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Abstract

This paper presents an autonomous robot capable of picking strawberries

continuously in polytunnels. Robotic harvesting in cluttered and unstructured

environment remains a challenge. A novel obstacle‐separation algorithm was

proposed to enable the harvesting system to pick strawberries that are located in

clusters. The algorithm uses the gripper to push aside surrounding leaves,

strawberries, and other obstacles. We present the theoretical method to generate

pushing paths based on the surrounding obstacles. In addition to manipulation, an

improved vision system is more resilient to lighting variations, which was developed

based on the modeling of color against light intensity. Further, a low‐cost dual‐arm
system was developed with an optimized harvesting sequence that increases its

efficiency and minimizes the risk of collision. Improvements were also made to the

existing gripper to enable the robot to pick directly into a market punnet, thereby

eliminating the need for repacking. During tests on a strawberry farm, the robots

first‐attempt success rate for picking partially surrounded or isolated strawberries

ranged from 50% to 97.1%, depending on the growth situations. Upon an additional

attempt, the pick success rate increased to a range of 75–100%. In the field tests, the

system was not able to pick a target that was entirely surrounded by obstacles. This

failure was attributed to limitations in the vision system as well as insufficient

dexterity in the grippers. However, the picking speed improved upon previous

systems, taking just 6.1 s for manipulation operation in the one‐arm mode and 4.6 s in

the two‐arm mode.
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1 | INTRODUCTION

Strawberries (Fragaria× ananassa Duch.) are farmed extensively in

most parts of the world, growing either outdoors in open fields or in

controlled environments, like greenhouses or polytunnels. In 2016,

according to market research company IndexBox, the global

strawberry market amounted to 9.2 million tons, increasing by 5%

against the previous year. Strawberry production is heavily reliant on

human labor, especially for harvesting (Xiong, Peng, Grimstad, From,

& Isler, 2019). It was reported that 25% of all working hours in Japan
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are consumed by harvesting operations (Yamamoto, Hayashi,

Yoshida, & Kobayashi, 2014). Strawberry producers in the Western

world, particularly the United Kingdom and United States, are

similarly concerned about the future availability of labor for picking,

as well as about inflation in the cost of labor. In the United Kingdom,

for example, the need is especially significant in the soft fruit sector,

which uses 29,000 seasonal pickers to generate over 160,000 tons of

fruit every year (British summer fruits seasonal labor report, 2017).

In California, the cost of manual harvesting cost could be as much as

60% of production costs for fresh market strawberries (Anjom,

Vougioukas, & Slaughter, 2018), which concurs with research

conducted in Norway (Xiong et al., 2019). These dual labor challenges

of shortages and high costs are, therefore, advancing developments

in the automation of fruit harvesting operations.

Despite several attempts to develop a robotic solution for

harvesting strawberries and many other crops, a fully viable

commercial system has yet to be established (Silwal et al., 2017).

One of the major challenges is that the robots need to be able to

operate equally efficiently within diverse, unconstrained environ-

ments and crop variations with a variety of features (Bac, Hemming,

& Van Henten, 2013; Silwal et al., 2017). A harvesting robot is

generally a tightly integrated system, incorporating advanced

features and functionalities from numerous fields, including naviga-

tion, perception, motion planning, and manipulation (Lehnert,

McCool, Sa, & Perez, 2018). These robots are also required to

operate at high speed, with high accuracy and robustness and at a

low cost, all features that are especially challenging in unstructured

environments, such as the strawberry farm utilized for testing in this

paper.

Fruit harvesting offers significant opportunities for the field of

agricultural robotics and has, thus, gained much attention in recent

decades. Several robots have been developed for harvesting fruits

and vegetables, including those for apples, sweet peppers, cucum-

bers, tomatoes, litchis, and strawberries. An apple robotic harvester

was designed and evaluated with an overall success rate of 84% and

an average picking time of 6.0 s per fruit; however, they encountered

challenges, such as obstacle detection and avoidance (Silwal et al.,

2017). A sweet pepper‐harvesting robot achieved success rates of

between 26% and 33% in a modified environment and a cycle time of

94 s for a full harvesting operation (Bac et al., 2017). Similarly,

another sweet pepper‐harvesting robot, named Harvey, achieved a

46% success rate for unmodified crops and 58% for modified crops,

with average picking times of 35–40 s (Silwal et al., 2017). They

reported that the most common detachment failure was that of the

cutter missing either side of the peduncle. This team subsequently

presented an improved version of Harvey, with a higher success rate

of 76.5% in a modified scenario (Lehnert, McCool, et al., 2018). A

harvesting robot was developed for greenhouse tomatoes, with a

success rate of 86% and a picking speed of approximately 15 s per

tomato (Lili et al., 2017); however, the literature provides no in‐depth
analysis of their failure cases. A study of cherry tomato harvesting

robot reported a success rate of 83%, with an average 1.4 attempts

for each successful picking and a time cost of 8 s for a single

successful harvesting excluding the time cost of moving between

targets (Feng, Zou, Fan, Zhang, & Wang, 2018). The main failure

found in the tests was collisions between the end‐effector and the

plant stems (Feng et al., 2018).

An increasing number of robots for autonomous strawberry

picking have also been developed in recent few years. Japanese

researchers developed and evaluated a strawberry‐harvesting robot

with a scissor‐like cutter, which had a success rate of 34.9% and

41.3% when picking with suction and without suction, respectively

(Hayashi et al., 2010). Their harvesting time for single fruit was

11.5 s. They concluded that a suction end‐effector did not greatly

contribute to picking performance and further reported that their

failures were incorrect peduncle detection (Hayashi et al., 2010). The

groups subsequent version of this strawberry‐harvesting robot

achieved a success rate of 54.9%. Another strawberry‐harvesting
robot using a 3D Cartesian‐type arm was tested by its detection of

the peduncle before picking target strawberries laid out on a

laboratory surface (Cui, Gejima, Kobayashi, Hiyoshi, & Nagata,

2013). The system achieved a successful detection rate of 70.8%

with a successful picking cycle time of 16.6 s per fruit, and the

authors reported the main challenge for their work as peduncle

detection (Cui et al., 2013). Unlike the abovementioned selective

harvesting robots, researchers also proposed a strawberry harvester

that shook the plants to detach fruits (Vakilian, Jafari, & Zarafshan,

2015). The focus of this study was mainly on the dynamics modeling

and control. Aside from research in academia, a number of start‐up
companies have also recently developed several strawberry‐harvest-
ing robots, none of which have successfully commercialized. These

include AGROBOT (Huelva, Spain), who used 24 independent picking

systems mounted on a mobile base to increase efficiency, OCTINION

(Leuven, Belgium), who designed a force‐limit soft gripper in an

attempt to avoid damage while grasping, and Harvest CROO (Florida)

who designed a rotation apparatus that includes several grippers for

picking strawberries on the ground. Generally, strawberry harvesting

in cropping environment is very challenging. First, ripe strawberries

are easily damaged and bruised (Dimeas, Sako, Moulianitis, &

Aspragathos, 2015; Hayashi et al., 2014; Xiong et al., 2019). This

feature requires gentle handling during manipulation procedures.

Noncontact picking might be an acceptable solution to avoid damage.

Second, strawberries are small in size and tend to grow in clusters,

which makes it difficult to identify and pick individual strawberries

(Xiong et al., 2019; Yamamoto et al., 2014). Picking in clusters with

dense obstacles is one of the main challenges for strawberry

harvesting (Xiong et al., 2019; Yamamoto et al., 2014) as well as

for many other crop harvesting systems, such as tomato harvesting

(Yaguchi, Nagahama, Hasegawa, & Inaba, 2016) and sweet pepper

robot (Bac et al., 2016).

In this paper, we address some of the challenges of working in

unstructured farming environment. The main contributions of this

paper are as follows:

(1) A novel active obstacle‐separation path‐planning algorithm for

cluster picking: The griper can actively push aside the bottom
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obstacles before swallowing and separate the top obstacles

during swallowing. The pushing vectors are derived based on the

surrounding obstacles that are calculated using downsampled

blocks of 3D point cloud.

(2) Improvements to the vision system, the gripper, the arm, and the

control: An adaptive color thresholding for adaption of ambient

changing light, a new feature of the gripper that can pick a

market punnet and harvest berries straight into the container

and a low‐cost dual‐arm system with optimized harvesting order.

(3) A fully integrated harvesting system: The robot is able to pick

strawberries continuously in polytunnels. Field evaluation shows

the robot’s first‐attempt success rate for picking partially

surrounded or isolated strawberries ranged from 50% to

97.1%, depending on the growth situations.

2 | RELATED WORK

2.1 | Fruit identification

Machine vision is an essential component for agricultural robots,

enabling them to detect and localize the target crop. When the 3D

position of a target is obtained, its coordinates can be further utilized

to instruct the movements of the manipulation. For strawberry

detection, image processing based on color thresholding is a

frequently applied method in research papers (Hayashi et al., 2014;

Yamamoto et al., 2014), primarily due to the significant differences of

color among ripe strawberries, green strawberries, and green plants.

Peduncle detection is another widely researched harvesting step (Cui

et al., 2013; Hayashi et al., 2010; Huang, Wane, & Parsons, 2017;

Shiigi et al., 2008). Color‐based image processing methods were used

to detect the strawberry first and then set a certain region above the

strawberry for peduncle detection, with the accuracy influenced by

the results of preprocessing and complexity of the environment.

Other researchers have explored feature learning methods to

analyze strawberry fruit shapes (Ishikawa et al., 2018). Recently,

extensive work used deep learning as an approach for fruit detection.

Deep learning, which can autonomously extract fruit features, has

shown results in strawberry detection (Habaragamuwa et al., 2018).

In addition to strawberries, deep learning, especially the Faster

RCNN network, has been widely used for detection of many other

fruits, including sweet pepper, mango, apple, almond, and kiwifruit

(Fu et al., 2018; Mai, Zhang, & Meng, 2018; Sa et al., 2016; Zhang

et al., 2019). All these systems used detection networks to generate

bounding boxes around the target fruits.

Unstructured growing conditions, including variable clustering,

occlusions, and varying lighting conditions, have been considered as

the common challenges for fruit detection in farm environments

(Silwal et al., 2017). Consequently, the focus of much ongoing

research is novel ways to resolve these situations. One study

proposed a color‐based adaptive thresholding method for sweet

pepper detection that can deal with changing illumination conditions

(Vitzrabin & Edan, 2016), for example, while another proposed a

visual servoing‐based method accurately localizes sweet peppers in

occlusion situations (Lehnert, Tsai, Eriksson, & McCool, 2018). Deep

learning is a promising method to deal with the lighting variations

and the general idea is to capture and train images under different

lighting conditions (Bargoti & Underwood, 2017; Fu et al., 2018).

However, this method may require additional hardware (GPU) and a

large data set as well as intensive work on image annotations, thus

increasing the cost and power consumption.

2.2 | Mobile platform and navigation

Over the years, mobile platforms have been developed for a range

of agricultural applications, from weeding (McCool et al., 2018), to high

throughput phenotyping (Vijayarangan et al., 2017), to transportation

(Ye et al., 2017). Some mobile robots are task‐specific, meaning

that they are specially designed for one particular application. Several

task‐specific mobile bases can be found in literature including the

sweet pepper‐harvesting robot (Lehnert, English, McCool, Tow, &

Perez, 2017) and robots for phenotyping (Mueller‐Sim, Jenkins, Abel,

& Kantor, 2017). Task‐specific mobile bases can also be found in

various commercial projects, for example, the weeding robots created

by companies like ecoRobotix and Franklin Robotics, and harvesting

robots being developed by companies like AGROBOT or Harvest

CROO Robotics. Other mobile robots are generic, designed to work

with multiple, interchangeable implements, and can thus be used in

several different applications. Examples include Bonirob by Bangert

et al. (2013), and Robotti by commercial company Agrointelli.

Most agricultural robots rely on a mobile base, that is, specifically

designed for one type of environment. A mobile base designed for

driving in tractor‐sized tracks in open fields, for example, will

normally not fit in a greenhouse. There is a lot of variation found in

agriculture, and there may be large differences between farms, even

if they grow the same crop. The mobile platform used in the current

work is the Thorvald robot (Grimstad, Skattum, Solberg, Loureiro, &

From, 2017). It is created from modules that may easily be

reconfigured into robots of different sizes and shapes for different

environments. A slim robot configured for greenhouses and

polytunnels, such as the one used in this study, may quickly and

easily be resized wide enough to fit within tractor tracks. The robots

navigation system is different depending on project and application.

In previous work we used techniques based on light detection and

ranging (LIDAR) and cameras (Grimstad, Zakaria, Le, & From, 2018)

as well as RTK‐GPS (Grimstad et al., 2017). The navigation system

used in polytunnels in current work is based on well‐established
techniques of probabilistic localization (Thrun, Burgard, & Fox, 2005)

as well as the use of topological maps (Fentanes, Lacerda, Krajník,

Hawes, & Hanheide, 2015). The navigation setup is briefly described

in Section 4.

2.3 | End‐effector and manipulation

Various end‐effectors have been developed for strawberry‐harvest-
ing robots. The most widely used is the scissor‐like end‐effector for
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fruit detachment purpose only (Cui et al., 2013; Hayashi et al., 2014;

Yamamoto et al., 2010; AGROBOT Ltd.; Dogtooth Technologies Ltd.).

With an additional suction device, the scissor‐like end‐effector might

be able to hold fruit (Feng, Wang, Zheng, Qiu, & Jiang, 2012; Hayashi

et al., 2010). Contact grasping grippers are also common to see, such

as the three‐finger clamps with force‐limit function (Dimeas et al.,

2015) and two or more fingers with rotational motion to break

peduncles (Yamamoto et al., 2014; OCTINION Ltd.). The scissor‐like
gripper requires more advanced vision system to detect the peduncle

position and might unintentionally cut surrounding plants in clusters

(Hayashi et al., 2010; Xiong et al., 2019). The grasping contact type

grippers might easily bruise fragile strawberries (Hayashi et al.,

2010).

Due to the uncertain environment, such as the presence of

obstacles and clusters of fruits, manipulation is considered one of the

main challenges in getting harvesting robots to become a reality

(Lehnert, McCool, et al., 2018; Silwal et al., 2017). Cluster picking is

difficult since the surrounding fruits, leaves, stems and other

obstacles are difficult to separate from the target, both in detection

and in manipulation. Similar to many other picking systems (Cui et al.,

2013; Hayashi et al., 2014), our previous system used a point‐to‐
point path‐planning method to move the arm from a start point to a

point underneath the target. However, with this method, it was

difficult for the gripper to avoid swallowing below‐hanging or

surrounding berries, leaves, or stems along with its target berry. To

avoid occlusions, a “3D‐move‐to‐see” method was proposed to find

the best view with less occlusions (Lehnert, Tsai, et al., 2018). To

avoid obstacles, a method for cucumber picking was developed that

uses a search algorithm to explore the search space for a feasible

trajectory, in which each step of the trajectory is checked by a

collision detector (Van Henten et al., 2002). Another work used a

randomized path planner to generate a random path tree and then

tested each path with a local path planner to determine the collision‐
free one for pruning grape vines (Botterill et al., 2017). Furthermore,

to avoid the arms self‐collision or collision with obstacles, they

incorporated a collision detector based on geometric primitives.

Most of the methods found in the literature are passive obstacle

avoidance methods, in which the aim is to avoid existing obstacles

without changing the environment. However, obstacles are not

always avoidable, especially when picking small‐size fruits in clusters,

where the obstacles may be extremely close to the targets.

2.4 | Previous work and challenges

In 2017, we developed the first version of a strawberry‐harvesting
robot and implemented a set of field experiments for performance

evaluation (Xiong et al., 2019). As shown in Figure 1a, the robot

hardware comprised four modules: (a) a cable‐driven gripper

attached to (b) a Mitsubishi five‐degrees‐of‐freedom (5‐DOF) serial

arm, mounted on (c) the Thorvald platform (Grimstad et al., 2017)

and (d) a stationary RGB‐D camera facing one side of table‐top grown

strawberries. The fingers of the novel cable‐driven gripper (Figure

1b) were able to separate surrounding berries out of the way and

could open to form a closed space in which to swallow a target

strawberry (Xiong, From, & Isler, 2018). Equipped with three internal

infrared (IR) sensors, the gripper could sense and correct for

positional errors. An integrated container was used for collecting

picked strawberries, which reduced picking time significantly;

however, this system necessitated repacking the strawberries into

punnets for market. The vision system of this version used a color

thresholding‐based algorithm for object detection and localization;

however, the thresholds needed to be changed manually according to

the changing sunlight intensity. Furthermore, while the industrial arm

was robust and convenient, it was not suitable for use in small

working spaces, which limited its picking operation, and the systems

significantly low baud rate made it unsuitable for closed‐loop control.

The robot could pick strawberries continuously without being

integrated into the platform, which was moved with a joystick.

Active 
fingers

Passive 
fingers

Trapdoor

RGB-D camera

Gripper

Arm

Punnet

Arm controller

Gripper 
controller

(a) (b)

F IGURE 1 The previous version of our strawberry picking robot: (a) The first version robot in a strawberry tunnel and (b) the cable‐driven
gripper with perception capabilities. Source: Xiong et al., 2018 [Color figure can be viewed at wileyonlinelibrary.com]
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The evaluation results showed that the robot was capable of a 96.8%

success rate when picking isolated strawberries, but it struggled

when picking in clusters, resulting in a low success rate (53.6%

without damage) in farm setting.

3 | OVERVIEW OF THE NEW SYSTEM

The autonomous strawberry‐harvesting system described in this

paper incorporates the lessons and addresses the challenges of the

original robot, described above. The images and captions in Figure 2

provide an overview of the new robot, photographed during field

testing on an English strawberry farm. As with the previous system,

the hardware consists primarily of four modules, namely, an Intel

R200 RGB‐D depth camera, a newly developed single‐rail dual‐arm
manipulator, two improved patented grippers, and a previously

developed Thorvald platform. A Hokuyo LIDAR is mounted on the

front of the robot for navigation sensing. The arm module is mounted

horizontally on the platform for picking strawberries along one side

of the table‐top trays. The stationary RGB‐D camera faces the same

side for strawberry detection and localization. An additional one‐axis
punnet station, attached to the left side of the platform, lifts up to

enable the grippers to pick or release the punnets and returns to its

lower position once the operation is complete. The punnet station

uses the same motor and control system as the arm system.

Electronics are placed on the rear of the robot. These include a

gripper controller, a CAN to USB convertor for the arm, a DC

48 to 12 V power convertor, and a power switch. All power is

provided by the Thorvald battery, which supports approximately

48 hr of continuous picking. All of the components are connected to a

laptop (Intel i5‐6700 CPU and 16 GB RAM), including the robotic

platform, thus simplifying communication. The entire system is fully

integrated into the robot operating system (ROS).

4 | NAVIGATION IN TABLE ‐TOP FARMS

Table‐top systems are commonly used in polytunnels and green-

houses. Several different systems exist, and there is therefore a great

deal of variation between farms in terms of infrastructure. Some farms

have tables mounted on poles in the ground, while others suspend

their tables from the ceiling. The spacing between rows, as well as the

overall layout of the tunnels or greenhouses, also varies between

farms. As the navigation system for the mobile base used in this study

was tested in a polytunnel with table‐tops mounted on poles in the

ground, it is this type of environment that is discussed here.

The mobile robot was assembled using modules from the

previously developed Thorvald II modular system, described above.

The robot has four‐wheel drive and four‐wheel steering, which

enables it to move in any direction, and also turn in place, thus

substantially increasing its ability to navigate tight spaces. The

system is fitted with a Hokuyo UTM‐30LX‐EW 2D LIDAR and an

Xsens MTi‐30 IMU; however, the latter was not used for the

purposes of this paper.

In addition to tens, or even hundreds of polytunnels on a

strawberry farm, there are several other points of interest for a

robot, including charging stations and cold storage units for

harvested fruit. Therefore, to simplify the task of navigating this

F IGURE 2 Hardware assembly of the
new strawberry‐harvesting robot in a
strawberry greenhouse: The robot consists

mainly of a RGB‐D camera, a single‐rail
dual‐arm manipulator, two grippers, and a
mobile platform [Color figure can be
viewed at wileyonlinelibrary.com]
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type of complex environment, a topological navigation system is

employed (Fentanes et al., 2015). Here, a metric map is used together

with a graph. Nodes in the graph represent goals or gateways found

in the polytunnel, while edges represent navigable paths between

two nodes. The robot can only move between connected nodes.

When provided with a goal, the robot will find a connected set of

nodes to the goal node, and move through these nodes to reach its

target. Different actions for moving the mobile robot can be defined

for the different edges. For example, if the robot needs to dock at a

charging station, a special action for accurate docking may be

required. Moreover, different behavior may be required when the

robot is moving in an open space, compared to when it is driving

inside a tunnel row where movement is far more constrained. Edges

between two nodes can be defined as either unidirectional or

bidirectional, enabling operators to enforce one‐way traffic where

necessary, specifying that a robot may, for example, move from Node

A to Node B, but not from Node B to Node A.

Encoder‐based velocity estimates are used together with

data from the 2D LIDAR to create a map using the GMapping

simultaneous localization and mapping (SLAM) technique (Grisetti,

Stachniss, & Burgard, 2007). During this process the robot is

teleoperated. The resulting map is stored and used by the robot

during autonomous operation. The robot uses the map, LIDAR data,

and encoder‐based odometry to localize in the tunnel. A copy of the

map is altered to mark out areas where the robot is not allowed to

drive and the robots global costmap is generated from this no‐go
map. This prevents the robot from planning paths through certain

areas, such as underneath the table trays between rows.

The robots navigation system was tested in a polytunnel at a

research farm. As such, the size of the topological map presented

here (Figure 3) is somewhat limited; however, the principles are

equally applicable to larger polytunnel environments. First, we

defined the topological nodes on either sides of four rows in

the tunnel, as well as intermediate nodes inside these rows. A node

representing the robots charging station and a few gateway nodes

between the charging station and the tunnel rows were further

defined. Unidirectional edges (for one‐way driving) was defined for

inside two of the rows, and the remaining two rows were defined as

bidirectional edges. Possible actions for moving the robot along

the edges were specified as simple waypoint navigation, with

either forward drive, sideways drive, or reverse drive, as well

as a dynamic window approach for navigation around unforeseen

obstacles. For edges inside the rows, only simple waypoint navigation

was used, with no planning around unforeseen obstacles (if an obstacle

appears, the robot will simply stop and wait until the obstacle is

moved). A reverse action was specified for the edge going to the

charging station, while the robot would use forward drive along the

edge moving away from the charging station. Edges between rows

were specified as either forward drive or sideways drive.

Using this system, the mobile robot was able to successfully

navigate the somewhat cramped environment inside the polytunnel.

In the supplementary materials, the robot can be seen navigating the

tunnel, starting at the node representing the charging station and

then driving once through all four rows before returning to park at

the charging station.

5 | ENVIRONMENT ADAPTIVE MACHINE
VISION

5.1 | Motivation

As with many other field machines (Bac et al., 2017; Hayashi et al.,

2014), a color‐based algorithm was utilized in this system to take

advantage of color differences and retain a fast processing speed. Hue

saturation value (HSV) images are transformed from the RGB images

and used for image processing. The aim with this machine vision

subsystem is to detect and localize ripe strawberries and to pass the

detected strawberry bounding boxes to the other subsystems.

Changing ambient illumination in the field is a challenge for image

processing. During the experiments, it was found that changes in the

available sunlight significantly influenced the detection results. As

shown in Figure 4, Figure 4a displays situations with weak light

intensity, while Figure 4b shows much stronger light intensity in the

same place. As a result, four strawberries were detected in Figure 4a

(blue circles) but only one in Figure 4b, with the same thresholds.

This problem was also pointed out by Hayashi et al. (2014), who

subsequently adjusted the thresholds on their system manually on

the farm, as with our previous system. Raja et al. (1998) proposed a

statistical approach, in which light intensity was estimated over time,

while other researchers have investigated how robots can learn to

adapt to various lighting conditions (Sridharan & Stone, 2007). In this

paper, we propose a modeling‐based technique for automatic

updating thresholds by using the grippers IR sensor.

F IGURE 3 Topological map for driving
in a polytunnel. Here, the robot can be
seen parked in the lower right corner

[Color figure can be viewed at
wileyonlinelibrary.com]
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5.2 | Light intensity modeling and adaptive color
thresholding

The robots gripper has internal IR sensors that can sense pure

sunlight IR light intensity when the emitter light‐emitting diodes are

turned off in a mouth‐open configuration (Figure 1b). Therefore, the

HSV in the region of a ripe strawberry and the gripper IR value were

recorded for almost an entire day. A sufficient amount of data about

the range of sunlight intensities and corresponding HSV values is

essential to ascertain the relationship between them. In total,

243 sets of data were recorded with various sunlight intensities

and the corresponding HSV values of the ripe strawberry. To

determine the connection between the values, the HSV data were

analyzed independently, as can be seen in Figure 5. Here, hue range is

from 0 to 179 (circular) in OpenCV and the value for pure red is 0. To

clearly see the dependent relationship in the coordinate system, data

around 0 were added by 179 to obtain Figure 5a. As the variations in

the range of hue are relatively small, at around 5, the interaction is

not significant and, therefore, it can be concluded that light density

has a low influence on the hue for strawberry detection. However,

based on the data in Figure 5b,c, it is clear that saturation and value

change regularly with the variances in sunlight intensity. The

correlation equations of saturation‐sunlight intensity and value‐
sunlight intensity can thus be concluded as follows:

y x x R0.00069 0.13 157.03 0.86 ,s
2 2= − + + ( = ) (1)

y x R0.049 137.07 0.86 .value
2= − + ( = ) (2)

In application, the above models would be recorded in the codes. The

gripper would detect the real‐time sunlight intensity at the beginning

of each image frame for every picking circle. The image processing

algorithm would then set the saturation and value thresholds within

ranges based on the detected sunlight intensity according to the

correlation equations, thus forming an adaptive color threshold. After

the basic color‐thresholding process, the strawberry image would go

through a series of postprocessing based on erosion and dilation, as

previously described by the authors (Xiong, Ge, Liang, & Blackmore,

2017). During this processing, two commonly connected strawberries

can be segmented. Once all the strawberries have been detected,

their coordinates would be transferred to the gripper frame

according the calibrated extrinsic parameters.

6 | SINGLE ‐RAIL MULTIPLE CARTESIAN
ARMS

In the authors’ previous strawberry‐harvesting system, a Mitsubishi

serial arm (RV‐2AJ) with 5‐DOF was employed, which was robust in

terms of control and communication (Xiong et al., 2018). However,

the high cost of the industrial arm is not appropriate for application

in commercial farming robots, especially when multiple manipulators

are required to optimize the harvesting efficiency. Moreover, in the

previous system, the orientation of the 5‐DOF arm was locked to

keep the gripper horizontal, which also made its working space small,

F IGURE 4 Two set of images capturing

the same area with different light
intensities: (a) shows low sunlight intensity,
in which four strawberries were detected

(in blue circles) and (b) shows high sunlight
intensity, in which only one berry was
identified, despite having the same

threshold as (a) [Color figure can be viewed
at wileyonlinelibrary.com]
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F IGURE 5 Modeling of HSV and sunlight intensity: (a) Hue to sunlight intensity, no significant interactions; (b) saturation to sunlight
intensity, significant quadratic relationship; and (c) value to sunlight intensity, significant linear relationship. HSV, hue saturation value [Color
figure can be viewed at wileyonlinelibrary.com]
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however, in the system, the gripper is designed so that its workspace

is strictly Cartesian, with no rotations needed, and, therefore, a

3‐DOF Cartesian arm is sufficient to generate this motion. The

Cartesian arm is widely used due to its simplicity and low cost.

Moreover, unlike the serial arm, it has no singularity problem and it

has a wider working area if no rotations are required. In their

development of harvesting robotics, researchers have developed a

3‐DOF Cartesian‐type arm for strawberry picking (Cui et al., 2013) as

well as an algorithm to plan the movements of multiple (Zion et al.,

2014), independently functioning 3‐DOF Cartesian arms for crop

harvesting, mounted in backward–forward positions on the platform.

In this current system, to mitigate cost and complexity, a low‐cost
single‐rail‐based Cartesian‐type multiarm system was developed.

6.1 | Arm design and hardware

Figure 6 shows the concept design and the prototype of the proposed

arm. In Figure 6a, the three arms have independent y‐axis and z‐axis
rails, mounted on a common x‐axis rail. The vertical z‐axis rail uses

ball‐screw transmission for lifting heavy loads, while the y‐axis uses a
belt transmission for fast movement. The pinion‐rack helical gear

transmission between the x‐axis rail and the y/z‐axis rails enables the
arms to have independent movement on the x‐axis. Compared to a

system with several independent arms, the single‐rail multiarm

system has three key advantages for harvesting robots: (a) two

or more arms can be mounted on the same rail so that the

transformation between the arm frame and the camera frame need

only be calibrated once; (b) there is no unreachable space between

the arms; (c) the cost is reduced as fewer parts are required and the

time required for platform mounting is also reduced.

Figure 6b shows the assembly prototype of the proposed

arm, which has two arms mounted on the x‐axis rail. The arm rails

structure was manufactured by the GaoGong Intelligence Mechanical

Drive Co., Ltd., China. PL‐05N/2 inductive proximity sensors were

used as end stops for homing the arms and limiting their movement

range. A collision avoidance frame was mounted on Arm 2 that will

trigger the end‐stop sensor on Arm 1 when the arms are close, so as

to avoid any mechanical collision. Stepper servo motors (Shenzhen

Just Motion Co., Ltd., China) were selected as they are low in cost

and deliver precise position control. These motors have integrated

encoders and controllers and can be easily communicated via a

CANbus network. A CAN to USB converter was used to enable the

computer to access the CANbus network.

Table 1 describes the key specifications of the developed arms.

The axis strokes and dimensions were determined by estimating the

required picking space in the strawberry tunnels.

Gear rackPinion gear

x-axis rail
Motor

z-axis rail

y-axis rail From back view

Bottom view

Stepper servo

USB to CAN 
converter

Meshed gears x

y

z

End-stop sensors

Gripper

Collision avoidance frame

Arm 1Arm 2

Home position 
trigger

(b)(a)

F IGURE 6 Single‐rail Cartesian‐type multiarm: (a) 3D model shows that the three Cartesian arms move on a single rail (x‐axis) using pinion‐
rack gear transmission; the single‐rail (x‐axis) could be mounted with two or more arms; (b) the prototype of a dual‐arm system; the single‐rail
multiarm only needs to be calibrated once to identify the transformation between the arm frame and the camera frame [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Key specifications of the single‐rail dual Cartesian arms

Parameters Value

Dimensions (mm) 1,400 × 900 × (930–1,080)

x‐axis stroke (mm) 1,200

y‐axis stroke (mm) 500

z‐axis stroke (mm) 500

Max velocity (mm/s) 600

Approximate payload (kg) 10

Communication type CANbus

Operating system Linux

Control method ROS topics

Input voltage (V) 48

Rated power (W) 900

Approximate weight (kg) 120

Abbreviation: ROS: robot operating system.
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6.2 | Arm control

Figure 7 indicates the control architecture of the single‐rail dual

Cartesian arms. The stepper servo is written with CiA (CAN in

Automation) 402 motion control protocol. All motors are connected

to the host computer through a CAN to USB converter via the

CANbus network. To modularize the arm system, an arm server node

in ROS was built as a coordinator between user nodes and arms.

For input, user nodes can simply send an arm target mode together

with the status command to the server node via the ROS topics.

The server node will then decode and encode these commands to

control the individual motors. Six modes were established on the

basis of the harvesting robots requirements: home, pause, continue,

position control, unblock, and reset. The status command includes

the arm target positions and the moving speed. Acceleration and

deceleration can be automatically adjusted according to the required

speed in the server node. Furthermore, the server node can also

output the arms status as ROS topics in 40 Hz by reading the motor

status. The output data topics include the arms current position,

speed, and status, which can be used as feedback control information.

Arm server 
node in ROS

Arm current 
position

Arm current 
speed

Arm current 
status

Arm mode and 
target status

Input command

ROS topic

Update status

ROS topic

CAN bus

x-axis 
motory-axis/z-axis 

motor

CAN to USB 
convertor

End-stop
sensor

F IGURE 7 Control architecture of the single‐rail dual Cartesian arms: All the stepper servos are connected to the CANbus network; a ROS

servo node is built to receive target mode and status commands from the user nodes and then control the motors by using CiA 402 protocol;
the servo node can also get motor information and update the arm position, speed and status in 40 Hz, which can be used for feedback control.
ROS, robot operating system [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 8 Harvesting order planning: (a) Schematic of harvesting order planning, with the picking area divided into two sections, namely, for
Arm 1 and Arm 2; the picking area of each has been further separated into two subsections (left and right); if strawberries are uniformly

distributed, the two arms systematically pick strawberries from left to right; if they are not uniformly distributed, strategies must be specified to
increase picking efficiency and avoid collision; (b) the control algorithm for planning the harvesting order as well as for collision avoidance
[Color figure can be viewed at wileyonlinelibrary.com]
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The arm current status topic publishes information such as whether

the arm has reached the target position or not and its current

running status (normal or faulty).

6.3 | Collision avoidance and harvesting order
planning

One challenge that the single‐rail dual‐arm system presents is the

effective cooperation between the two arms to increase picking

efficiency and avoid collision with each other. In this harvester, as

illustrated in Figure 8a, the picking area in the cameras view is

divided equally into sections for Arm 1 (the primary arm) and Arm 2

(the secondary arm). Each section is then further separated into two

subsections: left and right. Within these, one requirement is that the

robot should pick berries from the bottom of the tray working

upwards to the top. This is because the gripper is designed to pick

from below. If the upper strawberry is picked first, the gripper and

arm might touch and move the lower ripe strawberries, which may

result in failure when picking the lower targets.

Figure 8b shows the control algorithm for planning the harvesting

order as well as for collision avoidance. In the process of inputting

the detected strawberries to the algorithm, the first aim is to

determine the picking sequence for the arms to maximize the

simultaneous picking period of both arms and avoid their possible

collisions. The default picking sequence for both arms is from the left

subsection to the right subsection. However, if the quantity of

strawberries in the right subsection of Arm 1 (Qa R1 ) is equal to or less

than that in the right subsection of Arm 2 (Qa R2 ), it is better that both

arms pick strawberries from right to left, since Arm 1 will finish

picking in its right subsection and move across to the left subsection

earlier than Arm 2 will complete its operation. Similarly, when the

quantity of strawberries in the Arm 1 left subsection (Qa L1 ) is equal to

or more than that in the Arm 2 left subsection (Qa L2 ), the distance

between the two arms is always larger than the safety distance if

they all pick from left to right. Theoretically, then, in this particular

case, the distance between the two arms will always be greater than

one subsection width (normally around 300mm, which is equal to the

safety distance between the two arms); however this has not been

tested in other situations and, therefore, the distance between the

two arms on this system cannot be guaranteed to be within the

safety range.

In Figure 8b, a primary‐secondary method is proposed to control

the arms within a closed loop to avoid collisions. Arm 1 is the primary

arm, and has picking priority, while Arm 2 acts as the secondary arm.

The distance between the two arms is compared in real‐time so that,

should they come within the safety distance, the secondary arm will

return to a safety position provided it is not in picking status and will

wait until the primary arm finishes and moves away. However, if the

secondary arm is in picking status and close to the primary arms

target, the primary arm will not interrupt current picking but will wait

Custom-designed 
punnet

Berry amount sensor

Pulley

Torsion 
spring

Steel 
cable

(b) (c)

Market punnet

Sponge tongue

(e) (f)

Sponge tongue

Clamps

Punnet verification
 sensor

(d)

(a)

F IGURE 9 Improved gripper design: (a) Sketch of the version 2.1 gripper; (b) bottom view of version 2.1 prototype; three additional IR
sensors are used to detect the punnet and estimate the amount of strawberries in it; (c) attaching 3D‐printed punnets during picking; (d) sketch

of version 2.2 gripper; (e) bottom view of version 2.2 prototype; a sponge tongue is used to reduce impact; (f) market punnets are attached for
picking. IR, infrared [Color figure can be viewed at wileyonlinelibrary.com]
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until the secondary arm completes its operation. Thereafter, the

picking priority of the primary arm will be restored, so the secondary

arm will return to a safety position if the next target is not within

safety range.

7 | IMPROVEMENTS ON GRIPPER DESIGN

7.1 | Punnet picking and releasing

The previous version of our gripper included an integrated container

for collecting picked strawberries, a feature that could reduce picking

time as the arm does not need to move to store each picked

strawberry. However, collecting with the container and repacking to

the punnets could increase the risk of damage and, therefore, to

avoid repacking, the gripper in the new system is designed to pick a

punnet and harvest directly into it, as shown in Figure 9. Figure 9a–c

shows the design, prototype, and field application of the version 2.1

gripper that was used in the field tests. In this version, instead of a

container, the gripper has a hollow space under its fingers to attach a

custom‐designed punnet, which it picks from the punnet station

(Figure 2). Four cable‐driven clamps, distributed on three sides of the

gripper, are used for picking and holding the punnet. These clamps

are opened simultaneously by a servo motor and closed by torsion

springs. In addition, an IR sensor placed under the front‐side clamps

is used to verify the attachment of the punnet. Another two IR

sensors, mounted on the bottom of the fingers, are used to estimate

the amount of strawberries in the punnet. The IR sensors detect the

distance between the obstacle (strawberries in the punnet) and the

sensor, which is changed during collection. Once the desired amount

of strawberries has filled the punnet, the gripper returns it to the

same location on the punnet station. A punnet transportation system

is required for stocking empty punnets and collecting full punnets.

A further improved version (2.2) of the gripper was also

subsequently developed, as shown in Figure 9d–f. This version of

the gripper can pick a market punnet directly, as shown in Figure 9f,

in which a new Norwegian standard strawberry punnet is attached.

Instead of having four clamps on three sides, this version only has

three clamps on the front side so that the gripper can successfully

pick various punnet shapes. Under the clamps, there is a groove for

fitting the convex edge of some market punnets. Moreover, a sponge

tongue is mounted on the top of the clamps, which can reduce impact

significantly. The clamp module is independent of the gripper body,

so it can be easily mounted and replaced.

7.2 | Scanning control

In the previous system, the gripper could control the arm using

internal IR sensors to correct any positional errors. When targeting a

strawberry, the gripper moved to the bottom of the target and used a

slow lifting speed in search of the strawberry. Once detected, the

arm stopped lifting and moved horizontally to place the gripper at the

optimal cutting position based on one located section of the

strawberry. This method works well when strawberries are growing

vertical to the ground, however, if a strawberry is inclined towards

the ground, as per the example shown in Figure 10a (enlarged red

berry), one section located on the lower part of the strawberry might

be different to another, upper section. This would affect the systems

estimation of the location of the peduncle, which it requires for

picking. To overcome this challenge, a scanning control method was

used in the current system, in which the arm lifts and simultaneously

moves the gripper in a horizontal plan to scan the shape of the

strawberry. The gripper uses IR sensors to estimate the diameter and

centroid of a circular section of an object. Without the gripper

moving horizontally, the scanner can even reconstruct the shape and

orientation of the strawberry, as is shown in the scan examples in

Figure 10a,b.

Figure 10c shows the scanning control path of the gripper for

picking the target enlarged in Figure 10a. First, the arm moves

quickly to the bottom of the target and lifts the gripper slowly to

search for the strawberry. Due to inertia, the arm is not able to come

to an abrupt stop once the target has been located, but it will return

to the first detection point, so there is an overshoot path. The gripper

then uses the scanning control method to control the arm path

according to the target strawberry’s shape. When the strawberry is
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F IGURE 10 Scanning control: (a) An example of detected strawberries, in which the left strawberry (enlarged in image) is inclined to the
ground; (b) reconstruction of the shape and orientation information from the grippers scan of the enlarged strawberry in Figure 8a; (c) scanning

control path of the gripper for picking the enlarged target in Figure 8a; number represents: 1—searching path, 2—overshoot path, 3—scanning
control path, 4—peduncle length adjustment, 5—return path, 6—forward path, and 7—trajectory projection [Color figure can be viewed at
wileyonlinelibrary.com]
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out of gripper sensing range, the arm moves up quickly with a desired

peduncle length compensation value to control the peduncle

length that remains on the strawberry after picking. Compared to

the previous system, which used properties in the strawberry shape

to estimate the peduncle length, this method is robust to the

differences in shape and variety, however it does require an

increased computation resource.

8 | A NOVEL ACTIVE OBSTACLE ‐
SEPARATION PATH ‐PLANNING STRATEGY
FOR CLUSTER PICKING

The previous system achieved a high success rate for picking isolated

strawberries, however, it struggled with cluster picking. In this

current work, inspired by human pickers who usually use their hands

to push and separate surrounding obstacles during picking, we

propose a novel active obstacle‐separation path‐planning strategy,

using the gripper to push obstacles in the clusters.

8.1 | Algorithm

8.1.1 | Scanning control

The first step for obstacle separation or avoidance is to obtain a 3D

image of the area. In the current system, a single‐view image is used

to create the 3D point clouds based on a combination of depth and

RGB images. To reduce computation costs, this system extracts and

focuses only on the obstacles closest to the target, or region of

interest (ROI) obstacles. As illustrated in Figure 11a, the ROI

obstacles are those that are located on the bottom or at the same

height as the target. The obstacles above the target are irrelevant

since the gripper picks from below and, when it is swallowing

the target strawberry, they will not affect fruit detachment.

Unlike Bac et al. (2013) who classified obstacles into hard and soft

types with more efforts from the vision side but did not get

significant results, we simply use the quantity of 3D points within the

ROI to determine obstacles without further classification. Our goal is

to gently separate all pushable obstacles, similar to human picking.

The only nonmovable obstacle is the table‐top system, which can be

avoided by screening of distance.

ROI obstacles are divided into two main sections: top obstacle

blocks and bottom obstacle blocks. Both top and bottom obstacle

sections have been further separated into six subsections, based on

their directions: left front, left rear, front, rear, right front, and right

rear, respectively. The bottom blocks are used to guide the gripper

when pushing obstacles aside before reaching its target while the top

blocks assist the gripper in avoiding neighboring obstacles. The block

size is mainly determined by the bounding box size of the detected

target in the vision system. Among the top blocks, the front and

rear have the same dimensions as the target block, while the length

of the four left and right blocks is 1.5 times that of the target block.

The length and width of the bottom blocks are the same as the

top left and right blocks, but their height is three times that of

the target block.

The two obstacle‐separation actions can be described as either

pushing aside the bottom obstacles before swallowing or pushing

aside the top obstacles during swallowing. The operations are as

follows: First, the gripper travels from a start point, S , to an

intermediate point, P , that is next to the bottom blocks with the same

height, as shown in Figure 11b. The gripper then uses the outside of

its fingers to push the bottom obstacles from P to the origin, O, of the

Oxy frame in the bottom blocks. This pushing path can be defined as

a vector, Gpush. Block vectors (B B, ,LF LR… ) are used to describe the

obstacles and calculate the pushing vector, Gpush. If obstacles are

founded within a block, the vector in the block is labeled a unit

vector; otherwise the empty block has a zero vector. Currently, the

threshold of 3D point quantity for being an obstacle or an empty

block is 50. The direction of the vector is determined by the block

location. They all face towards the origin of the coordinate system,

either vertical or at 45 degree to the x axis. Gpush can be expressed as

A B B B B B B ,LF LR F R RF RR= + + + + + (3)
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F IGURE 11 Active obstacle‐separation algorithm: (a) Schematic of ROI obstacle blocks; (b) top view of bottom obstacle blocks; and (c) top

view of top obstacle blocks. ROI, region of interest [Color figure can be viewed at wileyonlinelibrary.com]
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where B B, ,LF LR…′ ′ represents the unit vector that has the same

direction as B B, ,LF LR… . r is the parameter used to scale the Gpush

norm, which is 50mm for the current system. Two opposite vectors,

for example BLF and BRR, will cancel each other out if they both

represent obstacles. If not all vectors are opposite and cancel each

other (A 0≠ ), the Gpush only needs to be obtained using A and r . j is

thus used to determine whether all of the vectors cancel each other

out. In the case of j 0≠ and A = 0 (e.g., if only BF and BR have

obstacles), the direction of Gpush is then decided by the distance

between S and two possible points P (left or right of BF and BR). The

smaller distance point P is selected as it is the shorter traveling time

for the gripper. If no obstacles are detected, the gripper has no

pushing action at this stage. The intuition of Gpush is that the gripper

moves from the side of the empty blocks towards the origin O to

push the obstacle blocks. The empty blocks can be regarded as the

entrance for gripper pushing. Figure 11b demonstrates the obstacle‐
separation direction for Figure 11a where the left‐front, left‐rear,
and rear blocks (marked as green arrows in Figure 11b) do contain

obstacles, so the gripper would come from the bottom right corner to

push aside the obstacles.

After clearing aside the bottom obstacles, the gripper will

swallow the target and separate it from the top obstacles. As shown

in Figure 11a, if an obstacle (left) is next to the target, it is better for

the gripper to move an opposite offset (right) at point M before lifting

up to swallow the target. In such a way, the gripper can avoid

swallowing the neighboring obstacles. Similarly, the offset vector is

calculated OM by using top block vectors T T, ,LF LR… :

K T T T T T T ,LF LR F R RF RR= + + + + + (7)

OM
K

K
R

,=
∣ ∣

(8)

where R is the norm of OM , 3 mm in the system. In the situation in

11a, in which a red obstacle is situated to the left of the target, within

the left‐front and left‐rear blocks, the gripper will move 3mm from

the target origin O to the right point M (11b) before moving up to

swallow the target. If both bottom and top blocks contain obstacles,

the gripper moves directly from P to M without transferring at O.

8.1.2 | Application examples

Figure 12 shows an example of the robot actively separating obstacles

by using the proposed algorithm. In Figure 12a, a target ripe strawberry

has been detected. The right‐top corner figure displays the obstacle

blocks around the target: the vision system detected obstacles (marked

as green) in three bottom front blocks (B B,LF F , and BRF) and the top

right‐front block (TRF). After path‐planning, as shown in Figure 13a‐1, the
gripper moves to the intermediate point P , which is behind the

obstacles. Then it moves outward to push aside the front obstacles

before arriving at point M. After pushing, the gripper moves up to

swallow the target. The path of the gripper can be seen in Figure 12b,

recorded from field test. Without this obstacle‐separation algorithm, the

below‐picking gripper is at risk of swallowing the surrounding obstacles

during lifting.

Figure 13b,c further demonstrates two more examples of

the active obstacle‐separation algorithm in different situations. In

Figure 13b‐1, a ripe strawberry has been detected together with

several green strawberries surrounding it on the right (TF and TR) and

right‐bottom (BRF and BRR) sides. Hence, the gripper first moves to the

left of the obstacles (point P; Figure 13b‐2) and then it pushes the
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F IGURE 12 An example of active obstacle‐separation in the field test: (a) Detection of target strawberries and obstacles; (b) path of the

gripper for picking the target using the obstacle‐separation algorithm; number represents: 1—return path, 2—forward path, 3—peduncle length
adjustment, 4—scanning control path, 5—searching path, and 6—trajectory projection [Color figure can be viewed at wileyonlinelibrary.com]
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obstacles rightward to point M(Figure 13b‐3) for better swallowing.

Similarly, as shown in Figure 13c‐1, leaves has been detected on the

bottom of a target. To avoid getting stuck (as the grippers mouth

may be sheltered by the leaves), the gripper moves to the left of

the leaf (Figure 13c‐2) and pushes it to the right side of the target

(Figure 13c‐3) before picking.

9 | SYSTEM INTEGRATION AND CONTROL

9.1 | System architecture

The systems full integration enables the robot to harvest continu-

ously along the strawberry rows. The overall sequence is termed

static strawberry harvesting, because the platform will stop, carry

out picking operation and then move on when picking is finished,

which is similar to the sequences of other agricultural robots (Xiong

et al., 2017). The hardware and software architecture of the robot is

shown in Figure 14, in which the outside hexagons represent the

hardware modules while the inside rectangles are the software

functions. Compared to the previous system (Xiong et al., 2019), the

main software updates can be summarized as follows: new function

of adaptive color thresholding, integration of the platform module,

handling with parallel manipulator harvesting, path‐planning of the

active obstacle separation, punnet picking and releasing, and full

autonomous integration.

A robot coordinator node was created to manage and

synchronize the information flow for all the modules. The gripper

server nodes comprise a servo control node and an IR sensor

feedback node, which are running ROS nodes on two Arduino

controllers. The arm motion control nodes are used for manipula-

tion. They communicate with the gripper server nodes and the arm

server nodes, receive IR sensor feedback, arm positions status and

publish the goal mode and status of the arms, as well as the gripper

actions. Each arm has an independent motion control node to

ensure that the two manipulators pick in parallel. The platform

server nodes are used to navigate the mobile base, based on the

feedback from the wheel encoders and the LIDAR scanner. The

navigation module can also be manually operated with the joystick

in case of emergency.

9.2 | Harvesting sequence and system control

The flowchart in Figure 15 illustrates the complete sequence and

control strategy for the harvesting robot. The whole system consists

of several control loops, which can be classified as three levels: top

level, mid‐level, and lowest level. The top level is an open‐loop

(a-1)

(b-1) (b-2) (b-3) (b-4)

(c-2)(c-1) (c-3) (c-4)

(a-2) (a-3) (a-4)

F IGURE 13 Action sequence of active obstacle separation in the field: (a‐1 to a‐4) picking sequence of the example in Figure 10 to separate
the front obstacles; (b‐1 to b‐4) example of pushing the right‐bottom green berries; and (c‐1 to c‐4) example of removing bottom leaves [Color
figure can be viewed at wileyonlinelibrary.com]
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sequential control system, which is used to trigger a series of

operations in the correct sequence, from perception through

manipulation to navigation. In the top‐level loop, there is one mid‐
level open‐loop module (perception) and three mid‐level continuous

closed‐loop control systems (Arm 1 manipulation, Arm 2 manipula-

tion, and navigation). The two arm manipulation loops are the same,

using a multithread method for computing. The arm manipulation

module consists of an open‐loop obstacle‐separation action, a closed‐

Platform
server nodes

Arm server
node

Gripper
sever nodes

Image
processing

nodes

Arm 1 motion
control node

Arm 2 motion
control node

Run on
Arduinos

Joystick

Robotic
platform

LIDAR

Grippers

Camera

Dual-arm Punnet
station

Robot
coordinator node

F IGURE 14 Hardware and software

architecture of the robot: The hexagons
represent the hardware modules, while the
inside rectangles are the software

functions [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 15 Flowchart of the control system: The entire loop shows the top‐level sequential control while the four colored modules
represent mid‐level control loops, in which navigation, Arm 1 manipulation, and Arm 2 manipulation are continuous closed‐loop control systems
[Color figure can be viewed at wileyonlinelibrary.com]
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loop collision avoidance function (see Section 6.3) and a closed‐loop
scanning control for picking (Section 7.2). The scanning control

function closes the loop between the arm and the gripper. The

gripper continuously senses each targets location with respect to

itself, while the arm uses the feedback from the gripper to control its

position and correct positional errors using proportional‐integral‐
derivative (PID) controllers. The detailed control method is intro-

duced in Section 7.2 and our previous work (Xiong et al., 2019). The

navigation module controls the mobile base steering by using a

proportional controller based on the feedback from the wheel

encoders and the LIDAR scanner. Further, among these mid‐level
loops, a single actuator makes up a lowest level loop, such as servo

stepper motors for the dual‐arm and servo motors for the grippers

and the mobile base. All of these actuators are continuous closed‐
loop control systems, using PID controllers.

As shown in Figure 15, with the exception of the four colored

rectangle modules, the uncolored processes are all executed by the

robot coordinator node. Figure 16 shows an example of the

harvesting sequence in the farm. After initialization, the robot first

picks punnets from the punnet station with verification from the

gripper sensors (Figure 16a). Meanwhile, the perception module

draws a light intensity value from the gripper server nodes to update

color thresholds. The perception module outputs the detected

strawberry bounding boxes to the coordinator, together with

obstacle block vectors. If no strawberries are detected at this stage,

the platform will move forward to the next image area using the

navigation control module. The coordinator node sorts all the input

targets and determines the harvesting order for both arms according

to the algorithm in Section 6.3. In addition, the coordinator creates a

path plan to separate obstacles based on the methods in Section 8

and, finally, sends a full path of arms and gripper actions to the arm

manipulation modules.

Once the target coordinates have been obtained, the two arms

are actuated to pick strawberries, here shown in the first image area

(Figure 16b,c). The arm moves the gripper to separate obstacles

before swallowing the target strawberry based on the method

describes in Section 8. When the gripper detects the presence of the

target during the swallowing searching procedure, the arm will return

to the detected point and then use the scanning control method

(Section 7.2) to correct for positional errors while passing the target

body. If the gripper is not able to detect the target in this procedure,

the arm will move to the next target directly. After that, the cutter is

actuated to detach the target strawberry with verification from the

IR sensors. After each picking, the gripper will estimate the amount

of picked strawberries in the punnet using berry amount sensors

(Section 7.1). If the punnet is full, the arm will move the gripper to

pick a new punnet.

When the picking is finished, the arm returns a signal to the

coordinator node. As a manager, the coordinator node collects the

signal and commands the platform to move to a new image area

when both arms finish. As shown in Figure 16d, after it has finished

picking in the first image area, the robot moves to the second image

area, in which no ripe berries are detected so it continues to move

forward. Then the robot is continuously picking in the third and

fourth image areas (Figure 16e,f).

10 | FIELD EXPERIMENT SETUP

The experiments were conducted in the Boxford Suffolk Farms

(England), which utilizes a table‐top strawberry growing system in

the greenhouse. The tests were carried out on a variety of

strawberries called “Lusa” (Driscolls Ltd.), which is productive in

the greenhouse annually from March to July. This variety of

(a) (b) (c)

(d) (e) (f)

F IGURE 16 Continuous harvesting in the strawberry farm: (a) Picking punnets and sensing light intensity; (b) two grippers are picking in

the first image area; (c) two grippers are picking in the first image area; (d) no berries detected in the second image area, continuous moving;
(e) picking in the third image area; and (f) picking in the fourth image area [Color figure can be viewed at wileyonlinelibrary.com]
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strawberries has long peduncles, making the fruit easy for both

humans and robots to pick. Unlike our previous work, which defined

all growth situations of strawberries as the natural environment, in

this paper the strawberry growing distributions are classified into

five types for better evaluation of the robots performance, as

illustrated in Figure 17. Based on our observations at the farm, not all

strawberry distributions can be classified as a specific type; however,

they can all be said to have derived from these five specific types,

each of which was evident on the farm and influenced the test

results. The five types are defined as follows:

(1) Type A: One isolated ripe strawberry with no other strawberries

around it. This is the simplest situation but also common in this

strawberry variety.

(2) Type B: Two ripe strawberries growing very close to each other

but with no other strawberries around. Their distribution may be

left–right, front–rear, or top–bottom and so on.

(3) Type C: One ripe strawberry partially surrounded by unripe

strawberries. There are spaces through which the gripper can

access the ripe berry. This situation is also common in this variety.

(4) Type D: Two ripe strawberries partially surrounded by unripe

strawberries. This situation is similar to type B and type C but

more complicated.

(5) Type E: One ripe strawberry that is fully surrounded by unripe

strawberries. This is the most challenging growing situation but

was not commonly seen in our experiments with the variety “Lusa.”

11 | RESULTS

11.1 | Arm repeatability test

To evaluate the arm performance, a repeatability test on the dual‐
arm system was conducted, which tested each axis independently. As

shown in Figure 18a, a dial indicator is attached to the arm z axis, and

the y axis will touch the indicator tip when z axis has an up‐down

movement. Two sets of experiments were performed: with homing

and without homing. With homing the arm during each trail, the

precision is also influenced by the end‐stop sensors. This is mean-

ingful to the nonabsolute motor encoder, as the arms need to be

homed every time after restarting and the main positional error is

due to robot zeroing (Conrad et al., 2000). With homing option,

Figure 18b illustrates the repeatability test results after zero‐mean

normalization of 50 trials at 200mm/s traveling speed. Following the

ISO 9283 standard on arm repeatability calculation, the repetition

precisions of x y, , and z axes are 0.209, 0.032, and 0.006 mm,

respectively. Similarly, without homing, as shown in Figure 18c, the

F IGURE 17 Definitions of five strawberry growing types for the picking experiments: Type A: isolated ripe strawberry; Type B: two
connected ripe strawberries; Type C: one ripe strawberry with surrounding (not fully) raw strawberries; Type D: two ripe strawberries with

surrounding (not fully) raw strawberries; and Type E: one ripe strawberry that is fully surrounded by raw strawberries. Five different types of
strawberry growth, as defined for the picking experiments. Type A: isolated ripe strawberry; Type B: two connected ripe strawberries; Type C:
one ripe strawberry partially surrounded by unripe strawberries; Type D: two ripe strawberries partially surrounded by unripe strawberries;

and Type E: one ripe strawberry fully surrounded by unripe strawberries [Color figure can be viewed at wileyonlinelibrary.com]
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repetition precisions of x y, , and z axes are 0.109, 0.011, and

0.007mm, respectively. The variance of the precision among axes is

mainly due to the different transmission type and gear ratio, but all of

these precisions are high enough for our harvesting application. To

evaluate the performance of the arms in this new strawberry

harvester, a repeatability test was conducted on the dual‐arm
system, with each axis tested independently. As shown in Figure

18a, a dial indicator was attached to the arms z axis, the tip of which

was touched by the y axis during the up‐down movement of the z

axis. Two sets of experiments were performed, namely one with

homing and one without homing. When homing the arm during a trial,

the precision is also influenced by the end‐stop sensors. This is

meaningful to the nonabsolute motor encoder, as the arms require

homing after every restart and any positional error is mainly due to

robot zeroing (Conrad et al., 2000). Here, Figure 18b illustrates the

repeatability test results of the homing experiments after zero‐mean

normalization of 50 trials at 200mm/s traveling speed. Following the

ISO 9283 standard on arm repeatability calculation, the repetition

precisions of the x y, , and z axes were measured at 0.209, 0.032, and

0.006mm, respectively. Similarly, in the experiments without homing,

shown in Figure 18c, the repetition precisions of the x y, , and z axes

were 0.109, 0.011, and 0.007mm, respectively. The variance of the

precision among axes is considered to be mainly due to the different

transmission types and gear ratios; however, these precisions are all

of a sufficiently high standard for this harvesting application.

11.2 | Success rate, failure cases, and cycle times
for different types

The performance tests conducted on this new strawberry‐harvest-
ing robot provide valuable information on current state and

identify the limitations and challenges to the system, which are

important for future improvements. The evaluation tests were

implemented from April 8, 2018 to April 10, 2018, following the

completion of the system integration. Two main indicators were

used to evaluate the robots performance, namely success rate, and

picking cycle time, representing harvesting accuracy and speed,

respectively. The failure cases were recorded and analyzed to

identify the challenges, which may be attributed to a variety of

factors ranging from the subsystems of the robot to environmental

factors or even the strawberry itself. Table 2 shows the rates of

harvesting success for the five growing types, while the failure

rates are listed in Table 3. In each trial, the robot attempted to pick

a second time if the first attempt was a failure. More than two

attempts are considered unsuitable since multifailure attempts

might damage the fruit, especially fragile strawberries. Some of the

reasons for picking failure were found to be common for all

growing types; however, there were others in which the robot

encountered new problems when the growing environment

changed. The total number of failures listed in Table 3 includes

both attempts. Therefore, if a strawberry was unreachable, the

number of failures listed under common reasons (5) is 2.

Additionally, several failure cases can appear in one attempt. For

example, if two ripe strawberries were not segmented (Type B (2)),

their localization is listed as incorrect (common reasons (1)).

In general, picking success was seen to decrease gradually from

Type A to Type E, as the growing situations became increasingly

complex. For Type A, the robot was tested on 34 targets with only

one failure at the first attempt, which was because the size of the

target strawberry was almost at the maximum limit (diameter

45mm) that the gripper can swallow. After changing the swallowing

position, the second attempt was successful. For Type B, 22 pairs of

(a) (b) (c)

F IGURE 18 Arm repeatability test results: (a) Testing setup for z axis where a dial indicator was mounted on the z axis and the y axis was

used to touch the dial indicator tip during the up‐down movement of the z axis; (b) repeatability test results for each axis with homing; and (c)
repeatability test results for each axis without homing [Color figure can be viewed at wileyonlinelibrary.com]
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targets were tested for a total of 44 fruits. On the first attempt, 12 of

the 44 picks failed while another 8 were successful in the second

attempt, representing a first attempt success rate of 72.7% and

90.9% for the two attempts. For Type B, the most frequent failure

was caused by swinging (Type B (3) in Table 3). If two strawberries

are connected with static force between them, picking of the first

strawberry could change the position of the second strawberry or

even make it swing dynamically. Thus, when the robot is picking the

second strawberry, the previously obtained position might be

incorrect. This problem can be overcome by incorporating visual

servoing or other real‐time detection techniques for closed‐loop
control. In the tests, most of the swinging strawberries were

successfully picked on the second attempt, after the image proces-

sing results were updated. Moreover, the vision algorithm was

sometimes not able to segment the connected strawberries, which

meant that the robot would go to the center of the two targets,

regarding them as one strawberry. If one of these strawberries was

picked in the first attempt, the second attempt was regarded as a

Type A situation.

In Type C, new problems appeared because of surrounding

immature strawberries. Without segmentation and swinging issues,

the first‐attempt success rate for Type C was slightly higher than that

of Type B (75.7%), but the success rate of the two attempts (83.8%)

was lower than in Type B. This is because the second attempt in Type

C was on the same target with fewer environment changes, which is

markedly different from the circumstances of Type B. If surrounding

small immature strawberries are growing too close to the target, they

are at risk of being swallowed together it, which would not only

TABLE 2 Harvesting success rate of the robot in different growing types on the “Lusa” variety of strawberries

Strawberry
distribution type

Quantity of
target fruit

Success on the
first attempt

Success with two
attempts

Unpicked two
attempts

Success rate on the
first attempt (%)

Success rate with
two attempts (%)

Type A 34 33 34 0 97.1 100.0

Type B 44 32 40 4 72.7 90.9

Type C 37 28 31 6 75.7 83.8

Type D 40 20 30 10 50.0 75.0

Type E 20 1 4 16 5.0 20.0

TABLE 3 Harvesting failures of the robot in different growing types on the “Lusa” variety of strawberries

Type Failure reasons

Failure

times

Happening rates among all

failures (%)

Common reasons 1. Localization error

2. Target strawberry not detected

3. Target strawberry diameter too big (diameter over 45mm) for gripper

swallowing

4. Failure to cut the peduncle of strawberry

5. Target locations unreachable, either too high, too low or too far

Type A Common reasons (3) 1 100.0

Type B 1. Common reasons (1), (2), (3), and (4) 4, 4, 2, 1 21.1, 21.1, 10.5, 5.3

2. Two connected ripe strawberries were not segmented during image

processing

3 15.7

3. The second strawberry was swinging after picking the first one, resulting in

large positional error

5 26.3

Type C 1. Common reasons (1), (2), (3), and (5) 2, 4, 2, 2 13.3, 26.7, 13.3, 13.3

2. One or more surrounding immature strawberries were picked together

with the ripe strawberry

3 20.0

3. Peduncle was connected to nearby immature strawberries, stems, or leaves,

thus pushing the ripe strawberry together with these obstacles

2 13.3

Type D 1. Common reasons (1), (2), (3), and (4) 7, 10, 2, 1 19.4, 27.8, 5.6, 2.8

2. Reasons as per Type B (2) and (3) 4, 3 11.1, 8.3

3. Reasons as per Type C (2) and (3) 5, 4 13.9, 11.1

Type E 1. Common reasons (1) and (2) 16, 22 28.1, 38.6

2. Reasons as per Type C (2) and (3) 10, 9 17.5, 15.8
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decrease future yields but would also mix immature strawberries into

the punnets with the ripe fruit. Another issue (Type C (3)) is that the

peduncle of the target might be connected to nearby immature

berries, stems or leaves, so that the ripe strawberry is pushed up

together with these obstacles that should not be swallowed. Type D

can be regarded as a combination of Types B and C, so their failure

cases may also happen for Type D, making it a more challenging

growing situation than the others. In the tests, only half of the targets

were picked successfully on the first attempt and, with two attempts,

the rate increased to 75.0%. Many of the complex surrounding

berries, leaves or stems were not detected by the vision system.

Finally, Type E presented an almost impossibly complicated situation

for our system, resulting in a mere 5% first‐attempt success rate, in

which one pick was attributed to luck, and increasing to 20% on the

second attempt. Detecting a strawberry with many others in front of

it was a challenge and, in fact, 11 berries could not be detected at all.

Three of the successful picks during the second attempt were

achieved only because the first attempt had cut some of the

surrounding obstacles, making the second attempt easier.

To assess the picking speed of the robot, the picking times for

both the one‐arm and dual‐arm modes were calculated from video

recordings of the movement. Researchers proposed a definition for

cycle harvesting time, which includes perception operation, manip-

ulation of a fruit, placement of the detached fruit, and also the arm

traveling time to the next fruit (Bac et al., 2013, 2017). Due to the

variation in robots and crops, similar metrics have been used by other

works but with some differences, for example, without counting the

time for the arm traveling to the next fruit (Lehnert et al., 2017) or

without adding the perception time (Silwal et al., 2017). Never-

theless, platform moving time has not been taken into account by

most of the reports (Bac et al., 2017; Lehnert et al., 2017; Silwal et al.,

2017). In our system, most of the time taken is in the manipulation

process, since the top‐level control is open loop so the robot only

need to sense an image area once and then the two arms are

actuated to pick all the targets in this image without further

perception needed. Laboratory tests with fake strawberry plants

(6–12 ripe strawberries) indicated that the average time for our

perception system is 0.11 s (i5‐6200 CPU, 16 GB RAM), including

image acquisition, detection, obstacle calculation, and path‐planning.
The cycle time including perception is varied if the number of

strawberries in each image area is different. Also, the gripper can

collect strawberries during picking, so the time taken for the

manipulator to drop individual fruit does not exit. Therefore, similar

to apple harvesting (Silwal et al., 2017), we report the harvesting

time on manipulation time only, including the picking time and arm

traveling time, excluding the time taken to move platforms and pick

punnets. On average, the time in which one arm successfully picked

one target and traveled on to the next was 6.1 s, as shown in Table 4.

This picking speed is faster than that of our previous versions

average of 7.49 s, and is attributed to the increased speed of the

arms in both movement and communication, as well as the new

scanning control method. When using two arms, one berry was

picked in 4.6 s, which is more than half the time taken by the single

arm. This is because of delays while one arm waited for the other

during picking to avoid collision or while the platform was moved.

12 | DISCUSSION AND LESSONS LEARNED

Results show the new autonomous strawberry‐harvesting robot is

more accurate and faster than the previous version. These improve-

ments are the combined result of tight system integration, adaptive

machine vision, cooperative dual arms, an improved gripper, and

intelligent obstacle separation. However, along with these improve-

ments, the new system still faces numerous challenges.

First, the adaptive color‐thresholding method in the machine

vision subsystem shows the ability to adapt to the changing sunlight.

Color thresholding on 2D images is a simple and fast algorithm. It is

effective and efficient when the environment is simple. However,

during the experiments on the farm, most of the localization errors

came from the image processing. For example, two connected

strawberries could not be segmented or one strawberry was

segmented into two parts because there was a stem in front of it.

This problem may be considered commonplace for traditional image

processing. The current alternative which is to use more advanced

technologies like 3D image processing and deep learning, is likely to

solve many of these problems, especially as processing speed is

unlikely to remain a problem as new hardware is developed. The

whole system was evaluated in the field as listed in Table 3, including

all aspects of failures, but lacked specific evaluation of individual

system. Our future work will consider to standardize the metrics and

data set to compare. the adaptive color thresholding with other

detection methods. In addition, the current gripper is unable to

distinguish between correct (true positive) and incorrect detection

(false positive) of mature strawberries, thus once receiving a target

location, the gripper will pick it anyway regardless of the actual

targets. However if nothing is detected by the gripper, the arm will

skip it immediately and move to the next target (Section 9.2).

Therefore, future improvements will be to use an additional hand‐eye
camera for final verification. Additional hand‐eye cameras can also be

used for closed‐loop vision‐based manipulation, because the current

TABLE 4 Manipulation time on successful picking with one arm or
two arms configurations

Number
of arms Test no.

Number of

picked
strawberries

Manipulation

execution time
per strawberry Average(s)

One arm 1 2 6.8 6.1

2 3 6.1

3 3 6.0

4 5 5.4

Two arms 1 5 4.4 4.6

2 5 5.2

3 7 4.6

4 8 4.2
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stationary camera is easily occluded by the arms or grippers during

picking operations.

Second, the proposed active obstacle‐separation algorithm proved

to be effective in field applications, thus improving the harvesting ability

of the robot. As long as there was an entrance (empty blocks) within the

bottom blocks, the gripper was able to find a way to push aside the

surrounding obstacles. However, it was still unable to pick targets that

were fully surrounding by obstacles (leaving no entrance). It was also

still not robust and revealed some limitations, especially from the vision

side. The first limitation is the insufficient view and point cloud. In the

current system, only a single view was used to get the 3D scenario.

However, because of occlusions and the straight projection of the

camera, the rear obstacles were not easily detected, such as the case in

Figure 12a when the bottom left‐rear obstacle was not detected.

Therefore, future work should make use of multi‐view images and

reconstruct more accurate scenes. The second vision problem is that of

inaccurate localization. As the obstacle block size is dependent on the

target bounding box, inaccurate localization of ripe strawberries might

result in the gripper pushing the target when separating surrounding

obstacles. In addition to the vision system limitations, closed‐loop
control between perception and manipulation may be able to improve

the performance of obstacle separation. From a mechanical perspective,

an additional manipulator may also help to separate the obstacles,

like human manipulation in cluttered environment. Also, in some cases,

the gripper size was found to be too large to separate the obstacles

delicately, however, a small‐sized gripper may not be able to swallow

large fruits, so this gap remains to be solved.

Finally, strawberry variety is an important factor that can influence

how the robot, especially the gripper, is designed, as well as the picking

success rate. Based on field observation, varieties like “Lusa” are easier

for picking than others, such as “Rumba,” which has lots of clusters

with short peduncles growing on one stem. This feature makes it

difficult for robots to separate obstacles. This suggests that the

automation of the agriculture industry requires more efforts from

horticulture technology in breeding new varieties and developing new

growing systems to simplify the environment for robots.

13 | CONCLUSIONS

This paper presents a fully integrated strawberry‐harvesting system

capable of picking strawberries in clusters. While several harvesters

that can cope with isolated strawberries have been developed, those

growing in complex clusters remain a challenge. The main scientific

contribution of this paper is the novel obstacle‐separation path‐
planning algorithm, which allows the successful harvest of strawber-

ries that are surrounded by other strawberries, as well as by leaves

and other obstacles. The algorithm uses the gripper to push

surrounding obstacles from an entrance, thus clearing the way for

it to swallow the target strawberry. The separation actions consist of

pushing aside the bottom obstacles before swallowing and pushing

aside the top obstacles during swallowing. The pushing vectors are

derived based on the surrounding obstacles that are calculated using

downsampled blocks of 3D point cloud. This technique might be

applicable to other fruit harvesting systems.

In addition to obstacle separation, improvements were made to

the gripper, the vision system, and the control. For adaptation to the

field environment, a vision system that could automatically change

color thresholds was developed based modeling of color against

sunlight intensity, making it robust to variations in lighting.

Furthermore, a low‐cost single‐rail two Cartesian arm system was

developed, which makes it suitable for agricultural robot application.

The harvesting sequence for the dual‐arm was studied to optimize

harvesting efficiency and avoid collision. This study also presents an

improved gripper design that enables the robot to pick a market

punnet and harvest berries directly into the punnet, thus eliminating

the cost and time for repacking.

Finally, we show the full integration and control algorithm of the

whole system, which enables the robot to harvest continuously along

the polytunnels. The system was tested in the field on a strawberry

farm. Results revealed that the robot was capable of picking partially

surrounded strawberries, with success rates ranging from 50.0% to

97.1% on the first attempt, depending on the different type settings.

This rate rose to between 75.0% and 100.0% on the second attempt.

However, the system was not able to pick a target that was fully

surrounded by obstacles, recording a first‐attempt success rate of

just 5.0%. The picking speed in the one‐arm mode increased to 6.1 s,

including both picking and the arm’s travel time to the next target,

while, for the dual‐arm mode, the average picking time was recorded

as 4.6 s per strawberry. Failures in this new system were caused

mainly by the vision system and insufficient dexterity in the grippers,

which will be addressed in future developments of the harvester.

ACKNOWLEDGMENTS

This study was supported by the Norwegian University of Life

Sciences, Norway. We thank Mr. Robert England and Mr. Mihail

Marita from the Boxford Suffolk Farms (Colchester, UK) for

providing the strawberry greenhouse and accommodation to conduct

field experiments.

ORCID

Ya Xiong http://orcid.org/0000-0001-5593-8440

REFERENCES

Anjom, F. K., Vougioukas, S. G., & Slaughter, D. C. (2018). Development of

a linear mixed model to predict the picking time in strawberry

harvesting processes. Biosystems Engineering, 166, 76–89.

Bac, C., Hemming, J., & VanHenten, E. (2013). Robust pixel‐based
classification of obstacles for robotic harvesting of sweet‐pepper.
Computers and Electronics in Agriculture, 96, 148–162.

Bac, C. W., Hemming, J., vanTuijl, B., Barth, R., Wais, E., & vanHenten, E. J.

(2017). Performance evaluation of a harvesting robot for sweet

pepper. Journal of Field Robotics, 34(6), 1123–1139.

222 | XIONG ET AL.

http://orcid.org/0000-0001-5593-8440


Bac, C. W., Roorda, T., Reshef, R., Berman, S., Hemming, J., & vanHenten, E.

J. (2016). Analysis of a motion planning problem for sweet‐pepper
harvesting in a dense obstacle environment. Biosystems Engineering,

146, 85–97.

Bangert, W., Kielhorn, A., Rahe, F., Albert, A., Biber, P., Grzonka, S., & Haug, S.

(2013). Field‐robot‐based agriculture: "RemoteFarming. 1" and “BoniR-

ob‐Apps”. 71th conference LAND. TECHNIK‐AgEng 2013, Hannover,

Germany, 2193, 439–446.

Bargoti, S., & Underwood, J. P. (2017). Image segmentation for fruit

detection and yield estimation in apple orchards. Journal of Field

Robotics, 34(6), 1039–1060.

Botterill, T., Paulin, S., Green, R., Williams, S., Lin, J., Saxton, V., & Corbett‐
Davies, S. (2017). A robot system for pruning grape vines. Journal of

Field Robotics, 34(6), 1100–1122.

Conrad, K. L., Shiakolas, P. S., & Yih, T. C. (2000). Robotic calibration

issues: Accuracy, repeatability and calibration. In Proceedings of the

8th Mediterranean Conference on Control and Automation

(MED2000), Rio, Greece, 1719, 1–6.

Cui, Y., Gejima, Y., Kobayashi, T., Hiyoshi, K., & Nagata, M. (2013). Study

on cartesian‐type strawberry‐harvesting robot. Sensor Letters, 11(6‐7),
1223–1228.

Dimeas, F., Sako, D. V., Moulianitis, V. C., & Aspragathos, N. A. (2015).

Design and fuzzy control of a robotic gripper for efficient strawberry

harvesting. Robotica, 33(5), 1085–1098.

Feng, Q., Wang, X., Zheng, W., Qiu, Q., & Jiang, K. (2012). New strawberry

harvesting robot for elevated‐trough culture. International Journal of

Agricultural and Biological Engineering, 5(2), 1–8.

Feng, Q., Zou, W., Fan, P., Zhang, C., & Wang, X. (2018). Design and test of

robotic harvesting system for cherry tomato. International Journal of

Agricultural and Biological Engineering, 11(1), 96–100.

Fentanes, J. P., Lacerda, B., Krajník, T., Hawes, N., & Hanheide, M. (2015).

Now or later? predicting and maximising success of navigation actions

from long‐term experience. 2015 IEEE International Conference on

Robotics and Automation (ICRA), IEEE, Seattle, USA, 1112–1117.

Fu, L., Feng, Y., Majeed, Y., Zhang, X., Zhang, J., Karkee, M., & Zhang, Q.

(2018). Kiwifruit detection in field images using faster r‐cnn with

zfnet. IFAC‐PapersOnLine, 51(17), 45–50.
Grimstad, L., Skattum, K., Solberg, E., Loureiro, G. D. S. M., & From, P. J.

(2017). Thorvald II configuration for wheat phenotyping. IROS

Workshop on Agri‐Food Robotics: Learning from Industry, Vancouver,

Canada, vol. 4.

Grimstad, L., Zakaria, R., Le, T. D., & From, P. J. (2018). A novel autonomous

robot for greenhouse applications. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Madrid, Spain, 1‐9.
Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for

grid mapping. IEEE Transactions on Robotics, 23(1), 34–46.

Habaragamuwa, H., Ogawa, Y., Suzuki, T., Shiigi, T., Ono, M., & Kondo, N.

(2018). Detecting greenhouse strawberries (mature and immature),

using deep convolutional neural network. Engineering in Agriculture,

Environment and Food, 11(3), 127–138.

Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y.,

Kamata, J., & Kurita, M. (2010). Evaluation of a strawberry‐harvesting
robot in a field test. Biosystems Engineering, 105(2), 160–171.

Hayashi, S., Yamamoto, S., Saito, S., Ochiai, Y., Kamata, J., Kurita, M., &

Yamamoto, K. (2014). Field operation of a movable strawberry‐harvesting
robot using a travel platform. Japan Agricultural Research Quarterly, 48(3),

307–316.

Huang, Z., Wane, S., & Parsons, S. (2017). Towards automated strawberry

harvesting: Identifying the picking point. In Gao, Y., Fallah, S., Jin, Y., &

Lekakou, C. (Eds.), Conference Towards Autonomous Robotic Systems (pp.

222–236). Guildford, UK: Springer.

Ishikawa, T., Hayashi, A., Nagamatsu, S., Kyutoku, Y., Dan, I., Wada, T. …

Oku, K. (2018). Classification of strawberry fruit shape by machine

learning. International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, 42, 2.

Lehnert, C., McCool, C., Sa, I., & Perez, T. (2018). A sweet pepper harvesting

robot for protected cropping environments. Retrieved from https://

arxiv.org/abs/1810.11920

Lehnert, C., Tsai, D., Eriksson, A., & McCool, C. (2018). 3d move to see:

Multi‐perspective visual servoing for improving object views with semantic

segmentation. Retrieved from https://arxiv.org/abs/1809.07896

Lehnert, C. F., English, A., McCool, C., Tow, A. W., & Perez, T. (2017).

Autonomous sweet pepper harvesting for protected cropping

systems. IEEE Robotics and Automation Letters, 2(2), 872–879.

Lili, W., Bo, Z., Jinwei, F., Xiaoan, H., Shu, W., Yashuo, L., & Chongfeng, W.

(2017). Development of a tomato harvesting robot used in green-

house. International Journal of Agricultural and Biological Engineering,

10(4), 140–149.

Mai, X., Zhang, H., & Meng, M. Q.‐H. (2018). Faster r‐cnn withclassifier

fusion for small fruit detection. 2018 IEEE International Conference

on Robotics and Automation (ICRA), IEEE, Brisbane, Australia,

7166–7172.

McCool, C., Beattie, J., Firn, J., Lehnert, C., Kulk, J., Bawden, O., & Perez, T.

(2018). Efficacy of mechanical weeding tools: A study into alternative

weed management strategies enabled by robotics. IEEE Robotics and

Automation Letters, 3(2), 1184–1190.

Mueller‐Sim, T., Jenkins, M., Abel, J., & Kantor, G. (2017). The robotanist: A

ground‐based agricultural robot for high‐throughput crop phenotyping.

IEEE International Conference on Robotics and Automation (ICRA),

Singapore, 3634‐3639.
Raja, Y., McKenna, S. J., & Gong, S. (1998). Tracking and segmenting

people in varying lighting conditions using colour. Proceedings Third

IEEE International Conference on Automatic Face and Gesture

Recognition, Nara, Japan, 228–233.

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016).

Deepfruits: A fruit detection system using deep neural networks.

Sensors, 16(8), 1222.

Shiigi, T., Kurita, M., Kondo, N., Ninomiya, K., Rajendra, P., Kamata, J., &

Kohno, Y. (2008). Strawberry harvesting robot for fruits grown on table

top culture. An ASABE Meeting Presentation, American Society of

Agricultural and Biological Engineers, Providence, Rhode Island, 1‐9.
Silwal, A., Davidson, J. R., Karkee, M., Mo, C., Zhang, Q., & Lewis, K. (2017).

Design, integration, and field evaluation of a robotic apple harvester.

Journal of Field Robotics, 34(6), 1140–1159.

Sridharan, M., & Stone, P. (2007). Color learning on a mobile robot: Towards

full autonomy under changing illumination. International Joint Con-

ference on Artificial Intelligence, Hyderabad, India, 2212–2217.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge,

USA: MIT Press.

Vakilian, K. A., Jafari, M., & Zarafshan, P. (2015). Dynamicsmodelling and

control of a strawberry harvesting robot. 2015 3rd RSI International

Conference on Robotics and Mechatronics (ICROM), IEEE, Tehran,

Iran, 600–605.

VanHenten, E. J., Hemming, J., VanTuijl, B., Kornet, J., Meuleman, J.,

Bontsema, J., & VanOs, E. (2002). An autonomous robot for harvesting

cucumbers in greenhouses. Autonomous Robots, 13(3), 241–258.

Vijayarangan, S., Sodhi, P., Kini, P., Bourne, J., Du, S., Sun, H., &

Wettergreen, D. (2017). High‐throughput robotic phenotyping of

energy sorghum crops, Field and Service Robotics (5, pp. 99–113).

Cham, Switzerland: Springer.

Vitzrabin, E., & Edan, Y. (2016). Changing task objectives for improved

sweet pepper detection for robotic harvesting. IEEE Robotics and

Automation Letters, 1(1), 578–584.

Xiong, Y., From, P. J., & Isler, V. (2018). Design and evaluation of a novel

cable‐driven gripper with perception capabilities for strawberry

picking robots. 2018 IEEE International Conference on Robotics and

Automation (ICRA), IEEE, Brisbane, Australia, 7384–7391.

Xiong, Y., Ge, Y., Liang, Y., & Blackmore, S. (2017). Development of a

prototype robot and fast path‐planning algorithm for static laser

weeding. Computers and Electronics in Agriculture, 142, 494–503.

XIONG ET AL. | 223



Xiong, Y., Peng, C., Grimstad, L., From, P. J., & Isler, V. (2019).

Development and field evaluation of a strawberry harvesting robot

with a cable‐driven gripper. Computers and Electronics in Agriculture,

157, 392–402.

Yaguchi, H., Nagahama, K., Hasegawa, T., & Inaba, M. (2016). Development

of an autonomous tomato harvesting robot with rotational plucking

gripper. 2016 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), IEEE, Daejeon, South Korea, 652–657.

Yamamoto, S., Hayashi, S., Saito, S., Ochiai, Y., Yamashita, T., & Sugano, S.

(2010). Development of robotic strawberry harvester to approach target

fruit from hanging bench side. IFAC Proceedings Volumes, 43(26), 95–100.

Yamamoto, S., Hayashi, S., Yoshida, H., & Kobayashi, K. (2014).

Development of a stationary robotic strawberry harvester with a

picking mechanism that approaches the target fruit from below. Japan

Agricultural Research Quarterly, 48(3), 261–269.

Ye, Y., Wang, Z., Jones, D., He, L., Taylor, M. E., Hollinger, G. A., & Zhang,

Q. (2017). Bin‐dog: A robotic platform for bin management in

orchards. Robotics, 6(2), 12.

Zhang, L., Gui, G., Khattak, A. M., Wang, M., Gao, W., & Jia, J. (2019). Multi‐
task cascaded convolutional networks based intelligent fruit detection

for designing automated robot. IEEE Access, 7, 56028–56038.

Zion, B., Mann, M., Levin, D., Shilo, A., Rubinstein, D., & Shmulevich, I.

(2014). Harvest‐order planning for a multiarm robotic harvester.

Computers and Electronics in Agriculture, 103, 75–81.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section.

How to cite this article: Xiong Y, Ge Y, Grimstad L, From PJ.

An autonomous strawberry‐harvesting robot: Design,

development, integration, and field evaluation. J Field Robotics.

2020;37:202–224. https://doi.org/10.1002/rob.21889

APPENDIX: INDEX TO MULTIMEDIA
EXTENSIONS

The table shows some videos of the field experiments presented in

this paper.

Extension

Media

type Description

1 Video Gripper actions and field test of the robot

2 Video Obstacle separation actions in the field

3 Video Failure cases in the field

4 Video Lab demo of the robot (including the newest

version of the gripper)

5 Video Navigation in the farm
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