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Article 

Plasma Interleukin-10 and Cholesterol Levels May Inform 

about Interdependences between Fitness and Fatness in 

Healthy Individuals 

Francesco Sartor 1,2,*, Jonathan P Moore 2 and Hans-Peter Kubis 2 

1 Department of Patient Care and Monitoring, Philips Research, 5656AE Eindhoven, The Netherlands 
2 College of Human Sciences, Bangor University, Bangor LL57 2EF, UK;  

j.p.moore@bangor.ac.uk (J.P.M.); h.kubis@bangor.ac.uk (H.-P.K.) 

* Correspondence: francesco.sartor@philips.com; Tel.: +31(0)615-509-627 

Abstract: Relationships between demographic, anthropometric, inflammatory, lipid and glucose 

tolerance markers in connection with the fat but fit paradigm were investigated by supervised and 

unsupervised learning. Data from 81 apparently healthy participants (87% females) were used to 

generate four classes of fatness and fitness. Principal Component Analysis (PCA) revealed that the 

principal component was preponderantly composed of glucose tolerance parameters. IL-10 and 

high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol, along with body 

mass index (BMI), were the most important features according to Random Forest based recursive 

feature elimination. Decision Tree classification showed that these play a key role into assigning 

each individual in one of the four classes, with 70% accuracy, and acceptable classification agree-

ment, κ = 0.54. However, the best classifier with 88% accuracy and κ = 0.79 was the Naïve Bayes. 

LDL and BMI partially mediated the relationship between fitness and fatness. Although unsuper-

vised learning showed that the glucose tolerance cluster explains the highest quote of the variance, 

supervised learning revealed that the importance of IL-10, cholesterol levels and BMI was greater 

than the glucose tolerance PCA cluster. These results suggest that fitness and fatness may be inter-

connected by anti-inflammatory responses and cholesterol levels. Randomized controlled trials are 

needed to confirm these preliminary outcomes. 

Keywords: VO2max; anti-inflammatory; machine learning; PCA 

 

1. Introduction 

In the 1950s, first observational evidence emerged showing that physically active in-

dividuals had a lower risk of cardiovascular disease (CVD) [1]. This evidence was later 

corroborated by the protective effect found for cardiorespiratory fitness (CRF), as shown 

in the Aerobics Center Longitudinal Study in 1989 [2,3]. Since then, several reviews, sys-

tematic reviews, and meta-analysis have confirmed and highlighted the protective role of 

CRF regardless the level of fatness [4–7]. According to the “fat but fit paradox”, people 

who have a high level of CRF may be better protected from the risk of CVD than leaner 

people who have low CRF [8]. However, only a small proportion of US citizens can be 

considered “fat and fit”, and obesity is independently associated with low CRF, simply 

because obese people are generally less active [9]. 

Lahoz-Garcia et al. [10] showed an interesting partial mediation of CRF between diet 

and obesity in schoolchildren, meaning that higher CRF contributes, for the same diet, to 

a lower fat mass (FM). Consistently, others have found that moderate to vigorous physical 

activity levels, thus higher CRF, were independently associated with a lower atherogenic 

index of plasma, namely blood fat strongly related with CVD, regardless of diet; and that 

central adiposity mediated, in other words explains, the relationship between moderate 
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to vigorous physical activity levels and atherogenic index of plasma [11]. This would rule 

in favor of the protective role of higher CRF against CVD risk. Moreover, poor CRF has 

been associated with glucose intolerance [12] and a higher risk of insulin resistance in 

apparently healthy individuals [13]. Furthermore, it has been hypothesized that low CRF 

could provide an early sign of insulin resistance [14]. 

Obesity has been shown to be associated with low level systemic inflammation in 

connection with increased adipose tissue mass [15,16]. In turn there is evidence, in animal 

studies, of the possible role of inflammation on over-nutrition [17]. However, physical 

activity may counteract over-nutrition behavior at the hypothalamic level by means of 

anti-inflammatory signaling mediated interleukin-10 (IL-10) [17]. An anti-inflammatory 

role of IL-10 has been found also in rat skeletal muscle tissue [18]. In humans it was found 

consistently that intensive cycling is able to increase, 1 hour after the exercise, gene ex-

pression of several interleukins including IL-10, but not IL-6 [19]. High intensity exercise 

showed an acute, 30 minutes, IL-10 and IL-6 increase in overweight-obese inactive indi-

viduals, but this increase was not elicited by moderate intensity exercise [20]. Neverthe-

less, two weeks of high intensity exercise in overweight-obese unfit individuals did not 

show a chronic increase in IL-10 nor in IL-6 [21,22]. Rather, a chronic elevation of IL-10 

found in obese women was reduced by 12 weeks of lifestyle intervention, including 30 

minutes of exercise a day, only in those obese women who did not have metabolic syn-

drome [23]. Furthermore, higher serum concentration of IL-10 was found in older adults 

with a higher volume of physical activity [24]. Additionally, animal models show a possi-

ble protective role of anti-inflammatory signaling on cardiac function (i.e., left ventricular 

end-diastolic pressure) [25], a finding supported in human studies involving coronary 

heart disease patients, obese and diabetic individuals [26,27]. 

To further investigate the relationship between cardiovascular fitness and body com-

position characteristics i.e., fatness, we used a database, which combined demographic, 

blood lipids, insulin resistance, and inflammatory variables in association with CRF and 

FM% values. Our approach was to create a categorical variable composed of four classes, 

based on CRF and FM% levels. The four classes or categories are termed High Fatness 

with High Fitness (HFHF), High Fatness with Low Fitness (HFLF), Low Fatness with High 

Fitness (LFHF) and finally Low Fatness with Low Fitness (LFLF). The cutoff levels be-

tween categories were identified according to the literature [28,29]. We have applied a 

data driven approach consisting of four steps. First is an unsupervised learning phase, 

where the variables are clustered using Principal Component Analysis (PCA) [30]. PCA 

allows clustering of the variables into principal components. Second, a supervised learn-

ing phase was deployed to use those clusters in the feature importance selection. We opted 

for feeding the PCA components as well as the other variables into the feature importance 

selection algorithm because, although PCA combines uncorrelated variables with one an-

other in such a way that each principal component will maximize variance, this does not 

mean that the components per se will be the most important classification features. There-

fore, as a second step, we have used the same categorical four classes’ dependent variable 

for a random forest based feature importance selection. In detail, we have used the Boruta 

algorithm, which is an improvement of the Random Forest feature selection model, also 

known as recursive feature elimination [31,32]. The Boruta algorithm adds randomness to 

the importance evaluation algorithm, so that the certainty about the importance of a given 

variable is increased. In short, a randomized copy of the variables is made at each iteration 

of the random forest importance computation. Thus, if a variable has a higher importance 

than the maximal importance of all randomized attributes it is retained. If there is some 

uncertainty, or if a variable has a lower importance it is rejected or discarded [32]. 

Third, a decision tree was used in order to define the discriminating path to the four 

classes of fitness and fatness. This classification model was used to visualize which inde-

pendent variables would best split the data points into the four classes. However, classi-

fication was not limited to the decision tree. Another four classification models were used 

as well with the intent of testing which classification model would maximize the use of 
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the selected independent variables, or features. The four alternative machine learning 

classification models were Multiple Logistic Regression, Decision Tree, Naïve Bayes, and 

K-nearest neighbors. This step was necessary to test whether the features selected would 

effectively classify the data points. Finally, a fourth step, a mediation and moderation 

analysis [33] was conducted in order to investigate whether attenuation between CRF and 

FM% would occur when one of the variables extracted was used as covariate. We hypoth-

esized that we would find attenuations, as previously shown in the literature [10,11], by 

means of variables linked to fat metabolism. The overall aim of this study was to use a 

data driven approach, employing machine-learning techniques, to generate new insights 

connecting fitness and fatness with demographic, blood lipids, insulin resistance, and in-

flammatory variables. 

2. Materials and Methods 

2.1. Study Design and Participants 

The data analyzed in this study originated from two separate data collections con-

ducted at Bangor University. Data from 81 apparently healthy participants (10 males and 

71 females) were included in the analysis. All participants were informed about the study 

protocols and objectives, and provided written consent prior to the start of the studies. 

Study protocols were approved by the Ethics Committee of the School of Sports, Exercise 

and Health Sciences Department of Bangor University in conformity with the Declaration 

of Helsinki. The design of this study was purely observational. 

2.2. Body Composition, Fat Mass Percentage, Blood Markers and Cardiorespiratory Fitness As-

sessment 

Participants were pre-screened for cardiovascular diseases by means of the American 

Heart Association/American College of Sports Medicine Pre-Participation Questionnaire 

[34]. However, participants with elevated fasting levels of glucose, insulin and lipids were 

not per se excluded from this study. Body composition, fasting blood lipid profile and 

CRF (VO2max) were determined using standardized protocols described previously [21]. 

A cardiorespiratory fitness test was executed on a cycle ergometer (Corival 400, Lode, 

Groningen,The Netherlands), the protocol consisted of an incremental exercise test to ex-

haustion (1min at 50 + 20 W increments per minute). Oxygen uptake was measured breath 

by breath by means of a metabolic card (ZAN 600 CPET, Oberthulba, Germany). Fasting 

blood lipid profile (total Cholesterol, LDL and HDL), plasma insulin, plasma glucose, lep-

tin and cytokines (IL-6, IL-10, and TNF-α) collection and analysis is also described in Sar-

tor et al. [21]. Plasma glucose was analyzed by immobilized enzymatic assay (YSI 2300 

STAT, Incorporated Life Sciences, Yellow Springs, OH, USA). Lipid profile was analyzed 

from plasma samples by optic enzymatic assay (Reflotron®, Roche Diagnostics, Mann-

heim, Germany). Plasma insulin was analyzed by ELISA (ultrasensitive human insulin 

ELISA kit, Mercodia, Uppsala, Sweden). Cytokines (IL-10, IL-6 and TNF-α) and adi-

pokines were also analyzed from fasting plasma samples by ELISA (Bender MedSystems 

GmbH, Austria and BioVendor, Laboratoní medicína, Czech Republic, respectively).. In-

sulin sensitivity and β-cell function were estimated using fasting plasma insulin and glu-

cose by means of the Homeostatic model assessment 2 (HOMA2) [35]. 

2.3. Classification Criteria 

Four classes were extracted from the database described above; a Higher-Fatness 

with Higher-Fitness (HFHF) group, a Higher-Fatness with Lower-Fitness (HFLF) group, 

a Lower-Fatness with Higher-Fitness (LFHF) group, and finally a Lower-Fatness with 

Lower-Fitness (LFLF) group. The grouping criteria were taken from Gallagher et al. [28] 

for fatness, and the American College of Sports Medicine guidelines [29] for fitness. The 

criteria are represented in Table 1. 
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Table 1. Classification criteria for body fat percentage and relative VO2max (mL/kg/min), age and sex. 

Age Males Females 

Young 

if AGE < 40 years AND if Sex = 1 AND 

FatMass% ≥ 26 

then Higher-Fatness 

Elseif Sex = 0 AND FatMass% ≥ 39 

then Higher-Fatness 

Middle-Age 

if 59 ≥ AGE ≥ 40 AND if Sex = 1 AND 

FatMass% ≥ 29 

then Higher-Fatness 

Elseif Sex = 0 AND FatMass% ≥ 41 

then Higher-Fatness 

Older 

if AGE ≥ 60 AND if Sex = 1 AND Fat-

Mass% ≥  31 

then Higher-Fatness 

Elseif Sex = 0 AND FatMass% ≥ 43 

then Higher-Fatness 

Young/Middle/Older Else Lower-Fatness Else Lower-Fatness 

Young 

If AGE < 29 AND if Sex = 1 AND if 

relVO2max > 45.7 

then Higher-Fitness 

Elseif Sex = 0 AND if relVO2max > 39.5 

then Higher-Fitness 

Middle-Age 

If 39 ≥ AGE > = 30 AND if Sex = 1 AND 

if relVO2max > 44.4 

then Higher-Fitness 

Elseif Sex = 0 AND if relVO2max > 36.7 

then Higher-Fitness 

 

If 49 ≥ AGE ≥ 40 AND if Sex = 1 AND if 

relVO2max > 42.4 

then Higher-Fitness 

Elseif Sex = 0 AND if OrelVO2max > 

35.1 

then Higher-Fitness 

Older 

If AGE > 50 AND if Sex = 1 AND if 

relVO2max > 38.3 

then Higher-Fitness 

Elseif Sex = 0 AND if OrelVO2max > 

31.4 

then Higher-Fitness 

Young/Middle/Older Else Lower-Fitness Else Lower-Fitness 

2.4. Data Analytics 

2.4.1. Preprocessing 

The full dataset collected at Bangor University premises was loaded into RStudio 

(Version 1.2.5033, 2009–2019 RStudio Inc., Boston, MA, USA). This initial dataset included 

25 independent variables. A first missing data filter was applied and all variables with 

more than 70% missing data were discarded. After this step, 19 independent variables 

were retained. Two variables were converted into factorial variables, the classification var-

iable as explained in Table 1 and the variable Sex. The retained variables were visualized 

to reveal imbalance. This visualization showed an imbalance towards females, as they 

represented 87% of our dataset. The imbalance was a consequence of the original research 

question of one data collection being confined to females. A zero- and near zero-variance 

predictors analysis was conducted, by means of nearZeroVar function (caret R package), 

to eliminate any independent variables that would not add anything in explaining vari-

ance (Table 2). However, no variables were rejected based on these criteria [36]. The pre-

Process function (caret R package) was used to center and scale the variables and missing 

data, were imputed using the bagImpute function which uses the bootstrap aggregating 

method [37]. Outliers were detected as values outside boxplot notches, using boxplot 

function (graphics R package). The notches were set as the median, plus or minus the 

standard error [38]. The detected outliers were excluded from the analysis. 
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Table 2. Zero- and near zero-variance predictors analysis. 

 Frequency Ratio Percent Unique Zero Variance Near Zero Variance 

Sex 7.100000 2.469136 FALSE FALSE 

Age 1.555556 23.456790 FALSE FALSE 

Height 1.142857 28.395062 FALSE FALSE 

Weight 1.000000 77.777778 FALSE FALSE 

BMI 1.500000 75.308642 FALSE FALSE 

Chol 1.000000 72.839506 FALSE FALSE 

HDL 1.000000 62.962963 FALSE FALSE 

LDL 1.333333 69.135802 FALSE FALSE 

TG 5.250000 49.382716 FALSE FALSE 

Fgluc 1.500000 62.962963 FALSE FALSE 

Leptin 1.000000 76.543210 FALSE FALSE 

Insulin 1.000000 77.777778 FALSE FALSE 

BetacellF 1.000000 77.777778 FALSE FALSE 

InsSens 1.000000 80.246914 FALSE FALSE 

InsRes 1.000000 43.209877 FALSE FALSE 

TNFalpha 1.333333 66.666667 FALSE FALSE 

IL-6 1.333333 71.604938 FALSE FALSE 

IL-10 1.000000 50.617284 FALSE FALSE 

RER 1.200000 34.567901 FALSE FALSE 

BMI = Body Mass Index, Chol = Fasting Total Cholesterol, HDL = Fasting High Density Lipoprotein, 

LDL = Fasting Low Density Lipoprotein, TG = Fasting TriGlycerides, Fgluc = Fasting Glucose, Beta-

cellF = β cell Function, InsSens = Insulin Sensitivity, InsRes = Insulin Resistance, TNFalpha = Tumor 

Necrosis Factor α, IL-6 = Interleukin-6, IL-10 = Interleukin-6, RER = Respiratory Exchange Ratio. 

2.4.2. Principal Component Analysis and Feature Selection 

Once the data were pre-processed a principal component analysis was conducted to 

find what combination of variables would explain the variability of the data. The function 

PCA (FactoMineR R package) as described in [39] was used. Eigenvalues, which represent 

the amount of the variation explained by each principal component, were extracted by 

fviz_eig. The number of retained components was set so that 70% of the total variance is 

explained. Correlation plots of all variables were produced using the corrplot function 

(corrplot R package). The importance of the twenty variables including five new Principal 

Components was evaluated by a recursive feature elimination technique based on the Bo-

ruta Random Forest method (Boruta R package) [32]. The Boruta function compares orig-

inal importance attributes against importance achievable by shadow random variables, in 

iterations until convergence. The principal components were also included in the feature 

selection step, to test whether the most variation corresponded with the highest im-

portance. 

2.4.3. Decision Tree 

A decision tree was built using the nine variables selected by the Boruta algorithm, 

with the exclusion of the PCA dimensions. As first step, the class imbalance was compen-

sated by means of weights for simple random sample (i.e., 1/probability). The decision 

tree was constructed using the rpart function (rpart R package) and vitalized by rpart.plot 

(rpart.plot R package). Tree depth was set as the smallest tree within one standard error 

of the minimum cross validation error [40]. 
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2.4.4. Classification Models 

Multiple logistic regression, decision tree, naïve Bayes, and κ-nearest neighbors clas-

sification model were trained on our dataset by means of the train function (caret R pack-

age) as described in Kuhn [36]. The classes were the four subgroups (HFHF, HFLF, LFHF, 

LFLF) described above. In order to perform the multinomial logistic regression, the mul-

tinom method was selected within the train function. In order to evaluate the performance 

of each single classifier, accuracy tables and confusion matrices were generated, using the 

confusionMatrix in caret and visualized thanks to ggplot (ggplot2 R package) [36]. 

2.4.5. Mediation and Moderation Analysis 

Mediation analysis was conducted by means of the mediation R package [41]. Before 

analyzing, the mediation and moderation raw data for each variable were assessed for 

normality and linearity by means of quantile-quantile plots (qqnorm function, from the 

basic stats R package), centered, and scaled when required, as described earlier. Linear 

regressions models, via the lm function (stats R package), were built between the mediator 

and the independent variable (relative VO2max), and between the dependent variable (Fat 

Mass percentage) and the independent variable-mediator combined. The mediate func-

tion simulated the comparison between these two linear regressions, showing if the me-

diation would add a significant contribution in relating the independent and dependent 

variables. The mediation analysis resulted in the Average Causal Mediation Effects 

(ACME), the Average Direct Effects (ADE), and the combined effects (Total Effect), and 

the proportion mediated (Prop. Mediated). Moderation was executed by the gylma and 

stargazer R packages. A linear model was built between the dependent variable and in-

dependent variable plus the moderator, and between the dependent variable and the 

moderator plus the product. 

2.5. Statistical Analysis 

The descriptive statistics, means and standard deviations of all participants for the 

15 included variables and for each of the four subgroups were analysed using the arsenal 

R package [42]. Data for the four subgroups were split using the filter function supported 

by the dplyr R package. One-way ANOVAs were performed to compare the four sub-

groups and they were followed-up when appropriate both by the tableby function (arse-

nal R package). Significance level was set at 0.05. 

3. Results 

3.1. Subgrouping and Difference Analysis 

As described in the method section, four subgroups were derived according to par-

ticipants’ CRF, body FM%, age, and sex. The subgroups sizes are not evenly distributed. 

Two subgroups HFHF and LFHF are rather small (N = 9, N = 6, respectively). In line with 

our intention to form four groups of different fatness and fitness levels, the ANOVA and 

follow-up showed significant differences between the two higher-fitness and lower-fit-

ness levels. Moreover, the HFHF group and the LFHF groups also showed a significant 

difference in fitness, the lower in fatness being fitter (40.1 ± 2.9 mL/kg/min) than the higher 

in fatness (34.3 ± 4.3 mL/kg/min). As for the higher fatness/lower fatness split, this was 

fully achieved, as confirmed by the ANOVA and follow-ups (Table 3). As to be expected, 

BMI was significantly higher in the HFLF group compared with the LFHF and LFLF sub-

groups. There was a trend towards a higher BMI for the HFLF group when compared 

with the HFHF group, and a trend towards a higher BMI in the HFHF group compared 

with the LFHF group. It is to be noted that BMI does not fully reflect FM% (Table 3). Total 

fasting plasma Cholesterol levels showed significantly higher levels in the HFLF com-

pared with the HFHF and LFHF groups. There was a strong trend towards a higher cho-

lesterol level in the LFLF group compared with the HFHF group. The LFHF group showed 

higher HDL than the HFHF group. The LFLF group had a higher HDL level than the HFLF 
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group. Moreover, there were two strong trends for a higher HDL in the LFLF group and 

the LFHF group versus the HFHF and the HFLF groups, respectively. LDL was higher in 

the HFLF group compared with the HFHF, LFHF, and LFLF groups. Finally, fasting 

plasma insulin was higher in the HFLF compared with the HFHF. Interestingly two, LFHF 

and LFLF, groups showed higher insulin values than the HFHF group (Table 3). 

3.2. Principal Component Analysis 

The independent variables, once filtered for missing data, were clustered by means 

of principal component analysis. Five principal component dimensions were found that 

explained 70% of the variance (Figure 1). Dimension 1 was dominated by glucose toler-

ance features, dimension 2 by Leptin and Sex, dimension 3 was constituted by lipid pro-

file, dimension 4 by triglycerides and glucose, and, finally, dimension 5 by BMI and 

weight. (Figure 1). In Figure 2 the classification and the weight of the single individuals is 

shown when the first two components are put in relation. 

 

Figure 1. Output of the principal component analysis: BMI = Body Mass Index, Chol = Fasting Total 

Cholesterol, HDL = Fasting High Density Lipoprotein, LDL = Fasting Low Density Lipoprotein, TG 

= Fasting TriGlycerides, Fgluc = Fasting Glucose, BetacellF = β cell Function, InsSens = Insulin Sen-

sitivity, InsRes = Insulin Resistance, TNFalpha = Tumor Necrosis Factor α, IL-6 = Interleukin-6, IL-

10 = Interleukin-6, RER = Respiratory Exchange Ratio, Sex.0 = females, Sex.1 = males. 

These five dimensions were further included in the feature selection process. Recur-

sive feature elimination based on random forest showed that the stronger features in de-

scribing the four groups were IL-10, BMI, total cholesterol, HDL, LDL, dimension 1, beta 

cell function, dimension 4, IL-6, Age, dimension 3, and weight. In Figure 2 the interrela-

tionship of the first two PCA components is shown and the four groups are clustered. 

Fitter groups tend to develop along dimension 1 while the less fit along dimension 2. 
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Table 3. Descriptive Statistics of Database, difference analysis and follow-up analyses. 

 HFHF (N = 9) HFLF (N = 47) 
LFHF 

(N = 6) 
LFLF (N = 19) Total (N = 81) 

ANOVA 

p Value 

t-Test Follow-

Up 

HFHF vs. HFLF 

p Value 

t-Test Follow-

Up 

HFHF vs. 

LFHF 

p Value 

t-Test Follow-

Up 

HFHF vs. LFLF 

p Value 

t-Test Follow-

Up 

HFLF vs. LFHF 

p Value 

t-Test Follow-

up 

HFLF vs. LFLF 

p Value 

t-Test Follow-

Up 

LFHF vs. LFLF 

p Value 

Relative VO2max 

(mL/kg/min) 
     <0.001 <0.001 0.013 <0.001 <0.001 0.346 <0.001 

Mean(SD) 34.349 (4.237) 25.492 (6.432) 40.123 (2.992) 26.968 (3.272) 27.906 (6.932)        

Range 29.560–42.530 14.050–41.700 35.680–44.400 19.300–31.500 14.050–44.400        

Fat Mass %      <0.001 0.108 0.003 0.003 <0.001 <0.001 0.065 

Mean(SD) 41.951 (5.686) 45.842 (6.686) 31.395 (4.828) 35.548 (4.510) 41.925 (7.871)        

Range 32.100–47.500 29.800–57.240 25.400–37.750 26.180–40.500 25.400–57.240        

Age, yrs      0.063       

Mean (SD) 42.444 (7.764) 34.787 (13.454) 24.500 (8.666) 33.526 (12.624) 34.580 (12.866)        

Range 33.000–50.000 19.000–57.000 19.000–42.000 20.000–49.000 19.000–57.000        

BMI      0.003 0.063 0.099 0.687 0.009 0.005 0.454 

Mean (SD) 31.174 (1.572) 33.728 (3.949) 29.165 (2.828) 30.577 (4.217) 32.367 (4.061)        

Range 27.580–33.080 26.970–44.990 25.000–31.440 25.300–39.230 25.000–44.990        

Height, m      0.894       

Mean (SD) 1.671 (0.114) 1.662 (0.092) 1.657 (0.047) 1.681 (0.099) 1.667 (0.093)        

Range 1.570–1.950 1.500–1.950 1.580–1.710 1.540–1.950 1.500–1.950        

Weight, kg      0.138       

Mean (SD) 87.458 (13.453) 93.392 (14.219) 80.335 (10.806) 87.141 (18.855) 90.299 (15.427)        

Range 67.990–119.050 63.400–125.690 62.500–91.630 61.750–125.690 61.750–125.690        

Cholesterol, 

mmol/L 
     0.006 0.003 0.995 0.055 0.013 0.447 0.113 

Mean (SD) 3.839 (0.623) 4.756 (0.830) 3.837 (0.753) 4.573 (1.003) 4.543 (0.904)        

Range 3.210–5.020 2.590–6.260 2.830–4.970 3.170–6.320 2.590–6.320        

HDL, mmol/L      0.008 0.900 0.025 0.056 0.057 0.004 0.873 

Mean (SD) 1.023 (0.205) 1.040 (0.395) 1.368 (0.327) 1.407 (0.554) 1.149 (0.445)        

Range 0.610–1.420 0.370–2.490 1.110–1.790 0.700–2.590 0.370–2.590        

LDL, mmol/L      <0.001 0.002 0.367 0.388 <0.001 0.037 0.186 

N-Miss 0 1 0 0 1        

Mean (SD) 2.456 (0.509) 3.221 (0.667) 2.165 (0.699) 2.769 (1.006) 2.949 (0.816)        

Range 1.860–3.240 1.910–4.460 1.230–2.890 0.360–4.560 0.360–4.560        

Fglucose, mmol/L      0.237       

N-Miss 0 0 0 1 1        

Mean (SD) 5.416 (0.652) 5.078 (0.802) 4.665 (0.565) 5.030 (0.351) 5.074 (0.700)        
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Range 4.710–6.360 3.850–9.050 3.800–5.300 4.190–5.460 3.800–9.050        

Leptin, ng /mL      0.118       

N-Miss 0 0 1 0 1        

Mean (SD) 16.966 (10.307) 29.711 (15.740) 22.058 (18.130) 29.883 (16.539) 27.840 (15.895)        

Range 1.380–26.760 2.690–59.970 3.070–48.840 5.470–57.640 1.380–59.970        

Insulin, pmol/L      0.040 0.012 0.023 0.039 0.630 0.184 0.722 

N-Miss 0 0 1 0 1        

Mean (SD) 5.667 (2.978) 11.053 (6.038) 9.722 (2.363) 9.021 (4.129) 9.881 (5.415)        

Range 1.730–9.640 1.210–28.090 7.350–12.400 2.410–17.470 1.210–28.090        

TNFalpha, pg/mL      0.992       

Mean (SD) 1.411 (1.669) 1.476 (2.253) 1.188 (1.952) 1.432 (2.046) 1.437 (2.093)        

Range 0.280–4.920 0.240–10.900 0.270–5.170 0.240–7.070 0.240–10.900        

IL-6, pg/mL      0.045 0.087 0.418 0.183 0.028 0.394 0.061 

Mean (SD) 1.609 (0.525) 1.118 (0.811) 1.933 (0.983) 1.294 (0.589) 1.274 (0.777)        

Range 0.800–2.200 0.000–3.120 0.380–3.040 0.190–2.250 0.000–3.120        

IL-10, pg/mL      0.138       

N-Miss 0 0 1 0 1        

Mean (SD) 0.864 (0.224) 0.841 (0.332) 1.130 (0.848) 1.108 (0.662) 0.925 (0.470)        

Range 0.430–1.190 0.030–1.700 0.030–2.370 0.040–2.250 0.030–2.370        

HFHF = Higher-Fatness with Higher-Fitness group, HFLF = Higher-Fatness with Lower-Fitness group, LFHF = Lower-Fatness with Higher-Fitness group, LFLF = Lower-Fatness with 

Lower-Fitness group, VO2max = maximal oxygen uptake, BMI = Body Mass Index, HDL = Fasting High Density Lipoprotein, LDL = Fasting Low Density Lipoprotein, TNFalpha = 

Tumor Necrosis Factor α, IL-6 = Interleukin-6, IL-10 = Interleukin-6. Significant p-levels are highlighted in bold. 
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Figure 2. Clustering of the categorical variable, including the four fatness and fitness permutations. Relationship between 

the first principal component and the second principal component computed by PCA. The size of the icons for the single 

individuals shows their weight in classification. HFHF = Higher-Fatness with Higher-Fitness group, HFLF = Higher-Fat-

ness with Lower-Fitness group, LFHF = Lower-Fatness with Higher-Fitness group, LFLF = Lower-Fatness with Lower -

Fitness group. 

3.3. Classification Models 

The Random Forest based recursive feature elimination Boruta algorithm found 

twelve variables as certainly important in classifying the four fatness and fitness classes 

(Figure 3). Amongst these twelve are PCA dimensions 1,4 and 3, in order of importance. 

While the algorithm is uncertain about dimension 5 and discards dimension 2. IL-10, BMI, 

and cholesterol levels are clearly the most important variables. In Figure S1 the first 10 

selected variables are shown as boxplot. Additionally, in Figure S1 linear correlations be-

tween variables are displayed, showing how the retained variables still carry most of the 

correlations. 
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Figure 3. Recursive feature elimination; in green are depicted the variables that are certain. IL6. = Interleukin-6, IL-10 = 

Interleukin-6, RER = Respiratory Exchange Ratio, Sex.0 = females, Sex.1 = males, Dim.1 = Dimension 1 of the PCA, Dim.2 

= Dimension 2 of the PCA Dim.3 = Dimension 3 of the PCA, Dim.4 = Dimension 4 of the PCA, Dim.5 = Dimension 5 of the 

PCA. 

When the twelve variables, including the PCA dimensions, selected by the Boruta 

importance algorithm were used to generate the classification model, we found acceptable 

classification performances. In fact, the Multiple Logistic Regression model showed a clas-

sification accuracy of 0.77 (95% CI: 0.6717, 0.8627), significantly higher than the No Infor-

mation Rate (0.4691), and a κ-coefficient of 0.65, Figure 4. The Decision Tree model, dis-

played in Figure 5, although having the lowest accuracy (0.70, 95% CI: 0.5919, 0.8001) 

amongst the models generated here, still had an accuracy significantly higher than its No 

Information Rate (0.432), and an acceptable κ-coefficient (0.54) (Figure 4). The Naïve Bayes 

classifier showed the highest accuracy (0.88, 95% CI: 0.7847, 0.9392), significantly higher 

than the No Information Rate (0.58), and a moderate κ-coefficient equal to 0.79(Figure 4). 

Finally, the K-Nearest Neighbors classifier had an accuracy of 0.73 (95% CI: 0.6181, 0.8213), 

which was, however, not higher than the No Information Rate (0.76), with a rather weak 

agreement, a κ-coefficient of 0.47 (Figure 4). Overall, the latter performed worse than the 

other classification models. 
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Figure 4. Confusion Matrices, and accuracy of the four classification models. ACC = accuracy, HFHF = Higher-Fatness 

with Higher-Fitness group, HFLF = Higher-Fatness with Lower-Fitness group, LFHF = Lower-Fatness with Higher-Fitness 

group, LFLF = Lower-Fatness with Lower -Fitness group. 
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Figure 5. Decision tree, where HDL = High Density Lipoprotein, LDL = Low Density Lipoprotein, 

IL-10 = Interleukin-10 and BMI = Body Mass Index are expressed in their original dimensions 

(mmol/L, mmol/L, pg/mL, respectively). HFHF = Higher-Fatness with Higher-Fitness group, HFLF 

= Higher-Fatness with Lower-Fitness group, LFHF = Lower-Fatness with Higher-Fitness group, 

LFLF = Lower-Fatness with Lower -Fitness group. 

3.4. Mediation and Moderation Analysis 

All selected variables were analyzed for mediation and moderation. As shown by the 

quantile-quantile plots in Figure 6, LDL and BMI did not require further scaling and/or 

centering and were the only two variables to show a significant partial mediation effect 

between CRF and FM% (Figure 7). Details of the causal mediation analysis are captured 

in Table 4. 

 

Figure 6. Quantile–quantile plots of the variables that showed partial mediation. 
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Figure 7. Decomposed Mediation Analysis plot: ACME = Average Causal Mediation Effect, ADE = 

Average Direct Effect, LDL = Low Density Lipoprotein, BMI = Body Mass Index. 

Table 4. Causal Mediation Analysis, Quasi-Bayesian Confidence Intervals. 

 Estimate 95% CI Lower 95% CI Upper P-Value 

ACME (LDL) −0.0843 −0.1813 −0.01 0.024 * 

ADE (LDL) −0.5221 −0.7414 −0.30 <0.001 *** 

Total Effect LDL) −0.6063 −0.8271 −0.40 <0.001 *** 

Prop. Mediated (LDL) 0.1308 0.0164 0.31 0.024 * 

ACME (BMI) −0.1078 −0.2205 −0.02 0.012 * 

ADE (BMI) −0.4996 −0.7034 −0.30 <0.001 *** 

Total Effect (BMI) −0.6075 −0.8211 −0.40 <0.001 *** 

Prop. Mediated (BMI) 0.1728 0.0397 0.36 0.012 * 

LDL = Low Density Lipoprotein, BMI = Body Mass Index, ACME = Average Causal Mediation Ef-

fect, ADE = Average Direct Effect, Prop. Mediated = Proportion of the effect Mediated. Significant 

values: ***<0.001, *<0.05. N = 81, Simulations: 1000. 

4. Discussion 

This present study embraces artificial intelligence as a tool to provide new insight 

into the fat but fit paradox [8]. Using unsupervised and supervised machine learning ap-

proaches to interrogate existing physiological data, this work indicates connection be-

tween markers of dyslipidemia, inflammation and cardiorespiratory fitness that reveal 

possible functional interaction of physiological systems underpinning the “fat but fit par-

adox”. 

4.1. Descriptive Statistics in Relation to Fatness and Fitness 

We have created four classes, or groups, in line with population normative cut-off 

values [28,29]. Consistently, these groups differed significantly from one another in terms 

of fitness and fatness (Table 3). Fasting total cholesterol levels and LDL were significantly 

higher in the HFLF group, while HDL was higher in the groups with lower fatness. The 
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decision tree depicted in Figure 5 shows how well HDL and LDL alone could differentiate 

the HFHF group from the other groups. Although IL-10 did not show significant differ-

ences between the four groups, whereas IL-6 did, IL-10 seemed to be involved in the dif-

ferentiation of individuals with lower fitness level in function of their fatness (Figure 5). 

Moreover, the Analysis of Variance amongst the four groups also showed differences in 

fasting insulin levels. Fasting insulin was the highest in the HFLF group and the lowest in 

the HFHF group (Table 3). This is of particular interest because it seemed to be associated 

with fitness rather than with fatness levels. Fitness has been shown to play an important 

role in protecting against glucose intolerance [43]. This may be related to the well-known 

effect of muscle contractile activity, hence exercise training, on insulin sensitivity [44]. 

4.2. Machine Learning 

Principal component analysis clustered the various markers available in this study 

so that they could better explain the variance of the fatness and fitness categorical variable. 

This resulted in PCA Dimension 1, mainly composed of glucose tolerance indicators, such 

as fasting insulin, insulin sensitivity, and insulin resistance, as well as beta cell function 

derived from the HOMA2 model (Figure 1). However, supervised learning, namely the 

random Forest based feature selection algorithm, revealed that the importance of IL-10, 

cholesterol levels (i.e., HDL, LDL and total Cholesterol) along with BMI in classifying the 

four classes was greater than that of the above mentioned glucose tolerance PCA cluster. 

The interesting aspect of our approach is that our analysis clearly points towards domi-

nant features, namely IL-10, LDL, HDL, BMI, for categorizing our four groups, in compe-

tition with other features, which are just as well known to be influenced by fatness and 

fitness. Besides the potential exercise dependent link between IL-10 and insulin/leptin sen-

sitivity in the hypothalamus in animal studies [17], exercise was found to increase IL-10 

levels in overweight-obese human subjects [20]. An interlink between fatness and IL-10, 

however, was found in obese subject after weight loss, revealing higher IL-10 levels [45]. 

Therefore, distinct features of our data could point towards an important discriminating 

function of IL-10 and LDL/BMI for fatness and fitness classification and could be linked 

to these findings. Moreover, exercise has been found to effect LDL as well as HDL levels 

[46]. 

4.3. Partial Mediation 

Fatness and fitness are significantly inversely related [47]. This was confirmed by our 

data. In addition to this, however, we found that CRF is indirectly related to FM% through 

the mediation of LDL and BMI. Previous literature found that BMI could mediate CRF 

and cardio-metabolic risk in schoolchildren [48]. Another investigation in schoolchildren 

using a large dataset showed that CRF may have a beneficial effect on lipid profile, insulin 

metabolism and inflammation independent of fatness [49]. Our results seem to lead in the 

same direction. Specific effects of exercise training, of a high enough intensity, to promote 

aerobic capacity improvements have been linked to a decrease in concentration of ather-

ogenic ox-LDL [46,50]. In addition, upregulation of fatty acid metabolism and transport 

through exercise dependent signaling pathways (particularly peroxisome proliferator-ac-

tivated receptor) [51,52] and concurrent alterations in lipid profiles [53,54] are well de-

scribed. Interestingly, IL-10 was found to be linked with LDL level as IL-10 was shown to 

induce uptake of LDL by fluid-phase endocytoses in macrophages leading to lowered 

LDL plasma levels [55]. 

4.4. Implications 

We are aware that our study is retrospective. Thus, it provides a limited level of evi-

dence. It is beyond the purpose of this study to accept or not the hypothesis that fitness plays 

a protective role in people with higher level of fatness. Yet the discriminating role that anti-
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inflammatory and cholesterol levels seem to make sense when addressing fatness and fit-

ness may point in the direction of “healthy obesity” when the CRF level is high [4].  

4.5. Limitations 

The current study is based on data from 81 individuals. Several variables, such as 

systolic and diastolic Blood Pressure and C-Reactive Protein, had to be excluded from the 

analysis because of missing data. The observations and conclusions drawn from this study 

would need to be verified in a larger dataset. This study does not provide direct experi-

mental evidence, but is merely observational and retrospective. These considerations need 

to be taken into account when evaluating our results and conclusions. Our dataset has 

more females than males, and although sex did not appear to play a key role in determin-

ing the classification, we cannot exclude that, with a higher number of males this factorial 

variable would or could have had a greater weight. Finally, by dividing our dataset into 

four classes we observed that these were not evenly distributed. This issue was partially 

mitigated by balancing, using class weights. 

5. Conclusions 

Our data analytics approach has shown a potential key role of IL-10 as well as HDL, 

LDL, total Cholesterol and BMI in the classification of people according to their fatness 

and fitness levels. Unsupervised learning showed that a cluster of glucose tolerance re-

lated variables explains the highest quote of the variance of the categorical variable. How-

ever, supervised learning did not select this PCA cluster. Mediation analysis showed that 

LDL and BMI partially explain the association between fitness and fatness. These results 

suggest that CRF and FM% may be interconnected by anti-inflammatory responses and 

cholesterol blood levels. This may be in line with the protective role of cardiorespiratory 

fitness suggested in recent years. However, large randomized controlled trials are needed 

to validate this hypothesis experimentally and conclusively. 

Supplementary Materials: The following are available online at www.mdpi.com/1660-

4601/18/4/1800/s1, Figure S1: Boxplot of selected variables, and correlation matrices before and after 

the selection. 
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