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Abstract

This tutorial paper reviews the use of advanced Monte Carlo sampling methods

in the context of Bayesian model updating for engineering applications. Markov

Chain Monte Carlo, Transitional Markov Chain Monte Carlo, and Sequential

Monte Carlo methods are introduced, applied to different case studies and fi-

nally their performance is compared. For each of these methods, numerical

implementations and their settings are provided.

Three case studies with increased complexity and challenges are presented

showing the advantages and limitations of each of the sampling techniques un-

der review. The first case study presents the parameter identification for a

spring-mass system under a static load. The red second case study presents

a 2-dimensional bi-modal posterior distribution and the aim is to observe the

performance of each of these sampling techniques in sampling from such dis-

tribution. Finally, the last case study presents the stochastic identification of

the model parameters of a complex and non-linear numerical model based on

experimental data.

The case studies presented in this paper consider the recorded data set as a

single piece of information which is used to make inferences and estimations on

time-invariant model parameters.
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1. Introduction

In engineering design problems, mathematical models are used to investigate

the virtual behaviour of structures under operational and extreme conditions.

In order to obtain numerical responses representative of the structure under

investigation, the physical input parameters describing the geometric, material

and damping properties of these models need to be updated [1]. The conven-

tional model updating technique is the Finite Element model updating [2, 3].

This approach is employed to perform point-estimates of physical parameters.

Specifically, the input parameters of the physical model are “tuned” or updated

by minimising the difference between the experimental and modelling results

with respect to a suitable response metric which is sensitive to the variation

of such input parameters. For example, the parameter(s) of a mathematical

model describing the material properties of a plate can be updated in order

to minimise the difference between the theoretical and experimental natural

frequencies of the plate. However, this type of approach faces three main prob-

lems: (i) it assumes that the mathematical model employed is able to capture

the physics of the problem in full (i.e. not affected by modelling errors and/or

uncertainties); (ii) it does not readily take into account that the experimen-

tal data are usually affected by “noise” [4, 5, 6, 7]; (iii) it does not consider

that response measurements of nominal identical structures under same load-

ing conditions might vary because of manufacturing and material variability,

which should be included in the model by considering input parameter vari-

ability [8, 9, 10, 11, 12] and not a single ‘true’ parameter value representation

[13]. Broadly speaking, the approaches for model updating under uncertainty

can be grouped into two categories: probabilistic and non-probabilistic. Among

the probabilistic approaches, one of the most well-established is the Bayesian

2



model updating framework developed by Beck and co-workers [14, 15]. Within

this framework, the physical parameters of the model to be updated are repre-

sented by probability density functions, and Bayesian inference is employed to

evaluate the posterior probability density function given some measured data.

In the structural health monitoring community, such form of statistical model

updating is often referred to as system identification [16, 17, 18, 19, 20, 21, 22].

For real case applications, stochastic model updating relies on the availability

of efficient sampling techniques. This is due to the relative complexity of the

distribution from which samples are generated, making standard Monte Carlo

method inapplicable.

This tutorial paper reviews and illustrates the use of three of the most

popular advanced sampling techniques for approximate inference in the con-

text of Bayesian model updating problems. Although the techniques are gen-

erally applicable, in this paper we will only focus on the inference of time-

invariant parameters. Specifically, a simple introduction to the Markov Chain

Monte Carlo (MCMC), Transitional Markov Chain Monte Carlo (TMCMC),

and Sequential Monte Carlo (SMC) approaches is provided as well as guide-

lines and advises regarding the adoption of these techniques. These tech-

niques are applied to 4 different case studies of increasing complexity to il-

lustrate their application in engineering design problems as well as to assess

their robustness, strengths and weaknesses. This tutorial is targeted at read-

ers who may not be well-versed with Bayesian model updating and the ad-

vanced sampling techniques. The objective of this paper is to allow a much

clearer understanding of the concept, differences, and the implementation of

advanced sampling methods. For this purpose, each case study presented in

this paper uses a data set which serves as a single piece of information that

is used to estimate and update our knowledge on the time-invariant param-

eters. All the source codes, algorithms and examples used in this paper are

made available to the readers as additional data and accessible also via GitHub:

https://github.com/cossan-working-group/BayesianModelUpdating.

In Section 2 the problem of stochastic model updating is presented. Section 3
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presents in details three sampling techniques (i.e. MCMC, TMCMC and SMC)

and their underlying algorithms for Bayesian inference. In Section 4, three

different case examples are presented, aimed at demonstrating and comparing

the effectiveness of each of the advanced sampling techniques under different

set-ups. The three case examples which will be discussed in this paper are

the following: spring-mass system under a static load, 2-dimensional inverse

eigenvalue problem, and the 18-dimensional non-linear DLR-AIRMOD model

updating problem. For each problem discussed, an evaluation and discussion

of the key strengths and limitations of each of the advanced sampling methods

will be provided before finally drawing the paper to a conclusion in Section 6.

2. Stochastic model updating

Let us consider the problem involving a physical system whose virtual be-

haviour is modelled by the function M(x,θ) whereby x represents the vector of

fixed or unchangeable model parameters, and θ represents the vector of control-

lable variables where those values can be changed by the analyst. In general,

this function can be linear or non-linear, and it can be used for describing both

static or dynamic problems [23].

The mathematical relation between the quantity of interest to be assessed D

(e.g. the frequency response function of the system) and the model prediction

M(x,θ) can be expressed in general as [24]:

D = M(x,θ) + ε (1)

whereby ε represents the error caused by measurement errors and/or model

parameter uncertainties. The uncertainty in the model parameters θ can be

accounted for by using a probability density function. By doing so, the mod-

eller can construct a stochastic model (or a class of models [14])) to predict

probabilistically the possible values of the system output D, and therefore its

statistics, given the vector of uncertain model parameters θ. These are the so-

called forward problems which can be solved by means of analytical approaches
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[25, 26, 27] or in general by Monte Carlo simulation approaches [28, 29, 30]. In

the latter approach, the statistics of D are obtained by first generating n real-

isations of the θk (for k = 1, ..., n) parameters from a known joint probability

density function π(θ). Then, for each realization of θk the model is evaluated to

obtain the corresponding realization of Dk (i.e. Dk = M(x,θk)). By repeating

this process for all n samples, we eventually obtain a sample distribution of D̂

[31, 32]. There are three advantages of adopting the Monte Carlo approach:

Firstly, the Monte Carlo technique is applicable to any problem including non-

smooth or non-linear cases (see e.g. [33, 34]). Secondly, the convergence rate

associated with Monte Carlo simulation is independent of the number of ran-

dom variables making it favourable for solving high-dimensional problem. And

thirdly, the computation performed by the Monte Carlo technique is easily par-

allelisable [34].

Therefore, the forward problem implementation is quite simple once the joint

distribution of the uncertain variables is defined. However, the real challenge

is the identification of the most appropriate joint distribution π(θ) that is able

to predict some available measurements D. This is called the inverse problem

[35]. There are two main statistical approaches to identify the parameters of a

statistical model given a set of observations: the Bayesian model updating and

the frequentist approach. The Maximum Likelihood Estimator (MLE) is one

of the most often used estimator in the frequentist literature [36, 37, 38, 39] by

finding the parameter values that maximize the likelihood of observing the D

given the parameters θ). The Bayesian approach casts this inverse problem as

a Bayesian Inference problem [14, 15, 40] and it is explained in the following

subsection.

Since the focus of this paper is to make inferences on θ, the representation of

the model output Mk(x,θ), the latter can be simplified as M(θ). It should be

noted that the model M(θ), relating θ and Dk, can be either linear or non-linear.

5



2.1. Bayesian inference

A key advantage of adopting Bayesian inference in model updating lies in its

ability to combine prior information of a quantity of interest with the observed

data to yield a stochastic characterisation of the quantity to be inferred.

In particular, when a set of n independent and identically distributed obser-

vations D1, D2, ..., Dn become available, the prior belief is updated using Bayes’

theorem [41] leading to the posterior distribution of the parameter of interest:

P (θ|D) =
P (D|θ) · P (θ)

P (D)
(2)

whereby

• D represents the vector of the measurements (or observations),

• P (θ) represents the prior distribution,

• P (D|θ) represents the likelihood function of the parameters,

• P (D) represents the evidence,

• P (θ|D) represents the posterior distribution, usually the target distribu-

tion from which sampling is done.

2.1.1. Prior distribution

The prior distribution, P (θ), is a reflection of one’s a priori knowledge or

initial hypothesis about the model’s parameter(s) to be inferred before any

measurements are obtained. It comes in various forms such as expert opinions,

lab-scale experiment testing, and previous uncertainty quantification of the pa-

rameter(s) of interest [42]. In theory, any type of prior distribution can be

used depending on the amount of information available [40]. However, in prac-

tice Uniform and Normal distributions are the most common types of priors

adopted.

If what is known about the parameter(s) is/are its upper and lower bounds,

then a Uniform distribution could be used as the non-informative prior distri-

bution based on the principle of Maximum Entropy [43, 44]. Though this may
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seem like the most general option, one needs to take note on the selection of the

bounds such that the true value(s) of the parameter(s) is/are enclosed within

those bounds. An approach would be to choose a significantly large bounds

such that the true value(s) is/are included with a high degree of certainty. It

is also noteworthy that by adopting the Uniform distribution distribution as

the prior, the posterior would simply be proportional to the likelihood function.

Some recent research works which adopted the Uniform prior in its Bayesian

model updating set-up include: estimating model parameters used to model a

bolted structure [45]; structural parameters of a composite structure [46]; crack

parameters of a beam structure [47]; stiffness and mass parameters of a DLR-

AIRMOD structure [48]; and stiffness parameters of a cantilever beam [49].

On the other hand, if the mean and relative error of the parameter(s) is/are

known, then an informative Normal distribution may be used as the prior dis-

tribution. Some recent research works which adopted the Normal distribution

prior in its Bayesian model updating set-up include: estimating the stiffness

parameters within a shear model of a two storey structure [50]; joint-stiffness

parameters of the stochastic model for a joint contact surface [51]; the loga-

rithmic ground truth system parameters of a three degrees-of-freedom system

[52]; the cosmological parameters used in a supernovae analysis [53]; and state

parameters of the dynamical model used for real-time defect detection of high-

speed train wheels [54].

For any Nd-dimensional problem, assuming independence between the pa-

rameters of interest, θ, the prior distribution can be expressed as follows:

P (θ) = P (θ1, ..., θNd) =

Nd∏
d=1

P (θd) (3)

whereby θd is the dth dimension (or component) of the vector of input parame-

ters θ.
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2.1.2. Likelihood function

The likelihood function, P (D|θ), reflects the degree of agreement between

the obtained measurements, D, and the output obtained from the mathematical

model M(θ) used to physically describe the system. For the case studies pre-

sented in this paper, we assume only one model used to describe the observed

D. In general, there could be multiple models used to represent D and one

can associate probabilities to these models to decide the most probable model

(i.e. model selection; see [55, 56, 57, 58]). It needs to be pointed out that the

model output M(θ) considered in this paper is purely deterministic. For this

reason, the likelihood function has to capture the degree of agreement between

D and M(θ) for each set of possible θ values. As such, the likelihood function

is a function of θ and not of D. Assuming that the measurements Dk (for

k = 1, ..., n) are independently, identically distributed, the likelihood function

takes on the following mathematical form:

P (D|θ) =

n∏
k=1

P (Dk|θ) (4)

Due to the assumption that the error ε between the observation and the model

follows a zero mean Normal distribution with zero mean and a fixed variance,

the common choice of likelihood function would be the Normal distribution

[59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]:

P (D|θ) =

(
n∏
k=1

1

σk ·
√

2 · π

)
· exp

[
−

n∑
k=1

(Dk −M(θ))2

2 · σ2
k

]
(5)

As seen in Eq. (1), the expression (Dk −Mk(θ)) simply yields error εk between

the kth measurement and the model output while σ2
k is a hyper-parameter that

can be interpreted as the variance of εk. For cases whereby correlations are

present between the measurements Dk, this information would be captured in

the non-zero off-diagonal elements in the covariance matrix Σ of the Normal

likelihood function and the corresponding likelihood function can be written as:
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P (D|θ) =
1√

|Σ| · (2 · π)n
· exp

[
−1

2
·
n∑
k=1

n∑
l=1

(Dk −M(θ)) ·Σ−1 · (Dl −M(θ))

]
(6)

There are two possible ways to decide on the value of σk. The first would

be through estimation via the mean squared error of (Dk −M(θ)). The second

would be to set it as a fixed parameter based on prior calculations or knowledge.

The strategy commonly adopted is to set σk to correspond to the standard devi-

ation of εk, especially if the latter follows a prescribed distribution. For instance,

a common choice for εk is a zero-mean Normal distribution with standard devi-

ation σε, then σk = σε. This strategy will be used in the tutorials to justify the

choice of σk for the likelihood function.

It is worth noting that different forms of likelihood functions have been

adopted in literature (see e.g. [71, 72, 73, 74, 65, 75, 76]) to capture the degree

of agreement between D and M(θ), as summarised in Table 1. This choice is

related to the assumptions made on the underlying unknown data-generating

distribution. For illustration purposes, the likelihood functions listed in Table

1 are compared in Figure 1 for the case of a mono-dimensional θ. Note that the

plot for the lognormal likelihood function is not included in the Figure 1 as it

is defined in the logarithmic space. Its shape profile, however, follows that of a

Normal distribution.

It is important to notice that it is more convenient to use the logarithmic of

the likelihood function, called log-likelihood defined as:

log(D|θ)) =

n∑
k=1

log(P (Dk|θ)) (7)

This avoids numerical problems (e.g. arithmetic underflow) with the calcula-

tion of the likelihood function. In fact, the calculation of the likelihood requires

to compute the product of the likelihood function for each measurement Dk as

shown in Eq. (3). Another advantage of using the log-likelihood is that the

addition operation is much faster to compute than the product operation.

9



Type Likelihood function, P (Dk|θ) Reference

Normal Dis-

tribution

(
n∏
k=1

1

σk ·
√

2 · π

)
· exp

[
−

n∑
k=1

(Dk −M(θ))2

2 · σ2
k

] [59, 60,

61, 62,

63, 64,

65, 66,

67, 68,

69, 70]

Lognormal

Distribution
1√

2π · log(1 +
σ2
k

M(θ)2 ) ·Dk

·exp

− (log(Dk)− log(M(θ)))2

2 · log(1 +
σ2
k

M(θ)2 )


[73, 74,

65, 75,

76]

Inverse Error

1− exp

[
−

√
1

(Dk −M(θ))2

] [71]

Inverse

Squared

Error

1− exp
[
− 1

(Dk −M(θ))2

] [71]

Exponential

Distribution
1

2 · σ2
k

· exp
[
−

1
n

∑n
k=1(Dk −M(θ))2

2 · σ2
k

] [72]

Truncated

Normal

Distribution

√
2√

π · σk
· exp

[
−

1
n

∑n
k=1(Dk −M(θ))2

2 · σ2
k

] [72]

Table 1: Examples of typical likelihood functions used for model updating.

For this paper, the case studies presented are limited to instances whereby

the full likelihood function is known. However, in general, situations can arise

whereby the model used is so complex that it becomes computationally expen-

sive to adopt the full likelihood function [77]. In addition, there are instances

whereby the model output itself can be stochastic. Under such circumstances,
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Figure 1: Comparison of different likelihood functions for the case of a mono-dimensional θ:

Normal distribution (black solid line), Inverse Error (green dashed-dotted line), the Inverse

Squared Error (blue dotted line), exponential (magenta dashed line), and Truncated normal

(red solid line with circles). For all the plots, σk is set as 1.

one approach would be to simply adopt the use of Kernel densities to estimate

the likelihood function using information from the PDF of the stochastic model

output. This method, however, would require a sufficiently large number of

model outputs to provide a good estimate of the PDF [77]. Alternatively, one

could also turn to the use of approximate likelihood functions and adopt the

technique of Approximate Bayesian Computation (ABC) [78, 79]. These ap-

proximate likelihood functions capture the discrepancy between the D and the

model outputs using stochastic distance metrics such as: Euclidian [80]; Maha-

lanobis [81]; and Bhattacharyya distances [82]. More details to ABC and the

various stochastic distance metrics can be found in the respective references.

2.1.3. Evidence function

The evidence function, P (D), serves as a normalizing constant of the Bayesian

formula to ensure that the posterior (see Eq. (2)) integrates to 1. In Bayesian

inference, the probability of the observation P (D) is fixed and independent of

θ. It is therefore a numerical constant. Since the interest is in understanding
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the relationship between the parameters θ and the observations D, the evidence

can be neglected. As such, we obtain the resulting proportionality relation for

the posterior distribution up to a normalising constant [83]:

P (θ|D) ∝ P (D|θ) · P (θ) (8)

Based on Eq. (8), the form of the posterior distribution is only known implicitly.

2.1.4. Posterior distribution and its estimation

The posterior distribution, P (θ|D), represents the updated distribution of

the model parameters, θ, after obtaining some measurements. This reflects the

updated knowledge of the model parameters θ based on the new information

obtained from the observations D.

There exists analytical solutions for the resulting posterior when the poste-

rior and prior are of the same distribution family. These are known as conjugate

distributions [84, 85, 86, 87, 88], and the prior is defined as conjugated for the

likelihood function. Typical examples are binomial likelihood and a beta prior

for discrete cases and normal likelihood and prior for the continuous cases. How-

ever, generally the posterior and prior are non-conjugate distributions. Often,

the posterior distribution might not necessarily conform with a well-known pa-

rameterized distribution function and, for example, it might be multimodal. In

these situations it would be computationally expensive even if we limit our in-

terest to the evaluation of the mean and variance of the posterior distribution

analytically.

The generally applicable numerical technique for estimating distributions is

the Monte Carlo method [89]. In particular, Monte Carlo Methods can be used

to efficiently evaluate the statistics of θ, rather than the full posterior distribu-

tion. Suppose we are able to generate samples from P (θ|D), it is possible to

estimate the moments of the posterior distribution as follows [90]:

E[θ] =

N∑
i=1

θi · P (θi|D) (9)
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E[θ2] =

N∑
i=1

θ2
i · P (θi|D) (10)

and the variance estimate of the posterior V ar[θ] is then computed using:

V ar[θ] = E[θ2]− (E[θ])2 (11)

whereby E[θ] and E[θ2] are obtained from Eq. (9) and Eq. (10) respectively.

Marginals and quantiles of the distribution can also be computed using the same

realisations.

However, obtaining independent samples from the posterior is difficult using

only the standard Monte Carlo approach. This is because the posterior distri-

bution is known only implicitly (i.e. point-wise values of the distribution are

known only after evaluating the prior and likelihood function). Therefore it is

not possible to generate samples directly for the posterior. Instead, Markov

Chain Monte Carlo (MCMC) can be used to construct a Markov chain on the

model parameters space θ whose steady state distribution is the posterior dis-

tribution of interest P (θ|D) [91]. MCMC does not require the evaluation of the

evidence, and Eq. (8) can be used directly. MCMC only requires evaluation of

the joint distribution of Eq. (8) up to a proportionality factor and point-wise

for any generated sampled of θ.

Therefore, MCMC algorithms return samples θi, i = 1, . . . , N where each

sample can be assumed to be drawn from P (θ|D). Different advanced sampling

methods to generate samples of the posterior distribution have been proposed

and they will be reviewed in this paper.

2.1.5. Applications of Bayesian model updating

The technique of Bayesian model updating has been adopted in many ap-

plications, for instance: to quantify the discrete element methods prediction

of the behavior of granular materials [92]; to update the probabilistic model

related to the boundary condition and to estimate torsional stiffness parame-

ter of a cantilever beam under uncertainty through vibrational analysis [49]; in

structural health monitoring by identifying the position and severity of a crack
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in a suspension arm of a car [71]; to update the material dependent constants

of the Paris-Erdogan Law used to predict crack growth rate in a carbon-steel

Nuclear piping [93]; to perform on-line estimation of parameters of building en-

ergy models based on information from in-situ sensor [94]; and to estimate the

most probable leakage scenarios for the purpose of leakage detection in water

distribution networks [95]. Details to the Bayesian model updating set-up in

these references are summarised in Table 2. More recently, the technique of

Bayesian model updating has also been developed to include elements of struc-

tural reliability, giving rise to Bayesian Updating with Structural Reliability

(BUS) methods [96]. This, however, will not be discussed given that it involves

the use of structural reliability methods which is beyond the scope of this paper.

3. Review of advanced Monte Carlo samplers

3.1. Markov Chain Monte Carlo

The MCMC sampler is a sampling technique introduced by Metropolis [97]

which encompasses two main aspects: Monte Carlo simulations and Markov

chains. The concept of Markov chains was devised by Andrey Markov in 1906

and it refers to a sequence of random samples (or states) θi for i = 1, 2, ..., N

whereby the value of θi+1 depends only on the previous value θi [98]. This is also

known as the Markov property [99]. A Markov chain initiates from θ1 and from

there, the transition between successive samples in the chain (i.e. from θi to θi+1)

would occur with probability T (θi → θi+1) known as the transition probability

[100] which is determined by a transition probability distribution function. In

a time-homogeneous Markov process, the distribution of the generated samples

θi would converge to a stationary distribution whereby the distribution of the

samples becomes stable. However, the initial samples of the Markov chain are

in general not distributed according to the stationary distribution and are thus

not representative of the stationary distribution. Thus, it becomes a practice to

discard the initial Nburn−in number of samples. This is known as the burn-in

and Nburn−in corresponds to the burn-in length of the Markov chain [101]. In
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Application Prior Likelihood(s) Sampling

technique

Estimate torsional stiffness pa-

rameter for a cantilever beam

[49]

Uniform Normal MCMC

Identify the material dependent

constants of the Paris-Erdogan

Law for crack growth rate pre-

diction [93]

Normal Normal MCMC

Quantify the discrete element

methods prediction of granular

materials’ behaviour [92]

Uniform Normal TMCMC

Leakage detection in water dis-

tribution networks [95]

Uniform Normal TMCMC

Online monitoring (crack detec-

tion) in a suspension arm of a car

[71]

Uniform Normal, Inverse

Error, Inverse

Squared Error

TMCMC

On-line parameter estimation of

building energy models [94]

Normal Normal SMC

Table 2: Summary of Bayesian Model Updating set-up and sampling technique employed.

the context of Bayesian model updating, this stationary distribution corresponds

to the posterior distribution.

There are many variants of MCMC techniques which are currently in exis-

tence and two of the most commonly used variants are the Metropolis-Hastings

(MH) sampler [102] and the Gibbs sampler [103, 104]. A problem with the Gibbs

sampler, however, is in the selection of an appropriate conditional probability

distribution to represent the posterior distribution [105]. In general, this may

not be trivial because the posterior may be functionally complex. This makes

15



the implementation of the Gibbs sampler less general and in this regard, the

MH variant of MCMC will be adopted to address the problems presented in this

paper. One key strength of the MH algorithm which motivated its use, is in its

ability to sample from any probability distribution as long as the function that

is proportional to its actual normalised density (i.e. the posterior distribution

in the form of Eq. (8)) is known and that the values of that function can be

computed [102]. Without the loss of generality, this section will first elaborate

the steps of the MH algorithm for sampling from a mono-dimensional posterior

before generalising to the case of sampling from a multi-dimensional posterior.

The MH sampler is a random-walk algorithm that provides a selection criteria

to which the samples are chosen during the sampling procedure. This is done

through the use of a so-called proposal distribution q(θ∗|θi) to generate the next

candidate sample θ∗ of the chain from a known and relatively simpler distribu-

tion from the current sample θi. It should be noted that the choice of q(θ∗|θi) is

such that its density function is strictly positive across the entire sample space

for which the posterior is defined. In addition, the common criteria in deciding

q(θ∗|θi) is that it has to be symmetric. This makes the Normal and Uniform dis-

tributions [106] the main options for q(θ∗|θi) although it has also been argued in

[107] that the selection of an optimal q(θ∗|θi) is often made on an ad-hoc basis.

From there, the generated samples are accepted or rejected based on a given

acceptance rule. Figure 2 illustrates graphically the principle of the MH sam-

pler: From the current sample θi, a candidate sample of the Markov chain, θ∗,

is sampled from the proposal distribution q(θ∗|θi). Next, the candidate sample

θ∗ is accepted with probability α defined as:

α = min

[
1,
P (θ∗|D)

P (θi|D)
· q(θi|θ

∗)

q(θ∗|θi)

]
(12)

whereby P (θ∗|D) represents the posterior value evaluated at the candidate sam-

ple θ∗, and P (θi|D) represents the posterior value evaluated at θi. q(θi|θ∗) rep-

resents the probability of sampling θi given that the current sample is θ∗, and

q(θ∗|θi) represents the probability of sampling θ∗ given that the current sample
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is θi as determined by q(θ∗|θi). Substituting in the posterior distribution in Eq.

(12) with its definition from Eq. (8), we obtain:

α = min

[
1,
P (D|θ∗) · P (θ∗)/P (D)

P (D|θi) · P (θi)/P (D)
· q(θi|θ

∗)

q(θ∗|θi)

]
(13)

From Eq. (13), it can be seen that the normalisation constant P (D) is cancelled

out. This further justifies why there is no need to evaluate P (D) and that the

computation of Eq. (12) can be done using an unnormalised posterior (see Eq.

(8)). This allows the MH algorithm to perform sampling on such distributions.

For q(θ∗|θi), a symmetrical function (e.g. Normal or Uniform distribution) that

is centered about θi is usually considered such that q(θ∗|θi) = q(θi|θ∗). As a

result, the acceptance probability, α, in Eq. (12) becomes simplified:

α = min

[
1,
P (θ∗|D)

P (θi|D)

]
. (14)

What Eq. (14) implies is that the candidate sample θ∗ is always accepted

if the samples are moving towards the region of high probability density (i.e.

P (θ∗|D)
P (θi|D) > 1), otherwise it is accepted with probability α. In practice, a random

number r is sampled from a Uniform distribution ranging between 0 and 1 (i.e.

r ∼ U [0, 1)). If α ≥ r, the proposed sample θ∗ is accepted (i.e. θi+1 = θ∗).

Otherwise, θ∗ is rejected (i.e. θi+1 = θi).

The characteristic of Markov chains are, thus, ideal to generate samples from

the unknown posterior distribution. As a result of the use of Markov chains, it

makes the MCMC algorithm inherently serial in its computations. This however

does not imply that the computations cannot be parallelized. In fact, there have

been developments made in recent years to achieve this as seen in the works by

Wilkinson (2005) [108] and Brockwell (2006) [109] though efforts have proved to

be non-trivial. Besides the MH algorithm, there are also various other MCMC

algorithms implementation available including Slice sampling [110], Hamilto-

nian Monte Carlo methods [111, 112], Metropolis-adjusted Langevin algorithm

[113, 114, 115, 112], Multiple-try Metropolis [116, 117], Reversible-jump MCMC

[118], and the Pseudo-marginal Metropolis-Hastings algorithm [119]. Detailed
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Figure 2: Metropolis-Hasting sampling - the proposal distribution q(θ∗|θi) (red dotted curve);

posterior P (θ|D) (black solid curve); current sample θi; and proposed sample θ∗.

explanations to each of these algorithms can be found in their respective refer-

ences.

In the tutorial, the Normal distribution will be used as the proposal distri-

bution with mean defined by the value of the current sample θi and standard

deviation σp that serves as the tuning parameter of the MH algorithm. The

choice of the tuning parameter is an important consideration when implement-

ing the algorithm as this will have an impact on the efficiency of the MCMC

sampling process. Should the value be too small, it results in a small jump-size

between a sample and the next successive sample of the chain. This leads to

a high serial dependence between successive samples, giving rise to high auto-

correlation between these samples [120]. On the other hand, when the tuning

parameter is too large, it may result in many of the proposed samples lying out-

side the range of the posterior and the entire sampling space not being sampled

efficiently. This gives rise to a high rejection rate of the proposed samples, thus,

making sampling process inefficient and ineffective. Under specific condition,

the optimal value of σp is the one which produces an acceptance rate around
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0.234 [121]. However, for practical applications, the usual 0.234 might be ineffi-

cient even with seemingly regular targets [122]. Intuitively, the acceptance ratio

is a trade-off between making too many small accepted steps and making too

many large proposals that get rejected. In fact, for any value of acceptance rate

between 0.15 to 0.50, the efficiency of the algorithm is still at least 80% [120].

To illustrate the effects of the tuning parameter on the sampling process, we

allow the MH sampler to generate 1000 samples from a posterior defined by a

Uniform prior ranging between 1.0 to 1000, and a Normal likelihood function

with standard deviation 1.0. The model used in this example is a simple linear

model in the form of: M(θ) = θ · x whereby M(θ) is the model output, θ is the

uncertain model parameter we wish to estimate from the posterior, and x is the

model input. The proposal distribution is a Normal distribution with standard

deviation σp. For this example, 3 different values of σp is used: 100.5, 22.5, and

1.5. The resulting trace plots of the generated samples and their corresponding

acceptance rates are presented in Figure 3. In the literature, the efficiency of the

MCMC sampler can be interpreted as the number of iterations required by the

sampler to attain the required degree of accuracy and precision of the estimate

[120]. To avoid the need for the accept/reject step as well as the need for tuning,

one could turn to tune-free MCMC algorithms such as Gibbs sampling and Slice

sampling.
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Figure 3: The corresponding trace plots obtained with 1000 samples using: (a) σp = 100.5

giving an acceptance level of 0.061; (b) σp = 22.5 giving an acceptance level of 0.234; (c)

σp = 1.5 giving an acceptance level of 0.865.

The burn-in length of the chain must be checked and one way to do so

19



would be through constructing a trace plot and identifying the sample number

at which the plot begins to converge [101]. As an illustration, we will be using

the same set-up as the earlier example used to generate Figure 3. 1000 samples

will be generated via MH sampling, with 0 burn-in length. The starting value

of the chain is randomly sampled from the Uniform prior and is set as θ1 = 444.

This practice of randomly selecting θ1 from the prior will be adopted in all the

problems presented in this tutorial. The resulting trace plot and histogram are

provided in Figure 4. From the trace plot in Figure 4(a), it can be observed

that the plot starts to converge after 40 samples are obtained indicating that

Nburn−in = 40. Figure 5 illustrates the resulting trace plot and histogram profile

after accounting for burn-in.

0 500 1000

Samples

100

200

300

400

500

V
a

lu
e

(a) (b)

Figure 4: Example of the resulting trace plot (a) and histogram (b) obtained from MH

sampling of 1000 samples with 0 burn-in.

The MH algorithm to generate samples from a one-dimensional posterior is

summarised as follows:

1. Set i = 1; sample θi ∼ P (θ).

2. Generate candidate sample θ∗ ∼ q(θ∗|θi).

3. Evaluate the posterior distribution at the proposed sample (i.e. P (θ∗|D)).

4. Compute the acceptance ratio, α, from Eq. (14).

5. Sample r ∼ U(0, 1]. If α ≥ r, set θi+1=θ∗. Otherwise, set θi+1=θi.
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Figure 5: The resulting trace plot (a) and histogram (b) obtained from MH sampling of 1000

samples after discarding the initial Nburn−in = 40 samples.

6. Set i = i + 1 and repeat steps (2) to (6) until termination criteria is met

(e.g. total sample size of chain obtained, or stability of the distribution is

achieved).

The MH sampler can be generalised to sample from a multi-dimensional

posterior. Two well-established approaches can be adopted to sample from

multi-variate posteriors: block-wise and component-wise. In the block-wise ap-

proach, the proposal distribution q(θ∗|θi) is a multi-variate function with the

same dimensionality as the posterior. Candidate samples are generated from

across multiple dimensions at the same time [123, 124]. In essence, variables

across all dimensions are updated simultaneously rather than sequentially as per

the case in component-wise approach. A key problem with this approach is that

the acceptance rate drops with increasing dimensionality of the problem. This

is because as the dimension of the posterior increases, it becomes more difficult

to determine a suitable q(θ∗|θi) due to the increased complexity of the entire

sample space, especially if the posterior is highly-anisotropic across dimensions.

In the component-wise approach, sampling is performed independently for each

dimension and variables are updated one dimension at a time in a serial manner

[125, 126, 127]. The proposal distribution can be uni-variate or multi-variate,

the latter taking the form q(θ∗|θi) =
∏Nd

d=1 q(θ
d∗|θdi ) whereby d denotes the
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dimension (or component) number while Nd denotes the total dimension of the

θ. It should be pointed out that the workings of the Gibbs sampler is analogous

to the component-wise MH sampling [128]. In this paper, the component-wise

approach is adopted to sample from a multi-variate posterior and a multi-variate

Normal distribution would be used as the choice for q(θ) with covariance matrix

Σp which now serves as the tuning parameter of the sampler. Σp takes the form

of a diagonal square matrix whose non-diagonal matrix elements are 0.

To provide a simple illustration, an explanation is first provided for the case

of sampling from a 2-dimensional posterior. For each iteration i, the updating

procedure is such that the first component θ1 is updated first whilst keeping

the second component θ2 constant before the same procedure is repeated for θ2

whilst keeping the already updated component θ1 constant. In addition, for a

given ith sample, a convention is used whereby θ1
i = {θ1

i , θ
2
i } denotes the first

state vector in the current iteration whilst θ1∗ = {θ1∗, θ2
i } is the first proposed

state vector. Similarly, θ2
i = {θ1

i+1, θ
2
i } is the second state vector in the current

iteration whilst θ2∗ = {θ1
i+1, θ

2∗} is the second proposed state vector. Thus,

extending this convention to a general Nd-dimensional case, we denote θdi (for

d = 1, ..., Nd) to represent the dth state vector of the samples in the current

iteration i and θd∗ to represent the updated dth proposed state vector of the

samples in the current iteration i. Here, θdi = {θ1
i+1, ..., θ

d−1
i+1 , θ

d
i , θ

d+1
i , .., θNd

i }

while θd∗ = {θ1
i+1, ..., θ

d−1
i+1 , θ

d∗, θd+1
i , .., θNd

i }. Using this generalised convention,

the algorithmic description of the MH sampler in sampling from a general Nd-

dimensional posterior is presented in Algorithm 1.

The MH algorithm has been implemented in numerous areas of research.

For instance, to predict precipitation behaviours in Nickel-Titanium alloys via

Bayesian probability [129]; to analyse an electrochemical impedance spectra and

estimate the conductivity of a Lithium ion within a solid-state oxide electrolyte

[130]; to predict and quantify the uncertainty associated with the forecasts for

daily river flow rate of Zhujiachuan River [131]; and to sample classical thermal

states from one-dimensional Bose-Einstein quasi-condensates under the classi-

cal fields approximation [132]; to update the finite element model of a concrete
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Algorithm 1 Component-wise MH algorithm (Nd-dimensional case)

1: procedure (Generate samples from a general d-dimensional posterior.)

2: Draw initial sample set: θ1 = {θ1
1, ..., θ

d
1} ∼ P (θ) . Initialise chain

3: for i = 1 : N − 1 do . Generate Markov chain samples

4: for d = 1 : Nd do . Update component θd

5: Draw candidate sample: θd∗ ∼ q(θd∗|θdi )

6: αl = min
[
1, P (θd∗|D)

P (θd
i |D)

]
7: Sample: rd ∼ U(0,1]

8: if αd ≥ rd then

9: θdi+1=θd∗

10: else

11: θdi+1=θdi

12: end if

13: end for

14: end for

15: end procedure
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structure [133]; to quantify the uncertainty associated with the joint model

parameters of a stochastic generic joint model [51]; to perform joint input-state-

parameter estimation for wave loading [52]; to perform Bayesian system identifi-

cation of dynamical systems [134]; and to perform Bayesian model identification

of higher-order frequency response functions of structures [45].

3.2. Transitional Markov Chain Monte Carlo

The TMCMC sampler is based on the adaptive Metropolis-Hastings tech-

nique [135] whereby samples are not obtained directly from a complex posterior

distribution, but rather from a series of relatively simpler “transitional” distri-

butions. The key difference in the sampling procedure between MCMC and the

TMCMC technique is that MCMC samples are obtained through one or few,

successive (very) long Markov Chains of length N , whereas TMCMC samples

are obtained through N independent single-step Markov Chains. This method

of obtaining samples is useful especially in cases when the shape of the posterior

distribution is complex such as having multiple sharp peaks. The transitional

distributions are defined as such [55]:

P j ∝ P (D|θ)βj · P (θ) (15)

Here, j denotes the transition step number taking values between 0 to m, where

m denotes the last iteration number. βj is the tempering parameter which

takes values such that β0 = 0 < β1 < ... < βm−1 < βm = 1. This allows for the

transitional distribution to transit from the prior to the posterior distribution

(i.e. P 0 = P (θ) to Pm = P (θ|D)). As an illustration, Figure 6 depicts a

series of analytical plots show the evolution of a mono-dimensional transitional

distribution from a Uniform prior (i.e. P (θ) ∼ U [1, 1000]) to a sharp-peaked

Normal posterior (i.e. P (θ|D) ∼ N(252.26, 1.172)) through the use of a Normal

likelihood as shown in Eq. (5) with parameter σk = 1 and model M(θ) = θ · x.

Here, θ is the estimated parameter and x is the model input.

The important aspect of the TMCMC sampler is the determination of the

transition step size, ∆βj (i.e. ∆βj = βj − βj−1), at each transitional step j. It
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(f) Transition iteration j = 5, tempering param-

eter βj = 1.

Figure 6: Evolution of the transition distribution from an initial Uniform prior distribution

(subplot a) to the final posterior distribution (subplot f) through the use of a Normal likeli-

hood.
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has to be such that the transition from P (D|θ)βj−1 to P (D|θ)βj is smooth and

gradual. The magnitude of ∆βj would have a direct impact on the acceptance

rates of candidate samples generated via the MH sampling step. To demonstrate

this, we use the same set-up used for Figure 6. The value of ∆βj is varied and

the corresponding value of acceptance rate will be obtained and shown in Figure

7. From Figure 7, it is observed that the value of acceptance rate drops from 1

when ∆βj = 0 to approximately 0.18 when ∆βj = 1. This is due to the large

difference in the shape function between the prior and the posterior when ∆βj

is large. Therefore, the majority of the candidate samples generated from the

Uniform prior are rejected via the MH sampling procedure. On the other hand,

when ∆βj = 0, the acceptance rate is 1 given that the samples are generated

from the same distribution, leading to a 100 % acceptance rate. This brings a

need to determine an optimal ∆βj .
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Figure 7: Plot of acceptance rates against the transition step size ∆βj from the prior based

on the same set-up used for Figure 6.

To identify the optimal value of ∆βj , Ching and Chen (2007) suggested to
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maintain the coefficient of variation (COV) of the value set P (D|θi)∆βj as close

to 100% as possible [55]. For a mono-dimensional case, the COV of P (D|θi)∆βj

is defined as:

COV (βj) =
σ(P (D|θi)∆βj )

µ(P (D|θi)∆βj )
(16)

whereby σ(P (D|θi)∆βj ) and µ(P (D|θi)∆βj ) are the standard deviation and

mean of the value set P (D|θi)∆βj (for i = 1, ..., N). Here, COV (βj) is a

function of βj for a given known value of βj−1. For a multi-dimensional case,

σ(P (D|θi)∆βj ) and µ(P (D|θi)∆βj ) are the standard deviation and mean of the

value set P (D|θi)∆βj respectively whereby P (D|θi) is simply the likelihood

evaluated at sample set θi = {θ1
i , θ

2
i , ..., θ

Nd−1
i , θNd

i }. Here, Nd is the total num-

ber of dimensions of θi. After obtaining COV (βj), βj can then be determined

analytically from βj−1 using the argument of the minimum of the absolute dif-

ference between COV (βj) and 1 (i.e. 100 %) as shown in Eq. (17) [55, 136]:

βj = argminβj
{|COV (βj)− 1|} (17)

Once βj is calculated, the transition distribution P j can then be determined

using Eq. (15).

To provide an understanding of the workings behind the TMCMC sampler,

we will first explain its procedure in sampling from a mono-dimensional poste-

rior. In practice, at transition step j = 0 (i.e. βj = 0), N samples are generated

from the prior via direct random sampling using standard Monte Carlo method.

This can be done since the prior is usually a well-defined distribution. For tran-

sition steps j ≥ 1 (i.e. while βj < 1), βj is first calculated from βj−1 using Eq.

(17). From there, the transitional distribution P j is defined using Eq. (15) and

N samples are then obtained from P j using MH sampler through the following

procedure: First, a statistical weight function ŵ(θi) is determined to describe

the statistical (or importance) weight associated with each sample θi in the cur-

rent iteration. This statistical weight function ŵ(θi) is mathematically defined

in Eq. (18) as:
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ŵ(θi) =
P (D|θi)∆βj∑N
i=1 P (D|θi)∆βj

(18)

θi (for i = 1, ..., N) is then resampled with replacement, according to ŵ(θi),

from the sample set obtained in the previous transition step. This process is

analogous weighted random sampling [137] and an illustration to this process

is provided in Figure 8. Each of the resampled θi is then set as the starting

sample for the single-step Markov chain. This creates N single-step Markov

chains whereby each chain generates 1 sample. For each of the N chains, a

candidate sample θ∗i is generated from a Normal proposal distribution q(θ∗i |θi)

with mean θi and covariance matrix Σ [55]. The covariance matrix also serves

as the tuning parameter of the MH sampler and is mathematically defined in

Eq. (19):

Σ = γ2
N∑
i=1

ŵ(θi) ·
[
{θi − θ̄} × {θi − θ̄}T

]
(19)

whereby

θ̄ =

N∑
i=1

θi · ŵ(θi) (20)

Here, θ̄ denotes the mean value of the sample set θi in the current iteration j,

and γ is the scaling parameter of Σ whose optimum value was determined to be

0.2 [55]. Finally, the samples are updated by accepting or rejecting candidate

samples θ∗i using Algorithm 1. When done, the algorithm proceeds to recompute

βj+1 and the the transitional distribution P j+1 for iteration j = j + 1. This

entire process is repeated until when βj = 1.

One notable advantage of using transitional distributions, with controlled

transition step size, is that it helps to address the issue of degeneracy. Degener-

acy occurs when only a few out of a total N samples have significant statistical

weights associated with them. For the purpose of illustration, we refer to the

same set-up used in Figure 6. Two values of transition step size from the Uni-

form prior are used for this example, ∆βj = 0.000753 (optimised step size) and

∆βj = 0.0204 (larger step size). For each value of ∆βj , the distribution of the
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Figure 8: Illustration as to how the resampling procedure is done according to the statistical

weights of the samples in green. The red curve here represents the statistical weight function,

ŵ(θi).

normalised weight across 1000 samples is obtained and presented in the form

of histograms which are presented in Figure 9. With ∆βj = 0.000753, Figure

9(a) depicts a general uniform distribution of normalised weight values whereby

every value has more or less the same number of samples having that associated

weight. This is with exception to smaller weight values (near 0) where there is

significantly higher counts of samples, approximately 324 out of 1000 (i.e. 32.4

% of samples), having such weight values. The reason for this is due to the

resulting transition distribution now being defined over a significantly smaller

sample space compared to the Uniform prior (see Figures 6(a) and 6(b)) leading

to smaller weights assigned to these samples which now lie in the region of low

probability defined by the transitional distribution. On the other hand, with

∆βj = 0.0204, Figure 9(b) depicts the case whereby majority of the samples

have very small weight values (near 0). In fact, from the histogram, approxi-

mately 841 out of 1000 samples (i.e. 84.1 % of samples) have such small values

of associated weights. This illustrates degeneracy.

Based on the description above, it can be seen that the TMCMC sampler is
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Figure 9: Normalised weight distribution when ∆βj = 0.000753 (subplot a) and when ∆βj =

0.0204 (subplot b). The transition step ∆βj is with respect to the Uniform prior in Figure 6.

able to generate N samples simultaneously per iteration, whereas the MCMC

technique could only compute one new proposal sample per iteration. This im-

plies that the computation performed by the TMCMC algorithm can be easily

parallelised whereas MCMC can only be parallelised at chain level. In addition,

the TMCMC sampling technique also ensures that the samples in the jth transi-

tion step are approximately distributed as per P j , making the need for burn-in

unnecessary [55, 136].

The TMCMC sampler algorithm used to generate N samples from a one-

dimensional posterior is summarised as follows [55]:

1. Set j = 0 and βj = 0. Sample θi ∼ P (θ), for i = 1, ...N .

2. Set j = j + 1.

3. Compute βj using Eq. (17).

4. While βj < 1, compute P j using Eq. (15).

5. Compute ŵ(θi) using Eq. (18).

6. Resample θi ∼ ŵ(θi) for i = 1, ..., N .

7. Generate N single-step Markov Chains. For each ith chain, generate can-

didate sample θ∗i ∼ q(θ∗i |θi).
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8. Compute the acceptance probability α using Eq. (14) and accept θ∗i with

probability α (see Algorithm 1).

9. Repeat Steps (2) to (8) until βj = 1.

To sample from a multi-variate posterior, a component-wise approach is

adopted in this paper for the TMCMC sampler. The sampling procedure is the

same as that for the mono-dimensional case except that the statistical weight

function in Eq. (18) is now defined as:

ŵ(θi) =
P (D|θi)∆βj∑N
i=1 P (D|θi)∆βj

(21)

The algorithmic description of the TMCMC sampler in sampling from a

general Nd-dimensional posterior is presented in Algorithm 2.

The TMCMC sampler has already been applied in different fields. For

instance, the TMCMC technique is employed: to characterize the statisti-

cal uncertainties of the spatial variability parameters which are based upon

the Cone Penetration Test [138]; to study the multi-modality feature of the

Bouc–Wen–Baber–Noori model of hysteresis [139]; to perform model updating

and analyse the uncertainty associated with the creep behavior of soft soil [140];

in performing reliability-based optimization in linear structure designs subjected

to random excitations [141]; and in analysing the geometrical uncertainty of a

metal frame [142]; in a probabilistic hierarchical Bayesian framework for time-

domain model updating [143]; in Bayesian inference for identification of local

structural properties of layered composites [46]; to perform cracks identification

on beams through Bayesian approach [47]; to perform model parameter updat-

ing for piezoelectric energy harvesters [65]; and to perform inverse uncertainty

quantification with limited experimental data [42].

3.3. Sequential Monte Carlo Sampler

The Sequential Monte Carlo method (or Particle Filter) [144, 145, 146] is a

generalized form of the Kalman Filter methods [147, 148]. It is mainly employed
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Algorithm 2 Component-wise TMCMC algorithm (Nd-dimensional case)

1: procedure (Generate N samples from a general Nd-dimensional posterior)

2: Set j = 0 and βj = 0 . Initialise

3: for i = 1 : N do

4: Draw initial sample set: θi ∼ P (θ)

5: end for

6: while βj < 1 do . Main sampling loop

7: Set j = j + 1

8: Compute ∆βj using Eq. (17)

9: Compute P j using Eq. (15)

10: for i = 1 : N do . For each ith chain

11: Resample: θi ∼ ŵ(θi)

12: for d = 1 : Nd do . Update component θd

13: Draw candidate sample: θd∗i ∼ q(θ∗i |θdi )

14: Accept/Reject θd∗i using Algorithm 1 with 1 iteration

15: end for

16: end for

17: end while

18: end procedure
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in system identification [149, 150, 151, 152] and utilizes point mass (or “par-

ticle”) representations of probability densities. The SMC sampler addresses

Bayesian inference problems involving a dynamical posterior with continuous

observations (e.g. online learning) at every iteration j [153, 154]. Over the

years, numerous advanced SMC sampling strategies have been proposed such as

the block sampling strategies [155], adaptive resampling strategies [156], adap-

tive SMC sampler [157], and nested SMC strategies [158, 159]. However, in this

paper, we shall only discuss the basic SMC sampler algorithm proposed by [153]

which will be adopted to sample from static posteriors as per the case of the

numerical examples presented in this paper.

To provide an understanding of the SMC sampler, this section will first pro-

vide an explanation to the procedure behind sampling from a mono-dimensional

posterior. At iteration j = 0, initial samples of θi (for i = 1, ..., N) are generated

from the prior via standard Monte Carlo method following the reasons provided

in Section 3.2. Each sample θi is assigned an initial statistical (or importance)

weight via a statistical weight function ŵ(θi) which can be determined using

Eq. (18) and setting ∆βj = 1. In Monte Carlo simulation, the method of

obtaining samples from a relatively simpler distribution (i.e. the prior in this

case) instead of the complex or unknown distribution directly and then assign-

ing weights to the sample in accordance to Eq. (18) is known as Importance

sampling [160, 161, 162]. Then, for subsequent iterations j ≥ 1, a metric known

as the effective sample size, Neff , is calculated by taking the reciprocal of the

sum of squares of the statistical weights associated with the samples obtained

from previous iteration as illustrated in Eq. (22) [163]:

Neff =
1∑N

i (ŵ(θi))
2

(22)

Neff provides an indication of degeneracy. If Neff >
N
2 [153, 164], it indicates

the absence of degeneracy and the algorithm proceeds directly to the updating

step. In the updating step, N independent single-step Markov chains are gen-

erated, each initiating from the individual current sample θi. For each chain,
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a candidate sample θ∗i is sampled from a proposal distribution q(θ∗i |θi) which

is usually set as some standard distribution such as Normal or multinominal

[153, 165]. In this paper, q(θ∗i |θi) is set as a Normal distribution with mean θi

and variance σp
2 [50]. The variance σp

2 also serves as the user-defined tuning

parameter of the SMC sampler which influences the spread of candidate sam-

ples generated. Each candidate sample θ∗i becomes the sample generated in the

current iteration and its nominal weight is calculated:

w(θ∗i ) = ŵ(θi) ·
P (θ∗i |D)

P (θi|D)
· q(θi|θ

∗
i )

q(θ∗i |θi)
(23)

Here, q(θi|θ∗i ) denotes the Backward Markov Kernel which describes the back-

ward transition probability from θ∗i to θi, while q(θ∗i |θi) denotes the Forward

Markov Kernel which describes the forward transition probability from θi to θ∗i .

Both q(θi|θ∗i ) and q(θ∗i |θi) are equivalent as a result of the symmetrical property

of the proposal (Normal) distribution [148]. As such Eq. (23) becomes simply:

w(θ∗i ) = ŵ(θi) ·
P (θ∗i |D)

P (θi|D)
(24)

and ŵ(θi) is then obtained by normalising Eq. (24):

ŵ(θ∗i ) =
w(θ∗i )∑N
i=1 w(θ∗i )

(25)

This entire sampling process is repeated for successive iterations j all the way

until the termination criteria is reached whereby the desired COV of the esti-

mates of θ is obtained and when the distribution of θi becomes stable.

On the other hand, if Neff <
N
2 , it indicates degeneracy. This case is known

as resampling, N samples are drawn (with replacement) from the sample set θi

according to their respective weights ŵ(θi). This means that samples with

higher weights associated with it gets drawn more frequently, a similar process

to weighted random sampling. An illustration to this is provided in Figure 8.

Following which, the statistical weights of these resampled N samples are reset

to ŵ(θi) = 1
N . When this is done, the algorithm proceeds to the updating step

as explained earlier.
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It should be noted that the resampling step does not completely avoid the

issue of degeneracy. Instead, it reduces the computation time by eventually

discarding samples with insignificant weights associated with it. Moreover, re-

sampling also helps to artificially “conceal” impoverishment by ensuring that

unique samples with high associated weights are being duplicated to a higher

extent which introduces high correlations between samples or particles [166],

and does not contribute in the exploration of the sample space.

There are 2 notable similarities between TMCMC and the SMC sampler

techniques: Both the TMCMC and SMC sampling algorithms involve the as-

signment of statistical weights to the samples so as to perform weighted random

sampling to obtain initial sample points of the single-step MCMC process and

update the samples according to the target distribution; and both sampling

techniques are able to generate all N samples within an iteration. There are,

however, 4 main differences between the two techniques [55, 136, 153, 166]: TM-

CMC involves the use of transitional distributions in obtaining samples whereas

the SMC sampler does not; the SMC sampler addresses degeneracy by perform-

ing resampling if Neff <
N
2 while TMCMC sampler does so by moderating its

transition step ∆βj at every iteration via Eq. (17); for the TMCMC algorithm,

candidate samples are either accepted or rejected based on the accept-reject

criterion of the MH algorithm whereas for the SMC sampler, there is no rejec-

tion of candidate samples; and for the SMC sampler, parallel computing across

multiple computer cores is not feasible [154] while this feature is possible for the

TMCMC sampler.

The SMC sampler algorithm used to generateN samples from a one-dimensional

posterior is summarised as follows [50, 164, 166]:

1. At iteration j = 0, sample θi ∼ P (θ) for i = 1, ..., N .

2. Calculate ŵ(θi) using Eq. (18), setting ∆βj = 1.

3. Set j = j + 1. While “termination criteria” = false, calculate Neff using

Eq. (22). If Neff <
N
2 , proceed to Step (4). Else, proceed directly to

Step (5).
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4. Resample θi ∼ ŵ(θi) for i = 1, ..., N . Set ω̂(θi) = 1
N

5. Generate N single-step Markov Chains. For each ith chain, generate can-

didate sample θ∗i ∼ q(θ∗i |θi).

6. Update w(θ∗i ) using Eq. (24) and obtain ŵ(θ∗i ) using Eq. (25).

7. Repeat steps (2) to (7) until termination criteria is met (i.e. required COV

of estimate is obtained and stability of the distribution achieved).

To sample from a multi-variate posterior, a component-wise approach is

adopted in this paper for the SMC sampler. The sampling procedure is the

same as that for the mono-dimensional case except that the initial statistical

weight function is now defined as per Eq. (21) and setting ∆βj = 1. In ad-

dition, a multi-variate proposal distribution is used in the form of q(θ∗i |θi) =∏Nd

d=1 q(θ
d∗
i |θdi ). For this paper, q(θ∗i |θi) is set to be a multi-variate Normal dis-

tribution with covariance matrix Σp which takes the form of a square diagonal

matrix and now serves as the tuning parameter of the sampler. Furthermore,

the updated nominal weight from Eq. (24) is now defined as:

w(θ∗i ) = ŵ(θi) ·
P (θ∗i |D)

P (θi|D)
(26)

whereby θ∗i = {θ1∗
i , θ

2∗
i , ..., θ

Nd−1∗
i , θNd∗

i } is the updated vector states of all the

ith samples across d dimensions, P (θ∗i |D) is the posterior value evaluated at

θ∗i , and P (θi|D) is the posterior value evaluated at θi. From there, ŵ(θ∗i ) is

obtained by normalising w(θ∗i ) as per Eq. (25). To explain the sampling pro-

cedure from a general Nd-dimensional posterior, we define the general updated

dth state vector θd∗i = {θ1∗
i , ..., θ

d−1∗
i , θd∗i , θ

d+1
i , ..., θNd

i }. Using this convention,

the algorithmic description of the SMC sampler in sampling from a general

Nd-dimensional posterior is presented in Algorithm 3.

Currently, the SMC sampler has already been employed to: perform multi-

resolution alignment of multiple unsynchronised audio sequences [167]; analyse

and quantify the uncertainty of the measured data from probabilistic nonlinear

state-space models of dynamical systems [168]; perform cosmological parameter

estimation using Approximate Bayesian Computation in large high dimensional
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Algorithm 3 Component-wise SMC sampler algorithm (Nd-dimensional case)

1: procedure (Generate N samples from a general Nd-dimensional posterior)

2: Set j = 0 . Initialise

3: for i = 1 : N do

4: Draw initial sample set: θi ∼ P (θ)

5: Compute ŵ(θi) using Eq. (21)

6: end for

7: while “Termination criteria” = false do . Main sampling loop

8: Set j = j + 1

9: Compute Neff using Eq. (22)

10: if Neff <
N
2 then . Conditional resampling step

11: for i = 1 : N do

12: Resample set: θi ∼ ŵ(θi)

13: Reset ŵ(θi) = 1
N

14: end for

15: end if

16: for i = 1 : N do . For each ith chain

17: for d = 1 : Nd do . Update component θl

18: Sample: θd∗i ∼ q(θd∗i |θi)

19: Update state vector θd∗i

20: end for

21: Set θ∗i = {θ1∗
i , θ

2∗
i , ..., θ

Nd−1∗
i , θNd∗

i }

22: Update w(θ∗i ) using Eq. (26)

23: Obtain ŵ(θ∗i ) using Eq. (25)

24: end for

25: end while

26: end procedure
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and correlated parameter spaces [53]; and to estimate the the parameter of in-

terest in hydrological models whereby non-linear dependency structures as well

as multiple nodes are often present [169]; analyse and quantify the uncertainty

of the measured data from probabilistic nonlinear state-space models of dy-

namical systems [168]; to perform uncertainty reduction in prognostics [170];

to estimate parameters of dynamical systems from big data [50]; to perform

Bayesian learning of state-space models with highly informative observations

[171]; and to extract bearing fault features via Bayesian approach [172].
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4. Applications

4.1. Spring-Mass System under static force: Linear relationship between mea-

sured parameter and uncertain parameter

Figure 10: Schematic diagram of the simple spring-mass system.

Figure 10 illustrates a spring-mass system consisting of a mass m attached

to a spring k, subject to a static force F . The initial position of the mass is

x = 0 . When F is applied to the mass, the mass will move to a new position

x = d. It is well known that for this type of problem F and d are related by

Hooke’s Law so that:

F = −k × d (27)

In this application, it is assumed that k has a fixed value, k̂ = 263 N/m,

which is uncertain. However the measurements of d are affected by measurement

“noise” such that:

dmeasured = d+ ε1 (28)
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In addition, the measurements of F are also affected by measurement “noise”

such that:

Fmeasured = F + ε2 (29)

The parameters ε1 and ε2 are assumed to be independent random variables

following a Normal distribution with means 0.0 N and standard deviations 0.003

m and 1.0 N respectively. Overall, the total effect of the “noise” on the data

obtained for Fmeasured is contributed by “noise” in the measurements of both

quantities d and F as seen in Eq. (28) and (29) as well as in reality. How-

ever, we will assume that the contribution of measurement “noise” comes only

from Fmeasured. For this problem, 15 independent realisations of the Fmeasured

- dmeasured pair are obtained. The Fmeasured - dmeasured data obtained are

presented in the form of a scatter plot shown in Figure 11 while its numerical

values are presented in a table as shown in Table 3.
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Figure 11: Scatter plot of the 15 simulated “noisy” data of Force against the respective values

of Displacements.
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Displacement Noisy Data Ideal Measurement

(m) (N) (N)

0.0259 -6.13 -6.80

0.0276 -5.77 -7.26

0.0295 -6.71 -7.75

0.0367 -10.86 -9.65

0.0491 -12.63 -12.92

0.0528 -13.17 -13.89

0.0579 -13.82 -15.24

0.0680 -18.68 -17.89

0.0688 -18.32 -18.12

0.0743 -19.68 -19.55

0.0748 -18.26 -19.67

0.0774 -20.67 -20.36

0.0775 -18.74 -20.37

0.0779 -20.00 -20.49

0.0782 -19.85 -20.58

Table 3: Numerical values of the data illustrated in Figure 11.

4.1.1. Linear Least-squares Method

One direct way to solve for k analytically would be via the method of Linear

Least-squares minimization [173]. The equations to the Linear Least-squares

method is as follows:

(xTx)k = xTF (30)

whereby x is the design matrix, which in this case would be the vector of the

displacement values, xT is the transpose of the design matrix, and F is the

vector of the real measurement values of the force acting on the spring. As

such, k can be solved by re-expressing Eq. (30) into the following form:
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k = (xTx)−1xTF (31)

Using the data values shown in Table 3 as well as the left matrix divide operation

on MATLAB, the Linear Least-squares solution to k is 255.87 N/m with a

percentage discrepancy of −2.71 % from its true value. The updated linear

model is illustrated in Figure 12.
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Figure 12: The updated linear model via the linearization method as illustrated by the red

line with the “noisy” data represented by the blue circles.

4.1.2. Bayesian Model updating

For this problem, the a-priori knowledge of k is based on the initial hy-

pothesis that k can range between 0.01 N/m and 1000 N/m. As such, this

non-informative prior distribution of k, P (k), can be modelled after a Uniform

distribution whose lower-bound and upper-bound values are 0.01 N/m and 1000
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N/m respectively. The likelihood function is modelled using a Normal distri-

bution with the standard deviation equal to that of the noise, ε. Thus, the

likelihood function is expressed as follows:

P (Fmeasured,1:15|k) ∝ exp[− 1

2(1)2

15∑
n=1

(Fmeasured,n + k · dn)2] (32)

The justification behind the choice of the likelihood function and its associated

standard deviation is as presented in Section 1.

In this problem, we will compare the performances of the MCMC, TMCMC,

and the SMC sampler in attaining a COV of less than 2.0 % in their respective

estimation of k. This comparison will be done on the basis of the sample size

required to attain convergence, the time-elapsed, and the COV in the estimation

of k.

4.1.3. MCMC sampler Results

Before the main sampling procedure is conducted, a calibration experiment

is performed so as to determine the value of the tuning parameter whereby the

MCMC sampler is able to achieve an acceptance rate close to the optimum value

of 0.234. To do this, a fixed sample size of 10000 is obtained from the posterior,

with 0 burn-in, using 5 different values of the tuning parameter: 0.10 N/m,

1.50 N/m, 22.50 N/m, 80.00 N/m, and 100.00 N/m. The numerical results

are summarized in Table 4 while the corresponding time-series sample plots are

presented in Figure 31. From the time-series sample plots in Figure 31, the

burn-in length Nburn−in is obtained and presented in Table 4. Based on the

results, the optimum value of tuning parameter is determined to be 22.50 N/m.

The the main sampling procedure is then conducted with a sample size of

1000. This value of sample size is chosen as it ensures sufficient convergence

of the sample estimate of k by the MCMC sampler. The chain is initiated

at 693.44N/m and sampling is first done with 0 burn-in. The resulting time-

series plot and histogram of the sample values of k is shown in Figure 13.

Based on the time-series plot in Figure 13, the burn-in length is determined

to be approximately 75. Figure 14 illustrates the resulting time-series plot and
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Tuning Parameter Acceptance Level Time Nburn−in

(N/m) (sec)

0.10 0.906 1.80 Undetermined

1.50 0.844 1.78 1250

22.50 0.232 1.76 65

80.00 0.067 1.72 90

100.00 0.051 1.79 80

Table 4: Summary of results from varying the tuning parameter values while keeping the

sample size fixed at 10000.

histogram of the sample values of k after discarding the first 75 samples. The

sampler took 0.23 seconds of computation time and yielded an estimated mean

value of 255.64 N/m for k with a standard deviation σ of 4.23 N/m, thus, giving

the estimate a COV of 1.65 %.
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Figure 13: The resulting time-series sample plot (a) and the histogram (b) obtained using

MCMC sampler with sample size 1000 with 0 burn-in. The red line in the time-series sample

plot denotes the true sample mean value.

The above procedures were conducted using only a single MCMC chain.

Further simulation experiments are performed using multiple chains to observe

if there are any significant changes in the precision of the estimated values of k.
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Figure 14: The resulting time-series sample plot (a) and the histogram (b) after discarding

the first Nburn−in = 75 samples. The red line in the time-series sample plot denotes the true

sample mean value.

For this purpose, a set of simulations is performed using 3 and 5 chains, each

chain having a sample size of 1000 and burn-in length of 75 as determined from

Figure 13. The tuning parameter value is set at 22.50 N/m. The numerical

results are summarized in Table 5. As a form of comparison, 2 more sets of

simulations were performed using a single MCMC chain with sample size 3000

and 5000 with burn-in length of 100 and 20 respectively. The numerical results

are presented in Table 6.

Nchain Nburn−in E[k] σ[k] COV Time Iterations

(N/m) (N/m) (%) (sec)

1 75 255.64 4.23 1.65 0.23 1000

3 75 255.55 4.20 1.64 0.38 1000

5 75 255.48 4.19 1.64 0.43 1000

Table 5: Summary of results from varying the number of chains, each chain with sample size

of 1000 and burn-in length of Nburn−in = 75. Reference solution: k = 263 N/m.

From the results in Tables 5 and 6, it can be seen that by varying the num-

ber of MCMC chains, the COV of the estimate does not show much variation
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Nsamples Nburn−in E[k] σ[k] COV Time Iterations

(N/m) (N/m) (%) (sec)

3000 100 255.96 4.22 1.65 0.58 3000

5000 20 255.71 4.25 1.66 0.96 5000

Table 6: Summary of results from varying the number of samples. Reference solution: k = 263

N/m.

whereas the time elapsed for the simulation is significantly shorter when us-

ing multiple chains with smaller sample size compared to using a single chain

with a larger sample size. A reason to account for this is due to the fact that

each individual MCMC chain is computed independently and in parallel by the

sampler.

4.1.4. TMCMC sampler Results

For the TMCMC sampler, a sample size of 1000 samples was generated from

the posterior to ensure sufficient convergence of the sample estimate of k. The

burn-in length is set to be 0. The sampler took 11.85 seconds of computation

time over 5 iterations and yielded an estimated mean value of 256.01 N/m for

k with a standard deviation of 4.26 N/m, thus, giving the estimate a COV of

1.66 %. The resulting time-series sample plot and histogram are presented in

Figure 15.

4.1.5. SMC sampler Results

Before the main sampling procedure is conducted, a calibration experiment

is performed to determine the value of the tuning parameter such that the SMC

sampler is able to achieve a COV of less than 2.0 % in its estimation of k. To do

this, a fixed sample size of 10000 is generated from the posterior using 5 different

values of the tuning parameter: 0.01 N2/m2, 1.50 N2/m2, 7.50 N2/m2, 15.00

N2/m2, and 30.00 N2/m2. The number of iteration of the SMC sampler is set

at 1 given that the sampling is done from a static posterior. The numerical
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Figure 15: The resulting time-series sample plot (a) and the histogram (b) obtained using

TMCMC sampler with sample size 1000. The red line in the time-series sample plot denotes

the true sample mean value.

results are summarized in Table 7.

Tuning Parameter E[k] σ[k] COV Time

(N2/m2) (N/m) (N/m) (%) (sec)

0.01 255.65 4.15 1.62 2.14

1.50 255.81 4.22 1.65 2.14

7.50 255.50 4.83 1.89 2.14

15.00 256.31 5.67 2.21 2.15

30.00 255.94 7.05 2.76 2.14

Table 7: Summary of results of SMC sampler from varying the tuning parameter values while

keeping the sample size fixed at 10000. Reference solution: k = 263 N/m

It is noteworthy that the choice of tuning parameter has barely any impact

on the computation time by the SMC sampler. However, based on the results

presented in Table 7, it can been observed that the larger the value of the tuning

parameter, the larger the COV associated with the estimate of k. This is due

to the fact that for a larger tuning parameter value, the spread of the candidate

samples obtained from the proposal distribution becomes larger. To achieve the
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aforementioned criteria on the COV of the estimate, the tuning parameter value

to be used for this problem will be 1.50.

The main sampling procedure is then conducted with a sample size of 1000.

This value of sample size is chosen as it ensures sufficient convergence of the

sample estimate of k by the SMC sampler. The sampler took 0.26 seconds of

computation time and yielded an estimated mean value of 255.13 N/m for k

with a standard deviation 4.45 N/m, thus, giving the estimate a COV of 1.74

%. The resulting time-series sample plot and histogram are presented in Figure

16.
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Figure 16: The resulting time-series sample plot (a) and the histogram (b) obtained using

SMC sampler with sample size 1000. The red line in the time-series sample plot denotes the

true sample mean value.

4.1.6. Discussions

The overall results of the sampling estimates of k for each sampler are sum-

marized in Table 8 and the resulting Bayesian model update by each of the

sampler are also presented in Figure 17. Based on the results, it can be seen

that for the same number of samples obtained from the posterior, the computa-

tion time elapsed for the TMCMC sampler is significantly higher compared to

that of the MCMC and SMC sampler. This is due to the fact that the TMCMC

algorithm is such that for each iteration, it obtains Nsamples samples from the

transitional distribution, where Nsamples is the sample size to be obtained from
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the posterior, as mentioned in Section 3.2. In addition, it can also be seen from

the results that the estimate of k obtained by MCMC sampler yields the least

COV and has the shortest computation time which would make the MCMC

sampler the better choice of sampler among the 3 samplers for this problem.

Method Nsamples E[k] σ[k] COV Time Iterations

(N/m) (N/m) (%) (sec)

MCMC 925 255.64 4.23 1.65 0.23 1000

TMCMC 1000 256.01 4.26 1.66 11.85 5

SMC 1000 255.13 4.45 1.74 0.26 1

Table 8: Summary of the numerical results of the estimation of k by the respective samplers.

Reference solution: k = 263 N/m
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(a) MCMC model update.
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(b) TMCMC model update
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(c) SMC model update

Figure 17: Results of the model updating for the respective samplers. The red lines denote

the 5th and 95th percentile bounds.
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4.2. Inverse Eigenvalue Problem: 2-D Bi-modal Posterior

In this example, the performance of the advanced Monte Carlo techniques

will be analysed in estimating the parameters of interest from a 2-dimensional,

bi-modal posterior distribution. This will be done for a 2×2 square matrix, H,

which takes on the following form:

θ1 + θ2 −θ2

−θ2 θ2


An example of a matrix taking on such form, in the context of engineering

problems, would be the Stiffness matrix used to describe the configuration of

a tuned mass damper system [174]. In this problem, θ1 and θ2 are the matrix

elements which are assumed to have fixed values, θ̂1 = 0.5 and θ̂2 = 1.5.

In a physical context, the square matrix H represents a physical quantity

whose eigenvalues λ1 and λ2 represent the possible observations that can be

made for that physical quantity. Readers of this article are assumed to be

familiarized with the derivation of the eigenvalues. The actual observations

λnoisyi are, however, corrupted with their respective “noise”, εi, for i = 1, 2 such

that:

λnoisy1 =
(θ1 + 2θ2) +

√
θ1

2 + 4θ2
2

2
+ ε1 (33)

λnoisy2 =
(θ1 + 2θ2)−

√
θ1

2 + 4θ2
2

2
+ ε2 (34)

whereby the “noise” terms, ε1 and ε2, both follow a Normal distribution with

means 0.0 and standard deviations 1.0 and 0.5 respectively. For this problem,

we will simulate 15 independent “noisy” data from each model to perform the

analysis. The available data are presented in the form of a scatter plot shown in

Figure 18 while its numerical values are presented in a table as shown in Table

9.
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Figure 18: Scatter plot of the 15 different measured values of λnoisy
1 and λnoisy

2 .

4.2.1. Bayesian Model Updating

For this problem, the a-priori knowledge of θ1 and θ2 is that they both can

take values between 0.01 and 4. As such, this non-informative prior distribution,

P (θ1, θ2), can be modelled after a 2D Uniform distribution whose lower-bound

and upper-bound values are 0.01 and 4 respectively in both dimensions. The

likelihood function is modelled using a 2D Normal distribution whose covariance

matrix has off-diagonal element equal to 0 and diagonal elements corresponding

to the standard deviation of each of the “noise” terms, ε1 and ε2. Thus, the 2D

likelihood function is expressed as follows:

P (λ|θ) ∝ exp[−1

2

2∑
i=1

15∑
n=1

(
λnoisyi,n − λmodeli

σi
)2] (35)

whereby λ is the 15 by 2 vector of the “noisy” observations, θ is the vector of

the uncertain model parameters (θ1 and θ2), and σi is the standard deviation
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Noisy eigenvalue 1 Noisy eigenvalue 2

(λnoisy1 ) (λnoisy2 )

1.51 0.33

4.01 0.30

3.16 0.27

3.21 0.18

2.19 0.33

1.71 0.23

2.73 0.21

5.51 0.20

1.95 0.11

4.48 0.20

1.43 0.16

2.91 0.26

3.81 0.23

3.58 0.25

2.62 0.25

Table 9: Numerical values of the “noisy” data illustrated in Figure 18.

of εi for i = 1, 2.

4.2.2. MCMC sampler Results

The main sampling procedure is performed with a sample size of 1000 to

ensure sufficient convergence of the sample estimate of θ1 and θ2 by the MCMC

sampler. The tuning parameter for the sampler is set at 0.04 · I, where I

denotes the Identity matrix. This yields an acceptance level of 0.235. The chain

is initiated at {θ1, θ2} = {2.84, 2.33} and sampling is first done with 0 burn-in.

The resulting scatterplot matrix and 2D scatter plot are presented in Figure 19.

To ensure sufficient burn-in, the burn-in length is set to be 30 and the resulting

scatterplot matrix and 2D scatter plot as shown in Figure 20 where it can be
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observed that the samples converge about {θ1, θ2} = {0.51, 1.36}. The sampler

took 0.40 seconds of computation time over 1000 iterations.
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Figure 19: The resulting scatterplot matrix (a) and 2D scatter plot (b) obtained using MCMC

sampling with sample size 1000 and 0 burn-in.
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Figure 20: The resulting scatter plot matrix (a) and 2D scatter plot (b) after discarding the

first Nburn−in = 30 samples.
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4.2.3. TMCMC sampler Results

For the TMCMC sampler, a sample size of 1000 samples was obtained from

the posterior distribution to ensure sufficient convergence of the sample estimate

of θ1 and θ2. The burn-in length is set to be 0. The sampler took 18.38 seconds

of computation time over 5 iterations and the resulting scatterplot matrix and

2D scatter plot are presented in Figure 21. Based on Figure 21, the scatter plot

features two distinct convergence points centered about {θ1, θ2} = {0.51, 1.35}

and {2.75, 0.27}.
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Figure 21: The resulting 2D scatter plot matrix (a) and scatter plot (b) obtained using

TMCMC sampler with sample size 1000.

4.2.4. SMC sampler Results

Before the main sampling procedure is conducted, a calibration experiment is

performed by varying the tuning parameter to see its effect on the scatter plots.

To do this, a fixed sample size of 10000 is used for sampling using 4 different

covariance matrix: 0.001 · I, 0.1 · I, I, and 10 · I. The number of iteration of the

SMC sampler is set at 1 given that the sampling is done from a static posterior

distribution. The results are illustrated in the form of a series of scatter plot

matrix diagrams for each covariance matrix used as tuning parameter in Figure
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22.

(a) Tuning parameter = 0.001 · I (b) Tuning parameter = 0.1 · I

(c) Tuning parameter = I (d) Tuning parameter = 10 · I

Figure 22: The resulting scatter plot matrix diagrams for different covariance matrix used as

the tuning parameter.

Based on the Figure, it can be seen that as the tuning parameter is being

scaled by a larger factor, spread of the samples become wider. In addition, it can

also be observed that when the Identity matrix is used as the tuning parameter,

the SMC sampler is no longer able to resolve the two peaks of the posterior and

any tuning parameter that is scaled larger than I itself would also give rise to
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the same result. In such cases, more iterations are required before the samples

converge to the posterior. To ensure that the samples converge to the posterior

and identify the two peaks within an iteration, 0.001 · I is used as the choice of

the tuning parameter for this problem.

The main sampling procedure is then conducted with a sample size of 1000.

The sampler took 0.63 seconds of computation time over 1 iteration and the

resulting scatterplot matrix and 2D scatter plot are presented in Figure 23.

Based on Figure 23, the scatter plot features two distinct convergence points

centered about {θ1, θ2} = {0.52, 1.35} and {2.86, 0.26}.
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Figure 23: The resulting 2D scatter plot matrix (a) and scatter plot (b) obtained using SMC

sampler with sample size 1000.

4.2.5. Discussions

From the above results, it can be seen that the MCMC sampler is only able to

identify 1 out of the 2 peaks of the bi-modal posterior. This is attributed to the

acceptance criteria of the MH algorithm as described in Section 3.1 which results

in the samples converging to only one of the modes of a multi-modal posterior.

As such, the MCMC sampler would not be a suitable choice of sampler to

sample for such posteriors. This shortcoming of the MCMC sampler has also
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been reflected in [175] when discussing the implementation of the algorithm

on a posteriors with multiple peaks. The TMCMC and SMC samplers on the

other hand are able to identify all the peaks of the bi-modal posterior. For the

TMCMC sampler, this is attributed to the use of the transitional distributions

which ensures that the samples are evenly sampled across the sample space from

the prior to the posterior as described in Section 3.2. For the SMC sampler, this

is attributed to the resampling procedure whereby samples closer to each of the

two peaks of the posterior are resampled with higher probability according to

Eq. (21). This allows for the updated samples to converge towards both peaks.

Based on the estimation results of θ1 and θ2 identified by the respective

samplers, the updated model using MCMC, TMCMC, and SMC samplers are

presented in Figure 24.
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(a) MCMC model update.
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(b) TMCMC model update
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(c) SMC model update

Figure 24: Updated scatter plot profiles obtained from: (a) MCMC, (b) TMCMC, and (c)

SMC sampling methods.
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4.3. Bayesian Model Updating of DLR-AIRMOD Test Structure

In order to investigate the existing variability of the natural response fre-

quency in the dynamic behaviour of nominally identical test structures the

Göttingen’s German Aerospace Centre (DLR) constructed a replica of the GAR-

TEUR SM-AG19 benchmark known as AIRcraft MODel (AIRMOD) [176]. The

DLR-AIRMOD is an aluminum structure consisting of aluminium beams con-

nected using bolted joints. Details of the AIRMOD structure and the experi-

mental settings can be found in [177, 178, 179].

The model updating procedure was done using a test data set of frequency

response functions. These measurements are obtained from an experiment which

involves disassembling and reassembling the structure 130 times to produce 260

different modal data sets from single point excitation at two locations for vari-

ability. In that experiment, 18 input parameters were identified and selected to

represent the variability associated with the position of the glue, screws, and

cable bundles in the DLR-AIRMOD structure each time after it was reassem-

bled. Details of the 18 input parameters and their respective nominal values are

summarised in Table 10.

From the experiment campaign, the frequency response functions are ob-

tained. Through the use of experimental modal analysis, 30 different vibration

modes and its respective frequencies were obtained of which 14 of them are

identified as “active modes”. These active modes will be used as measurement

outputs for model updating. Their respective details and test statistics are

summarised in Table 11.

In [179], a deterministic model updating via the sensitivity method [180, 181]

was performed using the information provided in Table 11 to update the 18 input

uncertain model parameters listed in Table 10. The resulting statistics of the

18 updated parameters are summarised in Table 12.

In this section, the Bayesian model updating approach is be adopted to up-

date the 18 input parameters which will be done using MCMC, TMCMC and

SMC sampling techniques. The purpose of this is to compare the sampling

and model updating performances of each of the samplers as well as to assess
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Parameter Type Location Description Init. val. Unit

θ1 Stiffness Front Bungee Cord Support Stiffness 1.80× 103 N/m2

θ2 Stiffness Rear Bungee Cord Support Stiffness 7.50× 103 N/m2

θ3 Stiffness VTP/HTP Joint Sensor Cable - y dirn 1.30× 102 N/m

θ4 Stiffness Wing/Fuselage Joint Top Sensor Cable - y dirn 7.00× 101 N/m

θ5 Stiffness Wing/Fuselage Joint Bottom Sensor Cable - y dirn 7.00× 101 N/m

θ6 Stiffness VTP/HTP Joint Joint Stiffness - x, y dirns 1.00× 107 N/m

θ7 Stiffness VTP/HTP Joint Joint Stiffness - z dirn 1.00× 109 N/m

θ8 Mass VTP/HTP Joint Sensor Cables 2.00× 10−1 kg

θ9 Mass Wingtip Right Wing Screws and Glue 1.86× 10−1 kg

θ10 Mass Wingtip Left Wing Screws and Glue 1.86× 10−1 kg

θ11 Mass Wingtip Left/Right Sensor Cables on Wings 1.50× 10−2 kg

θ12 Mass Outer Wing Left/Right Sensor Cables on Wings 1.50× 10−2 kg

θ13 Mass Inner Wing Left/Right Sensor Cables on Wings 1.50× 10−2 kg

θ14 Stiffness Wing/Fuselage Joint Joint Stiffness - x dirn 2.00× 107 N/m

θ15 Stiffness Wing/Fuselage Joint Joint Stiffness - y dirn 2.00× 107 N/m

θ16 Stiffness Wing/Fuselage Joint Joint Stiffness - z dirn 7.00× 106 N/m

θ17 Stiffness VTP/Fuselage Joint Joint Stiffness - x dirn 5.00× 107 N/m

θ18 Stiffness VTP/Fuselage Joint Joint Stiffness - y dirn 1.00× 107 N/m

Table 10: List of the 18 input parameters and their respective details. Data obtained from

[177].

and highlight the robustness of each algorithm in sampling from a complex,

higher-dimensional posterior. The model to be used for the Bayesian updat-

ing procedure is a surrogate model in the form of an Artificial Neural Network

(ANN). It serves to provide a relatively computationally inexpensive approach

compared to the finite element modelling and is assumed to be an accurate rep-

resentation of the underlying model. The ANN model consists of 14 individual

ANNs, each trained to predict a specific frequency output of the corresponding

active mode [48]. These 14 individual ANN each comprises of 1 input layer

consisting of 18 nodes, 2 hidden-layers consisting of 16 nodes in the first and 6

nodes in the second respectively, and 1 output layer consisting of 1 node. For

each of these ANNs, a sigmoid activation function is used in the form of the hy-

perbolic tangent function [48]. In this example, the simulation and computation

was implemented using the OpenCossan software [182, 183].
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Output Mode name fmean fstd COV Sample size

(Hz) (Hz) (%)

f1 RBM Yaw 0.23 0.006 2.41 41

f2 RBM Roll 0.65 0.019 2.89 81

f3 RBM Pitch 0.83 0.017 1.99 83

f4 RBM Heave 2.17 0.024 1.11 86

f5 2nWingBending 5.50 0.004 0.07 86

f6 3nWingBending 14.91 0.017 0.05 86

f7 WingTorsionAnti 31.96 0.020 0.06 86

f8 WingTorsionSym 32.33 0.017 0.05 86

f9 4nWingBending 43.89 0.015 0.03 86

f10 1nWingForeAft 46.71 0.149 0.32 86

f11 2nWingForeAft 51.88 0.012 0.02 86

f12 VtpTorsion 65.93 0.274 0.42 86

f13 2nHtpBending 205.59 1.023 0.50 86

f14 HtpForeAft 219.07 1.663 0.76 86

Table 11: Test statistics of the 14 frequency outputs to be used to perform model updating.

Data obtained from [177].

4.3.1. Bayesian Model Updating

Contrary to the standard procedure of using prior identified from previous

experience or methods (see e.g. [179]), here the non-informative prior is used.

Therefore, for each of the individual input parameter, θi (for i = 1, ..., 18),

P (θi), is modelled as a Uniform distribution whose lower bound and upper

bound is 5 % and 200 % of the input’s nominal values, respectively. The input

parameters are assumed to be independent of one another and thus, the overall

prior distribution, P (θ), can be expressed as follows:

P (θ) =

18∏
i=1

P (θi) (36)
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Parameter Mean Std COV (%) Unit

θ1 1.82× 103 1.08× 102 5.94 N/m2

θ2 7.90× 103 2.40× 102 3.04 N/m2

θ3 1.87× 102 1.09× 101 5.85 N/m

θ4 4.47× 101 2.03× 100 4.55 N/m

θ5 4.24× 101 2.24× 100 5.29 N/m

θ6 2.53× 106 3.50× 105 13.83 N/m

θ7 7.80× 108 2.56× 108 32.82 N/m

θ8 1.86× 10−1 7.60× 10−3 4.08 kg

θ9 2.09× 10−1 4.65× 10−3 2.22 kg

θ10 1.90× 10−1 4.28× 10−3 2.26 kg

θ11 3.00× 10−2 1.26× 10−3 4.20 kg

θ12 9.83× 10−3 1.22× 10−3 12.37 kg

θ13 1.47× 10−2 1.65× 10−4 1.12 kg

θ14 4.07× 107 1.32× 106 3.24 N/m

θ15 9.48× 106 1.06× 106 11.18 N/m

θ16 2.93× 106 1.89× 105 6.44 N/m

θ17 8.75× 106 2.80× 106 32.00 N/m

θ18 5.97× 106 6.90× 105 11.56 N/m

Table 12: Updated statistics of the 18 input parameters obtained using the Sensitivity model

updating method. Results taken from [179].

The likelihood function is a 14-dimensional multivariate Normal distribution.

Assuming independence between the experimental outputs, it is mathematically

expressed as follows [179]:

P (f |θ) ∝
14∏
i=1

exp[− (fi −Mi)
2

2 · σ2
i

] (37)

whereby fi is the experimental measurement of the ith frequency mode, Mi is

the ith ANN model used to predict the frequency output of the ith active mode,

and σi is the standard deviation of the residual between the experimental result

fi and the model M̂i. Here, σi is not a fixed constant parameter unlike in the
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previous examples. Instead, this hyper-parameter will be inferred directly from

the residual between experimental data values and the ANN model.

4.3.2. MCMC sampler Results

A nominal covariance matrix, COV , is first constructed in the form of a

diagonal matrix whose diagonal elements correspond to the respective variance

of the posterior for each of the 18 input parameters. This is done using the

information from statistics of the updated input parameters obtained using the

sensitivity method which is presented in Table 12. To ensure that the acceptance

rate of the sampler is within the acceptable range of 0.15 to 0.50, the tuning

parameter is set at 10−3 · COV . A sample size of 1500 is obtained from the

posterior, with a burn-in length of 500, and the simulation was performed on 1

core with a CPU memory of 10.5 Gigabytes. The computation involved a total

of 1500 iterations over 83.81 seconds with an acceptance rate of 0.258. The

resulting statistics of the updated input parameters are summarised in Table 13

while the posterior distribution of the normalised data for each input parameter

is presented in a scatter plot matrix as illustrated in Figure 25.

4.3.3. TMCMC sampler Results

Using the TMCMC sampler, a sample size of 1000 samples was obtained

from the posterior. The burn-in length for all iterations, up to the second

last iteration, was set at 50 while the burn-in length for the last iteration was

set at 200. The simulation was performed using local parallelization across 34

cores, each with a CPU memory of 10.5 Gigabytes. The computation involved

a total of 22 iterations over 5 hours 13 minutes. The resulting statistics of the

updated input parameters are summarised in Table 13 while the posterior of the

normalised data for each input parameter are presented in a scatter plot matrix

as illustrated in Figure 26.

4.3.4. SMC sampler Results

For the SMC sampler, the tuning parameter used is 10−3 · COV and the

sampling procedure was executed to obtain 1000 samples from the posterior.
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Figure 25: Scatter plot matrix of the 18 inputs obtained using MCMC sampler with 1500

samples and burn-in length of 500. The data presented here are normalised to take values

between 0 and 1.

The simulation was performed on 1 core with a CPU memory of 10.5 Gigabytes.

The computation involved a total of 1 iteration over 84.35 seconds. The resulting

statistics of the updated input parameters are summarised in Table 13 and while

the posterior distribution of the normalised data for each input parameter are

presented in a scatter plot matrix as illustrated in Figure 27. The experiment

was also conducted using 20 iterations which yielded similar results to that

shown in Figure 27.

4.3.5. Discussions

Table 13 summarises the numerical results of the estimates obtained by the

respective samplers. As a form of evaluating the model updating performance

between the three samplers, the scatter plot profiles illustrating the distribu-
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Figure 26: Scatter plot matrix of the 18 inputs obtained using TMCMC sampler with 1000

samples and burn-in length of 50 for the first 21 iterations and 200 for the last iteration. The

data presented here are normalised to take values between 0 and 1.

tion of the experimental samples will be compared against those from the the

updated ANN surrogate model. For simplicity, the comparison between frequen-

cies f1 and f4, and between frequencies f6 and f7 are in Figures 28, 29, and 30.

Figures 32, 33, and 34 in Section 7.2 show the scatter plot profile comparison

for all frequencies.

To quantify the closeness and similarity level between the scatter plot profiles

of the experimental frequency samples and the sample output obtained from

the updated model, the two-sample Kolmogorov–Smirnov (KS) test [184, 185,

186] is used as the metric. The two-sample KS test tests the null hypothesis

that two given samples come from the same continuous distribution against the

alternative hypothesis that they do not. The two-sided test is performed at 5

% significance level for each of the 14 frequency outputs. Table 14 presents
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Figure 27: Scatter plot matrix of the 18 inputs after Bayesian model updating using 1000

samples obtained via SMC sampling method. The data presented here are normalised to take

values between 0 and 1.

the resulting p-values as well as the logical value of the test indicator where 0

indicates that there is insufficient evidence to reject the null hypothesis, and 1

indicates that there is sufficient evidence to reject the null hypothesis at 5 %

level of significance.

For the case of the MCMC sampler, Table 14 shows that the two-sample KS

test indicates that there is no similarity between the distributions of the exper-

imental frequency samples and the sample output from the updated model for

all 14 active frequencies tested. This is supported from Figure 28 where it can

be seen that frequency scatter plots profile from the updated model (in blue)

obtained using MCMC sampling technique do not show any similarity to that

of the experimental frequencies (in red). This is especially so in Figure 28(b)

where it is evident that the frequency scatter plots profile of the updated model
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MCMC TMCMC SMC

Parameter Mean COV (%) Mean COV (%) Mean COV (%)

θ1 1.13× 103 1.08 1.89× 103 14.59 1.86× 103 55.74

θ2 8.98× 103 0.29 7.64× 103 8.97 7.65× 103 55.12

θ3 1.27× 102 8.69 1.85× 102 5.19 1.32× 102 55.83

θ4 5.70× 101 0.76 5.25× 101 44.76 7.20× 101 55.07

θ5 3.52× 101 1.23 3.59× 101 54.57 7.21× 101 55.00

θ6 1.20× 107 0.45 1.47× 106 29.98 1.05× 107 53.79

θ7 1.32× 109 2.08 1.03× 109 52.63 1.02× 109 54.19

θ8 2.49× 10−1 0.28 1.92× 10−1 19.54 2.05× 10−1 54.95

θ9 4.07× 10−2 0.76 1.99× 10−1 6.26 1.91× 10−1 54.12

θ10 2.48× 10−1 0.20 1.95× 10−1 5.26 1.92× 10−1 54.60

θ11 1.13× 10−2 7.82 2.82× 10−2 5.21 1.53× 10−2 55.66

θ12 1.21× 10−2 2.45 1.03× 10−2 38.76 1.60× 10−2 52.87

θ13 2.81× 10−2 0.05 1.17× 10−2 63.88 1.53× 10−2 55.14

θ14 1.89× 107 0.74 3.61× 107 8.17 2.04× 107 55.47

θ15 2.72× 107 0.37 1.04× 107 15.03 2.07× 107 54.79

θ16 6.99× 106 0.21 2.36× 106 23.08 7.14× 106 54.86

θ17 1.00× 107 3.45 3.49× 107 66.60 4.96× 107 57.23

θ18 4.24× 107 0.15 5.01× 107 55.69 5.24× 107 54.63

Table 13: Updated statistics of the 18 input parameters obtained using MCMC, TMCMC,

and SMC samplers.

deviates significantly from those of the experimental frequencies. Such observa-

tions indicate that the MH sampling algorithm is unable to perform Bayesian

model updating effectively which demonstrates its limitation in sampling from

a high-dimensional posterior distribution, especially when the posterior is only

concentrated within a small area of the entire sample space. This comes despite

the COV of the estimation of the 18 input parameters all fall below 10 % as

seen in Table 13. In addition, the efficiency of the MCMC sampler depends

on the choice of the user-defined tuning parameter, making such sampler an

unfavourable choice for such problem. For this study, the tuning parameter was

defined based on the results obtained using Sensitivity model updating [179]

(see Table 12) whereby the information on the standard deviation of each of
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Figure 28: Comparison between the scatter plot obtained from experimental frequency data

and that of from the updated ANN surrogate model via MCMC sampler. Subplot (a) presents

the comparison between frequencies f1 and f4, while subplot (b) presents the comparison

between frequencies f6 and f7.
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Figure 29: Comparison between the scatter plot obtained from experimental frequency data

and that of from the updated ANN surrogate model via TMCMC sampler. Subplot (a)

presents the comparison between frequencies f1 and f4, while subplot (b) presents the com-

parison between frequencies f6 and f7.

the 18 updated input parameters was used to construct the nominal covariance

matrix to begin with. Should such prior information be unavailable, the tun-

ing parameter may have to be determined via “Trial-and-Error” which will be

extremely inefficient and impractical for such high-dimensional problem.

For the case of the TMCMC sampler, the KS test indicates that there was
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Figure 30: Comparison between the scatter plot obtained from experimental frequency data

and that of from the updated ANN surrogate model via SMC sampler. Subplot (a) presents

the comparison between frequencies f1 and f4, while subplot (b) presents the comparison

between frequencies f6 and f7.

insufficient evidence at 5 % significance level to reject the null hypothesis for

frequency outputs f1, f2, f3, f6, f7, and f9. This implies that the test failed to

identify significant degree of differences between the distribution of the exper-

imental frequency samples and the sample output from the updated model for

the aforementioned 6 active frequencies. In addition, it can be observed from

Figure 29 that the frequency scatter plot profile for the updated model mostly

coincides with the frequency scatter plot profile for the experimental frequencies.

Coupled with the fact that the algorithm is free from any tuning parameters,

this makes the TMCMC sampler the most suitable choice of sampler among the

three algorithms for such problem.

For the case of the SMC sampler, Table 14 shows that the two-sample KS

test indicates that there is no similarity between the distributions of the fre-

quency samples and the sample output from the updated model for all 14 active

frequencies tested. This is observed from Figure 30 where it can be seen that

while the frequency scatter plots from the updated model generally encompass

the frequency scatter plots from the experimental data, there is no similarity

in the scatter plot profiles between the two entities. In addition, it can also

be observed from Figure 30(b) that the scatterplot profile from the updated
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MCMC TMCMC SMC

Output Mode name p-value Indicator p-value Indicator p-value Indicator

f1 RBM Yaw 6.73× 10−5 1 2.67× 10−1 0 5.47× 10−20 1

f2 RBM Roll 2.19× 10−67 1 1.10× 10−1 0 5.80× 10−34 1

f3 RBM Pitch 5.03× 10−69 1 1.52× 10−1 0 4.87× 10−25 1

f4 RBM Heave 8.13× 10−17 1 7.19× 10−4 1 6.72× 10−15 1

f5 2nWingBending 2.86× 10−71 1 1.97× 10−13 1 2.70× 10−54 1

f6 3nWingBending 2.86× 10−71 1 1.75× 10−1 0 1.63× 10−32 1

f7 WingTorsionAnti 2.86× 10−71 1 6.84× 10−2 0 1.96× 10−17 1

f8 WingTorsionSym 2.86× 10−71 1 6.50× 10−3 1 1.72× 10−51 1

f9 4nWingBending 2.86× 10−71 1 5.13× 10−1 0 9.32× 10−43 1

f10 1nWingForeAft 2.86× 10−71 1 5.24× 10−8 1 2.07× 10−16 1

f11 2nWingForeAft 2.86× 10−71 1 3.06× 10−58 1 5.41× 10−46 1

f12 VtpTorsion 2.86× 10−71 1 4.77× 10−4 1 2.73× 10−63 1

f13 2nHtpBending 2.86× 10−71 1 2.16× 10−4 1 1.89× 10−16 1

f14 HtpForeAft 2.86× 10−71 1 1.53× 10−5 1 2.70× 10−54 1

Table 14: P-values and test indicator from the two-sample KS test performed on the frequency

samples from the updated model by MCMC, TMCMC, and SMC samplers along with the

frequency samples obtained from experiment.

model shows a larger spread compared to that of the experimental data. This

is attributed to the estimates of the 18 updated input parameters having high

COVs (all above 50 %) as shown in Table 13 and that their respective posteriors

illustrate a small degree of update from the Uniform prior as seen in Figure 27.

This is due to the ineffectiveness in the importance sampling technique (see Eq.

(18)) when applied in high-dimensional cases [55, 187, 188, 189]. In addition,

like the MCMC sampler, the efficiency of the SMC sampler in attaining con-

vergence of samples within the least iterations is also dependent on the choice

of the user-defined tuning parameter. The choice of tuning parameter used was

made based on the results from the sensitivity model updating. This makes the

SMC sampler inefficient when such prior information is unavailable.

It has to be noted that the intention of this experiment was not to obtain the

optimum updating results as such work was previously done and presented in

the literature by Govers et. al (2015) [177]. Rather, the purpose of this section is

to highlight the difference in the model updating performance between MCMC,
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TMCMC, and SMC samplers for a high-dimensional system.

5. Further Discussions

The three sampling techniques reviewed in this paper have been applied to 4

case studies with different inherent challenges. In summary, the MH algorithm

is relatively the easiest to implement among the three sampling algorithms dis-

cussed and it is useful in sampling from target distributions which are known

up to a normalizing constant. However, its efficiency is limited by the choice

of the proposal distribution or tuning parameter. As discussed in Section 3.1,

should the width of the proposal distribution be too large, it may produce many

proposed samples which lie outside the domain of the target distribution thus

increasing the rejection rate of the samples. Should the width of the proposal

distribution be too small, the rejection-rate of the samples become low but

this comes at the expense of the need of many iterations before the Markov

chain converges to the stationary distribution. In addition, the MH algorithm

is shown to be ineffective in sampling from multi-modal posterior [55] due to its

acceptance criteria of the proposed samples which results in the samples con-

verging to one of the peaks as seen from the case example presented in Section

4.2. Furthermore, the algorithm is also shown to be ineffective in sampling from

a high-dimensional posterior whereby each dimension is independent from one

another and that the distribution itself is concentrated within a small subspace

[55, 179] of the entire sample space as shown in the case example presented in

Section 4.3. These short-comings, however, are addressed with recent develop-

ments of the algorithm such as the Adaptive Metropolis-Hastings (AMH) algo-

rithm [135], Adaptive Metropolis-within-Gibbs (AMWG) algorithm [190, 191],

Lam et. al ’s proposed multi-level MCMC approach [192] which seeks to im-

prove the algorithm’s exploration of the sample space by dividing the sampling

process into multiple levels, as well as the TMCMC algorithm [55].

The TMCMC sampler algorithm is a tune-free algorithm in that it does

not require any tuning parameter which makes it a relatively convenient choice
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of sampler especially for “Black-box” problems. Its key strength lies in the

ability of the algorithm to effectively sample from multi-modal posteriors as

seen in Section 4.2 as well as high-dimensional posterior as seen in Section 4.3

which makes the TMCMC a robust sampler [55]. In addition, the issue of

burn-in is less of a concern given that the initial set of samples obtained in

the initialization stage of the algorithm comes directly from the prior which

prevents the occurrences of obtaining samples from outside the posterior. burn-

in however, may need to be considered when sampling from relatively complex

higher-dimension posteriors, especially in cases when the posterior takes up only

a small area of the entire sample space. One disadvantage however is that due

to the relative complexity of the algorithm, the computation time evolved in

executing the entire sampling process becomes significantly longer as observed

in all the case examples whereby the time elapsed by the TMCMC sampler is

consistently the highest among the three samplers. This is attributed to the

higher number of model evaluations that is done by the algorithm as a result of

the need to generate samples from not just the posterior alone, but also from

the transitional distributions.

The SMC sampler algorithm, like the TMCMC sampler algorithm, lessens

the consideration for a burn-in period due to the initialization procedure of the

algorithm which obtains an initial set of samples directly from the prior distri-

bution thereby ensuring that the final samples obtained are within the posterior.

The SMC sampler is also able to sample from a multi-modal posterior shown in

Section 4.2 where it is also able to identify the two peaks of a bi-modal poste-

rior distribution. Furthermore, in sampling from static posterior, the sampling

time elapsed by the SMC sampler is generally comparable to that of the MCMC

algorithm despite its relative complexity in its algorithm and this is due to the

algorithm obtaining samples directly from the posterior rather than transitional

distributions as per the case of TMCMC. The efficiency of the SMC sampler,

however, lies in the choice of the value of the tuning parameter. As seen in in

Sections 4.1, and 4.2, we have demonstrated that the larger the value and scale

of the tuning parameter chosen, the less precise the initial estimate by the SMC

72



sampler thereby requiring more than one iteration to attain the required conver-

gence. In addition to this, as observed in Section 4.2, we have also demonstrated

that the larger the scale of the covariance matrix as the tuning parameter, the

less the SMC sampler is able to resolve the distinct peaks of the bi-modal pos-

terior within an iteration. And furthermore, the SMC sampler is less efficient

and effective in sampling from a high-dimensional posterior [188, 189] as shown

in Section 4.3 which is attributed to the inefficiency and inapplicability of the

Importance sampling procedure to samples in high dimensions [187]. To over-

come this issue, one can turn to advanced SMC sampling strategies such as the

through the use of an adaptive MCMC mutation kernel proposed in [193], or

the nested SMC sampling approach [158, 159].

It is also observed from the case examples that different sampling techniques

yield different statistics of the posterior distribution (i.e. the posterior mean and

its variance). This is due to each sampling method having its own assumption(s)

in its respective algorithms. For instance, the MH sampler assumes that by al-

lowing a single Markov chain to continue running for long periods of time, the

chain would eventually converge to the stationary distribution corresponding

to the final posterior distribution [97]. This assumption however, falls short

when dealing with multi-modal posteriors as seen in Section 4.2. The TM-

CMC sampler assumes that the samples would eventually converge to the final

posterior distribution by sampling from a series of intermediate transitional dis-

tributions [55]. This allows of the TMCMC sampler to be able to sample from

higher-dimensional posteriors with relatively complicated shapes such as hav-

ing multiple peaks as seen in Sections 4.2 and 4.3. Finally, the SMC sampler

assumes the statistics of the posterior can be approximated through the com-

bination Importance sampling and Resampling procedure. This assumption is

valid in instances whereby the posterior distribution has a low number of di-

mensions (e.g. less than 5 [14]) and becomes inapplicable for high-dimensional

cases (i.e. 18 dimensions) as seen in Section 4.3 when Importance sampling fails

[187]. Thus, this indicates that each of the sampling technique should be chosen

depending on the validity of its assumption relative to the problem that needs
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to be address as well as the computational power that is available.

6. Conclusion

Bayesian inference is a popular approach for model updating in Engineer-

ing Applications. Bayesian Model Updating relies heavily on computational

techniques to sample from a posterior distribution. In this tutorial paper, we

have presented the concept behind three advanced sampling techniques: Markov

Chain Monte Carlo, Transition Markov Chain Monte Carlo, and Sequential

Monte Carlo sampling. The presented algorithms have been applied to solve

four different engineering problems of increasing difficulty to assess their re-

spective computational performances and robustness. From the case-studies

presented, it can be seen that different sampling techniques yield different re-

sults of the posterior mean and variance due to the different assumptions made

in the sampling algorithm as explained in Section 5. In addition, it can also

be observed that the TMCMC algorithm is the most robust amongst the three

samplers given that it is consistently able to sample from posteriors ranging

from a simple one-dimensional case, to a more complex 18-dimensional case.

The trade-off however comes with its relatively long computation time due to

its increased model evaluations as a result of the need to generate samples for

every transitional distribution.

While the case-studies presented in this paper are set in the context whereby

measurement data set are considered as a single piece of information made

available to make inferences on time-invariant uncertain model parameter(s),

such conditions are specific and may not necessarily be true at all times. In

general, the recorded measurements or data can come at different time-steps,

especially when they are obtained from a system that is evolving with time (see

[71, 147, 50, 166, 194, 195]). These time-evolving data are related to external

factors evolving with time such as the measurement noise ε or environmental

loading conditions.

Moreover, the parameters to be inferred might be time-varying for example
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because of degradation effects of the structural materials. In this case, these

parameters would conform to a non-stationary posterior distributions which has

not been addressed in this paper. Some approaches dealing with this type of

problems for finance applications can be found in references [196, 197]. In addi-

tion to this, the recorded data themselves may not necessarily be independently

identically distributed, as it was assumed in this paper. Furthermore, to broaden

the generality of problems that could be encountered, the model relating the

measured variables D and the uncertain model parameter(s) θ may not even

be known precisely (i.e. model uncertainty; see [198, 56, 57, 199]). These are

currently active research areas.

For the benefit of the readers, the presented algorithms and the examples

discussed in this paper are freely available as part of the OpenCossan soft-

ware [182, 183] on GitHub: https://github.com/cossan-working-group/

BayesianModelUpdating
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7. Appendix

7.1. Additional Results for the 1-D Spring-Mass System Case Study
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Figure 31: The resulting time-series sample plots for different values of tuning parameter for

the MCMC sampler obtained using a sample size of 10000 with 0 Burn-in length.
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7.2. Additional Results for the 18-D DLR-AIRMOD Problem
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Figure 32: The scatterplot matrix illustrating the updated model output profile obtained

using MCMC. The blue scatter plots represent the frequency output from the updated model

while the red scatter plots represent the experimental frequency measurements.
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Figure 33: The scatterplot matrix illustrating the updated model output profile obtained using

TMCMC. The blue scatter plots represent the frequency output from the updated model while

the red scatter plots represent the experimental frequency measurements.
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Figure 34: The scatterplot matrix illustrating the updated model output profile obtained

using SMC. The blue scatter plots represent the frequency output from the updated model

while the red scatter plots represent the experimental frequency measurements.
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