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Abstract

In this thesis we are interested in the statistical mechanics of Euclidean field theories
in 3D. We solve two problems: the first concerns the relationship between Gaussian
measures and nonlinear wave equations; the second concerns phase transitions for ¢j.
The common theme between our contributions is the development of the variational
approach of Barashkov and Gubinelli [BG19] to ultraviolet stability, which allows
one to control the singular short-distance behaviour of Euclidean field theories in
3D, in the context of statistical mechanics arguments.

Our first contribution is to establish the quasi-invariance of Gaussian measures
supported on Sobolev spaces under the dynamics of the cubic defocusing wave
equation. This extends previous work in the two-dimensional case [OT20]. Two new
ingredients in the three-dimensional case are (i) the construction of certain weighted
Gaussian measures based on the variational approach to ultraviolet stability, and
(i) an improved argument in controlling the growth of the truncated weighted
Gaussian measures, where we combine a deterministic growth bound of solutions
with stochastic estimates on random distributions. This is joint work with Tadahiro
Oh, Nikolay Tzvetkov, and Hendrik Weber [GOTW 18].

Our second contribution is to quantify the phase transition for ¢3. In particular,
we establish a surface order large deviation estimate for the magnetisation of low
temperature ¢3. As a byproduct, we obtain a decay of spectral gap for its Glauber
dynamics given by the ¢3 singular stochastic PDE. Our main technical results are
contour bounds for ¢4, which extends 2D results by Glimm, Jaffe, and Spencer
[GJS75]. We adapt an argument by Bodineau, Velenik, and loffe [BIVoo] to use
these contour bounds to study phase segregation. The main challenge to obtain the
contour bounds is to handle the ultraviolet divergences of ¢35 whilst preserving the
structure of the low temperature potential. To do this, we build on the variational
approach to ultraviolet stability for ¢3. This is joint work with Ajay Chandra and
Hendrik Weber [CGW20].
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I. Introduction

1  Euclidean field theories

Euclidean field theories in d-dimensions are special types of Borel probability
measures on the space of Schwartz distributions S’(R?). They can be thought
of as Gibbs measures on continuum fields. Indeed, from the viewpoint of statistical
mechanics, they exhibit a rich variety of phenomena: they arise as continuum and
scaling limits of discrete spin models, undergo phase transitions, and are invariant
measures for Hamiltonian and singular stochastic PDEs. Their origins, however,
are in quantum field theory, where they arise from evaluating quantum fields at
imaginary times. What makes them special is that they allow one to rigorously undo
the passage from real time to imaginary time and thereby reconstruct quantum fields
from classical/Euclidean fields.

More precisely, Euclidean field theories are probability measures whose correla-
tion functions satisfy (a variant of ) the Osterwalder-Schrader axioms [0S73, OS75],
which consist of: an appropriate analyticity condition, Euclidean invariance, permu-
tation symmetry, and reflection positivity. The Osterwalder-Schrader reconstruction
theorem [OS75, Theorem E <> R] then states that the analytic continuation of the
Euclidean fields to (minus) imaginary time yields operator-valued distributions that
are densely defined on a Hilbert space $) and satisfy the Wightman axioms of quan-
tum field theory [Wig56]. Moreover, one can reverse the analytic continuation and
obtain a Euclidean quantum field theory from a set of operator-valued distributions
satisfying the Wightman axioms.

The most intriguing and least self-explanatory axiom is reflection positivity,
which we now state on the level of the measure as opposed to the correlation
functions. Let v be a Euclidean field theory. We distinguish the first coordinate of
= (11,...,24) = (z1,2) € R? and denote by H the associated upper half plane.
Let 6 be the reflection map across H. Define st < L?*(v) to be the set of random
variables generated by ¢ € S’(IR?) with support (suitably interpreted) in H. We say
v is reflection positive if, forany A € o™,

f A(6) - 0A(6)du(6) > 0
5/(RY)

where 0 A(¢) = A(0¢).

Reflection positivity is significant in both quantum theory and statistical physics,
and underlies a deep connection between the two. On the one hand, it allows the
construction of the Hilbert space of quantum states: define (A, B)y = §, (RY) A(p) -
0B(¢)dv(¢) for A, B € o™ and let N be the set of null vectors under this bilinear
form. Then, reflection positivity implies that the completion of 4™ /A under (-, -)¢
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is a Hilbert space $). See [OS75] or [GJ87, Chapter 6.1]. On the other hand, many
classical and quantum spin systems are reflection positive and, as we briefly touch
upon later on, this property is fundamental to their theory of phase transitions in
d = 3. See [Bisog] for a review. In this thesis it plays a small but essential role in
Part III.

2 Examples: the Gaussian free field and the ¢* model

We are interested in Euclidean field theories with formal densities proportional to
e~ %(9) do. (2.1)

Here, d¢ is the (non-existent) Lebesgue measure over S’(R?) and % is the Hamilto-
nian

#(0) = | V(6 + 5 Vo(0) s

Rd
where 7" : R — Ris apotential and V is the gradient. Choices of potentials include:

o U (p(z)) = sm*¢p(x)?, corresponding to the d-dimensional Gaussian free
field of mass m > 0, or free field for short;

o U(p(z)) = Mp(x)*, corresponding to the ¢* model in d-dimensions with
coupling constant A > 0, or ¢4 for short.

We are also interested in generalisations of the free field where V is replaced by a
higher order derivative (although strictly speaking these may not satisfy reflection
positivity).

The free field is realised as the centred Gaussian measure with covariance
(—A + m?*)~!, where A is the Laplacian. It was first shown to be a Euclidean
field theory by Nelson [Nel73] and is considered trivial since it is associated to
a quantum field theory without interaction. However, due to the non-existence of
Lebesgue measure in infinite dimensions, it is a starting point to rigorously construct
non-Gaussian/nontrivial Euclidean field theories. The latter measures are more in-
teresting than their trivial counterparts and exhibit a richer variety of phenomena.
They are also of greater physical importance from the quantum field theory point
of view since they are associated to quantum field theories with interaction. Candi-
dates for nontrivial Euclidean field theories are given by measures with higher order
nonlinearities in the potential 7/, e.g. the ¢* model.

The construction of nontrivial Euclidean field theories is a notoriously difficult
problem for d > 2. This is true even for the easier problem of showing the
construction of finite volume approximations to such measures, e.g. replacing R?
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by T4 = (R/NZ)?, the d-dimensional torus of sidelength N € N, in (2.1). As
alluded to above, it is natural to define these objects using a density with respect
to the centred Gaussian measure uy with covariance (—Ay)~!, where A is the
Laplacian on T% (we ignore the problem of constant fields/zeroeth Fourier mode
in this discussion). Note that uy is the massless free field on Tﬁ{,. However,
for d > 2, uy is not supported on a space of functions and samples need to be
interpreted as Schwartz distributions. This is a serious problem because there is no
canonical interpretation of products of distributions, meaning that the nonlinearity
ST(}V YV (¢(zx))dz is in general not well-defined on the support of jy.

If one introduces an ultraviolet (small-scale) cutoff K > 0 on the field to
regularise it, then one sees that the nonlinearities of the regularised field ¥ (¢ ) fail
to converge as the cutoff is removed - there are divergences. The strength of these
divergences grow with dimension: they are only logarithmic in the cutoff for d = 2,
whereas they are polynomial for d > 3. Renormalisation is required to kill these
divergences. This is done by looking at the measures defined with respect to the
cutoff potential and subtracting appropriate counter-terms from the Hamiltonian.
Obtaining a nontrivial limiting measure as the cutoff is removed, which is often
called showing ultraviolet stability, is not always possible and depends heavily on
the choice of 7" and the dimension.

One of the big successes of the constructive field theory programme, initiated by
Glimm and Jaffe in the *60s, was the construction of finite volume approximations
to ¢3 and later ¢3. Renormalisation of the ¢! Hamiltonian is done by subtracting the
counter-term ST(;V dm?(K) g2, where the renormalisation constant dm?(K) is given
by CiAlog K ind = 2 and Co MK — C3)\?log K in d = 3, for some C, Cs, C3 >
0. If these constants are appropriately chosen (i.e. by perturbation theory), then
a nontrivial limiting measure is obtained as K — oo. Nelson was the first to
show ultraviolet stability for ¢3 [Nel66]. In the significantly harder case of ¢3,
Glimm and Jaffe made the first breakthrough [GJ73] and many results followed
[Fel74, MS77, BCG*80, BFS83, BDHg5, MW 17b, GH18, BG19]. We particularly
highlight the recent approach of Barashkov and Gubinelli [BG19] based on the
Boué-Dupuis variational formula for Gaussian expectations, which plays a central
role in this thesis.

Extensions to infinite volume and (partial) verification of the Osterwalder-
Schrader axioms have been achieved through use of cluster expansions [GJS74,
FO76], correlation inequalities [SG73, GRS75], random walk expansions [BFS83],
PDE techniques [GH18], and other methods. See [GJ87, Parts II and III] for an
in-depth treatment of ¢3 using these methods, and see [GH18] for a review of the
state-of-the-art for ¢j.

In higher dimensions there are triviality results for ¢*: in d > 5 these are
due to Aizenman and Frohlich [Aiz82, Fr682], whereas the d = 4 case was only
recently done by Aizenman and Duminil-Copin [ADC20]. These results imply
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that if one takes a lattice cutoff as short-scale cutoff for (renormalised) ¢*, then any
continuum limit whose covariance between points ¢(x) and ¢(y) decays as |z —y| —
oo is necessarily Gaussian. In other words, the strong ultraviolet divergences of
dimensions d > 4 results in the destruction of the ¢* model.

We restrict our attention to Euclidean field theories in d = 2 and 3, and often
work with these objects in (sometimes large) finite volumes T4,. We are particularly
concerned with the significantly harder case of d = 3, which is the physically
relevant dimension in statistical physics.

3 The statistical mechanics of Euclidean field theories

In this thesis we address two areas of research concerning the statistical mechanics
of Euclidean field theories. First, these objects arise naturally as Gibbs measures
for Hamiltonian PDEs, such as wave and Schrodinger equations. We are interested
in exploring this connection further for the specific case of nonlinear wave equa-
tions. Second, the ¢* model bears many similarities to the Ising model. Indeed,
it is well-known that both models undergo phase transition. However, whilst the
phase coexistence regime of the Ising model has been studied extensively, there are
comparatively few results for ¢*. We are interested in exploring the finer properties
of the coexistence regime for ¢*: in particular, looking at the phenomenon of phase
segregation and implications for relaxation times of its natural Glauber dynamics.

3.1 Nonlinear wave equations and (quasi-)invariant measures

Wave and Schrédinger equations are of great importance in physics since they are
known to model a wide variety of phenomena. Wave equations are PDEs of the
form

O?u = Au £ uP (3.1)
where 1 : R x T? — R. Schrodinger equations are PDEs of the form
—idup = Dp + o'y

where ¢ : R x T — C. Above, p is taken to be a positive odd integer; v and
|o|P~1¢ are called nonlinearities (i.e. the linear wave and Schrodinger equations
correspond to the PDEs above without these terms); the sign of the nonlinearity
corresponds to the equation being defocusing (minus) or focusing (plus). We often
just consider the cubic (p = 3) defocusing case. We do not consider other types of
nonlinearities or the equations posed on the full space R

These equations are examples of Hamiltonian PDEs. For the wave equation, this
can be seen by rewriting the PDE as the following system:

o = O, FNY (u,v)

v = =0, Y (u, v)

(3.2)
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where (u, 0;u) = (u,v) and the Hamiltonian given by
HNW (u,v) = f L + 1|Vu|2 - L ds
’ Tap+1 2 2 '

is conserved. For the Schrodinger equation, the Hamiltonian structure can be seen
by writing it in terms of real and imaginary parts (which we do not do) and then
showing that it conserves the Hamiltonian

1
%NLS f p+1 _v Zd.
deM + 5|Vl de

Invariant measures of Hamiltonian dynamics are interesting to study because,
for example, they are important to the study of long-time behaviour of solutions (i.e.
global existence of solutions and ergodicity). In finite dimensional systems, there
is a well-known link between conserved quantities, such as the Hamiltonian, and
invariant measures. This correspondence is a consequence of Liouville’s theorem,
which states that Lebesgue measure on phase space (position space X momentum
space) is conserved under the dynamics. The punchline is that the Gibbs measure
(i.e. the measure with density given by the exponential of minus the Hamiltonian), or
the analogous measure associated to any conserved quantity, is invariant. Itis natural
to ask whether this correspondence passes on to infinite dimensional Hamiltonian
systems. Note that the same argument in finite dimensions does not carry over to
this case (for one, Lebesgue measure does not exist in this situation). However, it is
relatively straightforward to establish invariance of measures associated to conserved
quantities for linear wave and Schrodinger equations because they are Gaussian.

For nonlinear Hamiltonian PDEs, in particular nonlinear Schrodinger equations,
the study of invariant measures is significantly harder. For one, their Gibbs mea-
sures are finite volume approximations of nontrivial Euclidean field theories (over
vector-valued or complex fields). Moreover, the well-posedness theory for nonlinear
equations is more difficult than for linear equations. The first breakthrough was in
d = 1 by Lebowitz, Rose, and Speer [LRS88] and Bourgain [Boug4], where the
invariance of Gibbs measures was established for nonlinear defocusing Schrédinger
equations with polynomial nonlinearity of order p < 5 (and also the focusing case
with an energy cutoff in the Gibbs measure). The next big breakthrough was by Bour-
gain [Boug6b], who famously established invariance of a complex-valued version
of ¢3 for the two-dimensional renormalised cubic defocusing Schrodinger equation.
The analogous problem in d = 3 remains open.

A related but more tractable question is to ask how certain Gaussian measures,
which arise as invariant measures of linear equations, are transported under the
flow of nonlinear equations. We are specifically interested in the case of the cubic
nonlinear wave equation, which is easier to analyse than Schrodinger equations.
Given s € R, let H*(T%) denote the classical L?-based Sobolev space of order o and
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define H*(T?) = H*(T?) x H*"'(T%). Let ji, denote the Gaussian measure with
formal density:

7 —1 =z l% 1 g7
diis = Z, e 2" as+1du

where @ = (u, v). The norms of H**(T%) are conserved under the dynamics of the
linear wave equation and one can show that their associated measures are invariant.
However, the cubic nonlinearity destroys the conservation of these norms and one
does not expect these measures to be invariant.

Nevertheless, there have been a series of recent results initiated by Tzvetkov
[Tzv1s] that has made significant progress in better understanding the relation of
Gaussian measures analogous to ji; and nonlinear Hamiltonian PDEs. See, for
example, [OT17, OST18, OT20, OTT19] and references therein. In the case of
wave equations, under certain restrictions on s and the dimension, the measure i
(or analogously measures) can be shown to be quasi-invariant under these dynamics:
this means is that the law of the solution at any time is equivalent to the law of the
(random) initial data sampled from 1. Whilst not as strong as invariance, this is still
very useful in infinite dimensions because many interesting properties concerning
small-scale behaviour under a Gaussian measure hold true with probability 0 or 1
(this is an implication of Fernique’s theorem [DPZ14, Theorem 2.7]). Indeed, one
can show that samples under /i almost surely belong to LP-based Sobolev spaces of
appropriate regularity. Then, quasi-invariance implies an almost sure preservation
of this L”-based regularity for nonlinear Hamiltonian PDEs. Such a phenomenon
is not in general true in the deterministic setting, even for linear equations. See
[Lit63, Per8o, Sogg3].

These results can also be viewed from the perspective of the study of transport
for Gaussian measures. Indeed, it is well-known that Gaussian measures in infinite
dimensions are either equivalent or mutually singular. It is interesting to then ask
under which transformations is equivalence preserved, i.e. transformations under
which the Gaussian measure is quasi-invariant. This has been well-studied in the
case of deterministic shifts by Cameron and Martin [CM4g9], and there are general
abstract criterion for nonlinear transformations due to Ramer [Ram74] and Cruzeiro
[Cru83b, Cru83a]. The recent works mentioned in the preceding paragraph can be
seen as giving concrete and nontrivial examples of nonlinear transformations under
which a large class of Gaussian measures are quasi-invariant.

3.2 Phase transitions, Ising, and ¢*

Phase transitions are rich and complex phenomena that are ubiquitous in statistical
mechanics. An example of central importance to us is the ferromagnet-paramagnet
transition where iron, beyond a certain critical temperature, loses its ability to retain
a non-zero magnetisation in the presence of no external field.
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The Ising (or Lenz-Ising) model was introduced by Lenz [Len20] to capture
this phenomenon. It is given by a Gibbs probability measure defined on spin
configurations {il}Zd such that the probability of a given spin configuration o is

Ising
formally proportional to e*%B,hé("), where 5 > 0 is the inverse temperature, and

h € R is the external field, and

Ismg _ —/6 Z 00 — h Z o

1,j€Z% i~j ieZd

where ¢ ~ j means ¢ and j are nearest-neighbours. We write <>I;2g to denote
expectations with respect to this measure, which is interpreted as the weak limit of
Ising models on growing discrete tori T4, N Z<.

Phase transition in the Ising model for d > 2 was famously established by Peierls
[Pei36] and later made rigorous by Griffiths [Gri64] and Dobrushin [Dob65]. One
can show the existence of long range order when [ is sufficiently large and h = 0:
namely, the quantity

|<O_00_l>lsmg . < O>I§mg< >Iﬂmg‘

does not decay as |i| — oo. Equivalently, one can show the existence of spontaneous
magnetisation:

hm<ao>Ig >0 = <00>Ismg :

These results rely on the development of contour bounds for the Ising model.
This is most easily explained in d = 2. Under a deformation convention to avoid
ambiguities, each spin configuration o is in bijection with a configuration of simple
curves, called contours, that form interfaces between regions of + spins and —
spins. The set of contours is called the phase boundary do. One can rewrite the
Ising measure in terms of contours and show that, for any closed bounded simple
curve [' formed by lattice lines,

(Iresoygot < e 2P, (3.3)

The significance of this in the context of phase transitions is that, by the 0 — —o
symmetry, one can rewrite

<0_00Z>Ismg . < 0>Is1ng< >Is1ng 4<100 110_ 771>Ismg' (34)

On the event {0y = 1} n {0; = —1}, there must be a contour separating 0 and ¢
(i.e. it encloses either 0 or 7). Summing over all possible contours and using the
contour bound (3.3), one can show that, uniformly over ¢ € 7.2, the righthand side



14 INTRODUCTION
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Figure 1: Plot of 73

of (3.4) converges to 1 as 3 — co. In particular, there is long range order provided
G is sufficiently large.

It turns out that phase transitions also occur in gb4 models in d = 2 and 3, and the
underlying reason for this is that ¢* and Ising models are very similar. To explain this,
first note that due to renormalisation, the ¢* potential for fields with ultraviolet cutoff
K > 0 becomes infinitely non-convex as X' — oo. The leading order divergence
is proportional to A and this governs the rate at which the potential is becoming
more non-convex. Thus, one can formally reparametrise the ¢* potential as a quartic
double well of the form ¥ (¢(x)) = A(¢(z)? — 1)?. A scaling argument then yields
that there exists 5 = $(\) — o0 as A — oo such that the above theory is equivalent
to a ¢* theory defined formally by the measure v with density

dns()eesp (= | Talota)) + 51V0(a) Pao)ds 33

where Vs(4(2)) = 5(p(2)* — 8)*. See [GIS76¢] for full details in d = 2. We
write (-)3 to denote the corresponding expectation operator. ¥3(¢(x)) has minima
at ¢(x) = 4/ with a potential barrier at ¢(z) = 0 of height 3, so the minima
become widely separated by a steep barrier as 5 — 0. See Figure 1. Consequently,
v resembles an Ising model with spins at ++//3 (i.e. at inverse temperature 5 > 0)
for large 3.

Glimm, Jaffe, and Spencer [GJS75] exploited this similarity with low tem-
perature Ising and proved the existence of long range order and symmetry break-
ing for v3 in d = 2 using a sophisticated modification of Peierls’ argument. In
[GJS76a, GJS76b] they further develop the Peierls’ expansion for v into a full low
temperature expansion and establish spontaneous magnetisation. Moreover, they
construct two distinct measures that correspond to v3. These two measures satisfy
all the Osterwalder-Schrader axioms and exhibit exponential decay of correlations.

The Peierls’” argument of [GJS75] relies on contour bounds for v. Discretise R?
into unit blocks and, for each block = R? and ¢ ~ vg, let ¢(O) be the block averaged
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field. The configuration of block averages retains the large-scale information of the
field, meaning that it is appropriate to study phase transitions, but it does not contain
small-scale divergences. Due to the structure of the potential ¥z when f3 is large,
the configuration of block averages resembles an Ising model (however, it is still
a continuous spin configuration). The set of blocks are decomposed pathwise into
positive and negative blocks depending on the sign of the block averages, i.e. O
is positive if ¢(0) > 0. The phase boundary of a configuration consists of the
connected components of the boundary between positive and negative blocks, i.e.
contours. Conditional on certain (strong) moment bounds, one can then show that,
for any fixed contour I', there exists C' > 0 such that for J sufficiently large,

vg(T is in the phase boundary) < e~ VP,

The existence of phase transition for ¢* then follows by using this contour bound
and arguing as in the case of low temperature Ising. The key difficulty, therefore, is
to show the moment bounds. The techniques of [GJS75, GIS76a, GJS76b] fail to
establish these moment bounds in the significantly harder case of d = 3.

However, phase transition for v3 in d = 3 was established by Frohlich, Simon,
and Spencer [FSS76] using a different argument based fundamentally on reflection
positivity. This argument is much more general than Peierls’ argument and plays
a central role in the theory of phase transitions in d > 3: it applies to models
with continuous symmetry [FSS76], quantum spin systems [DLS78], and can be
combined with Peierls estimates to yield a very systematic theory of phase transition
[FILS78, FILS80]. However, the techniques of [FSS76] alone are less quantitative
than the Peierls’ theory of [GJS75]. For example, it is not clear how to extend the
results of [GJS76a, GIS76b] to d = 3. Moreover, these techniques are less natural
for the ¢* model, since intuitively the mechanisms which govern phase transition in
this case are the same as for the Ising model.

The similarities between Ising and ¢* in the context of phase transition are
in fact manifestations of a deeper connection between these models. On the one
hand, ¢? arises as the continuum limit of Ising-type models near their critical points
[SG73, CMPgs, HI18]. On the other hand, one formally obtains Ising as the limit of
¢* models as the coupling constant A\ — oo [GJ85]. It is, moreover, conjectured that
the scaling limits of these models at their critical points yield the same limit [GJ85],
i.e. Ising and ¢* are in the same universality class, and that this limiting object
is a special type of field theory that exhibits conformal symmetries [BPZ84]. The
rigorous study of these phenomena is extremely difficult and there are many open
problems. Instead, still drawing on the analogy between Ising and ¢*, we address
much more tractable but still interesting finer properties of the phase transition.
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3.2.1 Phase segregation

Although phase coexistence for v has been established, little is known of this regime
in comparison to the low temperature Ising model. In the latter model, the study of
phase segregation at low temperatures in large but finite volumes was initiated by
Minlos and Sinai [MS67, MS68], culminating in the famous Wulff constructions:
due to Dobrushin, Kotecky, and Shlosman in d = 2 [DKS89, DKS92], with sim-
plifications due to Pfister [Pfig1] and results up to the critical point by loffe and
Schonmann [IS98]; and Bodineau [Bodgg] in d = 3, see also results up to the
critical point by Cerf and Pisztora [CPoo] and the bibliographical review in [BIVoo,
Section 1.3.4].

An easier point of entry to study phase segregation phenomena for ¢* models
is given by surface order large deviation estimates for the average magnetisation of
finite volume approximations. For the Ising model, these type of estimates were first
established in d = 2 by Schonmann [Sch87] and later extended up to the critical point
by Chayes, Chayes, and Schonmann [CCS87]; in d = 3 they were first established
by Pisztora [Pisg6]. They are related to the Wulff constructions, which actually
allow one to characterise the large deviations for the average magnetisation. See
[BIVoo]. Moreover, they should be contrasted with the volume order large deviations
established for the finite volume average magnetisation in the high temperature
regime where there is no phase coexistence [CF86, Ell85, FO88, OlI88].

3.2.2 The Glauber dynamics of ¢*

The Glauber dynamics of v y, the finite volume approximations of v, is given by
the singular stochastic PDE

4
Oy — A)D = ——0 4+ (4+ 0)D + /2
( ) 3 ( ) (36)

(I)(O> ) = ¢o

where ® € S'(R, x T%) is a space-time Schwartz distribution, ¢ is a suitable
initial condition, the infinite constant indicates renormalisation, and & is space-time
white noise. This equation is (a version of) the dynamical ¢* model and has its
origins in the theory of stochastic quantisation [PW81]. It also arises naturally
as the continuum limit of Glauber dynamics of Ising-type models: this has been
established for d = 2 in [MW 17a] and is conjectured to hold for d = 3.

There is now a fairly complete well-posedness theory of (3.6) for d = 2 and 3.
The local well-posedness for d = 2 is classical [DPDo3] and global well-posedness
on R? has also been established [MW 17c]. The local well-posedness for d = 3 was
a major breakthrough in stochastic analysis during the last decade and there are now
approaches using regularity structures [Hai14, Hai16], paracontrolled distributions
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[GIP15, CC18], and renormalisation group [Kup16]. Global well-posedness on
finite volumes was established in [MW17b] and then later extended to infinite
volume [GH19, MW18].

By contrast, the long-time/large-scale behaviour of this equation is less under-
stood. On the one hand, in finite volumes one can show that solutions are Markov
processes that are reversible with respect to g y and admit a spectral gap Ag x > 0
- a quantity whose inverse, which is called the relaxation time, governs the rate
at which variances converge to equilibrium. See [TW18, HM18a, HS19, ZZ18a].
However, these results are not quantitative and very little is known about the de-
pendency of A\g x on 3 and N. Indeed, due to phase transition one expects that the
dynamics in infinite volume does not admit a unique invariant measure when [ is
sufficiently large. Thus, one expects the limiting behaviour of A\g x as N — o0 to
be very sensitive to the choice of (.

This phenomenon has been well-studied for the Glauber dynamics of the 2D
Ising model, where a relatively complete picture has been established (in higher
dimensions it is less complete). The relaxation times for the Ising dynamics on
the 2D torus of sidelength N undergo the following trichotomy as N — oo: in the
high temperature regime, they are uniformly bounded in N [AH87, MOog4]; in the
low temperature regime, they are exponential in /N [Sch87, CCS87, Tho89, MOg4,
CGMS96]; and at criticality, they are polynomial in N [Holg1, LS12]. It would
be interesting to see whether such a trichotomy holds for the relaxation times of
dynamical ¢*.

4 Main contributions

In this thesis, we solve two problems concerning the statistical mechanics of Eu-
clidean field theories in the physically relevant dimension d = 3. One of the reasons
why both of these problems had remained open is the difficulties in handling ul-
traviolet divergences in d = 3: previous methods were either too difficult or too
delicate to be incorporated successfully with statistical mechanics arguments. The
key advancement that has enabled us to attack these problems is the new varia-
tional approach to ultraviolet stability for ¢ developed by Barashkov and Gubinelli
[BG19], which in turn was inspired by methods developed in the context of singular
stochastic PDE:s in the last decade [Hai14, GIP15]. The common theme underlying
our contributions is the development of this variational approach in the context of
understanding the statistical mechanics of Euclidean field theories in d = 3.

The first contribution of this thesis is to establish the quasi-invariance of Gaussian
measures supported on Sobolev spaces under the dynamics of the cubic nonlinear
wave equation in three dimensions.

Contribution 1. Let s > 4 be an even integer. Then, [is is quasi-invariant under
the dynamics of the defocusing cubic nonlinear wave equation on T3.
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This is based on the article "Quasi-invariant Gaussian measures for the nonlinear
wave equation in three dimensions", which is joint work with Tadahiro Oh, Nikolay
Tzvetkov, and Hendrik Weber [GOTW 18].

We adopt the general strategy of [Tzvis] and study quasi-invariance of the
Gaussian measures /i, indirectly by studying non-Gaussian measures that arise
naturally due to the presence of the nonlinearity. The two key steps in this strategy
are (i) the construction of the non-Gaussian measure and (ii) an energy estimate
on the time derivative of the modified Hamiltonian (that is, the Hamiltonian of the
Gaussian measure plus a correction term induced by the presence of the nonlinearity).

In [OT20], this strategy was used to prove the analogue of this result for d =
2. This was done by introducing a simultaneous renormalisation on the modified
Hamiltonian and its time derivative (this, in particular, allows one to make sense of
the nonlinear correction term), and then performing a delicate analysis centered on
a quadrilinear Littlewood-Paley expansion. Their analysis does not extend to d = 3
because of difficulties in both steps (i) and (ii) of the above strategy.

To prove our result, we combine use of the variational formula, deterministic
growth bound on solutions, and stochastic estimates on random distributions to
both a) construct the relevant non-Gaussian measures and b) establish softer energy
estimates that are sufficient to prove quasi-invariance. This results in a significantly
simpler proof of quasi-invariance in the harder, physically relevant three-dimensional
case as compared with the two-dimensional case.

The second contribution of this thesis is the development of quantitative methods
(in the spirit of [GJS75]) to establish phase transition for ¢3, and subsequent use of
these methods to initiate the study of phase segregation for this model and quantify
the decay of the spectral gap for its Glauber dynamics. This is based on the article
"Phase transitions for ¢3", which is joint work with Ajay Chandra and Hendrik
Weber [CGW2o0].

We study the behaviour of the average magnetisation

1
= 3 .

my(¢) o(x)dx

for fields ¢ distributed according to vg x. Our main result is to establish a surface
order upper bound on large deviations for my. We state it for d = 3 below, but an
analogue also holds for d = 2.

Contribution 2. For any ( € (0, 1), there exists C = C(() > 0 such that, for 3 and
N sufficiently large,

VN <mN e (—¢/8, C\/B)) < e OVANT, (4.1)

The main difficulty in establishing this result is to handle the ultraviolet diver-
gences of v y whilst preserving the structure of the low temperature potential. We
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do this by building on the variational approach to ultraviolet stability. Our insight
is to separate scales within the corresponding stochastic control problem through a
coarse-graining into an effective Hamiltonian and remainder. The effective Hamil-
tonian captures the macroscopic description of the system and is treated using low
temperature expansion techniques adapted from [GJS76b]. The remainder contains
the ultraviolet divergences and these are killed using the renormalisation techniques
of [BG19].

Morover, we adapt arguments which were used by Bodineau, Velenik, and Ioffe
[BIVoo] in the context of equilibrium crystal shapes of discrete spin models, to study
phase segregation for ¢3. In particular, we adapt them to handle a block-averaged
model with unbounded spins. Technically, this requires control over large fields.

A direct implication of our result is the exponential explosion of relaxation times
in the infinite volume limit provided [ is sufficiently large. This is a step towards
establishing phase transition for the relaxation times of dynamical ¢?.

5 The Boué-Dupuis formula in the simplest setting

To close the main body of this introduction, we discuss our main tool - the Boué-
Dupuis variational formula for expectations of functionals of Brownian motion - in
its simplest setting. The use of this formula in the context of Euclidean field theory
in the spirit of [BG19] is explored at depth in the next two parts of this thesis.

We equip 2 = C([0, 1]; R) with its Borel o-algebra and let P be the probability
measure such that the coordinate process B, is a Brownian motion. We write E
to denote expectation with respect to P. We work on the filtered probability space
(Q, o, (dy)o<i<1, P), where o is the P-completion of the Borel o-alebra on (2 and
(F+)o<t<1 is the natural filtration induced by B augmented with P-null sets of of.

We now define the space of drifts for our control problem. Let H be the space of
processes v, that are P-almost surely in L?([0, 1]; R) and progressively measurable
with respect to (s;)o<i<1. It is convenient in applications, including to show the
ultraviolet stability of ¢3, to also work with bounded drifts H;, < H. These are
defined as follows: for every M € N, let H; 5, < H be drifts such that P-almost
surely we have Sé v2ds < M. Then, let H, = J,;cy Hpn. Finally, in the proof
of the Boué-Dupuis formula, it is convenient to work with simple drifts Hy < Hi,.
These are the drifts v of the form

k

Us = Z Fjl(tjvtjﬂ](s)

=1

where ke N, 0=t <--- <ty =T,and N e N, F; : R — Ris F;,-measurable,
and |Fj| < N P-almost surely.
The following theorem is the Boué-Dupuis formula.
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Theorem 5.1. Let # : () — R be bounded and measurable. Then,

%(BJrJOvtdt) + §L vtdt]

where the infimum is over v € H or H,.

—logEe *B) = infE

Proof. Theorem 5.1 was first established in [BDg8] but we follow the proof in
[BD19g, Chapters 8.1.3-8.1.4]. The upper and lower bounds are established in
Sections 5.1 and 5.2, respectively. U

Remark 5.2. Various improvements/extensions of Theorem 5.1 exist. For example,
see [Usti4] for a version with # measurable and satisfying certain integrability
conditions. See also [Lehi3 ] for a simplified version of Theorem 5.1 that is sufficient
to analyse functional inequalities, i.e. logarithmic Sobolev and Brascamp-Lieb
inequalities.

5.1 Proof of Theorem 5.1: upper bound

We are going to show that for any v e Hj,

1

' 1
log Ee ") < E[% (B + f vtdt> 5 J vfdt]. (5.1)
0 0

Showing that this bound extends to all v € H (and, hence, all v € Hj) follows by
approximation arguments. See [BD19g, Chapter 8.1.3].
Our starting point is a representation of the classical Gibbs variational principle.

Lemma 5.3. Let Jil1(S2) be the space of probability measures on (2, o). Then,

~logEe ™ ®) — inf |Eq%(B) + R(Q|P)|
: it [Ee(m) + R(QIP)
where Eq denotes expectation with respect to Q and R(Q|P) = Eg[log 93] is
the relative entropy (with the convention that R(Q|P) = oo if Q is not absolutely
continuous with respect to IP).

Moreover, the infimum is obtained at the measure QP with density

d@opt e—%’(B)
AP~ Ee#(B)

Proof. Tt suffices to consider Q € J(,(€2) absolutely continuous with respect to P.
Then, by using the definition of Q°,

Eo# (B) + R(Q|P) = Eqg [%(B) +log %]
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dQer dQ
P o8 d@opt]

— Eq [%(B) — H(B) — log Ee™® 1 log

— Eq|%(B) + log

dQ ]
dQort
= —logEe ") 4 R(Q[ Q™).

We are done with the observation that R(Q||Q°") > 0 with equality if and only
ifQ = Q. 0

For any © € H,, denote by Q7 the measure with density

0
dQ° _ geas- 15w

1P (5.2)

Note that the stochastic exponential in (5.2) has expectation 1 and hence Q7 is a
probability measure. See e.g. [RY13, Proposition 1.15, Chapter VIII]. By Gir-
sanov’s theorem [RY 13, Theorem 1.4, Chapter VIII], the process B® = B — So Uedt
is a Brownian motion under the measure Q.

Now fix v € H,. By direct calculation one can show that there exists v € H such
that the distribution of (B?, ) under QY is equal to the distribution of (B, v) under
P. See [BD19g, Lemma 8.7]. Applying the variational principle in Lemma 5.3 with
the choice Q = QP then yields

—logEe*®) < By [%(B) + R(@f’HIP’)].

First, note that by Girsanov’s theorem and the definition of v,

Eq:% (B) = Eqo|% (B + L dt) | = E|7 (B + L wdt)| (53

Second,

: 1 1 1 1 B 1 1
R(Q|P) = E@ﬁ[ L 5,dB; — §L 17t2dt] - E@ﬁ[ L BB} + 5 L afdt]
1 (5.4)

— By [% Ll wdt| = E[%L vidt|

where in the first equality we have used the definition of QY, in the second equality

we have used Girsanov’s theorem, in the third equality we have used that So 0;dB}

is a martingale, and in the last equality we have used the definition of v;.
Combining (5.3) and (5.4) establishes (5.1).
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5.2 Proof of Theorem 5.1: lower bound

We restrict to the case where % (B) is of the form:
%(B) - h(Bt17 Btg - Bt17 e 7Btk - Btk—l)

where ke N,0 =t; < --- <t = T,and h : R¥ — R is smooth and compactly
supported.

The advantage of this regularisation is that we are able to construct an explicit
minimiser for the corresponding variational problem: i.e., we show that there exists
u € H, < H such that

. 1 1
~logEe~%*®) — E[% (B + J utdt> + §f ufdt].
0 0

The extension to measurable and bounded 7 then requires tedious but straightfor-
ward approximation arguments, so we omit them. Note that the infimum in the
stochastic control problem may not be attained for general #. See [BD19, Chapter
8.1.4] for more details on this approximation procedure.

The key tool to construct minimisers is given in the following lemma.

Lemma 5.4. FixT > 0and m € N. Let g : R™ x R — R be smooth and compactly
supported, and define V : [0,T] x R™ x R — R by

V(t,z,z) = —log Be 9(a+Br—),
Then,
o 2 — V(t, z,x) is smooth and compactly supported for all (t,x) € [0, T] x R;

o z — V(t,z, x) is smooth with bounded derivatives of all order for all (t, z) €
[0, T] x R™.

Moreover, for z € R™, let t — U(z,t) be the unique solution to the equation

t
U(z,t) = —J 0.V (s,2,U(z,s))ds + By
0

and define u(t) = —0,V (t,z,U(z,t)).
Then,

— log Ee 9(=:B1) — E[g (z, B+ f utdt) + % JT ufdt]. (5-5)
0 0
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Proof. This lemma is classical in stochastic control theory. Indeed, by the Feynman-
Kac formula, Z = Re9(=#+51—) golves a linear PDE. From this, one gets that
V' = —log Z solves a nonlinear PDE called a Hamilton-Jacobi-Bellman equation.
As such, V' can be interpreted as a cost function for a stochastic control problem.
Since V' is smooth, standard arguments can be used to construct a minimiser. See
[FSo6, Chapter VI]. ]

We define a sequence of potentials V; : R? — R for j € {1,...,k} as follows:
let Vi, = h. Forje{l,...,k— 1} and z; € R/, let

Vj(zj) = —log Eeit+1Gi Bt =By)

Using the independence of Brownian increments, we can rewrite this as a conditional
expectation

e Viz) = e Vit1(zi,Be; 1 —By) _ E[e—‘/j+1(zj73tj+1—3tj)|dt_]‘
j

Then,
Vo = —logEe "1P1) = _]og Ee~#(P)

where the first equality is by definition and the second is by successive conditioning.
Thus, we can interpret the sequence of potentials (V);<;<) as renormalisations of
the potential V) = — log Ee=*(B),

We construct a minimiser to the stochastic control problem associated to Vj,
which is what we are interested in, by analysing the stochastic control problems
associated to the renormalised potentials starting with j = k and then running
backwards. In particular, we apply Lemma 5.4 to construct minimisers of the control
problem associated to V; for times ¢ € [¢;,;+1) and then glue these minimisers
together.

Let (U(zj,t)),<t<t,,, be the solution of the equation

i1
U(zj,t) = —J 0:Vit1(s,25,U(z4,5))ds + B(t) — B(t;).
tj
Define the process u € Hy, by u(t) = —0,V;41(t, Z;,U(Z;,t)) for t € [t;,tj11),
where Z; = (By,, By, — By, ..., By, — By,_,). Then, by recursively applying (5.5)
starting from j = k and running backwards, we obtain:

t1 to
“logEe*®) — E[h(Btl +f widt, By, — By, + J wedt,
0 t1
1

tr 1
PN Btk — Btk—l + f utdt> + —f U?dt]
t 2 0

k—1

_ E[% (B + L utdt> 4 %f: ufdt]

which completes the proof with this specific choice of # .
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6 Thesis organisation

The remainder of this thesis is organised into three parts. Part II concerns quasi-
invariant Gaussian measures of nonlinear wave equations. In the prologue, we begin
by proving the classical correspondence between conserved quantities and invariant
measures in finite dimensional Hamiltonian dynamics. Then, we discuss extending
this to the linear wave equation. The main body of this part consists of the work
[GOTW18], where we establish Contribution 1. In the epilogue, we discuss an
extension of our results that has since appeared in the literature.

Part III concerns phase transitions for the ¢* model. In the prologue, as a warm-
up for the arguments to come, we recall the classical contour bounds for the low
temperature Ising model. The main body of this part consists of the work [CGW20],
where we establish Contribution 2. In the epilogue, we sketch how our techniques
can be used with the Peierls’ argument of [GJS75] to establish phase transition for
¥s.

In Part IV we conclude this thesis with a discussion of future directions. In
particular, we discuss two interesting problems that seem within reach.



II. Nonlinear wave equations

Prologue

We begin this part by deriving the classical fact that Gibbs measures are invariant
under finite dimensional Hamiltonian dynamics.
Hamiltonian dynamics in finite dimensions are systems of ODEs of the form

dp

p (0.1)
a_
dt - VP%(pv q)

where p,q € R? are generalised momentum and position; V,, V, are gradients
in momentum and position space, respectively, and # : R® x R? — R is a (e.g.
smooth) Hamiltonian.

Note that, for solutions (p(t), q(t)) of (0.1), we have

d _ dp dq
dt%’(p,q) = Vp#(p,q) o + V% (p,q) il

Thus, the Hamiltonian 7€ is conserved.

We write @ : R x R® — RS to denote the flow of this ODE, i.e. ®(t)(po, qo)
is the solution to (0.1) with initial data (pyg,qe). Note that it is reversible, i.e.
O(t)~! = d(—t).

Let m be the Gibbs measure, i.e. the measure with density proportional to

e P9 dpdq.

Consider ®(t),m(A) for any measurable set A = RS and ¢ € R, where ®(t),m is the
pushforward of m under ®(¢). Note that by reversibility, ®(t).m(A) = m(P(—t)A).
Then,

0, ®(t),m(A) = 6, J e~ P9 dpdq
D(—t)A
=0, | e * @O ger(V, D(t V,d(t dpd
p puq I q paq p q

-, —0,7(®(t)(p, q)) - e ¥ PO et (V,0(¢)(p, q), V@ (t)(p. q))

+ e MEOPDY, L (— VF(D()(p,q)), Vo H (D(t)(p,q)))dpdq
—0
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where the first equality is by a standard change of variables, the second equality is by
direct calculation, and the third equality is by the conservation of 7 and fact that the
vector field 20 (t)(p,q) = (— V4 (2(t)(p,q)), Vp# (2(t)(p,q))) is divergence
free with respect to V, 4 = (Vp, V). Hence, m is invariant under ®. Note that this
argument is not special to the Gibbs measure; one can replace m by any measure
with density

% (0.9) dpdq

where # is conserved under (0.1).

The approach above, which is fundamentally Liouville’s theorem in statistical
physics, is still useful in the infinite dimensional context. Recall that the linear wave
equation is given by the system of PDEs

O =0
o = Au.

Moreover, recall that /i, is the Gaussian measure with formal density

(0.2)

T —1 sl g7
diis = Z; e 2" astidu

where H5T1(T%) = H**1(T4) x H*(T%) and @ = (u, v). Note that, for a solution
u(t) of (0.2),

d 12 . d s+1 2 s 2
Gl =5 [ 1A F P+ a)ifa
_ QJ (“A) 50 (CA) o 4 (—A)su - (—A)5 (Au)dz — 0
Td

where the third equality is by (fractional) integration by parts. Hence, |@ H% s
conserved under (0.2). A truncation argument in Fourier space along with Liouville’s
theorem for finite dimensional systems then establishes invariance. Details are given
in [Tzv15], where this approach is the first step to establishing quasi-invariance of
Gaussian measures under (nonlinear) Hamiltonian PDE:s.

Although the approach of the preceding paragraph is more in the spirit of what
we do in the upcoming sections, the invariance of the measures ji; under the linear
wave equation can be seen more elegantly by using rotation invariance of Gaussian
measures. We give the essential ideas but omit details. Samples from ji; can be
constructed as random Fourier series (so-called Karhunen-Loeve expansions) that
converge in He for every o < s — %. The solution map of the linear wave
equation acts as a rotation map on frequencies of functions belonging to He. As
a result, the solution of the linear wave equation with initial data sampled from /i
admits a random Fourier representation where each frequency is a rotation from
the frequencies of the initial data, hence it is distributed according to ji;. This
establishes invariance.
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1 Introduction

1.1 Main result

We consider the following defocusing cubic nonlinear wave equation (NLW) on the
three-dimensional torus T° = (R/Z)3:

O?u — Au+u® =0, (1.1)

where v : T x R — R is the unknown function. With v = J,u, we rewrite (1.1) in
the following vectorial form:
a =
{ w=v (1.2)

o = Au — ud.

Given o € R, let H(T?) denote the classical L*-based Sobolev space of order &
defined by the norm:

lul g = [<n)?a(n) e @),
where (-5 = (1 + | - |?)2 and 4 denotes the Fourier transform of u. A classical
argument yields global well-posedness of the Cauchy problem (1.2) in the Sobolev
spaces:
HO'(I’JI‘E}) def HO’(']I‘S) < Ho I(TS)
for o > 1 and, consequently, admits a global flow ®xpw (see Lemma 2.4 below) on
these spaces.

Given s € R, let ji; denote the Gaussian measure with Cameron-Martin space
H*"'(T?). Denoting @ = (u, v), the Gaussian measure jis has a formal density:

7 —1 sl g
diis = Z; e 2" A+t du

= [ Z;ke E0 Il o o500 g ) an(n).
nezs

Samples 4 = (u”,v*) from fis can be constructed via the following Karhunen-
Loeve expansions:?

hn(w)
e and v¥(z) = Z ———e™T (1.3)
s 1 s
nezs3 <n> " nezs <n>
where { ¢, }nezs and {h,},czs are collections of standard complex-valued Gaussian
variables which are independent modulo the conditiorf gn=9g-nand h, = h_,. It
is easy to see that the series (1.3) converge in L?(Q; H°(T?)) for

1
O'<S—§ (1.4)

"Henceforth, we drop the harmless factor 27.
2In particular, we impose that gg and h( are real-valued.
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and therefore the map
we N r— (u’,vY)

induces the Gaussian measure /is as a probability measure on He (T3) for the same
range of . Our main goal in this paper is to study the transport property of the
Gaussian measure /i, under the dynamics of (1.2). We state our main result.

Theorem 1.1. Let s > 4 be an even integer. Then, [is is quasi-invariant under
the dynamics of the defocusing cubic NLW (1.2) on T3. More precisely, for any
t € R, the Gaussian measure |is; and its pushforward under ®xpw(t) are mutually
absolutely continuous.

Theorem 1.1 ensures the propagation of almost sure properties of /i along the
flow. This is important because, in infinite dimensions, many interesting properties
concerning small-scale behavior under a Gaussian measure hold true with probability
o or 1. This is an implication of Fernique’s theorem (Theorem 2.7 in [DPZ14]);
under a Gaussian measure, any given norm is finite with probability o or 1. For
example, samples  of the Gaussian measure fi; almost surely belong to the LP-
based Sobolev spaces Wow (T3) for any p > 1 and more generally to the Besov
spaces, EZ‘; q(’]I‘3) for any p,q > 1, including the case p = ¢ = oo (Holder-Besov
space), provided that o satisfies (1.4). Theorem 1.1 then implies that these LP-based
regularities are transported along the nonlinear flow. An analogous statement for
deterministic initial data is expected to fail in general. See [Lit63, Per8o, Sogg3].

Theorem 1.1 is an addition to a series of recent results [Tzvig, OT17, OST18,
OT20, OTT19] that has made significant progress in the study of transport properties
of Gaussian measures under nonlinear Hamiltonian PDEs. The general strategy,
as introduced by the third author in [Tzv1s], is to study quasi-invariance of the
Gaussian measures /i, indirectly by studying weighted Gaussian measures, where
the weight corresponds to a correction term that arises due to the presence of the
nonlinearity. See Subsection 3.2. The two key steps in this strategy are (i) the
construction of the weighted Gaussian measure and (ii) an energy estimate on the
time derivative of the modified energy (that is, the energy of the Gaussian measure
plus the correction term). In [OT20], the second and third authors employed this
strategy and proved the analogue of Theorem 1.1 in the two-dimensional case. This
was done by introducing a simultaneous renormalization on the modified energy
functional and its time derivative and then performing a delicate analysis centered
on a quadrilinear Littlewood-Paley expansion.

As pointed out in [OT20], the argument in the two-dimensional case does not ex-
tend to the current three-dimensional setting. The proof of Theorem 1.1 uses two new
key ingredients. The first is the use of a variational formula in constructing weighted
Gaussian measures, inspired by Barashkov and Gubinelli [BG19]. The second new
ingredient appears in studying the growth of the truncated weighted Gaussian mea-
sures, where we combine a deterministic growth bound on solutions (as in a recent
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paper by Planchon, Visciglia, and the third author [PTV19]) with stochastic esti-
mates on random distributions (as in the two-dimensional case [OT20]). This hybrid
argument allows us to use a softer energy estimate to prove quasi-invariance. Our
simplification also comes from the use of Besov spaces in the spirit of [MWX17].
This results in a significantly simpler proof of quasi-invariance in the harder, physi-
cally relevant three-dimensional case as compared with the two-dimensional case.

1.2 Remarks and comments

(1) A slight modification of the proof of Theorem 1.1 shows that the Gaussian
measures /is are also quasi-invariant under the nonlinear Klein-Gordon equation:

Oiu = v (1.5)
o = (A —1)u—u? >

It is easy to see that ji, is invariant under the linear Klein-Gordon equation, i.e. re-
moving u® in (1.5), which trivially implies that almost sure properties of /i, are
transported along the flow of the linear dynamics. The addition of a defocusing cu-
bic nonlinearity into the equation destroys invariance but the quasi-invariance of /i
for (1.5) can be interpreted as saying that the nonlinear flow retains the small-scale
properties of the linear flow.

In order to obtain invariance of ji; under the linear wave equation, one would
need to replace { - » with | - | in (1.3), which would raise an issue at the zeroth Fourier
mode (see Remark 3.6). Nevertheless, in the study of small-scale properties of
solutions, this issue is irrelevant and one can easily show that /i, is quasi-invariant
under the linear wave equation. Theorem 1.1 then implies that the NLW dynamics
also retains the small-scale properties of the linear wave dynamics.

(i1) The restriction that s is an even integer in Theorem 1.1 comes from an appli-
cation of the classical Leibniz rule in order to derive the right correction term for
the modified energy and the weighted Gaussian measure. In terms of regularity
restrictions, the construction of the weighted Gaussian measure works for any real
5 > g (Proposition 3.7). Our argument for the energy estimate (Proposition 3.8)
only requires s > g but, in our derivation of a modified energy, we also use the
classical Leibniz rule for (—A)2 which only works if s is an even integer. It may be
possible to relax this second condition using a fractional Leibniz rule to go below
s = 4. At present, however, we do not know how to do this.

(i11)) Our new hybrid argument in proving Theorem 1.1 requires a softer energy
estimate than that in [OT20] and is also applicable to the two-dimensional case.
We point out, however, that the argument in [OT20], involving heavier multilinear
analysis, provides better quantitative information on the growth of the truncated
weighted Gaussian measures. See Remark 3.12. For example, the argument in
[OT20] allows us to prove higher LP-integrability of the Radon-Nikodym derivative
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of the weighted Gaussian measures (with an energy cutoff), while our proof of
Theorem 1.1 does not provide such extra information.

(iv) It would be of interest to investigate the quasi-invariance property of ji, for NLW
with a higher order nonlinearity or in higher dimensions. Our techniques appear to
carry over to higher order nonlinearities. This might even permit to analyze energy-
supercritical equations (such as the three-dimensional septic NLW), where global
well-posedness is not known. Consequently, one might aim to prove “local-in-time”
quasi-invariance (as stated in [Boug6a]). See also [PTV19] for an example of a
local-in-time quasi-invariance result. See also Remark 3.4 below.

(v) Quasi-invariance results such as Theorem 1.1 are complimentary to the study of
low regularity well-posedness with random initial data. Starting with the seminal
work of Bourgain [Boug4, Boug6b], there has been intensive study on the random
data Cauchy theory for nonlinear dispersive PDEs. There are two related directions
in this study. The first one is the study of invariant measures associated with conser-
vation laws such as Gibbs measures, in particular, the construction of almost sure
global-in-time dynamics via the so-called Bourgain’s invariant measure argument;
see [OT17, BOP19] for the references therein. The other is the study of almost
sure well-posedness with respect to random initial data. Here, one can often exploit
the higher LP-based regularity made accessible by randomization of initial data to
establish well-posedness below critical thresholds, where equations are ill-posed
in L2-based Sobolev spaces. In the context of NLW, see the work [BTo8, BT11]
by Burq and the third author for almost sure local well-posedness. There are also
globalization arguments in this probabilistic setting; see [BT11, Poc, OP16, OP17].
See also a general review [BOP19] on the subject.

As for the defocusing cubic NLW (1.2) on T3, the scaling symmetry induces the
critical regularity oy = % It is known that (1.2) is locally well-posed in H 7(T3)
foro > % while it is ill-posed for o < %; see [LS95, CCTo3, BTo8, OOT]. In
[BTo8, BT11], Burq and the third author proved almost sure global well-posedness
of (1.2) with respect to the random initial data in (1.3) for s > %, namely for o > 0.
In this regime, the flow ®ypw exists almost surely globally in time. Then, it is natural
to ask the following question.

Problem. Study the transport property of the Gaussian measures ji for low values of
5 > % in particular in the regime where the global-in-time dynamics is constructed
only probabilistically.

1.3 Organization

In Section 2, we introduce basic tools in our proof: Besov spaces, the Wiener
chaos estimate, the classical well-posedness theory of (1.2), and also deterministic
growth bounds. In Section 3, we present the proof of Theorem 1.1 assuming (i)
the construction of the weighted Gaussian measures (Proposition 3.7) and (i1) the
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energy estimate (Proposition 3.8). Section 4 is devoted to the construction of the
weighted Gaussian measures and, finally, Section 5 deals with the energy estimate.

2 Analytic and stochastic toolbox

2.1 On the phase space

Given N € N, we denote by 7 the frequency projector on the (spatial) frequencies

{In| < N}:
7T Nu Z un s
[n|<N
We then set
%N = 7TNL2<T3).
Namely, €y is the finite-dimensional vector space of real-valued trigonometric
polynomials of degree < N endowed with the restriction of the L?(T?) scalar
product. The product space €y x €y is a finite dimensional real inner-product
space and thus there is a canonical Lebesgue measure on this space, which we

denote by Ly. We also use (€y x €y)* to denote the orthogonal complement of

En x Gy in H7(T?), 0 < 5 — 1.

2.2 Besov spaces

Let B(&,r) denote the ball in R? of radius 7 > 0 centered at £ € R® and let f denote
the annulus B(0, 3)\B(0, 2). Letting Ny = N U {0}, we define a sequence {x;}jen,
by setting

oe]

Xo = X xi(-) =x(@27), and ZXJEl
=0

for some suitable ¥, x € CX(IR%; [0, 1]) such that supp(X) < B(0, 3) andsupp(y) <
d. We then define the Littlewood-Paley projector P;, j € Ny, by settlng

)= Y xmamer

nezs3

for u € D'(T?).
Given s € Rand 1 < p, g < o, the Besov space B;,Q(T?’) is the set of distribu-
tions u € '(T?) such that

Juls;, = [{271Psull iz} o, |, < - (2.1)

q
ej

(T%) x B;'(T?) and €*(T?) = €*(T?) x
) denotes the Holder-Besov space. Note

We use the conventions BS (T

°) =B,
G~ 1(T?), where C65('71"3) B, o (T°
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that (i) the parameter s measures differentiability and p measures integrability,
(ii) H*(T?) = Bj,(T?), and (iii) for s > 0 and not an integer, 6*(T%) coincides
with the classical Holder spaces; see [Graog].

Lemma 2.1. The following estimates hold.
(1) (interpolation) For 0 < 51 < S9, we have?’

51 s9—51

e llul 22 (2.2)

[ul e < fu

(ii) (immediate embeddings) Let s1,$2 € R and p1,p2,q1,q2 € [1,0]. Then, we
have

”u| Byl o < Hu| B2 4 for 81 < S9, p1 < Po, and q1 = qo,
lellzy oy = Wil forsi <, (23)
lullgy, ., < lulze < Julg |-

(iii) (algebra property) Let s > 0. Then, we have

luves < [ufe:|v]e:- (2.4)
(iv) (Besov embedding) Ler 1 < py < p; < 0, g € [1,0), and sy = s1+3(= —L).

D2 p1
Then, we have

Julgzy. < lelss., (25)
(v) (duality) Let s € Rand p,p', q,q € [1, 0] such that % + z% = % + % = 1. Then,
we have
‘ J wvdr| < |ulps, ‘UHB;SQ/’ (2.6)
T3 s

where §, uv dx denotes the duality pairing between B;, (T?) and B, (T?).
(vi) (fractional Leibniz rule) Let p,p1,p2,p3,ps € [1,0] such that le + p% =

pig + p% = %. Then, for every s > 0, we have

[ollzee + []zes 0] 5 (2.7)

luv]s;, < |uls; S

P1,9
(vi) (product estimate) Let s; < 0 < sy such that s1 + so > 0. Then, we have

@s2 - (2.8)

3We use the convention that the symbol < indicates that inessential constants are suppressed in
the inequality.

Juv]er < Jullee vl
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Proof. While these estimates are standard, we briefly discuss their proofs for read-
ers’ convenience. See also [BCD11] for details of the proofs in the non-periodic
case. The log convexity inequality (2.2) and the duality (2.6) follow from Holder’s
inequality. The first estimate in (2.3) is immediate from the definition (2.1), while the
second one in (2.3) follows from the ¢9'-summability of {2(31 s2)] } o, for 81 < $a.
The last estimate in (2.3) follows from the boundedness of the Littlewood- -Paley
projector P; and Minkowski’s inequality. The Besov embedding (2.5) is a direct
consequence of Bernstein’s inequality:

[Pl o < 295577 [Py oo

The algebra property (2.4) is immediate from the following paraproduct decompo-
sition due to Bony [Bon81]:

uY = Z Piu-S;v+ Z Z Pu-Pyv+ Z Spu - Pro (2.9)

7€Np JeNp |j—k|<1 keNg

with Holder’s inequality. Here, .S; is given by
Sju = Z Pku
k<j—2

The fractional Leibniz rule (2.7) also follows from the paraproduct decomposition
(2.9). In proving (2.7) for the resonant product, i.e. the second term on the right-hand
side of (2.9), one needs to proceed slightly more carefully:

S5 Lp o3

<| S 2029 Py o [P0 s
j=m—10 "

< Hu‘ Bs HUHL”’

p1.49

where we used Young’s and Holder’s inequalities together with the embedding:
LP2(T%) — By, ,,(T?) in the last step. See also Lemma 2.84 in [BCD11]. Lastly,
the product estimate (2.8) follows from a similar consideration. ]

2.3 Wiener chaos estimate

Let {g,}nen be a sequence of independent standard Gaussian random variables
defined on a probability space (2, F,P), where F is the o-algebra generated by this
sequence. Given k € Ny, we define the homogeneous Wiener chaoses %, to be the
closure (under L?(2)) of the span of Fourier-Hermite polynomials []_, Hy., (gn),
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where H; is the Hermite polynomial of degree j and k = Y,”_, k,.# Then, we have
the following Ito-Wiener decomposition:

0
L*(Q,F,P) = P %
k=0

See Theorem 1.1.1 in [Nuao6]. We have the following classical Wiener chaos
estimate.

Lemma 2.2. Let k € Ny. Then, we have

(B[X1)" < (0 - 0¥ (B[XP)° (2.10)
for any random variable X € ¥, and any 2 < p < o0.

The estimate (2.10) is a direct corollary to the hypercontractivity of the Ornstein-
Uhlenbeck semigroup due to Nelson [Nel66] and the fact that any element X € %
is an eigenfunction for the Ornstein-Uhlenbeck operator with eigenvalue —k.

For our purpose, we need the following three facts: (i) If Z is a linear combination
of {gn}, then Z € #,. (ii) For Z € %, the random variable Z* — E[Z?] € #,. (iii)
IfY, Z € %, are independent, then Y Z € %.

The next lemma gives a regularity criterion for stationary random distributions.
Recall that a random distribution u on T¢ is said to be stationary if u( - ) and u(zo+-)
have the same law for any zy € T. Moreover, we say that u € %, if u(yp) € #* for
any test function p € C*(T?).

Lemma 2.3. (i) Let u be a stationary random distribution on T, belonging to ¥,
for some k € Ny. Suppose that there exists sg € R such that

E[|Q(n)|*] < (ny=972% (2.11)

for any n € 74, Then, for any s < sy and finite p > 2, we have u € LP(§2; 6*(T?)).

(i) Let {uy} yen be a sequence of stationary random distributions on T belonging
to #y. for some k € Ny. Suppose that there exists sy € R such that uy satisfies (2.11)
for each N € N. Moreover, suppose that there exists 0 > 0 such that

EU@N(H) — @M(n)‘Z] < N—29<n>—d—250

for any n € Z* and any M > N > 1. Then, for any s < sq and finite p = 2, uy
converges to some u in LP(Q; 6*(T?)).

The proof is a straightforward computation with the Wiener chaos estimate
(Lemma 2.2). See [MWX17, Proposition 3.6] for details of the proof of Part (i).
Part (ii) follows from similar considerations.

4This implies that k,, = 0 except for finitely many n’s.
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2.4 Truncated NLW dynamics: well-posedness and approximation

In the following, we often work at the level of the truncated dynamics in order to
rigorously justify calculations. As such, in this subsection, we briefly go over the
well-posedness theory and approximation results of the following Cauchy problem
for the truncated NLW on T3:

o =
o = Au — 7rN((7rNu)3) (2.12)

(u’ U)‘t:o = (u0> Uo),

where N > 1 and 7y denotes the projector onto spatial frequencies {|n| < N}. We
also use the following shorthand notations:

Uy = TNU and UN = TTND.

We allow N = oo with the convention 7., = Id, which reduces (2.12) to (1.2).
For the (untruncated) NLW (1.2), the conserved energy is given by

1 1
E() = 5 JTS (|Vu|2 + Uz) + 1 Lg ut.

The truncated system (2.12) also has the following conserved energy:

En(u) = lj ([Vul® +v*) + }lf (myu)t. (2.13)
T3

2 -

In the following two lemmas, we state the classical well-posedness theory for
(2.12) and the relevant dynamical properties.

Lemma 2.4. Let 0 > 1 and N € N U {w}. Then, the truncated NLW (2.12) is
globally well-posed in H° (T3). Namely, given any (uo, vo) € H° (T?), there exists a
unique global solution to (2.12) in C'(R; H 7(T3)), where the dependence on initial
data is continuous. Moreover, if we denote by @y (t) the data-to-solution map at
time t, then ®(t) is a continuous bijection on H 7(T3) for every t € R, satisfying
the semigroup property:

Oy(t+7)=DN(t) o Pn(T)
foranyt, T e R

The global well-posedness result stated in Lemma 2.4 follows from a standard
local well-posedness theory along with the conservation of the truncated energy
En(@). See [OT20, Lemma 2.1] for the proof in the two-dimensional case.5 The
same proof applies to the three-dimensional case in view of the Sobolev embedding
H(T3) < L5(T?) (with a small modification at the zeroth frequency).

5This is in the context of the nonlinear Klein-Gordon equation but the proof can be easily adapted.
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Lemma 2.5. (i) (Growth bound) Given o > 1, we denote by By, the ball of radius

R>0inH 7(T3) centered at the origin. Then, for any given T > (, there exists
C(R,T) > 0 such that

QN (t)(Br) © Borr) (2.14)
foranyte [0,T] and N € N U {o0}.

(ii) (Approximation) Let o > 1, T' > 0, and K be a compact set in H 7(T3). Then,
for every € > 0, there exists Ny € N such that

[ @) (@) — P () (@) go(rs) < €
foranyte [0,T], i e K, and N = Ny. Hence, we have
O(t)(K) c Pn(t)(K + B.).

forany t € [0,T] and N = Ny. Here, ®(t) denotes the solution map P (t) =
Onrw (t) for the (untruncated) NLW (1.2).

Proof. The solution 4 = (u,v) to (2.12) satisfies the following Duhamel formula-
tion:

Psin((t —t)|V])

u(t) = S(t)(uo,vo) — J v T ((mnvuw)?) ()t
0 . (2.15)
v(t) = A:S(t)(uo, vo) — J cos((t —t')|V])mn ((myw)?®) (¢')dt,
0
where S(t) denotes the linear wave propagator given by
in(t
S(t)(ug, vo) = cos(t|V])ug + %vo.
From the fractional Leibniz rule (2.7) and (2.5), we have
[ o-r < [l ot lullze < lulmelulin (2.16)

for 0 = 1. Then, from (2.15) and (2.16) with the conservation of the truncated
energy Fy in (2.13), we have®

t
la@(t)l go < [[(uo, vo) | go + C(1 + Ilf)f0 t") e () 32t

t
< o)l + €1+ ) - B, ) | 1) (¢l gt

Hence, the growth bound (2.14) follows from Gronwall’s inequality.

The approximation property (ii) follows from a modification of the local well-
posedness argument. Since the argument is standard, we omit details. See, for
example, our previous works: Proposition 2.7 in [Tzv15] and Lemma 6.20/B.2 in
[OT17]. O

6The factor 1 + |t| appears in controlling the zeroth frequency: W =t—t.
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3 Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. We first present a general
framework of the strategy. We then introduce a renormalized energy and discuss
further refinements required for our problem. In Subsection 3.4, we prove Theorem
1.1 by assuming the construction of the weighted Gaussian measure (Proposition
3.7) and the renormalized energy estimate (Proposition 3.8). We present the proofs
of Propositions 3.7 and 3.8 in Sections 4 and 5.

3.1 General framework

In [Tzv1s], the third author introduced a general strategy, combining PDE tech-
niques and stochastic analysis to prove quasi-invariance of Gaussian measures under
nonlinear Hamiltonian PDE dynamics. In the following, we briefly describe a rough
idea behind this method [Tzv15, OT20], using NLW on T as an example. See also
[OT15] for a survey on this subject. Note that we keep our discussion at a formal
level and that some steps need to be justified by working at the level of the truncated
dynamics (2.12).

Let ® = ®ypw as in the previous section. In order to prove quasi-invariance
of ji; under ®, we would like to show fis(®(t)(A)) = 0 for any ¢t € R and any
measurable set A « H(T%) with ji,(A) = 0. Here, 0 < s + 1 — ¢ denotes the
regularity of samples on T¢ under ji,. The main idea is to study the evolution of

i (@(t)(A)) = Z;! f e~/ dii
@ (t)(A)

for a general measurable set A = H°(T¢) and to control the growth of /i,(®(t)(A))
in time. Here, the main goal is show a differential inequality of the form:

CR(B()(A) < O (@) (AN} G
forsome 0 < [ < 1and for p > 1 sufficiently large. Once (3.1) could be established,
Yudovich’s argument [ Yud63] or its refinement [OT20] when # = 1 would then yield
quasi-invariance for short times. Iterating the argument and using time-reversibility
of the equation yields quasi-invariance for all ¢ € R. In this argument, the linear
power of p in the prefactor of the right-hand side of (3.1) is crucial.

By applying a change-of-variable formula, we have

e I (32
A

For the truncated dynamics (2.12), the formula (3.2) can be justified via invariance
of the Lebesgue measure and bijectivity of the flow ® . See Lemma 3.9 below. Fix
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to € R. Then, by taking a time derivative, we arrive at

(1))

t=to

_ d _1 @)|1% .
i I (TG Pt B CH)

!
. dt(n@( )@l

This reduction of the analysis to that at ¢ = 0, exploiting the group property
O(tyg +t) = P(t)P(ty) was inspired from the work [TV14]. Suppose that we had
an effective energy estimate (with smoothing) of the form:

—_

dfi,.
t=0

H (t)(@)| 7

G| <Ol g, (3.4)

for some 6 < 2. Then, the desired estimate (3.1) would follow from (3.2), (3.3), and
(3.4) along with the Wiener chaos estimate (Lemma 2.2). Note that, in the energy
estlmate (3.4), we can afford to place two factors of # in the stronger Holder-Besov
G- -norm, while we need to place all the other factors in the (weaker) H! -norm,
which is controlled by the conserved energy E() in (2.13).

In [Tzv1s], the third author established an energy estimate of the form (3.4)
for the BBM equation by consideration in the spirit of quasilinear hyperbolic PDEs
(namely, integration by parts in x). Unfortunately, an energy estimate of the form
(3.4) does not hold in general for nonlinear Hamiltonian PDEs. In [OT17, OT20],
the second and third authors circumvented this problem by introducing a modified
energy:

Ey(u) = —HU\

Hs+1 + R5<6>

with a suitable correction term R,(u) such that the desired energy estimate of the
form (3.4) holds for this modified energy. By following the strategy described above,
they first established quasi-invariance of the weighted Gaussian measure associated
with this modified energy:

dp, = Z;'e " du-Z le=fs@ g

(with a cutoff on a conserved quantity). Then, quasi-invariance of /i followed from
the mutual absolute continuity of fis and .

For Schrodinger-type equations, modified energies were introduced by the nor-
mal form method (namely, integration by parts in time); see [OT17, OST18, FT19].
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In [OT20], the second and third authors derived a modified energy for NLW on T?
based on integration by parts in = but a certain renormalization was needed to control
singularity. We will describe the details of this derivation in the next subsection.

Summary: The study of quasi-invariance has therefore been reduced to two steps:
(i) the construction of the weighted Gaussian measure p; and (ii) establishing an

effective energy estimate on 0, Fs () ‘ o

3.2 Renormalized energy for NLW

In this subsection, we present a discussion on a modified energy for our problem. See
(3.18) below for the full modified energy. In the following, we fix o = s+1— g —e=

1 for some small ¢ > 0 and let By denotes the ball of radius R > 0 in H 7(T4)
centered at the origin. Fix a frequency cutoff size N and, instead of using (a suitable
truncated version of) the energy of /is, let us consider the following natural energy
to work with for the wave equation (see Remark 3.6):

1 1

_f (DSUN)Q + _f (DS+1UN)2,

2 Td 2 Td

where D* = (—A)2 denotes the Riesz potential of order s. Fix an even integer
s = 4 and let 4 = (u,v) be a solution to the truncated NLW (2.12). Then, the
Leibniz rule yields

&t[% Ld(DSUN)2 + %Ld(DSHUN)Q] = Ld(DQSvN)(—ui,)

=-3 DévyDuy u?\,
Td

(3.5)
+ Z Ca,ﬂ,vf Dvy - Qs n(un)un
|| +|B]+]v]=s T4
lal,|Bl,v|<s
X QS,N(UN)’BUN - Qsn(un) uy

for some combinatorial constants ¢, s, that depend only on s, where Qs n(un)*
denotes Q, v (un)s! - Qs n(uy)s? for a multi-index o = (o, ..., aq). Samples
@ under the Gaussian measure 7, belong almost surely to €7 (T%)\€*+'~2 (T%) for
oc<s+1-— g. The main issue is how to treat D*vy on the right-hand side of (3.5)
due to its low regularity o — 1. It turns out that all but the first term on the right-hand
side of (3.5) can be treated by integration by parts. See Remark 3.3. As for the first

term, recalling from (2.12) that vy = J;uy, we have

-3 | D’vyD’upn u?\,
Td
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3
— __atU (DsuN)%ﬁv] + 3f (D%uy)? vnuy. (3.6)
2 Td ']l‘d

The terms on the right-hand side of (3.6) are better behaved than that on the left-hand
side since D no longer falls on the less regular term v. This motivates us to define
a modified energy with a correction term of the form:

I N
Ru(#) = L (Dux )

When d = 1, this choice of the correction term allows us to define a suitable
modified energy and to construct the weighted Gaussian measure associated with
this modified energy (modulo an issue at the zeroth frequency). When d = 2 or 3,
however, we have u ¢ €*(T?) almost surely and thus the limiting expression (D*wu)?
is ill defined since it is the square of a distribution of negative regularity. Moreover,
the singular term (D*u)? appears in both terms on the right-hand side of (3.6). As
such, we have issues at the level of both the energy and its time derivative, which
propagate to both the construction of the weighted Gaussian measure and the energy
estimate.

Motivated by Euclidean quantum field theory, we introduce a renormalization.
This amounts to replacing (D*u)? by (D*u)?— oo, suitably interpreted; given N € N,
we replace (D*uy)? in (3.6) by Qs n(uy), where

Qs.n(f) def (D°f)* —on (3.7)

and o is given by

def s 1 log N ford = 2,
oN < Ez, [(D 7TNU)2] ~ Z — ~ {N for d — 3 (3.8)

as NV — oo. The crucial observation in [OT20] is that the effect of the renormaliza-
tion for the two terms on the right-hand side in (3.6) precisely cancels each other,

since
3 2
——0NO; uy | + 3on vyuy = 0,
2 Td Td

where we used the equation (2.12). As a result, we obtain

-3 | D’vyD’uy u?\,
’I[‘d
3

:_Eat[ QS,NmN)u?V]m Qunl(un)onun.  (3:9)
Td Td
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In view of (3.5) and (3.9), we define the renormalized energy &; y (@) by

1 1
&,N(ﬁ) _ _J (Ds+1u)2 + _J (st)Q
2 Td 2 Td

3
+ §J Qs,N(uN)u?\r (3.10)
']Td
Then, we have

atéas,N(ﬁ) =3 . QS,N(UN)UNUN
T

+ Z Co By Ld Duy - Qg n(un)uy (3.11)

|al+|B|+]v|=s
el |8l vl <s

x Qsn(un)un - Qs n(un) un.

Note that we have renormalized both the energy and its time derivative at the same
time. The considerations above motivate the definition of the renormalized weighted
Gaussian measure:

dﬁs,r,N = Zs_’l7r1{EN(ﬁ)<r}6_gS’N(ﬁ)dﬁ7 (3'12)

where Fy () is as in (2.13). The energy cutoff in (3.12) is necessary to construct
this measure due to an issue with the zeroth frequency (see Remark 3.6).

Remark 3.1. If « is distributed according to the Gaussian measure /i , then we can
apply Wick renormalization to (D*uy)? and obtain the Wick power : (D%uy)? :.
Here, Wick renormalization corresponds the orthogonal projection onto a (second)
homogeneous Wiener chaos under L?(ji,). In this case, we have

. (DSUN)Z L= QS,N(UN)-

This renormalization allows us to take a limit : (Du)?: = limy o : (D%uy)?:ina
suitable space (see Lemmas 4.1 and 4.6 below). In the discussion above for deriving
the renormalized energy &; y, however, 4 denotes a solution to (2.12) and a notation
such as : (D*uy)?: is not well defined. This is the reason we needed to introduce

QS,N in (37)

Remark 3.2. This simultaneous renormalization of the energy and its time deriva-
tive does not introduce any modification to the original truncated equation (2.12)
since its Hamiltonian Fy (@) remains unchanged. We also point out two (related)
interesting observations: (i) renormalization is usually applied in the handling of
rough functions, whereas we use renormalization in the context of high regularity
solutions, and (ii) the simultaneous renormalization is introduced only as a tool to
prove Theorem 1.1.
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Remark 3.3. In view of the regularity of « under ji,, it may seem that some of
the lower order terms under the sum on the right-hand side of (3.11) are divergent
as N — oo: for example, when |a| = s — 1, || = 1, and v = 0. However, by
integration by parts (in ) and the independence of v and v, they turn out to be
convergent without any renormalization. See the proof of Proposition 3.8.

¢ Problem (i): Construction of the weighted Gaussian measure. The problem of
constructing the limiting weighted Gaussian measure measure ,B“;T = limy_,o ﬁsm N
bears some similarity with the problem of constructing the ®*-measures. First of all,
the need for renormalization in (3.10) means that the positivity of the random variable
§(D*u)?u? is destroyed. Moreover, there is a similarity between the measures
themselves; despite not having the simple algebraic structure of the ®*-measure, the
term {(D%u)?u? is quartic in u. In [OT20], the second and third authors exploited
these similarities and modified Nelson’s construction of the ®3-measure to construct
the desired weighted Gaussian measure ﬁsm in the two-dimensional case. The
construction in [OT20] heavily uses the logarithmic divergence rate (3.8) of the
renormalization constants and uses the energy cutoff 1z, (u..)<,}, While they did not
make use of the positive quartic potential energy term }L fut.

The analogy between ﬁsyr and the ®*-measures starts to break down in the three-
dimensiogal case. On the one hand, Nelson’s construction fails for both. For the
measure s ,, this is due to the algebraic divergence rate (3.8) of the renormalization
constants oy; see Remark 3.6 in [OT20]. For the @g—measure, the issue is more
subtle and further renormalization beyond Wick renormalization is required. As
a consequence, the resulting ®3-measure is expected to be singular with respect
to its underlying Gaussian measure. We point out that one expects a priori that
the renormalizations necessary for ﬁsﬂ. are different from the ®3-measure since the
singular term in {(D*u)?u? is quadratic, not quartic, in u.

In order to construct p:w, we use the techniques introduced in a recent paper
[BG19] by Barashkov and Gubinelli, where the partition functions of the ®3- and
®3-measures were analyzed by way of variational formulas. In particular, we show
that the measures ﬁsm are still absolutely continuous with respect to the underlying

Gaussian measure.” One technical issue with the construction of p;, is that it is
not clear whether the term §(D%u)?u® is good enough to control the large-scale
behavior (= low frequency part) of u. In the following, we circumvent this problem
by introducing a new renormalized energy E y (%) in (3.18) by adding the energy
Ex(u) in (2.13) (plus an extra term controlling the zeroth Fourier coefficient of w)
to the renormalized energy &; y(u) in (3.10). This allows us to use the potential

7In order to avoid an issue at the zeroth frequency, we need to make a modification to the renor-
malized energy & n (). This leads to a slightly different weighted Gaussian measure. See (3.18),
(3.20), and (3.21) below.
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energy term 1 {u} in (2.13) to get rid of the need of the energy cutoff 1z, 7)</ -
The effect is to change the underlying Gaussian measure /i, to a different Gaussian
measure ;, which will be shown to be equivalent to i, by Kakutani’s theorem.
See Lemma 3.5 below. The measures that we construct are simple yet interesting
examples of measures that require only Wick renormalization but for which Nelson’s
construction fails.

e Problem (ii): Energy estimate. In the two-dimensional case [OT20], it was not
possible to establish an energy estimate of the form (3.4). Instead, it was shown that

OcEls v (T @ (8)(10)) 0| < C(|tl] g ) F' (1) (3.13)

for a suitable renormalized energy. Here, F'(#) denotes complicated expressions
that contain high regularity information on « such as the Wo*_norm as well as the
renormalized second power STQ Qs n(un). As mentioned above, all but two factors
need to be placed in the weaker H'-norm so that F'(i) is at most quadratic in ,
which implies that F'(@) € #,. This allows us to obtain the right growth bound
of the form (3.1) after applying the Wiener chaos estimate (Lemma 2.2). Here, it
is crucial to study the energy estimate (3.13) at time ¢t = 0 to exploit the Gaussian
initial data in in (1.3). In [OT20], the energy estimate (3.13) involved a delicate
quadrilinear Littlewood-Paley expansion balancing the interplay between the energy
conservation and the higher order regularity. As pointed out in [OT20], the estimate
of the form (3.13) fails for the three-dimensional case.

In a recent paper [PTV19], Planchon, Visciglia, and the third author proved
quasi-invariance of the Gaussian measures under the dynamics of the (super-)quintic
nonlinear Schrédinger equations (NLS) on T by establishing a novel energy estimate.
The idea is to exploit a deterministic growth bound (2.14) on solutions. Then, the
required energy estimate takes the following form:8

OB, (mx@n(0)(@)] < C(1+ [n(t)(@)%, ). (3.14)

Here, k£ > 0 can be any positive number. The main point is that if we start dynamics
with a measurable set A — Bp, then (3.14) with the growth bound (2.14) yields

1a(@) - B (@ (8)(@)| < C|Upegy (@) (1+ [5,)| < C(R)"

forany ¢ € [0, 7] and N € Nu {co}. This control allows us to prove quasi-invariance
for each measurable set A — Bpg (in the sense of (3.24) below). Then, by a soft
argument, we can conclude quasi-invariance of the Gaussian measure /i;. The main

8In the case of NLS, we have u instead of @ = (u, v). For the sake of presentation, we keep the
notation adapted to the NLW context.
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advantage of this argument is that we are allowed to place any power k in the stronger
He-norm. Note that the energy estimate (3.14) is entirely deterministic and hence
there is no need to reduce the analysis to time ¢t = 0.

In this paper, we combine these two approaches described above and establish
an energy estimate of the form:

1, (1) - O Es N(mn P () (1))]i=0| < C([d] 7,) F (),

where we use the deterministic growth bound (2.14) to control C(|] 5. ), while
we use the Wiener chaos estimate (Lemma 2.2) to control F(#). The fact that we
have access to the stronger H?-norm (rather than H'-norm as in (3.13)) allows us
to get by with a softer energy estimate. Moreover, in our case, F'(%) is given in
an explicit manner (see Proposition 5.1). It contains products of derivatives of uy
and vy as well as the €' ~°-norm of the Wick power Qs y(uy) = (Duy)? — oy.
By proceeding as in [MWX17], we establish regularity properties of these random
distributions in Proposition 4.3. These two points lead to a significantly simpler
proof of quasi-invariance than the two-dimensional case [OT20].

Remark 3.4. Following the discussion of Remark (iv) in Subsection 1.2, one might
attempt to implement an analogous construction of weighted Gaussian measure in the
case of NLW with a higher order nonlinearity or in higher dimensions. Higher order
nonlinearities would result in a higher power of the regular part of the renormalized
energy, while the singular part would remain quadratic, i.e. (D*u)?. Thus, the
construction of these measures seems tractable. This is in sharp contrast with the
construction of the 2" measures, where higher order nonlinearities result in higher
powers of distributions which makes the construction of such measures impossible
(for n > 3). Higher dimensions would result in a more singular quadratic part.

3.3 Statements of key results

In the remaining part of this paper, we fix d = 3. In this subsection, we introduce
a new renormalized energy and then state the key propositions in proving Theorem
1.1.

We first introduce a new Gaussian measure, whose energy is more suitable
for analysis on NLW (but still controls the zeroth frequency). Define a Gaussian
measure s via the following Karhunen-Loéve expansions:

E@) = gow) 4 Y @) e

1
neznoy (Inf? + [nf>e*2)2

UW(:L,) _ Z hTL(w) ein-ac7

nez3 (1 + ’n‘2s)%

(3-15)
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where {g,, } ez and {h, },czs are as in (1.3). Then, the formal density of /; is given
by

dv, = Z7te 1@,

o1 2 9 1 s+1, 2
Hy (1) = = u)] +=| |Vul*+=| (D" u)
2 T3 2 T3 2 T3

1 1
+ —f v? + —J (D*v)2.
2 T3 2 T3

Lemma 3.5. Let s > %. Then, the Gaussian measures [is and Us are equivalent.

where

(3.16)

The proof of this lemma is based on a simple application of Kakutani’s theorem
[Kak438]; see the proof of Lemma 6.1 in [OT20] for details in the two-dimensional
case.

Remark 3.6. The linear wave equation conserves the homogeneous Sobolev norm:

2

_ s+1,\2 s,.\2
. Ls(D u)” + LS(D v)°.

]

. . . . . —1u)2
Hence, we would like to work with Gaussian measures with formal density e > el

These measures do not exist as probability measures since the zeroth frequency is
not controlled. This is the reason we chose to include go(w) in (3.15), giving rise to
the first term in H,(@) defined in (3.16).

As we see below, we add the truncated energy Ey (%) in (2.13) to construct the
full renormalized energy, which explains the appearance of the terms with |Vul|?
and v? in (3.16). This addition of the truncated energy E () allows us to include
the quartic potential energy igujlv without changing the time derivative of the
renormalized energy; see (3.19). We point out that this quartic homogeneity plays
an important role in the construction of the weighted Gaussian measure.

Given N € N, we redefine the parameter oy, adapted to the new Gaussian
measure s, by

def . n25
o B (D] = 2 v e Gap

= ‘n‘2 + ‘n‘28+2

1<|n|<N

as N — o0. We also redefine the operator ()5 x in (3.7) with this new definition of
on. In the remaining part of this paper, we will use these new definitions for o and

QS,N'
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We now define the full renormalized energy E; (@) by

1 2
ES’N(ﬁ) = (a@S’N(ﬁ) + EN(I_O + E(J UN) s (318)
T3

where &  is asin (3.10) and E)y is the truncated energy in (2.13). Then, it follows
from (3.11) and the conservation of the truncated energy that

O Es n(W) =3 | Qsn(un)vnuy
T3

+ Y Capn | Duw - Qen(un)uy
T3

o+ Bl +|v]=s

o], 18], 1vI<s (3.19)

X QS,N(UN)ﬁuN : QS,N(UN)’YUN

(L) (L)

for any solution « to the truncated NLW (2.12). Moreover, from (3.16), we have

ESJV(’J) = Hs(ﬁ) + R&N(U),

where
3 2 ]' 4
Ron(u) =5 | Qsnl(un)uy +~ [ uy
2 T3 4 "]1‘3
5 (3.20)

1
= §J ((DSUN>2—O'N)U?V+ Zlf ujlv
T3 T3

We are now ready to state the two key ingredients for proving Theorem 1.1: (i)
the construction of the weighted Gaussian measures and (ii) the renormalized energy
estimate.

Define the weighted Gaussian measure ps y by

dps,n (1) = ﬁij]\l,e_Rs’N(“)dﬁs(ﬁ), (3.21)
where Z; y is the normalization constant. The following proposition establishes
uniform integrability of the density e+~ (%) in (3.21), which allows us to construct
the limiting weighted Gaussian measure p by

dp, () = e By, (),

s

where R (u) is a limit of R y(u); see Lemma 4.1.
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Proposition 3.7 (Construction of the weighted Gaussian measure). Let s > % Then,
the weighted Gaussian measures ps n converges strongly to p,. Namely, we have

lim ﬁs,N(A> = ﬁs<A>
N—o

for any measurable set A — ﬁ”(T3), o<Ss— % Moreover, given any finite p > 1,
the sequence {e‘RS’N (“)} Nen and e W) are uniformly bounded in LP(7,). As a
consequence, ps is equivalent to Us.

Next, we state the key renormalized energy estimate. Recall that Bp denotes the
ball of radius R > 0 in H°(T?) centered at the origin. We denote by ® y(¢) the flow
of the truncated NLW dynamics (2.12).

Proposition 3.8 (Renormalized energy estimate). Let s > 4 be an even integer.
Then, given R > 0, there is a constant C' = C(R) > 0 such that

{ | 1@

for any finite p > 1 and any N € N.

P

OB, N (@ (1)()) |t_0(pdﬁs(a>} <Cp

Before we state the main proposition on the evolution of the truncated mea-
sures s v, let us state the following change-of-variable formula. Given N e N,
let €y = 7TNL2(']I‘3) and we endow €y x €y with the Lebesgue measure Ly as
in Section 2. Then, by viewing the Gaussian measure /; as a product measure on
(€x x €n) x (€x x €x)*, we can write the truncated weighted Gaussian measure
ps.n defined in (3.21) as

S,

dps (i) = 2y e B ) g (7))
. (3.22)

I

Z e BNt 4Ly @ disy (i),

where Zs, n denotes the normalization constant and ﬁj;N denotes the marginal Gaus-
sian measure of 7, on (€y x 6 N)L. Then, we have the following change-of-variable
formula.

Lemma 3.9. Let s > % and N € N. Then, we have

Ao (@x(8)(A)) = 2% f e BN NN OD) 41 @ di7ky (il
A

)

1

for any t € R and any measurable set A ﬁ“(T3) witho < s — 3.
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The proof of Lemma 3.9 is based on (i) the invariance of the Lebesgue measure
Ly under (the low frequency part of) the truncated NLW dynamics 7y ® (), (ii)
the conservation of the truncated energy Fy (@) under ® v (¢) and (iii) the bijectivity
of the solution map ®y(¢). As it follows from similar considerations presented
in [Tzv1s, OT17], we omit details of the proof.

We now state and prove the main proposition, essentially establishing the dif-
ferential inequality (3.1). This proposition allows us to control the growth of the
pushforward measure 7, y(®y(t)(A)) of a given measurable set A — H°(T?) uni-
formly in N e N, provided that the set A lies in the ball By < H 7(T3) of radius
R > 0. Namely, it only provides a set-dependent control. This dependence on
R > 0, however, does not cause any trouble in establishing quasi-invariance of the
Gaussian measure ; (and hence of jiy).

1

Proposition 3.10. Let s > 4 be an even integer and o € (1, 5 — 5). Then, given

R > 0andT > 0, there exists Crr > 0 such that

4 (@ (D(A)) < Crr - p{An (Ox()(A)}

dt
forany p = 2, any N € N, any t € [0,T], and any measurable set A — Bp <

He(T?).

In [OT20], there is an analogous statement, controlling the evolution of the
truncated measures (without the restriction on Bpg); see [OT20, Lemma 5.2]. The
main idea of the proof of Lemma 5.2 in [OT20] is to reduce the analysis to that at
t = 0, which provides access to the random distributions in (3.15). On the other
hand, the main idea in [PTV19] at this step is to use the deterministic control (2.14)
on the growth of solutions. In the following, we combine both of these ideas, thus
introducing a hybrid argument which works more effectively than each of the two
methods.

Proof. Fix R,T > 0 and t, € [0,T]. Let A © By be a measurable set in H°(T?).
Using the flow property of ®(t), we have

d . d Ry n(rnu) g
SaN@O)| =2 J e~ Ren () g5 ()
t=to DN (t)(A) t=tg
d
= Q’;}&,—J e_Rs,N(ﬂ'N“)dﬁs<ﬁ)
dt Jo (1) (@ (t0) (4)) 1=0

The change-of-variable argument (Lemma 3.9), (3.22), and the growth bound (2.14)
in Lemma 2.5 yield

SR (@x()(4)

t=to
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_ ZA*}Vi e~ B (N Ow0) g1, @ dift,
Tt Jay10)(4) |

t=0

= -2 f O Es n (mn®n (1) ()], e~ Ren (TN g7 (q7)
B (to)(A)

-1
< Q’;,N J
Be(r,1)

Then, from Holder’s inequality, we obtain

OB (@ (D)(@)]_o| €~ (1)

d

—psn(Pn(t)(A))

. < [, () 2B (e Bn (D)),

t=to Lp(ﬁS,N)
x {Fun(@n(to)(A)} 7.

Finally, by Cauchy-Schwarz inequality together with the uniform exponential mo-
ment bound on R y(u) in Proposition 3.7 and Proposition 3.8, we obtain

) (0,0) - BBy (en @ (@),

Lp(ﬁs,N)

_1
p
< 7

1BC(R,T) (1_[) ’ atESJV(ﬂ-N(I)N(t) (ﬁ» ‘t:O

P (3.23)
1

« HQ—RS,N(m
L2(5:)

< Crr D

Here, we used the boundedness of o@i’]&, uniformly in N € N (recall that 2, y —
%, > 0as N — o0). This completes the proof of Proposition 3.10. [

3.4 Proof of Theorem 1.1

We conclude this section by presenting the proof of Theorem 1.1. Our aim is to
show that for each fixed R > 0, we have

Us(A) =0 implies U, (®(t)(A)) =0 (3.24)

for any measurable set A © B < H7(T?), 0 € (1,5 — 1) and any ¢ > 0.% Since
the choice of R > 0 is arbitrary, this yields quasi-invariance of 7; under the NLW
dynamics. Then, we invoke Lemma 3.5 to conclude quasi-invariance of jis (Theorem
1.1).

Arguing as in [OT20], Proposition 3.10 allows us to establish quasi-invariance
of the truncated weighted Gaussian measures g, y with the uniform control in

°In view of the time reversibility of the equation (1.2), it suffices to consider positive times.
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N e N (but with dependence on & > 0). See Proposition 5.3 in [OT20]. By
the approximation property of the truncated NLW dynamics (Lemma 2.5 (ii)) and
the strong convergence of ps n to ps (Proposition 3.7), we can upgrade this to
the N = oo case, thus establishing quasi-invariance of the untruncated weighted
Gaussian measure ps under the NLW dynamics. See Lemma 5.5 in [OT20] for the
proof.

Lemma 3.11. Given any R > 0, there exists t, = t.(R) € [0, 1] such that for
any € > (), Ehere exists 0 > 0 with the following property; if a measurable set
Ac Bpc H(T?), 0 € (1,s — 1) satisfies

ps(A) <9,

then we have
ps(P(t)(A)) < e
foranyt € [0,1,].

Finally, we establish (3.24) by exploiting the mutual absolute continuity between
ps and s for each fixed R > 0. Let A — By be such that ;(A) = 0. By the mutual
absolute continuity of 7/ and p;, we have

7(A) = 0.

Now, fix a target time 7" > 0 and let C(R,T') be as in Lemma 2.5 (i). Namely, we
have

(I)(t) (A) e BC(R,T) (325)

for all t € [0, T']. Then, by applying Lemma 3.11 with R replaced by C'(R,T), we
obtain

ps(2(t)(A)) = 0 (3.26)

for t € [0,t.], where t, = t.(C(R,T)). In view of (3.25), we can iterate this
argument and conclude that (3.26) holds for any ¢ € [0,7]. Since the choice of
T > ( was arbitrary, we obtain (3.26) for any ¢ > 0. Finally, by invoking the mutual
absolute continuity of 7/; and p; once again, we have

v5(®(t)(A4)) = 0

for any ¢t > (. This proves (3.24) and hence Theorem 1.1.
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Remark 3.12. While this new hybrid argument allows us to establish quasi-invariance
of the Gaussian measure 75 (and hence jis) under the NLW dynamics even in the
three-dimensional case, it does not provide as good of a quantitative bound as the
two-dimensional argument. For example, in the two-dimensional case, the argument
in [OT20] yielded

F(@(1)(A)) < (7(A)) T (327)

for a weighted Gaussian measure p,, with an energy cutoff 1(g(,.)<r}, Where
¢ = ¢(r) > 0; see Remark 5.6 in [OT20]. Our present understanding does not
provide an analogous bound to (3.27) in three dimensions.

4 Construction of the weighted Gaussian measure

In this section, we prove Proposition 3.7 by establishing uniform integrability of the
densities R, y(u) of the weighted Gaussian measures gy in (3.21). In Subsec-
tion 4.1, we first prove some regularity properties of random distributions (Propo-
sition 4.3) and then the LP-convergence of R y(u) in (3.20). We split the proof
of the main result (Proposition 4.2) into two parts. In Subsection 4.2, we follow
the argument by Barashkov and Gubinelli [BG19] and express the partition function
Z; n in terms of a minimization problem involving a stochastic control problem
(Proposition 4.4). In Subsection 4.3, we then study the minimization problem and
establish boundedness of the partition function Z; y, uniformly in NV € N.

Let N > 1. Recall that g, y has density e~ (%) with respect to #/,. In particular,
note that the non-Gaussian part of g, y depends only on u. This motivates the

following reduction; define 20 (u) and a® (v) by

(1) 1 P o 1 41, 12
H(u) == wl| + = IVul*+ = | (D u)”,
2 T3 2 TS 2 ']1‘3

1 1

HP(v) = —f v? + —f (D*v)2.
2 Jps 2 Jrs
Then, define Gaussian measures ng ), J = 1,2, with formal densities:
dus(l) =7, e_Hsm(“)du and du§2) = ZQfsle_Hg)(”)dv.
Since H,(u) = Hs(u,v) in (3.16) is now written as
H,(@) = H" (u) + HP (v),
the Gaussian measure 7/, can be rewritten as

dv,(0) = dvV (u) @ dv? (v). (4.1)
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From decomposition (4.1), we have
dps () = dpy n(u) @ dv? (v),
where p; v 1s given by

dps.n(u) = o@”jj\l,e’Rs’N(“)dugl)(u).

S

The partition function Z; y is now expressed as

)

ZN = JB_RS’N(“)dVS)(u). 4.2)

In the following, we denote e by v and prove various statements in terms of

v but they can be trivially upgraded to the corresponding statement for ;.

Lemma 4.1. Let s > % Then, given any finite p < 0, R,y defined in (3.20)

converges to some R in L*(vg) as N — o0.

The goal of this section is to prove the following proposition on uniform (in
N e N) integrability of the density e~%~® for j, y, which allows us to construct
the limiting measure p;. As a consequence of our construction, the weighted
Gaussian measure pj is equivalent to 7/, (and hence to fis in view of Lemma 3.5).

Proposition 4.2. Let s > % Then, given any finite p < oo, there exists C), > 0 such

that
sup ‘e_RSvN(“) < Cp < 0. 4.3)
NeN LP(vs)
Moreover, we have
lim e fon(®) = g=Bs(w) in LP(vy). 4.4)
N—©

While the first part of Proposition 3.7 follows from Proposition 4.2 withp = 1, we
need to have the uniform bound (4.3) for some p > 1 for the proof of Proposition 3.10.
See (3.23). Note that this requirement on a higher integrability for some p > 1 is
analogous to the situation in Bourgain’s construction on invariant Gibbs measures
for Hamiltonian PDEs [Boug4], where, as in (3.23), the analysis of the weighted
Gaussian measure needs to be reduced to that of the underlying Gaussian measure
by Cauchy-Schwarz inequality. Since the argument is identical for any p > 1, we
only present details for the case p = 1. We point out that the LP-convergence (4.4)
is a consequence of the uniform exponential moment bound (4.3) and the softer
convergence in measure (as a consequence of Lemma 4.1). See Remark 3.8 in
[Tzvo8]. Therefore, we focus on proving the uniform bound (4.3).

In the next subsection, we prove Lemma 4.1. The subsequent subsections are
devoted to the proof of Proposition 4.2.
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4.1 Regularity of random distributions

Let u be distributed according to v and ()5 x be as in (3.7) with oy in (3.17). In
this case, we have

3(DSUN)2 L= QS,N(U‘N>7

where the left-hand side is the standard notation for the Wick renormalization.
We first state and prove the regularity properties of (products of) certain random
distributions. The proof of Lemma 4.1 is presented at the end of this subsection.

Proposition 4.3. Let s > 1 and € > 0. Then, there exists C = C(s,e) > 0 such
that for any N € N and any 2 < p < oo, we have

| :(D*un)?: Lo, 61—y < Cp, (4.5)
Qs N (un) v 0" un | o(5,,6-1-<) < Cp K| = =5, (4.6)
|Qs.n(un) vy &auNHLp(JS R <Cp k| =s—1,]la <s—1, (4.7)

where uy = wyu and vy = mnv. Moreover, as N — 0, the sequences above
converge to limits denoted by : (D*u)?: and Qs n(un)"v Qs n(un)*u with respect
to the same topologies.

We will also use this proposition in proving the renormalized energy estimate in
Section 5.

Proof. We only prove (4.5) in the following. The other estimates (4.6) and (4.7)
follow in a similar manner, with the simplification that no renormalization is needed
due to the independence of v and v under 7. The regularity —1 — € in (4.6) is
naturally expected in view of the regularities < —3 for each of Qs n(un)"vx and
0%uy. A similar comment applies to (4.7), where the regularity of Qs n(un)"v is
less than —1.
Noting that
n|* 1
1 S RN
([nf? + |nf2+2)z — (n)

for any n € Z3\{0}, it follows from the Karhunen-Logve expansion (3.15) that

F I (Doun)?: Yn 2 }E[ngn—mg—nzg—n—i—nz]‘
B [F ] 5 3
Inj|<N
(4-8)
|gn1|2 - 1)(|9n2|2 )”
+ Z (ny Y2 ny)? Lin—o)

TL1,nQ€Z5
Inj|<N
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for any n € Z3, where & denotes Fourier transform. In the first sum on the right-
hand side of (4.8), we note that due to the independence (modulo the conjugates) of
the g,’s and by Wick’s theorem, all non-vanishing terms must satisfy n; = nsy or
ni; = n — ny. Thus, we obtain

‘E[in 9n—ny g_n2g_n+n2]‘
Z {ny)Xn — nq Xngy(n — n2>1{n¢0}

n1,nQEZ3
Inj|<N

1 1
S L S “

n1€Z3
uniformly in NV € N, where in the last inequality we used a standard result on discrete
convolutions (see Lemma 4.2 in [MWX17]). In the second sum on the right-hand
side of (4.8), we note that, by Wick’s theorem, the contribution from |n;| # |ns|
vanishes. Thus, we obtain

E[(lgn > = 1)(|lgna|* — D)]]
2 (n1)*(ng)?

-y <1, (4.10)

nl,TLQEZ?’
Inj|<N

uniformly in NV € N. Putting (4.9) and (4.10) together, we obtain

1
E[ET* ((D*uy)?: Y(n) 2] < -—
o ol <
for any n € Z3 and N € N.
By a similar computation, we have

. s 2. . s 2. 2 1
for any n € Z3, any M > N > 1, and 0 € [0,1]. Note that : (D*uy)?: lies in
the second homogeneous Wiener chaos #,. Hence, by Lemma 2.3 with § > 0

sufficiently small, we conclude that : (D*uy)? : converges to some : (D*u)? : in
LP(vs; €~175(T?)) for any finite p > 2. 0

We now present the proof of Lemma 4.1.

Proof of Lemma 4.1. Fors > 2, Lemma 2.3 implies uy converges touin L? (v,; 67)
for any finite p > 2 and any 0 < s — % In the following, we choose o > 0
sufficiently close to s — % Then, by the algebra property (2.4), we see that u% (and
u}, respectively) converges to u? (and u*, respectively) in LP(v,; 6°) for any finite

p=2.
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Proposition 4.3 asserts that : (D*uy)? : convergesto : (D*u)?: € LP(v,, €7 17(T?))
for any € > 0. Recall from (2.8) that the bilinear multiplication map from €°* x 6°2
to 6°* is a continuous operation for s; < 0 < s, such that s; + sy > 0. Therefore,
by choosing o > 1 + ¢ (which is possible since s > %), we conclude that

[(DFu)?: u? = ]\lll_r)rtl)o [(Dun)?: uk

exists as an element in L?(vy; € ~17¢(T?)) for all finite p > 2. This means that

3 1
3 [(D*u)?: u? + ZU4 e LP(v,, € 175(T?)). (4.11)
Lemma 4.1 then follows from (4.11). ]

4.2 Variational formulation

In this subsection, we follow the argument in [BG19] and derive a variational
formula for the normalization constant Z; y in (4.2). Given small £ > 0, let
Q. = C(R,, 8 2°(T?)) equipped with its Borel o-algebra. Denote by {X,} the
coordinate process on ). and consider the probability measure P that makes { X;} a
cylindrical Brownian motion in L?(T?). Namely, we have

where { B]'},cz3 is a sequence of independent complex-valued Brownian motions
such that B} = B, ™, n € Z>. Then, define a centered Gaussian process {Y;} by

vi—gx, ® e ¥ 3 (4.12)

1
neZ3\{0} ‘n’2+‘n’28+2)2

Then, in view of (3.15), we have Lawp(Y]) = v,. By truncating the sum in (4.12),
we also define the truncated process Y, = mxY; with the property Lawp(Y]") =
Law,, (myu). Note that we have E[(D*Y}Y)?] = oy, where oy is as in (3.17). For
simplicity of notations, we suppress dependence on N € N when it is clear from the
context.

Let H, denote the space of progressively measurable processes that belong to
L*([0,1]; L*(T?)), P-almost surely. We say that an element 6 of H,, is a drift. Given
a drift 6 € H,, we define the measure Q9 whose Radon-Nikodym derivative with
respect to P is given by the following stochastic exponential:

0
dQ’ Jo<OndX=3 5y 1617 g dt
dP
0Tn the remaining part of this section, we use the standard notation in stochastic analysis where

subscripts denote parameters for stochastic processes.
'We normalize B} so that Var(B}*) = t. Moreover, we impose that BY is real-valued.

(4.13)




NONLINEAR WAVE EQUATIONS 57

Here, {-,-) denotes the inner product on L*(T?). Then, by letting H, denote the
space of drifts such that Q(£2.) = 1, it follows from Girsanov’s theorem ([DPZ14,
Theorem 10.14] and [RY 13, Theorems 1.4 and 1.7 in Chapter VIII]) that the process
X, is a semimartingale under QY with a decomposition:

t
X, = X + J Opdt’, (4.14)
0

where X? is now a cylindrical Brownian motion in L?(T?) under the new measure
QY. From (4.14), we also obtain the decomposition:

Y, =Y+ I,(9), (4.15)

where Y/ = $7571X? and I,(0) = SS F 510, dt’. In the following, we use E to
denote an expectation with respect to P, while we use [Eg for an expectation with
respect to some other probability measure Q.

Before proceeding further, let us recall the following estimate ([F6l85, Lemma
2.6]):

1
f 16:]72dt < 2H(Q°|P), (4.16)
0

where H(Q?|IP) denotes the relative entropy of Q7 with respect to IP defined by

dQ’ dQ’ dQ°
H(QP|P) = Ego [log C%] = ]EU% log ;%].

With the notations introduced above, we have the following variational characteri-
zation of the partition function Z; y defined in (4.2).

Proposition 4.4. For any N € N, we have
. 1
—log Zy v = Inf Eg [RS,N(YIG + 1(0)) + §f ||9t”2Lgdt]- (4.17)
c 0
Proof. As a preliminary step, we first derive bounds on Z; y and

efRs,N(Yl) G*RS,N(Yl)
E lo .
[ ZiN & < ZiN )]

e_Rs,N(Yl)
gg,N

Note that these bounds imply that the measure dP has a finite relative
entropy with respect to P.
From (4.2), Jensen’s inequality, and (3.20), there exists finite C'(N) > 0 such

that

Q@N > efE[Rs,N(Yﬂ] > ef]E[% S(DSYIN)z(YlN)2dx+iS(YlN)4dm] > C(N) (4.18)
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In view of the following pointwise lower bound:

3 3 1 3 1

§(DSY1N)2(Y1N)2 - QUN(Y1N)2 + Z<Y1N)4 > —§UN(Y1N)2 + Z(Y1N>4
9 1
> 5oy + (M) = —O(N) > —, (4.19)

it follows from (4.18), Cauchy’s inequality, and Lemma 4.1 that there exists finite
C(N) > 0 such that

e*Rs,N(Yl) B*RS,N(Yl)
E 1
[ ZiN o8 < Zin )]

N

N
Q Q@ Q

(N)E[e =50 (1 1 log e~ /i=x 01 20)

(NE[e22 00 4| B v (1) 2 + 1]
(N) < .

=

<

Now, fix 8 € H,.. We show that

1 1
—log Zs v < Eqo |:RS,N(}/19 +1(0)) + 5[ |9t”%§dt]' (4.21)
0

Suppose that Ege [ Sé 164]13 dt] = 0. Then, (4.21) holds trivially since it follows

from the decomposition (4.15) of Y; under QY and Cauchy’s inequality with Lemma
4.1, (4.18), and (4.19) that

€_RS’N(YI)
B [ + HO] = B |Run 01— | <

Next, suppose that

1
0

Note that 2, y = E[e F~¥(31)] Then, by changing the measure with (4.13),
Jensen’s inequality, and applying the decompositions (4.14) and (4.15) of X; and Y;
under Q?, we obtain

1 1 1
~log 2oy < Bor| R (¥0) + [ )~ [ 10z
’ . (423)
= Eqo lR&N(yle + 1,(0)) + f By, dX?y + §J et\%gdt].
0 0
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From (4.22), we see that the process Sé<9t/, dX}f) is a Q-martingale and hence we
conclude that

1
E@f)H (O, dXT >] = 0. (4.24)
0

Therefore, from (4.23) and (4.24), we obtain (4.21).
Next, we show that the infimum in (4.17) is indeed achieved for a special choice
of drift. Given N € N, define QV by the density

dQN e*Rs,N(Yl)
P~ Ziy

By the Brownian martingale representation theorem ([RY 13, Proposition 1.6 in
Chapter VIII]), there exists a drift #V € H, such that

(4.25)

dQN 50 OV axXi— L 53 10712 dt
P (4.26)
Then, from (4.25) and(4.26), we obtain
1 1t -
~log Zo = Ruw() + | @F.ax =5 [ 0¥ Epde. ap
0 0

Taking expectations of (4.27) with respect to Q" and using the decompositions
(4.14) and (4.15) of X, and Y; under Q", we obtain

! N
—log Zin = Egn [RS,N (Y2 + L(6Y) + f CARD (4.28)
0

1 N |12
+3 10, 7242 |-
0

On the other hand, from (4.25) and (4.20), we have

QN e~ Bs,n (Y1) e~ Rsn(Y1)
EQN[Iog TP ] E[TNlog (—ff . )] < 0. (4.29)

In particular, it follows from (4.29) and (4.16) that

1
EQN[J vayigdt} < 0.
0

This implies that the stochastic integral § (6, dX9") is a QV-martingale. There-
fore, from (4.28), we obtain

—log Z, v = Egn [RS,N (Yf; + I ( (9N J HNLth]

This completes the proof of Proposition 4.4. ]
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Remark 4.5. The material presented above differs from [BG19] in the following
ways: (i) we do not need to introduce a time-dependent cutoff in the definition of
{Y;} and (ii) we do not need to use the stronger Boué-Dupuis formula [BDg8]:

1 1
~log Zx = nf E [BS,N(Y1 +0(0) + 5 J |9t!%2dt] .
cH, 0

See [Ust14] or Theorem 2 in [BG19] for further discussion.

4.3 Exponential integrability

In this subsection, we present the proof of Proposition 4.2 by studying the minimiza-
tion problem (4.17) in Proposition 4.4. In particular, we show that the infimum in
(4.17) is bounded away from —oo, uniformly in NV € N. Our strategy is to use path-
wise stochastic bounds on Yf, uniform in the drift § and use pathwise deterministic
bounds on [;(6) independently of the drift (see Lemmas 4.6 and 4.7).

We first state two lemmas on the pathwise regularity estimates on Y, and I, (6).

Lemma 4.6. Let 2 < p < c0. Then, we have

sup oo [ DY/, 4+ | :(DYD)%: oo | < o0 (4.30)
feH, € 2

for any € > 0. Here, colons denote Wick renormalization.

Proof. Recall that {X?} under Q? is a cylindrical Brownian motion in L?(T?)
for any 0 € H,.. Thus, the supremum in (4.30) is superfluous since the law of
YY = F7571X? under Q' is invariant under a change of drifts. In particular, we
have Lawqe (YY) = v;. Then, (4.30) follows from the Holder-Besov regularity of
samples under v, and (4.5) in Proposition 4.3. ]

Lemma 4.7 (Cameron-Martin drift regularity). The drift term 6 € H, has the
regularity of the Cameron-Martin space H*™'(T?):

1
|A@zm<jw;w (431)
0

Proof. This is immediate from Minkowski’s integral inequality followed by Cauchy-

Schwarz inequality:
1 1 1 %
[ o <f@mw<(jeﬁm0,
0 L2 0 0

yielding (4.31). ]

|7:(0)]

Hs+1 — ’
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We now present the proof of Proposition 4.2, using Proposition 4.4. Fixing an
arbitrary drift # € H., the quantity that we wish to bound from below is

1 1
WN<9) = ]EQG lRS’N(}qe + 11(0)) + 5 f HQtH%%dt] (432)
0

Since the drift § € H.. is fixed, we suppress the dependence on the drift # henceforth
and denote Y = Y/ and © = I,(6). From the definition (3.20) of R; x, we have

Rin(Y +0) = ; f (DY) (Y +0)2 + 2D°Y D*O(Y + ©)? + (D°0)* (Y + 0)?
T3

1
+7 f Y +0)" (433)
11‘3

The main strategy is to bound Wy (¢) from below pathwise and independently of
the drift by utilizing the positive terms:

3

1 1t
Un(o) = 5 [(Dr0reR 1[04+ 5 [ itz (430

In the following, we state three lemmas, controlling the other terms appearing
in (4.33). The proofs of these lemmas follow from lengthy but straightforward
computations and are presented at the end of this section. The first lemma handles
the terms quadratic in D*Y’.

Lemma 4.8 (Terms quadratic in D®Y’). Let s > % Then, given 6 > 0 sufficiently

small, there exist small ¢ > 0 and ¢(6) > 0 such that

| YRy S 0 e+ DV @39)

21:(4,36)

LB (DY Y0 <) (| (DY v+ 1DV, ) +66)

L3 H(DY)?: @2 < c(8)] :(DY)?: 4. + 5(\\@]25“ + |\@\|§4>. (4.37)

The next lemma handles the terms linear in D*Y.
Lemma 4.9 (Terms linear in D*Y). Let s > 1. Then, given 6 > 0 sufficiently small,
there exist small ¢ > 0, ¢(6) > 0, and p; = p;(e,s) > 1, j = 1,2, such that

DY D*OY? < c(®)|DY]? . + 8O3, (4.38)

T3

p1
 DYD'OY6 < c(d) (14107 oy )" + 318 + [0]1:), @39)
p2
DY D*08? < ¢(6) (1 + HDSYH%,%,E)
T (4.40)
+a(le)

e+ [0l + [ DO ).
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Lastly, the third lemma controls the term quadratic in D®O.

Lemma 4.10 (Term quadratic in D*©). Let s > 1. Then, given 6 > 0, there exist
small e > 0, ¢(§) > 0, and p = p(s,e) > 1 such that

| (Drerve < @Dy, +5(16f + 81k + ID°OOL
T3 2

The regularity restriction s > g appears in controlling the terms quadratic in
D?®Y. We now prove Proposition 4.2, assuming Lemmas 4.8, 4.9, and 4.10.

First, note that the remaining terms left to treat in (4.33) are harmless. The terms
$0s (D*©)2Y2, (., V4, and {, Y?©? are positive and thus can be discarded. The
remaining two terms can be controlled by Young’s inequality:

J y30 +f YO < (@)Y + 0],
T3 T3

for any 6 > 0. We now apply the regularity estimates of Lemmas 4.6 and 4.7 to
the bounds obtained in Lemmas 4.8, 4.9, and 4.10, and the bounds on the harmless
terms. Then, from (4.32), (4.33), and (4.34), we conclude that, by choosing § > 0
sufficiently small, there exists finite C' = C'(§) > 0 such that

1

sup sup Wy (#) = sup sup { —C(6) + —%N(ﬁ)} > —C(0) > —0.
NeN 6eH. NeN 6eH, 4

Therefore, by Proposition 4.4, this proves Proposition 4.2 (when p = 1).

In the remaining part of this section, we present the proofs of Lemmas 4.8, 4.9,
and 4.10.

Proof of Lemma 4.8. By duality (2.6) and the algebra property (2.4), we have
LHS of (4.35) < [ :(D*Y)*: [ por-2e Y |-

Then, by choosing ¢ > 0 sufficiently small, (4.35) follows from the trivial embed-
dings (2.3) and Cauchy’s inequality, provided that s > %
By duality (2.6) and the fractional Leibniz rule (2.7), we have

LHS of (4.36) < [ : (DY )?: [ p-1-2: [V O e

< (DY) forme (Y a1 © 2 + [V 1210y )

Then, by choosing ¢ > 0 sufficiently small, (4.36) follows from (2.3) and Young’s
inequality, provided that s > 2.
Lastly, proceeding as above with (2.6) and (2.7), we have

LHS of (437) < | :(DY)*: 51,2011 o011

Then, (4.37) follows from (2.3), L*(T?) — L?(T?), and Young’s inequality. O
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Next, we present the proof of Lemma 4.9. The main idea is to use (i) ||O|| zs+1
for controlling derivatives on © and (ii) |©|| ;4 and || D*©0O| 2 for controlling ho-
mogeneity of O.

Proof of Lemma 4.9. By duality (2.6) and the fractional Leibniz rule (2.7) with
(2.3), we have

LHS of (4.38) < [D*Y| _; .|
0,2

DOV o
S IDY oy (12 gnc | DOz + Y212 D6 .
32,2 32,2

<D,

Y2 4.al®l

@3 T3e

7%—5 Hs+1.

Then, by choosing ¢ > 0 sufficiently small, (4.38) follows from Cauchy’s inequality,
provided that s > 1.

By duality (2.6) and the fractional Leibniz rule (2.7) with (2.3) and (2.4), we
have

LHS of (4.39) < [D*Y] 4. [D°OYO] 4.

0,2 1,2

A

IDY ]y (1Ol o 1D + [YOU12| DOy
= Tl + TQ.

By Holder’s inequality and (2.3), we have

gs+1[©] L4

S [DY[Z 4 18] O] s

5—¢

L < |[DY| Y s ]©]
(4.42)

for s > % and small € > 0.
By (2.7), (2.3), and the interpolation (2.2), we have
HYGHBéfa S HYHBEEQEH@HLQ + HYHLooH@HBé;ze

(Ol 442

Ol

s Y]
s Y]

%%+35‘

%%+35‘

for some v = 7(s,¢) € (0,1). Thus, we have
T 5 DY, Jel5n el 443

for s > 1 and small ¢ > 0. Hence, noting that % + % < 1 and HT” + ITTV < 1 for
v € (0,1), the desired estimate (4.39) follows from applying Young’s inequality to
(4.42) and (4.43).
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Finally, we consider (4.40). By (2.6) and (2.7) with (2.3), we have
LHS of (4.40) < [D*Y] _y .| D*O67| ...

SIDY gy (100011210 g + [D°00] . [O] 1)
= T3 + T4.

By the interpolation (2.2) with L*(T?) < L?(T?), there exists y; = v1(s,¢) € (0,1)
such that
T, < |DY],_y_.|D08| . l0l}

Hs+1

O™

Noting that % + T+ 1*4# < 1, we can apply Young’s inequality to bound the
contribution from 75 by the right-hand side of (4.40).
It remains to estimate 7. By the interpolation (2.2) and (2.7), we have

|D*©0| 32012 < [ D*OO| 7, | D*OO)] 137 |O] 12

H%‘FQSH
Y2
< (1D, 10l + 1D*Ol1e[€]5y,) * (4-dd)
x [ D*©0) 1.7 0] 11,
where v, = Y2(¢) € (0, 1) is given by

1
Y2 = B + 2e. (4-45)

By Sobolev’s inequality and the interpolation (2.2) (with s > %), we have
|D°6]py, O] e + [ D°O| 16O 5y, < 1O]m:+[0O] 3
< |6l

H2+E

mllels™, (4.46)

where 3 = ¥3(s, €) € (0,1) is given by
3+ 2
2(s+ 1)

Y3 = (4.47)

Combining (4.44) and (4.46), we obtain
Ty < | DY |y |03 D oo o]0 ).

Hs+1
From (4.45) and (4.47), we observe that
Yo(l+73) 1= 1+9(1—)
2 N 2 - 4

provided that s > % and € > 0 is sufficiently small. Therefore, we can apply Young’s
inequality to bound the contribution from 7} by the right-hand side of (4.40). This
completes the proof of Lemma 4.9. [

<1,
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We conclude this section by presenting the proof of Lemma 4.10.

Proof of Lemma 4.10. By Cauchy’s inequality, we have
f (D*O)*Y O < c(&)f (D*©)?Y? + §||D*O0O|3.. (4.48)
T3 T3

By Holder’s and Sobolev’s inequalities followed by the interpolation (2.2) with (2.3)
and (2.4), we have

| (repy < ielivii < ol

2(1—
< el el 1y (4.49)

C@%+€

2(1— s
Hea O IDY 2

< el

1.

for some v = 7(s) € (0,1), provided that s > 1 and € > 0 is sufficiently small.

Noting that 237 + 2(14_7) < 1, (4.41) follows from (4.48), (4.49), and Young’s

inequality. []

5 Renormalized energy estimate

Recall from (3.19) that

6tEs,N(7TN(I>N(t)(ﬂ:)) o = Fl(’l_[N) + FQ(QIN) + Fg(ﬁN),

where Uy = (uy,vy) and

Fi(iy) =3 3 Qs.n(un)vnuy,
T
FZ(ﬁN) = Z Caﬁﬁf DSUN . QSVN(UN)O[U/N : QS,N(UN)ﬂuN ’ Qs,N(uN)VUNa
T3

o +[B]+|v]=s
lael, B,y <s

o= (L) ([.)

Proposition 5.1. Let s > 4 be an even integer. Then, there existo < s— % sufficiently
close to s — % and small € > 0 such that

—

< (1+ |lan|%, ) F (i), (5.1)

OBy (mn®n(t) (ﬁ))‘t 0
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where
F(in) =1+ [|Qs,n(un)|g-1-

b osup [Py unlaoe + sup [Py Pux),
Ik|=s—1 Ik|=s—1 €
loo|=5 lo|<s—1

Proposition 3.8 follows from Proposition 5.1, the cutoff in the H°-norm, and the
Wiener chaos estimate (Lemma 2.2).

Proof. In the following, we prove (5.1) uniformly in N € N. Thus, we drop the
N-dependence and write Qs(u) for Qs v (un).

First, note that the estimate for F3 follows trivially from Cauchy-Schwarz in-
equality. Next, we treat F;. By duality (2.6) and the fractional Leibniz rule (2.7),
we have

| Qe < 1Qu@ler<uvle
T3 ’ (5-2)

S Qs (w) 1wl o [v] o1,

provided that ¢ > 2+ <. This is guaranteed by choosing ¢ sufficiently close to s — %,
when s > 3.

It remains to consider F,. By integration by parts, it suffices to consider terms
of the form:

0% 0%u 0%u M,
T3
where |k| = s — 1, max(«, 3,7) < s, and |o| + | 5] + |y| = s + 1. Without loss of
generality, we assume that || > || > |y|. The idea is to group the low regularity
terms (0"v and 0“u) and treat them as one piece.
First, let us assume that || = s. In this case, we have || = 1 and |y| = 0. By
duality (2.6) and the fractional Leibniz rule (2.7), we have

" vo“u duu
T3

< 070 % ullg-1- |Ouulgrre < 1070 0ullg-1-< [t 5o, (5.3)

provided that o > 2 + . By choosing £ > 0 sufficiently small, we can guarantee
this condition if s > 2.
This leaves the case || < s — 1. Noting that |3| < =+ and |y| < £t (under

la| = |B] = |7]). we see that 0%u, 07w € Hz*<(T?) for s > 3. Thus, by duality (2.6)
and the fractional Leibniz rule (2.7), we have:

J 0"v 0%u P uQq N (un ) u| < 0% 0%l 1 )|0%uu| 1. < [0%v o™l 1 (bdf
T3 ’ G 2 %12’1 € 2

This completes the proof of Proposition 5.1. [
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Remark 5.2. The restriction s > 3 in the last case appears only when |5| = %
In fact, when || < £, the estimate (5.4) holds true for s > 2. On the other

2
hand, when || = =, we must have |o| = 3] = £ In this case, by

applying dyadic decorilpositions and working with the Littlewood-Paley pieces
P;,Q.n(un)*uP;,Qs n(ux)’u, we can move half a derivative from the third factor
to the second factor, thus showing that a slight variant of (5.4) holds for s > 2.
Therefore, the estimates (5.2) and (5.3) on F3 and F5 impose the regularity restric-

tion s > 2.
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Epilogue

Since the initial upload of [GOTW 18], there has been an improvement of our results
by [STX20]. Quasi-invariance is established for all s > g (i.e. not only even
integers) and the analysis is extended to the case of the quintic defocusing nonlinear
wave equation. The extension from cubic to quintic is straightforward, but the
extension to allow for fractional s is interesting.

In order to extend to fractional s, the key idea is to use commutator estimates
rather than integration by parts in the energy estimate to isolate the leading order
divergence. Thus, from our perspective the main innovation of [STX20] as compared
to [GOTW 18] is the much cleverer treatment of the lower order terms in the energy
estimates.



III. Phase transitions

Prologue

In this part we focus on the ¢* model and explore its phase transition in depth. The
intuition behind our results comes from the classical Peierls’ argument for the low
temperature Ising model [Pei36], some aspects of which we recall in this prologue.
In particular, we are going to derive contour bounds; we have already seen how these
bounds can be used to establish long range order in Part I.

We establish the contour bounds in finite volumes and they extend to infinite
volume with some care. Let Ay = {1,..., N}3 < Z3 be the box of sidelength
N e Nand let Qy = {+1}*~ the space of spin configurations; note that we work on
boxes rather than tori to avoid handling some topological issues. The Ising model on
Ay at inverse temperature 3 > 0 is given by the measure ugj}‘f defined for o €
by

Ising( ) = 1 —50% (o)
B,N - leinge '
BN

where Zgiﬁ,g is the partition function and
Ising o
s N (o) = —BZUiJj.

where i ~ j means nearest-neighbours in A y.

Recall that each configuration in {2y is in bijection with a configuration of
contours; we have already explained this for d = 2, but it carries over to d = 3.
Indeed, consider the partition of R3 by unit blocks centred on points in Z* and
restrict to boxes with centres in A (some care is needed near the boundary points
of Ay, but we ignore this). Then, each configuration o € () is in bijection with a
configuration of connected faces of blocks that, under some deformation convention
to avoid ambiguities/self-intersections, form the boundary between + and — spins.
We call connected components contours and the phase boundary cdo the set of
contours.

Lemma. Let 5 > 0 and T" a fixed contour that encloses a volume (i.e. has a
well-defined interior). Then,

(T e do) < e

where |T'| is the number of faces in T
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Proof. By writing the Ising Hamiltonian in terms of agreements and disagreement
of spins, we can represent the Ising measure as a gas of contours:

Mlsing( ) . nyeaa 6725‘7‘
N - — :
7 ZJ’GQN Hye&o" =240
Thus,
. . 6_25‘7‘
ppnCedo) = > ppr(o) <e Lsconniny —- (01
, oeQn:T'edo 7 ZUGQN nweaa € 7

For each o € Qy such that I' € 0o, let o' be the unique spin configuration
obtained by flipping the value of spins in the interior of I' (which erases this contour).
Denote by QY the set of configurations ¢! obtained in this way. Note that %, = Q.

Then,

=28
—28|T) ZO'FGQFN Hwe&ar e
—2
ZO’GQN H'yeéo € dul

which finishes the proof. [

(0.1) <e —2AIT

<e
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1 Introduction

We study the behaviour of the average magnetisation

1
= 33 .

my (o) o(x)dx

for fields ¢ distributed according to the measure v n with formal density

Yy(o(a) + 5IVo)Pdr) ] dota) ()

TN €T

dvg n(¢)ocexp ( —

in the infinite volume limit N — co. Above, Ty = (R/NZ)3 is the 3D torus of
sidelength N € N, [ [ ., dé(z) is the (non-existent) Lebesgue measure on fields
¢ : Tn — R, 8 > 0is the inverse temperature, and 73 : R — R is the symmetric
double-well potential given by ¥s(a) = 5(a*> — 5)* fora € R.

vg N is a finite volume approximation of a ¢3 Euclidean quantum field theory
[Gli68, GJ73, FO76]. Its construction, first in finite volumes and later in infinite
volume, was a major achievement of the constructive field theory programme in the
’60s-"70s: Glimm and Jaffe made the first breakthrough in [GJ73] and many results
followed [Fel74, MS77, BCG*80, BFS83, BDHg95, MW17b, GH18, BG19]. The
model in 2D was constructed earlier by Nelson [Nel66]. In higher dimensions there
are triviality results: in dimensions > 5 these are due to Aizenman and Frohlich
[Aiz82, Fro82], whereas the 4D case was only recently done by Aizenman and
Duminil-Copin [ADC20]. By now it is also well-known that the ¢3 model has
significance in statistical mechanics since it arises as a continuum limit of Ising-type
models near criticality [SG73, CMPgs, HI118].

It is natural to define vg  using a density with respect to the centred Gaussian
measure /iy With covariance (—A)*l, where A is the Laplacian on T y (see Remark
1.1 for how we deal with the issue of constant fields/the zeroeth Fourier mode).
However, in 2D and higher yy is not supported on a space of functions and samples
need to be interpreted as Schwartz distributions. This is a serious problem because
there is no canonical interpretation of products of distributions, meaning that the
nonlinearity STN Vs(é(x))dx is not well-defined on the support of py. If one
introduces an ultraviolet (small-scale) cutoff K > 0 on the field to regularise it, then
one sees that the nonlinearities 7V3(¢x ) fail to converge as the cutoff is removed
- there are divergences. The strength of these divergences grow as the dimension
grows: they are only logarithmic in the cutoff in 2D, whereas they are polynomial
in the cutoff in 3D. In addition, v y and py are mutually singular [BG20] in 3D,
which produces technical difficulties that are not present in 2D.

Renormalisation is required in order to kill these divergences. This is done
by looking at the cutoff measures and subtracting the corresponding counter-term
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§r,, Om*(K)¢% where ¢ is the field cutoff at spatial scales less than 7 and the renor-

malisation constant 5m2(K ) = %K — % log K for specific constants C7, Cy > 0
(see Section 2). If these constants are appropriately chosen (i.e. by perturbation
theory), then a non-Gaussian limiting measure is obtained as ' — co. This construc-
tion yields a one-parameter family of measures v5 v = v y(dm?) corresponding to
bounded shifts of dm?(K).

Remark 1.1. For technical reasons, we work with a massive Gaussian free field as
our reference measure. We do this by introducing a mass 1 > 0 into the covariance.
This resolves the issue of the constant fields/zeroeth Fourier mode degeneracy. In
order to stay consistent with (1.1), we subtract STN 1¢*dx from V().

Once we have chosen 1, it is convenient to fix dm? by writing the renormalisation
constants in terms of expectations with respect to jix(n). The particular choice of
is inessential since one can show that changing n corresponds to a bounded shift of

dm? that is O(%) as 3 — oo.

The large-scale behaviour of v5 x depends heavily on 3 as N — oo. To see
why, note that @ — %3(a) has minima at a = ++/f with a potential barrier at
a = 0 of height 3, so the minima become widely separated by a steep barrier
as 8 — oo. Consequently, v3 y resembles an Ising model on Ty with spins at
++/8 (i.e. at inverse temperature 3 > 0) for large 3. Glimm, Jaffe, and Spencer
[GJS75] exploited this similarity and proved phase transition for v, the infinite
volume analogue of v y, in 2D using a sophisticated modification of the classical
Peierls’ argument for the low temperature Ising model [Pei36, Gri64, Dob65]. See
also [GJS76a, GJS76b]. Their proof relies on contour bounds for v4 x in 2D that
hold in the limit N — co. Their techniques fail in the significantly harder case of
3D. However, phase transition for v in 3D was established by Frohlich, Simon, and
Spencer [FSS76] using a different argument based heavily on reflection positivity.
Whilst this argument is more general (it applies, for example, to some models with
continuous symmetry), it is less quantitative than the Peierls’ theory of [GJS75].
Specifically, it is not clear how to use it to control large deviations of the (finite
volume) average magnetisation my.

Although phase coexistence for v3 has been established, little is known of this
regime in comparison to the low temperature Ising model. In the latter model,
the study of phase segregation at low temperatures in large but finite volumes was
initiated by Minlos and Sinai [MS67, MS68], culminating in the famous Wulff
constructions: due to Dobrushin, Kotecky, and Shlosman in 2D [DKS89, DKS92],
with simplifications due to Pfister [Pfig1] and results up to the critical point by loffe
and Schonmann [IS98]; and Bodineau [Bodgg] in 3D, see also results up to the
critical point by Cerf and Pisztora [CPoo] and the bibliographical review in [BIVoo,
Section 1.3.4]. We are interested in a weaker form of phase segregation: surface
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order large deviation estimates for the average magnetisation my. For the Ising
model, this was first established in 2D by Schonmann [Sch87] and later extended up
to the critical point by Chayes, Chayes, and Schonmann [CCS87]; in 3D this was
first established by Pisztora [Pisg6]. These results should be contrasted with the
volume order large deviations established for my in the high temperature regime
where there is no phase coexistence [CF86, Ell85, FO88, Ol1188].

Our main result is a surface order upper bound on large deviations for the average
magnetisation under vg y.

Theorem 1.2. Let ) > 0 and vg ny = vg n(n) as in Remark 1.1. For any ¢ € (0,1),
there exists By = Bo((,n) > 0, C = C((,n) > 0, and Ny = Ny(C) = 4 such that
the following estimate holds: for any 3 > 5y and any N > Ny dyadic,

%10g VBN (mN € (—C\fﬁ, C\fﬁ)) < —C’\/B. (1.2)

Proof. See Section 3.5. [

The condition that NV is a sufficiently large dyadic in Theorem 1.2 comes from
Proposition 3.8 (we also need that /N is divisible by 4 to apply the chessboard
estimates of Proposition 6.5). Our analysis can be simplified to prove Theorem 1.2
in 2D with N2 replaced by N in (1.2).

Our main technical contributions are contour bounds for vg n. As a result, the
Peierls’ argument of [GJS75] is extended to 3D, thereby giving a second proof of
phase transition for ¢3. The main difficulty is to handle the ultraviolet divergences of
v,y whilst preserving the structure of the low temperature potential. We do this by
building on the variational approach to showing ultraviolet stability for ¢3 recently
developed by Barashkov and Gubinelli [BG19g]. Our insight is to separate scales
within the corresponding stochastic control problem through a coarse-graining into
an effective Hamiltonian and remainder. The effective Hamiltonian captures the
macroscopic description of the system and is treated using techniques adapted from
[GJS76b]. The remainder contains the ultraviolet divergences and these are killed
using the renormalisation techniques of [BG19].

Our next contribution is to adapt arguments used by Bodineau, Velenik, and
Ioffe [BIVoo], in the context of equilibrium crystal shapes of discrete spin models,
to study phase segregation for ¢. In particular, we adapt them to handle a block-
averaged model with unbounded spins. Technically, this requires control over large
fields.
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1.1 Application to the dynamical ¢3 model

The Glauber dynamics of v x is given by the singular stochastic PDE

(0, —A+n)d = —é<b3+(4+n+oo)cp+\@£
B (1.3)

CI)(O, ) = ¢0

where ® € S'(R, x Ty) is a space-time Schwartz distribution, ¢y € €2 (Ty),
the infinite constant indicates renormalisation (see Remark 6.16), and £ is space-time
white noise on T . The well-posedness of this equation, known as the dynamical
¢3 model, has been a major breakthrough in stochastic analysis in recent years
[Hai14, Hai16, GIP15, CC18, Kup16, MW17b, GH19, MW18].

In finite volumes the solution is a Markov process and its associated semigroup
(thﬂ ’N)t>0 is reversible and exponentially ergodic with respect to its unique invariant
measure vg v [HM18a, HS19, ZZ18a]. As a consequence, there exists a spectral
gap Az n > 0 given by the optimal constant in the inequality:

(@87 F) - (87F) ) <ot (W — )

for suitable £’ € L?(vg n). /\ﬁ\f is called the relaxation time and measures the rate
of convergence of variances to equilibrium. An implication of Theorem 1.2 is the
exponential explosion of relaxation times in the infinite volume limit provided [ is
sufficiently large.

Corollary 1.3. Let ) > 0 and v n = v n(n) as in Remark 1.1. Then, there exists
Bo = Bo(n) >0, C = C(Bo,n), and Ny = 4 such that, for any 5 > o and N > Ny
dyadic,
1
N2
Proof. See Section 7. 0

log \g.v < —C+/P. (1.4)

Corollary 1.3 is the first step towards establishing phase transition for the re-
laxation times of the Glauber dynamics of ¢* in 2D and 3D. This phenomenon has
been well-studied for the Glauber dynamics of the 2D Ising model, where a relatively
complete picture has been established (in higher dimensions it is less complete). The
relaxation times for the Ising dynamics on the 2D torus of sidelength /N undergo the
following trichotomy as N — o0: in the high temperature regime, they are uniformly
bounded in N [AH87, MOg4]; in the low temperature regime, they are exponential
in N [Sch87, CCS87, Tho89, MOg4, CGMSg6]; at criticality, they are polynomial
in N [Holg1, LS12]. It would be interesting to see whether the relaxation times for
the dynamical ¢* model undergo such a trichotomy.
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1.2 Paper organisation

In Section 2 we introduce the renormalised, ultraviolet cutoff measures v v i that
converge weakly to vg  as the cutoff is removed. In Section 3 we carry out the
statistical mechanics part of the proof of Theorem 1.2. In particular, conditional on
the moment bounds in Proposition 3.6, we develop contour bounds for v/5 . These
contour bounds allow us to adapt techniques in [BIVoo], which were developed in
the context of discrete spin systems, to deal with v y.

In Section 4 we lay the foundation to proving Proposition 3.6 by introducing
the Boué-Dupuis formalism for analysing the free energy of v x as in [BG19].
We then use a low temperature expansion and coarse-graining argument within the
Boué-Dupuis formalism in Section 5 to establish Proposition 5.1 which contains the
key analytic input to proving Proposition 3.6.

In Section 6, we use the chessboard estimates of Proposition 6.5 to upgrade the
bounds of Proposition 5.1 to those of Proposition 3.6. Chessboard estimates follow
from the well-known fact that v y is reflection positive. We give an independent
proof of this fact by using stability results for the dynamics (1.3) to show that lattice
and Fourier regularisations of g n converge to the same limit. Then, in Section 7,
we prove Corollary 1.3 showing that the spectral gaps for the dynamics decay in the
infinite volume limit provided (3 is sufficiently large.

We collect basic notations and analytic tools that we use throughout the paper in
Appendix A.
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2 The model

In the following, we use notation and standard tools introduced in Appendix A.1.
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Let n > 0. Denote by uy = pun(n) the centred Gaussian measure with covari-
ance (—A +n)~! and expectation Ey. Above, A is the Laplacian on Ty. As pointed
out in Remark 1.1, the choice of 7 is inessential. We consider it fixed unless stated
otherwise and we do not make 7)-dependence explicit in the notation.

Fix 8 > 0. Let 73: R — R be given by

L o _ 1 4 2
YVs(a) = =(a* — B)° = =a" —2a" + .
8 B
%3 is a symmetric double well potential with minima at a = ++/0 and a potential
barrier at a = 0 of height .

Fix p € C*(R?; [0, 1]) rotationally symmetric; decreasing; and satisfying p(z) =
1 for |z| € [0,¢,), where ¢, > 0. See Lemma 4.6 for why the last condition is
important. Note that many of our estimates rely on the choice of p, but we omit
explicit reference to this.

For every K > 0, let px be the Fourier multiplier on Ty with symbol px(-) =
p(5). For ¢ ~ uy, we denote ¢ = pr¢. Note that ¢ is smooth. Let

1 2
Ok = Er O] - 5 3 ) G
ne(N-17)3

where (-) = /1 + 472| - |2. Note that Q; = O(K) as K — co. The first four Wick
powers of ¢y are given by the generalised Hermite polynomials:

P ox(x) s = ¢ ()

O5c(r) : = ¢ (v) — Ok
O (@) : = i (x) — B0k oK (2)

O (7) + = G (r) — 6Qx P (7) + 30k
We define the Wick renormalised potential by linearity:
Th(on) = 5

Let v n k be the probability measure with density

T

T

:gb%:—?:qﬁ(:%—ﬁ.

e~ Ts.N. K (@)

dvg Nk (P) = dpn (). (2.2)

2Nk
Above, # v i 1s the renormalised Hamiltonian
Hosc(on) = | Th0x) — g 0k k=5 hde @)

Tn

where i and 0 are additional renormalisation constants given by (5.25) and (5.26),
respectively, and 25 v x = Eye %6.8x(9x) g the partition function.
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Proposition 2.1. For every 3 > 0 and N € N, the measures vg y x converge
weakly to a non-Gaussian measure vgy on S'(Txn) as K — oo. In addition,

ZsNnk — Zsn as K — oo and satisfies the following estimate: there exists
C = C(B,n) > 0 such that

~ON? < —log Z3n < CN®.

Proof. Proposition 2.1 is a variant of the classical ultraviolet stability for ¢3 first
established in [GJ73]. Our precise formulation, i.e. the choice of v, and 4., is taken
from [BG19, Theorem 1]. [

We write (-)s n and {-) n x for expectations with respect to vg v and vg v K,
respectively.

Remark 2.2. The constants (), Vi, 0k are, respectively, Wick renormalisation,
(second order) mass renormalisation, and energy renormalisation constants. They
all depend on 1 and N. Ok additionally depends on [ and is needed for the
convergence of Zs Nk as K — oo, but drops out of the definition of the cutoff
measures (2.2).

Remark 2.3. In 2D a scaling argument [GJS76¢c] allows one to work with the
measure with density proportional to

exp (= | Tolon) : de)din(9)

Tn

where [iy is the Gaussian measure with covariance (—A + \Fﬁ_l)_l, ie. a f3-
dependent mass. This measure is significantly easier to work with due to the
degenerate mass when (3 is large. In particular, it is easier to obtain contour bounds
which, although suboptimal from the point of view of [3-dependence, are sufficient
forthe Peierls’ argument in [GJS75 ] and for the analogue of our argument in Section
3 carried out in 2D. In 3D one cannot work with such a measure.

3 Surface order large deviation estimate

In this section we carry out the statistical mechanics part of the proof of Theorem 1.2.
Recall that for large 3, the the minima of potential V3 at ++//3 are widely separated
by a steep potential barrier of height 3, so formally v3 ; resembles an Ising model
at inverse temperature 3. We use this intuition to prove contour bounds for v y (see
Proposition 3.2) conditional on certain moment bounds (see Proposition 3.6). The
contour bounds are then used to adapt arguments from [BIVoo] to prove Theorem
1.2.
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3.1 Block averaging
Let ey, €9, €3 be the standard basis for R3. We identify Ty with the set

{a161 + ageq + ages : ay, as, ag € |0, N)}

Define

3
By = {n[ai,ai—i-l)CTN:al,ag,age{0,...,N—1}},

i=1

We call elements of By blocks. For any B < By, we overload notation and write
B = JgpO < Ty. Hence, | B| = §, 1dx is the number of blocks in B. In addition,

we identify any f € RB~ with the piecewise continuous function on Ty given by
f(z) = f(O) forz € .

Let ¢ ~ vgn. For any O € By, let ¢(0) = SD ¢dzx. Here, the integral is
interpreted as the duality pairing between ¢ (a distribution) and the indicator function
15 (a test function); we use this convention throughout. We let ¢ = (A(0))ger, €
RE~ denote the block averaged field obtained from ¢.

Remark 3.1. Testing ¢ against 15, which is not smooth, yields a well-defined random
variable on the support of vg . Indeed, ¢ belongs almost surely to L*-based Besov
spaces of regularity s for every s < —% (see Appendix A.2 for a review of Besov
spaces and see Section 4 for the almost sure regularity of ¢). On the other hand,
indicator functions of blocks belong to L'-based Besov spaces of regularity s for
every s < 1 or, more generally, LP-based Besov spaces of regularity s for every s < Ilj
(see, for example, Lemma 1.1 in [FR12]). This is sufficient to test ¢ against indicator
functions of blocks (using e.g. Proposition A.1). We also give an alternative proof
using a type of Ito isometry in Proposition 5.22.

3.2 Phase labels

We define a map qz? e REY s o0 € {—/B,0,+/B}E~ called a phase label. A basic
function of o is to identify whether the averages ¢(0O) take values around the well at
++/B, the well at —+/3, or neither. We quantify this to a given precision ¢ € (0, 1),
which is taken to be fixed in what follows.

e We say that g e By is plus (resp. minus) valued if

6(@) F /Bl < /158,

The set of plus (resp. minus) valued blocks is denoted & (resp. J).

e The set of neutral blocks is defined as N = By \(P U JM).
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Each block in By contains a midpoint. Given two distinct blocks in By, we
say that they are nearest-neighbours if their midpoints are of distance 1. They
are #-neighbours if their midpoints are of distance at most v/3. For any 0 € By,
the =-connected ball centred at O is the set B*(O) < By consisting of O and its
+-neighbours. It contains exactly 27 blocks.

e We say that 0 € By is plus good if every O’ € B*(D) is plus valued. The set
of plus good blocks is denoted P¢.

e We say that O € By is minus good if every O’ € B*(O) is minus valued. The
set of minus good blocks is denoted /.

e The set of bad blocks is defined as B = By \ (P U Mc).

Define the phase label o associated to q? of precision ¢ > 0 by

+\/B> ae gsGa
U(D) = _\/Bv oe '/%Ga
0, Oe %.

The following proposition can be thought of as an extension of the contour
bounds developed for ¢* in 2D [GJS75, Theorem 1.2] to 3D.

Proposition 3.2. Let o be a phase label of precision 6 € (0,1). Then, there exists
Bo = Bo(0,m) > 0 and Cp = Cp(d,n) > 0 such that, for > [y, the following
holds for any N € 4N: for any set of blocks B — By,

ven(o(@) = 0forallpe B) < e=CrVPIBL (3.1)

Proof. See Section 3.3.1. The main estimates required in the proof are given in
Proposition 3.6, which extends [GJS75, Theorem 1.3] to 3D and improves the [3-
dependence. Assuming this, we then prove Proposition 3.2 in the spirit of the proof
of [GJS75, Theorem 1.2]. O

3.3 Penalising bad blocks
Given a phase label, we partition the set of bad blocks % into two types.

e Frustrated blocks are blocks 0 € B such that B*(0) contains a neutral block.
We denote the set of frustrated blocks % .

e Interface block are blocks 0 € By such that B*(O) contains no neutral blocks,
but there exists at least one pair of nearest-neighbours {0 ,00’} < B*(O) such
thatd € P butd” € M. We denote the set of interface blocks ;.



PHASE TRANSITIONS 81

For any O € By and any nearest-neighbours ', 0" € B, define:

Qu(0) = % f (- : () )da

2\ do (3.2)
Q2(0) \FJ »(O)”)d
Qs(d,d") = o).

Remark 3.3. Note that testing : ¢* : against 1 yields a well-defined random variable
on the support of vz ny. We give a proof of this fact in Proposition 5.23.

We write B (O) for the set of unordered pairs of nearest-neighbour blocks
{d,0"} in By such that d',00" € B*(O). There are 54 elements in this set.

Lemma 3.4. Let N € N and fix a phase label of precision 6 € (0, 1). Then, for every

o€ By,
loegs, < 2¢”OVP ) (cosh@1<u’> +cosh@2<u’>) (33)
O’'eB*(O)
loeg, <27 % coshQs(d,0) (3-4)
{o0'}eBi ()

where Cs = min (g, 2 — 2(5) >0

Frustrated blocks are penalised by the potential Vs whereas interface blocks are
penalised by the gradient term in the Gaussian measure. Lemma 3.4 formalises this
through use of the random variables ()1, ()5 and ()3, which (up to trivial modifica-
tions) were introduced in [GJS75]. @); penalises frustrated blocks. ()- is an error
term coming from the fact that the potential is written in terms of ¢ rather than (E
(3 penalises interface blocks.
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Proof of Lemma 3.4. For any 0 € By,

Ioew = Lism<-0)vE + Ls@=(+6)v@
=11 550> e-)vB T 1L 6o -8)>@+e)v8

= 11 (502 (@)da+ 25§62 (@)—6(0)de> (20-57) /B

1 (02 Bdet 5 I o —62 (w)de> (25452 VB

<1 (3-5)

Sy o2 yp 1

ﬁ SD:¢2(‘Z):_¢(D)2CZZ‘>#\/B

+1 +1

ﬁ SD:¢2(x):7’8d$>¥\/B ﬁ Sge@?—:92 (x):dx>%\//§

- e—gﬂ<eczl<u> L0 | O @—Qz@)
_ ¢ 3VP < cosh Q1 (O) + cosh QQ(D)>

where in the penultimate line we have used that §% < 4.
By the definition of B p,

lue%p < Z 1I:|’€./V- (36)
)

O’eB* (O

Using (3.5) applied to 15y in (3.6) yields (3.3).
(3.4) is established by the following estimates: by the definition of 9By,

1I:I€931 < Z (1|:|’e£?° lu”e/n + lu’eJ% 1|:|”€9°)
{o',o}eB (@)
< ) (y@—s@>e-20v8 + Lo@)-o@)>2—2)v5)
{o.o"}eBii (@)
< ) eV <6Q3(|:|',|:|”) n e—%(u’,u”))
{oo"}eBh@)
= Z 2e~ 220V cosh Qs (1, ).

{oo}eBi@)
O]

In order to use Lemma 3.4 to prove Proposition 3.2, we want to control expecta-
tions of cosh Q1, cosh (O3 and cosh 3 by the exponentially small (in /) prefactor
in (3.3) and (3.4). Moreover, we want to control these expectations over a set of
blocks as opposed to just single blocks.
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Let By, By < By and let B3 be any set of unordered pairs of nearest-neighbours
in By. Define

coshQ1(By) = H cosh Q1 (D)

oebBs
cosh Q2(Bz) = H cosh Q2(0) (3.7)
OeBz .
coshQs(Bs) = ] cosh@s(mO).
{oO'}eBs

Remark 3.5. Although the random variable Q3(0,0') does depend on the ordering
oftandd, cosh Q3(0,00) does not.

Proposition 3.6. For every ag > 0, there exist Sy = [o(ag,n) > 0 and Cy =
Colao, Bo,n) > 0such that the following holds uniformly for all B > [, a1, az, a3 €
R such that |a;| < ag, and N € 4N: let By, By < By and Bs a set of unordered
pairs of nearest-neighbour blocks in By. Then,

3
cosh (aiQi<Bi)) < Ca(Bil+|B2|+Bs]) (3.8)
(11 i

where | B3| is given by the number of pairs in Bs.

Proof. Proposition 3.6 is established in Section 6.3, but its proof takes up most of
this article. The overall strategy is as follows: the crucial first step is to obtain
upper and lower bounds on the free energy — log 23 y that are uniform in $ and
extensive in the volume, N3. We then build on this analysis to obtain upper bounds
on expectations of the form (exp Q)5 x that are uniform in 3 and extensive in N°.
Here, () is a placeholder for random variables that are derived from the @);’s, but
that are supported on the whole of T y rather than arbitrary unions of blocks. This
is all done in Section 5, where the key results are Propositions 5.3 and 5.1, within
the framework developed in Section 4.

The next step in the proof is to use the chessboard estimates of Proposition 6.5
(which requires N € 4N) to bound the lefthand side of (13.8) in terms of |By| +

2| + | D3| products of expectations of the form <{exp N ing the results
B Bs| prod f expectati f the f Q)4 - Applying th 1
of Section 5 then completes the proof. O]

Key features of the estimate (3.8) used in the proof of Proposition 3.2 are that it
is uniform in 8 and extensive in the support of the );’s.
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3.3.1  Proof of the Proposition 3.2 assuming Proposition 3.6

We first show that we can reduce to the case where B contains no =-neighbours,
which simplifies the combinatorics later on. Identify By with a subset of Z3. For
every e € {—1,0,1}3, let Z} = ¢; + (3Z)3. There are 27 such sub-lattices which we
order according to [ € {1,...,27}. Note that Z* = | J;", Z}. Let By, = By n Z.
Each #-connected ball in B contains at most one block from each of these BY,.

Assume that (3.1) has been established for sets with no =-neighbours with con-
stant C',. Then, by Holder’s inequality,

vsn(o(@) = Oforallge B) = < I1 1Degg>6 N

oeB

H< I1 1D€%>’ (3.9)

I=1  peBnBY

——PB
<€ 27“

thereby establishing (3.1) with C'p = (;—’73

Now assume that B contains no =-neighbours. Fix any A ¢ B. Let B*(A) =
Ugea B*(@) and let B} (A) = (Jges Bin(O). By our assumption, A contains no
«-neighbours. Hence, for any @' € B*(A) there exists a unique 0 € A such that
O € B*(O); we define the root of o to be O. Similarly, for any {f,0"} € B¥,(A)
there exists a unique 0 € A such that {7/, 0"} € B} (0); we define the root of {7/, 0"}
to be 0. Note that the definition of root is A-dependent in both cases.

By Lemma 3.4, there exists Cy such that

[Tios = > (TT1eeoe ) ( T toes)

oeB AcB peA peB\A

< 9/Bl—CsVBIB 2 (H Z (cosh @1 (T )+CoshQ2(|:|’))>

AcB ©meAOeB*(O

( H Z cosh Q3(|:|',|:|”))

meB\A {/,0"}eB ()

=2|B|e’C5W|B|Z Z cosh Q1 (A;) cosh Q2(Ay) cosh Q3(As)

AcB Al,Ag,A3

(3.10)

where the last sum is over all A;, Ay < B*(A) and A3 < B} (B\A) such that: no
two blocks in A; U A, share a root, and no two pairs of blocks in A3 share a root;
and, |A;| + |A;| = |A| and |A3| = |B\A|. We note that there are (2 - 27)I4 = 54/
possible A; and Aj,, and 54/5\4! possible As.
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By Proposition 3.6, there exists Cy such that, after taking expectations in (3.10)
and using that |A| + | B\A| = |B|, we obtain

ven(o(@) = 0 forallge B) < 21Ble=CovBIBIgIBI54IBlCalBl
Thus, choosing

7 > Hlog? + 2logh4 +2Cq
Cs

yields (3.1) with Cp = % This completes the proof.

3.4 Exchanging the block averaged field for the phase label

We now show that Propositions 3.2 and 3.6 allow one to reduce the problem of
analysing the block averaged field to that of analysing the phase label. The main
difficulty here is dealing with large fields, i.e. those ¢ for which $os \¢] is large.

Proposition 3.7. Let 6,9’ € (0,1) satisfy 0’ < g. Then, there exists By = [o(,n) >
0, C = C(6,5o,m) > 0and Ny = No(d) > 0 such that, for all § > 5y and N € 4N
with N > No,

]\1[3 log ygN<LN ‘0 — 5‘611’ > (5\/EN3> < —C’\/B (3.11)

where o is the phase label of precision §' < 2

[\

Proof. Observe that
V/&N(J o — ¢ldz > 5\/3]\]3)
Tn
< VM(J o — ¢ldx > 0+/BN?,|%B| < gm) (3.12)
Tn

)
+ l//j’N <‘%| = §N3> .

By Proposition 3.2, there exists Sy > 0 and Cp > 0 such that, for \/3 >
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16 log 2
max (VB 1952 ),

N3

5
VsN <|973,| > §N3> < > ven(Bl=m)

m=[§N3]
N3 N3
—Cp+/Bm
m=lg
< 2N3e_%ﬁNS
_Cps

N3
<€ 16\/3 .

Now consider the first term on the right hand side of (3.12). We decompose one
step further:

. )
V@N(J‘ o — ¢|dz > 6+/BN?,|B| < §N3> < vpn(Th) + vgn(Th)
Ty

where

T - { | o dlar = avane, | (s < éﬁN?’}
Tn B 2
1) - )
T, - {r%r < §N% | fdlar > émv?’}.

We show that 77 = (¥ and that
Vo (Tz) < e VPN (3.14)

for some constant C' = C'(§) > 0 and for (5 sufficiently large. Combining these
estimates with (3.13) completes the proof.

First, we treat 77. On good blocks |¢(0) — o| is bounded by the /3 multiplied
by the precision of the phase label (' < g in this instance) and o = 0 on bad blocks.

Therefore, on the set { S% |gz§|dx < g\/BN?)}, we have:

J |0—$|dx:f |cr—gz?|dx+J o — ¢|dx
Ty Pl %

0 -
< 5Vl + it + | 1dlds
B

< 04/BN?
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which shows that the first condition in 77 is inconsistent with the second, so 77 = (7.
We turn our attention to 75. Fix B < By. By Chebyschev’s inequality, Young’s
inequality, and Proposition 3.6, there exists Sy > 0 and Cy > 0 such that, for

B> Bo,

)
VB,N(J |§b| > 5\/3]\[3) < 6_%\/BN3<€ZDEB ‘¢(D)|>B,N
B

< e—%\/ﬁN%@\Bkeﬁ Soes ¢<u>2>B7N

< ef%ﬂNZ‘eﬂlBkeﬁ Yaes (@@ -B)y
S
2

N

- x/BN“ex/BIBIq_[ e 2N @3y
OeB

< e—%x/BN3ex/BIB|2\B\<COsh (%Q1(3)> cosh (%QQ(B)>>

< ¢~ 3VBN® VBIBlg|Bl Cal Bl

B?N

Therefore,

5]
8 . 5
DLEOEPID) uﬁ,N( jBrmdeNS)

m=1 B:|B|l=m

3
< e 3VAN? 2 (N >€ﬁme<%+log2>m (3.15)

m

5 3 N3 8 3 (CQtlog2)d g
—5vVBN°oN° Sy/BN° —<———N
< e 2\/B 2 eg\/B 6 8

_ e(*%\/ﬁ+log2+7(CQ+gog2)6)N3.
Taking
16log2 2
—(Cg +log?2
VB> a5 T 3(Catlog2)
yields (3.14) with C' = 2. O

3.5 Proof of the main result

Adapting an argument from [Bodoz], we reduce the proof of Theorem 1.2 to bound-
ing the probability that qz? is far from ++/3-valued functions on By whose boundary
(between regions of opposite spins) is of certain fixed area. Proposition 3.7 then
allows us to go from analysing 5 to the phase label, for which we use existing results
from [BIVoo].
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For any B < By, let 0B denotes its boundary, which is given by the union of
faces of blocks in B. Let [0B| = (., 1ds(z), where ds(z) is the 2D Hausdorff
measure (normalised so that faces have unit area). Thus, |0 B| is the number of faces
in 0B.

For any a > 0, let C, be the set of functions f € {+1}B~ such that |0{f =
+1}| < aN?. For any 6 > 0, let B(C,, d) be the set of integrable functions g on
Ty such that there exists f € C,, that satisfies §v 19— fldz < 5N

Proposition 3.8. Let 0, ' € (0, 1) satisfy 0’ < 0. Then, there exists 5y = [o(d,1) > 0
and C = C(6, Bo,n) > 0 such that, for all B > By, the following estimate holds: for
all a > 0, there exists No = No(a,0) = 4 such that, for all N > N, dyadic,

1 1
Nz log 1/57N<\/—BU ¢ B(Cy, 5)) < —C\/Ba
where o is the phase label of precision §'.

Proof. See [BIVoo, Theorem 2.2.1] where Proposition 3.8 is proven for a more
general class of phase labels that satisfy a Peierls’ type estimate such as the one in
Proposition 3.2. We give a self-contained proof for our setting in Section 3.6. [

The following lemma is our main geometric tool. Itis a weak form of the isoperi-
metric inequality on T, although it can be reformulated in arbitrary dimension.
Its proof is a standard application of Sobolev’s inequality and we include it for the
reader’s convenience.

Lemma 3.9. There exists C; > 0 such that the following estimate holds for every
N eN:

min(|{f = 1], [{f = —1})) < Cilo{f = 1}2
for every f € {+1}Bx.

Proof. Let 0 € CP(R?) be rotationally symmetric with {, §dz = 1. By Sobolev’s
inequality, there exists C' such that, for every e,

J ]fg—ca|§dx<(5’<f |Vf€]alas>§ (3.16)
Ty Tn

where f. = f e 30(e7*) and ¢, = 3 STN f-dz. Note that C is independent of N
by scaling.
Letting ¢ — 0 in the left hand side of (3.16), we obtain

f F—elide— | |F—dide (3.17)
Ty

Ty
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where ¢ = W Note that c € [—1, 1].
Without loss of generality, assume ¢ > 0. This implies that [{f = 1}| > {f =
—1}|. Then, evaluating the integral on the righthand side of (3.17), we find that

J;If—cﬁ@ﬁzﬂ—vﬁHf=1H+%1+cﬁHf=—4}

=(1- c)%cNg’ + <(1 - c)% + (1 + C)%>’{f= —1}| (3.18)

> 2|{f = 1}

where we have used that the function
3 3
2

c—(1=c2+(1+¢)

has minimum at ¢ = 0 on the interval [0, 1].
For the term on the right hand side of (3.16), using duality we obtain

f |Vf_;|dx = sup
Ty

geC®(Tn,R3):|gloo<1

| 7l (3.19)
Tn

where | - |4, denotes the supremum norm on C (T, R?).
For any such g, using integration by parts and commuting the convolution with
differentiation,

‘L Vji—gdx‘ = ‘L f;V . gdx‘ = ‘ﬁr fv : gsdI‘ (3.20)

where the g. is interpreted as convolving each component of g with e 36(¢~1.)
separately.

Hence, by the divergence theorem, Young’s inequality for convolutions, and
using the supremum norm bound on g,

@m»:ﬂLﬁlfgﬁw@><maf=1H (3.21)

where 7 denotes the unit normal to 0{f = 1} pointing into { f= —1}.
Inserting (3.21) in (3.19) implies that, for any ¢,

‘f|vﬁwx<ﬂmf=1w (3.22)
Tn

Thus, by inserting (3.22), (3.17) and (3.18) into (3.16), we obtain
= =1} < vac|aff = 1],
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Proof of Theorem 1.2. Let ¢ € (0,1). Choose a > 0 and 0 € (0, 1) such that
1-2Ca? =6 = (3-23)
where (7 is the same constant as in Lemma 3.9. We first show that

(my(0) & (/A < {50 ¢ B(C)} (3:24)

Assume \/LBQ; € B(C,,0). Then, there exists f € C, such that

LN‘ng ﬂdx < ON?,

This implies

< ON3

1 — —
—d)dm‘ _ ‘ fdac‘
“ LN VB Tn
from which we deduce, together with Lemma 3.9,
2min (|{f = +1}, [{f = ~1})
_ N —

20| f = 41}
N3

Since f € C,, we obtain

mn(8)] = V/B(1 - 2Ca2 — 8) = ¢+/B

by (3.23).
Hence,

{50 B(Cun} = fImulo)l = VL

Taking complements establishes (3.24).
Now let o be the phase label of precision %. Note that

{\/%q% %(C’a,é)} c {%Ba ¢ %(ca, g)}U {L 16— oldz > g\/BN?’}.

Applying Proposition 3.7, Proposition 3.8, and using (3.24) finishes the proof. [
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3.6 Proof of Proposition 3.8

For any B < By, let 0* B be the set of blocks in B with =-neighbours in T y\B.
Note that this is not the same as ¢ B, which was defined earlier. Let & be the set of -
connected components of 0*(Tx\Ml). We call this the set of defects. Necessarily,
any [' € 9 satisfies [' < 9.

Fix v € (0,1). Let @Y < D be the set of I' € D such that |I'| < 6/N?. The
elements of @7 are called y-small defects and the elements of &\@7 are called
~v-large defects.

Take any ' € &”. Recall that we identify [" with the subset of T 5 given by the
union of blocks in I". Write C1(I") for its closure in T 5. The condition v < 1 ensures
that, provided N is taken sufficiently large depending on y, any I' € 9" is contained
in a (translate of a) sphere of radius % in T. Let Ext(I") be the unique connected
component of Tx\CI(I') that intersects with the complement of this sphere. Let
Int(T") = Txn\Ext(I"). We identify Ext(I") and Int(I") with their representations as
subsets of By. Note that I" < Int(I") and generically the inclusion strict, e.g. when
I" encloses a region.

Let 9™ be the set of I' € @7 such that I' () Int(I") = ¢ for any T' € @7\ {T'}.
In other words, &7™# is the set of y-small defects that are not contained in the
interior of any other y-small defects, and we call these maximal y-small defects.

We define two events, one corresponds to the total surface area of ~-large
defects being small and the other corresponding to the total volume contained within
maximal y-small defects being small. Let

81—{ > |F|<%N2}

Te®\D"

Y 3
Sy = {F;m [Int()] < 4N }

We now show that for ¢ € S; NS> n {|%B| < $N?3}, we have \/LBJ € B(C,, 9).

We obtain a 4-+//3-valued spin configuration from o by erasing all y-small defects
in two steps: First, we reset the values on bad blocks to /3. Define o, € {£+/3}5¥
by o1(0) = +/B if O € B, otherwise o, (O0) = o(0). Second, define oy € {£+/F}E¥
as follows: Given O € Int(I") for some I' € DV™** let oo(0) = o1(0), where
0 is any block in Ext(I") that is =-neighbours with a block in I'. Note that the
second step is well-defined since the first step ensures that every block in Ext(I")
that is =-neighbours with I" has the same value. See Figure 2 for an example of this
procedure.

From the definition of .S; and using that the factor 6 in the definition of y-small
defects accounts for the discrepancy between |0 - | and |0* - |,

|0{oe = +\/B}| < aN?
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Figure 2: An example of the o to o5 procedure (left to right). Image courtesy of J.
N. Gunaratnam

yielding \/LBO'Q € C,. Then, from the definition of S5 and using the smallness
assumption on the number of bad blocks,

1 ‘ ‘ 03 03 3
o — oo|dr < 2 [Int( )|+|973|<2 N° + -N° < 6N
). 2 :

which establishes that —=o € B(C,, 9).

We deduce that the event {\/iﬁa ¢ B(C,, (5)} necessarily implies one of three

things: either there are many bad blocks; or, the total surface area of y-large defects
is large; or, the density of y-small defects is high. That is,

1
Vg N (—O’ ¢%(Ca, 6))
v (3-25)

5
< v (18] = SN*) + Vs (S5) + v (S5).

Proposition 3.2 gives control on the first event. The other two are controlled by
the following lemmas.

Lemma 3.10. Let 7,5 € (0,1). Then, there exists o = [Bo(7,0,m) > 0 and
C = C(v,6,Bo,n) > 0such that, for all B > By, the following holds: for any a > 0,
there exists Ny = No(7,a) > 0 such that, for any N € 4N with N > N,

1

N2 logV,BN( >, T> aN2) < C\f(a * _>
e\

where the underlying phase label is of precision 0.

Proof. We give a proof based on arguments from [DKSg2, Theorem 6.1] in Section
3.6.1. U
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Lemma 3.11. Let ,6,0' € (0,1). Then, there exists By = [(o(7,9,0",n) > 0,
C = C(v,6,0,Bo,m) > 0and Ny = Ny(v,0) = 4 such that, for all > [, and
N > Ny dyadic,

1 N

m 10g Vﬁ,N( Z |Int(F)\ > 5N3> < _C\/BW
Fegb'y,max

where the underlying phase label is of precision 0’

Proof. See [BIVoo, Section 5.1.3] for a proof in a more general setting. We give an
alternative proof in Section 3.6.2 that avoids the use of techniques from percolation
theory. [

As in (3.13), by Proposition 3.2 there exists C'p > 0 such that

van(|B| = 6N?) < e~ F VAN? (3.26)

provided /3 > 4282,
P .
Therefore, from (3.25), (3.26), Lemma 3.10 and Lemma 3.11, there exists C' > 0
such that
1

N7 N
W )

log vy (7 ¢ B(Cay6)) < ~C+/Bmin (N, + S5, <o

Taking v < % and N sufficiently large completes the proof. All that remains is to
show Lemmas 3.10 and 3.11.

3.6.1 Proof of Lemma 3.10

By a union bound

yﬁ,N< Z T > aN2> = Z I//37N<9)\925’Y = {FZ})

FEE’D\%’Y {Fi}:|Fi|>N’Y
T |>aN?2
2 ITil> (327)

< ) VB,N(ric%forallrie{ri}>,
{Fi}:|Fi|>N7
> ITi[>anN?

where{I;} refers to a non-empty set of distinct *-connected subsets of By.
By Proposition 3.2 there exists C'p such that, for any {T';},

VaN (ri — Bforall T, e {ri}> =TT [T 1eewrsn

FZG{Fl} oel’;
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< ¢-CrVAZIT,

. . . . . . . 1 2 1
Inserting this into (3.27) and using the trivial estimate >} [I';| > aN*+35 >, [T,

%N( D |F|>GN2>< S eCevAEIDS

Le\B7 {Di}:|T5 >N
> ITi|>aN?
< o~ FVBaN? 3 e~ FVBIIN  (3.28)
{Fi}:\Fi\>NV

_ o~ FBaN? YT o= FVBIN|
{T;}:|T;|>N7 I';e{T';}

Summing first over the number of elements in {I';} and then the number of
s-connected regions containing a fixed number of blocks,

SCpyEn _ N e SevAr
2 1l 2 x|l

{Fi} F,L'E{Fi} m=1 {Fi};11:|F¢|>N“/ =1

I0|>N7
(5 ey

L 1 x-connected :T|>N~

3 ( 3 N327-26"_1e_CTP*/B">m
m=1 nx=N7 (329)

)
s

3
I

N
8

VAN

€3mlogN—CZTP\/BmN“/ < Z e—%ﬂn>m

1 n=1

DMs iDs

<3log N—%P\/BNW) m
e

N

1

3
I

o
Cp cp
— == N7 3mlog N——— N7
<e s VB E : e3mlog £ V/Bm

m=1

provided /83 > max <4lgi 2 41&’?) = 418%3 27 (note that the condition arises so that

C
em 1 VP < %, so that the geometric series with this rate is bounded by 1).

For any v > 0, the final series in (3.29) is summable provided N7 > log N and
VB > g—i, thereby finishing the proof.
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3.6.2 Proof of Lemma 3.11

Choose 2N7 < K < 4N7 such that K divides N. Such a choice is possible since
we take NV to be a sufficiently large dyadic. Let

3
nn“nz—i-K c Ty :n1,n9,n3 € {0, K, .. N—K}}.
i=1

Elements of B are called K -blocks.

We say that two distinct K -blocks are =x-neighbours if their corresponding
midpoints are of distance at most K v/3. We define the = -connected ball around
m € BY to be the set containing itself and its *-neighbours. As in the proof of
Proposition 3.2, we can decompose B = le Bf,l such that any #x-connected
ball in B contains exactly one K-block from each element of the decomposition.

For eachm = [n1,n1 + K) x [ng,ny + K) x [ng,ng + K), distinguish the unit
blockm = [ny,n1 +1) x [ng,ne + 1) x [n3,n3+1). Forevery h € {0,..., K —1}3,
let Th be the translation map on By induced from the translation map on T N We

(respectively, Bﬁ ") as UIB (respectlvely, IB%I;,Z).

By our choice of K, Int(F) is entirely contained in a translation of a /'-block for
any I € @7. As a result, Int(T") intersects at most one & -block in B for any fixed
.

Using the correspondence between K -blocks and unit blocks described above,

we have
Y om@ =Y Y L
I'e%py,max OeB y ey max

- Z 2 2 Thﬂelnt
mcUBX he{0,....K— 1}3 ey ,max

Y Y Y L
=1 !EUIBKZ hG{O ..... K— 1}3 e®p,max

Hence,

u@N( Z Int(T))| >5N3> (3.30)
e max

0 fN\3
< 2TK? H}SXVB,N< Z Z 1., memni(r) 2—7<§> )

!EUIBK t Pepry max

where the maximum is over h € {0,..., K —1}3and 1 < < 27.
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Let Ej be the event that precisely k indicator functions appearing on the right
hand side of (3.30) are nonzero. In other words, F is the event that there are k
distinct defects of size at most N7 such that the & distinct 7,m, where m € UIB%%’Z, are
contained in their interiors.

Given a block there are 27 - 26"~ possible defects of size n that contain this
block. Thus, by Proposition 3.2, there exists C'p such that

vgN(Eg) < ( ) Z Hn] 26 - 27 e~ CPVB (3.31)

1<ny,...,np<N7 j=1

provided e.g. /8 > max

the choice of h and [.
By a union bound on (3.30), using (3.31), and that 2N7 < K < 4N7,

N7 k
) f’f Zn-26-27“*16*%”ﬂ“)

n=1

= 412—%327. This estimate is uniform over

4log 27 2log?2
' T Cp

N3

27K3 N3
yﬂ,N( M ()] > 6N < 27K° Y <—27é<3>6-?m
Ie®,max | N3
k7[27K3J+1

3

3
< OTK? . 9mis o 25 VB RS

log2 N3 6Cp
< 27 6463710gN+ 2O7gs NS'Y_WIN3W
< 27 - 6de” 27 32\FN3W

provided ylog N < N33 and v/f > M Taking logarithms and dividing
by N? completes the proof.

4 Boué-Dupuis formalism for ¢}

In this section we introduce the underlying framework that we build on to analyse
expectations of certain random variables under v, as required in the proof of
Proposition 3.6. This framework was originally developed in [BG19] to show
ultraviolet stability for ¢3 and identify its Laplace transform.

In particular, we want to obtain estimates on expectations of the form <eQK VBN K>
where Qi are random variables that converge (in an appropriate sense) to some
random variable () of interest. We always work with a fixed ultraviolet cutoff K
and establish estimates on (9% ) v - that are uniform in K: this requires handling



PHASE TRANSITIONS 97

of ultraviolet divergences. The first observation is that we can represent such
expectations as a ratio of Gaussian expectations:

Eye %s.nx(9K)+Qk (¢x)

QKr _
CAADIN A T (4.1)

where we recall Ey denotes expectation with respect to puy and 23y x =
E e~ %s.~.x(#x) g the partition function.

We then introduce an auxiliary time variable that continuously varies the ultra-
violet cutoff between 0 and /K, and use it to represent these Gaussian expectations
in terms of expectations of functionals of finite dimensional Brownian motions.
This allows us to use the Boué-Dupuis variational formula given in Proposition 4.7
to write these expectations in terms of a stochastic control problem. Hence, the
problem of obtaining bounds is translated into choosing appropriate controls. An
insight made in [BG19] is that one can use methods developed in the context of sin-
gular stochastic PDE:s, specifically the paracontrolled calculus approach of [GIP15],
within the control problem to kill ultraviolet divergences.

Remark 4.1. In the following, we make use of tools in Appendices A.2 and A.3
concerning Besov spaces and paracontrolled calculus. In addition, for the rest of
Sections 4 and 5, we consider N € N fixed and drop it from notation when clear.

4.1 Construction of the stochastic objects

Fix ko > 0 sufficiently small. We equip 2 = C (R+;‘€_%_“0) with its Borel o-
algebra. Denote by [P the probability measure on {2 under which the coordinate
process X, = (Xj)r=0 is an L? cylindrical Brownian motion. We write E to
denote expectation with respect to P. We consider the filtered probability space
(Q, o, (Ay) k=0, P), where of is the P-completion of the Borel o-algebra on €2, and
(s k=0 is the natural filtration induced by X and augmented with P-null sets of .

Given n € (N~'Z)3, define the process B by B} = é §r, Xre—ndz, where

en(x) = e*™™* and we recall that the integral denotes duality pairing between

distributions and test functions. Then, {B? : n € (N~1Z)3} is a set of complex
Brownian motions defined on (€2, o, (dy)=0, ), independent except for the con-
straint B} = B_". Moreover,
1 noard
Xi= 5 > ByNie,
ne(N—1%Z)3

where P-almost surely the sum converges in @3,
Let ¥ be the Fourier multiplier with symbol

\ Orpi(-)
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where pj is the ultraviolet cutoff defined in Section 2 and we recall () =
N+ 4m2| - 2. § arises from a continuous decomposition of the covariance of
the pushforward measure p under py:

[ s0m =29 < 5{57100+ (-2 - s 5700}
where F denotes the Fourier transform and %! denotes its inverse (see Appendix
A.1). Note that the function 0y p; has decay of order <k>_% and the corresponding
multiplier is supported frequencies satisfying |n| € (c,k, C,k) for some ¢, < C,.
Thus, we may think of ¥, as having the same regularising properties as the multiplier
F{(—Atn) ")
(k2
Define the process t, by

lcpkgchp ks precise statements are given in Proposmon A.9.

T = J Frrd Xy =

8’ /
( J v ’ZZ’; dB;;,>en. 4.2)

1, is a centred Gaussian process with covariance:

E[LN fkfd:cLN Tk/gdx] = % Z pm<m>k2k Ff(n)Fg(n)

ne(N—-17)3

for any f,g € L?. Thus, the law of 1, is the law of p.¢ where ¢ ~ py. As with
other processes in the following, we simply write t = 1,.

4.1.1 Renormalised multilinear functions of the free field

The second, third, and fourth Wick powers of t are the space-stationary stochastic
processes %, %, «¥* defined by:

Vi =1 — O
v = T — 304
W, = 1 — 60,1 + 30%
where we recall from Section 2 that (), = Ex|[¢%(0)] = E[t2(0)]. Note that vy, 0,
and <=, are equal in law to : @2 :,: @3 :, and : ¢ :, respectively.
The Wick powers of t can be expressed as iterated integrals using It6’s formula
(see [Nuaob6, Section 1.1.2]). We only need the iterated integral representation «:

| kiopke 3 y/ﬁkp
_ 3 Y ff J o dB”ddB"QdB"I
=1

ni,n2,n3

(4.3)
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where we have used the convention that sums over frequencies n; range over
(N71Z)3.
We define additional space-stationary stochastic processes V", ‘%, J» X7 by

k
m:fﬁwM
0
Voo = eV
pk’ ny pk’ n2>aklpk’(n3) /
P = vV — J dk
n1+n22+n3 <n1>2<n2>2<n3>2

Wk = Ve © Vi — i 2 pk(nl)pk(nQ)akpk(n3>.

N° ni1+ng+n3z=0 <n1>2<n2>2<n3>2

We make two observations: first, a straightforward calculation shows that <
diverges in variance as k — o0. However, due to the presence of %, \V',, can be made
sense of as k — oo0. See Lemma 4.6.

Second, Y, W1, and XY, are renormalised resonant products of V., v+,
and ($.4:)?, respectively. The latter products are classically divergent in the limit
k — co. We refer to Remark 4.2 for an explanation of why the resonant product is
used.

Remark 4.2. Let f € €°' and g € 6™ for s; < 0 < so. Bony’s decomposition
states that, if the product exists, fg = f@g+ feg+ f©g andis of regularity s (see
Appendix A.3). Since paraproducts are always well-defined (see Proposition A.5),
the resonant product contains all of the difficulty in defining the product. However,
the resonant product gives regularity information of order s + s (see Proposition
A.6), which is strictly stronger than the regularity information of the product: i.e.
the bound on ||f © g|gs1+s2 is strictly stronger than the bound on | f g||¢s:. This is
the key property that makes paracontrolled calculus useful in this context [GIP15].

The required renormalisations of J»; and ¥ are related to the usual "sunset"
diagram appearing in the perturbation theory for ¢,

1 2(ny)p2(n2)pi(n
S, = 5 Z Pi 1)20k( 22)Pk(23)' (4.4)
mbnging=0  (117%n2)%(ns)
See [Fel74, Theorem 1]. We emphasise that €3, depends on 7, NV and k.
By the fundamental theorem of calculus, the Leibniz rule, and symmetry,

| k(R m) gk ()i (ma))
TN Jy — G

ni+nz+n3=0



100 PHASE TRANSITIONS

3 Z S§ P (1) pir (112) O P (113) '

NG e (n1 ) (ngy*(nz)?

Thus, the renormalisations of <»>; and XY, are given by 45,1, and gak@k,
respectively.

Remark 4.3. It is straightforward to verify that there exists C = C(n) > 0 such
that

C(n)
N6

C(n) loglk)
NS (k)

Let 2 = (1,v,V, ">, J, ). We refer to the coordinates of = as diagrams. The
following proposition gives control over arbitrarily high moments of diagrams in
Besov spaces.

O <

10g<k;> and &k@k <

Proposition 4.4. For any p,p’ € [1,0), q € [1,0], and k > 0 sufficiently small,
there exists C' = C(p,p', q, k,n) > 0 such that

SUpE| el _, o+ [vil? e+ [T,
k>0 B2 v .q B2

/

r'.q p'.q

. ) (45)
1Bl 1Bl ([ 1l )] < c
»'.q Bp/?q 0 ?’'.q

Proof. See [BG19, Lemma 24]. L]

Remark 4.5. The constant on the righthand side of (4.5) is independent of N because
our Besov spaces are defined with respect to normalised Lebesgue measure dx = %
(see Appendix A.2). For p = o0, bounds that are uniform in N do not hold. Indeed,
for L*-based norms, there is in general no chance of controlling space-stationary

processes uniformly in the volume. Thus, we cannot work in Besov-Holder spaces.

We prove the bound in (4.5) for ¥’ since it illustrates the role of %, is used later
in the proof of Proposition §.22, and gives the reader a flavour of how to prove the
bounds on the other diagrams.

Lemma 4.6. There exists C = C(n) > 0 such that, for any n € (N~'Z)3,

sup E|FYV.(n)
k>0

R : (4.6)

< o
(nyt

As a consequence, for everyp € [1,0) and s < % there exists C' = C(p, s,n) >
0 such that

supE| |7
k>0

p < C
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Proof. Inserting (4.3) in the definition of ", and switching the order of integration

s L

OJ\Vk(n) = 3
N2 ni+nz2+ng=n
X (HT> dB}#dB;2d B} dk'
i=1 !
k1 ko
6 5 f f J f akkaZ ) gk
k1 <Tl>

3
2
N ni+n2+nz=n

dBdB2dB".

X
(i—l (ni)
Therefore, by Itd’s formula
2

]E‘SWK(n)‘

36 k1 k2 ak’/pk;/ )

— — S —dk

N2 JJJ<L ny?

4.7)

ni+ng+ng=n

Ok, Py, (1)
(H Ty | hadkadky
k 2

ak P (n> dk/

v 5 ﬁf(f (2

< RN
3
ni+ng+ng=n
where we have performed the k, and k3 integrations, and used that |pg| < 1
i € (c, k', C k). Hence, for any

2
a 2
1Pk, (;11) dky
(n1)

)

Recall that dyp?, is supported on frequencies |n|
2 2

)

Kk > 0,
! * O pir (1)
Vs (oY ng)? dk
7 +Z+]_ <”2>2<n3>2f ( b (278 ) )G
1 1 " Ok pi (n1)
- 8
o n1+n22+n3—n (nyt=r{ng)*(n3)? Jo  (ny)*te dky (4.8)
1 N
<

(mpt=r g # e (ng)y*(ng)? = (m)t

1
Sy

N
nit+nz2+ng=n
where < means < up to a constant depending only on 7, ¢, and C; the last inequality
uses standard bounds on discrete convolutions contained in Lemma A.12; and we
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have used that the double convolution produces a volume factor of N°. Note that,
as said in Section 2, we omit the dependence on ¢, and C), in the final bound.

By Fubini’s theorem, Nelson’s hypercontractivity estimate [Nel73] (or the related
Burkholder-Davis-Gundy inequality [RY 13, Theorem 4.1]), and space-stationarity

ElYelp, = 3 27E|A Tl

j=-1

Y o L E|A, ¥ (2)[Pde

j=—1

jzl 2 LN <]E|Aj\?’“(x)|2> S

- 3 (Esmor)

(4.9)

A

\%

where A; is the j-th Littlewood-Paley block defined in Appendix A and we recall
dx = %.
We overload notation and also write A; to mean its corresponding Fourier

multiplier. Then, by space-stationarity, for any j > —1,

]E|Am<o)|2=J E|A, V() Pdz

Tn
1
= <5 2, 18 (n) PEIFT(m) (4.10)

) 2 37
<LZAJ(R) <2—.=l..
SNS Lyt Y24

Inserting (4.10) into (4.9) we obtain

B[Vl < > 27278
PP S
which converges provided s < 2, thus finishing the proof. [

4.2 The Boué-Dupuis formula

Fix an ultraviolet cutoff K. Recall that we are interested in Gaussian expectations
of the form

where # (¢x) = Hs Nk (0x) + Qr(PK).
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We may represent such expectations on (£, d, (Ay) x>0, P):
Eye " 0x) = Ee="(Tx), (4.11)

The key point is that the righthand side of (4.11) is written in terms of a measurable
functional of Brownian motions. This allows us to exploit continuous time mar-
tingale techniques, crucially Girsanov’s theorem [RY 13, Theorems 1.4 and 1.7], to
reformulate (4.11) as a stochastic control problem.

Let H be the set of processes v, that are P-almost surely in L*(R, ; L?(Ty)) and
progressively measurable with respect to (sdy)x=0. We call this the space of drifts.
For any v € H, let V, be the process defined by

k
Vi = f Fvpdk'.
0

For our purposes, it is sufficient to consider the subspace of drifts Hx < H consisting
of v € H such that v, = 0 for k > K.

We also work with the subset of bounded drifts H, x < H, defined as follows:
for every M e N, let Hj, 57 x be the set of v € Hlx such that

K
J J videdk < M (4.12)
0o Jry

P-almost surely. Set Hj, x = | ;en Ho, a1, k-
The following proposition is the main tool of this section.

Proposition 4.7. Let N € Nand # : C*(Tx) — R be measurable and bounded.
Then, for any K > 0,

1 K
—1ogE[e*%<’K>] — ianE[%(TK + Vi) + §J f v,idxdk] 4.13)
v 0 JTy

where the infimum can be taken over v in Hy or H, k.

Proof. (4.13) was first established by Boué and Dupuis [BDg8], but we use the
version in [BD19, Theorem 8.3], adapted to our setting. O

We cannot directly apply Proposition 4.7 for the case # = % y x + () because
it is not bounded. To circumvent this technicality, we introduce a total energy cutoff
E € N. Since K is taken fixed, #3 n x + (Qx is bounded from below. Hence, by
dominated convergence

lim Eye~ ox k@10 B _ [ o~Hani @) 4+Qx(6) (414

E—o0
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We apply Proposition 4.7 to # = (#s n.x + Q) A E. For the lower bound on
the corresponding variational problem, we establish estimates that are uniform over
v € H k. For the upper bound, we establish estimates for a specific choice of v € H g
which is constructed via a fixed point argument. All estimates that we establish are
independent of £. Hence, using (4.14) and the representation (4.11), they carry over
to Eye~ %Nk (¢x)+@x(¢x) We suppress mention of F unless absolutely necessary.

Remark 4.8. The assumption that # is bounded allows the infimum in (4.13) to
be interchanged between Hy and Hy, i. The use of H, i allows one to overcome
subtle stochastic analysis issues that arise later on: specifically, justifying certain
stochastic integrals appearing in Lemmas 5.14 and 5.16 are martingales and not
just local martingales. See Lemma 5.13. The additional boundedness condition is
important in the lower bound on the variational problem as the only other a priori
information that we have on v there is that ESS{ STN vidzdk < oo, which alone
is insufficient. On the other hand, the candidate optimiser for the upper bound is
constructed in Hy, but it has sufficient moments to guarantee the aforementioned
stochastic integrals in Lemma 5.13 are martingales. See Lemma 5.21.

Remark 4.9. A version of the Boué-Dupuis formula for # measurable and satisfying
certain integrability conditions is given in [Ust14, Theorem 7]. These integrability
conditions are broad enough to cover the cases that we are interested in, and it is
required in [BG19] to identify the Laplace transform of ¢3. However, it is not clear to
us that the infimum in the corresponding variational formula can be taken over H, .
Therefore, it seems that the stochastic analysis issues discussed in Remark 4.8 cannot
be resolved directly using this version without requiring some post-processing (e.g.
via a dominated convergence argument with a total energy cutoff as above).

4.2.1 Relationship with the Gibbs variational principle

Given a drift v € Hg, we define the measure () whose Radon-Nikodym derivative
with respect to P is given by the following stochastic exponential:

dQ — eg{f vpdXp—% §p 5 vzdkdzdP‘ (4.15)

Let H, i be the set of v € H such that its associated measure defined in (4.15) is
a probability measure, i.e. the expectation of the stochastic integral is 1. Then, by
Girsanov’s theorem [RY 13, Theorems 1.4 and 1.7 in Chapter VIII] it follows that
the process X, is a semi-martingale under (Q with decomposition:

K
XK:X})(""J del‘
0
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where X is an L? cylindrical Brownian motion with respect to Q. This induces the
decomposition

'k =1 + Vi (4.16)
where 1, = Sé( FdX Y.

Lemma 4.10. Let N € Nand # : C*(Ty) — R be measurable and bounded from
below. Then, for any K > 0,

“logEe~*(") = in ]EQ[%(TK+VK f f vzdxdk] 4.17)
Ty

’L)EHC K
where Eq denotes expectation with respect to Q.

Proof. (4.17) is a well-known representation of the classical Gibbs variational
principle [DE11, Proposition 4.5.1]. Indeed, one can verify that R(Q|P) =

Eg [ So Sty v,%da:dk] , where R(Q|P) = Eqglog %2 is the relative entropy of Q with
respect to P. A full proof in our setting is given in [GOTW 18, Proposition 4.4]. [

Proposition 4.7 has several upshots over Lemma 4.10. The most important for us
is that drifts can be taken over a Banach space, thus allowing candidate optimisers to
be constructed using fixed point arguments via contraction mapping. In addition, the
underlying probability space is fixed (i.e. with respect to the canonical measure P),
although this is a purely aesthetic advantage in our case. The cost of these upshots
is that the minimum in (4.17) is replaced by an infimum in (4.13), and more rigid
conditions on # are required. We refer to [BD19, Section 8.1.1] or [BG19, Remark
1] for further discussion.

With the connection with the Gibbs variational principle in mind, we call % (V)

the drift (potential) energy and we call Sé( §r, vidzdk the drift entropy.

4.2.2 Regularity of the drift

In our analysis we use intermediate scales between 0 and K. As we explain in
Section 5.1, this means that we require control over the process V, in terms of the
drift energy and drift entropy terms in (4.13).

The drift entropy allows a control of V, in L?-based topologies.

Lemma 4.11. For everyv € L*(R,; L*(Ty)) and K > 0,
K
sup Vil < J J vidwdk. (4.18)
O<k<K 0 Jry

Proof. (4.18) is a straightforward consequence definition of ¥, see [BG19, Lemma
2]. ]



106 PHASE TRANSITIONS

To control the homogeneity in our estimates, we also require bounds on [[V,||7..
This is a problem: for our specific choices of #, the drift energy allows a control
in L*-based topologies at the endpoint Vi . It is in general impossible to control the
history of the path by the endpoint (for example, consider an oscillating process V,
with Vi = 0). We follow [BG19] to sidestep this issue.

Let p € CP(Ry;R,) be non-increasing such that

) 1 fale[0.%]
ple) =

0 \z| € |cp, oo)
and let pi.(-) = p(3) for every k > 0.
Define the process V? by

vy = % WD ( JO Fo () Fv (md/a) e,

Note that F(V})(n) = F(Vi)(n) if [n| < 2. Thus, V) and V, have the same low
frequency/large-scale behaviour (hence the notation).

The two processes differ on higher frequencies/small-scales. Indeed, as a Fourier
multiplier, g J = 0 for &’ > k. Hence, for any k < K,

1 K
vy = N3 > k(n) <L Fw (n)oj‘vk'(”)dk/) " = prVk.

This is sufficient for our purposes because gy, is an LP multiplier for p € (1, ), and
hence the associated operator is L bounded for p € (1, o0).

Lemma 4.12. Forany p € (1,0), there exists C = C(p,n) > 0 such that, for every
ve L*(Ry; L*(Tw)),

sup V7 llze < O|Vi] 1o (4.19)

<k<

Moreover, for any s,s' € R, p € (1,0), q € [1,0], there exists C =
C(s,s',p,q,n) such that, for every v € L*(R,; L*(Ty)),

sup \|akv,f|

0<k<K

Vicl e
By, <C Vicl s, (4.20)

S Ol

Proof. (4.19) and (4.20) are a consequence of the preceding discussion together
with the observation that 8kV,f is supported on an annulus in Fourier space and,
subsequently, applying Bernstein’s inequality (1.6). See [BG19, Lemma 20]. [
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5 Estimates on ()-random variables

The main results of this section are upper bounds on expectations of certain random
variables, derived from ()1, ()2, and ()3 defined in (3.2), that are uniform in # and
extensive in V3.

Proposition 5.1. For every ag > 0, there exist Sy = [o(ag,n) = 1 and Cgy =
Colao, Bo,n) > 0 such that the following estimates hold: for all 5 > [y and a € R
satisfying |a| < ay,

1
—m10g< H eXp(an(D))>ﬂ7N = —Co
OeB
1
—m10g< H eXp(an(D))>B7N = —Cq.
0eEBn
In addition,
: o
~yalos( T ew(a@:@d)), > -Co
{oO'}eB
where B is any set of unordered pairs of nearest-neighbour blocks that partitions
By.
Proof. See Section 5.9. []

Proposition 5.1 is used in Section 6.3, together with the chessboard estimates
of Proposition 6.5, to prove Proposition 3.6. Indeed, chessboard estimates allow us
to obtain estimates on expectations of random variables, derived from the ();, that
are extensive in their support from estimates that are extensive in V3. Note that the
latter are significantly easier to obtain than the former since these random variables
may be supported on arbitrary unions of blocks.

Remark 5.2. For the remainder of this section, we assume 1 < m where Cp is
the Poincaré constant on unit blocks (see Proposition A.11). This is for convenience
in the analysis of Sections 5.8.1 and 5.9 (see also Lemma 5.20). Whilst this may
appear to fix the specific choice of renormalisation constants dm?, we can always

shift into this regime by absorbing a finite part of dm? into V3.

Most of the difficulties in the proof of Proposition 5.1 are contained in obtaining
the following upper and lower bounds on the free energy — log 2 y that are uniform

in 3.



108 PHASE TRANSITIONS

Proposition 5.3. There exists C' = C(n) > 0 such that, for all 5 > 1,

. 1
I%n_}gclf e log Zsnx = —C (5.1)
and
. 1
limsup —— log Z3 vk < C. (5-2)
Koo N3 34V

Proof. See Sections 5.8.1 and 5.8.2 for a proof of (5.1) and (5.2), respectively.
These proofs rely on Sections 5.2 - 5.7, and the overall strategy is sketched in
Section §5.1. 0

Remark 5.4. In [BG19] estimates on —log 23 n i are obtained that are uniform in
K > 0 and extensive in N3. However, one can show that these estimates are O([3)
as 3 — oo. This is insufficient for our purposes (compare with the uniform in 3
estimates required to prove Proposition 3.2).

5.1 Strategy to prove Proposition 5.3

The lower bound on — log Z3 v i, given by (5.1), is the harder bound to establish
in Proposition 5.3. Our approach builds on the analysis of [BG19] by incorporating
a low temperature expansion inspired by [GJS76a, GJS76b]. This is explained in
more detail in Section §.1.1.

On the other hand, we establish the upper bound on — log Z3 n x, given by (5.2),
by a more straightforward modification of the analysis in [BG19]. See Section 5.8.2.

We now motivate our approach to establishing (5.1) by first isolating the the
difficulty in obtaining -independent bounds when using [BG19] straight out of the
box. The starting point is to apply Proposition 4.7 with # = 3 n i, together
with a total energy cutoff that we refrain from making explicit (see Remark 4.8 and
the discussion that precedes it), to represent —log 23 v x as a stochastic control
problem.

For every v € Hj k, define

1 K
Ui(v) = Hank(Tk + Vi) + —f f vidrdk.
2Jo Jry

Ultraviolet divergences occur in the expansion of # n i (1x + Vi ) since the integrals
STN 5 Vidr and STN vx VZdx appear and cannot be bounded uniformly in K:

e For the first integral, there are difficulties in even interpreting < as a random
distribution in the limit /' — co. Indeed, the variance of «*; tested against a
smooth function diverges as the cutoff is removed.
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e On the other hand, one can show that x does converge as { — o0 to a
random distribution of Besov-Holder regularity —1 — « for any x > 0 (see
Proposition 4.4). However, this regularity is insufficient to obtain bounds on
the second integral uniform on K . Indeed, Vi can be bounded in at most // 1
uniformly in K (see Lemma 4.11), and hence we cannot test ¥ x against Vi
(or V) in the limit K’ — c0.

This is where the need for renormalisation beyond Wick ordering appears.

To implement this, we follow [BG19] and postulate that the small-scale behaviour
of the drift v is governed by explicit renormalised polynomials of t through the change
of variables:

v = _éjk\v'k - Ejk(vk V) + 1 (53
s s
where the remainder term r = r(v) is defined by (5.3). Since v € Hyx > H, g,
we have that » € Hy and, hence, has finite drift entropy; however, note that r ¢
Hy, x. The optimisation problem is then changed from optimising over v € Hj, g to
optimising over 7(v) € H.

The change of variables (5.3) means that the drift entropy of any v now contains
terms that are divergent as K — 00. One uses Itd’s formula to decompose the
divergent integrals identified above into intermediate scales, and then uses these
divergent terms in the drift entropy to mostly cancel them. Using the renormalisation
counterterms beyond Wick ordering (i.e. the terms involving i and k), the
remaining divergences can be written in terms of well-defined integrals involving
the diagrams = = (1,+,'V, V>, ¥, ¥V) defined in Section 4.1.1.

One can then establish that, for every ¢ > 0, there exists C' = C(g,3,n) > 0
such that, for every v € H, .,

EVg(v) = —CN? + (1 — )E[Gk (v)] (5.4)
where

1
B Jry

The quadratic term in Gk (v) allows one to control the H 2= norm of Vi for any
x > 0, uniformly in K (see Proposition 5.9). These derivatives on Vi appear when
analysing terms in W (v) involving Wick powers of tx tested against (powers of)
Vi . However, some of these integrals have quadratic or cubic dependence on the
drift, thus the quadratic term in Gk (v) is insufficient to control the homogeneity
in these estimates; instead, this achieved by using the quartic term in G (v). Note
that the good sign of the quartic term in the % y x ensures that G (v) is indeed
non-negative.

1 K
Gr(v) Viedx + §f0 L ridkdr = 0.
N
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Using the representation (4.11) on E ye~%#.~5.x(¢x) and applying Proposition 4.7,
one obtains — log 23 vy x = —C N? from (5.4) and the positivity of G (v).

As pointed out in Remark 5.4, this argument gives C' = O([3) for j large and
this is insufficient for our purposes. The suboptimality in S-dependence comes from
the treatment of the integral

Vs(Vie) — gV}?dw (5.5)
Ty

in s nx('k + Vk). The choice of Gi(v) in the preceding discussion is not
appropriate in light of (5.5) since the term STN Vitdx destroys the structure of the
non-convex potential §.  ¥3(Vi )dz. On the other hand, replacing 5 { Vi¢da with
the whole integral (5.5) in Gk (v) does not work. This is because (5.5) does not
admit a $-independent lower bound.

5.1.1 Fixing $ dependence via a low temperature expansion

We expand (5.5) as two terms

1 1
(5.5) = J E%(VK)CZ:E + J 5%(‘%) - gVédm- (5.6)
Ty

Ty

The first integral in (5.6) is non-negative so we use it as a stability/good term for
the deterministic analysis, i.e. replacing G i (v) by

1 1 (" )
5%(V[(>d$ +3 ridxdk. (5.7)
Tn 0 Tn

This requires a comparison of L” norms of Vi for p < 4 on the one hand, and
STN %3V )dx on the other. Due to the non-convexity of ¥, this produces factors
of [3; these have to be beaten by the good (i.e. negative) powers of 3 appearing in
#sn k(T + Vi ). We state the required bounds in the following lemma.

Lemma 5.5. For any p € [1,4], there exists C = C(p) > 0 such that, for all a € R,

lalP < C(V/B):Ws(a)t + C(\/B)". (5.8)

Hence, for any [ € C*(Ty),

Il < CWBE( | Tohide)' + OV (59)

where we recall dx = %.
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Proof. (5.8) follows from a straightforward computation. (5.9) follows from using
(5.8) and Jensen’s inequality. ]

The difficulty lies in bounding the second integral in (5.6) uniformly in 3. In 2D
an analogous problem was overcome in [GJS76a, GJS76b] in the context of a low
temperature expansion for ®3. Those techniques rely crucially on the logarithmic
ultraviolet divergences in 2D, and the mutual absolute continuity between ®3 and
its underlying Gaussian measure. Thus, they do not extend to 3D. However, we use
the underlying strategy of that low temperature expansion in our approach.

We write 23 y i as a sum of oN? terms, where each term is a modified partition
function that enforces the block averaged field to be either positive or negative on
blocks. For each term in the expansion, we change variables and shift the field on
blocks to ++//3 so that the new mean of the field is small. We then apply Proposition
4.7 to each of these 2V * terms.

We separate the scales in the variational problem by coarse-graining the resulting
Hamiltonian. Large scales are captured by an effective Hamiltonian, which is of a
similar form to the second integral in (5.6). We treat this using methods inspired
by [GJS76b, Theorem 3.1.1]: the expansion and translation allow us to obtain a [3-
independent bound on the effective Hamiltonian with an error term that depends only
on the difference between the field and its block averages (the fluctuation field). The
fluctuation field can be treated using the massless part of the underlying Gaussian
measure (compare with [GIS76b, Proposition 2.3.2]).

The remainder term contains all the small-scale/ultraviolet divergences and we
renormalise them using the pathwise approach of [BG19] explained above. Patching
the scales together requires uniform in [ estimates on the error terms from the renor-
malisation procedure using an analogue of the stability term (5.7) that incorporates
the translation, and Lemma 5.5.

5.2 [Expansion and translation by macroscopic phase profiles

Let x.,x_ : R — R be defined as

o) == m ede, X-(a) = x4(—a).

They satisfy

vi (@) +x_(a) = 1

and hence

Yoo T xeo(6@) =1

oe{+1}BN OBy
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for any ¢ = (§(0))esy € REY.
For any K > 0, we expand

Zs N = Z En [6_%’N’K H Xo (@) (d)K(E‘))]

oe{+1}BN OeBy

= Z QPBU,N,K

oe{+1}BN

(5.10)

where we recall o (@) = §; ¢ ladr.
We fix o in what follows and sometimes suppress it from notation. Let h = +/S0.
We then have

Ty 32

—g:(@{—hY:—W¢Kh+gh%m

+ ) log (Xa(u) (¢K(D))>)-

oeBy

25Nk =Enexp <— N ATIE I % 1 —Ox

We translate the Gaussian fields so that their new mean is approximately . The
translation we use is related to the classical magnetism, or response to the external
field nh, used in the 2D setting [GJS76a] and given by n(—A + n)~'h.

Lemma 5.6. For every K > 0, let hir = pxh. Define g = n(—A + 1)~ ‘hy and
9 = pr gk Then, there exists C' = C(n) such that

|9l [V gic|o < C/B (5.11)

where | - |, denotes the supremum norm. Moreover,

J \VgKIQd:céf Vi |*dx. (5.12)
T Ty

Finally, let
b 1 ‘
G= ) mﬁkf Fi (n)F g(n)dk
ne(N-17)3 0

where py, is as in Section 4.2.2. Then, for any s,s' € R, p € (1,0) and q € [1, x0],
there exists C; = C1(n, s,p,q) and Cy = Cy(n, 8,5, p, q) such that

lgrlss, < Cillgx s, (5.13)

and

1
Bij{q S 02 <k>l+s—5/ ||gKHBIS)7q. (514)

|0kgi)
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Proof. The estimate (5.11) follows from the fact that n(—A + n)~! and Vn(—A +
n)~! are L* bounded operators. This is because the (n-dependent) Bessel potential
and its first derivatives are absolutely integrable on R®. Hence, by applying Young’s
inequality for convolutions one obtains the L* boundedness. The uniformity of the
estimate over o follows from ||o |« = 1forevery o € By. The other estimates follow
from standard results about smooth multipliers, the observation that g, = jrgx for
any K > k, and Lemma 4.12. [

Remark 5.7. Note that gk is given by the covariance operator of n applied to nh.
Moreover, note that gi # Jx since p3 # pr, i.e. the Fourier cutoff is not sharp.

By the Cameron-Martin theorem the density of ;i under the translation ¢ =
1 + gk transforms as

(@ + i) = exp (= [ Sarl=A + m)ac + 05+ )i ) (),

Ty 2
Hence,
25 sc = Ene om0 Fi ()
where
%0’ _ . . 7K . 2.
s (UK) = ] Vs (Vi + 9K) ik (Vi + 9x)° 1 —0K
N
— 0 W+ gx =) dz— Y] 1og (oo (Vi + 910)(@) )
OeBy
and
1. N -
Fing@) = L —n(Yx + gr)h + gh2 + 59K (=A + 0)gx + P(=A + n)gxdr.
N

By integration by parts, the self-adjointness of py, and the definition of gk

. 1o N
Faacw) = | =0+ g + 302+ 51Vl + 2 + mohucds
T
! X (5.15)
= J g(NK — hK)2 + g(l — p%()hQ + §|V§K|2dl‘
Tn

Thus, F§ y (1) is independent of ¢ and non-negative.

Remark 5.8. Let g = n(—A + n)~'h. Then,

: n 2 1 2
im Foo = | T(g—m)?+ 2 Val2da. _
Jim P = | 30w+ 9ol (5.16)
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The second integrand on the righthand side of (5.16) penalises the discontinuities of

0 Lvgl2de . .
0. Indeed, e by 2IValide ;o approximately equal to e=“VP\%°! \where 0o denotes the
surfaces of discontinuity of o, |0c| denotes the area of these surfaces, and C' > 0 is
an inessential constant. Thus, for (3 sufficiently large, Z3 v is approximately equal
to

e~ CVBloa] o o(1) = H e~ CVAILl O(1)

FrL'EO'

where 1'; are the connected components of do (called contours). It would be
interesting to further develop this contour representation for vg n (compare with the
2D expansions of [GJS76a, GIS76b]).

5.3 Coarse-graining of the Hamiltonian

We apply Proposition 4.7 to — log Eye %8~k () For every v € Hj g, define

1 K
V% (v) = %5 ny k(1 + Vi) + §J J v? dadk. (5.17)
0o Jry
Let Zx = Tx + Vi + g, where T = (1% (0))gen, - We split the Hamiltonian as

1
TS vk (k + Vi) = H(Zx) + Ry + 3 Us(Vi + gx)dr  (5.18)

Ty
where
eff . 1 n 2
#ic(Zx) = | 5Vsnx(Zx) = 5(Zx = h)*dw - > log ( Xo@ (Zx (@)
Tn oeBy

is an effective Hamiltonian introduced to capture macroscopic scales of the system.
The quantity R g is then determined by (5.18) and is explicitly given by

YK

Ry = :CV,B(?K"FVK"‘QK):_E1(7K+VK+9K>2:_5K
Tn
1 o 1
- 5%(71( + Vi + 9r) — 5%(VK + 9K)
—g : (TK —|—VK +gK—h)2 : +g(?K+VK +g[{—h)2d33.

All analysis/cancellation of ultraviolet divergences occurs within the sum of R x and
the drift entropy, see (5.27). Finally, the last term in (5.18) is a stability term which
is key for our non-perturbative analysis, namely it allows us to obtain estimates that
are uniform in the drift.

The key point is that we coarse-grain the field by block averaging *x, the most
singular term. This allows us to preserve the structure of the low temperature
potential %3 on macroscopic scales (captured in #&(Zf)), which is crucial to
obtaining estimates independent of (5 on the free energy.
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5.4 Killing divergences
5.4.1 Changing drift variables

For any v € H}, i, define r = r(v) € Hg by

4 12
TR = U + Efk\'f’k + Eﬁ:(Vk (VP +qp))- (5-19)

In our analysis it is convenient to use an intermediate change of variables for the
drift. Define u = u(v) € Hg by

4
up = g + = V. (5.20)

8

Inserting (5.19) and (5.20) into the definition of the integrated drift, V, =
S’; Fvdk’, we obtain

4 12, b b /
Vi=—="r— —J Fo (Vi © (Vi) + gps) )K" + Ry
g B Jo
) (5.21)
= —B\T/k + Uk

where Rk = Slg Zk/’/’k/dk’/ and Uk = Sg ]k/uk/dk/.
The following proposition contains useful estimates estimates on Uy and V.

Proposition 5.9. For any ¢ > 0 and k > 0 sufficiently small, there exists C' =
C(e,k,m) > 0 such that, for all B > 1,

CNEZ €
sup Uil < N3K+_3 Us(Vie + gk )dx
0<k<K 5 Ty ( )
5.22
K
+CJ J ridrdk
0 JTy
CNz c
Vil < =+ 5 | (Ve + gk)d
OEESK [ k||H%—~ N3 3 I, 5(Vik + gk )dx ( |
523
K
+CJ J ridrdk
0 JTn

where we recall dr = %; and NZ is a positive random variable on ) that is P-
almost surely given by a finite linear combination of powers of (finite integrability)
Besov and Lebesgue norms of the diagrams = = {1,%,"V', ¥+ & '} on the interval
[0, K.



116 PHASE TRANSITIONS

Proof. See Section 5.6.1. ]

Remark 5.10. As a consequence of Proposition 4.4, the random variable NZ satis-
fies the following estimate: there exists C = C(n) > 0 such that

ENz < CN°. (5.24)

In the following we denote by N any positive random variable on ) that satisfies
(5.24). In practice it is always P-almost surely given by a finite linear combination
of powers of (finite integrability) Besov norms of the diagrams in = on [0, K. Note
that NZ includes constants of the form C' = C(n) > 0.

5.4.2 The main small-scale estimates

In the following we write ~ to mean equal up to a term with expectation 0 under P.

Proposition 5.11. Let 5 > 0. For every K > 0, define
Kk =—43-S (5-25)

where > is defined in (4.4), and

og = E [LNJ —— (Feos)? k—%w(\h{f

(5.26)
96 2
+ E<\VK> VKd‘x]-
Then, for every v € H, g,
R +1JKJ 2dkdz igﬁ +1JKJ vdxdk (5.27)
_ ) S = r .
K2OTNk i:1K20TNk

R = f Lyt - %(?m?’(vK +gx) - %(?KWK +gi)?
6
5

+ 2 -
+ nT(TK)Q + (77 + 2)TKVKd.’L'

192 48 96
97@{ = J FTK\V%UK - ETK\VKU[Q( - @U(\T’KQKUK
Tn
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4
+ —txUp + —
BETET B
\ 12
%K:J E(VK@QK)UK—F
Tn
48

12
+ ETK‘Q?{UK — (4 + ’I])TKUKCZ$

6
—(VK@UK—VK®UK)UK

B

12
(vK oY) Uk + —(Vk @9x)Uk +

B

J J Vi © akvk + akgk)>Uk
Tn

+E< o (Vi + g — Vi — ))UK

TKgKU?(

6
B(vK ® UK)Ude

2 2
- %((ﬂ(w oW +a))) — (FvoFiw) (V7 + g,';)2> dkdz
4 48 2'7K
R =~ T @QKKUK 32 (Vi + 91) (Vi + 9k — Vit — g%)

(VK +gx — Vi — g) da

/82
Yk (A /b N L b, b2
Tx Jo ﬁ B

Moreover, the following estimate holds: for any ¢ > 0, there exists C' =
C(g,n) > 0 such that, for all 5 > 1,

1 K
< CNE + 5( Vs(Vic + gic)da + Ef f r,idxdk) (5.28)
0 Tn

.....

Ty
where Nz is as in Remark 5.10.

Proof. We establish (5.27) in Section 5.5 by arguing as in [BG19, Lemma 5]. The
remainder estimates (5.28) are then established in Section 5.6. [

Remark 5.12. The products i and t K\ﬁ( appearing above are classically ill-
defined in the limit K — co. However, (probabilistic) estimates on the resonant
product P uniform in K are obtained in Proposition 4.4. Hence, the first product
can be analysed using a paraproduct decompositions (1.7). The second product is
less straightforward and requires a double paraproduct decomposition (see [BG19,
Lemma 21 and Proposition 6] and [CC18, Proposition 2.22]).

5.5 Proof of (5.27): Isolating and cancelling divergences

Using that tj, T, ¥k, ¥k and < all have expectation zero,

1 4 6 4
Ry = f — P + —WK(VK + gK) + —VK(VK + gK)2 + —TK(VK + gK)3
T B B B B
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— 2% — 4TK(VK + gK) + %(VK + gK)

z;g <VK+2TK(VK+9K) (VK+9K>2> —5](
- %(W - %(«})%VK T o) — %(?KWVK T o)’
2

o o - 1
— ETK(VK + gK)3 + (TK)2 + QTK(VK + gK) — 5%(‘/}( + gK)

1
- 5%(VK + 9x)

— Q\/’K — UTK(VK + gk — h) — g(VK + g — h)2

2
+ g(?}(y + n?K(VK + gk — h) + g(VK + gk — h)QdI
4 6 4
oS J —'\T)'KVK + —VK(VK + gK)2 + —TK(VK + gK)3 — 4TKVK
Ty B B B
2
- %TKVK ﬁg{ (Vi + 9x)* — 0k
) = 200 Vie + g1) — S () (Vie + gxc)?
28 B B
2., 6 6. R -
— Ve — ST VEgr — =Tk Vikga + (Tk)* + 2T Vi
B B B
— icVic + 3 (F)? + i Vicda
Hence, by reordering terms,
1 4 6 o, 4 3
Ry ~ giK + — Vi + —VK(VK + gK) + —TK(VK + gK)
T B B B
(5.29)
— (4 + T])TKVK — —TKV — —(VK + gK) — 5Kdl’

B2 B2
Ignoring the renormalisation counterterms (i.e. those involving 7 and
0k ), the divergences in (5.29) are contained in the integrals STN %WKVKd:); and

STN %(VK + gK)z. In order to kill these divergences, we use changes of variables
in the drift entropy to mostly cancel them; the remaining divergences are killed by
the renormalisation counterterms. We renormalise the leading order divergences,
ie. those polynomial in K, in Section 5.5.1. The divergences that are logarithmic in
K are renormalised in Section §.5.2.

In order to use the drift entropy to cancel divergences, we decompose certain
(spatial) integrals across ultraviolet scales k& € [0, K] using Itd’s formula. Error
terms are produced that are stochastic integrals with respect to martingales (specif-
ically, with respect to d<; and d**;). The following lemma allows us to argue that
these stochastic integrals are ~ 0.
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Lemma 5.13. For any v € Hj, g, the stochastic integrals

K
f J Vi d . da (5.30)
Ty JO

and

K
Z J J Upi(V} + g0)d(D v ) d (5.31)
Ty Jo

i<j—1
are martingales. We recall that, above, A; denotes the i-th Littlewood-Paley block.

Proof. In this proof, for any continuous local martingale Z,, we write {Z, Z'), for
the corresponding quadratic variation process. Moreover, for any Z-adapted process
Y., we write Sé{ Y}, - dZ,, to denote the stochastic integral XTN S(If Y.dZ,dzx.

We begin with two observations: first, let v € H, 57 for some M > 0, i.e.
those v € H, x satisfying (4.18). Then, by Sobolev embedding, there exists C' =
C(M,N, K,n) > 0 such that

sup [[Vilze < C
0<k<K
P-almost surely.

Second, recalling the iterated integral representation of the Wick powers «#;, and
vy (see e.g. (4.3)), one can show dwr), = 3v,dt, and d(A;vy) = Ajdvy, = 2A;1,.d1.
Thus, we can write the stochastic integrals (5.30) and (5.31) in terms of stochastic
integrals with respect to dt,. It suffices to show that their quadratic variations are
finite in expectation.

Using that d{1, "), = $2(1)dk = $2dk and by Young’s inequality,

E

. i K
« f vk.dw)K] = 3°E f f V,fvi;f,fdxdk]
0 0 Twn

o
< 3’E —f J VE + vigtdadk | < oo.
12 Jo Jry

Hence, (5.30) is a martingale.
Now consider (5.31). By (5.21),

K
> J J UpAi(VE + g7) - d(Ajw) = Zg + Z%
0 TN

1<j—1
where

K
Zi =2 )] J L VA VAt
N

i<j—1+0
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1<j—1

Arguing as for (5.30), one can show E{Z%) . < .
By Young’s inequality and using that Littlewood-Paley blocks and the b operator
are L” multipliers, we have

E{Z8Y, = 2°E J L V2(AV2 (A1) % dk:]

z<] 1

<2°E| = f J V8 + Akfk) jkd:cdk]
Tn

thus establishing that (5.31) is a martingale. 0

5.5.1 Energy renormalisation

In the next lemma, we cancel the leading order divergence using the change of
variables (5.20) in the drift entropy. The error term does not depend on the drift and
is divergent in expectation (as /X' — o0); it is cancelled by one part of the energy
renormalisation dx (see (5.20)).

Lemma 5.14.

1
—\T)'KVde + = f f vidwdk ~ J J (Frwr) 24 —uid:pdk.
T B Tn Ty 2

Proof. By Itd’s formula, Lemma 5.13, and the self-adjointness of ¥,

4
J — o Vidr = J J —. 0L Vidk + — de\f)'k dx ~ f J — e vvupdkder.

Hence, by (5.20),

K
f — O Viedr + = J J vidmdk
TN TN

1, 4
f f —Fomn (— —w +ug) + = (= Zvp + wy) dkdz
Ty 2

5
1 2
jk‘\f/'k +—dek3d$.
Ty Jo 2
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As a consequence of (5.20), the remaining (non-counterterm) integrals in (5.29)
acquire additional divergences that are independent of the drift. We isolate them in
the next lemma; they are also renormalised by parts of the energy renormalisation

(see (5.20)).

Lemma 5.15.

4 256
J —TK(VK + gK)3 - (4 + U)TKVKCZZL' a5 9{%( - f TTK?E{dIL‘ (5.32)
Ty B Ty B
and
6 96 48
f —vi (Vi + gi)*dz ~ J —3VK\T’§< — ¥V Uk
Ty B Ty B 8
6 19 (5-33)
+ —VKU}Q( + —vr9rUkdzx.
B g
Proof. By (5.21),
4
J —TK(VK + gK)?’dx
Ty B
4 4
— LN BTK(—B\VK + UK + gK)SdQT
4 64,3 48..-
= LN BU( ( - E\VK + E\VK(UK + 9K)
12 24 12
- E\VKUIQ( - E\VKUKQK - g‘%{gi
(5-34)

+ Uj + 3Ukgx + 3Ukgg + gi}) dx

256 192
~ J — e+ TR Uk
Tn

B4 B
48 96
— VUi — 1V kg Uk
B B
4 12 12
+ BTKU?( + ETKQKU?( + gTKg%UKdZ'

Above we have used Wick’s theorem and the fact that *¥ 5 is Wick ordered to conclude
E[’K?ég[(] = E[TK\VKQ%(] = 0.
Similarly, Etx 5 = 0 ¥ x. Hence, by (5.21)

J (4+n)gVik ~ f (4 +n)xUgkdz. (5.35)
Twn

Tn
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Combining (5.34) and (5.35) establishes (5.32).

By (5.21),
4 2
f —VK VK—i—gK dx—f _VK<__\VK+UK+QK) dx
TN B Ty B B
6 8
- 5 BQWK B(UK +9x) Vi

U2 + 2Uregic + gi)d:@

~ 96'\’1(\?;( 12VK< - é?K) Uk

Ty 3 B B
6
+ BVKUIQ{ + EVKQKUde
where we have used that E[v'xgx] = 0 and, by Wick’s theorem, E[vx Vx| = 0.
This establishes (5.33). [

The divergences encountered in Lemmas 5.14 and 5.15 that are independent of
the drift are killed by the energy renormalisation d since, by definition,

Si ~ L - L : %(}k\vk)Qdk - %TK (\?K)g o (*VK) vidr. (5.36)

5.5.2 Mass renormalisation

The integrals on the righthand side of (5.33) that involve the drift cannot be bounded
uniformly as X' — co. We isolate divergences using a paraproduct decomposition
and expand the drift entropy using (5.19) to mostly cancel them. This is done in
Lemma 5.16. The remaining divergences are then killed in Lemma 5.17 using the
mass renormalisation.

Lemma 5.16.

48 6 12 15
J QVK\VKUK + VKUK —r9xUkdx + —f uidkdx
Ty 8 & B 2 )y
~ R+ - J J 2dkdx
TN 48 (5.37)
+f SVK‘VK Vi ©VUkdr
Ty B B

72
—f f @(ik'\’k@fwk)(vkb + gi)*dkdz.
Tx JO
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Proof. We write

48 12 12 4
BQVK\VKUK + 3 —VkUkgk = gW{( - B\VK + gK) Uk.

Thus, using (5.21) and a paraproduct decomposition on the most singular products,

12 6
J —VK<——\VK+QK>UK+ VKUKdZB
Tn

p 5 p
= JTN%<VK®<— %\VK +9K>>UK + %(VK®UK>UK

+ % (vKo ( — %*T’K + gK))UK + %(VKOUK)UK

.38
—l—%('\ﬁ(@(—%\VK—FQK))UK-F%(VK@UK)UK (5:38)

12

- LN E(\@@ (Vi + gK)>UK - §<vK @‘VK>UK

12 6
+ _(VK@QK)UK+ —<VK@UK—VK®UK)UK

B s

4§ <VK @\VK> UK + B(VK @QK)UK +
B B

All except the first two integrals are absorbed into R3..
For the first integral, we use the (drift-dependent) change of variables (5.19)

in the drift entropy of u to mostly cancel the divergence. Due to the paraproduct

term, using It6’s formula to decompose into scales requires us to control Vj, + g for

k < K. In order to be able to do this, we replace Vi + gx by V[b( + gg( first. Then,

applying Itd’s formula, Lemma 5.13, and using the self-adjointness of ¥,

L %(vK o (Vi + gK)>Ude

=J %( (VK+9K))UK+%(VK®(VK+9K—V&—93<))UKCL’C

6
ﬁ(VK ® UK)UKCZQT

(5-39)

12
J J —fk vie (Vy + g;@)uk + 5 <Vk © (VP + (3kg,b€)) Urdkdx
Tn

12
+J —(VK®(VK+9K—V;<—Q;{))UK dz.
T B
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From (5.19) and (5.20)

1
J f _3k Ve © Vk + gk))uk + ukdkdx
Ty

b b 2 1
J J —— jk vie (Vi + gk))) + —rpdkds
Ty 2
] (5.40)
J J —— jka @Zkvk> (ka + 92)2 + —Tz
Ty 2
72

T3 ((jk(vk o(Vy + 92)))2 - (kak @jkvk> (VP + g,bc)z> dkdzx.

Combining (5.38), (5.39), and (5.40) yields (5.37). [

We now cancel the divergences in the last two terms of (5.37) using the mass
renormalisation.

Lemma 5.17.

%}1( o f —@VK@\VKUKdJZ
Ty
K79
- || (@reemn) i+ gt (sa0)
T~ Jo B°

2

J 'Yé( Vi — I;(VK + gK)de
Ty B B

Proof. By the definition of ¥ (see Section 4.1.1),

48 2
—f —VK @\VKUK — ﬂT[(‘/de
T

N~ B B2
8
= — J:E EQKKUK gf TK\VKdLI? (542)
% . BQQKKUKCZI

where we have used that, by Wick’s theorem, E[1x x| = 0.
To renormalise the second integral in (5.41), we need to rewrite the remaining
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counterterm in terms of V}-:

o (VK + gK) dx
Tn /8

- J 32 (VK + gK) + 2(VK + gK)(VK + gk — Vb q ) (5.43)
Tn
+ (Vic + gx — Vit — g )?da.

Using It6’s formula on the first integral of the right hand side of (5.43),

LN P (V3 + gh)?da

0
ﬁr J Wk gibf) ﬁQ (akvk + Okgk)(vk + gk)dkdx'

By the definition of ¥}, (see Section 4.1.1),

f J %Vk © FVk — ;Zk> (Vi + g;)°dkdz
T
" (5.44)
f f —m (Vp + g;)*dkdz.
Tn
Hence, combining (5.42), (5.43), and (5.44) establishes (5.41). L]
Proof of (5.27). Lemmas 5.14, 5.15, 5.16, and 5.17, together with (5.36), establish
(5.27). 0
5.6 Proof of (5.28): Estimates on remainder terms
Define
Rb =Ry + R+ RY
where
4., 4
9?,?(’1 = ( ——TKVI?% + —TKU}O’(d$
JTnN ﬁ ﬂ
0.2 ( K12
RE? = (v (@17 + 6kgk)>Uk + 250V + augl) (V2 + gh)dkda
JTn JO B B
a3 {’ " 72 SIS b, b2
R = J 7 (jk(vk® (Vg + gk))> - (}kvk@fkvk)(vk +g;)” | dkdx
JTn JO
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and let Ry = >0 | Ri — RE.

R contains the most difficult terms to bound, either due to analytic considera-
tions or 3-dependence; &% contains the terms that follow almost immediately from
[BG19, Lemmas 18-23].

Proposition 5.18. For any ¢ > 0, there exists C = C(e,n) > 0 such that, for all
g >1,

a = 1 ("
%% < CNg + 5( Vs(Vk + gk )dx + 3 J J r,%dwdk:) (5.45)
T 0 Jry

. Lt
[R5 < ONg + 5( Vs (Vi + g )dx + §J f rﬁdwdk) (5.46)
0 Tn

Tn

a,: = 1 K
R < ONg + 6( Vs(Vic + gic)da + §J J r,zdxdk>. (5.47)
0o Jry

Tn

Proof. The estimates (5.45), (5.46), and (5.47) are established in Sections 5.6.2,
5.6.3, and 5.6.4 respectively. (5.46) and (5.47) are established by a relatively
straightforward combination of techniques in [BG19, Lemmas 18-23] together with
Lemmas 5.5 and 5.6. On the other hand, the terms with cubic dependence in the
drift (5.45) require a slightly more involved analysis.

Note that, since our norms on functions/distributions were defined using dz = %
instead of dx to track N dependence, in the proof we rewrite the integrals above in
terms of dz by dividing both sides by N3. [

Proposition 5.19. For any ¢ > 0, there exists C' = C(e,n) > 0 such that, for all
g>1,

= 1 E
|R%| < CNE + 5( Vs(Vk + gk )dx + §J J T,%dxdk).
0 Jry

Ty

Proof. Follows from a direct combination of arguments in [BG19, Lemmas 18-23]
with Lemmas 5.5 and 5.6. We omit it. ]

Proof of (5.28). Since Z?:l R = R + R, Propositions 5.18 and 5.19 establish
(5.28). O]

The proofs of Propositions 5.18 and 5.19 rely heavily on bounds on the drift es-
tablished in Proposition 5.9, so we prove this first in the next subsection. Throughout
the remainder of this section, we use the notation ¢ < b to mean a < Cb for some
C' = C(e,n), and we also allow for this constant to depend on other inessential
parameters (i.e. not 3, N, or K).
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5.6.1 Proof of Proposition 5.9

First, note that (5.23) is a direct consequence of (5.22) along with (5.21) and bounds
contained in Proposition 4.4.
We now prove (5.22). Fix any £’ € [0, K|. As a consequence of (5.21),

288
|l < T f e (V2 + k| 2Rl (548

By Minkowski’s integral inequality, Bernstein’s inequality (1.6), the multiplier
estimate on $ (1.13), the paraproduct estimate (1.8), and the b-estimates (4.19),

(152 (v © (Vi + gh)) [ mr-1-2

k/
P2 (VP + g dkH < dk
HL r(vee (VY +ar)) Himw JO D%
o [ Ol
0 G
< Jk AL TR
= NN K T 9K|L4-

Hence, by Cauchy-Schwarz with respect to the finite measure ? k>1+,€ , the potential
bound (5.9), and Young’s inequality,

1 ¥ 2 b b 2
= f oo (V) + k]

2
1 % Vel g
< ﬁ(L de’ HVK +gK”%4
1 K HWHB oy ,
< | | )+ ol
1 (5-49)

K [vi|? - Uy(Vie + g )dz )’
SJ b dk<(ST” 5(Vic + 9x) ) 1)

0 <k>1+/{ ﬁ% T3

Jvk’ |Vk||B_1 2»@ - 1 Jk’ Vk%;;—mdk 2
/8 <k>1+f~c de 0 <k:>1+n

+ —3 %(VK + gK)d‘x.
B Jry
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For the remaining term in (5.48), note that by the trivial embedding H! — H'™*¢
and the bound (4.18) applied to Ry,

K
| Ri 31— sf f ridxdk. (5.50)
0 Tn

Inserting (5.49) and (5.50) into (5.48) establishes (5.22).

5.6.2 Proof of (5.45)

We start with the first integral in R%". Fix x > 0 and let ¢ be such that (1 + x)~! +
g~! = 1. Then, by Young’s inequality (and remembering 3 > 1),

V 242K
(5) Wkl e, 550

|?K’qu + €J \/B

Tn

2—»
U —TKV,:’;d‘:U‘ <C.
Ty B

Tn

Adding and subtracting gy into the second term on the righthand side and using the
pointwise potential bound (5.8),

|VK| 2t2s 1+k
LN<\T6> Vie| e da

Vi + gie [+ 05 ”
G (559
N

Vs(Vic + gr)\ = . .
gﬁm«%f L [ i

where we recall that | - |, is the supremum norm.
By the bounds on g (5.11) and Vi (5.23), taking x < 1 yields

| (el i

< C(e,k,m) + €| Vk |7 (5.53)

NE 1 (K
<O-—XE 4+¢ Us(Vi + g d‘x+—f J r2dxdk).
N <1rN s(Vic + grc)d + 5 R )

w

Above, we recall that Nz can contain constants C' = C(n) > 0.
For the remaining term on the righthand side of (5.52), we reorganise terms and
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iterate the preceding argument:

1tk ’VK’ 1+k
Vs(Vie + ) = () du
g, Vit ) <¢B )
e . Vs(Vic + gr) 1
< | Vs(Vk +gx) \ \“ 14 5(Vi Hf’K) dr (5.54)
Ty VB'* g

< Cl(e,k,m) +¢ Vs (Vi + gk )dx

Ty

. 1
provided that £ < 7.

We now estimate the second integral in Ry . ' Let & > 0 be sufficiently small.

Let ¢ be such that m + = 1. Moreover, let § = % By duality

(1.1), the fractional Leibniz rule (1 2) and interpolation (1.4),

AUE] e

TKUKCZLZE’ < = ”TKHB 1
,00 1A+R)(A-R) |
3—K ’

).
(5.55)

A

»—tmh—t

”wKHB—%—H HUKH ik HUKH%AL—QR
9,60 24 7,1

_”’KHBf%anUKHHl Uk 732
,00

Q

By the change of variables (5.21) in reverse, reorganising terms, Young’s in-
equality, the bound on Uy (5.22), and using € < 1,

(5:55) < C g + el|Uk -

240

1
g |Ux (M Vicl -2 )

2
q,00

Ni 2 1 4
e e|Uklz—x + \/B% LN Vidz (5-56)

NZ I 2
<C-E 4 g< Vy(Vie + g )dz + = rkdxdk)
N Tx 2 0 Tn

1

+ 5 f Vidz.
VB2 Ty

For the last term on the righthand side of (5.56), we iterate the potential bound




130 PHASE TRANSITIONS
(5.8) and bound on g (5.11) as in the estimate of (5.52)

VK|> 1+7 |V |2+2 dr

=) e | (5

VB Jrx
20
SN RED IR
o7
n %(VK"‘QK) 2‘VK‘2+7J$
Tn /Bl+2
sClem+ | Wik
Tn
2799
V|28
+ | (Vi +9k) g|K’2 dz (5.57)
TN /6@ 5’57
< Clean) +elVil?,,
+ Vs(Vi + g 1+2<1+ 2+9>dx
Ty 5( K K) ‘\/>|
_1
+ %(VK—FQK)H'% o dx

Tn

<Clem +=(Vielt o+ [ BolVic + gucdo)

H?2 Ty

NE |

<OC—+2 Y, d: — dzxdk
CN +€< g(VK-i-gK)JZ—l-QJO J:EN T >

Tn

w

where in the penultimate line we used Young’s inequality and in the last line we

have used (5.23).
Combining (5.51), (5.53), (5.54), (5.56), and (5.57) establishes (5.45)

5.6.3 Proof of (5.46)
For any 0 € (0,1) let 21? = % 4+ -0 and let i =1 Then, by duality (1.1), the
paraproduct estimate (1.8), the Bernstein-type bounds on the derivatives of the drift
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(4.20), and bounds on the dxg., (5.14),

K12 , ,
‘ e 0 (V) + Ongl) Undkdi
Tn

g
1 K
<3 i © (V2 + Okgi) lm—vee U | 1k
LK (5.58)
<3 [8elp-1en |06 VE + Orgill o | Uk -k
0 P2
1 K dk
S Su U 1—x — V + K V e —
s [l 1V + gl | 19t
where in the last inequality we have reordered terms.
Then,
(558) < sup | Ukl - N—IIVK + 9xcllg Vi + 9xc| g
o .
o VB (Rt
1-6
[Vie + gl Vil 3
< sup || Ug|gi-= ( g + 1)
0<k£K Ul B p=e
S I L
o Rl ST (559)
K 4
dk N1
< 0(5)<1 + (L ||Vk||Bp/’12HW> )
£ 2
o ( IVilyye + sup (ot rame e Vi + gl

=

NZ I )
<Cle,n)—5 + 5( Vs(Vk + g )dx + = rkdxdk>
N Ty 2Jo Jry

where in the first line we have used Bernstein’s inequality (1.5); in the second line
we have used interpolation (1.4); in the penultimate line we used Young’s inequality;
and in the last line we have used the bounds on Vi (5.23), Uy (5.22), together with
the potential bound (5.9).

In order to bound the second integrand in 97{‘;52, we use Fubini’s theorem, the
Cauchy-Schwarz inequality, the bounds on ka (4.19) and akab{ (4.20), and the
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bounds on gk (5.11) to obtain
2
H f 2T RV + Opgh) (VP +gk)dkdx‘
Tn

1
< 5 [ wlon? + agllV? + ghlusa
0

6
" (5.60)

e
o (Ryr(kyten

1
+ 3 ) IVic + gl
op

1
< @HVK + 9x | m2x |Vie + gx| 22

_ (Wil
where in the last inequality we have used the observation made in Remark 4.3 that
k| < logdk).

Thus, by Young’s inequality (applied to each term after expanding the sum), the
potential bound (5.9), and the bound on Vi (5.23),

1 1
(5.60) < C(e,n) + €<HVK”2;H + <@ + @) Vi + 9Ki4>
(5.61)

Nz
<C(€,n)m+5 f Vs(Vi + gk )dx + = f J rkd‘xd/{>.
Tn

Combining (5.59) and (5.61) yields (5.46).

5.6.4 Proof of (5.47)

We write 9{;}’3 = I, + I, + I3, where
K72 b )2 b by )2
L= S (Bno 7+ d) — (Fne (V + g))) dhda
Tx JO 5
K79 S b\2
Iy = LNJO E(j}cvlﬂg (Ve + 9k)>
- ((}kvk o (V + gb) © Jave ) (Vi + gh)dkda

I3 = f J kak® (Vi + gk)) © Vi
Ty

— (T e Feve) (V) + g,z>) (v,: + g,z)dm.
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Let 6 € (0,1) be sufficiently small and let , = § + 5%, 1 = 15%and ; = § — 7,
L —1_ 1 Then,
q 2 q
I
L < kB IS (v © (Vy + QZ)) — 5k © (Vi + )| a2
Jo
| Fe(ve© (Vi + g) + Fevie® (V) + g3) 2w dk
_ 1" b b
< 3 [ WellilV2 + ki, 562

X (ij (Vi ® (VR + g0) lm2s + [T (V) + QZ)HH*%)CUC

1 . b b b b dk
S g ) IVels eIV + gl Vil gy Ve + gl 75

0 (k)
where the first inequality is by duality (1.1); the second inequality is by the com-

mutator estimate (1.14) and the triangle inequality; and the third inequality is by the
multiplier estimate (1.13) and the paraproduct estimate (1.8).

Thus,
L ) b b dk
G@$7fwuwMﬁ%Mw%wdm+Mme
52 Jo 7 "2 k)
K« (5:63)
S A | /A R P S o B
> 32 K T UK s K T 9K| 14 . k B" k B;Q*N<k>1+ﬁ

where the first inequality is by Bernstein’s inequality (1.5); and the second inequality
is by the b-bounds applied to V’ + g, (4.19), interpolation (1.4), and the trivial bound
Vi + 9xlpi=e < Vi + g 1a-

By applying Young’s inequality, the potential bound (5.9), and the bound on Vi
(5.23), we have

1

NIE{ 2 4
(5:63) < O + a(VK + x| as, + pE= |V + gK||L4>

- . (5.64)
NZ 1 )

< C— Vs(V; d. — dxdk ).
N3+5( o g(K+gK)$+2fO LNrkx )

Now consider I,. Using the commutator estimate (1.10) with f = $:¥, g =
V2 +ghand h = $3e © (V) + g), followed by the paraproduct estimate (1.8), we
obtain

1 b b b b
I < EJ{) |’ZkaHB€;§g”Vk + gl e | Fave © (Vi) + gk)‘|39:§’idk
_ Vi + gl | Vie + grcles [ el dk
N 32 o kB, (ky1+2w

(5-65)




134 PHASE TRANSITIONS

By applying Young’s inequality, the potential bound (5.9), and the a priori bound
on Vi (5.23),

Ng 1
(5.65) < C(e W)m +e <HVK + 9K | Fan + @HVK + 9Ki4>
(5.66)

=

NZ I )
< Cle,n)— e +5< TN%(VK + g )dx + o) . rkd‘xdk>.

where the final inequality uses the multiplier estimate (1.13), the b-bounds applied
to Vi + gk (4.19), and Bernstein’s inequality (1.6).

For I3, we apply duality (1.1), the commutator estimate (1.11) with f = h = F:v
and g = V; + g, followed by the b-bounds applied to Vi + gx (4.19), to obtain

1 K
I3 < 7 f | (Feve e (Vi + a0) © Favi — (Feve © Fve) (Vi) + 90|
0 3%

b b
x [V + gk”BHdk

1 K

S 5 || 1B LndVE + ilage V7 + il (567
1 K dk

< Vi + il Vi + ol | Il 7

NH 2
<Clemys + 6( . Vs (Vi + g )dw + §L LN rkd‘xdk>

where in the last line we have used Young’s inequality, the potential bound (5.9),
and the bound on Vi (5.23) as in (5.66).
Using that 9%‘}53 = [ + I, + I, the estimates (5.64), (5.66), and (5.67) establish

(5.47)-

5.7 A lower bound on the effective Hamiltonian

The following lemma, based on [GJS76b, Theorem 3.1.1], gives a [-independent
lower bound on #£(Zx) in terms of the L?-norm of the fluctuation field Z# =
Zx — Zre, where werecall Zx = T + Vi + g and 2K(x) = Zk(@) forx e e By.
This is useful for us because the latter can be bounded in a S-independent way (see
Section 5.8.1).

Lemma 5.20. There exists C' > 0 such that, for any ( > 0 and K € (0, ),

s (Zk) = —CN* —¢ | (Z5)de (5.68)

Ty

provided n < min <3—12, %).
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Proof. First, we write

%eff(ZK 2 J‘ —olngK<ZK) — g(ZK — h)2 — log (XU(D) (ZK(D))>dl’

eEB

Fix x € g € By. Without loss of generality, assume o(x) = 1 and, hence,

h(x) = +/j. Define
1) = ST(Zx@) - 2 (@) ~ VB ~ oz (Zic (o))

In order to show (5.68), it suffices to show that, for some C' > 0,
I(z) 4+ (Z#(2)* = —C.

The fundamental observation is that Zx(x) — 3%3(Zx(x)) can be ap-
proximated from below near the minimum at Zx(z) = /B by the quadratic
Zk(x) — 2(Zg(x) — +/B)* provided 7 is taken sufficiently small. Indeed, we
have

3Tl Zia)) = U Zcla) = /B = 5(Zc@) = VB (o) + /B = 05)

which is non-negative provided | Zx (x) + +/3| = +/nf. Thus, this approx1mat10n is
valid except for the region near the opposite potential well satisfying (—1—./7)+/3 VB <
Zg(x) < (=14 \/n)+/B (see Figure 3). When Zg (z) sits in this region, we split
Zi(x) = Zg(x) + Z:(x) and observe that:

e cither the deviation to the opposite well is caused by Zx (x), which is penalised
by the logarithm in /(z);

e or, the deviation is caused by Z3(x), which produces the integral involving
7% in (5.68).

Motivated by these observations, we split the analysis of /(z) into two cases.
First we treat the case Zx (z) € R\( - %B, —%) Under this condition, we have

ST5(Zic(w)) = n(Zic(w) ~ VB

provided that 7 < §. Since x4 () < 1, —log x4 (-) = 0. It follows that I(z) > 0
Now let Zx(z) € ( — #,—%). Necessarily, either Z (z) < _\/TB or
Zw(r) < —‘/TB.
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373(Zk (x))

Figure 3: Plot of U3(Zk (x)) and (Zk (x) — /B)*.

We first assume that Zy(z) < —*/TB. By standard bounds on the Gaussian

error function (see e.g. [GJS76b, Lemma 2.6.1]), for any 6 € (0, 1) there exists
C = C(#) > 0 such that
—logx+(Zk(@)) = —0(Zx(2))? + C.

%, 1) and that, by our assumption, ZK(x) —/B > 4ZK(m),

1(2) + C(Zie(@)* = =2 (Zi(e) + Zi(@) = /B)* = log X (Zc(0)) + C(Zi@))?
(€ = m)(Ziklw))? = 169(Zx(2))* = 0(Zie()?) - €

-C

C%):

Finally, assume that Zj () < —¥2. Since Z () — /B € ( — B —’5\@),

Applying this with 6 €

—~

N3

AR\

VS

provided 17 < min

[

we have
49n

1) + ((Zk(@)? = -2

B+ ((Zx(2)* =0 (5-69)

provided that n < %.
5.8 Proof of Proposition 5.3
5.8.1  Proof of the lower bound on the free energy (5.1)

We derive bounds uniform in o for each term in the expansion (5.10). Since there
are 2V’ terms, this is sufficient to establish (5.1). Fix o € {+1}B~.
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Recall

- log %ﬁN,K = — logENe_%g’N’K + FE,N,K (5.70)

Let Cp > 0 be the sharpest constant in the Poincaré inequality (1.15) on unit
boxes. Note that C'p is independent of N. Fix ( < % andlete = 1 —8Cp( > 0.

By Proposition 5.11 and Lemma 5.20 there exists C' e (¢,m) > 0 such that, for
every v € H x,

Ui (v) = HG n (e + Vi) + f J vidkdz
Ty

4
Z +x(Z )+— Vs (Vi + g )dz + = J f 2dkdx
i1 2 Ty

Ty

> _C(e)NE + s+ ——©

K
( Uy(Vie + gi)dz + —f f ridkdm).
Ty 2 Ty JO

> —C(ONg — ¢ | (Zg)de

Tn

1 K
+ 4§CP< Vy(Vic + gz + 5 J f r,idkd:c)
Ty JO

Tn

provided i < 35 < o

Note that for any f € L?, STN( fH)2de < STN f?dx. Therefore, using the
inequality (a;+as+asz+as)? < 4(a?+a2+a2+a?)andthat 7 (z) = (Vi +gx ) (2),
we have

[ ipa<a| S(re)+ 144( [ s <vk+gk>>dk>2
+ (Rx)* + (9)’de.

Arguing as in (5.49),

4LN 82 <?K> 11 <J Fie © (Vk + gk))dk> 2d91:

4¢Cr
5y

By the Poincaré inequality (1.15) on unit boxes,

LN(RL Vdr = ZJ RK—LRde)Qd

CeBn

C((,Cp)Ng + == | (Vi + gk )da.
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<C’p Z J |VRK|2d[L'
O

OeB N

K
<Cpf J ridkdx
Tx JO

where in the last inequality we used that STN |VR|*dz < |Rg |3 and Lemma 4.11
(applied to Rg).

Similarly, by the Poincaré inequality (1.15) and the (trivial) bound |[Vgx |3, <
IViklz: (5.12),

f (g% )%dr < CPJ \Vk|*dr < CPJ Vi |2dz.
TN TN

Tn

Then, recalling that 5 > 1,

_ 1
EV(v) > E| — ONE + 4§Cp(1 - @> Vs (Vi + g )da
Tn
K
+ <4c0p _ 4¢0P) J f r2dkdz — 4CCp J \ngde]
Ty JO Ty
>E| - CONj — 4gcpf yng\de]
Tn

from which, by Proposition 4.7, we obtain
—logEye *inr > —CN3 — 4CCPJ \Vik|*dx.
Tn
Inserting this into (5.70) and using that F¢ y , > % STN |Vir|?dz (see (5.15))
yields:

1
—lOg %C:NJ( = —CN3 + <§ — 4CCP) J |V§K’2d$ = —CN3
T

N

which establishes (5.1).

5.8.2 Proof of the upper bound on the free energy (5.2)

We (globally) translate the field to one of the minima of ¥/3: this kills the constant
3 term. Thus, under the translation ¢ = ¢ + //3,

"
%JV,K = EN(?—%B,N,KWK)
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where

Hin ) = | VW) — o (xe +/B)? s —b — 4% da

Ty Ch

and

VH(a) = La2(a+ 2B = 2at + —a? 4 da?.
’ B B VB

We apply the Proposition 4.7 to Z3 y x with the infimum taken over H. In
order to obtain an upper bound, we choose a particular drift in the corresponding
stochastic control problem (4.13). Following [BG19], we seek a drift that satisfies
sufficient moment/integrability conditions with estimates that are extensive in N3,

as formalised in Lemma 5.21 below. Such a drift is constructed using a fixed point
argument, hence the need to work in the Banach space Hy as opposed to Hj, .

Lemma 5.21. There exist processes U<Ve and U-%, satisfying U<-Ve + U=%e =
V. and a unique fixed point v € Hy of the equation

5 4 12 12
Uk = = I — —=FVe — 3

B VB

where Vi = Sé( Fxrdk, such that the following estimate holds: for all p € |1, ),
there exists C' = C(p,n) > 0 such that, for all 5 > 1,

. 1 K
J |V |Pdz + = f f redkdz
Ty 2 Jry Jo

where 17}, = — gjk(cu,g\fk S) ka)

Fe( U0 V) (5.71)

E < CN? (5.72)

Proof. See [BG19, Lemma 6]. Note that the key difficulty lies in obtaining the
right N dependence in (5.72). Due to the paraproduct in the definition of (5.71),
one can show that this requires finding a decomposition of ¥, such that U-+*; has
Besov-Holder norm that is uniformly bounded in N3 (see Proposition A.5). Such a
bound is not true for +*; (see Remark 4.5). This is overcome by defining U *7; to be
arandom truncation of the Fourier series of v, where the location of the truncation
is chosen to depend on the Besov-Holder norm of . [

For v € Hy, let

K
f vidkdx

1
\I/;_((U) :%E:N,K(TK+VK)+§J .

Tn
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and define R ;. by
+ o + n 2 + 1 " 2
Ui(v) =R — = Viidx + Vs (Vi )dr + 5 vj, dkdz.
2 Jry Ty 2 Jry Jo
We observe
1 K
Uh(v) <RE+ V" (Vi )dx + —f J vidkdz. (5.73)
Ty 2 Jry Jo

Thus, unlike the lower bound, the negative mass —g STN Vﬁdm can be ignored in
bounding the upper bound on the free energy. 3
Now fix ¢ as in (5.71). Arguing as in Proposition 5.11, there exists % ;- such that

1 K -1 *
9{}; + —J f f),%dk:da: ~ 9%;; + = J J f,%dk:d:v (5.74)
2 Jry Jo 2 Jry Jo

and @z; satisfies the following estimate: for every ¢ > 0, there exists C' = C'(e, n) >
0 such that, for all g > 1,

Rt < CN~+5( Vi (Vic)dw + = JJ ;dkdx). (5.75)

Tn

Above, we have used that the moment conditions (5.72) are sufficient for conclusions
of Lemma 5.13 to apply to v.

Thus, by (5.73), (5.74), and (5.75),
E[U(0)] < ON? + (1 + 6)E[J °V5+(VK f J dk:d:zc (5.76)
Tn

By Young’s 1nequahty, +a* + fa +4a® < 3a* + 6a® < 9a’ + 9 forall 8 > 1
and a € R. Thus,

Vs (Vi )dz < 9J Vidr + 9N,
Tn Tn

Inserting this into (5.76) and using the moment estimates on the drift (5.72) yields
E[U5(0)] < CN° + (1 + e)E[9f Vide + = f f ,idkd:c < CN®.
Ty Ty

Hence, by Proposition 4.7,
—log Zy N = inf EV(v) < BV (v) < CN?
vel i

thereby establishing (5.2).
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5.9 Proof of Proposition 5.1

We begin with two propositions, the first of which is a type of 1t6 isometry for
fields under v v and the second of characterises functions against which the Wick
square field can be tested against. Together, they imply that the random variables
in Proposition 5.1 are integrable and that these expectations can be approximated
using the cutoff measures vg n x. Recall also Remarks 3.1 and 3.3.

Proposition 5.22. Let f € H'*° for some § > 0. For every K € (0,0), let

¢(K) ~ VB N K and QZ5 ~ VB,N.
The random variables {STN ¢ fdx}g~o converge weakly as K — o to a
random variable

o(f) = ] ¢fdr e L*(van).

Moreover, for every ¢ > 0,

<exp (c¢(f)2)>57N < 0.

Proof. Let {fu}nen © C®(Ty) such that f, — f in H'*%. We first show that

{&(fn)} is Cauchy in L*(vs v).
Let ¢ > 0. Choose n such that, for all n,m > ng, | fn — fullg-146 < 33
Fix n,m > ngandletdf = f, — f,.. Then,

[O(fn) — O fm) =€~ éd)(éf)? < cetdh)?, (5.77)

By Proposition 5.3, there exists C' = C'(n) > 0 such that

e%¢(5f)2> = lim

GN Koo TNk

N’ lim sup IENe_%ﬂﬁN,K(¢K)+%¢K(5f)2'
K—owo

]ENe—Wﬁ,N,K(QﬁK)"r%(ﬁK(éf)Q

N

We apply Proposition 4.7 to the expectation on the righthand side (with total energy
cutoff suppressed, see Remark 4.8 and the paragraph that precedes it).
For v € Hj, g, define

1
\Dig(v) = %/3,]\77[((?[( + VK) — g(f

Tn

2 1 K
(tx + VK)(Sfdyc> 5 f f Vdkds.
Ty JO

Expanding out the second term (and ignoring the prefactor % for the moment),
we obtain:

E[(L rKéfdx)2+< i *T’K(Sfdx)2+ (L UK(Sfdx)zl. (5.78)
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Consider the first integral in (5.78). By Parseval’s theorem, the Fourier coeffi-
cients of 1 (see (4.2)), and Itd’s isometry,

JE”T i fda:]2 _ % 2 E[Ft e () Ftic (m)F6 £ (m)F6 £ ()

(5-79)

Sf(
SN 2 |J<f>2 < N0 s

where sums are taken over frequencies n; € (N~1Z)3. Above, the N dependency
in the last inequality is due to our Sobolev spaces being defined with respect to
normalised Lebesgue measure dx.

For the second term in (5.78), by Parseval’s theorem, It6’s isometry, and the
Fourier coeflicients of Vi (see (4.6)), we obtain

E(LN\?Kéfd:c)Qz (Z%WK )Fof( ))

L Y F)PE|F ()| (5.80)
Fof(
) BOTEOE < N6

For the final term in (5.78), by duality (1.1)

2
(| vwdsdn) < NG FIEr-reol Uil (581
TN
Therefore, using that 4 /(% s < ]f,— the estimates (5.79), (5.80), and (5.81)
yield:
1 2
E|- J 1 + Vi )d fdx
(] o v |
6 n—3 , 1\ 10 fHH 145
<C)N°(N—°+1)——F—— (5.82)

fl5-
+ C(n)NG%E[\UK’%h_a]

<OMe(N3+1+ EHUK”%U—&)-

Using arguments in Section 5.8.1, it is straightforward to show that there exists
C' = C(n, 8) > 0 such that, for ¢ sufficiently small,

EUY (v) = —~CN?
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for every v € Hj,  (note that 3 dependence is not important here).
Inserting this into Proposition 4.7 gives

h? Sup<67%B,N,K(¢K)+%¢K (éf)2>5,N,K < eCN3 . (5.83)
—00

Taking expectations in (5.77) and using (5.83) finishes the proof that {¢(f,)} is
Cauchy in L?(vg ).

Similar arguments can be used to show exponential integrability of the limiting
random variable, ¢(f) and that,

sup || (f) — 6P (F)Danie — 0 asn — 0.

We now show that ¢")( f) converges weakly to ¢(f)as K — . LetG : R — R
be bounded and Lipschitz with Lipschitz constant |G|, and let € > 0. Choose n
sufficiently large so that

sup [ (f) — S (F)Dpom i

- €
2|G|Lip

and

{o(f)) — d(F)Dpn < m%p

Then,
KG (™) () sk — <G (O(f))sn < sup KG (™) () — G5 (f))an.x]

+ G ("M (f))svi — (G(D(f))aN]
+ {G(o(fn)) — G(9(f)))s.N]
< LG ()i — (G(O(fn))an] + €.

The first term on the righthand side goes to zero as K — oo since f,, € C®. Thus,
M KG(o(f))snr —(G(O(f))sn <&

Since ¢ is arbitrary, we have shown that ¢(¥)(f) converges weakly to ¢(f). [

Proposition 5.23. Let f € B N L? for some s > % For every K € (0,00), let
37

qb(K) ~ VB N,K and g25 ~ VB.N.
The random variables {STN (N2 1 fda} ko converge weakly as K — o to
a random variable

cor: (f) = L ¢% 1 fdr e L*(vgn).

Ty

Moreover, for ¢ > (),

Cexp (c: 9”1 (f))gn < @
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Proof. The proof of Proposition 5.23 follows the same strategy as the proof of

Proposition 5.22, so we do not give all the details. The only real key difference is

the analytic bounds required in the stochastic control problem. Indeed, these require

one to tune the integrability assumptions on f in order to get the required estimates.
It is not too difficult to see that the term we need to control is the integral

J VKf + QTKVKf + VI%fdx (584)
Tn

Strictly speaking, we need to control the above integral with f replaced by df =
fr— fm, where { f,}nen € C*(Ty) such that f,, — fin Bj N L?, but the analytic
47
bounds are the same.
Note that E §, v fdr = §; Evgfdr = 0. Moreover by Young’s inequality
and the additional integrability assumption f € L?, for any ¢ > 0 we have
2 1 2 4
Vifdr < - fidx +¢ Viedz
Tn €

Tn Tn

which can be estimated as in the proof of Proposition 5.22. Thus, we only need to
estimate the second integral in (5.84). Note that the product tx f is a well-defined
distribution from a regularity perspective as K — oo since f € B | for s > % The

difficulty in obtaining the required estimates comes from integrab3ility issues.

We split the integral into three terms by using the paraproduct decomposition
tf =rt1of+1ef+1af. Theintegral associated to 1@ f is straightforward to estimate,
so we focus on the first two terms. Since f € L? and t € G 2", by the paraproduct
estimate 1.8 we have ' © f € H~2~%. Thus, the integral STN(TK ® f)Vkdx can be
treated similarly as in the proof of Proposition 5.22. Note that, in this proposition
the use of Holder-Besov norms is fine because we are not concerned with issues
of N dependency. Moreover, note that if we just used that f € B} 1 the resulting
integrability of 15 © f is not sufficient to justify testing against V;?, which can be
bounded in L2-based Sobolev spaces. For the final integral, by the resonant product
estimate (1.9) we have 1 © f € L3. Hence, we can use Young’s inequality to
estimate STN (1x © f)Vkdx and then argue similarly as in the proof of Proposition
5.22. [

Without loss of generality, we assume ay = a = 1 in Proposition 5.1 and we
split its proof into Lemmas 5.24, 5.25, and 5.26.

Lemma 5.24. There exists By > 1 and Cq > 0 such that, for any 3 > [,

s [[ev@io), >-Co

oeB N
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Proof. For any K € (0, 0), define

T rc(bx) = | V2 (0x) - o et b — 22 6% d
Tn ﬁ
where

T (@) = (o) = (B - a®) — § - %( ~(5+ “—B)) .

Then, by Propositions 5.23 and 5.3, there exists C' = C(n) > 0 such that

([ ew@),, = jm (oo (5] o-:6tide)),

eEBn

E e %5 N (65)

MH

* lim

<er
KHOO%NK

1 . 7
< 6(C+4) limsup Eye 75N,k (95)
K—o

where
Therefore, we have reduced the problem to proving Proposition 5.3 for the
potential %Ql instead of 3. The proof follows essentially word for word after

two observations: first, the same yx and dx works for both ¥ and %Ql since the

quartic term is unchanged. Second, since 4/ + ‘/TB = /B +o0(+/B) as f — o, the
treatment of $-dependence of the estimates in Section 5.6 is exactly the same. [

Lemma 5.25. There exists 3y > 1 and Cq > 0 such that, for any 3 > [,

1og< [ ep@a(o > > —Cq. (5.85)

OeBy

Proof. By Propositions 5.22, 5.23, and 5.3, there exists C' = C'(n) > 0 such that,
for (3 sufficiently large,

(I] ewaio),, = im (o (5 5 ool = 5 [ sohiaw),

CeBy I:leB

3. _gpQ2
< e“M limsupEye 5 X (950)
K—w

where

%,??VK(QSK) Hs,n, i (Pxc) + Z dK (O L¢3 da.

|:|eIB§ \/> Tn
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As in Section 5.2, we perform the expansion
—logEye ik = N o FinxEye MR (5.86)
oe{+1}BN
where F§ \ 18 defined in (5.15) and

W5 (0x) = H P sc(0n + 91) = 2 108 (oo (6 + 91)(0))

DeBy

Fix o € {£1}®*~. Forv € HbﬁK, define

‘I’% (v) = Z (J 'k + Vi + 9Kd33>2 (5-87)

DE]BN

(g + Vi +gx)? cda

_TBTN

where W = W% is defined in (5.17).
We estimate second term in (5.87). First, note that

\Fue% JrK+VK+ngx)
<> (J Tde)2+\/lB(LVK+ngx>2'

OeB n

By a standard Gaussian covariance calculation, there exists C' = C'(n) > 0 such that

3 E(wa 3 JJ [tk (@)t (a)|dada’ < CNP.

oeEBy o oEB v

For the other term, by the Cauchy-Schwarz inequality followed by bounds on the
potential (5.8) and g (5.11), the following estimate holds: for any ¢ > 0,

V+gdx< Vik + gr)°dx
Z JK K TN\/7<K K)

|:|e]B

C(C,Cp)Ng +<CP C[/g(VK —|—gK)d:c
Ty
where C'p > 0 is the Poincaré constant on unit boxes (1.15).
We now estimate the third term in (5.87). Since Evx = E[txgx]| = 0,

1
(g + Vi 4+ gr)? rde ~ — 25 Vi + (Vi + g )*dzx. (5.88)

1
VB Jry VB Iy
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For the first integral on the righthand side of (5.88), by change of variables
(5.21), and the paraproduct decomposition (1.7), we have

8
ZTKVKdl’ZJ Bé(TK@?K—F%K—FTK@\VK) — Uk dz.
Tn 2

1
VB Jry \/B
Hence, by (5.88), Proposition 4.4, duality (1.1), the potential bounds (5.8), and the
bounds on Uk (5.22), for any € > 0 there exists C' = C'(e,n) > 0 such that

_ 1 K
2TKVde CNg + 8( Vs(Vi + gk )dx + 3 J f ’r,zdkdm).
Ty Jo

1,

For the second integral on the righthand side of (5.88), again by (5.8) and (5.11),
there exists an inessential constant C' > 0 such that

Tn

I(VK—FQK) <CN3+CCP %(VK+gK)dx.

TN TN

Arguing as in Section 5.8.1 and taking into account the calculations above, the

following estimate holdS' let ¢ < 801 and ¢ = 1 — 8Cp( > 0 as in Section 5.8.1.

Then, provided n < and 8 > 1,

196C

~ Ol Vg + (155 = 5 = 20n) | TlVic + g

Tn
1
+(

K
) f J ridkdz — 4gcpf \ng|2dx]

~CON? — 4gopf \Vix|*dx.

Ty

ET(v) > E

Hence, by Proposition 4.7 applied with the Hamiltonian %BQJQV}(@() with total
energy cutoff suppressed (see Remark 4.8),
Qg,0 1
FS i — log Exe ™%k > —CON® 4 (5 - 4ch> J Vix|*dz > —CN?
T

N

This estimate is uniform in o, thus summing over the 2" terms in the expansion

(5.86) yields (5.85). U
Lemma 5.26. There exists 3y > 1 and Cq > 0 such that, for any 3 > [,
1 /
>
N 10g< [] exples@o )|>B’N > —Cq (5.89)

{o,0'}eB

where B is a set of unordered pairs of nearest-neighbour blocks that partitions B .
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Proof. By Propositions 5.22 and 5.3 there exists C' = C'(n) > 0 such that, for g

sufficiently large,
I1 eXP|Q3Dd)|> = Jim {exp ( quxda:—J )

o B8,N,K

<eCNslimsupENe H % 1 (Dx)

K—o
{oo'leB o'}eB

K—w
where
%g?VK(QﬁK) = %ﬁNK(¢K f ¢oxdr — J ¢Kdl”
{oleB *H
We expand
—logEye™ Z?N x(PK) _ Z e*Fg,N,KENe*WBQ,?\fK
Je{il}BN

where F§ \ ;18 defined in (5.15) and

e (01) = H R (0 + 91) = Y 108 (ot (65 + 95)(@)) )

OeBy

Fix o € {+1}®~. For v € Hj k., define

V() = Uk() = ]
{oO'}eB
where Uk (v) = W% (v) is defined in (5.17).
A standard Gaussian calculation yields E|tx| < C'N? for some constant C' =
C(n) > 0. Hence, by the triangle inequality, Proposition 4.4 and the Cauchy-
Schwarz inequality,

JTK+VK+ng$—f TK+VK+ngx‘
a

D/

J?K+VK+ng.’L‘f TK+VK+ng$‘
a o

{oO'}eB

.1
$0N§+@U J Fi(vee (Vi + gi)) dkda
Tn

+ ) L (Bx + gx)dx —J (Rk +gK)d:c‘

{od}eB

The integral with the paraproduct can be estimated as in (5.49) to establish: for any
¢ >0,

2Cp
B85y

K
%U J (i © (Vi + gi))dkda < C(C, Cp)N? Uy (Vic + gic)da
Ty JO
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where C'p > 0 is the Poincaré constant on unit blocks (1.15).
We now estimate the remaining integral. Assume without loss of generality

that @ = O + e;. Then, by the triangle inequality and the fundamental theorem of
calculus,

L (Ric + gic)di —

(‘ (RK + gK)dx‘
Jo

- ] (RK(I) — Rg(x +e1) + gr(x) — gu(x + 61)>dx

Jo

r

<| VRl + |[Vgrl|da.

Jouw
Hence, by the Cauchy-Schwarz inequality, the bound on the drift (4.18) and the
bound on Vgg (5.12), we have the following estimate: for any ¢ > 0,

Z L Ry + gr)dx — f (Ri + gK)dx)

{o,0'}eB

< f \VRk(x +ter)| + |Vgr(x + ter)|dzdt
a

< O(¢,Cp)N? +4gcp(f IV Ri| dx+f Vx| dx)

C(¢,Cp)N?® + 4¢Cp f f dkdx+f |V§K|2d9:>.

Thus by arguing as in Section 5.8.1, one can show the following estimate: let
¢ < 160 ande = 1 — 8CCp > 0. Then, provided n < 3920 and 3 > 1,

_ /l—e 2 2
EVY (v) = E| — ONE + ( 5 - CB(;P - CCP f Vs(Vic + grc)da
+( > 4Cp) L Nfo r2dkde
— (4<CP +4<Op)f |V§]K2dl’]
Ty

—CN? — sgcpf Vix|*dz.

Tn

Applying Proposition 4.7 with Hamiltonian %ﬁc’gﬁvc}( (¢r ), with total energy cutoff
suppressed (see Remark 4.8), yields

1
T

N

This estimate is uniform over all 2* choices of o, hence establishing (5.89). [
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6 Chessboard estimates

In this section we prove Proposition 3.6 using the chessboard estimates of Proposition
6.5 and the estimates obtained in Section 5. In addition, we establish that v v is
reflection positive.

6.1 Reflection positivity of 15

We begin by defining reflection positivity for general measures on spaces of distri-
butions following [Shl86] and [GJ87].
Forany a € {0,...,N — 1} and {i, 7, k} = {1,2, 3}, let

R, (2) = (2a — z;)e; + €5 + e
where © = x;e; + x;¢; + xpe; € T and addition is understood modulo N. Define
;= {z €Ty : Rn,,(z) = z}. (6.1)

Note that for any x € Il ;, z; = a or a + % We say that Ry, , is the reflection map
across the hyperplane 11, ;.

Fix such a hyperplane I1. It separates Ty = T uIlLTy suchthat TS, = Ry Ty
For any f € C*(Ty), we say f is Tj-measurable if suppf < T5. The reflection
of f in IT is defined pointwise by Ry f(x) = f(Rnzx). Forany ¢ € S'(Ty), we say
that ¢ is T -measurable if ¢(f) = O unless f is T, measurable, where ¢( f) denotes
the duality pairing between S’(Ty) and C*(Ty). For any such ¢, we define B¢
pointwise by Rno(f) = ¢(Rn ).

Let v be a probability measure on S'(Ty). We say that F' € L?(v) is Tj-
measurable if it is measurable with respect to the o-algebra generated by the set of
¢ € S'(Ty) that are T, -measurable. For any such F', we define R F' pointwise by
RuF(9) = F(Rno).

The measure v on S’(Ty) is called reflection positive if, for any hyperplane 1
of the form (6.1),

[l 7O AnF@I0) >0

for all F' € L?(v) that are T} ,-measurable.

Proposition 6.1. The measure vg y is reflection positive.

6.1.1  Proof of Proposition 6.1

In general, Fourier approximations to g n (such as vg y ) are not reflection positive.
Instead, we prove Proposition 6.1 by considering lattice approximations to v x for
which reflection positivity is straightforward to show.
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Let TS, = (¢Z/N7Z)? be the discrete torus of sidelength N and lattice spacing
¢ > 0. In order to use discrete Fourier analysis, we assume that e~ € N. Note that
any hyperplane II of the form (6.1) is a subset of T%.

For any ¢ € (R)™~, define the lattice Laplacian

yeTS
lz—y|=¢

Let fiy . be the Gaussian measure on R™~ with density

53

dinc(P)xexp (=5 Y wl@)- (=A% +n)e()) [ de(@)

1> E
zeTg, zeTq

where d¢(x) is Lebesgue measure.
A natural lattice approximation to vz y 1s given by the probability measure vg y .
with density proportional to

divg,n - (p)oce ™ o3=@)dfiy ()

where

o ne(0) = Y Ualo@) — (L + som*(e,m)) ey

zeTsg,

where %5m2 (e,m) is a renormalisation constant that diverges as € — 0 (see Proposi-
tion 6.19). Note two things: first, the renormalisation constant is chosen dependent
on 7 for technical convenience. Second, no energy renormalisation is included since
we are only interested in convergence of measures.

Remark 6.2. By embedding R™ into S'(Ty), we can define reflection positivity
for lattice measures. We choose this embedding so that the pushforward of Ug y ¢ is
automatically reflection positive, but other choices are possible.

For any ¢ € R™~, we write ext®p for its unique extension to a trigonometric
polynomial on T of degree less than ™! that coincides with ¢ on lattice points
(i.e. in T%,). Precisely,

X (2)) = 3] T ealy - 1))
n yely,

where the sum ranges over all n = (a1, as, az) € (N~'Z)3 such that |a;] < e7!, and
we recall e, (z) = ¥,
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Lemma 6.3. Let ¢ > 0 such that e~ € N. Denote by extSvg . the pushforward of
U N by the map ext®. Then, the measure ext,vg . is reflection positive.

Proof. Fix a hyperplane II of the form (6.1) and recall that II separates Ty =
Ty u Il u Ty, Write Ty = Ty n T

Since the measure 3 y . is reflection positive on the lattice by [Shl86, Theorem
2.1], the following estimate holds: let F* € L*(3n.) be Ty -measurable - i.e.
F*(y) depends only on () for z € Ty, .. Then,

fFa(gp) R Fe(9)disn () = 0. (6.2)

Let F' € L*(ext.ign.) be Tx-measurable. Then, F oext® € L?(Ugn.) is
Tj(,’e—measurable. Using that ext® and Ry (the reflection across II) commute,

j F(6) - et F () dext: s - (6) = f (F o ext®)() - (F o By o ext®)(0)dis - (0)

— J(F oext)(¢) - (F oext®)(Rup)dvsne(p)

=0
where the last inequality is by (6.2). Hence, ext; 73 v . is reflection positive. 0

Proposition 6.4. There exist constants $6m?>(e, 1) such that extiVs . — vgn
weakly as € — 0.

Proof. The existence of a weak limit of ext g y. as € — 0 was first established
in [Par75]. The fact the lattice approximations and the Fourier approximations (i.e.
vg N k) yield the same limit as the cutoff is removed is not straightforward in 3D
because of the mutual singularity of v5 y and ux [BG20]. Previous approaches have
relied on Borel summation techniques to show that the correlation functions agree
with (resummed) perturbation theory [MS77].

In Section 6.4 we give an alternative proof using stochastic quantisation tech-
niques. The key idea is to view v y as the unique invariant measure for a singular
stochastic PDE with a local solution theory that is robust under different approxi-
mations. This allows us to show directly that ext;7g y . converges weakly to vg y
and avoids the use of Borel summation and perturbation theory. The strategy is
explained in further detail at the beginning of that section. [

Proof of Proposition 6.1 assuming Proposition 6.4. Proposition 6.1 is a direct con-
sequence of Lemma 6.3 and Proposition 6.4 since reflection positivity is preserved
under weak limits. [
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6.2 Chessboard estimates for v

Let B < By be either a unit block or a pair of nearest-neighbour blocks. Recall
the natural identification of B with the subset of T given by the union of blocks
in B. Ty can be written as a disjoint union of translates of B. Let B be the set
of these translates; its elements are also identified with subsets of T . Note that if
B =0e By, then BY = By.

We say that f € C°(Ty) is B-measurable if suppf < B and suppf n 0B = .
We say that ¢ € S'(Ty) is B-measurable if ¢(f) = 0 for every f € C*(Ty) unless
f is B-measurable. We say that F' € L?(vs y) is B-measurable if it is measurable
with respect to the o-algebra generated by ¢ € S’(T ) that are B-measurable.

Proposition 6.5. Let N € 4N. Let {F3 : B € BY} be a given set of L*(vs.y)-
Junctions such that each F's is B-measurable.

Fix B € B and define an associated set of L*(vs n)-functions {Fgp : B' €
BR} by the conditions: Fg 3 = Fp; and, for any B', B" € BY such that B' and B"
share a common face,

Fpp = Rulp po

where 11 is the unique hyperplane of the form (6.1) containing the shared face
between B’ and B”.
Then,

[B|
N3

I ), l< TTICTT P,
BeBy BeBy B'eBy

Proof. This is a consequence of the reflection positivity of vg . The condition
N € 4N guarantees F' p, is well-defined. See [Shi86, Theorem 2.2]. [

6.3 Proof of Proposition 3.6

In order to be able to apply Proposition 6.5 to the random variables (); of Proposition
3.6, we need the following lemma.

Lemma 6.6. Let N € N and 3 > 0. Then, for any o € By, exp Q1(0), exp Q2(0) €
L*(vg n) is O-measurable.

In addition, for any nearest neighbours 0,00 € By, exp Q3(0,0) € L*(vs.n) is
0O v O’ -measurable.

Proof. The fact that exp Q1(0), exp Q=2(0), exp Q3(0,00) € L*(vgn) follows from
estimates obtained in Proposition 5.22. The O and 0 u O’ measurability of these
observables comes from taking approximations to indicators which are supported
on blocks (e.g. using some appropriate regularisation of the distance function) and
estimates obtained in Proposition §.22. [
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Proof of Proposition 3.6. Let By, B, < By and B3 be a set of unordered pairs of
nearest neighbour blocks in By. Then,

cosh@1 (B1) cosh Q2(Bs) cosh Q3(B3)

—omEml TT T T (te(ul)Jre—Ql(ul))

O1€B1 2€B2 {03,004} Bs

« <6Q2(|:|2) n e—Qz(m) (er(ug,ug) n er(ug,u3)>

<olmi-ll Y ﬁ( [T @) [T @@ )

Bt .BT,Bf By =1 \gfeB; o, €B;

> H €|Q3(E|37E|§,)\

{os.O3}eBs

(6.3)

where cosh Q;(B;) is defined in (3.7) and the sum is over all partitions B LB} = By
and By u By = Bos.

It suffices to prove that there exists C; > 0 such that, for any Bf", Bf and Bj as
above,

<H( [T e®@ [T e ) I 6|Q3(u3,ug>|>w

Oy eB; O; eB; {Os.05)€Bs ’ (6.4)

Co(|B1|+|B2|+|B
<e Q(IB1]+|B2|+|Bs|)

Then, taking expectations in (6.3) and using (6.4)

< cosh@1(By) cosh Qo(Bs) cosh Q3(33)>

< 2\B1|+\BQ| Z Z

/B?N

Bf By Bf.,By
Qi@ -Q:(@ IQs(Da»D§)|>
e e e
<n( [T e ] ) I
= o eB; O; €B; {os .05 }eBs

Co(|B B Bs
< eCQ(IBil+[Ba2|+[Bs|)

which yields Proposition 3.6 with Cg = C~'Q.
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To prove (6.4), first fix B and B3 . Then, by Holder’s inequality,

<H< [T @) [] e®e ) I1 ele(ug,u’g)|>/B,N

o eB;f O; €B; {Os,05 }eBs
< 1—[ +)> < H (@ )> ) G
e’ e>? .5)
iz 2( afeBt B8,N B8,N
l
5‘@3(03 I:|3)|>
(11 .
{Os .05 }eBs

Let: = 1, 2. Without loss of generality, we use Proposition 6.5 to estimate

(1),

OeB;

Define I, = ¢°%@ ifg e B;" and 1 otherwise. For eacht € B, we generate the
family of functions {Fy : & € By} as in Proposition 6.5. Note that for 0,00 € By
such that 0 and 0’ are nearest-neighbours,

RIR@ — 5@

where AR is the reflection across the unique hyperplane containing the shared face of
gand . Thus, we have Fyy = %@ foreveryoe B and € BR. Ifo¢ B,
we have i,y = 1 forevery O’ € By.

Lemma 6.6 ensures that Fy € L*(vs y) is O-measurable for every o € By.
Hence, by Proposition 6.5, we obtain

1
< 5Q1(E|)> < < (u')>ﬁ
Ule;[ o Dng E"le—B[ o

Therefore, by Proposition 5.1, there exists C, > 0 such that, for all 3 sufficiently

large,
([T @), < (©6)

meB;

k)

For the remaining term involving ()3, partition B3y = U2:1 B§ such that each

Bék) is a set of disjoint pairs of nearest neighbour blocks, all with same orientation.
Then, by Holder’s inequality,

5|Q3|:||:|)|> < < 30|Q3(|:|,|:|’)|>f15' 6.
. H IR CY)

{oO'}eBs = {o, u’}eB(k)
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Assuming that we have established that there exists C, > 0 such that

/ ’ k
< I1 630|¢23(|:,|:)|> < %IB5"
B?N

k
{oo'jeBy”

for every k € {1,...,6}, then (6.7) yields

e

/

I1 65IQ3(|:|,|:|)|> < e Bl
N

{oo'}eBs 7

Hence, without loss of generality, we may assume Bj is a set of disjoint pairs of
nearest neighbour blocks, all of the same orientation.

Define Fp = ¢°930)l for any B = {0,f} € Bs and 1 otherwise. Note that for
any two pairs of nearest-neighbour blocks, {o0,0'}, {0,00} < By,

R 5@ @O — €5|Q3(Ifl,lf|')|

where QR is the reflection across the unique hyperplane containing the shared face
ofgu andu . Thus, forany B = {0,007} € Bz and B’ = {O,00} € BY, we
have g g = Pl @) 1f B ¢ B3, then we have Fig g = 1 forall B’ € ]B%ﬁ.

Lemma 6.6 ensures that exp(|Q3(0,0)|) is O U O’'-measurable. Thus, applying
Propositions 6.5 and 5.1, there exists C, > 0 such that, for all 3 sufficiently large,

I1 estg({uvu'}>|>
B,N

B={o'}eBs

2
< 5\Q3(E|,E|/)\>N3 (6.8)
[T ¢ I e

B={oO'leBs B'={00}eBY
< 62022‘B3|.
Inserting (6.6) and (6.8) into (6.5), and taking into account (6.7), yields (6.4)

s O
with OQ =9

1=, thereby finishing the proof. [

6.4 Equivalence of the lattice and Fourier cutoffs

This section is devoted to a proof of Proposition 6.4 using stochastic quantisation
techniques. In Section 6.4.1, we give a rigorous interpretation to (1.3) via the
change of variables (6.14). Subsequently, in Section 6.4.2, we establish that v y is
the unique invariant measure of (1.3), see Proposition 6.18. In Section 6.4.3, we first
establish that local solutions of spectral Galerkin and lattice approximations to (1.3)
converge to the same limit (see Propositions 6.13 and 6.19); these approximations
admit unique invariant measures given by vg n x and g n ., respectively. Then,
using the global existence of solutions and uniqueness of the invariant measure
of (1.3), we show that both of these measures converge to vg x as the cutoffs are
removed.
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6.4.1 Giving a meaning to (1.3)

Let ¢ be space-time white noise on Ty defined on a probability space (€2, [P). This
means that £ is a Gaussian random distribution on (2 satisfying

E[¢(D)E(T)] = f:o L  @Udade

where &, U € C*(R, x Ty) and E denotes expectation with respect to P. We use
the colour blue here to distinguish between the space random processes defined in
Section 4 and the space-time random processes that we consider here.

We interpret (1.3) as the limit of renormalised approximations. For every K e
(0, c0), the Glauber dynamics of v y i is given by the stochastic PDE

4
(O —A+n)Pk = —BPK(PK‘I’K)B

(6.9)
+ (4 +n+

12 2y
B T

Above, px is as in Section 2 and we recall pi{ # pK; Qp 1s defined in (2.1); and
vrx = —4% - 36K, where €3 is defined in (4.4).

>p%<(I)K + \ﬁf

Remark 6.7. Recall that the Glauber dynamics for the measure v with formal density
dv(¢)oce™*(9) erTN do(x) is given by the (overdamped) Langevin equation

B0(t) = 0,7 (B(1)) + V26
where 0,7 denotes the functional derivative of 7.

For fixed K, the (almost sure) global existence and uniqueness of mild solutions
to (6.9) is standard (see e.g. [DPZ88, Section III]). Moreover, vg n 18 its unique
invariant measure (see [Zab89, Theorem 2]). The approximations (6.9), which
we call spectral Galerkin approximations, are natural in our context since vg y is
constructed as the weak limit of v g as K — 0.

The difficulty in obtaining a local well-posedness theory that is stable in the limit
K — oo lies in the roughness of the white noise . The key idea is to exploit that the
small-scale behaviour of solutions to (6.9) is governed by the Ornstein-Uhlenbeck
process

1= (0, — A+ n) 2.

This allows us to obtain an expansion of @y in terms of explicit (renormalised)
multilinear functions of *, which give a more detailed description of the small-scale
behaviour of @, plus a more regular remainder term. Given the regularities of these
explicit stochastic terms, the local solution theory then follows from deterministic
arguments.
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Remark 6.8. We are only concerned with the limit K — oo in (6.9). We do not try
to make sense of the joint K, N — oo limit.

We use the paracontrolled distribution approach of [MW 17b], which is modifica-
tion of the framework of [CC18] (both influenced by the seminal work of [GIP15]).
In this approach, the expansion of ® x is given by an ansatz, see (6.10), that has sim-
ilarities to the change of variables encountered in Section 5.4.1. See Remark 6.10.
There are also related approaches via regularity structures [Hai14, Hai16, MW18§]
and renormalisation group [Kup16], but we do not discuss them further.

For every K € (0, o), define

'k = pK!

VK = T%{ — Ok
T =15 — 30k 'K
Vi = (0 — A+ 1) prvi
Vi = (0 — A +n) " prrk
Vr =tk o VK

2
Yk = VK ©pr YK — 35K

P = Vi ©px Vi — 2Kk
We recall that the colour blue is used to distinguish between the above space-time
diagrams and the space diagrams of Section 4.1.1.
For any T" > 0, the vector =g = <TK,VK,‘VK,‘T&K,-$K,$K> is space-time
stationary and almost surely an element of the Banach space

Lr = C([0,T};6727%) x C([0,T]; 67"
< (C([0, 7362 ) n O3 (0, T]; 647
« C([0,T];6") x C([0,T];6™") x C([0,T]; 6 2")

where the norm on X is given by the maximum of the norms on the components.
Above, for any s € R, C([0,T]; 6%) consists of continuous functions ¢ : [0, 7] —
6° and is a Banach space under the norm supycjo 71 | - [ls=. In addition, for any o €
(0,1), C*([0,T];6*) consists of a-Holder continuous functions ¢ : [0, 7] — 6°
and is a Banach space under the norm | - |c(jo,71:65) + | - [o,r Where

oy 120 -20)
“ O<s<t<T |t - S‘Q

Proposition 6.9. There exists a stochastic process = = (1,%,"V, "V, &, ) such that,
foreveryT > 0, = € Xy almost surely and

%S

A BJ=g ==, = 0.
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Proof. The proof follows from [CC18, Section 4] (see also [MWX17] and [Hai14,
Section 10]). The only subtlety is to check that the renormalisation constants (), and
<3k, which were determined by the field theory v y, are sufficient to renormalise
the space-time diagrams appearing in the analysis of the SPDE. Precisely, it suffices
to show E[v%(t,7)] = Qf and E[VKpKYK(t, x)] = 2 for every (t,z) €
R+ X TN.

There exists a set of complex Brownian motions {IW"(e)},cn-17)s defined on
(€2, P), independent modulo the condition " (e) = W —"(e), such that

€0 =55 Y | FoemNiawre
N-17)3 VR

ne(

for every ¢ € L*(R x Ty).

Fort > 0 and n € (N7'Z)3, let H(t,n) = e ™" be the (spatial) Fourier
transform of the heat kernel associated to (0; — A + 7). For any K > 0, define
Hg(t,n) = px(n)H(t,n). We extend both kernels to ¢ € R by setting H(t,-) =
Hgk(t,-) = 0forany ¢t < 0. Then

Fri(t,n) = \@NSJ Hy(t — s,n)dW"(s).

By Parseval’s theorem and Itd’s isometry,

Er2 (¢, z)
2
-3 Z E[(J HK(t—s,nl)dW”I(s)> (J HK(t—s,ng)dW”2(3)>]
n1,n2e(N—1Z)3 R R
2 ! >
—w X skl | e —o
ne(N—1Z)3 —©

for all (t,z) € R, x Ty. With this observation the convergence of 1, v, V' and
Yk follows from mild adaptations of [CC18, Section 4].

For the remaining two diagrams, one can show from arguments in [CC18, Section
4] that

prkevk —E [,OKVKVK] and p V' ©vik — 3E [pKVKVK] 'K

converge to well-defined space-time distributions.
Writing

(1) = =Y emnn(o) [ Hiclt — s, m) Hiclt = v, na)dW™ (5)dW™ (r)

N3
nl,nge(N*Z)?’ R?
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we have, by Parseval’s theorem and Itd’s isometry,

E[YK,OKV(L x)}

8

- WE[ 2 Eni+nz+ns+ng (CC)/OK<”3 + n4)
n1,m2,n3,n4€(N"12)3
ni+nz=ng+ng=0

X HK(t — S8, + HQ)HK(S — Uy, nl)HK(s — U9, nz)HK(t — u3,n3)
R5

X HK (t — Uy, ’I’L4)6“/Vn1 (U1>de2 (Ug)dW”3 (U3)de4 (U4)dS]

8
= — Z pK(ng—l—m)J Hg(t —s,nq +ng)Hg (s — uy,my)
R3

n1i,n2 ,ng,n4€(N712)3
ni=-—ng,na=—"n4

X Hy (s — ug, no) Hy (t — uy,ny ) Hg (t — ug, ng)duydugds

- Z P (1 + n2) i (1) pic (na2) fR H(t—s,ny +no)H(t —s,n)

n1,n2€(N712)3

x H(t —s,n2) | H(2(s —u1),n1)H(2(s — uz), ng)duidusds

R2
_ 2 D Pic(n1) i (n2) pic (n1 + na)
NS n1,n2e(N-12)3 <n1>2<n2>2<<n1 + TL2>2 + <n1>2 + <n2>2)
By symmetry,
2 P (n1) i (n2) pic (N1 + ng)
w2

n1,n26(N-12)3 <n1>2<n2>2 (<n1 + n2>2 + <n1>2 + <n2>2)

_ 2 Pk (n1) i (n2) pic (n3)
~ 3NS 2, (n1)? + (ng)?* + (ng3)?

n1+n2+n3=0

1 1 1
x + + >
(<n1>2<n2>2 (n2)*(n1 +n2)*  (n1 + n2)*(ny)?
2
= g@K
thereby completing the proof. [

We return now to the solution theory for (1.3)/(6.9). Fix K € (0, o). Using the
change of variables

4
(I)KZT—BWK—FTK-F@K (6.10)
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we say that @ is a mild solution of (6.9) with initial data ¢, € G 3" if (Tk,Ok)
is a mild solution to the system of equations

(0 —A+1)Tk = Fgk(Tk, Ok Zk)

_ (6.11)
(0 —A+1)0k = Gx(Tk,Ok;Zk)
where
4-3
Fr(Tk, Ok Zk) = _7PK{VK © pr(Px — ’)}
— 4-3 4
Grk(Tk,Ok;Zk) = _TPK{VK S ( — BpK\?K + pr (T + @K)>
4-3
_ 7/)K{VK@IOK((I)K — T) + TK(/)K((I)K — T))2}
4 2
- EPK(/OK<CI)K — T))S + <4 +1+ %)pK@K
N el . 4,(\/5)3
with initial data (Y x(0, ), O (0,)) = <0, do +v/2(0) — T\VK(O)).
We Split GK<TK, @K;EK) = G}((TK, @K; EK> + G%((TK, ®K;EK>,
_ 42 .3
Che(Cx, 016 Zx) = =5~ pae{ e + Bncprc(xc — 1)
+ G (T, Ok Zk) + G (Tr, O Ex)
_ 4-3
G%(TK, Ok;Zk) = _FPK{VK ©prkOKk + VK @ pr(Px — 1)
2 4 3
+ i (P (P — 1)) } L (px(Px —1)" + (4 +n)pxPx

where G};G(TK, Ok;Zk) and G%;a(TK, Ok; Zk) are commutator terms defined
through the manipulations

—%PK {VK S pKTK}

42 . 32 1
- TpK{vK ©pk (0 — A+ ) (pr{vk © pr(Px — f)})}

2.3 (6.12)
= TPK{VKOPK (VK®PK(‘I>K - 7))} + Gy

42 . 32

7 pK{ (VK @pKVK>pK(<I>K — T)} + G};a + G};b.

The precise choice of the splitting of & —* + %‘V i into T i and O g is explained
in detail in [MW17b, Introduction]. For our purposes, it suffices to note that Y g
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captures the small-scale behaviour of this difference. On the other hand, © i captures
the large-scale behaviour: the term G2 contains a cubic damping term in O (i.e.
with a good sign). Finally, we note that there is a redundancy in the specification of
initial condition: any choice such that Tx (0, ) + Ok (0,-) = ¢ + 1(0) — % (0) is
sufficient. Our choice is informed by Remark 1.3 in [MW17b].

Remark 6.10. Rewriting (6.10) as
4-3

4
DOp =1 — B\VK — 7(@ — A+ n)*lpK{chng(q)K — T)} + O

we note the similarity between the change of variables for the stochastic PDE given
above and for the field theory in (5.21).

Formally taking K — o0 in (6.11) leads us to the following system:
(O —A+n)T =FT,0;=Z)

- (6.13)
(0, —A+1n)O=G(Y,0;=)

where

F(T,0;%) :—%v@(—%‘?jtlﬁt@)

G(T,0:5) = GY(T,0:Z) + G*(T, ©: %)
42.3 4

1 LT — —

GY(T,0:3) 52<$+$d 5W+T+@U
+ GY(T, ©; ) + G2Y(T, ©: E)

4 1
G%ﬁ@f)=——EGWG+V@<——V+T+Qﬁ

8 g
3(%?+T+@f
W+T+@f

e
|

4
AN
+n)<1—%W+T+@>

and G and G are commutator terms defined analogously as in (6.12).
For every T' > 0, define the Banach space

|

+

—~
W

Yo = |CU0.T1:67%) 1 C((0, T 52) 2 CH((0,T); L7) |
< |C(0.71:67%) A C((0,T]:6+%) n C3 (0,7 17)
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equipped with the norm

T(t) -7 @
PO =T
0<s<t<T |t — S|§

O(t) — O w
sup t20|O(t)|girze, sup s2 o) (f)HL .
0<t<T 0<s<t<T |t — s|§

T(t)

= max{ sup HT(t)H%_%,Osngt%
<is

Ogth H%%+2n7

sup [O(t)

0<t<T

H -2
® 5

Remark 6.11. The choice of exponents in function spaces in Yr, as well as the
choice of exponents in the blow-up att = 0 in | - |, corresponds to the one made
in [MW17b]. Itis arbitrary to an extent: it depends on the choice of initial condition,
which must have Besov-Holder regularity strictly better than —%.

The local well-posedness of (6.13) follows from entirely deterministic argu-
ments, so we state it with = replaced by any deterministic =.

Proposition 6.12. Let = € X, for any Ty > 0, and let (Yo, 0q) € G5 x G 5.
Then, there exists T = T(HEH%TO, HTOH%,%, [ISH \%,%) € (0,Ty] such that there is a
unique mild solution (T, 0) € Yr to (6.13) with initial data (Y, ©y).

In addition, let Z,Z' € Xy, such that HéHggTO, 1= |y, < R for some R > 0,
and let (Y1, 01), (T2, 02) € B85 x @ 5. Let the respective solutions 1o (6.13) be
(Y1, 0Y) € Yp, and (Y?,02%) € Yy, and define T = min(Ty,Ty). Then there exists
C = C(R) > 0 such that

100,01 = (12,63, < C(ITh = T3l s + 108 — OBl s + |Z — Zlzy, ).

Proof. Proposition 6.12 is proven in Theorem 2.1 [MW17b] (see also Theorem 3.1
[CC18]) by showing that the mild solution map

(1,0) — ((at —A+n)""T, (6, — A+ 77)_190>
# (0= A+n) T F(X,6;2), (& — A+ 1) ' G(T,0;2))
is a contraction in the ball
Yrar = {(1,6) € Yr : |(T,0) |y, < M}

provided that 7' is taken sufficiently small and M is taken sufficiently large (both
depending on the norm of the initial data and of | =l|xy, ). O
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_1

We say that & € C'([0,7]; 6~ 27") is a mild solution to (1.3) with initial data
b0 € G2 if

<I>=r—%‘?+T+@ (6.14)

where (Y, 0) € Yy is a solution to (6.13) with = as in Proposition 6.9 and initial

data (o,qso +1(0) — 4 <0)).

Proposition 6.13. For any ¢y € € 2%, let ® € C([0,T]; €~2") be the unique
solution of (1.3) with initial data ¢y up to time T' > 0. In addition, for any
K € (0,), let ) € C(Ry; ‘6’%”’”) be the unique global solution of (6.9) with
initial data px ¢y.

Then,

%{I}DEH@_@KHC([ =0.

1
0,76 27")

Proof. Tt suffices to show convergence of (Yx,Of) to (T,0) as K — co. This
follows from Proposition 6.9 and mild adaptations of arguments in [MW 17b, Section
2]. O

Proposition 6.13 implies that ®; — @ in probability in C([0,T]; 6 27%).
Local-in-time convergence is not sufficient for our purposes.
The following proposition establishing global well-posedness of (1.3).

Proposition 6.14. For every ¢ € 2" let ® € C([0,T*): 82 ") be the unique
solution to (1.3) with initial condition ¢g and where T > 0 is the maximal time of
existence. Then T = oo almost surely.

Proof. Proposition 6.14 is a consequence of a strong a priori bound on solutions to
(6.13) established in [MW17b, Theorem 1.1]. L]

An immediate corollary of Proposition 6.14 is a global-in-time convergence
result sufficient for our purposes.

Corollary 6.15. For every ¢g € B 2%, let ® € C(RJF;C@*%*”) be the unique
global solution to (1.3) with initial condition ¢o. For every K € (0,0), let Dy €
C(Ry; C6’%’”) be the unique global solution to (6.9) with initial condition p .
For every T > (),
A El@r = @l ryq-any =0

Remark 6.16. The infinite constant in (1.3) represents the renormalisation constants
of the approximating equation (6.9) going to infinity as K — oo. Note that there
is a one-parameter family of distinct nontrivial "solutions" to (1.3) corresponding
to taking finite shifts of the renormalisation constants. However, the use of = in the
change of variables (6.14) fixes the precise solution.
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6.4.2 v y is the unique invariant measure of (6.14)

Denote by Bb(%_%_“) the set of bounded measurable functions on =2 ~* and by
Cy(B~27%) « B,(B~2*) the set of bounded continuous functions on G2

Let ®(-;-) be the solution map to (1.3): for ¢y € € :*andteR,, O (t; po)
is the solution at time ¢ to (1.3) with initial condition ¢y. For every ¢t > 0, define
PPN By(€727F) — B, (B 2 %) by

(PN F)(90) = EF(2(t; ¢0))
for F e By(8727"), ¢gc € 2%, and t € R,.

Proposition 6.17. The solution ® to (1.3) is a Markov process and its transition

1
semigroup (PP )= satisfies the strong Feller property, i.e. P, : By(€~27F) —
Cy(B~27").

Proof. See [HM18b, Theorem 3.2]. L]
Proposition 6.18. The measure vg y is the unique invariant measure of (1.3).

Proof. By Proposition 2.1 the measures vg y x converge weakly to vz y as K —
co. Hence, by Skorokhod’s representation theorem [Bilo8, Theorem 25.6] we can
assume that there exists a sequence of random variables {¢x } ey < ®~2* defined
on the probability space (€2, [P), independent of the white noise £, such that ¢x ~
v Nk and ¢x converges almost surely to a random variable ¢ ~ v y.

For every K € (0,0), recall that the unique invariant measure of (6.9) is
vg N, k- Let @ denote the solution to (6.9) with random initial data ¢x. Hence,
@K(t) ~ VB N K forallt e R+.

Denote by @ the solution to (1.3) with initial condition ¢. By Proposition 6.14,
®  (t) converges in distribution to ®(t) for every ¢ € R, which implies ®(t) ~ vz x.
Thus, v y 1s an invariant measure of (1.3). As a consequence of the strong Feller
property in Proposition 6.17, we obtain that v/g x is the unique invariant measure of

(1.3). O]

6.4.3 Proof of Proposition 6.4

The Glauber dynamics of 73 y . is given by the system of SDEs

%&) = AP — %(1:)3 + (4 4+ 0m?(e,n) P + V26, (6.15)

where ® : R, x T, — R, ¢ € RTv, and &, is the lattice discretisation of & given by

3

4
E(t,r) == | &t w<zde.
g Tn
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Note that the integral above means duality pairing between (¢, ) and 1, <e.

For each € > 0, the global existence and uniqueness of (6.15), as well as the fact
that U3 v . 1s its unique invariant measure, is well-known.

The following proposition establishes a global-in-time convergence result for
solutions of (6.15) to solutions of (1.3).

Proposition 6.19. For everye > 0, denote by &° the unique global solution to (6.1 3)
with initial data p. € R™. In addition, denote by ® the unique global solution to
(1.3) with initial data ¢ € G2,

Then, there exists a choice of constants 6m?(g,n) — oo as € — 0 such that, for
every'l' > (),

I B ® — exCO% e g ryg-tr) = 0
provided that
lim ¢ — extp. |y =0 (6.16)
almost surely.
Proof. See [ZZ18b, Theorem 1.1] or [HM18a, Theorem 1.1]. L]

The next proposition establishes that the lattice measures are tight.

Proposition 6.20. Let dm?*(e, 1) be as in Proposition 6.19. Then, extvs n. con-
verges weakly to a measure v as € — 0.

Proof. See [Par75, BFS83, GH18]. [

Proof of Proposition 6.4. For every € > 0, let ¢. ~ Ug y. be a random variable
on (€2, P) and independent of the white noise . By Proposition 6.20 and in light
of Skorokhod’s representation theorem [Bilo8, Theorem 25.6], we may assume that
ext®p. converges almost surely to ¢ ~ v as ¢ — 0. Reflection positivity is preserved
by weak limits hence, by Lemma 6.3, v is reflection positive.

Denote by ®° the solution to (6.15) with initial data ¢.. Since v y. is the
invariant measure of (6.15), @E(t) ~ Ug N, forevery t € Ry.

Denote by ® the (global-in-time) solution to (1.3) with initial data ¢. For every
t > 0, ext°®(t) — ®(t) in distribution as ¢ — 0 as a consequence of Proposition
6.19. Hence, ®(t) ~ v for every t > 0. Thus, v is an invariant measure of (1.3). By
Proposition 6.17 the invariant measure of (1.3) is unique. Therefore, v = vz 5. [
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7 Decay of spectral gap

Proof of Corollary 1.3. The Markov semigroup (93f 7N>t>0 associated to (1.3) is
reversible with respect to vy (see [HM18a, Corollary 1.3] or [ZZ18a, Lemma
4.2]). Thus, one can express A\ y as the sharpest constant in the Poincaré inequality

_ Esn(F,F)
AgN = Fel%fw) Fan —(FYn > 0 (7.1)
where 6 y is the associated Dirichlet form with domain D(€s x) < L*(vs v). See
[2Z18a, Corollary 1.5].

The proof of Corollary 1.3 amounts to choosing the right test function in (7.1)
and then using the explicit expression for €4 y for sufficiently nice functions due to
[ZZ18a, Theorem 1.2].

Let Cyl be the set of F' € L*(vg y) of the form

F) = F(10)s ()

where m e N, f € CH(R™), Iy, ..., are real trigonometric polynomials, and ;(-)
denotes the (L?) duality pairing between /; and elements in ®~2*. For any F' € Cyl,
let 0;, F" denote the Gateaux derivative of F' in direction /;. Let VI : € : " >R
be the unique function such that 0;, F'(¢) = STN V F(¢)l;dx for every ¢ € €~ 2",
In other words, V F' is the representation of the Gateaux derivative with respect to
the L? inner product. Then, for any F, G € Cyl,

Gon(F,G) = < VFVde>

Ty B,N

Now we choose a test function in Cyl to insert into (7.1). Take any ¢ € (0, 1) and
m € [0, (1 —¢)v/B). Let x,, : R — R be a smooth, non-decreasing odd function
such that y,,(a) = —1 for a < —m and y,,(a) = 1 for a = m. Define

F(¢) = xm(mn(9)).

Then, F' € Cyl and {(F)g y = 0. Moreover, its Fréchet derivative D F’ is supported
on the set {my € [—m, m]}.
Thus, inserting F' into (77.1), we obtain

VF|2d H
Csn(F, F) H by [VFPdz L (s )
(F?)s N (F%p N

AgN < vgn(my € [-m,m]). (7.2)



168 PHASE TRANSITIONS

For any g € L?(Ty) and € > 0, by the linearity of my and the Cauchy-Schwarz
inequality,

F(¢+eg) — F(9)

< |X/m|oo‘mN(¢ + 698) — mN(¢)‘

where X/, is the derivative of y,, and | - |, denotes the supremum norm. Note that
this estimate is uniform over ¢ € | 2. Then, by duality and the definition of V F/,

J |VF2dx
Ty

For the other term in (7.2), using that 2 is identically 1 on {|my| > m},

= ' (geLQ: sup LN Vngx) ’

L% (v, ) by g7de=1 Lo N (7.3)

_ Il
x N3 .

<F2>/37N = vgn(|lmy| =m) + <F21mN€(fm,m)>ﬁyN

(7.4)
> 1 — vy n(my € (—m,m)). !
We insert (7.3) and (7.4) into (7.2) to give

Aoy < Xin|%  vp,n(my € [-m,m])
AN N3 1-— 1/571\[(‘[’(1]\/ € (—m, m))

By Theorem 1.2, there exists C' = C((,n) > 0 and 5y = By(¢,n) > 0 such that, for
all ﬁ > 60,
‘X’ 2 e—CﬂNQ
AgN S N3 1 _ ¢-C+BN?

from which (1.4) follows.

A Analytic notation and toolbox

A.1 Basic function spaces on the torus

Let Ty = (R/NZ)? be the 3D torus of sidelength N € N. Denote by C*(Ty) the
space of smooth functions on Ty and by S’(Ty) the space of distributions. For
¢ € S'(Ty) and f € C*(Ty), we write STN ¢ fdx to denote their duality pairing.
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For any p € [1,0], let L?(Ty) = LP(Ty,dxz) denote the Lebesgue space with
respect to the normalised Lebesgue measure dx = %.
Let F denote the Fourier transform, i.e. for any f € C*(Ty) andn € (N~1Z)3,

GJf(n)=L feudr, f=sz Y Fflne,

ne(N-17)3

2min-x

where e, (x) = e
For any p : R* — R, let T, be the Fourier multiplier with symbol p(-) defined
on smooth functions via

Tf=xm O pmFf()e

ne(N—1%Z)3

When clear from context, we simply write pf instead of 7}, f.
For s € R, the inhomogeneous Sobolev space H* is the completion of f € C*
with respect to the norm

[ fllzs = 1< Flz2

where (-) = /1 + 472| - |? for a fixed n > 0 (see Section 2). The norms depend on
7 but they are equivalent for different choices.

A.2 Besov spaces

In this section, we introduce Besov spaces on Ty and give some useful estimates.
All of the results can be found in [BCD11, Section 2.7] stated for Besov spaces on
IR3, but can be adapted to Ty.

Let B(x,r) denote the ball centred at € R? of radius » > 0 and let A denote
the annulus B(0, $)\B(0, 2). Let A, A e C*(R?[0,1]) be radially symmetric and
satisfy

e suppy < B(0,3) and suppy < A;
® D=1 Xk = 1, where x_; = Y and x;(-) = x(27%) for k e N U {0}.

Identify Ay with its Fourier multiplier.
{ Ak} renu—1y are called Littlewood-Paley projectors. For f € C*(Ty ), we have

f= 2 Acf.

k=>—1

For k > 0, A.f contains the frequencies of f order 2. A_; contains all the low
frequencies (i.e. of size less than order 1).
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For s € R, p,q € [1,], we define the Besov spaces B; (Ty) to be the
completion of C°(T ) with respect to the norm

17155, = | (2128110

szlqu

where [? is the usual space of g-summable sequences, interpreted as a supremum
when ¢ = co. Note that these spaces are separable. Besov-Holder spaces are denoted
B3, »(Ty) = €°(Tx) and are a strict subset of the usual Holder spaces (which are
not separable) for s € R, \N. Moreover, the B3 ,(Ty) = H*(Ty) and their norms
are equivalent.

Proposition A.1 (Duality). Let s € R and p1, ps, q1, g2 € [1, 0] such that p% + piZ =

L4+ L =1 Then,

@ gz
| N fode| < £l 50, lols;, . (1.1)
for f,ge C*(Ty).
Proof. See [GOTW18, Lemma 2.1]. O
Propos}tion 1A.2 (lfracti?nal %eibniz estimate). Let s € R, p, p1,p2, p3, pa, q € [1, 0]
izng;yhf}t: -+ o, = 55 T 3, Then, there exists C = C(s,p1,p2,P3,P4,9,m) >0
I£gl5s, < Clflzs, Nglrs + | Flimallzs,, (1.2)
for f,ge C*(Ty).
Proof. See [GOTW18, Lemma 2.1]. O

Proposition A.3 (Interpolation). Let s,s1,s2 € R such that s; < s < S,
P,P1,P2,4,4q1,92 € [17 OO] and@ € (07 1) satisfy

s=0s1+ (1 —0)sy (1.3)
Y.
V2 5| P2
1 0 1-0
a @ @

Then: there exists C' = C(Sa 81,82, P, P1,P2,4, 41, q270777> > 0 such that
|fls;, < CIf|

0 1-6
E e (1.4)

for fe C®(Ty).
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Proof. See [BM18, Proposition 5.7]. ]

Proposition A.4 (Bernstein’s inequality). For R > 0, denote By(R) = {n €
(N7'Z)3 : |n| < R}. Let 51,52 € R such that s; < sy, p,q € [1,0]. Then,
there exists C' = C(sq, $2,p,q,1n) > 0 such that

If]
lg|

: < CR=7f]

< Byl (1.5)
gy, < CR g

By (1 6)

for f.g € C®(Ty) such that supp(Ff) < DBy(R) and supp(Fg) c
(NT'Z)*\By(R).

S52
BP

Proof. See [BCD11, Lemma 2.1] for a proof on R3. O

A.3 Paracontrolled calculus
Let f,g € C*(Ty). Define the paraproduct

feg= Y, AvfAy

I<k—1

and the resonant product

feg= >, MufAg.

lk—I|<1

Then,

fg=feg+ feg+ fog. (1.7)

Proposition A.5 (Paraproduct estimates). Let s € R and p, p1, ps2, q € |1, 0] be such

that}% = pil + piQ. Then, there exists C = C(s,p, p1,p2,q,m) > 0 such that

By, o 19] ez (1.8)

P1.4

I fegls;, < Clfl

for f.g € C*(Ty).
Proof. See [BCD11, Theorem 2.82] for a proof on R?. O

Proposition A.6 (Resonant product estimate). Let s1, o € R such that s = sy +
sg > 0. Let p,p1,p2,q € [1,0] satisfy % = pil + p%. Then, there exists C' =
C(‘Sh S$2,P,DP1,P2,9, 77) > 0 such that

|fegls;, < Clfi

Byl 9] B2, (1.9)

Jor f,g.€ C*(Ty).
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Proof. See [BCD11, Theorem 2.85] for a proof on R?. [

We now state some useful commutator estimates.

Proposition A.7. Let s1, s3 € R, s5 € (0, 1) such that s1+s3 < 0and s1+$2+s3 = 0.
Moreover, let p, p1, 2, q1, q2 € |1, 0] satisfy Ilj + p% + p% = land qil + q% = 1. Then,
there exists C' = C(s1, S2, S3, D, D1, P2, 1, G2, M) > 0 such that

7]

B3 (1.10)

o 9l g2
BP,‘OC g B P2,92

P1-91

[ ean-(rengt] <clr

for f,g,h e C*(Ty).

Proof. This is a modification of [GUZz20, Lemma A.6]. See [BG19, Proposition
7]. ]

Proposition A.8. Let s1, 53 € R, so € (0,1) suchthat s;+s3 < 0but s1+s9+s3 > 0.
Morover, let p,p1,pa, p3 € |1, 0] satisfy % = pil + p% + pig. Then, there exists
C= C(Slu 327537p7p17p2777> > 0 such that

I(feg)eh—(feh)yg

for f,g,h e C*(Ty).

g < C|f]

Bl ||9‘

oL o 19182 |7 B3 (1.11)

Proof. This is a modification of [GIP15, Lemma 2.4]. See [BG19, Proposition
6]. ]
A.4 Analytic properties of ¥

The family of operators { % }x>o defined in Section 4.1 satisfies the following esti-
mate: for every multi-index o € N3, there exists C' = C(a, 1) such that

C
< — :
k2 (1 + f]) 1l

0" T ()|

(1.12)

Proposition A.9. Let s € R, p,q € [1,0]. Then, there exists C' = C(s,p,q) > 0
such that

C
(k2

| f gy < /115, (1.13)

forevery f € C*(Ty)
Proof. This follows from (1.12) and [BCD11, Proposition 2.78]. [

We now state another useful commutator estimate.
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Proposition A.10. Let s; € R, so € (0,1), p,p1,p2,4,q1,q2 € [1,00] such
that 119 = pil + p% and é = qil + q%. Then, for any k > 0, there exists

C = C(Slas2ap7p17p27Q7 /i77]> > 0 such that

I9(F © 9) = 5uf © gl < Clf I, Iglngz.. (1.14)
for f,g € C*(Ty).
Proof. This follows from (1.12) and [BCD11, Lemma 2.99]. [

A.5 Poincaré inequality on blocks

Proposition A.11. There exists C'p > 0 such that, for any N € Nandgo < Ty a
unit block, the following estimate holds for all f € C*(Ty):

[ G- r@)a<ce [ 1vipa (1.15)

where f(0) = §_ fdz.
Proof. See [GT15, (7.45)]. O

A.6 Bounds on discrete convolutions
Lemma A.12. Let d > 1 and «, 5 € R satisfy

a+f>dand o, 5 < d.

Then, there exists C = C(d, v, 8) > 0 such that, uniformly over n € (N~'Z)%,

1 1 1
N? 2, Ty gy > {myoia
n1,n2€(N*12)d 1 2
ni+n2=n

Proof. Follows from [MWX17, Lemma 4.1] and by keeping track of N dependence.
O
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Epilogue

We end Part 111 with a sketch proof of phase transition for ¢3 using Glimm, Jaffe,
and Spencer’s modification of Peierls’ argument as in [GJS75].

The starting point is contour bounds 4 y. Recall that By is the natural dis-
cretisation of Ty into unit boxes. For ¢ ~ vg ., let 0% € {£1}P~ be defined
by

—1, otherwise.

aJ%):{H, if ¢(@) > 0

As in the case of Ising, each configuration % is in bijection with a configuration of
connected contours, and the set of contours do? is called the phase boundary.

Proposition. There exists 5y > 0 such that the following holds: let I be a fixed
contour. Then, there exists C' = C(y) such that, for all > [,

ven(T c o) < e CVAIl

where |I'| is the number of faces in T

Proof. Each face in I' occurs as the common face between two nearest-neighbour
blocks. We therefore identify [" with the set of all such pairs of nearest-neighbours.
Note that any single block may appear in at most 6 different pairs.

Using this identification, we write

Ircoos = H (1¢(u)>01¢>(|:|/)<0 + 1¢>(D)<01¢(D/)>0)-
{o,d'}el’

We split 14)=0l4()<o into three events:
1. ¢(O) is localised near the potential barrier (Figure 4a);
2. ¢(d) is localised near the potential barrier (Figure 4b);

3. both ¢(O) and ¢(d) are localised away from the potential barrier, but are of
opposite spin (Figure 4c¢).

Thus, we can write

Lig>olom < Ljyg <t + Lpa<t + lyms2log<s-

The rest of the proof follows from arguing as in Lemma 3.4 and Proposition 3.2,
and then applying the ()-bounds of Proposition 3.6.
O]
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Figure 4

I

VB

(a) Possibility 1

(b) Possibility 2

(c) Possibility 3

We define infinite volume states by (-)s = limy_,,{:)s y. Note that the (sub-
sequential) limit can be shown to exist by using reflection positivity. See [ShI86,
Theorem 3.1]. With care, one can show contour bounds for {-)5. Then, by arguing
similarly as in the case of Ising, one can show the existence of long range order, i.e.
establish the following theorem.

Theorem A.13. Provided [3 is sufficiently large,

Moo @=1loo@)=—18 — Loo@=1,)8{os@)=—1)8] =

ol =
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uniformly over unit boxes O and .

We now show that the ¢ — —¢ symmetry of (-)s is broken for sufficiently
large 3, which can be upgraded to show spontaneous magnetisation. We do this by
introducing an external field 4 € R. Define

Vsn(9(x)) = Vp(9(2)) — ho(x)

and denote by v4 1,  the corresponding ¢* measure on T y associated to this potential.
Note that these measures are reflection positive, thus we can define infinite volume
states as (- g 5, = limy_,o(: )5, as before.

The following theorem establishes symmetry breaking.

Theorem. Provided [ is taken sufficiently large,

‘ 1
l}ggl<1¢(u)>0>ﬁ,h > 08> 5 = dy@=0/s0

for any unit block .
Proof. For any h > 0, the Lee-Yang theorem [SG73] implies

[Ag@>0ls@)<0)s.n — Lo@=0)8n{o@)<0)8,nl — 0

as the distance between O and 0 goes to infinity.
However, one can show that

1
<1¢(u)>01¢(u/)<0>5,h < 3

provided [ is sufficiently large. This follows by developing contour bounds for
vgh - One can show that for || < % the external field can be interpreted as an
O(1) shift of the minima of the potential ¥ provided £ is sufficiently large. This
is sufficient to extend our analysis, in particular the ()-bounds of Proposition 3.6, to
this case.

Thus, by translation invariance,

Ap@>081{1g@)<0)8.n = Lp@=0)8.1{L@)<0)8.1
1
< Qy@>0084(1 = Ap@=0)8,n) < g

A (physically possible) solution of this necessarily satisfies (14)~0,5,, > 0.8.
Hence, the limit of this quantity as i | 0, which exists due to correlation inequal-
ities [GRS75, Section V], is strictly greater than % thereby establishing symmetry
breaking. 0

To use this result to show spontaneous magnetisation, it suffices to establish
{(O))p,n is of order B{Ly(m)>0)8,n — BLp@<0)s,h 1-€. that ¢(00) localises near the
minima of the potential wells. This can be done by using arguments in Proposition

3.7



IV. Future directions

In summary, in this thesis we have addressed two problems concerning the statistical
mechanics of Euclidean field theories in three dimensions. Our first contribution has
been to establish quasi-invariance of Gaussian measures under the dynamics of the
nonlinear wave equation. Our second contribution has been to establish a surface
order large deviation estimate for the average magnetisation of low temperature ¢*,
and use it to show that the relaxation times of its Glauber dynamics explode in the
infinite volume limit. The common theme between these two contributions has been
the development of the variational approach to ultraviolet stability of ¢3 of Barashkov
and Gubinelli [BG19] within the context of statistical mechanics arguments.

To conclude, we discuss future directions of our research. There are many
interesting open problems, ranging from trivial improvements to science fiction. We
restrict our attention to two problems that are fascinating but seem within reach.
They both concern the ¢4 model in the phase coexistence regime and are natural
extensions of the work [CGW20].

1 Boundary conditions and Dobrushin states for ¢3

Due to the presence of phase transition, one expects that ¢3 is sensitive to boundary
conditions at low temperatures. Specifically, one would want to define the analogue
of vg ny on boxes with inhomogeneous Dirichlet boundary conditions and look at
the effect of this choice in the infinite volume limit. However, there are already
nontrivial technical difficulties in finite volumes. For one, our analysis relies heavily
on Fourier analytic techniques which requires working on a torus.

The more serious concern, however, is allowed boundary conditions given the
negative regularity of ¢* fields. From the point of view of statistical mechanics,
the interesting boundary conditions are functions that are piecewise continuous on
blocks. Indeed, these are natural analogs of boundary conditions for lattice spin
systems. There are some works in this direction in the case of ¢3 [Gid79], but none
that we know of for ¢3.

One particularly interesting boundary condition of the above type is + on the top
of the box and — on the bottom. These are so-called Dobrushin boundary conditions
and are well-studied for the Ising model. Indeed, for Ising, these boundary conditions
generate an interface between + and — spins in finite volumes. In d = 3, Dobrushin
[Dob72] established that this interface exists in the infinite volume limit in some
sense: in particular, one obtains a non-translation invariant limit. This is in contrast
to d = 2, where Aizenman [Aiz8o] and Higuchi [Hig79], independently, showed
that the interface disappears in the infinite volume limit and translation invariance
is recovered. It would be interesting to explore this phenomenon for ¢*.
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2 A full low temperature expansion for ¢}

Glimm, Jaffe, and Spencer established a second, more quantitative proof of phase
transition for ¢3 by explicitly constructing two distinct infinite volume measures in
[GJS76a, GJS76b]. Their proof combines the Peierls’ bounds of [GJS75] with the
cluster expansion techniques of [GJS74], resulting in a low temperature expansion
for ¢3.

The two measures that they construct arise as infinite volume limits of mea-
sures with a version of + and — boundary conditions, respectively, and satisfy the
Osterwalder-Schrader axioms. In order to show that they are distinct, they show that
their respective magnetisations do not agree. In fact, they obtain an explicit series
(in () for the spontaneous magnetisation, and obtain corrections due to probabilis-
tic/quantum fluctuations about the classical magnetisation (i.e. ++//3, corresponding
to the minima of ¥/3). Moreover, they show that these two measures are pure states,
in that they exhibit exponential decay of correlations. This implies a mass gap in
the corresponding quantum field theories associated to these measures.

Extending the results of [GJS76a, GJS76b] to d = 3 would be of great interest.
Indeed, results so far have concentrated on high temperatures [FO76]. Thus, gaining
a better understanding of the low temperature regime would be a first step towards
obtaining a more complete picture of the phase diagram for ¢3.
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