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Thesis Abstract 
 

 

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease and is 

characterised by Lewy body deposits in the brains of suffers, which have been shown to 

consist of the protein alpha synuclein (S), and membrane lipids. Previous research utilised 

an intracellular peptide screen of the residues 45-54 of S, as this is where most early onset 

mutations reside, and selected a peptide, 4554W (KDGIVNGVKA). This peptide was shown to 

decrease S aggregation, and rescue PC-12 cells from S mediated toxicity.  

 

Experiments were performed herein to deduce where along the S aggregation pathway the 

4554W peptide acted. It was found that the peptide inhibited primary nucleation of S but 

exhibited no inhibitory effect on fibril elongation or secondary nucleation. An alanine scan 

was performed of 4554W to deduce the key mechanisms important for the interaction. It was 

found that the 4554W(K1A) and 4554W(N6A) substitutions exhibited increased. Following 

this truncation experiments of the C- and N-terminus were performed to determine their 

importance and the residue in position 1 was not required for the peptide’s function. The final 

peptide optimised for this thesis is termed 4654W(N6A) (DGIVAGVKA). This represents a step 

forward to producing a novel peptide therapeutic targeted against PD and related 

synucleinopathies. 

 

In addition to the peptide optimisation, a novel aggregate of S was observed in the presence 

of lipid vesicles. These structures were much larger than any previously reported S 

aggregates and may represent a novel therapeutically relevant conformation.  
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1.1 Parkinson’s Disease 
 

Parkinson’s disease was first described in the literature in over 200 years ago, in 1817, by 

James Parkinson in his article ‘An Essay on the Shaking Palsy’ (Parkinson, 1817), in which the 

disease was described as follows: - 

 

‘Involuntary tremulous motion, with lessened muscular power, in parts not in action and even 

when supported; with a propensity to bend the trunk forwards, and to pass from a walking to 

a running pace: the senses and intellects being uninjured.’ 

 

Following this seminal publication, most of the disorder of movement observations described 

remain attributed to the disease, and as a tribute the disease has become known, in modern 

times, as Parkinson’s disease (PD). In recent times it has been observed that in addition to the 

disorder of movement, described by James Parkinson, the neurodegeneration associated with 

the disease can develop to include a range of non-motor symptoms, including cognitive 

dysfunction and depression, causing the sufferers to become passive and withdrawn, adding 

to the suffering caused by the disease (Dauer and Przedborski, 2003). 

 

1.2 Prevalence 
 

PD is the second-most prevalent neurodegenerative condition in the world, accounting for 

~15%, and primarily affects older individuals. The condition is rare in individuals under the 

age of about 50 years old (Twelves, Perkins and Counsell, 2003), although early onset 

mutations are known to exist that can drastically reduce the age at which PD symptoms may 

appear. Prevalence of the disease rises sharply with age, and more than 3% of individuals 

above the age of 80 years old present PD symptoms (Pringsheim et al., 2014), with a higher 

incidence rate amongst men than women (Van Den Eeden et al., 2003). 

 

A global trend of increasing life span due to modern advances in medicine means that more 

people will reach an age where they become susceptible to neurodegenerative diseases. It is 

estimated that in 1990 there were 2.0 - 3.0 million people living with PD (Feigin et al., 2019), 

increasing to 4.1 – 4.6 million by 2005 (Dorsey et al., 2007), and 5.0 – 7.3 million by 2016 

(Feigin et al., 2019), and has been projected to rise to about 8.7 - 9.3 million by 2030 (Dorsey 
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et al., 2007). Due to the level of care required by individuals suffering from these diseases the 

socio-economic impacts and the burden of the heath care systems will be huge unless 

proactive steps are taken to reduce the prevalence of PD and related synucleinopathies 

(including multiple system atrophy and dementia with Lewy bodies).  

 

1.3 Neuropathology and disease progression 
 

The impairment of motor functions associated with PD are linked to loss of pigmented 

dopaminergic neurones within the substantia nigra (Halliday et al., 2011) a basal ganglia 

structure located in the mid brain. The loss of the dopaminergic neurones, and the spread of 

neuronal pathology is paired with the accumulation of Lewy body deposits, the pathogenic 

hallmark of the disease. These Lewy bodies have been found to be largely made up of the 

aggregated protein -synuclein (S) (Spillantini et al., 1997), a protein which has be 

implicated as the underlying cause of the disease onset. 

 

The primary misfolding of S, before neuronal toxicity occurs in the substantia nigra, is 

understood to occur via one of two potential portals. These are either the olfactory bulb, or 

in the gastrointestinal tract, with transmission occurring via the vagus nerve to the medulla 

oblongata (Liu, Chan and Stoessl, 2017).  

 

Propagation of the neuropathology associated with the death of dopaminergic neurones in 

the substantia nigra is thought to spread in a prion-like mechanism, suggesting that once the 

initial S aggregates have formed they then propagate and seed further misfolding of S in 

adjacent neurones, transmitting the associated toxicity to other areas of the brain, linked to 

the progression observed in the disease symptoms, as can be measured by the Braak scale 

(Braak et al., 2003). In the early stages of the disease Lewy body pathology is restricted to the 

olfactory bulb and substantia nigra, causing only mild effects of PD, e.g. fatigue, depression 

and loss of smell (Braak stage I and II).  The pathology then propagates towards the fore brain, 

as cell death starts to occur in the mid brain, presenting as the motor effects of PD, e.g. 

Bradykinesia and tremor (Braak stage III and IV), then finally spreads to the hind brain, 

affecting sensory perception and sleep, as cell death starts to occur in the frontal lobe causing 
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the cognitive impairment and dementia symptoms linked to the disease (Braak stage V and 

VI). 

 

 
 
Figure 1.1: Neuropathology of PD, showing how the disease progression, measured by the Braak staging system, is linked to 

the progression of Lewy bodies throughout the brain. Initiation sites in either the olfactory bulb or in the medulla oblongata, 

via the vagus nerve, and progress into the cortical regions and hind brain in the later stages of the disease. 

Image reproduced from (Doty, 2012) 

 

1.4 Evidence for S aggregation as the causal factor of PD 
 

Presented here is a brief summary of how S became implemented as the main causal factor 

of PD, and related synucleinopathies, over the past 30 years. This has had significant 

implications in enhancing our understanding of the disease. To avoid repetition this will be 

brief, and a complete, in depth, review of ‘Alpha-Synuclein structure and Parkinson’s disease 

- lessons and emerging principles’ is presented in chapter 2 (Meade, R. M., Fairlie and Mason, 

2019). 

 

Almost a century following James Parkinson’s essay describing the disease in 1817 (Parkinson, 

1817), Fredrich Lewy described the cytoplasmic inclusions, now known as Lewy bodies, within 

the brains of deceased patients suffering from PD (Lewy, 1912). In 1990 an Italian American 

family (the Contursi Kindred) was described, showing inherited cases of early onset PD, 

presenting Lewy body pathology after autopsy (Golbe et al., 1990).  The specific mutation 

leading to this early on-set form of the disease was found to be the autosomal dominant 
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substitution of an alanine to threonine in position 53 (A53T) of the SNCA gene on the long 

arm of chromosome 4 (Polymeropoulos et al., 1996; Polymeropoulos et al., 1997), encoding 

the gene for S. Later that year, following on from the A53T discovery, Lewy bodies were 

found to be strongly immunoreactive for S (Spillantini et al., 1997), suggesting that PD was 

likely an S related disorder. 

 

In the preceding years further autosomal dominant mutations in the SNCA gene have been 

found to cause familial PD. In addition to the original A53T mutation (Polymeropoulos et al., 

1997) these include E46K (Greenbaum et al., 2005), H50Q (Ghosh et al., 2013; Rutherford et 

al., 2014), G51D (Lesage et al., 2013), A53E (Pasanen et al., 2014) and A30P (Kruger et al., 

1998). These mutations in relation to recently published fibril structures are explored in 

chapter 2.  Of important note to the aims of this thesis is the fact that 5 of the 6 mutations 

described occur in an eight amino acid region of the protein located between residues 46-53, 

implicating this as a key region involved in S pathogenicity.   

 

In addition to the early onset missense mutations described here there is a substantial and 

growing body of additional evidence implicating S in PD pathology, including i) familial PD 

has been seen to occur when the SNCA gene is duplicated or triplicated (Singleton et al., 2003; 

Chartier-Harlin et al., 2004). The examples of triplication lead to a more severe form of PD 

than does duplication, highlighting the importance of intercellular concentrations of S being 

a factor in the subsequent mis-folding into the toxic species leading to the disease phenotype. 

ii) synthetic S rapidly aggregates into cytotoxic -sheet rich fibrils similar to those found in 

Lewy bodies taken from recently deceased PD patients (Strohaker et al., 2019). iii) S 

oligomers are seen to be toxic to therapeutically relevant cells in culture (Fusco et al., 2017).  

 

 S and lipid interactions 
 

Lewy bodies, the pathogenic hallmark of PD, have been shown not only to contain S, as the 

predominant protein constituent, but also to contain a substantial lipid component (den 

Jager, 1969; Shahmoradian et al., 2019). Numerous in vitro experiments have indeed 

highlighted dramatic changes in S structural morphology and aggregation kinetics in the 

presence of lipid vesicles (Lee, H.J., Choi and Lee, 2002; Burre, Sharma and Sudhof, 2015; 
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Galvagnion, C. et al., 2015; Meade, R. M., Fairlie and Mason, 2019). A striking recent 

experiment, using ultrastructural analysis, has revealed that most Lewy bodies (taken from 

post-mortem human brain samples from PD patients) contained clusters of membrane 

structures. At the core of the Lewy bodies these were coated with membrane bound forms 

of non-fibrillar S, and only 20% of the Lewy bodies observed displayed large amyloid fibrils 

(longer than 25 nm) (Shahmoradian et al., 2019). This is leading to a new field of interest in 

the interactions of S with lipid membranes, and improved understandings regarding how 

this may relate to the disease pathology.   

 

Before aggregation occurs S exists in solution as a random coil monomer, and the addition 

of lipid membranes has been shown to promote S lipid binding and conversion into an -

helical conformation (Galvagnion, C. et al., 2015; Meade, R. M., Fairlie and Mason, 2019; 

Meade, Richard M., Williams and Mason, 2020). Moreover, the N-terminal lipid binding 

domain of S is also the area where the early onset mutations occur in the SNCA gene (Jo et 

al., 2002; Zarranz et al., 2004; Appel-Cresswell et al., 2013; Ghosh et al., 2013; Ghosh et al., 

2014; Brown et al., 2018), including the A30P mutation (Jo et al., 2002), which is not found to 

be important in the fibril structure hydrophobic zipper (Guerrero-Ferreira et al., 2018; Li, Y.W. 

et al., 2018; Meade, R. M., Fairlie and Mason, 2019), suggesting a strong link between S lipid 

binding and pathogenicity. The binding of S to pre-synaptic vesicle membrane has been 

postulated to be the native non-pathogenic function of S within dopaminergic neurones, 

possibly promoting membrane curvature and modulating vesicle trafficking and 

neurotransmitter release by association with the SNARE complex (Burre et al., 2010). 

 

S is thought to interact with membranes via seven ‘KTKEGV’ imperfect repeat motifs 

(Maroteaux and Scheller, 1991). When folded into an  3/11 helix, the positively charged lysine 

residues interact with the negative headgroups of the membrane phospholipids (particularly 

negatively charged phospholipids, such as DMPS with its negatively charged serine residue 

attached to the head group), and the hydrophobic residues become buried in the fatty acid 

layer (Dettmer, 2018) . There is imperfect hydrophobicity in the fatty acid layer due to the 

placement of some of the polar residues (threonine and glutamine), and has been proposed 

that this can lead to an unstable, transient relationship of S binding, and dissociation from 
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the membrane (Fanning, Selkoe and Dettmer, 2020) (see Fig 1.2). The concentration, and 

structural stabilisation, of S monomers on the surface may well promote the aggregation of 

S into stable oligomeric species, and it has been found that when S dissociates from the 

membrane it can remain in its helical, multimeric form (Rovere et al., 2018).   This may settle 

long running disagreement in the S field centred around the existence of a native soluble 

helical tetrameric form of S (Bartels, Choi and Selkoe, 2011).  With one side of the argument 

suggesting that S only exists in solution as a random coil monomer (Weinreb et al., 1996), 

and the opposing view suggesting that a helical tetramer of S can be purified from cross-

linked extracts from erythrocytes (Bartels, Choi and Selkoe, 2011). In light of recent findings, 

it could well be that both views are correct; the formation of the helical tetramer occurs on 

intracellular membranes, and this may then dissociate into the cytosol.  

 

 

Figure 1.2: Proposed 3/11 (3 turns over 11 residues) helix model of S bound to a lipid membrane. The positively charged 

lysine residues (blue) line up and interact with the negatively charged lipid head groups, and the negatively charged glutamic 

acid residues interact with the cytosol (red), and the hydrophobic residues (black) become imbedded in the fatty acid layer 

of the lipid tails. Both helices also include some polar residues within the hydrophobic layer (threonine and glutamine), 

causing the proposed transient relationship of S binding. Figure taken from (Meade, R. M., Fairlie and Mason, 2019) 

 

As this is an emerging field the full picture is still unclear, but a barrage of evidence is 

mounting highlighting the importance of the interaction of S with lipid membranes likely for 

its native function, and its transition to pathologically relevant forms. 
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 S aggregation 
 

S aggregation progression from soluble random coil monomer to the insoluble -sheet 

fibrils, as found in Lewy bodies, is being increasingly understood to exist as a highly dynamic 

process passing through many stages. These have been simplified into primary nucleation, 

fibril elongation, secondary nucleation and fibril amplification. Traditionally aggregation has 

been followed using enhanced Thioflavin T fluorescence upon binding to -sheet 

conformations (Fig 1.3) (Khurana et al., 2005). The techniques have required very high 

concentrations of protein, agitation (shaking or stirring), or preformed fibrils in order for 

aggregation to occur. The effect on the resulting sigmoidal curves produced have been able 

to give insights to the mechanism of action of any inhibitors in development (Meisl et al., 

2016). 

 

 

Figure 1.3: Proposed mechanism of S misfolding from random coil to mature fibril via a population of aggregated oligomers, 

as followed by Thioflavin T fluorescence (green line). The steps of Primary nucleation, fibril elongation, and secondary 

nucleation/fibril amplification are highlighted. Primary nucleation is the dynamic equilibrium by which the random coil 

monomer converts into an -helical state, which can then assemble into a population of oligomers. One or more of these 

oligomers may represent the cytotoxic species of S, and one or more of these can form the kernel to seed fibril growth. Fibril 

elongation occurs by monomer addition to this fibril ‘seed’, until all free monomer exists in the energetically favourable fibril 

state. The fibrils can fragment leading to more nuclei for elongation, causing fibril amplification. Secondary nucleation occurs 

by monomers associating laterally to form nuclei which can then elongate in situ or dissociate to elongate independently, 

releasing oligomeric species which may or may not be cytotoxic. 
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Primary nucleation is the process by which random coil S monomers, either in solution, or 

on a foreign surface (i.e. phospholipid vesicle membranes, or the air-water interface) 

(Galvagnion, C. et al., 2015) associate to form a multitude of dynamic oligomers, which 

convert into -sheet fibrils (Fig 1.4). This is the main rate limiting step of the aggregation 

process, and in the absence of lipids leads to the significant lag phase observed in ThT 

aggregation assays. This is the process which initiates the onset of S related toxicity. 

 

 

 

 

Figure 1.4: Primary nucleation occurs when S monomers in solution (top) or on a surface such as a phospholipid bilayer 

(bottom) aggregate to first form oligomeric species which then form -sheet fibrils. 
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Fibril elongation is the process where random coil S monomers are added to the termini of 

preformed S fibrils (Buell, A. K., 2019), surpassing the need to misfold through the oligomeric 

subgroups before reaching the final -sheet fibril form, leading to a more energetically stable 

configuration (Fig 1.5).  

 

 

 

Figure 1.5: Elongation is caused by the addition of soluble random coil aS monomers to the ends of preformed insoluble -

sheet fibrils, a more energetically stable configuration. 
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Secondary nucleation is a complex process whereby either the amyloid fibrils can shear and 

fragment, causing fibril amplification, doubling the exposed ends where monomer addition 

fibril elongation can occur (Knowles et al., 2009), or through a surface catalysed processes 

(Tornquist et al., 2018), where S monomers aggregate from the side of preformed fibrils, 

where further aggregation can then cause the formation and release of toxic oligomers, or 

can form fibril branch points which can break off leading to fibril amplification (Fig 1.6). 

Secondary nucleation is believed to be important in the propagation of S aggregates through 

the brain, leading to disease progression (Peduzzo, Linse and Buell, 2020). 

 

 

 

Figure 1.6: Secondary nucleation of amyloid fibrils through surface catalysed nucleation, whereby single monomeric S 

aggregates to the side of preformed fibrils which can then cause formation and release of toxic oligomers or branching of 

the amyloid fibril. Branch points can sheer off leading to fibril amplification. 
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 S as an anti-PD target 
 

S offers a promising drug target for potential anti-PD medication, and there are numerous 

points in the aggregation cascade which can potentially be targeted to reduce the neuronal 

cell death caused by S misfolding into conformations that are cytotoxic. 

 

There are numerous avenues currently being explored in order to do this, including, reducing 

αS production, inhibiting αS mis-folding and aggregation, degrading intracellular αS 

aggregates, degrading extracellular αS aggregates and reducing the uptake of extracellular αS 

‘seeds’, which propagate the disease through the brain.  

 

 

Figure 1.7: Proposed mechanisms for preventing αS related toxicity in vivo. 

 

The ability to prevent αS aggregating into toxic conformations, would clearly prevent the 

damaging reproduction of mis-folding. The advantage of this approach would be that the 

normal intracellular function of the protein would remain unimpeded.  
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To date there have been three main approaches to preventing αS misfolding. The first is 

studying small heat-shock proteins (HSPs) (Klucken et al., 2004), the second with antibodies 

(Bhatt, Messer and Kordower, 2013), and the third with peptides (Madine, Doig and 

Middleton, 2008; Cheruvara et al., 2015). Using peptides, following on from the work of 

Cheruvara et al.(Cheruvara et al., 2015), is the main therapeutic mechanism being explored 

for this thesis. This method is advantageous over the other methods due to the intracellular 

method of peptide library screening, selectivity, and smaller molecule size, potentially 

allowing easier access to the CNS via downstream optimisation. 

 

1.8 Peptides as drugs 
 

In modern medicine a strong emphasis has been put on developing small molecule drugs to 

target specific sites of action to modulate their effects, typically low molecular weight (less 

than 500 Da) molecules with a small surface area, which can bind to a specific site of interest, 

for example a hydrophobic pocket in the active site of an enzyme to prevent functionality. 

The development and application of these small molecule drugs has proven to be very fruitful 

and has led to many novel treatments for multiple diseases. 

 

Whilst small molecule drugs present many advantages, like ease of access to site of action, 

they are not particularly useful at preventing large protein-protein interactions (PPIs) 

associated with a range of diseases, for example PD and Alzheimer’s diseases, and they can 

cause off target binding, leading to unwanted side effects. 

 

In recent years a shift in emphasis towards synthetic peptide-based therapeutics as drug 

molecules to modulate protein-protein interactions (PPIs) is showing promise to develop 

treatment for conditions previously thought to be undruggable (Mason, 2010; Craik et al., 

2013; Rastogi et al., 2019). Peptide therapeutics present a number of advantages over that of 

small molecule in that they are highly selective, therefore will present fewer side effects, have 

high efficacy, and can present minimal toxicity (Rastogi et al., 2019). 

 

The aim within the peptide community is to fill a niche between small molecule drugs and 

larger biomolecules, e.g. antibodies, ideally presenting the specificity of the larger 
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biomolecules and ability to interfere with the large surfaces of PPIs , but with the 

bioavailability of small molecule drugs (Bruzzoni-Giovanelli et al., 2018).  

 

1.9 Peptide selection 
 

One of the key strengths of peptides as therapeutics is that functionally relevant peptides can 

be selected from an extremely large parent library relatively quickly, without even complete 

understanding of the target protein conformation. There are multiple methods which can be 

used to achieve peptide screening, and new methods are continually under development. To 

date two of the most popular include phage display (Smith and Petrenko, 1997) and protein 

complementation assay (PCA) (Pelletier et al., 1999). 

 

Phage display works by presenting the peptides from your library on the coat of a filamentous 

phage (up to 2700 copies of the peptide on a single phage) (Smith and Petrenko, 1997). These 

are then flowed over an immobilised target protein. Phages expressing peptides causing them 

to remain bound to the target after washing can then be recovered, enriched by infection and 

regrowth in bacteria, and sequenced to elucidate novel functional peptide sequences which 

bind to your target protein. An example of a peptide based medicine which was discovered 

by this methodology is Hematide (peginesatide), to treat anaemia (Macdougall et al., 2009). 

Whilst a very powerful technique it does present a few disadvantages, one of those being that 

the peptide is presented on the surface of the phage, and therefore may not present in the 

conformation adopted in an intracellular environment. 

 

Protein complementation assay (PCA) is an intracellular screening technique. It works by 

selectively inhibiting a crucial respiratory protein in E.coli (dihydrofolate reductase; DHFR). A 

murine version of the same enzyme that is not inhibited is then split, with half of the DHFR 

attached to a ‘bait’ protein, and the remaining half to a ‘prey’ library. For the basis of this 

thesis the target protein used was aS and the library was based on the 45-54 region of S 

(Cheruvara et al., 2015).  The bait and prey must associate with each other to create a 

functional DHFR enzyme to confer cell survival. The library is then incubated through a 

number of competitive passaging steps to select the strain expressing the library member 

which gives the greatest survival rate. This is then sequenced to determine the winning 
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peptide library member.  The advantage of PCA over Phage display is that the library selection 

occurs intracellularly in the host E. coli. Therefore a number of traditional hurdles in peptide 

design are already confronted, in that the selected peptide will bind to the target protein in 

the presence of a complex protein mixture, be soluble within the cytoplasm, not toxic to the 

host cell, not targeted for degradation before it is able to bind to the target, not susceptible 

to proteases, and capable of having a detoxifying effect on the target protein. 

 

The true power of these techniques lies in the size of the libraries which can be created and 

screened by simple mutation of an amino acid sequence, which can make libraries with 

hundreds of thousands or even millions of options, dwarfing the high throughput screening 

methods used for the discovery of small molecule drugs. 

 

1.10 Thesis aims 

 

The overall aim of the thesis is to improve the efficacy of a peptide, 4554W, that was 

previously selected by PCA assay (Cheruvara et al., 2015). In order to do this further 

understanding regarding the mechanism of action of the peptide was required, and a suitable 

cell assay needed to be developed to confirm the activity of the peptide in vivo. Following this 

an alanine scan was performed on the 4554W peptide to elucidate the key residues involved. 

This information was used to develop de novo designed peptides related to these residue 

changes. These improvements and increased understanding can be used to design a second 

generation PCA assay with the aim of developing a new drug to be used in the treatment of 

PD 

 

Chapter 2 presents an in-depth review of emerging principles in the field of S research, 

focusing on new fibril structures of S fibrils, and how these may relate to the early onset 

mutations. 

 

Chapter 3 focuses on the development of a high throughput cell screening assay which can 

be used on functionally relevant cells, SH-SY5Y human neuroblastoma cell line, to test the 

efficacy of peptide inhibitors produced in this thesis within a cellular environment.  
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Chapter 4 utilised specific conditions in order to deduce where in the aggregation chain of S 

the 4554W peptide acted, whether it be primary nucleation, fibril elongation or secondary 

nucleation. It was determined the 4554W peptide exhibited its effects on primary nucleation. 

This is consistent with the PCA mode of selection. 

 

Chapter 5 further explored the structure and generation of a novel highly ordered 

macromolecular fibril polymorph found to be populated with extended incubation period 

with negatively charged (1,2-Dimyristoyl-sn-glycero-3-phospho-L-serine) DMPS lipid vesicles. 

 

Chapter 6 utilised an alanine scan of 4554W to determine the key residues involved in the 

inhibition of S primary nucleation. Contrary to expectation it was found that amino acid 

substitution to Alanine at positions 1 or 6 of the peptide increased efficacy. These improved 

peptides were then truncated to ultimately produce a smaller, more effective peptide known 

as 4654W(N6A). 

 

Using the knowledge of the mechanism of action, and the sequence of the new improved 

peptide, named 4654W(N6A), a second generation PCA screen can now be performed to 

produce an increased potency peptide-based drug for the treatment of PD and other related 

synucleinopathies. 
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Parkinson’s disease - lessons and emerging 
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3.1 Introduction 
 

The main aim of the thesis was to develop a peptide inhibitor of alpha-synuclein (S) 

aggregation and related toxicity. The planned experiments therefore required a consistent 

supply of high purity S, in relatively large amounts. Due to the cost implications and quality 

concerns in buying this protein, all S used for the experiments performed in this thesis was 

expressed and purified in our laboratory. A variety of method are used to produce S in the 

literature, therefore three alternative methods of S production were undertaken and 

compared to determine the most appropriate production method for the experiments. 

 

In order to determine the efficacy of inhibitory peptides produced in this project, within living 

cells, an effective, consistent and representative cell-based assay had to be developed and 

utilized. The SH-SY5Y human derived neuroblastoma cell was used for this, because of their 

ease of production, the fact they express dopaminergic neuronal markers (Kovalevich and 

Langford, 2013), and their success in previous S related assays (Fusco et al., 2017; Perni et 

al., 2018; Cascella et al., 2019). A range of different conditions were explored to determine a 

reproducible, and accurate method of determining S mediated toxicity, which could then be 

utilized to measure a peptides ability to inhibit the formation of toxic S oligomeric species.  

 

S is expressed as a random coil monomer and is known to polymerize into extended amyloid 

-sheet fibrils, via populations of soluble oligomers. The current consensus is that S 

mediated cytotoxicity is driven by the formation of these oligomers, leading to membrane 

disruption within the cell (Fusco et al., 2017), impairing cellular function. Originally S 

oligomers were found to be compact -sheet enriched globular species, as observed by 

Circular dichroism (CD), X-ray scattering and atomic force microscopy (AFM) (Hong, Fink and 

Uversky, 2008). More recent isolation and analysis by CryoEM image reconstruction has 

shown the presence of two distinct subgroups of stable toxic oligomers, produced during 

amyloid formation (Chen, S.W. et al., 2015). Both oligomeric subgroups have a hollow 

‘doughnut-like’ architecture (Figure 3.1), and these structures would need to be present in 

any cellular assay used to determine S toxicity 
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Figure 3.1: Taken from Chen et al. (2015) (Chen, S.W. et al., 2015) showing the toxic aS oligomer species. A) CryoEM image 

of the 10S oligomer B) 3D reconstruction of the 10 S oligomer C) CryoEM image of the 15S oligomer D) 3D reconstruction of 

the 15S oligomer. 

 

S oligomers have proven  difficult to consistently produce, and purify, as they only exist for 

a very short time at the early stages of the S aggregation process, and even at this stage they 

are only found to comprise ~1% of the aggregation solution (Ludtmann et al., 2018). Albeit, 

numerous groups have managed to purify, characterize, and induce cell toxicity with solution 

of these oligomers in SH-SY5Y (Fusco et al., 2017; Perni et al., 2018; Cascella et al., 2019) 

neuroblastoma cell culture, rat primary cortical neurons (Fusco et al., 2017; Perni et al., 2018; 

Cascella et al., 2019) and pyramidal cells (Kaufmann et al., 2016). Oligomer formation was 

achieved by a range of different methods, including agitation (Kaufmann et al., 2016; 

Ludtmann et al., 2018), lyophilisation and incubation at high concentration (Fusco et al., 2017; 

Perni et al., 2018), and fragmentation from pre-formed fibrils (Kaufmann et al., 2016).  
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The difficulty in developing an assay to determine the effectiveness of a peptide treatment is 

that previously utilized cell toxicity assays with oligomers require the oligomer to be pre-

formed in solution. If the peptide acts at an earlier stage of the aggregation process, inhibiting 

the formation of these oligomers, then the addition of preformed oligomers to the 

experiment will not measure this inhibitory activity. Therefore, a method was developed to 

‘age’ S which produced the toxic oligomeric species, with the intention that ultimately 

inhibitory peptides can be added to the solution during the ‘aging’ process, and the inhibition 

of the formation of cytotoxic species can be measured by cell viability assay.  

 

The main aims of this chapter are as follows: - 

 1 – Optimize an efficient, high yielding method of S production. 

 2 – Develop an S toxicity assay on a functionally relevant cell line. 

 

3.2 Methods 
 

Protein Purification 
 

Purified S was expressed and purified from E. coli using 3 different methods, these were: 

 

i) S-SUMO-Histag fusion method (expressed in p300d); 

ii) S-Thrombin-Histag fusion method (expressed in the pET15b plasmid); 

iii) S-alone method (expressed in the pET21a plasmid). 

 

The first method utilizing the αS-SUMO-Histag fusion was used because sumoylation has been 

found to increase the solubility of aggregation-prone proteins, and inhibit the aggregation of 

S (Krumova et al., 2011), and was also the method originally used to characterize the 

inhibition of αS aggregation by the 4554W peptide (Cheruvara et al., 2015), which is the basis 

of this PhD thesis. The second method utilizing the S-Thrombin-Histag fusion, aimed to 

improve on the first method as fewer steps were required. The first two methods had added 

complexity as the cleavage enzymes and cleaved tails needed to be separated from the pure 

S. Finally, the third method expressing S alone was utilized modified from a previous 

purification method (Pujols et al., 2017). The three methods were compared and contrasted, 

ultimately highlighting that the optimal method to produce a large quantity of pure 
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monomeric S was the S alone method, and aggregation of the protein during purification 

was not an issue. 

 

Approach 1: Producing αS: αS-SUMO-Histag fusion Method 
 

The αS-SUMO-Histag fusion method was utilized by Cheruvara et al.(Cheruvara et al., 2015) 

for the initial production of the 4554W peptide, and used to show its inhibit of S aggregation 

in kinetic and cell toxicity assays. Therefore, this method was initially utilized for S 

production. 

 

Protein Amino Acid Sequence MW (Da) 

(Av) (Da) 

 

MW (Da) 

(mono-

isotopic)  

Absorption 

coefficient   

at 280 nm 

αS-

SUMO-

His 

MGHHHHHHGSDSEVNQEAKPEVKPEVK
PETHINLKVSDGSSEIFFKIKKTTPLRRLME
AFAKRQGKEMDSLRFLYDGIRIQADQTPE
DLDMEDNDIIEAHREQIGGASMDVFMK
GLSKAKEGVVAAAEKTKQGVAEAAGKTK
EGVLYVGSKTKEGVVHGVATVAEKTKEQ
VTNVGGAVVTGVTAVAQKTVEGAGSIAA
ATGFVKKDQLGKNEEGAPQEGILEDMPV
DPDNEAYEMPSEEGYQDYEPEACAP 

27023.114 27006.446 8,463 

ULP-1 

Protease 

LVPELNEKDDDQVQKALASRENTQLMN
RDNIEITVRDFKTLAPRRWLNDTIIEFFMK
YIEKSTPNTVAFNSFFYTNLSERGYQGVRR
WMKRKKTQIDKLDKIFTPINLNQSHWAL
GIIDLKKKTIGYVDSLSNGPNAMSFAILTD
LQKYVMEESKHTIGEDFDLIHLDCPQQPN
GYDCGIYVCMNTLYGSADAPLDFDYKDAI
RMRRFIAHLILTDALK 

25472.135  25455.918 31,008 

αS from 

αS- 

SUMO-

His  

ASMDVFMKGLSKAKEGVVAAAEKTKQG
VAEAAGKTKEGVLYVGSKTKEGVVHGVA
TVAEKTKEQVTNVGGAVVTGVTAVAQKT
VEGAGSIAAATGFVKKDQLGKNEEGAPQ
EGILEDMPVDPDNEAYEMPSEEGYQDYE
PEAGAP 

14842.542 14833.406 4,836 

 

Table 3.1: The sequence of proteins grown in E.coli recombinant cells from the Alpha-Synuclein-SUMO-His / ULP1 Protease 

Method and the resulting S purified. Additional amino acids as compared to wt S are highlighted in red. 
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Figure 3.2: General strategy for the purification of S using the αS-SUMO-His method. 
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ULP 1 protease expression in bacterial culture, and purification 
 

Glycerol stocks of E.coli (BL21-Gold) containing the p300d expression plasmid containing the 

ULP-1 protease gene were used to inoculate 10ml 2XYT nutrient broth containing ampicillin 

(100 µg/ml). The cells were grown overnight at 37   C̊, and shaken at 200rpm, in an Innova-44 

incubator shaker. This overnight culture was then used to inoculate 1l of 2XYT nutrient broth 

containing ampicillin (100 µg/ml) until the cells reached optimal mid-log growth phase (Od600 

= 0.6 - 0.8). At this point the cells were induced by 1 mM IPTG and grown overnight at 21   ̊C. 

The protein was then harvested from the cell culture and purified from the cell lysate by His-

tag affinity chromatography. 

 

S-SUMO-Histag fusion expression in bacterial culture  
 

Glycerol stocks of E.coli (BL21-Gold) containing the p300d expression plasmid containing the 

alpha synuclein-SUMO-His gene were used to inoculate 10ml 2XYT nutrient broth containing 

ampicillin (100 µg/ml). The cells were grown overnight at 37   ̊C, and shaken at 200rpm, in an 

Innova-44 incubator shaker. This overnight culture was then used to inoculate 1l of 2XYT 

nutrient broth containing ampicillin (100 µg/ml) until the cells reached optimal mid-log 

growth phase (Od600 = 0.6 - 0.8). At this point the cells were induced by 1mM IPTG and grown 

overnight at 21   ̊C. The protein was then harvested from the cell culture and purified from 

the cell lysate by His-tag affinity chromatography. 

 

Alpha Synuclein-SUMO-His / ULP1 cleavage reaction 
 

Protein purification buffers 

Buffer Composition 

Cleavage buffer pH 8.0 20 mM Tris HCl, 0.5 mM DTT 

 

Table 3.2: Composition of buffers used for sumo/ULP1 cleavage reaction 

 

Buffer exchange of the elution fractions was required because imidazole inhibits the ULP1 

protease cleavage reaction. To do this, elution fractions containing the αS-SUMO-Histag 

fusion protein, collected from the His-column affinity purification were buffer exchanged 
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from elution buffer to cleavage buffer using an Amicon ultra centrifugal filter, with 3 kDa cut-

off (Merck Millipore). The solution was centrifuged at 4000rcf, 4 °C, using a bench top 

centrifuge (Eppendorf 5430 R), until only 500 l remained in the column, this was then filled 

with the standard buffer, and repeated once.  

 

Purified ULP1 protease was mixed with the αS-SUMO-Histag fusion protein solution at a ratio 

of 10:1, at a concentration of 1 mg ULP1 Protease per ml. This cleavage solution was left at 

30 °C for 16 hours in a temperature-controlled water bath. 

 

The collected protein was then concentrated to 2 ml using an Amicon ultra centrifugal filter, 

with 3kDa cut-off (Merck Millipore), and further purified, and buffer exchanged by size 

exclusion chromatography (SEC). 

 

Approach 2: Producing αS: αS-Thrombin-His Method 
 

This method purified S from E. coli, using a pET15b vector, by first expressing S-

Thrombin-His to enable purification by HisTrap chromatography, followed by a thrombin 

cleavage step to remove the His-tag. 

Protein Amino Acid Sequence MW (Ave) 

(Da) 

 

MW (Da) 

(mono-

isotopic)  

Absorption 

coefficient   

at 280 nm 

αS-

Thrombi

n-His 

MGSSHHHHHHSSGLVPRGSHMDVFMK
GLSKAKEGVVAAAEKTKQGVAEAAGKTK
EGVLYVGSKTKEGVVHGVATVAEKTKEQ
VTNVGGAVVTGVTAVAQKTVEGAGSIAA
ATGFVKKDQLGKNEEGAPQEGILEDMPV
DPDNEAYEMPSEEGYQDYEPEA  

16622.460 16612.209 4,836 

αS from 

αS- 

Thrombi

n-His 

SHMDVFMKGLSKAKEGVVAAAEKTKQG
VAEAAGKTKEGVLYVGSKTKEGVVHGVA
TVAEKTKEQVTNVGGAVVTGVTAVAQKT
VEGAGSIAAATGFVKKDQLGKNEEGAPQ
EGILEDMPVDPDNEAYEMPSEEGYQDYE
PEA 

14683.357 14674.316 4,836 

 

Table 3.3: The sequence of proteins grown in  E.coli recombinant cells from the S-Thrombin-His / Thrombin Method, and 

the resulting S purified at the end. Additional amino acids as compared to wt S are highlighted in red. Absorbance 

coefficient at 280 nm calculated using the molar extinction coefficient of tyrosine as 1209 M-1 cm-1. 
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Figure 3.3: General strategy for the purification of S using the αS-Thrombin-His method. 
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S-Thrombin-Histag fusion protein expression in bacterial culture  
 

Glycerol stocks of E.coli (BL21 (DE3) containing the pET15b expression plasmid with the alpha 

synuclein-SUMO-His gene were used to inoculate 10ml 2XYT nutrient broth containing 

ampicillin (100 µg/ml). The cells were grown overnight at 37   ̊C, and shaken at 200rpm, in an 

Innova-44 incubator shaker. This overnight culture was then used to inoculate 1l of 2XYT 

nutrient broth containing ampicillin (100 µg/ml) until the cells reached optimal mid-log 

growth phase (OD600 = 0.6 - 0.8). At this point the cells were induced by 1mM IPTG and grown 

overnight at 25   ̊C. The protein was then harvested from the cell culture and purified from 

the cell lysate by His-tag affinity chromatography. 

 

S-Thrombin-Histag fusion cleavage reaction 
 

Protein purification buffers 

Buffer Composition 

Thrombin cleavage buffer pH 8.0 20mM Tris-HCl, 100mM NaCl 

 

Table 3.4: Composition of buffers used for thrombin cleavage reaction 

 

Buffer exchange of the elution fractions is required because imidazole inhibits the thrombin 

cleavage reaction. To do this, elution fractions containing the αS-Thrombin-Histag fusion 

protein, collected from His-column affinity purification were buffer exchanged from elution 

buffer to thrombin cleavage buffer using an Amicon ultra centrifugal filter, with 3KDa cut-off 

(Merck Millipore). The solution was centrifuged at 4000rcf, 4 °C, using a bench top centrifuge 

(Eppendorf 5430 R), until only 500 l remained in the column, this was then filled with the 

cleavage buffer, and repeated once.  

 

Lyophilised thrombin powder containing 2,000 NIH units/mg (SIGMA) was dissolved to a 

concentration of 1U / 100 l. This thrombin solution was added to the alpha synuclein-

Thrombin-His protein solution at a ratio of 0.5 U thrombin: 1mg alpha synuclein-Thrombin-

His protein. This cleavage solution was left at room temperature with gentle agitation for 16 

hours. 
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Following incubation, the cleavage solution was passed through a 1ml Ni-NTA column 

calibrated with binding buffer. The cleaved protein was collected in the flow through, and any 

uncleaved protein, and the cleaved thrombin-His tag remained bound to the column. The flow 

through (containing the cleaved S, and thrombin) was then further purified and buffer 

exchanged by size exclusion chromatography (SEC). 

 

Approach 3: Producing αS: Human wild-type αS pET21a Method 
 

This method purifies unmodified human wild-type αS from E. coli, based on and modified 

from previously published methods (Pujols et al., 2017). 

 

Protein Amino Acid Sequence MW (Da) 

(Ave)  

 

MW (Da) 

(mono-

isotopic)  

Absorption 

coefficient   

at 280 nm 

Human 

wt αS (1-

40) 

MDVFMKGLSKAKEGVVAAAEKTKQGVA
EAAGKTKEGVLYVGSKTKEGVVHGVATV
AEKTKEQVTNVGGAVVTGVTAVAQKTVE
GAGSIAAATGFVKKDQLGKNEEGAPQEG
ILEDMPVDPDNEAYEMPSEEGYQDYEPE
A  

14,460 14451.209 4,836 

 

Table 3.5: The sequence of proteins grown in E.coli recombinant cells from the Human wild-type S pET21a Method, and 

the resulting S purified.  
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Figure 3.4: General strategy for the purification of S using the Human wild-type S pET21a Method. 
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wt Alpha Synuclein expression in bacterial culture  
 

Wild type human S was recombinantly expressed in E. coli containing the pET21a plasmid 

with the human wt S (1-140) gene, purchased from Addgene (deposited by the Michal J Fox 

Foundation MJFF), and transformed into E. coli expression cell line BL21 (DE3). 10ml 2XYT 

media, containing 100 mg/l Ampicillin, in a 50 ml falcon tube was inoculated with human wt 

S (1-140) pET21a BL21 (DE3) from glycerol stock, and incubated overnight at 37C with 200 

rpm shaking in an Innova 44 Incubator shaker (New Brunswick Scientific). The 10 ml overnight 

cultures were used to inoculate 1 l 2XYT cultures, containing 100 mg/lt Ampicillin, grown at 

37C, 200rpm shaking, to OD600 = 0.6 - 0.8 and induced by 1 mM isopropyl-1-thio-D-

galactopyranoside (IPTG) at 37 C, 200 rpm shaking, for 3-4 hours in an Innova 44 Incubator 

shaker (New Brunswick Scientific). The protein was then harvested from the cell culture and 

purified from the cell lysate by heating and ammonium sulphate crash, followed by ionic 

exchange affinity chromatography, and SEC. 

 

Crude purification by heating, and ammonium sulphate crash 
 

Cell lysate was boiled at 95 C for 10 minutes in a heated circulating bath (Grant, TX15). The 

precipitated protein removed by centrifugation in a 50ml falcon tube, at 18500  g for 20 min 

at 4 C in a 5810 R Centrifuge (Eppendorf), using a F-34-6-38 (Eppendorf) fixed-angle rotor.  

The supernatant was collected, and ammonium sulphate added to 30% saturation (0.176 g / 

ml), left shaking at 20 C for 30 min, and the precipitated protein removed by centrifugation 

at 18500  g for 20 min at 20C in a 5810 R Centrifuge (Eppendorf), using a F-34-6-38 

(Eppendorf) fixed-angle rotor. The precipitated protein pellet was resuspended in 50 ml 20 

mM Tris buffer pH8 by gentle agitation at 4 C.  The S was further purified by anionic 

exchange affinity chromatography, and monomerised by size exclusion chromatography 

(SEC). 
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General Protein Purification Methods 
 

Protein harvesting from cell culture 
 

The bacteria were harvested by centrifugation at 4600  g for 20 minutes at 4   ̊C, in an Avanti 

J-25 centrifuge (Beckman Coulter), using a JLA-10.500 rotor (Beckman Coulter). The 

supernatant was discarded and the resulting cell pellet was resuspended in 40ml 20 mM Tris 

buffer pH8 containing 1 cOmplete protease inhibitor tablet (Roche) and freeze-thawed at -

20C before lysis, by sonication, using a Soniprep 150 plus sonicator, set to an amplitude of 

14, for 20 cycles of 30 seconds on and 30 seconds off. The sonicated lysate was centrifuged 

at 48400  g for 20 minutes, in an Avanti J-25 centrifuge (Beckman Coulter), using a JA-25.50 

rotor (Beckman Coulter). The supernatant was collected for further purification. 

 

Anionic exchange affinity chromatography 
 

His-tag affinity chromatography buffers 

Buffers Composition 

Buffer A pH 8.0 20mM Tris-HCl 

Buffer B pH 8.0 20mM Tris-HCl, 1M NaCl 

 

Table 3.6: Composition of buffers used for anionic exchange affinity chromatography 

 

Cell lysate was purified by anion exchange chromatography on an AKTA pure purification 

system (GE Healthcare) with a 5ml HiTrap Q HP (GE Healthcare) pre-packed column. The 

HiTrap Q column was washed with 2 column volumes (cv) MilliQ H2O at a flow rate of 5 

ml/min, then equilibrated with 2 cv of Buffer A (20 mM Tris buffer pH 8) at a flow rate of 5 

ml/min. The 50 ml sample was then loaded onto the column using a 50 ml superloop at a flow 

rate of 2 ml/min, followed by 5 cv wash with buffer A to remove any unbound protein from 

the column. An elution gradient was run at 3 ml/min for 13 cv from 0 - 50 % Buffer B (20 mM 

Tris buffer + 1 M NaCl pH 8), collecting 2 ml fractions. The column was then washed by 5 cv 

of 100% buffer B, 5 cv MilliQ H2O and 5 cv 20% ethanol, for storage and reuse. The peak 

fractions were collected, and analysed by SDS-page gel electrophoresis, the fractions 

containing purified S were pooled. 
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His-tag Affinity chromatography 
  

His-tag affinity chromatography buffers 

Buffers Composition 

Binding buffer pH 8.0 50mM NaH2PO4, 300mM NaCl, 10mM imidazole, 0.1% 

tween 

Wash buffer pH 8.0 50mM NaH2PO4, 300mM NaCl, 20mM imidazole, 0.1% 

tween 

Elution buffer pH 8.0 50mM NaH2PO4, 300mM NaCl, 500mM imidazole, 0.1% 

tween 

 

Table 3.7: Composition of buffers used for His-tag affinity chromatography 

 

An AKTA prime purification system (Amersham Biosciences), with a 5ml Ni-NTA superflow 

cartridge (Qiagen) was used to perform the His-affinity chromatography. The column was first 

calibrated with 30 ml water followed by 30 ml 0.2 M EDTA (pH 8.0) at a flow rate of 5ml/min. 

This was washed through with 30 ml H2O. The white, nickel free column was then reloaded 

with approximately 15 ml of 100 mM NiSO4. The Excess Ni2+ ions were washed off with 30 ml 

ddH2O and the calibrated with 30 ml binding buffer at a flow rate of 5 ml/min.  

 

The extracted cell lysate, made up to 50ml with binding buffer, was loaded into the column 

using a superloop at a flow rate of 1ml/min. The column was then washed with Wash buffer 

at a rate of 5 ml/min until no further drop was seen in the absorbance, measured at 280 nm. 

After washing, the bound proteins were eluted using a gradient between the wash buffer and 

the elution buffer, at 1ml/min, reaching 100% elution buffer after 60 minutes. 2ml Fractions 

were collected, and analysed by SDS-page gel electrophoresis, and fractions containing 

purified protein were pooled. 
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Size exclusion Chromatography (SEC) 
 

Size Exclusion chromatography buffers 

Buffer Composition 

Phosphate buffered saline (PBS) PBS, 10x solution (Melford). 10x solution 

components (Sodium chloride 1.37 M, Potassium 

chloride 27mM, Phosphate Buffer 119mM) 

100ml, diluted in 900ml, pH 7.4  

 

Table 3.8: Composition of size exclusion chromatography buffers. 

 

Further purification by size exclusion chromatography (SEC) was used to buffer exchange the 

-synuclein into PBS (pH 7.4) and to ensure that only unaggregated monomers were 

collected. 

 

SEC was performed on an AKTA pure (GE Healthcare) purification system, using a HiLoad 

16/60 Superdex 75 pg (GE Healthcare) prepacked purification column. The column was 

initially cleaned with 1 cv MilliQ H2O, 1 cv 1M NaOH, 1cv MilliQ H2O, and equilibrated with 

1.5cv PBS pH 7.4. 2ml of the S solution from the previous step was loaded onto the column 

using a 2ml loop and a flow rate of 0.5 ml/min. 1.5 cv of PBS pH 7.4 was passed through the 

column at 1 ml/min, and samples collected by fractionation. The elution profile was followed 

by absorbance at 280 nm. The pure monomeric S eluted between 54 - 60ml. The purity of 

S was confirmed by SDS-Page gel electrophoresis and fractions containing pure monomeric 

S were pooled. 

 

High Pressure Liquid Chromatography (HPLC) purification and desalting of S for cell toxicity 
assay 
 

HPLC Solution Composition 

Solution A 0.1 % TFA in HPLC grade H2O 

Solution B 0.1 % TFA in Acetonitrile (MeCN)  

 

Table 3.9: Solutions used for the HPLC purification of peptides. 
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The purified S was purified and de-salted for lyophilisation by reverse phase High Pressure 

Liquid Chromatography (HPLC) on an AKTA pure protein purification system (GE lifesciences) 

with a Jupiter 4 μm Proteo C-18 90 Å reverse phase prep column. The column was first 

equilibrated with 1 cv (column volume) 5% solution B at 15 ml/min. 5 ml of the purified S 

solution was added to the column using 5% solution B at a 2 ml/min. This was washed with 1 

cv of 5% solution B, and a pre-gradient performed to 35% solution B over 0.5 cv at 15 ml/min. 

The S was eluted by linear gradient, at 15 ml/min, from 35% solution B to 50% solution B 

over 150 ml at 15 ml/min, and the elution collected in 3 ml fractions. The column was then 

cleared of any remain residues by ramping to 95% solution B. The purified peak was confirmed 

by mass spectrometry and lyophilised in 2ml aliquots. The dry weight lyophilised S was 

quantified to 0.1 g accuracy using a Sartorius SE2 Ultra Micro Balance and stored as a dry 

pellet at -80 C until required.  For the cell toxicity assays this was resuspended in PBS (pH7.4) 

to the required concentration. 

 

Protein Characterisation 
 

Determination of Protein Concentration 
 

The concentration of the S collected after purification was determined in a 2mm path length 

quartz cuvette in a Cary 50 Conc UV-visible Spectrophotometer (Varian), using an extinction 

coefficient of 4836 M-1cm-1 at 280 nm. Samples were separated into 2ml aliquots, snap frozen 

in liquid N2, and stored at -80C until required. 

 

SDS-PAGE Electrophoresis 
 

SDS-Page gel electrophoresis was performed using RunBlue SDS 12% gels (Expedeon), in 

RunBlue SDS Run Buffer (Expedeon) at 150 V for 45 min. The Gel was stained overnight, with 

gentle agitation, using InstantBlue (Expedeon). 

 

Mass Spectrometry of Purified Alpha Synuclein 
 

The correct mass was confirmed by mass spectrometry on a Dionex Acclaim RSLC Polar 

Advantage II (PA2), 2.2 µm, 120 Å, 2.1 x 50 mm (Thermo Fisher Scientific, California, USA) with 

a flow rate of 0.4 mL/min, and an injection volume of 5 µL. Mobile phases A and B consisted 

of 0.1% v/v formic acid in water, and 0.1% v/v formic acid in acetonitrile.  
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Circular Dichroism (CD) assay 
 

CD buffers 

Buffers Composition 

CD buffer (Phosphate buffer) 20 mM Phosphate Buffer (Na2HPO4 / NaH2PO4), pH8.0 

 

Table 3.10: Composition of the buffer used to dilute CD samples. 

 

A CD spectra scan was performed, to confirm the random coil conformation of the 

monomeric S stock, and the -sheet content of fully aggregated aS fibrils, on a Chirascan 

V100 (Applied Photophysics) in a 1mm quartz cuvette, scanning from 300 – 190 nm with a 1 

nm bandwidth, averaged over 3 scans, blanked against the buffer and performed using a 10 

µM dilution of S (monomeric equivalents). 

 

Quantification/Purification of Oligomers in S solutions by SEC 
 

To purify, or quantify the concentration, of oligomeric species in ‘aged’ S solutions SEC was 

utilized. The S samples were first ultracentrifuged using an Optima MAX Ultracentrifuge 

(Beckman Coulter) for 10 minutes at 100,000g in a TL-100 rotor (Beckman), to remove any 

insoluble fibrillary species which may be present.  100 µl of the supernatant (containing 

soluble monomer and oligomeric species) was loaded onto a Superdex 200 Increase 10300/GL 

size exclusion chromatography column (GE Life Sciences) equilibrated in PBS buffer pH 7.4, 

and run with a flow rate of 0.5 ml/min. Monomer peak eluted at about 15 ml flow volume 

and an oligomeric peak eluted at about 9 ml total flow volume, and could be quantified by 

integration under the curve. 

 

Transmission Electron Microscopy (TEM) 
 

αS Samples were viewed by TEM. 5 µL of the sample solution was put onto on glow discharged 

Formvar/carbon-coated, 200 mesh, copper grids for 1 minute. The samples were dried with 

filter paper and washed twice with MilliQ water for 1 second, each time removed with filter 

paper. The sample was stained by incubating the grids with 5 µL Uranyl Acetate Zero (Agar 

Scientific) for 30 seconds, followed by removal of the excess stain with filter paper. The grids 

were left to air-dry for 2 hours and imaged using a Transmission Electron Microscopy Jeol 
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2100 Plus (JEOL), operating at an accelerating voltage of 200 kV. Multiple grids were screened 

in order to obtain representative images of the samples. 

 

Molecular biology protocols 
 

Production of E.coli glycerol stocks 
 

Solution Composition 

Glycerol stock 60% Glycerol in MilliQ H20 

 

Table 3.11: Composition of the glycerol stock solution. 

 

10 ml overnight cultures for the E.coli strains were grown in 2XYT media, containing 10 μl of 

the required antibiotic stocks, at 37 °C and 200 rpm in an Innova 44 shaking incubator. The 

overnight cell cultures were mixed 1:2 with 30% glycerol solution (1ml overnight culture with 

500 μl glycerol stock), mixed, flash frozen in liquid nitrogen and stored at -80 °C. 

 

Miniprep plasmid DNA extraction and Purification 
 

Glycerol stocks were used to inoculate 5ml 2XYT media containing the appropriate antibiotics, 

and grown overnight, at 37 °C and 200 rpm, in an Innova 44 shaking incubator. The was 

centrifuged, at 5000g in a desktop centrifuge (Eppendorf 5430 R) and the supernatant 

discarded.  

 

The plasmid DNA was extracted from the cell pellet using a Thermo Scientific GeneJET Plasmid 

Miniprep Kit. The cell pellet was resuspended in 250 μl of the Resuspension solution (with 

RNase A added), followed by addition of 250 μl lysis solution, and mixed by inversion. A 

further 350 μl of neutralization solution was then added, and again mixed by gentle inversion. 

This solution was the centrifuged for 5 minutes at 13,000g in a VWR Micro Star 17 desktop 

centrifuge, and the supernatant was transferred to a GeneJET spin column and centrifuged 

for a further 1 minute, discarding the flowthrough. The GeneJET spin column was washed 

twice with 500 μl of wash solution (diluted with ethanol), and the flow through discarded. The 

empty spin column was then subjected to a final 1min centrifuge spin to ensure that the wash 
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solution was completely removed. The column was transferred to a sterile 1.5 ml Eppendorf 

tube, and 50 μl of the elution buffer was added, and left to incubate at room temperature for 

2 minutes. The plasmid DNA was eluted by spinning at 5000g in a desktop centrifuge 

(Eppendorf 5430 R) for 2 minutes. The DNA concentration was determined using a Nanodrop 

2000 Spectrophotometer (ThermoScientific) and stored at -20 °C until required 

 

Plasmid DNA sequencing 
 

All plasmid DNA sequencing was performed by GATC-Biotech (Germany). To prepare the 

samples for sequencing 5 μl of the purified plasmid DNA at a concentration of 80-100 ng/μl 

was mixed, in a 1.5 ml Eppendorf, with 5 μl of primer DNA at a concentration of 5 μM.  

 

Cellular biology protocols 

 

Developing a cell-based assay to determine S toxicity 
 

In order to ultimately determine the efficacy of any inhibitory peptides produced in this 

project within living cells an effective and consistent cell-based assay had to be developed 

and utilized. The SH-SY5Y human derived neuroblastoma cell was ultimately selected for use, 

because of the ease of production, the fact they express dopaminergic markers, and their 

success in previous S related assays. 

 

SH-SY5Y cell culture protocol 
 

SH-SY5Y cell culture media 

Media Composition 

Basic growth 

media (500ml) 

DMEM/F12 (435ml) supplemented with Foetal bovine serum (10 %) 

Penicillin (100 IU), streptomycin (100 g/ml), L-Glutamine (2 mM), 

Non-essential amino acids (5 %) 

 

Table 3.12: Composition of the media used to culture SH-SY5Y cells. 
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The basic growth media (Dulbecco’s modified Eagle’s medium) was prepared and warmed to 

37 C. Human neuroblastoma cell line SH-SY5Y (ECACC 94030304) was purchased from Public 

Health England’s European Collection of Authenticated Cell Cultures (ECACC). The cryovial of 

SH-SY5Y cells was rapidly thawed in a water bath at 37 C, ensuring that some ice remained. 

9ml of pre-warmed media was dispensed into a 15ml falcon tube, along with the contents of 

the cryotube, which were resuspended in the media. The falcon tube was centrifuged at 

1,000g for 2 minutes. The supernatant was discarded, and the cells resuspended in 10 ml basic 

growth medium and plated into a T-25 flask. This was incubated in sterile conditions at 37 C, 

5% CO2, and saturated humidity. The cells were maintained in 1 T-75 flask in 15ml Basic 

growth media and split every 3-5 when they reached 70-80% confluency.  

 

For toxicity assays the stock culture was seeded in 96 well plates.  To seed the 96 well plates 

for assay 500 µl of cell suspension was diluted with 500 µl PBS in in a 1.5 ml Eppendorf tube. 

A manual cell count was performed, and the cells were seeded at 0.6 x 105 in 100 µl volume 

in 96 well plates and grown for 24 hours to reach 60-80% confluency at 37 C, 5% CO2, and 

saturated humidity. 

 

SH-SY5Y cell culture differentiation protocol 
 

SH-SY5Y cultured neuroblastoma cells were differentiated to a neuronal phenotype using a 

modified protocol from Forester et al. (Forster et al., 2016)  The modified method extended 

Phase 1 of the differentiation, after addition of the Retinoic acid (10 M), to 5 days, and no 

FBS was added in the media at this stage. Differentiation of the cell culture was confirmed by 

visual inspection (see Figure 3.19). 

 

Figure 3.5: Modified protocol for the differentiation of SH-SY5Y cells. X-axis showing Days In Vitro (DIV), and the addition of 

10 M Retinoic acid (RA) on day 1, and 1% (50 ng/ml) brain-derived neurotrophic factor (BDNF) with 1% (v/v) N-2 100x 

supplement on day 6. 
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Preparation of fOligomers 
 

Toxic oligomers were produced by fragmentation of larger pre-formed S fibrils, termed 

fOligomers, based on a previously published methodology (Kaufmann et al., 2016). 

 

Mature fibrils were first produced in a 10 mm Quartz cuvette by incubating 1.5 ml of 400 µM 

S monomers in 20mM sodium phosphate buffer (pH 6.5) for 48 hours at 40C maximal 

stirring (1500rpm), using a PTFE magnetic stirrer, on an RCT Basic Heat Plate (IKA, Staufen, 

Germany). The mature fibrils mixture was then sonicated using a Soniprep 150 plus sonicator, 

set to an amplitude of 14, for 20 seconds. The sonicated S solution was ultracentrifuged 

using an Optima MAX Ultracentrifuge (Beckman Coulter) for 10 minutes at 100,000g, in a TL-

100 rotor (Beckman), to remove any insoluble fibrillary species.  Following this 100 µl of the 

supernatant (containing soluble monomer and oligomeric species) was then loaded onto a 

Superdex 200 Increase 10300/GL size exclusion chromatography column (GE Life Sciences) 

equilibrated in PBS buffer pH 7.4, and run with a flow rate of 0.5 ml/min. Monomer peak 

eluted at about 15 ml flow volume and an oligomeric peak eluted at about 9 ml total flow 

volume. The oligomer peak was collected, and the monomeric equivalent concentration was 

measured by absorbance at 280 nm.  

 

Multiple runs were performed, the oligomer fractions pooled, and concentrated using an 

Amicon ultra centrifugal filter, with 100KDa cut-off (Merck Millipore). 

 

Preparation of Oligomers by Agitation  
 

Oligomer production buffers 

Buffers/gels Composition 

Phosphate buffered saline 

(PBS), pH 7.4 

PBS, 10x solution (Melford). 10x solution components (NaCl 

1.37 M, KCl 27mM, Phosphate Buffer 119mM) 100ml, 

diluted in 900ml, pH 7.4  

S solution 400 or 200 µM S in PBS buffer 

 

Table 3.13: Composition of the buffers and stocks used for cell toxicity assays. 
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Solutions of S containing the toxic oligomeric species were produced by incubating 400 l 

S stock solution of either 400 or 200 M in PBS buffer in a 1.5 ml Eppendorf tube on a 

Thermomixer comfort (Eppendorf) at 37 C, agitated at either 900rpm for 6 hours, or 300 rpm 

for 24 hours respectively. The resulting ‘aged’ solution was passed through a 0.2 µm SPARTAN 

Filter unit (Whatman, GE Healthcare Life Sciences) and was used for the cell toxicity assays. 

 

Preparation of Oligomers by Lyophilisation and incubation at High concentration 
 

Oligomer production buffers 

Buffers/gels Composition 

Phosphate buffered saline 

(PBS), pH 7.4 

PBS, 10x solution (Melford). 10x solution components 

(Sodium chloride 1.37 M, Potassium chloride 27mM, 

Phosphate Buffer 119mM) 100ml, diluted in 900ml, pH 7.4  

S solution 800 µM S in PBS buffer 

 

Table 3.14: Composition of the buffers and stocks used for cell toxicity assays. 

 

Solutions of S containing the toxic oligomeric species were produced by resuspending 

lyophilised dry S powder to make an 800 M stock solution in PBS buffer. 500 l of the S 

stock solution was aged in a 1.5 ml Eppendorf tube on a Thermomixer comfort (Eppendorf) 

at 37 C, under quiescence for 24 hours. The resulting ‘aged’ solution was passed through a 

0.2 µm SPARTAN Filter unit (Whatman, GE Healthcare Life Sciences) and used for the cell 

toxicity assays. 

 

S cell toxicity MTT reduction assay 
 

Varying volumes of either the ‘aged’ S solutions, or PBS volume equivalent, were added to 

a 96 well plate, in triplicate, to wells containing SH-SY5Y cells at 80% confluency in 100 µl basic 

growth media to give a range of final S concentrations (0 – 300 M). The plates were 

incubated at 37 C, 5% CO2, and saturated humidity for either 24 hours or 48 hours. 

 

Following incubation, cell viability was determined using the 3-(4-5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) MTT reduction assay. For this the basic cell growth media was 
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removed by aspiration and replaced with 100 µl fresh basic growth media containing 1 mg/ml 

MTT (solubilized by vortexing) and incubated at 37 C, 5% CO2, and saturated humidity for 1 

hour.  

 

Absorbance of the reduced formazan was measured at 590 nm using an absorbance plate 

reader (BioRad) and cell viability was expressed as the percentage of MTT absorbance relative 

to equivalent volume of PBS buffer control. For the % toxicity readings, 0% toxicity referred 

to the MTT absorbance for the PBS control. 

 

3.3 Results and Discussion 
 

Alpha-Synuclein Production and Purification 
 

Purification by S-SUMO-His / ULP1 Protease Method 
 

S was purified using the Alpha-Synuclein-SUMO-His / ULP1 Protease Method, although the 

yield per litre was low (  2 mg / lt), and the protocol required the purification from two 

separate protein grows, and therefore took a considerable amount of time. Overall, this 

protocol was not very efficient. The S produced using this method contained additional 

amino acids on the N-terminus (AS), and on the C-terminus (GAP) (See table 18). Therefore, 

the behaviour of this protein may be abnormally affected, and not accurately represent the 

true misfolding of wt S. 
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Figure 3.6: S-SUMO-His / ULP1 Protease Method a) i) Elution Profile and ii) SDS-PAGE gel showing the purification of 

Alpha-Synuclein-SUMO-His. b) i) Elution Profile and ii) SDS-PAGE gel showing the purification of ULP1 protease. c) i) SEC 

chromatogram of cleavage reaction mixture separating Alpha synuclein-SUMO-His (peak1), cleaved alpha synuclein (peak 2), 

SUMO-His (peak 3) and ULP1 Protease following cleavage reaction with ULP1 ii) SDS-PAGE gel showing corresponding bands 

to SEC peaks d) De-convoluted Mass spectrum of purified Alpha-Synuclein from the Alpha-synuclein-SUMO-His/ULP1 

Protease method, using Q-TOF mass spectrometer. A peak at 14843.89 can be seen corresponding to the [αS + H]+ daughter 

ion of the purified alpha-synuclein (average mass 14842.542) 

 

Purification by S-Thrombin-His / Thrombin Method 
 

Pure S was produced using the S-Thrombin-His / Thrombin Method and gave a reasonable 

yield per litre (  10 mg/l). The protocol was relatively simple and straight forward, and the 

S could be purified from the cell lysate in a couple of days. This was aided by the fact that 

purified Thrombin could be procured relatively cheaply (SIGMA), therefore did not need to 

be grown and purified separately.  The slow step was the required overnight cleavage of the 

thrombin-His tail. The S produced using this method contained additional amino acids on 

the N-terminus (SH), but no additions to the C-terminus (See table 19). This may abnormally 

affected behaviour of this protein, and not truly represent the true misfolding of wt S. 
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Figure 3.7: S-Thrombin-His / Thrombin Method a) i) Elution Profile and ii) SDS-PAGE gel showing the purification of S-

Thrombin-His b) i) SEC chromatogram following the cleavage reaction, separating thrombin (peak 1) from the cleaved S 

(peak 2). ii) SDS-PAGE gel showing the separated thrombin and the final purified S. 

 

Human wild-type αS pET21a Method 
 

Pure S was produced using the wild type S pET21a Method and gave a high yield per litre 

( 20 mg / l). The protocol was simple and straight forward, and the S could be purified from 

the cell lysate on the same day. The S produced using this method contained no additional 

amino acids on the N-terminus, or on the C-terminus (See table 19). Therefore, the behaviour 

of this protein should accurately report the true misfolding of wt S. 
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Figure 3.8: wt S pET21a Method a) Hi-Q anionic exchange elution profile. b) SEC monomerization and buffer exchange 

chromatogram c) SDS-PAGE gel showing an overview of the entire purification protocol. d) Far-UV circular dichroism spectra 

of the purified S showing that the monomeric S is in a random coil conformation. e) De-convoluted mass spectrum, 

showing a mass of the protein of 14459 m/z, representing the mass of wt Human S (1-140).  
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Comparing αS production methods  
 

Of the three methods explored for S production, the Human wild type S pET21a method 

was by far the most superior for several reasons. This method was the quickest of the three 

methods, as the purification protocol could be performed in a single day. The yield was also 

much higher in comparison to the two alternative methods, and the final purified S did not 

contain any addition amino acids on the C, or N-Terminus, therefore more representative of 

the protein found in the brain.  

 

Method S-SUMO-Histag 

fusion 

S-Thrombin-Histag 

fusion 

S alone 

Yield  2 mg/lt  10 mg/lt  20 mg/lt 

Extra N-terminal 

amino acids 

AS SH N/A 

Extra C-terminal 

amino acids 

GAP N/A N/A 

Days to Purify 2 2 1 

 

Table 3.15: Overview of the three aS production methods used. 

 

For the experiments performed within this PhD only S purified from the Human wild type 

S pET21a method was utilized. 

 
 

Optimising S Cell Toxicity Assays 
 

Varying PBS volumes for different time points 
 

The effect of PBS volumes added to undifferentiated SH-SY5Y human neuroblastoma cells 

grown in a 96 well plate, in 100 L culture volumes, was investigated, as a control, to  

determine how much sample volume could be added to the cell cultures, in PBS buffer 

(pH7.4), without influencing the viability of the cultured cells for the duration of the assay. 
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It was determined that up to 45 l of PBS (pH 7.4) could be added to the cultured cells for 24 

hours without having a negative effect on their viability, as measured by MTT reduction. 

Therefore, S in solution in PBS up to a volume of 45 µl (pH 7.4) can be added to the wells to 

determine the optimal conditions for the viability assays. 

 

 
Figure 3.9: Different volumes of PBS buffer (pH 7.4) were added to cultured SH-SY5Y cells in a 96 well plate with initial well 

volume of 100 µl to determine the volume of PBS buffer can be added to the cells without having a negative impact on 

viability. Results are a combination of different experiment controls, with up to 3 repeats per well, and show that up to 45 

µl of PBS (pH 6.4) can be added to the wells without affecting viability as measured by MTT assay up to 24 hours. The y-axis 

represents the absorbance reading at 595 nm, measuring the conversion of MTT into purple formazan. 

 

Inducing Cell toxicity with fOligomers 
 

To produce oligomers from fibrils, fOligomers, monomeric S was first matured into fibrillar 

aggregates using a Teflon stirring bar as per previously published methods (Kaufmann et al., 

2016). Far-UV circular dichroism was performed on the aggregated fibril mixture to confirm 

that complete conversion of random coil monomeric S had converted into -sheet S fibrils. 
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Figure 3.10: The S monomer before aggregation shows a random coil spectra (green). The S is seen to be fully converted 

to beta-sheet fibril seeds (red) after 400 M S was stirring at 40C with a teflon bar at 1500rpm for 72 hours. 

 
 

The aggregated S fibril mixture was then subjected to sonication to fragment the fibrils and 

lead to the formation of some oligomeric species, termed fOligomers (oligomers produced 

from fibrils). The insoluble fibril aggregates were then removed from the solution by ultra-

centrifugation, leaving behind a solution of soluble oligomers and monomers. These were 

separated by SEC to collect a solution of pure oligomers.  
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Figure 3.11: SEC chromatogram of the solution containing S fOligomers and S monomers. The fOligomers can be seen to 

elute at about 8 ml elution volume, and the monomer peak is seen to elute at about 14.2ml elution volume. The oligomer 

fraction was collected. 

 

Multiple runs collecting the oligomer peak were combined and concentrated. The resulting 

concentration of the fOligomer solution was measured by absorbance at 280 nm to be 14.3 

M. 

 

The fOligomer solution was added to cultured SH-SY5Y cells, of 80% confluency, in triplicate 

to give a final fOligomer concentration of 0, 0.4, 2 and 4 M. Equivalent volumes of PBS 

solution was added to separate wells in triplicate as a control. The fOligomers were left to 

incubate on the cells for 48hrs, at 37 C, 5% CO2, and saturated humidity. The resulting cell 

toxicity was measured by MTT reduction. The fOligomers were found to be toxic to the cells 

in a dose dependent manner. About 20% cell death was reported with only 400 nM fOligomer 

concentration, similar to previously reported toxicity of oligomers on SH-SY5Y cells at this 

concentration (Fusco et al., 2017; Cascella et al., 2019). The maximal death measured was 

32% at 4 µM fOligomer concentration. The curve appeared to flatten at 2 M, suggesting that 

this may be the maximum level of toxicity achievable with αS on this cell line over this 

timescale, and therefore would be a good target % toxicity to achieve for the development of 

future cell toxicity assays. 
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[S oligomers] (M) % toxicity compared to PBS control 

0.4 20   

2 34   

4 38   
 
Table 3.16: % toxicity of fOligomers incubated for 48 hours on SH-SY5Y neuroblastoma cells grown on a 96 well plate at 37 

C, 5% CO2, and saturated humidity. Cell viability was measured by MTT reduction, in triplicate, as compared to PBS control 
of equal volume. Error bars show standard error between the replicates. 

 

 

Inducing cell toxicity with monomeric S 
 

The effect of incubation time on cell toxicity was investigated over a range of monomeric S 

concentrations [0-300 M], applied to cultured SH-SY5Y cells for either 24 or 48 hours. Over 

a 24-hour incubation period negligible cell death was recorded for any of the concentrations 

tested, suggesting that the monomeric S had not aggregated into cytotoxic conformations 

over this time period. In contrast, at 48-hour incubation cell death, as measured by MTT 

reduction, was seen to increase in a dose-dependent manner, with maximum cell death of 

about 20% observed. This suggests that during the 48-hour incubation period some of the 

monomeric S had indeed aggregated into cytotoxic oligomeric conformations, resulting in 

cell death. Toxicity appeared to reach a maximum and plateau at concentrations of 200 M 

and above. 

 

Previously published research has suggested that at best the S solution will only form ~1% 

toxic oligomers (Ludtmann et al., 2018). Therefore, even at the highest concentration used 

for this experiment [300 M], it is unlikely that the oligomeric concentration of toxic 

oligomers in the solution will be above 3 M (monomeric equivalent). 
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Figure 3.12: % toxicity of monomeric S in PBS buffer pH 7.4 added to SH-SY5Y cells grown in a 96 well plate at 37 C, 5% 

CO2, and saturated humidity, and incubated for either 24 hours or 48 hours. Cell viability was measured by MTT reduction, 

in triplicate, as compared to PBS control of equal volume. Error bars show standard error between the replicates. 

 

 ‘aged’ S cell toxicity assay 
 

Aging S by agitation to produce oligomers for cell toxicity assays 
 

Previously published research has shown the possibility of creating toxic S oligomers by 

agitating solutions of monomeric S (Lorenzen et al., 2014; Kaufmann et al., 2016). Therefore, 

a range of stock concentrations, shaking durations and times of exposure on cells were tested 

to determine the optimum conditions for producing S mediated toxicity by this method.  
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  Condition a Condition b Condition c  

Cell line Undifferentiated SH-SY5Y Undifferentiated SH-SY5Y Undifferentiated SH-SY5Y 

Culture Plate 96 well 96 well 96 well 

Replicates 3 3 3 

S stock  400 M 400 M 200 M 

Shake speed 900 rpm 900 rpm 300 rpm 

Shake time 6 hours 6 hours 24 hours 

Time on cells 24 hours 48 hours 24 hours 

Temperature 37 C 37 C 37 C 

Lyophilised S No No No 

 

Table 3.17: Different conditions utilized to produce toxic oligomers by ‘aging’ S using agitation on an Eppendorf 
thermomixer compact. 

 

 

 

 
 

Figure 3.13:  Solutions of S ‘aged’ by agitation in PBS (pH 7.4) were added to 100 µl wells containing 80 % confluent SH-

SY5Y  cells to give final concentrations ranging from 0 – 200 µM monomeric equivalents. The plates were left incubating at 

37 °C, 5% CO2, and saturated humidity for 24 and 48 hours the test the effect on cell viability, as measured by MTT reduction, 

in triplicate, compared to PBS control of equal volume. Error bars show standard error between the replicates. 
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A toxicity dose response was seen with the 3 different shaking protocols used, with a 

maximum toxicity of 20% achieved (figure 3.13). The optimal methodology was to shake 400 

M S at 900 rpm for 6 hours and incubated on the cells for 48 hours. It should be noted here 

that additional conditions were also explored, with varying concentrations of S, shake 

speeds, and shake times, but failed to produce reliable S toxicity, and therefore have been 

omitted for clarity.   

 

Although the shaking methodology has been shown to be suitable to age S into cytotoxic 

conformations, it presents some experimental limitations. Aggregating S by shaking is very 

dependent on the volume used in the Eppendorf tubes, as this affects the fluid dynamics 

within the tube. It is also highly dependent on the specific equipment used to shake the tube 

at the desired settings.  It would therefore be advantageous to use a more universal 

methodology, less reliant on a single piece of lab equipment, and with flexibility in the volume 

of solution to be ‘aged’.  

 

Preparing ‘aged’ S Oligomers from Lyophilised Samples for Cell Toxicity Assays 
 

Previously published research has successfully used lyophilized S to produce oligomeric 

species for cell toxicity assays (Perni et al., 2017; Ludtmann et al., 2018; Perni et al., 2018; 

Cascella et al., 2019). The lyophilisation process has been shown to catalyse the formation of 

S oligomers (Stephens, A. D. et al., 2018). Therefore, purified S stocks were passed through 

HPLC (figure 3.14) to ensure purity, and to buffer exchange the protein into a solution which 

could be removed by lyophilization. 
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Figure 3.14: HPLC purification of Pre-purified S by affinity to C18 column to remove buffer prior to lyophilisation for cell 

toxicity assays. Absorption at 280 nm used to follow the elution of aS from the c18 column (blue), by increasing 

concentrations of acetonitrile + 0.1% TFA (green). 

 

SEC experiments on the pre-lyophilized S, post-lyophilised S and post-lyophilised S ‘aged’ 

at 800 M at 37 C under quiescent conditions, demonstrated the formation of an oligomer 

peak following lyophilization, and an increasing of this oligomer peak, and an apparent shift 

towards a higher molecular weight following ‘aging’ (figure 3.15). The total proportion of 

oligomer present in the lyophilised and ‘aged’ S solution was 14.6% monomeric equivalent, 

measured by curve integration. The oligomer peak of the lyophilised and aged sample was 

collected and viewed using negative stain TEM. Many different conformations of S were 

present, and strikingly ‘doughnut-like’ oligomer structures, similar to previously reported 

toxic oligomeric species (Chen, S.W. et al., 2015), were observed (figure 3.15e). 
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Figure 3.15: SEC elution chromatogram when 100 l of 800 M S sample is loaded onto a Superdex 200 Increase 10/300 

column (GE lifesciences) and run at 0.5 ml/min in PBS buffer pH 7.4, showing absorbance at 280 nm. a) Monomeric S 

(blue) showing a clean monomer peak (i) at 15ml elution volume. b) Lyophilised S (orange) resuspended in PBS pH 7.4 

and incubated at 37 C and filtered through a 0.22 M filter showing a monomer peak (i) at 15ml elution volume, and an 

additional oligomer peak (ii) eluted at 9ml run volume. c) Lyophilised and ‘aged’ S (green) resuspended in PBS pH 7.4 and 

incubated at 37 C for 24hrs and filtered through a 0.22 M filter showing a monomer peak (i) at 15ml elution volume, and 

an additional oligomer peak (ii) eluted at 9ml run volume.  d) Comparison of total oligomer to monomer percentage in the 

protein solution, showing final oligomeric percentage of 14.6% after lyophilization and ‘aging’ for 24 hours in PBS pH 7.4 at 

37 C. e) Negative stain TEM images taken from the oligomer SEC Peak of the lyophilized and ‘aged’ S (green), that appear 

to show doughnut like oligomer structures similar to those previously reported (Chen, S.W. et al., 2015) (see figure 3.1). 

 

The lyophilised and ‘aged’ (24 hours, under quiescence, at 37 C) S solution was added to 

SH-SY5Y cells grown in a 96-well plate to 80% confluency and left to incubate for 24 hours. 

Cell toxicity was measure by MTT reduction and showed a dose dependent toxicity. The 

maximum death rate achieved was 19.5% at 120 M αS, monomeric equivalent. 

 

 

Figure 3.16:  % toxicity measured by MTT reduction when 800M stock of lyophilised αS was ‘aged’ for 24 hours at 37 °C, 

filtered using a  0.2 µm SPARTAN Filter unit (Whatman, GE Healthcare Life Sciences),  and added to 100 µl wells containing 

80 % confluent SH-SY5Y to give final concentrations ranging from 0 – 180 µM monomeric equivalents. The plates were left 

incubating at 37 °C, 5% CO2, and saturated humidity for 24 hours before performing cell viability assay, as measured by MTT 

reduction, in triplicate, as compared to PBS control of equal volume. Error bars show standard error between the replicates. 
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Comparing this data to when the S is aged by agitation it can be seen that a similar dose 

response is achieved suggesting that both methods can produce toxic S oligomeric species 

capable of causing equivalent levels of cell death in undifferentiated SH-SY5Y cells.  

 

 

Figure 3.17:  % toxicity measured by MTT reduction comparing when S solutions are ‘aged’ by agitation of 400 M solution 

at 900 rpm and 37 °C for 6 hours vs ‘aging’ by lyophilisation and incubation at 800 M under quiescence for 24 hours at 37 

°C. Following addition of the aged S the plates were left incubating at 37 °C, 5% CO2, and saturated humidity for 24 hours 

before performing the MTT viability test. 

 

 

Comparing the Sensitivity of Undifferentiated and Differentiated SH-SY5Y Cells to αS-Mediated 
Toxicity 
 

Previous reports investigating amyloid- toxicity on cultured SH-SY5Y human neuroblastoma 

cells have shown that these cells show a higher degree of toxicity when they have been 

differentiated to a phenotype more resembling that of mature neurons (Krishtal et al., 2017). 

We therefore investigated the effect of adding increasing concentrations of lyophilized ‘aged’ 

S to both undifferentiated and differentiated cell cultures to determine if differentiation 

increased the cellular susceptibility to S mediated toxicity. 
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Figure 3.18: Light microscopy images of the SH-SY5Y cells taken at different stages throughout the differentiation protocol. 

Time measured as Days In Vitro (DIV). 

 

Throughout the differentiation protocol the cells were monitored by light microscopy looking 

for the formation of dendrites, axons and connections between adjacent cells to ensure that 

differentiation had occurred by DIV14 as compared to the undifferentiated cells at DIV1 

(figure 3.19). The differentiated SH-SY5Y cells showed no significant difference to S toxicity, 

reaching a maximum of about 24 % toxicity at an S concentration of 125 M, as compared 

to the undifferentiated SH-SY5Y which reached a maximum of about 20 % at 120 M. The 

toxicity appears to plateau at around 100-120 M. This could be because at higher 

concentrations the S is more rapidly converted from toxic oligomers to less toxic fibrils, 

therefore the toxic oligomers may not persist in the solution for as long before conversion to 

fibrils. The slight increase in susceptibility between differentiated and undifferentiated 

neurons may be accounted for by the fact that the undifferentiated neurons are still dividing 

in the culture, due to the presence of the F-12 supplement in the media, which was not 

included in the differentiated media. Undifferentiated cells do not have mature synapses and 

therefore are much less dependent on physiological processes involving αS.  The differences 

only become apparent at concentrations of about 100 M and above. 
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Figure 3.19:  % toxicity comparing undifferentiated and differentiated SH-SY5Y cells following the addition of S ‘aged’ by 

lyophilisation and incubation at 800 M under quiescence for 24 hours at 37 °C. Cell viability was measured by MTT 

reduction, in triplicate, as compared to PBS control of equal volume. Error bars show standard error between the replicates. 

 

Although the differentiated neurons show a slightly increased susceptibility to S, at higher 

concentrations, the process of differentiation is complex and more time consuming compared 

to using undifferentiated cells. In addition, SH-SY5Y cells need to be differentiated in 24 well 

plates, as opposed to 96 well plates, and therefore much larger amounts of S starting 

material is required, and less conditions can be performed simultaneously. Considering the 

above, the undifferentiated cells represent a simpler and more cost-effective screening 

platform for studying S toxicity. 

 
 

 

 

 

 

 

 

 

 

 



83 

 

3.4 Conclusion 
 

Of the three different methods for producing S explored here, it is clear that the best for the 

production of S was the method producing wild type S, with no additional amino acids on 

the N, or C-terminus, utilizing the pET21a plasmid. Not only did this produce the most 

accurate representation of S for in vitro experiments, it was also the fastest of the methods, 

and gave the highest yield. Therefore, this is the S production method that will be utilized 

for the experiments presented within this PhD thesis. 

 

As previously reported, purified oligomers induced cell toxicity at low concentration (table 

3.16), confirming the basic suitability of the SH-SY5Y cells to measure S mediated 

cytotoxicity. Variations of previously reported protocols to produce toxic oligomeric species 

did so in a dose-dependent manner, and using lyophilised S, aggregated at high 

concentration under quiescent conditions, gave the most reproducible results, with increased 

flexibility on equipment required and aggregation volume (figure 3.16). With this method the 

addition of 100 M αS induced the maximum levels of cytotoxicity, corresponding with the 

concentration of S reported in dopaminergic neurons in the brain (70-140 M) (van Raaij et 

al., 2008).  From previously published research it is likely that only about 1% of this aged S 

solution will be in the form of toxic oligomers (Ludtmann et al., 2018), in the region of 1 M 

toxic oligomeric species, consistent with the toxicity resulting from the addition of low 

micromolar concentrations of preformed fOligomers (table 3.16). 

 

Although differentiated SH-SY5Y cells did show some increase in sensitivity to aged S, the 

method of differentiation was complicated and time consuming, compared to using 

undifferentiated cells.  The limited increase in toxicity therefore did not warrant the routine 

use of differentiated SH-SY5Y cells for measuring S toxicity. Therefore, the cell toxicity assays 

in this thesis utilised undifferentiated SH-SY5Y cells treated with lyophilised S ‘aged’ at 800 

M for 24 hours under quiescent conditions and at 37 °C 
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Chapter 4:  

A PCA Derived Peptide (4554W) Inhibits 

Primary Nucleation of -Synuclein in the 
Presence of Lipid Vesicles 
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4. 1 Abstract 

 

Aggregation of -Synuclein (S) is widely regarded as a key factor in neuronal cell death, 

leading to a wide range of synucleinopathies that includes Parkinson’s Disease.  

Development of therapeutics has therefore focused on inhibiting aggregation of S into 

toxic forms. One such inhibitor, based on the preNAC region S45-54 (4554W), was identified 

using an intracellular peptide library screen, and subsequently shown to both inhibit 

formation of S aggregates while simultaneously lowering toxicity. Subsequent efforts 

have sought to determine the mode of 4554W action.  In particular, and consistent with the 

fact that target and peptide are co-produced during screening, we find that the peptide 

inhibits primary nucleation of S but does not modulate downstream secondary nucleation 

or elongation events. These findings hold significant promise towards mechanistic 

understanding and development of molecules that can module the first steps in aggregation 

towards novel treatments for Parkinson’s disease and related synucleinopathies. 

 

4.2 Introduction 
 

Synucleinopathies are caused by the misfolding and subsequent aggregation of the protein 

-Synuclein (S), a 140- residue protein, highly expressed in neuronal synapses (Takeda et 

al., 1998), and the main protein constituent found in Lewy bodies (Goedert, Jakes and 

Spillantini, 2017); the pathogenic hallmark of PD. The pathway of S misfolding is highly 

complex, and not entirely understood. However in synucleinopathies, S is seen to ultimately 

aggregate into extended -sheet amyloid fibrils with the potential for a number of different 

polymorphisms (Li, B.S. et al., 2018; Meade, R. M., Fairlie and Mason, 2019). Moreover, during 

the course of amyloidogenesis S  is able to form a variety of pre fibrillary oligomers, which  

can be on or off the pathway to fibrils (Lorenzen et al., 2014; Chen, S.W. et al., 2015; Pieri, 

Madiona and Melki, 2016; Fusco et al., 2017; Cascella et al., 2019). Some of these oligomers 

and their conformers may be functionally relevant to the disease, with some appearing to be 

highly toxic to cells (Fusco et al., 2017). Whilst there is increasing evidence regarding precisely 

which molecular species might be critical for inducing S toxicity, a number of unanswered 

questions remain. Pinpointing the precise molecular species responsible for S driven toxicity 
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and either inhibiting their formation or sequestering them represents a promising mechanism 

towards the treatment of PD and synucleinopathies in general.  

Due to the complex nature of the protein-protein interactions (PPIs) formed during S 

aggregation, ranging from monomeric to a wide variety of conformers and oligomers, it has 

proven extremely difficult to rationally design effective small molecule inhibitors to modulate 

the process, leading many to determine this condition as undruggable (Rastogi et al., 2019). 

Identification of small molecules is difficult for amyloids owing to the requisite number of 

interactions needed to block these shallow and broad PPIs and therefore to efficiently inhibit 

the aggregation process. Larger biotherapeutics, such as antibodies, also pose limitations due 

to their difficulty in traversing the blood-brain barrier (BBB) and other cell membranes to 

locate at required site of action within neurons. An area of emerging interest therefore has 

been the development of short peptide based molecules that are able to occupy the niche 

between small molecules and biotherapeutics (Mason, 2010; Helmer and Schmitz, 2016); 

being large enough to form structures that can specifically modulate PPIs by making multiple  

interactions that can generate the requisite affinity and selectively, and hence distinguish 

between conformations, or stabilize non-toxic oligomers, while being small enough to be 

readily modified to cross biological membranes. Peptide-based therapeutics present a 

number of advantages over that of small molecules in that they can i) make more interactions 

over larger surface areas and shallow binding pockets in PPIs, ii) avoid immunogenicity when 

short since they fall below the immunogenic threshold, iv) be more target-specific, due to 

more interactions, and therefore less toxic, v) be quickly synthesized to high purity, vi) be 

readily modified to prevent the formation of extended strand motifs that are most susceptible 

to protease degradation, and vii) be optimized to impart membrane permeability. Limitations 

such as low cell permeability, loss of affinity due to flexibility, high clearance rates and low 

oral bioavailability are now being addressed, for example via non-peptidic or cyclic 

modifications, cell-penetrating peptides (CPP), or lipidic appendages (Rastogi et al., 2019).  

Using an in-cell derived peptide (4554W) capable of inhibiting S toxicity by modulating 

aggregation (Cheruvara et al., 2015), we sought to gain further mechanistic insight by 

establishing where within the amyloidogenic pathway the peptide functions (Fig 4.1). To do 

so, aggregation experiments were performed under carefully designed experimental 
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conditions that sought to individually probe each of the three key processes within the 

aggregation pathway. In particular, the effect of the peptide was deconvoluted into i) changes 

in heterogeneous primary nucleation (Buell, Alexander K. et al., 2014; Galvagnion, C. et al., 

2015; Perni et al., 2017), ii) changes to fibril elongation (Buell, Alexander K. et al., 2014; Perni 

et al., 2018), and iii) changes to fibril amplification/secondary nucleation (Buell, Alexander K. 

et al., 2014; Agerschou et al., 2019). 4554W was generated from a library based on preNAC 

S45-54; a region within which most early onset SNCA mutations are located, and one that has 

subsequently been found to feature prominently at the dimeric fibril interface for the majority 

of S polymorphs identified (Meade, R. M., Fairlie and Mason, 2019; Zhao et al., 2020). 

Therefore, an improved understanding of the mechanism of action for 4554W could lead 

towards increased efficacy of treatments for S driven pathologies, as well as other age-

related diseases in which amyloids present. 

 

Figure 4.1: Proposed mechanism of S misfolding from random coil to mature fibril via a population of aggregated oligomers, 

as followed by Thioflavin T fluorescence (green line). The steps of Primary nucleation, fibril elongation, and secondary 

nucleation/fibril amplification are highlighted. Primary nucleation is the dynamic equilibrium by which the random coil 

monomer converts into an -helical state, which can then assemble into a population of oligomers. One or more of these 

oligomers may represent the cytotoxic species of S, and one or more of these can form the kernel to seed fibril growth. 

Fibril elongation occurs by monomer addition to this fibril ‘seed’, until all free monomer exists in the energetically favourable 

fibril state. The fibrils can fragment leading to more nuclei for elongation, causing fibril amplification. Secondary nucleation 

occurs by monomers associating laterally to form nuclei which can then elongate in situ or dissociate to elongate 

independently, releasing oligomeric species which may or may not be cytotoxic. 
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4.3 Results and Discussion 
 

Derivation of peptide 4554W   

An intracellular Protein-fragment Complementation Screening Assay (PCA) (Pelletier et al., 

1999) was previously utilised to generate the peptide inhibitor, 4554W, based on an analogue 

of S45-54  (Cheruvara et al., 2015). This 10 residue region within S was selected owing to the 

fact that it contained all but one (A30P (Kruger et al., 1998)) of the then known early onset 

mutations (E46K (Zarranz et al., 2004), H50Q (Appel-Cresswell et al., 2013), A53T 

(Polymeropoulos et al., 1997) and A53E (Pasanen et al., 2014)).  An additional G51D/E (Lesage 

et al., 2013) mutant was discovered later, hence D/E residues were not included as options at 

this position within the library. The 4554W peptide was identified from 209,952 members (Fig 

4.2) and demonstrated to be effective using MTT cytotoxicity assays, Thioflavin T (ThT), 

circular dichroism (CD) and atomic force microscopy (AFM). In particular 4554W was found 

to be capable of inhibiting S fibril formation in a dose dependent manner when mixed with 

monomeric S and stirred in a fluorescence cuvette, and was able to rescue PC12 cells from 

S related toxicity in a dose dependent manner (Cheruvara et al., 2015). 
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Figure 4.2: Reproduced from Cheruvara et al. (Cheruvara et al., 2015)  showing a) the template region of S consisting of 

residues 45 to 54 of the wild type protein. b) A 209,952-member library was screened using a protein-fragment 

complementation approach, in which those that bind to and detoxify S result in the recombination of an essential enzyme 

required for cell survival. c) The sequence of the 4554W peptide selected at the end of the PCA assay. d) Chemical structure 

of the winning peptide showing the structural orientation of the residues.  

 

Although encouraging, the precise point at which 4554W exerted its action upon S 

aggregation remained unclear. By using specific experimental conditions to probe the 

aggregation pathway we have now separated this for S into its three distinct in vitro 

processes – i) primary nucleation (Galvagnion, C. et al., 2015; Brown et al., 2016; Perni et al., 

2017; Perni et al., 2018), ii) fibril elongation (Buell, Alexander K. et al., 2014) and iii) secondary 

nucleation (Buell, Alexander K. et al., 2014; Brown et al., 2016; Perni et al., 2018) (Fig 4.1). 

These three steps are common to all amyloidogenic pathways (Chatani and Yamamoto, 2018) 

and identifying which are specifically modulated by the 4554W sequence holds significant 

promise towards 4554W optimisation and for future rational design of aS toxicity modulators.  

 

4554W inhibits ThT monitored S aggregation at neutral pH with agitation  
 

The effect of 4554W on S aggregation was first determined by following ThT fluorescence 

to report fibril growth at physiological pH and temperature (pH 7.4, 37 C). Agitation of the 

sample in a 96 well plate was used to promote aggregation, based on previous high 

throughput screening methods (Pujols et al., 2017) .  In this experiment 450 M monomeric 

S was aggregated in the absence or presence of equimolar 4554W peptide, consistent with 

the mode of production during PCA (i.e. both S and 4554W are co-expressed from monomer 

via IPTG induction and therefore prior to aggregation). This experiment was undertaken to 

mimic previous ThT experiments undertaken by Cheruvara et al. during the initial validation 

of the 4554W peptide (Cheruvara et al., 2015). To demonstrate robust reproducibility under 

modified conditions, the experiment was repeated in microtiter plate format (to reduce the 

amount of S required), using shaking rather than stirring to facilitate parallel replicates, 

thereby increasing reproducibility across different samples.  

 

As previously reported the 4554W peptide inhibited aggregation of S (Cheruvara et al., 

2015). In the conditions described above, monomeric S was found to produce the expected 
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sigmoidal aggregation profile with the elongation phase reached at ~18 hours, and the 

stationary phase reached after ~30 hours (Fig 4.3a). In contrast, in the presence of 4554W at 

a stoichiometry of 1:1 the lag phase significantly increased, and the time taken to reach the 

elongation phase was delayed to ~50 hours. The time taken to reach stationary phase was 

increased to ~65 hours. In the presence of 4554W a small rise in ThT fluorescence was 

observed between ~15–50 hours, suggesting that the peptide may act to inhibit the 

progression of a partially aggregated S species. Once the exponential phase was reached 

however, the rate of aggregation was similar to that of S alone (i.e. gradient is unchanged). 

Based on previous aggregation models monitored using this method (Cohen et al., 2015), an 

increased lag phase, but identical exponential growth rate would suggest that the inhibitor 

suppresses primary nucleation at the earliest stages of the aggregation process, but does not 

inform upon additional potential points of inhibition (Cohen et al., 2015). 

 

CD spectra taken at the start and end of the experiment (Fig 4.3b) show complete conversion 

from random coil to -sheet in the absence of 4554W. In the presence of 4554W, the -sheet 

signal is less intense, and a significant amount of signal associated with a random coil is still 

visible.  
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Figure 4.3: a) Effect of 4554W on continuous growth aggregation assay with shaking. Inhibition of S aggregation with 4554W 

peptide was measured by monitoring the change in ThT fluorescence intensity when monomeric S (450 M) was incubated 

in the presence and absence of equimolar 4554W, and agitated (700rpm double orbital shaking) at 37C, pH 7.4. S alone 

(red) can be seen to aggregate in the standard sigmoidal pattern, whereas S in the presence of 1:1 4554W (yellow) shows 

a reduced aggregation in the primary nucleation section of the graph, pushing the elongation phase to the right. 4554W 

alone (green) shows no aggregation in isolation. These kinetic curves are shown as an average of three repeats, showing 

standard error. b)  Circular dichroism spectra scans of aS in the presence/absence of 4554W. At 0 hours the CD spectra 

displays a spectrum associated with a random coil conformation in the presence and absence of 4554W. However, at the 

stationary phase of aggregation (80 hours) aS alone display a spectrum of complete conversion to a b-sheet conformation 

(red). In contrast, the CD spectra at the end (80 hours) in the presence of 4554W shows a less prominent conversion to -

sheet, with presence of a random coil component remaining (blue). Samples were sonicated for 10 seconds in a sonicating 

water bath to ensure that sample was homogenised and would remain in the beam. 
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4554W Peptide Inhibits the Lipid Induced Primary Nucleation step of S Aggregation   
 

To probe the effect of the 4554W peptide on only the primary nucleation step, monomeric 

S was aggregated in the presence of  1,2-Dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) 

small unilamellar vesicles (SUVs), at neutral pH (pH 6.5, 30 C; Fig 4.4a). Under these 

conditions, primary nucleation has been shown to be the predominant mechanism of 

aggregation (Buell, Alexander K. et al., 2014; Galvagnion, C. et al., 2015; Perni et al., 2017; 

Perni et al., 2018). In this experiment aggregation was promoted directly from the surface of 

DMPS vesicles, leading to an accelerated lag phase. DMPS vesicles were chosen as a model 

phospholipid since they are a key component of dopaminergic synaptic vesicles, display a 

negatively charged headgroup, promote S membrane binding (Meade, R. M., Fairlie and 

Mason, 2019), and lead to an increased local concentration of S that accelerates primary 

nucleation (Galvagnion, C. et al., 2015; Galvagnion, C., 2017; Killinger et al., 2019; Fanning, 

Selkoe and Dettmer, 2020). Soluble S is able to bind to DMPS lipid bilayers, leading it to 

adopt a distinct -helical conformation (Fig. 4.5a), which may produce a nucleation point for 

aggregation.  This specific S -lipid interaction could play a key role in vivo by triggering the 

conversion of soluble S into more toxic aggregated forms of the molecule that are associated 

with disease. For these experiments the concentration of monomeric S was reduced to 100 

M, which has been proposed to represent a physiologically relevant concentration (S is 

abundant in brain and estimated to exist at 70-140 M in healthy neural cells (van Raaij et al., 

2008)).  Briefly, S was mixed with 200 M DMPS SUVs, of 30-40 nm diameter (consistent 

with those found in dopaminergic vesicles (Sulzer, Cragg and Rice, 2016)), and incubated 

under quiescent conditions. The aggregation kinetics (undertaken in triplicate) were followed 

by measuring ThT florescence in the presence of increasing concentrations of 4554W [0 – 

1000 M]. Under these conditions a dose-dependent inhibition of S primary nucleation was 

observed (Fig 4.4a). This result is consistent with the shaking aggregation assay in the absence 

of lipid, again demonstrating that 4554W acts at the earliest stages of aggregation, but it does 

preclude additional inhibitory activity on downstream processes. Moreover, the mechanism 

is consistent with the mode of selection, where S and 4554W are concomitantly expressed, 

potentially facilitating binding upstream of aggregation events. 
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The S aggregates formed with DMPS SUVs (to probe primary nucleation) in the presence 

and absence of a tenfold molar excess of 4554W were next analysed by transmission electron 

microscopy (TEM). In the absence of 4554W the aggregates were observed to form two 

distinct fibril types. The most prevalent type (Fig 4.4bi) were narrow aggregates, similar to 

those previously described by others using AFM (Galvagnion, C. et al., 2015) and TEM 

(Galvagnion, Celine et al., 2019) approaches. These aggregates can be seen to emanate from 

the lipid vesicles, and it appears that on average two independent fibrils can grow from one 

vesicle of the size used for this experiment (30 - 40nm diameter). The width of these fibrils 

measured either ~5 nm or ~10 nm, implying that both S protofibrils and mature fibrils are 

formed respectively from the lipid vesicles. A novel series of helical fibril polymorphs were 

also discovered in the samples viewed by TEM, in the absence of the 4554W peptide (Fig 

4.4bii). These morphologies were found to be much larger than has been previously 

documented in mature fibril imaging and were observed in three independent aggregation 

experiments (as well as fresh DMPS and S preparations) under these conditions, and have 

been described in detail elsewhere (Meade, Richard M., Williams and Mason, 2020). Briefly, 

the morphology is that of a tightly coiled helix, presumably made from -sheet fibril 

aggregates. This structure appears to have grown from an initial ribbon-like structure, with a 

width of approximately 30-40 nm, and a repeating pitch twist of about 300-400 nm. This is in 

contrast to recent structures derived from ssNMR and CryoEM experiments, which typically 

describe a width of 5 nm or 10 nm, and a pitch of 460 Å (twister polymorph) or 920 Å (rod 

polymorph). The unique S morphologies are presumably built from a fundamental fibril 

structure that is also produced in the presence of the DMPS SUVs (Meade, Richard M., 

Williams and Mason, 2020). 

In the presence of 4554W there were significant changes to both the observed morphologies 

and the prevalence of the aggregates produced (Fig 4.4c), providing further evidence that S 

aggregation had been inhibited by the presence of 4554W. The structures observed show a 

flexible and meandering amyloid that emanated from the lipid vesicles (Fig 4.4c). Some of 

these structures presented with a width of ~5 nm, suggestive of a single protofibrillar 

structure as described previously. (Tuttle et al., 2016). Other aggregates within the same 

samples, emanating from the vesicles, showed a more weaving morphology, and  displayed a 

width of 10 nm consistent with the more mature dimeric fibril structures described by others 
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(Li, B.S. et al., 2018; Meade, R. M., Fairlie and Mason, 2019), but with a much reduced pitch 

of about 90 nm. ThT data, and corresponding TEM images taken together show that 4554W 

inhibits aS aggregation at the point of primary nucleation. 

 

Figure 4.4: Effect of 4554W on primary nucleation. a) Dose dependent inhibition of lipid induced primary nucleation of S 

with 4554W peptide measured by change in ThT fluorescence intensity when 100 M monomeric S was incubated in the 

presence of 200 M DMPS SUVs and 50 M ThT in 20 mM sodium phosphate buffer pH 6.5 under quiescent conditions at 30 

C. Average of three repeats showing standard error. b) Negative stain TEM images of the aggregated S at t = 30hrs showing 

that aggregation into fibril like structures had occurred. bi) fibril like structures can be seen growing from the surface of the 

DMPS SUVs bii) much larger fibril polymorphs. The larger structures were observed separately on three different 

aggregations. c) Negative stain TEM images of the aggregated S in the presence of a tenfold excess of 4554W peptide at t 

= 30hrs. As in the absence of peptide, fibril like structures can be seen emanating from the DMPS SUVs, but in reduced 

prevalence, which appear to adopt a meandering morphology, but lack the larger assemblies observed in the absence of 

peptide.  
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4554W does not reduce binding of αS to lipid vesicles 
 

To further deduce mechanism of action on the primary nucleation stage, lipid binding 

properties of S in the presence of increasing concentrations of 4554W was investigated 

using a modified version of a previously described  far-UV circular dichroism (CD) 

spectroscopy methodology (Perni et al., 2018). This involved incubating 0.75 mM DMPS SUVs 

with increasing concentrations of 4554W (0 - 100 M) before addition of S to a 

concentration of 5 M. In the presence of increased concentrations of DMPS  S displayed an 

increasingly -helical signature, suggesting that it interacts with the lipids to adopt this 

conformation (Fig 4.5a). In the presence of increasing concentrations of 4554W no effect was 

observed on the binding of S to the DMPS vesicles after incubation, suggesting that 4554W 

does not function by modulating the binding of αS to the vesicles (Fig 4.5b). Moreover, no 

difference in the CD spectrum was observed for 4554W in the presence of DMPS SUVs (supp. 

Fig. 4.6). This suggests that 4554W is likely to exert its inhibitory effect downstream of lipid 

binding, i.e. after αS monomers have become bound to the surface of the vesicles. 

 

 

 

Figure 4.5: Circular Dichroism studies in the presence of lipid vesicles a) Circular dichroism of S with increasing 

concentrations of DMPS SUVs. In isolation S (5 M) exists as a random coil. The conformation of S shifts towards an -

helical structure with increasing concentration of DMPS SUVs (0.1 to 1.5 mM). The S is seen to reach maximal -helical 

conformation at a ratio of 200:1 DMPS:S. Average of three repeats. b) Increasing concentration of 4554W when incubated 

with DMPS SUVs shows no discernible effect on the binding of S to the vesicles. Average of three repeats. All samples in a) 

and b) were blanked against identical samples that lacked the aS component. Spectra of peptide alone with DMPS SUV can 

be found in supplementary figure 4.6. 
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S Fibril Elongation is not inhibited by 4554W  
 

We next placed S in conditions that strongly favoured elongation as the dominant mode of 

aggregation and probed the effect of 4554W (Fig 4.6a). This was undertaken by the addition 

of preformed fibril seeds at neutral pH and under quiescent conditions, as previously 

described (Buell, Alexander K. et al., 2014; Perni et al., 2018). Briefly, 100M monomeric S 

was mixed with 15 M preformed fibril seeds (monomeric equivalents – see methods section 

for protocol), under quiescent conditions, at neutral pH (pH 6.5,  37 C), with aggregation 

followed by monitoring ThT florescence. The aggregation kinetics were undertaken in 

triplicate, with increasing concentrations of 4554W peptide [0 – 1000 M]. These 

experiments established that 4554W had no effect upon the elongation rate of the fibrils as 

detected by ThT, even up to a molar ratio of 10:1. 

Using TEM, we next sought to probe fibril morphology arising from elongation phase (after 

30 hours) in the absence and presence of a tenfold molar excess of 4554W. The initial 

preformed fibrils used to seed the elongation process were also viewed by TEM (Fig 4.6b). 

These seeds were found to be of a consistent length, between 150 -250 nm in length and of 

types displaying both 5 nm and 10 nm in width. After 30 hours of incubation in the presence 

of seeds the fibrils were found to be elongated, rather uniformly, with very few branches to 

lengths of about 5 m; this representing a 25-fold increase in length relative to the seeds 

introduced. The structures observed were identical in the presence and absence of 4554W 

peptide; both samples contained single stranded protofibrils, and more mature double 

stranded fibrils, with a pitch length appearing to represent that of the ‘rod’ polymorph (Li, 

B.S. et al., 2018; Li, Y.W. et al., 2018). This is consistent with the elongation ThT fluorescence 

assay, and the aggregation assay (Fig 4.6a) with shaking, providing evidence that the 4554W 

peptide has no effect on the elongation of preformed amyloid fibrils. 
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Figure 4.6: Effect of 4554W on fibril elongation. a) Change in ThT fluorescence intensity when 100 M monomeric S was 

incubated in the presence of 15 M preformed fibril seeds and 50 M ThT in 20 mM sodium phosphate buffer pH 6.5 under 

quiescent conditions at 37 C, with increasing concentrations of 4554W peptide (100 – 1000 M). No effect on ThT 

fluorescence was observed by addition of 4554W peptide. Each trace is the average of three repeats showing standard error.  

b) Negative stain TEM images of 15 M preformed seeds at t = 0h before addition of 100 M monomeric S. c) Negative 

stain TEM images of the aggregated S at t = 30hrs shows that fibril elongation had occurred, with seeds observed at t=0 no 

longer present. d) Negative stain TEM images of aggregated S in the presence of 10:1 4554W peptide at t = 30hrs showing 

that fibril elongation was unaffected by 4554W. 

 

 

Secondary Nucleation/ Fibril Amplification is not inhibited by 4554W  
 

Conditions that strongly favoured secondary nucleation/ fibril amplification were next 

examined by incubating 100 M monomeric S with 1 M preformed fibril seeds (monomeric 

equivalents – see methods section for protocol), in a slight acidic environment (pH 5), under 

quiescent conditions. These conditions have been shown by others to accelerate secondary 

nucleation, such that it is the dominant aggregation mechanism (Buell, Alexander K. et al., 

2014; Agerschou et al., 2019). Under these conditions, it was found that 4554W does not 

detectably influence secondary nucleation as measured by ThT fluorescence (Fig 4.7a), or by 

fibril morphology observed in TEM after 80 hrs (Fig 4.7b and 4.7c). In these experiment in the 

presence and absence of a tenfold molar excess of 4554W the fibrils formed presented a 

different morphology to those observed with elongation; they were seen either to form larger 

irregular interconnected shapes, likely due to fibril branching, consistent with secondary 

nucleation and with those observed by others (Yedlapudi et al., 2016). This suggests that 
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4554W has no effect on the secondary nucleation/ fibril amplification of preformed amyloid 

fibrils. Although section of unbranched fibrils was observed in the presence of 4554W (figure 

4.7c bottom right), it is unclear if this is an actual effect of the peptide, or if just unobserved 

in the S sample in the absence of peptide.  Suggesting that there may be still a possibility of 

4554W effecting secondary nucleation, but inconclusive at this time. 

 

Figure 4.7: Effect of 4554W on fibril amplification/secondary nucleation. a) Change in ThT fluorescence intensity when 100 

M monomeric S was incubated in the presence of 1 M preformed fibril seeds and 50 M ThT in 20 mM sodium acetate 

buffer pH 5 under quiescent conditions at 37 C, with increasing concentrations of 4554W peptide. No effect on ThT 

fluorescence was observed by addition 4554W. Each trace is the average of three repeats showing standard error. b) 

Negative stain TEM images of the aggregated S at t = 80hrs showing that secondary nucleation had occurred. c) Negative 

stain TEM images of the aggregated S in the presence of 10:1 4554W at t = 80hrs show that secondary nucleation had 

unlikely been affected by the 4554W peptide. 

 

S mediated toxicity is suppressed by 4554W in human neuroblastoma SH-SY5Y cells  
 

An assay to measure the effect on S mediated cytotoxicity on cultured human 

neuroblastoma SH-SY5Y cells was developed, based on previously published research (Chen, 

S.W. et al., 2015; Fusco et al., 2017; Perni et al., 2018). Briefly, samples of lyophilised 

monomeric S were resuspended in PBS pH 7.4 and aged at 37 C for 24 hours at 800 M, 

under quiescent conditions with variable concentrations of 4554W. These conditions have 

previously been shown to produce toxic oligomeric species that are responsible for inducing 
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S toxicity (Chen, S.W. et al., 2015).  100 M monomeric equivalents of the aged S solutions 

was added to the cell cultures, equivalent to the estimated in vivo concentration of S in 

healthy neurons (70-140 M) (van Raaij et al., 2008). At this concentration of aged S sample, 

only a very small percentage of the solution exists in oligomeric state (e.g. see supp. Fig 4.11). 

It has previously been suggested that at their most abundant the toxic oligomers only 

populate ~1% of the aggregation mixture (Ludtmann et al., 2018), equating to the addition of 

a concentration of 1 M monomeric equivalent of the toxic oligomer to the cells. Oligomers 

in these samples show a similar structure to previously reported toxic oligomers as viewed by 

negative stain TEM (Supp Fig 4.12). 

The human neuroblastoma SH-SY5Y cell line displayed recovery from S mediated toxicity by 

4554W in a dose dependent manner. In particular a ~58% and ~71% recovery from αS 

mediated toxicity was observed at 1:1 and 5:1 ratio of 4554W: αS respectively. This result is 

consistent with the lipid induced ThT aggregation assays, suggesting that 4554W acts to 

prevent monomeric S aggregating into the disease-relevant toxic oligomeric forms which 

lead to neuronal cell death. 

 

 

 

Figure 4.8: 4554W rescues human neuroblastoma SH-SY5Y from S toxicity in a dose dependent manner. 100 µM S aged 

in the presence of 1:0, 1:1 and 1:5 4554W was incubated with the human neuroblastoma SH-SY5Y cell culture for 48 hours, 

and the cell viability measured by MTT reduction assay. The presence of 4554W rescued the SH-SY5Y cells from the toxic 

effects of αS in a dose dependent manner. Results are represented as a mean average of 6 wells (technical replicates), 

showing standard error. 
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4.4 Conclusions 
 

Primary nucleation represents the first step of the aggregation process, where soluble, and 

monomeric S is converted to an aggregated state. This first step is believed to be highly 

important for the neurotoxicity associated with S and is a desired point of inhibitor function.  

We observe that 4554W inhibits lipid induced primary nucleation of S in vitro, but has no 

discernible effect, on the downstream rate of elongation or the secondary nucleation and 

amplification of S fibrils. This is consistent with experiments presented here, using agitation 

to aggregate the S, and with previously published research using stirring (Cheruvara et al., 

2015). 

One potential mechanism of 4554W is that it binds to a very early non-toxic low-n oligomer, 

possibly even the monomer, stabilising it and preventing its conversion into a higher 

molecular weight toxic oligomeric species. This is consistent with the mode of production as 

well as the high molar ratio required for efficacy. 4554W holds promise as a scaffold in the 

development of new therapeutics against -synucleinopathies, to prevent the initial stages 

of S aggregation into toxic oligomeric forms, potentially preventing neurodegeneration 

associated with this family of diseases.  

 

4.5 Methods 
 

Protein Expression and Purification of Human wt S (140)  
 

Wild type human -synuclein was recombinantly expressed and purified, based on, and 

modified from, a previously published method (Volles and Lansbury, 2007; Pujols et al., 2017). 

Briefly, the pET21a plasmid containing the human wt S (1-140), purchased from Addgene 

(deposited by the Michal J Fox Foundation MJFF) was transformed into E. coli expression cell 

line BL21 (DE3).  2XYT overnight cultures containing ampicillin of this human wt S (1-140) 

pET21a BL21 (DE3) E.coli strain were used to inoculate 1lt 2XYT cultures, containing 100 mg/l 

Ampicillin, and grown at 37C, 200rpm shaking, to OD600 = 0.6 - 0.8 and induced with 1mM 

isopropyl-1-thio-D-galactopyranoside (IPTG) at 37C, 200rpm shaking, for 4 hours in an Innova 

44 Incubator shaker (New Brunswick Scientific). The bacteria were harvested by 

centrifugation at 4600g, and resuspended in 40ml of 20 mM Tris buffer pH8 containing 1 

cOmplete protease inhibitor tablet (Roche) and freeze-thawed at -20C before lysis, by 



101 

 

sonication. The cell debris was discarded by centrifugation at 48400g, and the supernatant 

was collected and boiled at 95 C for 10 minutes. The precipitated protein removed by 

centrifugation at 18500g. The supernatant was collected, and ammonium sulphate added to 

30% saturation (0.176 g / ml), left shaking at 20 C for 1 hour. The precipitated protein, 

containing the S, was harvested by centrifugation at 18500g, and resuspended in 50 ml 20 

mM Tris buffer pH8 by gentle agitation at 4 C. This was purified by anion exchange 

chromatography on an AKTA pure purification system (GE Healthcare) with a 5ml HiTrap Q HP 

(GE Healthcare) pre-packed column, to remove protein impurities and protein bound nucleic 

acids. The purified fractions were combined and further purified by size exclusion 

chromatography (SEC) , using a HiLoad 16/60 Superdex 75 pg (GE Healthcare) prepacked 

purification column, to buffer exchange the S into the relevant reaction buffer (20 mM 

sodium phosphate buffer pH 6.5/ 20mM sodium acetate pH 5) and ensure that only 

monomers were collected. Pure monomeric S eluted between 54 - 60ml. 

 

The concentration of the purified S was determined in a 2mm path length quartz cuvette, 

using an extinction coefficient of 4836 M-1cm-1 at 280 nm, separated into 1ml aliquots, snap 

frozen in liquid N2, and stored at -80C until required.  

 

The purity of S following SEC was confirmed by SDS-Page gel electrophoresis, and the correct 

mass was confirmed by mass spectrometry on a Dionex Acclaim RSLC Polar Advantage II 

(PA2), 2.2 µm, 120 Å, 2.1 x 50 mm (Thermo Fisher Scientific, California, USA). The 

deconvoluted average mass of the protein was confirmed as 14459.749 m/z, representing the 

mass of wt Human S (1-140). A CD spectra scan was performed, to confirm the random coil 

conformation of the monomeric S stock. 

 

Production and purification of 4554W peptide 
 

The 4554W peptide was synthesized in the laboratory using a Liberty Blue microwave peptide 

synthesizer (CEM). 

 

The liberty blue peptide synthesizer produced the peptides on a Rink amide ChemMatrix resin 

(PCAS BioMatrix) employing Fmoc solid-phase technique, with repeated steps of coupling-



102 

 

deprotection-washing for each amino acid. The activator solution consisted of 26g PyBOP in 

100ml DMF, and the de-protection solution was 20% Piperidine in DMF with the addition of 

5% Formic acid to prevent aspartamide formation of the peptide. 

 

The peptide was removed from the matrix by incubating in cleavage solution (95% 

Trifluoroacetic acid (TFA), 2.5% Triisopropylsilane, and 2.5% water), on a shaker at 25 °C, for 

4 hours. The resin was removed by filtration, and the peptide precipitated using ice cold ether, 

with vortexing and centrifugation at 7000g for 3 rounds. The pellet was left overnight at room 

temperature to completely dry, and purified by HPLC with a Jupiter 4 μm Proteo C-18 90 Å 

reverse phase prep column. 

 

The fractions of the HPLC peaks were examined by mass spectroscopy, using a microTOF 

(Bruker Daltonics) to confirm which fractions contained the purified peptide. Fractions, 

containing the peptide were pooled, and lyophilised. The dry weight of the purified peptides 

was measured to 0.1 g accuracy using a Sartorius SE2 Ultra Micro Balance and stored at -

80°C.  

 

Circular Dichroism (CD) Spectroscopy 
 

Concentrations of 4554W ranging from 0-50 M, were incubated with 750 M DMPS SUVs in 

20 mM phosphate buffer (pH 6.5) at 30 C for 1 hour. 5 mM S was added to the mixture and 

again left to incubate at 30 C for 1 hour. Far UV CD spectra scans were then recorded of the 

solutions on a Chirascan V100 (Applied Photophysics), at 30 C, in a 1 mm path length quarts 

cuvette, scanning from 300 – 190 nm with a 1 nm bandwidth, averaged over 3 scans, blanked 

against the DMPS vesicles with the relevant concentrations of 4554W in 20 mM phosphate 

buffer (pH 6.5)  

 

Microplate ThT fluorescence Kinetic Assays with shaking 
 

For continuous growth ThT assay with shaking 100 l of reaction mixture, containing 450 M 

S, 450 M 4554W peptide, 90 M ThT in 10mM potassium phosphate buffer and 100mM 

KF (pH 7.5) was transferred, in triplicate, to wells in in a black, clear bottomed 96 well half 

area polystyrene plate with Non-bonding surface (Corning #3881) covered with Aluminium 
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Thermowell Sealing Tape (Corning #6570). Fluorescence was monitored using a CLARIOstar 

fluorescence microplate reader (BMG Labtech), maintaining a constant internal temperature 

of 37 °C, and constant shaking at 700rpm in double orbital mode. The focal height was set to 

4.2 mm, and gain to 752, with an excitation filter of 450-15 nm and emission filter of 495-

20nm and a dichroic cut-off of 469.8 nm. Well measurements were taken using the bottom 

optic, with 20 flashes per well and a cycle time of 500 seconds. The outer wells of the plate 

were not used. 

 

Microplate ThT Kinetic Assays Without Shaking to Determine Mechanism of Action 
 

ThT kinetic assays to determine the effect of inhibitors on the lipid induced primary 

nucleation, fibril elongation and secondary nucleation of S were performed in a CLARIOstar 

fluorescence microplate reader (BMG Labtech), under quiescent conditions (without 

shaking), at 37 C (or 30 C for lipid induced primary nucleation) in black, clear bottomed 96 

well half area polystyrene plates with Non-bonding surface (Corning #3881) covered with 

Aluminium Thermowell Sealing Tape (Corning #6570). The focal height was set to 4.9 mm, 

and gain to 800, with an excitation filter of 440-15 nm and emission filter of 480-15nm and a 

Dichroic cut-off of 460 nm. Well measurements were taken by spiral average of 4 mm using 

the bottom optic, with 50 flashes per well and a cycle time of 1200 seconds. The outer wells 

of the plate were not used. 

 

Lipid preparation for induced Primary Nucleation Method 
 

The mass of dry DMPS lipid powder was determined using an ultra-micro balance (Sartorius), 

and dissolved in 20mM sodium phosphate buffer pH 6.5 to a concentration of 2 mM. This was 

dissolved by shaking, in a 2ml Eppendorf tube, on a Thermomixer compact (Eppendorf), at 

45C, 1400 rpm for 3 hours. The solution was then freeze thawed five times using dry ice and 

the thermomixer compact (Eppendorf) at 45 C and 500rpm. The preparation of the vesicles 

was carried out by sonication, using a Soniprep 150 plus sonicator, set to an amplitude of 

10.0, for 5 cycles of 30 seconds on and 30 seconds off.  
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Dynamic Light Scattering (DLS) Measurements 
 

A sample of the vesicles produced at each step were diluted to 100 M in 20mM phosphate 

buffer pH 6.5. Their size distribution was measured by DLS, using a Zetasizer Nano ZSP 

(Malvern Instruments), to ensure a final consistent size of between 20-30 nm was obtained. 

 

Lipid induced Aggregation Kinetic Assay to Primary nucleation 
 

Lipid induced primary nucleation experiments were performed in a CLARIOstar fluorescence 

microplate reader (BMG Labtech), under quiescent conditions (without shaking), at 30 C in 

black, clear bottomed 96 well half area polystyrene plates with Non-bonding surface (Corning 

#3881) covered with Aluminium Thermowell Sealing Tape (Corning #6570). The experiments 

were performed in 100 l aliquots, in triplicate, each containing 100 M S, 50 M ThT, 100 

M DMPS and varying concentrations of 4554W peptide (0 M, 100 M and 1mM) in 20mM 

phosphate buffer pH 6.5. 

 

Seed Fibril Formation for Elongation method 
 

Mature fibrils were produced in a 10 mm Quartz cuvette by incubating 1.5 ml of 400 µM S 

monomers in 20mM sodium phosphate buffer (pH 6.5) for 48 hours at 40C maximal stirring 

(1500rpm), using a PTFE magnetic stirrer, on an RCT Basic Heat Plate (IKA, Staufen, Germany). 

The mature fibrils were diluted to 200 µM monomer equivalents using 20mM sodium 

phosphate buffer (pH6.5) (1.5ml) and broken into seeds by 3 rounds of freeze-thawing with 

liquid N2 followed by 55C water bath. The mixture was then sonicated using a Soniprep 150 

plus sonicator, set to an amplitude of 10, for 3 cycles of 10 seconds on and 10 seconds off. 

The final seed fibrils were measured by circular dichroism (10 µM monomer equivalent S in 

20 µM sodium phosphate buffer pH 6.5) to ensure complete conversion to -sheet and 

confirmed by TEM. The seed stock was divided into 500 µl aliquots, frozen in liquid N2, and 

stored at -80C until required. 

 

Seeded Aggregation Kinetic Assay to Measure Elongation 
 

Seeded elongation experiments were performed in a CLARIOstar fluorescence microplate 

reader (BMG Labtech), under quiescent conditions (without shaking), at 37 C in black, clear 



105 

 

bottomed 96 well half area polystyrene plates with Non-bonding surface (Corning 3881) 

covered with Aluminium Thermowell Sealing Tape (Corning 6570). The experiments were 

performed in 100 l aliquots, in triplicate, each containing 100 M S, 50 M ThT, 15M 

(monomer equivalents) preformed fibril ‘seeds’ and varying concentrations of 4554W peptide 

(0 M, 100 M and 1mM) in 20mM phosphate buffer pH 6.5. 

 

Formation of Seeds for Secondary Nucleation 
 

Seed fibrils for inducing secondary nucleation were produced by incubating 25 µM S 

monomer in 20 mM sodium acetate, 50 M ThT and 0.01% sodium azide, split into 100 l 

aliquots in a black, clear bottomed 96 well half area polystyrene plates with Non-bonding 

surface (Corning 3881), with each well containing a single 4 mm glass bead (Hecht Karl ref. 

41401004), covered with Aluminium Thermowell Sealing Tape (Corning 6570). The plate was 

incubated at 37 C in a CLARIOstar fluorescence microplate reader (BMG Labtech) at 500rpm 

for 96 hrs. The aliquots were pooled into a 2 ml Eppendorf tube and sonicated using a 

Soniprep 150 plus, set to an amplitude of 10, for 5 cycles of 1 seconds on and 5 seconds off. 

The seeds were flash frozen in liquid N2 and stored at -80 C until required. 

 

Seeded Aggregation Kinetic Assay to Measure Secondary Nucleation/ Fibril Amplification 
 

Seeded elongation experiments were performed in a CLARIOstar fluorescence microplate 

reader (BMG Labtech), under quiescent conditions (without shaking), at 37 C in black, clear 

bottomed 96 well half area polystyrene plates with Non-bonding surface (Corning 3881) 

covered with Aluminium Thermowell Sealing Tape (Corning 6570). The experiments were 

performed in 100 l aliquots, in triplicate, each containing 100 M S, 50 M ThT, 1 M 

(monomer equivalents) preformed fibril ‘seeds’ and varying concentrations of 4554W peptide 

(0 M, 100 M and 1mM) in 20mM sodium acetate buffer pH 5. 

 

Transmission Electron Microscopy (TEM) 
 

αS samples from the end point of the aggregation kinetics were collected. 5 µL of these 

samples were put onto on glow discharged Formvar/carbon-coated, 200 mesh, copper grids 

for 1 minute. The samples were dried with filter paper and washed twice with MilliQ water 

for 1 second, each time removed with filter paper. The sample was stained by incubating the 
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grids with 5 µL Uranyl Acetate Zero (Agar Scientific) for 30 seconds, followed by removal of 

the excess stain with filter paper. The grids were left to air-dry for 2 hours. The samples were 

imaged using a Transmission Electron Microscopy Jeol 2100 Plus (JEOL), operating at an 

accelerating voltage of 200 kV. Multiple grids were screened in order to obtain representative 

images of the samples. 

 

Neuroblastoma Cell Culture 
 

Human neuroblastoma cell line SH-SY5Y (ECACC 94030304) was purchased from Public Health 

England’s European Collection of Authenticated Cell Cultures (ECACC). Unless otherwise 

stated, all cell culture consumables were purchased from ThermoFisher. Cells were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM)/F-12 media with Phenol red and without 

HEPES and L-glutamine. DMEM/F12 was supplemented with 10% Foetal Bovine Serum, 2mM 

L- glutamine and 5% Non-essential Amino Acids; with 100IU penicillin and 100µg/ml 

streptomycin (Corning). The culture was maintained in an incubator at 37 C, 5% CO2, and 

saturated humidity until about 80 % confluency was reached, for a maximum of 20 passages. 

For toxicity assays the stock culture was seeded in 96 well plates and grown for 24 hours to 

reach 60-80% confluency at 37 C, 5% CO2, and saturated humidity. 

 

Preparation of S for cell toxicity experiments 
 

Pre-purified S was further purified by HPLC with a Jupiter 4 μm Proteo C-18 90 Å reverse 

phase prep column, using an acetonitrile gradient containing TFA. The eluted S peak was 

pooled, flash frozen in liquid N2, and lyophilized. The dried pellet was resuspended at 800 M 

in PBS pH7.4 with increasing concentrations of 4554W (0, 800 and 4000 M), incubated at 37 

C under quiescent conditions for 24 hours. Following incubation these samples were passed 

through a spartan 0.2 m SPARTAN filter unit (Whatman).   

 

MTT cell viability assay 
 

Aliquots of the pre-incubated S with the varying concentrations of 4554W (1:1 an 1:5 

stoichiometry) were added to the media of the primary cortical neurons and the SH-SY5Y 

neuroblastoma cell cultures to a final concentration of 100 M αS monomer equivalents, in 
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replicates of 6, and incubated for 48 hours at 37 C, 5% CO2, and saturated humidity. Cell 

viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

reduction assay. Briefly, the cell growth media was removed, and replaced with equivalent 

volume of growth media containing 1 mg/ml MTT solution at 37 C, 5% CO2, and saturated 

humidity for 1 hour. The MTT solution was then removed and the resulting blue formazan 

was resuspended in 150 l 2-Propanol. The absorbance of the blue formazan solution was 

measured at 595 nm and presented as an average of the 6 wells for each condition. 
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Supplementary Figure 4.1: Overview of the purification of S used for the experiments. a) Chromatograph of the Hi-Q 

anionic exchange purification. b) Chromatograph of the Size exclusion chromatography and buffer exchange. c) SDS page gel 

showing an overview of the entire purification protocol. d) Far-UV circular dichroism spectra of the purified S showing that 

the monomeric S is in a random coil conformation. e) De-convoluted mass spectrum, showing a mass of the protein of 

14459 m/z, representing the mass of wt Human S (1-140).  
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Supplementary Figure 4.2: Production and purification of the 4554W peptide. A) HPLC purification trace measured at 215 

nm for 4554W. B) Mass spectrometry profile measured by time of flight spectroscopy confirming 4554W mass to be 1040.6 

Da, as expected. 
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Supplementary Figure 4.3: Dynamic light scattering size distribution of the DMPS small unilamellar vesicles (SUVs) used for 

lipid induced nucleation assays, showing a size distribution centred around 30nm post sonication. Data presented as ‘size 

distribution by volume’ to reduce the impact of the signal being swamped by large particles if presented as ‘size distribution 

by intensity’ because the larger particles would disproportionately scatter the light beam.  

 

 

 

 
Supplementary Figure 4.4: ThT fluorescence intensity when 100 M S is incubated with 0 M, 200 M , or 400 M DMPS 

vesicles and 50 M Thioflavin T in 20 mM phosphate buffer (pH 6.5) under quiescent conditions at 30 C.  
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Supplementary Figure 4.5: ThT fluorescence intensity when 100 M S is incubated with 200 M DMPS vesicles and 50 M 

Thioflavin T in 20 mM phosphate buffer (pH 6.5) under quiescent conditions at 30 C. It can be seen that the 4554W peptide 

has an inhibitory effect on lipid induced primary nucleation, and no aggregation is observed for 4554W peptide in the 

absence of S. 

 

 

 
 

Supplementary Figure 4.6: Circular dichroism spectra of a) increasing concentrations (25-100 M) of 4554W incubated at 

30 C with 0.75 mM DMPS vesicles, and b) increasing concentrations (0 - 0.75 mM) of DMPS SUVs incubated at 30 C with 1 

mM 4554W, showing that the peptide retains a random coil structure in the presence of lipid vesicles, suggesting that the 

peptide does not bind independently to lipid vesicles. All spectra were recorded as an average of 3 scans, blanked against 

corresponding DMPS concentration in 20mM sodium phosphate buffer (pH 6.5), and presented as mean residue ellipticity. 

 

 

 



113 

 

 
Supplementary Figure 4.7: Circular dichroism spectra of 10 M seeds formed for ThT assay to probe fibril elongation rates. 

The S monomer before aggregation shows a random coil spectra (green). The S is seen to be fully converted to -sheet 

fibril seeds (red) after 400 M S was stirring at 40C with a teflon bar at 1500rpm for 48 hours, followed by 3 rounds of 

freeze-thawing in liquid N2 and 3 rounds of sonication for 10 seconds on 10 seconds off. 

 

 
Supplementary Figure 4.8: ThT fluorescence experiment measuring seeds only vs seeds and monomer to show seed stability. 

100 M in the presence of 15M seeds (grey) vs 15 M seeds without addition of monomer (red), showing that the seeds 

remained stable. 

 



114 

 

 
Supplementary Figure 4.9: ThT curve following seed creation for secondary nucleation studies, created in 96 well plates 

containing glass beads in the wells, with shaking at 500 rpm at a constant temperature of 37 C. Interestingly the S 

aggregated with a glass bead in this way greatly minimises the lag times, and produces an abnormal bump in the sigmoidal 

curve in the first 5 hours. 

 

 
 

Supplementary Figure 4.10: HPLC purification of Pre-purified S by affinity to C18 column to remove buffer prior to 

lyophilisation for cell toxicity assays. Absorption at 280 nm used to follow the elution of aS from the c18 column (blue), by 

increasing concentrations of acetonitrile + 0.1% TFA (green). 
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Supplementary Figure 4.11: SEC elution chromatogram when 100 l of 800 M S sample is loaded onto a Superdex 200 

Increase 10/300 column (GE lifesciences) and run at 0.5 ml/min in PBS buffer pH 7.4, showing absorbance at 280 nm. a) 

Monomeric S showing a clean monomer peak (i) at 15ml elution volume. b) Lyophilised S resuspended in PBS pH 7.4 and 

incubated at 37 C for 24hrs and filtered through a 0.22 M filter showing a monomer peak (i) at 15ml elution volume, and 

an additional oligomer peak (ii) eluted at 9ml run volume.   

 

 

 
 
Supplementary Figure 4.12: Negative stain TEM images taken from the oligomer SEC Peak (supplementary figure 11ii), that 
appear to show doughnut like oligomer structures similar in shape and diameter to those previously reported. 
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6.1 Abstract  
 

The misfolding and aggregation of alpha-synuclein (S) within dopaminergic neurons are 

key factors in the development and progression of a group of age-related 

synucleinopathies, that includes Parkinson’s disease. A previously described peptide was 

derived from a 209,952-member intracellular library screen, and employed the 45-54 

‘preNAC’ region of S as a design template. Key early-onset mutants (E46K, H50Q, A53T, 

G51D) are located in this region, strongly implicating it in the modulation of protein-protein 

interactions that lead to increased aggregation and cytotoxicity. The selected peptide, 

4554W, has been shown to inhibit lipid-induced primary nucleation of S into cytotoxic 

conformations. Here we perform a full alanine scan upon the 4554W peptide, followed by 

analysis of the aggregation pathway, to elucidate if inhibitory function is maintained, and 

to reveal the precise residues involved in inhibitory interaction and function.  In particular, 

we find that a truncated and modified peptide derivative, 4654W(N6A), displays increased 

efficacy over 4554W, paving the way towards the major aim of deriving an increased 

potency peptide antagonist of S pathogenicity.  

 

6.2 Introduction 

 

The misfolding and aggregation of Alpha-synuclein (S), a 140-residue membrane associated 

neuronal protein, is believed to be the leading cause of a number of neurodegenerative 

diseases, referred to collectively as synucleinopathies. This includes Parkinson’s disease (PD), 

multiple system atrophy (MSA), and Dementia with Lewy Bodies (DLB), and accounts for 

approximately 15% of all known dementia cases (Cookson, 2009).  Previous research seeking 

to target and detoxify aggregation induced cytotoxicity of S employed an intracellular 

Protein-fragment Complementation Assay (PCA) (Pelletier et al., 1999) . The 209,952 member 

library, based on preNAC residues 45-54 of S was screened resulting in the derivation and 

development of  4554W (Cheruvara et al., 2015), a peptide which has been shown to function 

by inhibiting the primary nucleation step of the S  aggregation pathway (see chapter 4). 

Moreover the peptide was found  to be capable of rescuing S mediated cytotoxicity in PC-

12 cells(Cheruvara et al., 2015), as well as SH-SY5Y human neuroblastoma cells (see chapter 

4). The 45-54 region of S is a particularly compelling antagonist design template, (Fig 6.1a) 
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and was chosen since it is the sequence where most early onset familial mutations are located 

(E46K (Choi et al., 2004; Zarranz et al., 2004; Greenbaum et al., 2005), H50Q (Appel-Cresswell 

et al., 2013; Ghosh et al., 2013; Khalaf et al., 2014; Rutherford et al., 2014), G51D(Lesage et 

al., 2013; Rutherford et al., 2014), A53T(Polymeropoulos et al., 1997), A53E(Ghosh et al., 

2014; Pasanen et al., 2014), A53V(Yoshino et al., 2017) ), demonstrating the importance of 

this region in modulating both intra- and intermolecular protein-protein interactions (PPIs) 

that subsequently lead to the accelerated development of S aggregates, and ultimately the 

symptoms of PD. The known mutations at that time, (E46K, H50Q and A53T), along with 

residues presenting similar properties to those within the scaffold region, were included in 

the library design (Fig. 6.1b) and resulted in the selection of 4554W (Cheruvara et al., 2015) 

(Fig. 6.1c). 

 

Subsequently 4554W was shown to function by inhibiting the primary nucleation of S into 

fibril like structures in the presence of small unilamellar vesicles (SUVs) composed of the 

anionic lipid 1,2-Dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS), which is able to interact 

at least in part via positively charged residues within S  (Meade, R. M., Fairlie and Mason, 

2019) (see chapter 4). The role of DMPS is not fully understood, but levels of 

phosphotidylserine have been found to increase by about 36%, in brains of patients showing 

Lewy body pathology but devoid of motor symptoms (Fabelo et al., 2011), and DMPS has been 

suggested to play a role in regulating S-facilitated synaptic vesicle docking, linked to SNARE 

complex formation (Lou et al., 2017; Fanning, Selkoe and Dettmer, 2020). The use of vesicles 

composed of this phospholipid have proven to be a useful tool in probing the effectiveness of 

molecules to inhibit primary nucleation (Galvagnion, C. et al., 2015; Galvagnion, C., 2017; 

Perni et al., 2017; Perni et al., 2018; Galvagnion, Celine et al., 2019).  

 

Here we perform a full alanine scan on 4554W (Fig 6.1d), followed by inspection of the 

principle steps within the aggregation pathway to elucidate which residues are key for 4554W 

interacting with S, which are required for inhibiting S aggregation into toxic conformations, 

and to establish for each construct if efficacy is maintained via modulation at same point of 

aggregation as the 4554W parent peptide. Understanding the contribution of each side chain 

upon the primary nucleation, elongation and secondary nucleation of S aggregation will 

facilitate the design of more potent peptides, with increased S affinity and efficacy. 



134 

 

6.3 Results and discussion 

 

Probing Inhibition of Lipid Induced Primary Nucleation of S Aggregation Using Alanine 

Scanning. 

 
To establish the effect of the 4554W alanine scan variants on lipid induced primary nucleation 

of monomeric S, aggregation experiments were performed in the presence of DMPS 

vesicles, at neutral pH (pH 6.5) and 30 C, as per previously developed methods (Buell, 

Alexander K. et al., 2014; Galvagnion, C. et al., 2015; Perni et al., 2018; Meade, Richard M., 

Williams and Mason, 2020) (see chapter 4) (Fig. 6.2). Briefly, monomeric S (100M), and 

peptide (1000 M ) were mixed with DMPS SUVs (200 M), of approximately 30-40 nm 

diameter (i.e. of similar size to vesicles found at the synaptic terminal of dopaminergic 

neurons (Sulzer, Cragg and Rice, 2016)), under quiescent conditions. A 10:1 excess of 

peptide:S was utilized to ensure that inhibitory activity was not overlooked, even at a low 

level. The aggregation kinetics were followed by monitoring the increase in ThT florescence. 

Experiments were carried out in triplicate in a 96 well plate. Under these conditions’ inhibition 

of S aggregation was found to differ widely between peptide variants (Fig 6.1 and 6.2), 

highlighting key residues within 4554W that impact upon this initial stage of the aggregation 

pathway.  
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Figure 6.1: 4554 region library design, winner, and alanine scan sequence variants: a) the template region of S consisting 

of residues 45 to 54 of the wild type protein. b) PCA library members used to create a 209,952-member library. Early onset 

mutant residue options are shown (orange) c) The sequence of the 4554W peptide selected via the PCA assay. d) Alanine 

scan variants of 4554W. Variant alanine position shown (red) e) Truncated peptide variants based on active sequence 

4554W(N6A). 

 

During lipid induced primary nucleation experiments, it was observed that all substitutions 

except K1A and N6A disrupted the inhibitory effect of 4554W. This suggests that all other 

residues, (D2, G3, I4, V5, G7, V8, K9 and possibly A10) play important roles in the inhibitory 

effect of 4554W upon this part of the aggregation pathway. Of particular note, both 

4554W(K1A) and 4554W(N6A) exhibited an increase in efficacy of the peptide. At the 

concentration measured, 4554W represented a 36% reduction in aggregation as measured 

by ThT fluorescence relative to S alone, 4554W(K1A) represented a 90% reduction, and 

4554W(N6A) represented a 100% reduction over the 20-hour timescale of the experiment. 

Since Alanine was not presented as an option in these positions in the original library (Fig 

6.1b), this suggests an improvement to the original 4554W template, and that sidechain 
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truncation and loss of charge/polarity at positions 1 and 6 is potentially of benefit.   Of these 

two alanine scan peptides, 4554W(N6A) was the most potent, as it represents a more 

favourable inhibitory effect. In addition, 4554W(K1A) presented issues with solubility at 

higher stock concentrations, with 4554W(N6A) soluble at 5 mM, compared to 4554W(K1A), 

which was only soluble up to 2 mM), and therefore only 2 mM stocks were used for all the 

peptides.  This can be attributed to the loss of a positive charge for the K1A substitution, 

which is more dramatic than N6A. 

 

Additional it should be noted that the G3A, G7A and K9A substitutions all rendered the 

peptide inactive. In each of these positions’ alanine was an option in the original library screen 

suggesting that the original residues in these positions are important. The glycine residues  in 

position 3 and 7 may confer an element of rotational flexibility to the peptides, and the lysine 

residue in position 9 may be crucial to peptide docking via an ‘ionic lock’. 

 

 
Figure 6.2: Effect of 4554W alanine scan variants on lipid induced primary nucleation. Inhibition of lipid induced primary 

nucleation of S with the 4554W alanine scan variant peptides measured by change in ThT fluorescence intensity when 100 

M monomeric S was incubated with 1000 M peptide in the presence of 200 M DMPS SUVs and 50 M ThT in 20 mM 

sodium phosphate buffer pH 6.5 under quiescent conditions at 30 C. The inhibitory effect is lost with D2A, G3A, I4A, V5A, 

G7A, V8A and K9A variants, suggesting that these residues are required for the peptide to induce primary nucleation. 

Inhibitory activity is improved for K1A and N6A relative to the parental protein (A10), suggesting that these substitutions are 

important for binding and can be improved (Ala was not a library option in either position). All profiles show the averages of 

assays undertaken in triplicate showing standard error. 
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It was previously determined that the parental 4554W peptide acts upon lipid-induced 

primary nucleation, with no effect reported on fibril elongation rates, or secondary 

nucleation/fibril amplification (see chapter 4), under conditions that favoured these pathways 

as the prominent mechanism of aggregation (Buell, Alexander K. et al., 2014; Agerschou et 

al., 2019). Here we report that consistent with 4554W, all alanine scan peptide variants 

exhibited no antagonistic effects on S fibril elongation or secondary nucleation/fibril 

amplification (supp. Fig 6.8 and 6.10), and that rather the effects were only observed upon 

primary nucleation (Fig 6.2). Therefore, the effect of further peptide modifications were only 

explored on primary nucleation.  

 
 

4554W(N6A) Inhibits the Lipid Induced Primary Nucleation Step of S Aggregation in a Dose 

Dependant Manner to Prevent the Formation of Fibril-like Structures. 

 

The effect of 4554W(N6A) on lipid induced primary nucleation of monomeric S was found 

to be more potent than 4554W, and the most potent peptide overall. At the concentration 

used (a 1:10 molar excess) no aggregation was measured when monitored by ThT 

fluorescence over 20 hours (Fig. 6.2). To probe this further, aggregation kinetics of lipid 

induced nucleation were followed and again repeated in triplicate, with increasing 

concentrations of 4554W(N6A) (0 – 1000 M – from 10-fold sub-stoichiometric to 10 fold 

super-stoichiometric). Under these conditions a dose dependent inhibition of S aggregation 

was observed. At the highest dose of 10-fold excess (1000 M) 4554W(N6A), the aggregation 

of S was seen to be completely prevented. 

 

To further interrogate this finding, end point samples from the ThT assay were imaged using 

negative staining TEM to determine the effects of 4554W(N6A) concentration on the 

formation of fibril like aggregates. In the absence of 4554W(N6A), S was seen to form thin 

and curly fibril like structures growing from the DMPS SUVs of varying length, with a width of 

~5 or ~10 nm, potentially representing either single protofibrils or more mature double 

stranded fibrils, similar to those previously viewed by Cryo-EM (Galvagnion, Celine et al., 

2019). With the addition of 500 mM 4554W(N6A), (a 5x molar excess), the prevalence of these 

aggregates was greatly reduced. Those aggregates which were observed were of the ~5 nm 
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width variety, suggesting that further maturation towards more mature double stranded 

fibrils had been inhibited. At the highest stoichiometry of 1:10, addition of 1000 M 

4554W(N6A) appeared to completely inhibit growth of fibril like aggregates from the SUVs. In 

the TEM images the SUVs are clearly observed, however in contrast no fibril like structures 

are observed to protrude, suggesting that the fibrillation process has been completely 

abolished at this concentration. 
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Figure 6.3: Dose response effect of 4554W(N6A) on lipid induced primary nucleation of S. a) Dose dependent inhibition 

of lipid induced primary nucleation of S with 4554W(A6) measured by change in ThT fluorescence intensity when 100 M 

monomeric S was incubated  in the presence of 200 M DMPS SUVs and 50 M ThT in 20 mM sodium phosphate buffer pH 

6.5 under quiescent conditions at 30 C alone (red) or with increasing concentration of 4554W(A6) (0-1000 M) (light blue 

10 fold S excess - dark blue 10 fold peptide excess). b) Negative stain TEM images of aggregated S at t = 30hrs show that 

lipid induced aggregation into fibril like structures has occurred. The prevalence of the fibril like structures decreased with 

the addition of 4554W(N6A), and at a 10 old excess of peptide. In contrast to S and SUVs alone, in the presence of the 

peptide SUVs are observed but no fibril like structures are either observed or associated with the SUVs. 
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Photo-crosslinking of 4554W(N6A) Inhibition Highlights a Decrease in Oligomer Formation 
 

The end point samples of the ThT assay (t = 20 hr) were collected and analysed using Photo-

Induced Cross-linking of Unmodified Proteins (PICUP) (Rahimi, Maiti and Bitan, 2009) to 

investigate the differences in the oligomer populations present. The PICUP method works by 

covalently cross-linking oligomers together via the aromatic groups, allowing quantitative 

analysis of metastable oligomeric population, and has previously been used with S to 

determine oligomeric distributions (Acharya et al., 2014). The technique serves as a useful 

indicator of the ability of inhibitors to modulate oligomeric distribution patterns. Although 

care must be taken not to over-interpret data collected by PICUP crosslinking, as some of the 

oligomers presented may be artefacts of the method itself forming artificial oligomeric 

species, and some oligomeric species may not be crosslinked at all if the aromatic sidechains 

are not in a suitable conformation. Therefore PICUP must only be used as a guide. That said 

SDS-PAGE analysis of the cross-linked samples (Fig 6.4a) shows the appearance of a faint band 

appearing at  30 kDa (band b), which becomes more prominent as the concentration of 

4554W(N6A) increases, suggesting that a dimeric species becomes stabilized upon 

introduction of the peptide. There are also multiple higher-n oligomeric bands (bands c-f) 

which are observed to decrease in intensity as the concentration of 4554W(N6A) increases 

(Fig 6.4b). This loss of these oligomers provides evidence that the peptide is functioning to 

stabilize low-n oligomeric species while preventing progression towards higher-n species that 

are more toxic. 
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Figure 6.4: Oligomer formation analysed by Photo-Induced Cross-linking of Unmodified Proteins (PICUP) and SDS-PAGE 

analysis a) SDS-PAGE gel analysis of the end point samples subjected to PICUP showing a monomeric band (a) as well as  

formation of a range of higher order oligomers (b-f) b) Band intensities of the SDS-PAGE gel of the higher order oligomers 

(d-f), band intensity analysed in ImageJ (Fiji).  

 

 

Effect of Truncated Peptides upon Lipid Induced Primary Nucleation  
 

As discussed, the original library contained four alanine options at positions 3, 7, 9 and 10, 

although these were searched concomitantly with all other semi-randomised positions. 

However, one might expect that modification of these residues to Alanine might weaken the 

ability of 4554W modulate S aggregation, as was observed experimentally with the alanine 

scan (Fig 6.2). Starting from the 4554W(NA6) peptide we therefore sought to probe the 

importance of the terminal residues with a view to further downsizing the peptide. In 

particular K1, and A10 deletion constructs were created. Since A10 was selected during PCA 

screening, no change was implemented during the alanine scan. The K1A substitution 

enhanced inhibition of primary nucleation (Fig 6.2). Therefore, to determine if either of these 

residues were important for 4554W(A6) function, as well as two further deletions, five 

additional truncated variants were probed to elucidate their functionally importance upon 

lipid induced primary nucleation (Fig 6.5a). 

 

All five truncated peptides tested showed some inhibition of S aggregation (Fig. 6.5), 

although in every case deletion of A10 reduced inhibitory function, highlighting that this 
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residue is an absolute requirement for peptide efficacy. In contrast, deletion of K1 had no 

effect upon efficacy, suggesting that this residue is expendable for inhibitory function. We 

next sought to remove the next residue, D2, which in accordance with the alanine scan result, 

was expected to decrease peptide efficacy (Fig. 6.2). To first confirm that K1 is expendable, a 

dose response ThT assay was undertaken using 4654W(N6A) and was compared with 

4554W(A6), which was found to deliver and equal inhibitory response (Fig. 6.5c).  



143 

 

 

Figure 6.5: a) Truncated peptide variants based on the 4554W(N6A) template b) 100 M S, 1000 M Peptide, 200 M 

DMPS to show the effect of the truncated peptides on primary nucleation. Notably 4554W(N6A) and 4654(N6A) both 

completely block aggregation at this concentration over this timescale c) 100 M S, 1000 M Peptide, 200 M DMPS to 

showing that the dose response of both 4554W(A6) and 4654W(A6) are equal. Suggesting that the lysine in position 1 of the 

A6 peptide was not required. All profiles show the averages, with standard error, of experiments undertaken in triplicate  
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6.4 Conclusions 
 
Alanine scanning experiments were performed upon 4554W, which was previously been 

shown to inhibit lipid induced primary nucleation of S in vitro (see chapter 4). Here we report 

two improvements in the peptide sequence that have permitted improvement in efficacy and 

concomitant downsizing for the peptide. In particular 4654W(N6A) exhibited improved 

efficacy in reducing S aggregation, relative to 4554W, and was no less potent than 

4554W(N6A) but 16.4% lower in molecular weight with a mass of 869.5 Da. These changes 

were removal of K1, since it has been found to be not required for function, and an N6A 

substitution, which has been shown to greatly increase efficacy, likely by reducing steric 

hinderance and increasing the hydrophobic interaction along the steric zipper between S 

and the peptide.   

 

As a therapeutic peptide 4654W(N6A) shows promise to reduce the number of toxic 

oligomeric species in patients susceptible to synucleinopathies, hopefully leading the way to 

the production of novel compounds and therapies for PD and related diseases. The peptide 

could be further developed into a drug, by creating the retro inverso version of the peptide, 

and addition of nonnatural amino acids, reducing its degradation by proteasomes. Additional 

functional motifs could also be included enabling further functionality e.g. cell penetrance 

and localisation to a specific area. 

 

6.5 Methods 
 

Protein Expression and Purification of Human wt S (140)  
 

Wild type human -synuclein was recombinantly expressed and purified, based on, and 

modified from, a previously published method (Volles and Lansbury, 2007; Pujols et al., 2017). 

Briefly, the pET21a plasmid containing the human wt S (1-140), purchased from addgene 

(deposited by the Michal J Fox Foundation MJFF) was transformed into E. coli expression cell 

line BL21 (DE3).  2XYT overnight cultures containing ampicillin of this human wt S (1-140) 

pET21a BL21 (DE3) E.coli strain were used to inoculate 1lt 2XYT cultures, containing 100 mg/lt 

Ampicillin, and grown at 37C, 200rpm shaking, to OD600 = 0.6 - 0.8 and induced with 1mM 
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isopropyl-1-thio-D-galactopyranoside (IPTG) at 37C, 200rpm shaking, for 4 hours in an Innova 

44 Incubator shaker (New Brunswick Scientific). The bacteria were harvested by 

centrifugation at 4600g and resuspended in 40ml of 20 mM Tris buffer pH8 containing 1 

cOmplete protease inhibitor tablet (Roche) and freeze-thawed at -20C before lysis, by 

sonication. The cell debris was discarded by centrifugation at 48400g, and the supernatant 

was collected and boiled at 95 C for 10 minutes. The precipitated protein removed by 

centrifugation at 18500g. The supernatant was collected, and ammonium sulphate added to 

30% saturation (0.176 g / ml), left shaking at 20 C for 1 hour. The precipitated protein, 

containing the S, was harvested by centrifugation at 18500g, and resuspended in 50 ml 20 

mM Tris buffer pH8 by gentle agitation at 4 C. This purified by anion exchange 

chromatography on an AKTA pure purification system (GE Healthcare) with a 5ml HiTrap Q HP 

(GE Healthcare) pre-packed column, to remove protein impurities and protein bound nucleic 

acids. The purified fractions were combined and further purified by size exclusion 

chromatography (SEC) , using a HiLoad 16/60 Superdex 75 pg (GE Healthcare) prepacked 

purification column, to buffer exchange the S into the relevant reaction buffer (20 mM 

sodium phosphate buffer pH 6.5/ 20mM sodium acetate pH5) and ensure that only 

monomers were collected. Pure monomeric S eluted between 54 - 60ml. 

 

The concentration of the purified S was determined in a 2mm path length quarts cuvette, 

using an extinction coefficient of 4836 M-1cm-1 at 280 nm, separated into 1ml aliquots, snap 

frozen in liquid N2, and stored at -80C until required.  

 

The purity of S following SEC was confirmed by SDS-Page gel electrophoresis, and the 

correct mass was confirmed by mass spectrometry on a Dionex Acclaim RSLC Polar Advantage 

II (PA2), 2.2 µm, 120 Å, 2.1 x 50 mm (Thermo Fisher Scientific, California, USA). The 

deconvoluted average mass of the protein was confirmed as 14459.749 m/z, representing the 

mass of wt Human S (1-140). A CD spectra scan was performed, to confirm the random coil 

conformation of the monomeric S stock.  

 

 

 



146 

 

Production and purification of peptides 
 
The peptides were synthesized in the laboratory using a Liberty Blue microwave peptide 

synthesizer (CEM). 

 

The liberty blue peptide synthesizer produced the peptides on a Rink amide ChemMatrix resin 

(PCAS BioMatrix) employing Fmoc solid-phase technique, with repeated steps of coupling-

deprotection-washing for each amino acid. The activator solution consisted of 26g PyBOP in 

100ml DMF, and the de-protection solution was 20% Piperidine in DMF with the addition of 

5% Formic acid to prevent aspartamide formation of the peptide. 

 

The peptide was removed from the matrix by incubating in cleavage solution (95% 

Trifluoroacetic acid (TFA), 2.5% Triisopropylsilane, and 2.5% water), on a shaker at 25 °C, for 

4 hours. The resin was removed by filtration, and the peptide precipitated using ice cold ether, 

with vortexing and centrifugation at 7000g for 3 rounds. The pellet was left overnight at room 

temperature to completely dry and purified by HPLC with a Jupiter 4 μm Proteo C-18 90 Å 

reverse phase prep column. 

 

The fractions of the HPLC peaks were examined by mass spectroscopy, using a microTOF 

(Bruker Daltonics) to confirm which fractions contained the purified peptide. Fractions, 

containing the peptide were pooled, and lyophilised. The dry weight of the purified peptides 

was measured to 0.1 g accuracy using a Sartorius SE2 Ultra Micro Balance and stored at -

80°C.  

 

Microplate ThT Kinetic Assays  
 

ThT kinetic assays to determine the effect of inhibitors on the lipid induced primary 

nucleation, fibril elongation and secondary nucleation of S were performed in a CLARIOstar 

fluorescence microplate reader (BMG Labtech), under quiescent conditions (without 

shaking), at 37 C (or 30 C for lipid induced primary nucleation) in black, clear bottomed 96 

well half area polystyrene plates with Non-bonding surface (Corning #3881) covered with 

Aluminium Thermowell Sealing Tape (Corning #6570). The focal height was set to 4.9 mm, 

and gain to 800, with an excitation filter of 440-15 nm and emission filter of 480-15nm and a 
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Dichroic cut-off of 460 nm. Well measurements were taken by spiral average of 4 mm using 

the bottom optic, with 50 flashes per well and a cycle time of 1200 seconds. The outer wells 

of the plate were not used. 

 

Lipid preparation for induced Primary Nucleation Method 
 

The mass of dry DMPS lipid powder was determined using an ultra-micro balance (Sartorius), 

and dissolved in 20mM sodium phosphate buffer pH 6.5 to a concentration of 2 mM. This was 

dissolved by shaking, in a 2 ml Eppendorf tube, on a Thermomixer compact (Eppendorf), at 

45C, 1400 rpm for 3 hours. The solution was then freeze thawed five times using dry ice and 

the thermomixer compact (Eppendorf) at 45 C and 500 rpm. The preparation of the vesicles 

was carried out by sonication, using a Soniprep 150 plus sonicator, set to an amplitude of 

10.0, for 5 cycles of 30 seconds on and 30 seconds off.  

 

Dynamic Light Scattering (DLS) Measurements 
 

A sample of the vesicles produced at each step were diluted to 100 M in 20mM phosphate 

buffer pH 6.5. Their size distribution was measured by DLS, using a Zetasizer Nano ZSP 

(Malvern Instruments), to ensure a final consistent size of between 20-30 nm was obtained. 

 

Lipid induced Aggregation Kinetic Assay to Primary nucleation 
 

Lipid induced primary nucleation experiments were performed in a CLARIOstar fluorescence 

microplate reader (BMG Labtech), under quiescent conditions (without shaking), at 30 C in 

black, clear bottomed 96 well half area polystyrene plates with Non-bonding surface (Corning 

#3881) covered with Aluminium Thermowell Sealing Tape (Corning #6570). The experiments 

were performed in 100 l aliquots, in triplicate, each containing 100 M S, 50 M ThT, 100 

M DMPS and varying concentrations of 4554W peptide (0 M, 100 M and 1mM) in 20mM 

phosphate buffer pH 6.5. 

 

Seed Fibril Formation for Elongation method 
 

Mature fibrils were produced in a 10 mm Quartz cuvette by incubating 1.5 ml of 400 µM S 

monomers in 20mM sodium phosphate buffer (pH6.5) for 48 hours at 40 C maximal stirring 
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(1500rpm), using a PTFE magnetic stirrer, on an RCT Basic Heat Plate (IKA, Staufen, Germany). 

The mature fibrils were diluted to 200 µM monomer equivalents using 20mM sodium 

phosphate buffer (pH6.5) (1.5ml) and broken into seeds by 3 rounds of freeze-thawing with 

liquid N2 followed by 55C water bath. The mixture was then sonicated using a Soniprep 150 

plus sonicator, set to an amplitude of 10, for 3 cycles of 10 seconds on and 10 seconds off. 

The final seed fibrils were measured by circular dichroism (10 µM monomer equivalent S in 

20 µM sodium phosphate buffer pH 6.5) to ensure complete conversion to -sheet, and 

confirmed by TEM. The seed stock was divided into 500 µl aliquots, frozen in liquid N2, and 

stored at -80C until required. 

 

Seeded Aggregation Kinetic Assay to Measure Elongation 
 

Seeded elongation experiments were performed in a CLARIOstar fluorescence microplate 

reader (BMG Labtech), under quiescent conditions (without shaking), at 37 C in black, clear 

bottomed 96 well half area polystyrene plates with Non-bonding surface (Corning 3881) 

covered with Aluminium Thermowell Sealing Tape (Corning 6570). The experiments were 

performed in 100 l aliquots, in triplicate, each containing 100 M S, 50 M ThT, 15M 

(monomer equivalents) preformed fibril ‘seeds’ and varying concentrations of 4554w peptide 

(0 M, 100 M and 1mM) in 20mM phosphate buffer pH 6.5. 

 

Formation of Seeds for Secondary Nucleation 
 

Seed fibrils for inducing secondary nucleation were produced by incubating 25 µM S 

monomer in 20 mM sodium acetate, 50 M ThT and 0.01% sodium azide, split into 100 l 

aliquots in a black, clear bottomed 96 well half area polystyrene plates with Non-bonding 

surface (Corning 3881), with each well containing a single 4 mm glass bead (Hecht Karl ref. 

41401004), covered with Aluminium Thermowell Sealing Tape (Corning 6570). The plate was 

incubated at 37 C in a CLARIOstar fluorescence microplate reader (BMG Labtech) at 500rpm 

for 96 hrs. The aliquots were pooled into a 2 ml Eppendorf tube and sonicated using a 

Soniprep 150 plus, set to an amplitude of 10, for 5 cycles of 1 seconds on and 5 seconds off. 

The seeds were flash frozen in liquid N2 and stored at -80 C until required. 
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Seeded Aggregation Kinetic Assay to Measure Secondary Nucleation/ Fibril Amplification 
 

Seeded elongation experiments were performed in a CLARIOstar fluorescence microplate 

reader (BMG Labtech), under quiescent conditions (without shaking), at 37 C in black, clear 

bottomed 96 well half area polystyrene plates with Non-bonding surface (Corning 3881) 

covered with Aluminium Thermowell Sealing Tape (Corning 6570). The experiments were 

performed in 100 l aliquots, in triplicate, each containing 100 M S, 50 M ThT, 1 M 

(monomer equivalents) preformed fibril ‘seeds’ and 1mM of peptide in 20mM sodium acetate 

buffer pH 5. 

 

PICUP cross-linking SDS-PAGE Electrophoresis 
 

Photo-induced cross-linking of unmodified proteins (PICUP) reactions were modified from a 

previously published protocol (Rahimi, Maiti and Bitan, 2009). Briefly, 20 l of the end point 

(20 h) of the lipid-induced primary nucleation assay reaction mixture (100 M aS, 50 M ThT, 

200 M DMPS, 0-1000 M peptide in 20 mM sodium phosphate buffer pH 6.5) was placed in 

a 1.5ml Eppendorf tube. 2 l of 1 mM solution of Tris(2,2’bipyridyl)dichloro-ruthenium(II) 

hexahydrate (RuBpy) in 20 mM sodium phosphate buffer pH 6.5, and 2 l of 20 mM 

ammonium persulphate (APS) in 20 mM sodium phosphate buffer pH 6.5 were added to all 

samples simultaneously. The samples were then irradiated with ambient light for 10 seconds, 

and the reaction quenched with 10 l RunBlue LDS Sample Buffer 4X concentrate (Expedeon). 

The samples were then heated to 95 C for 5 minutes and fractionated by SDS-Page using a 

12% Tricine RunBlue SDS Gel (Expedeon), and RunBlue run Buffer (Expedeon). The protein 

bands were visualised using Instant Blue (Expedeon) Coomassie stain.   

 

To analyse the gel band intensities the computer program ImageJ was used 

(http://imagej.nih.gov/ij). The image was first converted to grey scale and the raw integrated 

density (RID) of each band was measured with ImageJ. The data was then processed in excel 

to give a relative percentage of the band intensities. 

 

 

 

http://imagej.nih.gov/ij
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Transmission Electron Microscopy (TEM) 
 

α-Synuclein samples from the end point of the aggregation kinetics were collected. 5 µL of 

these samples were put onto on glow discharged Formvar/carbon-coated, 200 mesh, copper 

grids for 1 minute. The samples were dried with filter paper, and washed twice with MiliQ 

water for 1 second, each time removed with filter paper. The sample was stained by 

incubating the grids with 5 µL Uranyl Acetate Zero (Agar Scientific) for 30 seconds, followed 

by removal of the excess stain with filter paper. The grids were left to air-dry for 2 hours. The 

samples were imaged using a Transmission Electron Microscopy Jeol 2100 Plus (JEOL), 

operating at an accelerating voltage of 200 kV. Multiple grids were screened in order to obtain 

representative images of the samples. 
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Supplementary Figure 6.1: Overview of the purification of S used for the experiments. a) Chromatograph of the Hi-Q 
anionic exchange purification. b) Chromatograph of the Size exclusion chromatography and buffer exchange. c) SDS page 

gel showing an overview of the entire purification protocol. d) Far-UV circular dichroism spectra of the purified S showing 

that the monomeric S is in a random coil conformation. e) De-convoluted mass spectrum, showing a mass of the protein 
of 14459.749 m/z, representing the mass of wt Human S (1-140).  
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Peptide Peptide Sequence Formula Monoisotopic mass (Da) 

4554W(K1A) Ac-ADGIVNGVKA-NH2 C42H73N13O14 983.540 

4554W(D2A) Ac-KAGIVNGVKA-NH2 C44H80N14O12 996.608 

4554W(G3A) Ac-KDAIVNGVKA-NH2 C46H82N14O14 1054.613 

4554W(I4A) Ac-KDGAVNGVKA-NH2 C42H74N14O14 998.551 

4554W(V5A) Ac-KDGIANGVKA-NH2 C43H76N14O14 1012.567 

4554W(N6A) Ac-KDGIVAGVKA-NH2 C44H79N13O13 997.562 

4554W(G7A) Ac-KDGIVNAVKA-NH2 C46H82N14O14 1054.613 

4554W(V8A) Ac-KDGIVNGAKA-NH2 C43H76N14O14 1012.567 

4554W(K9A) Ac-KDGIVNGVAA-NH2 C42H73N13O14 983.540 

4554W Ac-KDGIVNGVKA-NH2 C45H80N14O14 1040.5978 

 

Supplementary Table 6.1: Sequence and monoisotopic masses for the alanine scan variant peptides. 

 

 

Supplementary Figure 6.2: HPLC traces and corresponding mass spectroscopy for alanine scan variant peptides. 
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Peptide Peptide Sequence Formula Monoisotopic mass (Da) 

4554W(N6A) Ac-KDGIVAGVKA-NH2 C44H79N13O13 997.562 

4654(N6A)   Ac-DGIVAGVKA-NH2 C38H67N11O12 869.486 

4754(N6A)      Ac-GIVAGVKA-NH2 C34H62N10O9 754.459 

4553(N6A) Ac-KDGIVAGVK-NH2 C41H74N12O12 926.544 

4552(N6A) Ac-KDGIVAGV-NH2 C35H62N10O11 798.449 

4653(N6A)   Ac-DGIVAGVK-NH2 C35H62N10O11 798.449 

 

Supplementary Table 6.2: Sequence and monoisotopic masses for the truncated variant peptides. 

 

 

 
 

Supplementary Figure 6.3: HPLC traces and corresponding mass spectroscopy for truncated variant peptides. 
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Supplementary Figure 6.4: Dynamic light scattering size distribution of the DMPS small unilamellar vesicles (SUVs) used for 

lipid induced nucleation assays, showing a size distribution centred around 30 - 40 nm post sonication.  

 

 
Supplementary Figure 6.5: ThT fluorescence intensity when 100 M S is incubated with 0 M, 200 M, or 400 M DMPS 

vesicles and 50 M Thioflavin T in 20 mM phosphate buffer (pH 6.5) under quiescent conditions at 30 C.  



156 

 

 
Supplementary Figure 6.6: Circular dichroism spectra of 10 M seeds formed for ThT assay to probe fibril elongation rates. 

The S monomer before aggregation shows a random coil spectra (green). The S is seen to be fully converted to beta-sheet 

fibril seeds (red) after 400 M S was stirring at 40C with a teflon bar at 1500rpm for 48 hours, followed by 3 rounds of 

freeze-thawing in liquid N2 and 3 rounds of sonication for 10 seconds on 10 seconds off. 

 

 
Supplementary Figure 6.7: ThT fluorescence experiment measuring seeds only vs seeds and monomer to show seed stability. 

100 M in the presence of 15M seeds (grey) vs 15 M seeds without addition of monomer (red), showing that the seeds 

remained stable. 
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Supplementary Figure 6.8: Effect of 4554W and the alanine scan variants on Fibril elongation, measured by the change in 

ThT fluorescence intensity when 100 M monomeric S was incubated in the presence of 15 M preformed fibrils and 50 

M ThT in 20 mM sodium phosphate buffer pH 6.5 under quiescent conditions at 37 C, with 1000 M of the different 4554W 

peptide alanine scan variants. No effect on the ThT trace was observed by the addition of the peptides.  
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Supplementary Figure 6.9: ThT curve following seed creation for secondary nucleation studies, created in 96 well plates 

containing glass beads in the wells, with shaking at 500 rpm at a constant temperature of 37 C. 

 

 

Supplementary Figure 6.10: Effect of 4554W and the alanine scan variants on Fibril amplification/secondary nucleation, 

measured by the change in ThT fluorescence intensity when 100 M monomeric S was incubated in the presence of 1 M 

preformed fibril seeds and 50 M ThT in 20 mM sodium acetate buffer pH 5 under quiescent conditions at 37 C, with 1000 

M of the different 4554W peptide alanine scan variants. No effect on the ThT trace was observed by the addition of the 

peptides 
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7.1 Optimising S production 
 

Producing a consistent quantity and quality of S was vital for the research presented within 

this thesis. Three different methods were analysed with varying results (Chapter 3). 

Ultimately it was found that the most productive, and rapid method utilised wild type S 

expressed in E. coli using the pET21a vector with no fusions or tags that had to be tolerated 

or later removed. The methodology involved a heating step, followed by an ammonium 

sulphate crash, anionic exchange and finally size exclusion chromatography. This method 

consistently produced excellent yields ( 20 mg / l) of purified monomeric S in the required 

buffer for the experiments. It would be suggested that any future experiments with S utilise 

this purification protocol. 

 

7.2 Developing a cell based S toxicity protocol in a relevant cell line 
 

A cell-based toxicity assay was developed using the human neuroblastoma SH-SY5Y cell line 

in 96 well plates, allowing numerous replicates over varying conditions on the same plate. 

The most efficient technique tested was to use lyophilised S ‘aged’ for 24 hours at a 

concentration of 800 M under quiescent conditions. This duration produced S oligomers 

similar to those found to be toxic to this cell line by others in the literature. The ‘aged’ S 

mixture was added to undifferentiated SH-SY5Y culture for 24 hours, at a final concentration 

of 100 M (equivalent to concentrations found inside human dopaminergic neurons) before 

measuring viability by MTT reduction. This technique gave a dose response to S toxicity, 

reaching maximal death in the 100-120 M range.  This technique was used to measure cell 

death rescue in the presence of increasing concentrations of 4554W. 

 

Although a successful dose response was observed, the total maximal death achieved was 

low, reaching ~20% cell death relative to the PBS control. This suggested that there could be 

further improvements to this technique in order to elicit a stronger response. In light of the 

recent discoveries highlighting the importance of lipid vesicles for the misfolding, and primary 

nucleation of S into toxic species, future work should be undertaken that includes vesicles 

in the solution mixtures added to cells. In this case it may be found that S does not require 

an ‘aging’ process before being added to the cells, since the aggregation time for primary 
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nucleation to plateau, using the same condition using in this thesis (i.e. about 12-15 hours) 

would be ideal for a 24 hour incubation on the cells. 

 

7.3 Determining the mechanism of action of 4554W 
 

The 4554W peptide was previously selected by an intracellular screening assay and shown to 

inhibit the aggregation of S in solution, as measured by ThT fluorescence and CD. Due to the 

nature of selection this did not highlight the precise mode of action by which the peptide 

functioned. By varying the aggregation conditions of S it was possible to split the aggregation 

process into three distinct pathways i) heterogeneous primary nucleation, ii) fibril elongation 

and iii) secondary nucleation. Performing these experiments with varying concentrations of 

4554W concluded that this peptide inhibited lipid induced heterogeneous primary nucleation 

but presented no effect of fibril elongation rates or secondary nucleation. Circular dichroism 

experiments measuring the binding of S to vesicle membranes, under varying 

concentrations of 4554W and DMPS SUVs, showed that the peptide did not inhibit binding of 

S to the vesicles, as measured by its conversion to an -helix upon binding. This suggested 

that the peptide exerted its effect on aggregation after the S had already bound to the 

membrane. A cell toxicity assay on human neuroblastoma SH-SY5Y showed that 4554W can 

rescue a relevant cell line from S mediated toxicity. 

 

7.4 Optimisation of 4554W by alanine scan and truncation. 
 
Following from the experiments showing that 4554W inhibits lipid induced primary 

nucleation, an alanine scan was performed to determine the key residues involved in the 

interaction. The experiment highlighted that the residues D2, G3, I4, V5, G7, V8 and K9 were 

all necessary for the function of 4554W, since mutating these to alanine knocked out the 

function, allowing S to aggregate normally. The substitution of residues N6 and K1 to alanine 

was found to increase the inhibitory effect of the peptide on S aggregation.  

A PICUP protein crosslinking experiment was performed on the aggregation mixtures of the 

increasing concentrations of 4554W(N6A), showed that the population of oligomers above 

40kDa, as run on an SDS-PAGE gel, had decreased. This suggested that the peptide must be 

acting upon a low-n (monomer/dimer/trimer) oligomer.  
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A truncation assay was therefore performed on the 4554W(N6A) variant of the peptide to 

determine the importance of the N and C-terminal residues. Residues D2, K9 and A10 were 

all shown to be important for the interaction, as removing these decreased the efficacy of the 

peptide. Residue 1 was found to be not required for the peptide function, as its removal 

presented no decrease in the inhibition of S aggregation (mirroring the alanine scan 

experiment that shown increased function when residue size was decreased). Therefore, 

peptide 4654W(N6A) was the superior peptide due to it increased efficacy compared to 

4554W, and its decreased size, which is predicted to allow easier access to the site of action. 

 

Further work should be performed to explore the possibility of elongating the C-terminus of 

4654W(N6A) since this may offer further increased inhibition of S aggregation. Once a fully 

optimised peptide is achieved further improvements can be explored such as producing a 

retro-inverso version of the peptide, i.e substituting the amino acids to the D- isomers, 

reducing the peptides susceptibility to proteases within cells, and additional motifs could be 

explored and added to improve function, i.e cell permeability. Eventually the peptide could 

be tested in vivo using specifically developed PD animal models such as c. elegans, zebrafish 

or mice.   

  

7.5 Novel helical polymorphs of S are populated in the presence of lipid vesicles. 
 

“In the field of observation, chance favours the prepared mind” – Louis Pasteur (1854) 

 

Upon viewing the aggregates from the lipid induced heterogeneous primary nucleation assays 

by transmission electron microscopy a range of previously unobserved helical polymorphs 

were discovered, much larger than any of the previously reported fibril structures. These 

become populated after the apparent ThT aggregation of the sample has plateaued where no 

additional ThT binding has occurred, suggesting that they may be formed by mature, double 

stranded fibrils stacking together along a vertical axis. A range of sizes were observed and 

named ‘ribbons’, ‘waves’, ‘helices’ and ‘compact helices’. The respective increases in size from 

‘ribbons’ to ‘compact helices’ suggest that these are likely composed from the same building 

blocks (mature fibrils), but with increasing fibril structure. 
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These interesting structures require further research to determine their potential importance 

in S pathology, starting with CryoEM to determine the structural makeup of the large 

polymorphs. It would also be interesting to determine how they differ between early onset 

S variants. 

 

7.6 Further potential for peptides in amyloid diseases 
 

4554W, and related improvements such as 4654W(N6A) presented the capacity to 

successfully inhibit the large PPIs involved in the primary nucleation of S. Therefore, 

highlighting that peptides may represent a powerful tool for preventing the onset of 

synucleinopathies and related diseases. Although once the disease has set in it is believed to 

propagate through the brain in a prion-like mechanism. It could therefore be interesting to 

develop an independent line of peptide enquiry looking at those which are able to bind the 

outer surface of mature fibrils in order to prevent secondary nucleation on the fibril surfaces, 

as this is believed to be a key mechanism in propagation of the disease. This would allow 

synergistic treatments to be tailored to different aggregation stages, allowing greater control 

on disease onset and progression. 
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