well, 6250 

cells/well, 25000 cells/well and 100000 cells/well without any labelling probe. (b),(d),(f) 

Fluorescence signals from three 96- well plates cultured with colon adenocarcinoma cancer 

cells at seeding densities of 1562 cells/well, 6250 cells/well, 25000 cells/well and 100000 

cells/well and labelled with the fluorescence probe CellTrackerGreenTM at concentration of 

5µM. Each seeding density was replicated four times within the plate. 
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Figure 5.12 CTG 2µM. (a),(c),(e) Fluorescence signals from three 96-well plates cultured 

with colon adenocarcinoma cancer cells at seeding densities of 1562 cells/well, 6250 

cells/well, 25000 cells/well and 100000 cells/well without any labelling probe. (b), (d), (f) 

Fluorescence signals from three 96- well plates cultured with colon adenocarcinoma cancer 

cells at seeding densities of 1562 cells/well, 6250 cells/well, 25000 cells/well and 100000 

cells/well and labelled with the fluorescence probe CellTrackerGreenTM at concentration of 

2µM. Each seeding density was replicated four times within the plate. 



105 

 

                 

Figure 5.13 CTG 1µM. (a),(c),(e) Fluorescence signals from three 96-well plates cultured 

with colon adenocarcinoma cancer cells at seeding densities of 1562 cells/well, 6250 

cells/well, 25000 cells/well and 100000 cells/well without any labelling probe. (b), (d), (f) 

Fluorescence signals from three 96- well plates cultured with colon adenocarcinoma cancer 

cells at seeding densities of 1562 cells/well, 6250 cells/well, 25000 cells/well and 100000 

cells/well and labelled with the fluorescence probe CellTrackerGreenTM at concentration of 

1µM. Each seeding density was replicated four times within the plate. 
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5.3.2 Cancer-selective ProteogreenTM g-Glu 

ProteogreenTM gGlu is a molecular probe that shows fluorescence properties only upon 

reaction with the enzyme GGT that naturally exists on the membranes of all cell types 

(cancerous and non-cancerous). An overexpressed GGT activity was noticed in several types 

of human cancer tumours such as colorectal cancer. Therefore, ProteogreenTM gGlu was 

engineered and sold to visualize cancer cells.  

5.3.2.1  Colorectal cancer cells (Positive Control) 

Colorectal cancer cells were used as positive control to assess the performance of the probe. 

As in the case of CTG, Figs. 5.14 5.15 and 5.16 show the average fluorescence signals from 

the plates labelled with ProteogreenTM gGlu at concentration of 5μM 2μM and 1μM 

respectively. In contrast to CTG, the effect of ProteogreenTM gGlu was only remarkably 

evident at the highest seeding density of 100000 cells/well. However, the increase in the 

fluorescence signal of the cells was little compared to the previous results obtained using 

CTG. As it can be seen from figs. 5.14 (b), (d) and (e), 5 μM of the probe produced an 

average increase of the fluorescence signal of 150 cps in the wells with 100000 cells. The 

same seeding density showed a less increase in the fluorescence signal with 2 μM and 1μM 

(Figs. 5.15 (b), (d) (e) and 5.16 (b), (d) (e)). High values of standard deviations were 

observedfor the wells with the highest seeding density of 100000 cells suggesting that the 

probe was not as stable as CTG. The wells with the lowest seeding density of 1562 cells 

almost did not show any increase in fluorescence signal for all three concentrations of the 

probe tried. A slight increase in the fluorescence signal of the wells cultured with 6250 and 

25000 cells was noticed in the experiments with 5μM while no remarkable changes were 

observed at 2 μM and 1μM.  

5.3.2.2 Negative Control (hTert fibroblasts) 

hTert fibroblasts were labelled with 5μM of PoteogreenTM gGlu. A slight increase in the 

fluorescence signal of the fibroblasts was noticed at all four seeding densities after labelling 

(Fig. 5.17 (a), (c) and (e)). In the wells with 100000 cells, the increase in the fluorescence 

signal in the cancer cells was much higher than the signal increase in the fibroblasts after 

staining. Particularly, the signal in the wells with 100000 cells increased from 110 cps to 

almost 250 cps in plate 1 whereas almost 200 cps were measured in plate 2 and 3 for the 

same seeding density (Fig. 5.17 (b), (d), (f)). The fluoresce signal in cancer cells at seeding 

densities lower than 100000 cells/well in plate 2 after labelling increased gradually with the 

seeding density and was higher than the fluorescence increase in fibroblasts. However, in 

plate 1 and 3, the increases in fluorescence signal of both cell populations at densities lower 

than 100000 cells after staining were very similar. 
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Figure 5.14  ProteoGreenTM gGlu 5µM (a),(c),(e) Fluorescence signals from three 96-well 

plates cultured with colon adenocarcinoma cancer cells at seeding densities of 1562 

cells/well, 6250 cells/well, 25000 cells/well and 100000 cells/well without any labelling 

probe. (b),(d),(f) Fluorescence signals from three 96- well plates cultured with colon 

adenocarcinoma cancer cells at seeding densities of 1562 cells/well, 6250 cells/well, 25000 

cells/well and 100000 cells/well and labelled with the fluorescence probe ProteogreenTM 

gGlu at concentration of 5µM. Each seeding density was replicated four times within the 

plate. 
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Figure 5.15 ProteoGreenTM gGlu 2µM (a),(c),(e) Fluorescence signals from three 96-well 

plates cultured with colon adenocarcinoma cancer cells at seeding densities of 1562 

cells/well, 6250 cells/well, 25000 cells/well and 100000 cells/well without any labelling 

probe. (b),(d),(f) Fluorescence signals from three 96- well plates cultured with colon 

adenocarcinoma cancer cells at seeding densities of 1562 cells/well, 6250 cells/well, 25000 

cells/well and 100000 cells/well and labelled with the fluorescence probe ProteogreenTM 

gGlu at concentration of 2µM. Each seeding density was replicated four times within the 

plate. 
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Figure 5.16 ProteoGreenTM gGlu 1µM (a),(c),(e) Fluorescence signals from three 96-well 

plates cultured with colon adenocarcinoma cancer cells at seeding densities of 1562 

cells/well, 6250 cells/well, 25000 cells/well and 100000 cells/well without any labelling 

probe. (b),(d),(f) Fluorescence signals from three 96- well plates cultured with colon 

adenocarcinoma cancer cells at seeding densities of 1562 cells/well, 6250 cells/well, 25000 

cells/well and 100000 cells/well and labelled with the fluorescence probe ProteogreenTM 

gGlu at concentration of 1µM. Each seeding density was replicated four times within the 

plate. 
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Figure 5.17 Fluorescence signals from hTert fibroblasts (negative control) and cancer 

cells (positive control) before and after labelling with 5µM of Proteogreen gGluTM to 

assess the specificity of the probe towards cancer. (a),(c), (e) Fluorescence signals from 

three 96-well plates cultured with hTert finroblasts at seeding densities of 1562 cells/well, 

6250 cells/well, 25000 cells/well and 100000 cells/well before and after labelling  the cells 

with the fluorescence probe ProteogreenTM gGlu at concentration of 5µM. (b),(d), (f) 

Fluorescence signals from three 96-well plates cultured with colon cancer cells  at seeding 

densities of 1562 cells/well, 6250 cells/well, 25000 cells/well and 100000 cells/well before 

and after labelling  the cells with the fluorescence probe ProteogreenTM gGlu at 

concentration of 5µM. 
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5.3.3 Comparison with benchmark instrument 

Fluorescence intensities from the same plates were also measured by using a ModulusTM 

Microplate reader as reference instrument for the validation purpose. Fig. 5.18 shows the 

fluorescence intensities of cells separately labelled with 5μM, 2μM and 1μM of 

CellTrackerGreenTM and ProteoGreen-gGluTM measured by using the optical block coupled 

with the SPAD and the reference instrument. As described in the measurement protocol, the 

final data points for each seeding density at each concentration of dye were simply evaluated 

by averaging the values obtained from three plates labelled with the same concentration of 

probe.  Although the results were displayed in two different units, the trends of the data 

points measured by the two instruments for the same probe were very similar. In the case of 

CellTrackerGreenTM, as it was previously discussed showing the results from single plates, 

an increase in the fluorescence signal of the cells at all four seeding densities was produced 

by all the three concentration of the probe. A more accurate and direct comparison between 

the instruments was performed by plotting the values measured by the microplate reader 

versus the values obtained by using the optical block and the SPAD array at each 

concentration of dye as it is shown in fig. 5.19. The data points were also fitted to a linear 

model with a resulting R2 fit with more than 90% for all the three concentrations of CTG. 

The fluorescence signal produced by CTG increased with increase in seeding density. At 

concentration of 2 μM an overlap between the standard deviations of signals measured by 

the reference instrument at seeding densities of 25000 cells/well and 6250 cells/well was 

noticed (fig. 5.19(b)). On the other hand, this overlap was not observed for the fluorescence 

intensities measured by the optical block and the SPAD at the same seeding densities.  The 

exact same correlation was studied for the fluorescence intensities of cells labelled with 

ProteoGreen-gGluTM. As it can be seen from fig. 5.20, the linear correlation between the two 

instruments was higher than in the previous case with values of R2 equal to 99 % for all three 

concentrations of probe. As discussed previously, a remarkable increase in the fluorescence 

signals of the highest density of cells was produced by the probe. The reference instrument 

also confirmed that ProtoGreen-gGluT,M was not as stable as CellTrackerGreenTM at seeding 

densities of 1562 cell/well, 6250 cells/well and 25000 cells/well. In fact, in fig. 5.20 the 

differences between data points corresponding to these seeding densities were minimal at all 

the three concentrations of the dye. It must be considered that the two instruments were 

characterized by different optical components and different photodetectors. Moreover, the 

microplate was designed to directly provide the user with a representative fluorescence 

signal of the well. On the other hand, a scanning measurement protocol was implemented in 
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the case of the imaging system comprising the optical block and SPAD array to give 

comparable fluorescence signal.  

      

Figure 5.18 Comparison of optical block and SPAD with ModulusTM microplate for 

detection of fluorescence from colorectal cancer cells at seeding densities of 1562 

cells/cm2, 6250 cells/cm2, 25,000 cells/cm2, 100,000 cells/cm2 separately labelled with 

generic fluorescence probe (CellTrackerGreen™) and cancer-selective fluorescence 

probe (Proteogreen gGluTM). (a), (b) Detection of fluorescence from colorectal cancer cells 

labelled with fluorescence probe CellTrackerGreenTM at concentration of 5µM, 2µM and 

1µM using the imaging system and the ModulusTM microplate respectively. (c), (d) Detection 

of fluorescence from colorectal cancer cells labelled with cancer-selective fluorescence 

probe Proteogreen gGluTM at concentration of 5µM, 2µM and 1µM using the imaging 

system and the ModulusTM microplate respectively. The data points were obtained by 

averaging the fluorescence intensities from three plates labelled with same concentration of 

dye.  



113 

 

        

Figure 5.19 Correlation between Modulus MicroplateTM and Optical block and SPAD in 

the measurement of fluorescence from cells at seeding densities of 100000 cells/well, 

25000 cells/well, 6250 cells/well and 1562 cells/well labelled with (a) 5µM (b) 2µM and (c) 

1µM of CellTrackerGreenTM. Data points refer to each of the four seeding densities and 

were forecasted by averaging the results from the three plates.   
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Figure 5.20 Correlation between Modulus MicroplateTM and Optical block and SPAD in 

the measurement of fluorescence from cells at seeding densities of 100000 cells/well, 

25000 cells/well, 6250 cells/well and 1562 cells/well labelled with (a) 5µM (b) 2µM and (c) 

1µM of Proteogreen-gGluTM. Data points refer to each of the four seeding densities and 

were forecasted by averaging the results from the three plates.   
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5.4 Summary 

The aim of this chapter was to describe the capability of optical block coupled with the 

SPAD array for the detection of fluorescence from cells labelled with a generic and a cancer-

selective fluorescence probe. A colorectal cancer cell line was used as a positive control for 

the cancer-selective fluorescence probe whereas a fibroblast cell line was cultured and 

labelled to work as a negative control. The measurement protocols to culture the cells in 96 

well plates at four different seeding densities and measure the fluorescence signals from the 

wells were described in detail. Each experiment was replicated three time in three different 

plates. Results from the single plates were discussed for both fluorescence probes. Finally, 

the performance of the imaging system was compared to a benchmark or validate the 

instrument. An almost linear correlation between the two instruments was observed 

confirming the capability of the imaging system to perform fluorescence measurements on 

labelled cells. In conclusion, the generic fluorescence probe was more stable producing a 

distinguishable fluorescence signal in all the four seeding densities. On the other hand, the 

cancer-selective fluorescence probe produced a lower fluorescence signal in the cells that 

was clearly distinguishable at the highest seeding density of 100000 cells/well. 
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6 Ex vivo experiments 

The development of fluorescence imaging systems has improved the clinical evaluation of 

cancer lesions in the gastrointestinal tract [136]–[138]. However, the knowledge of the 

microscopic, biochemical and biomolecular mechanisms behind tissue AF is still 

incomplete. An optimal design of fluorescence diagnostic imaging systems requires 

comprehension of the differences in AF signals associated with both different anatomical 

sites and disease stage. Moreover, a deep understanding of all the processes involved in the 

alterations of AF from the human body could be crucial for the development of precise 

algorithms to process images and achieve an early detection of cancer [139]. As discussed 

in section 2.4, AF from tissues is the results of a combination of numerous fluorophores that 

naturally occur within tissues at different depths and concentrations. Therefore, structural 

changes in the morphology of tissues including variations in blood levels are considered the 

main factors contributing to the differences in fluorescence intensity between normal and 

cancerous tissues.  

The intestinal walls consist of three main tissue layers defined as mucosa, submucosa and 

muscolaris propria [140]. The composition of fluorophores varies within the three layers. 

Although the mucosa is the outermost layer, fluorophores from the other layers also 

contribute to the fluorescence signal measured at the intestinal epithelium which is in outer 

layer of the mucosa. Excitation light does not pass beyond the submucosa that has usually a 

thickness between 0.5 and 1.5 mm and shows a strong autofluorescence intensity between 

500 and 550 nm [141]. The increase in thickness of the mucosa layer as a consequence of 

dysplasia is responsible for an overall decrease in the green autofluorescence intensity. 

Specifically, the increased thickness of the mucosa contributes to the reduction of excitation 

light delivered to the submucosa [142]. In this work, optical block and the SPAD array were 

used to image resected human healthy and malignant colon tissues. All the human tissue 

samples were also imaged by using a commercial portable microscope to make a comparison 

between autofluorescence imaging and white light imaging. The experiments were 

performed at the Western General Hospital in Edinburgh as part of an honorary contract 

offered to access material of confidential or sensitive nature. The experiments were 

performed under the supervision of consultant colorectal surgeon Mark Potter and consultant 

histopathology Paul Fineron. The instrumentation for the measurements was placed in the 

pathology laboratory to ensure that all the experiments were performed on fresh samples 

within 30 minutes from hemicolectomy procedures.  
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6.1 Materials and Methods 

6.1.1 Samples collection and preparation 

This study involved the use of excised human healthy and malignant colon tissue samples.  

Appropriate institutional ethical consent and pre-operative patient consent were obtained for 

the acquisition of the tissue specimens. A total of 10 adult consenting patients were included. 

All the patients in this study were diagnosed with adenocarcinoma of the colon and 

underwent hemicolectomy procedures at the Western General Hospital in Edinburgh. The 

surgical operation involved the removal of the side of the colon that was affected by cancer. 

A cut in the abdomen of the patient was performed by the surgeon. The diseased side of the 

colon was removed and the small intestine was attached to the remaining healthy part (Fig. 

6.1). The sample was delivered immediately after the operation from the theatre to the 

pathology division. The pathologist assessed the size of the cancerous lesion (Fig. 6.2). If 

the lesion was large enough, portions of cancer tissue and normal colon mucosa with areas 

of approximately 1 to 2 cm2 were resected and used for the experiments. Lesions that were 

not big enough were not available for research purposes. For those cases only healthy 

portions of colon were available for investigation. 

                         

Figure 6.1 Schematic drawing of hemicolectomy procedure.  

                   

Figure 6.2 Colon sample of a 60 years old man with adenocarcinoma of the colon. 

Hemicolectomy was performed at Western General Hospital in Edinburgh. The sample was 

prepared by the pathologist.   
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6.1.2 Measurement setup   

The setup for the measurements included the motorized stages equipped with a 3D printed 

arm to hold standard plastic petri dishes (Fig. 6.3). Healthy and cancer tissues from the same 

colon samples were placed in the same petri dish in succession in order to image both tissues 

at the same time. Optical images of the tissues were also acquired by using a portable Dino-

Lite AM3113T USB digital microscope as it is shown in fig. 6.4. 

                     

Figure 6.3 Imaging Setup for the experiments comprising three motorized optical stages 

mounted on an optical breadboard along with the PCB accommodating SPAD array and 

optical block. A special arm was 3D printed to hold the petri dish with the tissues on top of 

the imaging system.             

                    

Figure 6.4 Portable digital microscope mounted on the specific support to image the 

surface of the petri dish.                    
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6.1.3 Image acquisition 

Tissue samples were adjusted on the petri dishes immediately after resection without any 

pre-processing in order to maintain the physiology of the specimens. All the petri dishes in 

the experiments were placed at a height of 6 mm from the lens of the optical block in order 

to ensure that images were acquired at the exact focal length of the system. In each 

experiment, images of the surface of the empty petri dishes were acquired before imaging 

any tissue to account for any reflection from the dish. The average of the frames of the petri 

dish surface was saved to use as a mask to subtract from each frame during the scan. A 

MATLAB code was written to move the Thorlabs motorized stages in x and y directions. 

The motion of the stages followed a rectangular pattern that comprised the same number of 

horizontal and vertical movements. The longest side of the rectangular area surrounding the 

samples was measured before image acquisition by using a stainless steel ruler. Each petri 

dish containing the tissue samples was scanned on top of the optical block and SPAD array. 

Frames were continuously acquired during the movement of the plate with a SPAD gate time 

of 45 ms and a frame rate of 1 frame/s. An assumption was made to consider the direction 

of the horizontal scans as the x direction and the direction of the vertical scans as the y 

direction (Fig. 6.5). Tolerance was always taken into account to make sure that all tissue 

surfaces were imaged. If the side of the area was 10 mm long, the motor would perform 10 

horizontal movements of 10 mm at a speed of 0.5 mm/s. Each horizontal movement was 

then followed by a vertical motion of 1mm at 0.5 mm/s except for the last horizontal 

movement with a total of 10 horizontal scans and 9 vertical scans. The start and finish times 

of each motion were saved as well as the times at which each frame was acquired. This 

particular scanning mechanism was performed in order to write a code that reconstructed the 

images by stitching all the frames acquired during each horizontal motion and successively 

join the horizontal scans vertically. 

                                                     

Figure 6.5 Movement pattern followed by the stages. Bottom surface of the petri containing 

dish was moved on top of the imaging system. The length of the horizontal path travelled by 

stage was set equal to the longest side of the rectangular area covered by the tissues. The 

length of the vertical movements was always set to 1 mm. 
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6.1.4 Image Processing 

6.1.4.1 Horizontal Reconstruction 

In horizontal scans the motor moved at 0.5 mm/s and the image acquisition rate was 1 

frame/s. The number of frames in each scan was estimated by using equation 6.2 which was 

in turn derived by equation 6.1.  

𝑺𝒄𝒂𝒏 𝑳𝒆𝒏𝒈𝒕𝒉(𝒎𝒎) =  (𝑭𝒊𝒆𝒍𝒅 𝒐𝒇 𝒗𝒊𝒆𝒘 (𝒎𝒎)) + (
𝑴𝒐𝒕𝒐𝒓 𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚 (

𝒎𝒎
𝒔

)

𝒇𝒓𝒂𝒎𝒆 𝒓𝒂𝒕𝒆 (
𝒇𝒓𝒂𝒎𝒆

𝒔 )
) × (#𝒇𝒓𝒂𝒎𝒆𝒔 − 𝟏) 

(6.1) 

 

(#𝒇𝒓𝒂𝒎𝒆𝒔 𝒊𝒏 𝒂 𝒔𝒄𝒂𝒏 − 𝟏) = ((𝑺𝒄𝒂𝒏 𝑳𝒆𝒏𝒈𝒕𝒉(𝒎𝒎) − (𝑭𝒊𝒆𝒍𝒅 𝒐𝒇 𝒗𝒊𝒆𝒘 (𝒎𝒎)) ×
𝒇𝒓𝒂𝒎𝒆 𝒓𝒂𝒕𝒆 (

𝒇𝒓𝒂𝒎𝒆
𝒔 )

𝑴𝒐𝒕𝒐𝒓 𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚(
𝒎𝒎

𝒔 )
) 

(6.2) 

 

In equation 6.1 the first term refers to the field of view of the imaging system in one frame. 

In fact, the movement of the motors started after that the imaging system acquired the first 

frame. The following frames were acquired during movement. Therefore, the path travelled 

by the motor after acquiring the first frame was calculated by multiplying the total number 

of frames minus the first frame by the ratio between the motor velocity and the frame 

acquisition rate.  Following equation 6.2, if the length of the scan was 10 mm a total number 

of 17 frames was acquired in each of the horizontal scans. Each frame captured an additional 

area different from the previous frame after a step of 0.5 mm. The horizontal field of view 

of the system was 37 pixels and each pixel was 61.5 μm in length. While moving from one 

frame to the next frame only 8 pixels (492 μm) in the x direction captured a different area. 

Images were acquired by the imaging system as 64 x 64 pixels frames (Fig. 6.6 (a)). The 

algorithm removed the zero pixels outside the field of view of the system creating 37 x 37 

pixels frames (Fig. 6.6 (b)). In fig. 6.8 three consecutive frames from a horizontal scan were 

stitched together. In this example, the scan was performed from left to right.  

1) Firstly, the algorithm selected a 29 x 37 pixels area from frame 1 as shown in fig. 6.7 

(a). The 29 pixels along x direction were selected from pixel 9 to pixel 37 of frame 

1.  

2) An equivalent 29 x 37 pixels area was also selected from frame 2 as shown in fig. 

6.7 (b) . In this case, the 29 pixels along x direction were selected from pixel 1 to 

pixel 29 of frame 2.  

3) The selected areas were averaged. The remaining 8 x 37 pixels areas from frame 1 

and frame 2 were stitched together through the resulting average 29 x 37 pixels area 

to obtain a final 45 x 37 pixels frame as shown in fig. 6.7 (c).  
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4) A 29 x 37 pixels area from a new frame was selected as shown in fig. 6.8 (d). The 29 

pixels along x direction were selected from pixel 1 to pixel 29 of frame 3. 

5) An equivalent 29 x 37 pixels area was also selected from the 45 x 37 pixels frame 

obtained by stitching frame 1 and frame 2 together as shown in fig. 6.7 (e). The 29 

pixels along x direction were selected from pixel 17 to pixel 45.  

6) The selected areas were averaged. The remaining 16 x 37 pixels area from the frame 

obtained by joining frame 1 and frame 2 was stitched together with the 8 x 37 pixels 

area of the new frame 3. This was done through the 29 x 37 pixels average area to 

obtain a final 53 x 37 pixels frame as shown in fig. 6.7 (f).  

7) The procedure was carried out until all frames in the scan were joined. 

The horizontal resolution of the final image was forecasted by using equation 6.3.  

𝐻 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = (8 𝑝𝑖𝑥𝑙𝑒𝑠 ∗ #𝑓𝑟𝑎𝑚𝑒𝑠) + 29 𝑝𝑖𝑥𝑒𝑙𝑠 (6.3) 

  

The first term in the equation refers to the areas of pixels in x direction that were not shared 

between two consecutive frames. These region are highlighted in green in both fig. 6.7 and 

the formula. The second term of the equation 6.3 refers to the 29 pixels in x direction that 

were always shared between two consecutive frames. These region are highlighted in red in 

both fig. 6.7 and the formula. The same reconstruction steps were followed for scans that 

were performed from right to left. The only difference was how the 29 x 37 pixels areas were 

selected before stitching the frames. In fact, with reference to the previously mentioned 

steps, if the scan happened from right to left the 29 pixels along x direction were selected 

from pixel 1 to pixel 29 in frame 1 and from 9 to 37 in frame 2. After each horizontal scans 

were reconstructed, the algorithm stitched all the horizontal scans vertically.  

              

Figure 6.6 Single frames. (a) Each frame was acquired by the imaging with a resolution of 

64 x 64 pixels. (b) 37 x 37 pixel frame created from the original frame by the algorithm.  



122 

 

                   

Figure 6.7 Horizontal reconstruction. (a) Frame 1. (b) Frame 2. The 29 x 37 areas are 

highlighted in black as pixels to share in both frames. (c) Final 45 x 37 pixels image obtained 

by stitching frame 1 and frame 2. The average 29 x37 pixels area that was used to join 8 x 

37 pixels areas from frame 1 and frame 2 is highlighted in red. (d) The new frame 3 with 29 

x 37 area is highlighted in black. (e) A 29 x 37 area in frame obtained by joining frame 1 

and 2 is highlighted in black.  (f) Final image containing frame 1, frame 2 and frame 3. 
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6.1.4.2 Vertical Reconstruction 

Following the previous example, each of the ten horizontal scans was followed by a vertical 

scan with step of 1 mm except for the last horizontal scan for a total of 10 horizontal scans 

and 9 vertical scans. The step of the vertical scans was always equal to 1 mm. Since the 

diameter of the lens in the optical block was 2 mm, the step of the vertical scans was always 

set to 1 mm to make sure not to miss any surface of the tissue from imaging. The translation 

speed of the stage and the image acquisition rate were maintained to 0.5 mm/second and 1 

frame/second respectively. The vertical field of view of the system was also 37 pixels and 

each pixel was 61.5 μm in length. In this case, while moving from one scan to the next scan 

only 17 pixels in y direction (1045 μm) were capturing a different area. In fig. 6.8 three 

consecutive horizontal scans were stitched together vertically. Each horizontal scan 

comprised 17 frames joined together as it was previously described for a horizontal scan 

length of 10 mm. Vertical scans were always performed from the top to the bottom. 

Therefore, each horizontal scan was stitched on the bottom of the previous horizontal scan. 

1) The algorithm selected the bottom 165 x 20 pixels from horizontal scan 1 as shown 

in fig. 6.8 (a).  

2) The algorithm selected the top 165 x 20 pixels from horizontal scan 2 as shown in 

fig.6.8 (a).  

3) The selected areas were averaged. The remaining 165 x 17 pixels areas from frame 

1 and frame 2 were stitched together through the resulting average 165 x  20 pixels 

area to obtain a final 165 x 54 pixels frame as shown in fig. 6.8 (c).  

4) The top 165 x 20 pixels area from a new frame was selected as shown in fig. 6.8 (d).  

5) The bottom 165 x 20 pixels area was also selected from the 165 x 54 pixels frame 

obtained by stitching horizontal scan 1 and horizontal scan 2 together as shown in 

fig. 3.7 (d).  

6) The selected areas were averaged. The remaining 165 x 34 pixels area from the frame 

obtained by stitching horizontal scan 1 and horizontal scan 2 was stitched together 

with the 165 x 17 pixels area of the new horizontal scan. This was done through the 

165 x 20 pixels average area to obtain a final 165 x 71 pixels frame as shown in fig. 

7.7 (e). The procedure was carried out until all horizontal scans were joined and the 

final image was obtained. The vertical resolutions of the images was forecasted using 

equation 6.3.  

𝑉 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = [17𝑝𝑖𝑥𝑒𝑙𝑠 ∗ #𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑎𝑛𝑠] + 20 𝑝𝑖𝑥𝑒𝑙𝑠 (6.3) 
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Figure 6.8 Vertical image reconstruction. (a) Horizontal scan 1. (b) Horizontal Scan 2. The 

165 x 20 areas are highlighted in black as pixels to share in both the scans. (c) Final image 

165 x 54 obtained by stitching horizontal scan 1 and horizontal scan 2. The average 165 x 

20 pixels area used to join 165 x 17 pixels areas from scan 1 and scan 2 is highlighted in 

red. (d) The new horizontal scan 3 with the top 165 x 20 area is highlighted in black. (e) A 

165 x 20 area in the image obtained by joining scan 1 and scan 2 is highlighted in black.  (f) 

Final image containing horizontal scan 1, horizontal scan 2 and horizontal scan 3. 
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6.2 Results 

6.2.1 Healthy colon mucosa (Patients 1 to 6) 

In six cases the tumour lesion was too small, and it was not possible to obtain any malignant 

tissue for research.  Therefore, tissues from the healthy colon mucosa of six different patients 

were scanned. Images were reconstructed from the scans to assess the AF signal emitted by 

the tissues. Each patient was identified by a unique identification number confidential to the 

hospital. However, in this work patients were numbered starting from 1 in increasing order 

as they are presented in the text to avoid any confusion for the reader. Specimens from 

healthy colon mucosa were resected to include all the three structural layers of the colon. 

The consistency of the tissues from healthy colon was relaxed and deformable. Therefore, 

the pathologist was not able to strictly maintain the same dimensions for each sample during 

resection. The tissues were adjusted with the mucosa facing the surface of the petri dish. The 

dimension of the samples varied from patient to patient. The dimensions of the tissues were 

measured by using a stainless ruler and the software implemented in the portable microscope 

to add scale bars to the images. Figs. 6.6 – 6.11 refer to patients 1 to 6 respectively. Each 

figure comprises the white light image of the specimen acquired with the portable 

microscope and the corresponding AF image. AF images were reconstructed from the frames 

acquired by using the optical block and the SPAD array. Each AF image was characterized 

by a different resolution depending on the distance travelled by the motor during the scan. 

As discussed previously, the higher the horizontal length of the scan, the higher the number 

of frames acquired and thus joined to reconstruct the final AF image. All the AF images 

were displayed using the same intensity scale to directly compare the AF signals from each 

sample. Regions of interest in each figure were numbered to make a comparison between 

white light images and AF images. In this section, we will refer to bright and dark regions 

to make a difference between the regions who show pixels with values from 1000 to 2500 

cps and region who shows pixels from 0 to 1000 cps respectively.  In fig. 6.9 (a) and (b) the 

white light image and the AF image of the colon mucosa of patient 1 are shown, respectively. 

In this case, the length of the horizontal path travelled by the motor to move the sample on 

top of the imaging system was 20 mm. Therefore, according to equation 6.2, a total number 

of 37 frames were acquired in each horizontal scan with an acquisition frame rate of 1 

frame/s and motor velocity of 0.5 mm/s. Three areas of higher AF intensity were highlighted 

in fig. 6.9 (b) with the numbers 2 3 and 4. Other two regions in the tissue were characterized 

by a noticeable decrease in the fluorescence signal. These regions were identified by the 

numbers 1 and 5.  The same regions appeared darker in the withe light image of fig. 6.9 (a). 

The darker colour might be associated with a higher quantity of blood in those particular 
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areas of the sample. This would also explain the decrease in the fluorescence signal in fig. 

6.9 (b) for those same regions. In fact, as previously mentioned, haemoglobin strongly 

absorbs green fluorescence. On the other hand, a higher fluorescence signal in the other areas 

could be related to a higher quantity of fluorophore FAD. Moreover, in region 4 of fig. 6.9 

(a), the optical reflection of the microscope objective on surface of the tissue was noticed as 

a consequence of the petri dish surface interfacing between the microscope and the tissue. 

In fact, as it was previously mentioned, the bottom surface of the petri dish containing the 

tissues was imaged by the portable microscope.  

 

Figure 6.9 Colon mucosa sample from patient 1. (a) White light image. (b) AF image. 

The number 1 in both figures’ 6.10 (a) and (b) points at a region of high AF intensity whereas 

numbers 2, 3 and 4 refer to regions where a decrease in the AF signal was noticeable. In the 

white light image of fig. 6.10 (a), the areas associated with a low AF signal appear darker in 

colour as it was noticed in the sample from the previous patient. In this case the length of 

the scan was 22 mm and thus the resolution of the final AF image was higher. 

 

Figure 6.10 Colon mucosa sample from patient 2. (a) White light image. (b) AF image. 
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In the AF images of colon mucosa of patient 4 and 5, regions of low AF signal were noticed 

(fig. 6.10 (b) and 6.11 (b)). The resolution of the AF image in fig. 6.11 (b) was smaller than 

the previous images because the size of the sample was smaller. In fact, the total distance 

travelled by the motor was 18 mm. Both white light images of patients 3 and 4 in fig. 6.9 (a) 

and 6.10 (a) confirmed the previous findings. In fact, the areas characterized by low signal 

in the AF images appeared as darker regions in the white light images. Moreover, 

longitudinal folds of the mucosa layer were noticeable in the white light images of the tissues 

(figs. 6.9 (a) and 6.10 (a)).  

 

Figure 6.11 Colon mucosa sample from patient 4. (a) White light image. (b) AF image. 

 

 

Figure 6.12 Colon mucosa sample from patient 4. (a) White light image. (b) AF image. 

The resolution of the AF image of the colon mucosa of patient 5 in fig. 6.13 (b) has a higher 

resolution than the previous images. The length of the horizontal scans that were performed 

to image the surface of the sample was 26 mm. An area of high AF intensity was highlighted 
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with the number 1. Two areas of lower AF signal were also noticeable and marked with 

numbers 2 and 3. 

 

Figure 6.13 Colon mucosa sample from patient 5. (a) White light image (b) AF image.  

The sample from patient 6 was characterized by an area of high AF 6.14 (b). Three regions 

of lower AF intensity were also detected. As in the previous cases, the areas in the 

corresponding white light image of fig. 6.9 (a) appeared darker than the surrounding regions.  

 

Figure 6.14 Colon mucosa sample from patient 6. (a) White light image. (b) AF image.  

The average AF intensity values for each sample are shown in fig. 6.15. The results were 

estimated by writing a code that accounted only for the pixels with values higher than 0 cps 

because zero values could have been misleading on the estimate of the final average 

fluorescence intensity values. The highest average AF intensity value of 1656 cps was 

measured in the sample from patient 5. On the contrary, the specimen from patient 2 showed 

the lowest AF signals of 1351 cps. The standard deviations of all the pixels in the estimate 

were also calculated for each patient. The highest value of standard deviation from patient 1 
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was of 296 cps. Standard deviations of patients 2 and patients 5 were 250 and 225, 

respectively. The values of standard deviations from the other patients were lower and 

ranged from 144 cps for patient 4 to 162 cps and 174 cps for patients 3 and 4, respectively.  

      

Figure 6.15 Average AF intensity values measured from the AF images of fresh colon 

mucosa samples from six different patients.  

6.2.2 Healthy colon mucosa and cancer tissues (Patients 7 -10) 

In four patients the size of the cancerous lesion was large enough to use some of the tissue 

for research. The experimental procedure previously described for the healthy colon mucosa 

samples remained unchanged except for the fact that two pieces of tissues were adjusted on 

the same petri dish. In fact, the tissue from the cancerous lesion was placed with the cancer 

side facing the surface of the petri dish at a distance of approximately 5 mm from the sample 

of healthy colon mucosa. This protocol was performed in order to maintain the same 

environmental conditions for the tissues. Both tissues were imaged at the same time to 

directly compare the AF signals between healthy colon and cancerous lesion. The length of 

the horizontal path travelled by the motor in the scans increased because two pieces of tissues 

had to be imaged. The length of the horizontal scans in the experiments in all the four cases 

was 28 mm. In this case, numbers were not use to refer to specific regions in order to allow 

the reader to fully capture the differences in the AF signals from the two tissues.  In fig. 6.16 

(a) and (b) the white light image and the AF image of the colon mucosa and cancer tissues 

samples of patient 7 are shown, respectively. In the white light image of fig. 6.16 (a) no 
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difference between the two tissues samples was perceived by naked eyes. In the AF image 

of fig. 6.16 (b), the AF signal from the healthy colon mucosa sample allowed to recognize 

the morphology of the tissue. In fact, the AF signal from the healthy colon mucosa was 

uniform apart from two regions where the AF intensity was higher. On the contrary, the AF 

signal from cancer was lower and the profile of the tissue sample was not clear to visualize. 

The difference in the AF signals between healthy colon mucosa and the cancerous lesion 

was detected by the imaging system.   

 

Figure 6.16 Cancer tissue and colon mucosa samples from patient 7. (a) White light image. 

(b) AF image.  

In the AF image of fig. 6.17 (b), the shape of the tissue samples from patient 8 was 

distinguishable. However, the AF signal from the cancer tissues was again lower than in the 

healthy colon mucosa. In patients 7 and 8 the size of the tumour sample was similar. 

 

Figure 6.17 Cancer tissue and colon mucosa samples from patient 8. (a) White light image. 

(b) AF image. 
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The cancer tissue sample from patient 9 was larger in size than the previous cancer samples. 

As in the previous two cases, no difference between cancer and healthy mucosa was visible 

from the white light image of fig. 6.18 (a) that was acquired with the portable microscope. 

On the contrary, a difference in the AF intensities of the two samples was perceived in fig. 

6.18 (b). In this case the shape of the malignant tissue was clearly perceivable. This could 

be due to the fact the tissue sample was bigger in size and thus it was easier for the naked 

eye to recognize.  

 

Figure 6.18 Cancer tissue and colon mucosa samples from patient 9. (a) White light image. 

(b) AF image. 

In patient 10, the cancer tissue sample was barely visible in the AF image of fig. 6.19 (b). 

The AF signal from the healthy mucosa was higher than in the cancer tissue. Moreover, a 

region of high AF signal was noticed in the top left corner of the healthy sample. The AF 

signal of the healthy mucosa was not evenly distributed as in the other healthy samples.  

 

Figure 6.19 Cancer tissue and colon mucosa samples from patient 10. (a) White light 

image. (b) AF image. 
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The average AF intensity values and the standard deviations for each tissue sample were 

estimated in cps as in the previous six patients. Only non-zero pixels were taken into account 

in the estimate of the final values. The final values were divided in two groups: cancer and 

healthy. Results are shown in fig. 6.20. As it was expected, each cancer sample showed a 

lower average AF intensity than the respective healthy sample. The highest average AF 

intensity value from cancer was 661 cps in the sample from patient 9. This result was 

predictable because the shape of the malignant tissue from patient 9 was clearly perceivable 

in the AF image of fig. 6.18 (b).  On the contrary, the specimen from patient 1 showed the 

lowest AF signals of 415 cps. In fact, it was not possible to distinguish the shape of the 

sample in the AF image of fig. 6.16 (b). AF intensities from the cancer tissues of patients 8 

and 10 were 513 and 554, respectively. On the other hand, AF intensities from healthy 

samples were all between 1200 cps and 1500 cps for all patients. Similar values were also 

measured in patients 1 to 6 when only healthy samples were available (Fig. 6.155).   

 

Figure 6.20 Average AF intensity values measured from the AF images of cancer samples 

and fresh colon mucosa samples of patients 7-10. 
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6.3 Summary 

The aim of this chapter was to discuss a study that was performed at the Western General 

hospital in Edinburgh. The aim of the study was to assess the capability of the optical block 

coupled with the SPAD array for the detection of endogenous fluorescence emitted from 

resected healthy and malignant ex vivo human tissues from the colon. A total of 10 patients 

participated in the study. The samples were obtained within 30 minutes from hemicolectomy 

procedures involving the removal of a portion of the patient colon. All the specimens were 

prepared by a pathologist consultant.  Only in four cases the size of the tumour lesion was 

large enough to use tissue sample for research. In the other six cases only the AF signal from 

healthy colon mucosa samples was imaged. In the experiments, the petri dishes with the 

tissues were scanned on top of the optical block. A Matlab code was written to reconstruct 

the full image of the tissues from the scan. White light images of the tissues were also 

acquired by using a portable microscope. The AF images from the samples showed changes 

in the clinically assessed autofluorescence intensities between healthy and malignant tissues. 

No changes were detected in the white light images. The AF signal from cancer samples was 

always lower. The decrease in the signal can be due to either reduction of FAD to FADH2 

or to the increased thickness of the mucosal layer either of which is linked to the presence 

of cancer. An increase in the levels of haemoglobin as a result of vascularization in tumours 

may also have been a possible cause. 
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7 Conclusions and future work 

7.1 Conclusions 

In this work a prototype of a miniaturised optical interference block for fluorescence imaging 

in CE has been designed, fabricated, assembled and characterised. The block consisted of an 

LED, two lenses and three optical filters to isolate the LED excitation light from green 

fluorescence light. 

The main achievements of this research work are listed below: 

• The optical design of the miniaturised optical unit was performed in Zemax optics 

studio. 

• The design of the main body accommodating the optical components was realized in 

Solidworks.  

• The results from the optical simulations were validated through knife-edge experiments.  

• It was not possible to find off-the-shelf filters with the thicknesses of few hundred 

microns specified in the simulations. Therefore, standard filters with the optical 

transmission properties of interest were purchased and their thickness was reduced 

through lapping and polishing processes.  

• The optical transmission properties of the filters in the optical setup remained 

unchanged after the lapping and polishing processes. This was proven by characterising 

the filters with a spectrophotometer before and after reducing their thickness.  

• The fabrication of the block’s body was realized by wire erosion. The process created 

precise slots and apertures out of aluminium for keeping all the optical components in 

place according to the simulations. 

• All the components were manually assembled into the main body to create a final 

prototype of 5 mm W x 6 mm L x 6 mm H.  

• The final prototype was then integrated onto a 64 x 64 SPAD array imager that was 

specifically designed by the MST group at the University of Glasgow for the detection 

of green fluorescence light.  

• The final system comprising optical unit and SPAD imager was characterised by 

imaging fluorophore phantom solutions in two sets of experiments. 

➢ The first set of experiments was performed on FAD salt hydrate dissolved in 

phosphate buffer saline to define the minimum concentration of fluorophore in 

solution measureable by the system. FAD is the endogenous fluorophore responsible 

for green AF (515-520 nm) in human tissues. Solutions of FAD at different 
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concentrations were pipetted in a feature of an USAF target and the imaging system 

was tested to measure the fluorescence signal within the feature as a function of 

concentration. The lowest detectable concentration was as small as 7.5µM.   

➢ The second set of experiments was performed on FITC that is an exogenous 

fluorophore with emission maxima of 519 nm. The results of the experiments showed 

a lowest detectable concentration of 7.5 nM confirming that FICT has higher 

fluorescence quantum yield than FAD. 

 

• In vitro experiments were performed at the centre for cell engineering at the University 

of Glasgow to test the capability of the system to detect colorectal cancer cells labelled 

with the commercialized cancer-specific fluorescence probe ProteoGreen gGluTM. The 

cells were cultured in 96 well plates at four different seeding densities and stained with 

the probe at concentrations of 5 μM 2 μM and 1 μM. The whole surface of each well 

was scanned on top of the imaging system. An algorithm was written to forecast a 

representative fluorescence intensity from each scan. The specificity of the cancer 

selective probe was also validated by using fibroblasts as negative control. Moreover, 

the performance of ProteoGreen-gGluTM was also compared to the general 

CellTrackerGreentTM fluorescence dye that was designed to work with all cell types. All 

the results were validated against a gold standard ModulusTM microplate reader for 

benchmarking. An almost linear correlation between the two systems was found.  Final 

results showed that the cancer–selective probe was responsible for a lower increase in 

the cells fluorescence signal with respect to the generic fluorescence probe.  

• Ex vivo experiments on resected healthy and malignant human tissues from the colon 

were performed at the Western General Hospital in Edinburgh. Pieces of healthy colon 

mucosa and adenocarcinoma tissues were obtained fresh, within 30 minutes, from four 

patients scheduled for partial colon removal. Optical images of the tissues were acquired 

by using a portable optical microscope. Each petri dish with the specimens was also 

scanned on top of the imaging system comprising optical block and SPAD array. Frames 

were acquired for the full duration of the scan. The final AF images for each patient 

were created by superimposing frames acquired the scan. AF images from the eight 

specimens revealed differences in the detected AF signal between healthy and malignant 

tissues. The AF from healthy colon mucosa was always higher.  On the other hand, WL 

images from the optical microscope did not show any difference between healthy and 

cancerous tissue specimens. 
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7.2 Future work  

Potential improvements that could benefit the research work described in this thesis 

are listed below.  

• Fig. 7.1 shows the CAD design of the final multimodality SonoPill prototype with 

the optical block for fluoroscopy at the top of the pill. The integration of the optical 

block and the SPAD array in capsule format would require integrating the SPAD 

imager chip into a circular PCB with dimensions suitable for incorporation in the 

pill.  

                  

Figure 7.1 CAD prototype of the multimodality SonoPill device [89]. 

• The final size of the optical block could be further shrunk by monolithically 

integrating the fluorescence green filter directly on top of the SPAD imager thus 

reducing the height of the block of approximately 1.5 mm.  

• Progress in nanophotonics could also be useful to produce fluorescence emission 

plasmonic filters with narrow transmission bands that could be tuneable for one or 

more fluorophores [143]. The integration of plasmonic filters on CMOS chips was 

successfully demonstrated [144], [145]. This choice would be advantageous because 

the size of these filters is in the nm range. 

 

• The LED power consumption could also be minimized by performing fluorescence 

life-time measurements instead of steady state measurements. Micro-LED lamps 

have been developed to provide subnano-second pulses which are ideal for 

fluorescence life time measurements [146], [147]. SPAD imagers for fluorescence 

life time measurements were also proposed and showed interesting results in medical 



137 

 

applications [148]–[150]. Another solution could be the integration of a pulsed-laser 

diode into the block. However, this solution is impractical due to the bulkiness of the 

devices.  

• The angular field of view is currently limited by the dimension of the optical block. 

Endoscopy technologies used in the clinical environments have large fields of view 

close to 360 degrees while the angular field of view of the current optics is only 23 

degrees. However, since the optics must be used in a multimodality capsule, the other 

sensing modalities could compensate for the small field of view for a better 

diagnosis.  A promising solution can be found in  metalenses that could be used to 

achieve a better resolution and angular field of view [151]–[153]. The use of 

metalenses would also be beneficial in terms of size. In fact, metalenses are usually 

comprised of multiple metasurfaces that could be potentially monolithically stacked 

together on the block through lithography. A metalens was already successfully 

integrated in an endoscopy catheter for optical coherence tomography resulting in 

improved resolution and higher depth of focus [154]. 

• A structural change could also be applied to the main body by smoothing the edges 

of the cube thus creating a cylindrical shape which would improve the incorporation 

of the unit in CE.  

• Finally, the main body of the block could be realized with a biocompatible material 

easy to micro-machine [155]. This choice would benefit the final pill in case of 

rupture of the external biocompatible casing. 
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Appendix: Matlab Codes 

Software Mask code 

gate_time = 0.2; 

load('Field of view'); 

image_raw1 = image_archived_DCR_correction; 

clearvars -except image_raw1 gate_time; 

  

%First  

data_2=cell2mat(image_raw1); 

  

pixels=size(data_2,1); %Number of pixels is equal to the 

Number of rows 

  

L=size(data_2,2);% number of columns 

  

n_frames=L/64;   %By dividing the number of columns by 

64 you obtain the number of frames 

  

image1=zeros(pixels,pixels,n_frames); %Create a 3d 

matrix of zeros 

  

for i = 1:n_frames 

     

   image1(:,:,i)= data_2(:,64*(i-1)+1:64*i); % this 

command is written so that when i=1 the 2D matrix in the 

3D matrix has the columns from 1 to 64 of the matrix 

data, and its respective 64 rows (this means we are 

storing the frame 1 in the 3D matrix). When i=2 the 2D 

matrix in the 3D matrix has the columns from 65 to 128 

of the matrix data, and its respective 64 rows (this 

means we are storing the frame 2 in the 3D matrix. 

end 

  

clearvars -except image1 image_raw1 image_raw2 

image_raw3 gate_time; 

  

  

  

n_frames = size(image1,3); 

  

for i = 1:n_frames 

     

   imagef(:,:,i)= image1(:,:,i)/gate_time; 

end 

  

image_mean = mean(imagef,3); 
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clearvars -except imagef image_mean image_raw1 

gate_time; 

  

imagesc(image_mean); 

h = colorbar; 

ylabel(h, 'Counts/s') 

colormap(jet); 

axis square; 

 

 

[centers, radii] = imfindcircles(image_mean,[1 64]); 

 

viscircles(centers, radii,'EdgeColor','r'); 

 

imaegSize=size(image_mean) 

 

[xx,yy] = ndgrid((1:imaegSize(1))-

centers(2),(1:imaegSize(2))-centers(1)); 

mask = (xx.^2 + yy.^2)<radii^2; 

mask_final = double(mask); 

 

Code to scan the well on top of the optical block 

 

 

 

 

Code to forecast the average value from a well 

 

 

%First Technical Replicate 

% load('mask_final_cells'); 

load('a8f'); 

A8f= saved_data.images_DCR_corrected; 

n_frames1 = size(A8f,2); 

for i = 1:n_frames1 

    A8f{1,i}= A8f{1,i}.*mask_final_cells; 

end 

  

for z  = 1:n_frames1 

           a = A8f{1,z}; 

    A8f{1,z}= fillmissing(a,'linear');      

             

end 

     

a8f_avg_vectors_fluo = zeros(1,n_frames1); 

count1 =0; 
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sum1 = 0; 

  for z = 1: n_frames1 

      a = A8f{1,z}; 

   for i = 1:64 

       for j = 1:64 

           if (a(i,j)>0) 

               sum1 = sum1+a(i,j); 

               count1 = count1+1; 

           end 

       end 

       avg = sum1/count1; 

    

  

  

Code to scan the tissue samples on top of the optical block  

 

Code to reconstruct AF image of the tissues from the scan  

% Horizontal Reconstruction left to right 

  

frame1 = data{1,n_frames}; 

frame2 = data{1,n_frames-1}; 

cv =frame2(24:60,19:55); 

bv =frame1(24:60,19:55); 

 

keep1 =bv(:,1:end-8); 

cut1 = bv(:,end-7:end); 

keep2 =cv(:,9:end); 

cut2 = cv(:,1:8); 

 

coloms = size(cut1,2); 

rows = size(cut1,1); 

 

interface = zeros(size(cut1)); 

 

for j = 1:rows 

    for z = 1:coloms 
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        if cut1(j,z) == 0  

            if cut2(j,z) == 0  

            interface(j,z) = 0; 

            end  

            if cut2(j,z) ~=0  

            interface(j,z) = cut2(j,z); 

        end 

    end  

 

    if cut1(j,z) ~= 0  

        if cut2(j,z) == 0  

        interface(j,z) = cut1(j,z); 

        end  

        if cut2(j,z) ~=0 

          if cut2(j,z)> cut1(j,z) 

                interface(j,z) = cut2(j,z); 

            else 

                interface(j,z) = cut1(j,z); 

            end 

        end 

     end 

                    

    end  

end  

 

join2 = [keep1,interface,keep2]; 

 

% figure 

% imagesc(join1) 

% colormap(jet) 

 

%% remaining frames      



142 

 

 

 

for frame = n_frames-2:-1:1 

 

frame1 = join2;  

frame2 = data{1,frame}; 

cv =frame2(24:60,19:55); 

 

 

keep1 =frame1(:,1:end-8); 

cut1 = frame1(:,end-7:end); 

keep2 =cv(:,9:end); 

cut2 = cv(:,1:8); 

 

coloms = size(cut2,2); 

rows = size(cut2,1); 

 

interface = zeros(size(cut2)); 

 

for j = 1:rows 

    for z = 1:coloms 

     

        if cut1(j,z) == 0  

            if cut2(j,z) == 0  

            interface(j,z) = 0; 

            end  

            if cut2(j,z) ~=0  

            interface(j,z) = cut2(j,z); 

        end 

    end  

 

    if cut1(j,z) ~= 0  
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        if cut2(j,z) == 0  

        interface(j,z) = cut1(j,z); 

        end  

        if cut2(j,z) ~=0 

          if cut2(j,z)> cut1(j,z) 

                interface(j,z) = cut2(j,z); 

            else 

                interface(j,z) = cut1(j,z); 

            end 

        end 

     end 

                    

    end  

end  

 

join2 = [keep1,interface,keep2]; 

 

end 

% Horizontal Reconstruction right to left 

 

frame1 = data{1,1}; 

frame2 = data{1,2}; 

cv =frame2(24:60,19:55); 

bv =frame1(24:60,19:55); 

 

keep1 =bv(:,1:end-8); 

cut1 = bv(:,end-7:end); 

keep2 =cv(:,9:end); 

cut2 = cv(:,1:8); 

 

coloms = size(cut1,2); 

rows = size(cut1,1); 
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interface = zeros(size(cut1)); 

 

for j = 1:rows 

    for z = 1:coloms 

     

        if cut1(j,z) == 0  

            if cut2(j,z) == 0  

            interface(j,z) = 0; 

            end  

            if cut2(j,z) ~=0  

            interface(j,z) = cut2(j,z); 

        end 

    end  

 

    if cut1(j,z) ~= 0  

        if cut2(j,z) == 0  

        interface(j,z) = cut1(j,z); 

        end  

        if cut2(j,z) ~=0 

           if cut2(j,z)> cut1(j,z) 

               interface(j,z) = cut2(j,z); 

           else 

               interface(j,z) = cut1(j,z); 

            end 

        end 

     end 

                    

    end  

end  

 

join1 = [keep1,interface,keep2]; 
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% figure 

% imagesc(join1) 

% colormap(jet) 

 

%% remaining frames      

 

 

for frame = 3:n_frames 

 

frame1 = join1;  

frame2 = data{1,frame}; 

cv =frame2(24:60,19:55); 

 

 

keep1 =frame1(:,1:end-8); 

cut1 = frame1(:,end-7:end); 

keep2 =cv(:,9:end); 

cut2 = cv(:,1:8); 

 

coloms = size(cut2,2); 

rows = size(cut2,1); 

 

interface = zeros(size(cut2)); 

 

for j = 1:rows 

    for z = 1:coloms 

     

        if cut1(j,z) == 0  

            if cut2(j,z) == 0  

            interface(j,z) = 0; 

            end  
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            if cut2(j,z) ~=0  

            interface(j,z) = cut2(j,z); 

        end 

    end  

 

    if cut1(j,z) ~= 0  

        if cut2(j,z) == 0  

        interface(j,z) = cut1(j,z); 

        end  

        if cut2(j,z) ~=0 

          if cut2(j,z)> cut1(j,z) 

                interface(j,z) = cut2(j,z); 

            else 

                interface(j,z) = cut1(j,z); 

            end 

        end 

     end 

                    

    end  

end  

 

join1 = [keep1,interface,keep2]; 

 

end 

% Vertical Reconstruction 

row1 = size(join1,1); 

col1 =size(join1,2); 

  

row2 = size(join2,1) 

col2 = size(join2,2) 

  

to_cut1 = join1(1:20,:); 

to_keep1 =join1(21:end,:); 

  

to_cut2 =join2((row2-19):row2,:); 

to_keep2 = join2(1:(row2-20),:); 
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to_keep_interface = zeros(size(to_cut2)); 

  

row = size(to_cut1,1); 

col = size(to_cut1,2); 

  

for j = 1:row 

for z = 1 : col  

     

    if to_cut1(j,z) == 0  

        if to_cut2(j,z) == 0  

        to_keep_interface(j,z) = 0; 

        end  

        if to_cut2(j,z) ~=0  

        to_keep_interface(j,z) = to_cut2(j,z); 

        end 

    end  

  

    if to_cut1(j,z) ~= 0  

        if to_cut2(j,z) == 0  

        to_keep_interface(j,z) = to_cut1(j,z); 

        end  

        if to_cut2(j,z) ~=0 

            if to_cut2(j,z)> to_cut1(j,z) 

                to_keep_interface(j,z) = to_cut2(j,z); 

            else 

                to_keep_interface(j,z) = to_cut1(j,z); 

            end 

        end 

    end 

      

 end 

end 

    

  

joinv = [to_keep2;to_keep_interface; to_keep1]; 

  

figure() 

imagesc(joinv); 

shading interp; 

colorbar 

% set(gca,'YDir','reverse') 

% set(gca,'XDir','reverse') 

  

  

clearvars -except healthy_side cancer_side mask_final 

join1 joinv join2b join1b join1 join2 a b c d e f g 
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