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1. Introduction 

"You need to consider harvesting gains […] when the investment has reached its target price…” 

-  Jay Pestrichelli & Wayne Ferbert. Buy and Hedge: The 5 Iron Rules for Investing Over the 

Long Term, 2011. 

A large body of anecdotal evidence reveals that investors have target prices in mind for the stocks 

that they hold; a target price is the price at which an investor expects to be the fundamental value 

of a share in the future.1 In this paper, we investigate target price as a forward-looking anchor and 

propose that once a stock exceeds investors’ target prices, they are more likely to sell. Such 

collective selling pressure would have the potential to slow down the price adjustment to positive 

news. Correspondingly, any reluctance associated with selling a stock whose target price has not 

yet been met has the potential to restrict the supply of shares and hamper price adjustment to 

negative news. 

Consider the following broad-brush examples, made extreme to highlight the intuition. 

Stocks A and B are both trading at $10. There are two groups of investors with target prices (sticky 

beliefs): (1) current investors who hold a positive position before the earnings announcement, and 

(2) potential investors who do not have any position in the stock before the earnings announcement, 

probably due to outside options and wealth constraints. Both groups have the same distribution of 

target prices as their beliefs for future stock prices. In Figure 1a, investors in Stock A have target 

prices close to the current price, while investors in Stock B have target prices that are more 

                                                            
1 Other definitions for target price used by practitioners are: “price set by analysts predicting where the stock will head in the next 
52 weeks. Also, price an investor is hoping a stock will go to within a specified period of time.” (The Street); or “1. A projected 
price level as stated by an investment analyst or advisor.  2. A price that, if achieved, would result in a trader recognizing the 
best possible outcome for his or her investment. This is the price at which the trader would like to exit his or her existing position 
so that he or she can realize the most reward.” (Investopedia). 
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dispersed. Current investors from both stocks believe that the stocks are undervalued. Suppose that, 

on the next day, both firms announce positive news, and some investors with rational behavior 

update their beliefs and are willing to pay up to $12.2 For Stock A (Figure 1b), a bid price of $11 

exceeds almost all of the current investors’ target prices (shown in the shaded area). Because 

current investors use their target prices as anchors and do not adjust their beliefs based on the new 

information, they become satisfied with their investment outcome and are likely to sell their shares 

and realize their gain.3 For potential investors with the same anchoring bias, they did not buy the 

stock when it was $10, therefore they should not buy the stock now as the price is even higher. 

More importantly, potential investors with target prices below $11 believe that the stock has been 

overvalued as the current stock price has exceeded their target prices, and thus may take short 

positions.4  This collective selling pressure from current investors and the short selling from 

potential investors exert a downward pressure and slow down the price adjustment from $11 to 

$12. As a result, Stock A experiences both increased trading activities and a positive price drift as 

the stock price first appreciates from $10 to $11 and then slowly converges to $12. 

Contrast this with Stock B (Figure 1c), a bid price of $11 satisfies a substantially smaller 

proportion of current investors. In other words, potential buyers attempting to buy the stock at $11 

will find fewer investors willing to sell, because the price is lower than their target-price anchors. 

For potential investors, because most of their target prices have not been exceeded yet, there will 

                                                            
2 These investors could be some current investors or some potential investors. The fundamental difference between these investors 
and investors with target prices is that the latter group of investors have sticky beliefs and do not adjust their beliefs even when 
news arrives. 
3 We refer to these investors as satisfied investors hereafter. These investors anchor on their target prices because they do not 
follow latest news frequently or they overweight their information received from before (e.g., due to behavioral bias).  
4 In an untabulated test, we examine the daily short interests right after positive earnings announcements and confirm our argument 
about the potential investors. Specifically, we find that FracSat × RankCAR(0,1) is significantly positively related to abnormal 
short interest around the earnings announcement. In other words, when extremely good news arrives and most of the investors’ 
target prices get exceeded, potential investors exhibit shorting behavior. This result is consistent with results on order imbalance. 
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be little short selling activities as well. As a consequence, trading between $10 and $11 will be 

filled up quickly, and stock price will quickly adjust to $12.  

Finally, consider the case of negative news (Figure 1d). Suppose that bad news arrives and 

potential buyers are willing to buy both stocks at $9. Current investors in both stocks will tend to 

hold onto their shares because this offer price is below their target-price anchors. Potential 

investors will not short sell the stocks because their target prices are higher than $9. Consequently, 

both stocks will exhibit negative price drifts subsequent to the negative news announcements. 

Based on this, we hypothesize that stocks with a high fraction of satisfied investors should 

experience more trading activities and a more sluggish response to positive news than stocks with 

a low fraction of satisfied investors. This argument is consistent with some recent theories (e.g., 

Banerjee, Kaniel, and Kremer, 2009; Banerjee and Kremer, 2010; Banerjee, 2011; Eyster, Rabin, 

and Vayanos, 2018), which argue that investors have sticky beliefs and tend to rely on their 

anchoring beliefs when new information arrives. This strand of theoretical studies find that 

investors’ sticky beliefs can lead to price drifts/momentum, which provides a theoretical 

foundation for our empirical results. We use the earnings announcement setting to test this 

hypothesis. Conceptually, our mechanism should also explain a price drift after negative news. 

However, given the lack of variation in the fraction of satisfied investors after negative news 

announcements, we focus on positive earnings surprises.5 We measure earnings surprise using 

cumulative DGTW-adjusted abnormal returns in the first two trading days of the announcement, 

i.e., CAR(0,1). Thus, a positive earnings surprise is the one associated with a positive CAR(0,1).  

                                                            
5 In the simplified example, since all target prices are above the current price, the fraction of satisfied investors should always be 
zero. Empirically, within the subsample of negative earnings announcements (i.e., CAR(0,1) < 0 or negative SUE), 85% 
observations have zero fraction of satisfied investors. This is not surprising since prior studies have documented that analysts are 
usually optimistic on the stocks they cover. 
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We follow Diether, Malloy and Scherbina (2002) and use information from analysts to 

proxy for investors’ beliefs. Specifically, we use analyst-target-price forecasts to approximate the 

distribution of investors’ target prices. This approximation is appropriate for two reasons. First, 

investors can easily gain access to analyst target prices from brokers (e.g., Charles Schwab) and 

financial media (e.g., Yahoo! Finance, TIPRANKS)6. Second, target price forecasts are important 

elements from analyst reports and investors respond strongly and incrementally to analyst-target-

price revisions (Bradshaw 2002; Asquith, Mikhail and Au 2005; Da, Hong, and Lee, 2016). 

To implement our empirical tests, we first select the latest analyst target prices announced 

within a 90-day window prior to earnings announcements. Then, we construct the main variable, 

FracSat, as the fraction of analysts whose target-price forecasts are exceeded by the stock price 

after the announcement. The calculation of FracSat is in the same spirit of Frazzini (2006), which 

calculates CGO (Capital Gain Overhang) after earnings announcement. 

We document novel evidence that the post-earnings-announcement drift (PEAD) is present 

only among observations with a high FracSat. When FracSat is high, the difference in CAR(2,61) 

between top- and bottom-CAR(0,1)-quintile observations equals 2.20% (t-statistic = 3.25). That is, 

the initial earnings surprise (CAR(0,1)) positively predicts the subsequent stock market response 

(CAR(2,61)). In sharp contrast, when FracSat is low, the difference in CAR(2,61) between top- 

and bottom-CAR(0,1)-quintile observations is 0.50% (t-statistic = 1.12). That is, price reacts fully 

and immediately in the first two trading days, and there is no significant subsequent drift in the 

ensuing three calendar months. Moreover, within the top CAR(0,1) quintile, the difference in 

CAR(2,61) between high and low FracSat observations is 1.68% (t-statistic = 2.42). This suggests 

that, given the same level of earnings surprise, a high FracSat leads to a sluggish market response 

                                                            
6 An example is provided in Appendix Figure A1 from TIPRANKS 
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to good news. Results from regression analyses, which control for variables that have been 

suggested to impact the PEAD and the interaction between CAR(0,1) and these control variables, 

are consistent. Based on these findings, we can develop an improved PEAD calendar-trading 

strategy, which yields a four-factor adjusted alpha of 0.76% per month (t-statistic = 2.22).  

A concern that arises when sorting stocks using FracSat is that it is likely for stocks with 

extreme earnings surprises to exhibit large FracSat. Ideally, we would like the subsamples to 

contain stocks with similar CAR(0,1) but a wide spread in FracSat. Our data satisfy this criterion 

since the correlation coefficient between CAR(0,1) and FracSat is only 0.21. In addition, we adopt 

an alternative proxy, FracSat1, which is computed as the fraction of analysts whose target price 

forecasts are exceeded by the stock price one week before the announcement. The correlation 

between CAR(0,1) and FracSat1 is −0.01. We find similar results using FracSat1 instead of 

FracSat. Thus, our main results are not mechanically driven by any relation between the sorting 

variables. We also consider other three alternative proxies for FracSat (FracSat2 - FracSat4), and 

they all produce consistent results.  

To further purge out the concern between CAR(0,1) and FracSat, we replace CAR(0,1) with 

two alternative proxies for earnings surprise, one based on seasonal random walk (SUE1), the other 

based on analyst consensus (SUE2). The correlation between FracSat and SUE1 (SUE2) is only 

0.02 (0.09), suggesting that FracSat and these two SUEs are not mechanically correlated. Our main 

results continue to hold with these two SUEs.  

To further provide direct evidence for our argument, we examine the interaction effect of 

CAR(0,1) and FracSat on buy-sell imbalance around announcements.7 We have two findings: (1) 

                                                            
7 Based on Lee and Radhakrishna (2000), we also use the difference in volume between small buy-initiated trades and small sell-
initiated trades to measure retail investors’ buy-sell imbalance. Within the same CAR(0,1) quintile, we find that stocks with a high 
FracSat experience low buy-sell imbalance from retail investors. This is consistent with the finding that our results are stronger for 
stocks with high retail ownership (see Section 4.1). These results are reported in Appendix A2. 
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CAR(0,1) itself generates a buying pressure, suggesting that investors buy stocks on good news; 

(2) CAR(0,1)×FracSat generates a selling pressure. These not only provide direct evidence for our 

argument, but also show that our results are not merely driven by the mechanical relation between 

CAR(0,1) and FracSat. That is, if FracSat only captured extreme CAR(0,1), CAR(0,1)×FracSat 

would generate stronger buying pressure which is not what we find (see Section 3.3).8 

We conduct two sets of subsample analysis to further strengthen our argument. First, 

compared to institutional investors, individual investors are more likely to follow analyst-target-

price forecasts due to their limited information sources and insufficient skills. Consistent with this 

conjecture, we find that our results only exist in the subsample with low institutional ownership. 

Second, because it is difficult to collect and analyze information related to firms with high 

uncertainty, current investors may rely more on analyst-target-price forecasts for these stocks. 

Using idiosyncratic volatility to proxy for uncertainty, we find that our results only exist in the 

subsample with high idiosyncratic volatility. 

Our proposed mechanism should also affect security prices more broadly. Consistent with 

this notion, we find that a high positive stock return with a high FracSat is accompanied by a 

disproportionately higher subsequent price drift than a stock with the same level of high positive 

return but a low FraSat.  

Our study contributes to the literature on the anchoring effect in financial markets. Existing 

studies in this line of research focus on backward-looking anchors, such as purchase price (Odean, 

1998; Grinblatt and Han, 2005; Frazzini, 2006; An, 2015; Wang, Yan, and Yu, 2017; and An, 

Wang, Wang, Yu, 2017), 52-week high (George and Hwang, 2004; Baker, Pan, and Wurgler, 2012; 

                                                            
8 Other explanations could be that FracSat is correlated with idiosyncratic volatility and analyst responsiveness, which are 
associated with post-earnings-announcement drifts (Mendenhall, 2004; Zhang, 2008). To rule out these two explanations, we find 
that the correlation between FracSat and idiosyncratic volatility (analyst responsiveness) is −0.04 (0.04). Moreover, the results are 
unchanged after controlling for idiosyncratic volatility, analyst responsiveness and their interactions with CAR(0,1). 
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George, Hwang, and Li, 2015; Birru, 2015; Hong, Jordan, and Liu, 2015; Huang, Lin, and Xiang, 

2018), past returns and historical price patterns (Grinblatt and Keloharju, 2001), the distribution 

of past returns (Barberis, Mukherjee, and Wang, 2016), round numbers (Donaldson and Kim, 1993; 

Bhattacharya, Holden and Jacobsen, 2012), and historical high (Li and Yu, 2012). However, work 

by Kőszegi and Rabin (2006, 2007, 2009), and Meng and Weng (2017) suggest that expectations 

on future outcomes also play an important role determining investors’ trading decisions; 

nevertheless, all anchoring effects in the existing literature are backward-looking, based on 

historical price and return records. 

To our knowledge, this paper is the first to provide empirical evidence that investors’ target 

prices can affect their trading decisions. Target prices capture investors’ expectations on future 

stock prices. This forward-looking nature is fundamentally different from historical anchors 

documented in existing studies, such as Capital Gain Overhang and Nearness to 52-week High, 

both of which are based on historical information (purchase price and 52-week high, respectively). 

Target prices affect not only current investors but also potential investors. This feature clearly 

distinguishes our proxy from existing anchoring proxies based on historical prices and returns, 

which only affect current investors (e.g., Capital Gain Overhang). Moreover, we find that our 

target-price-based measure still has explanatory power to the price drift after controlling for 

Capital Gain Overhang and Nearness to 52-week High, and their interaction with CAR(0,1). Our 

results suggest that target price may be an example of the expectation-based reference point 

modeled in Kőszegi and Rabin (2006, 2007, 2009), Meng and Weng (2017), Banerjee, Kaniel, and 

Kremer (2009), Banerjee and Kremer (2010), Banerjee (2011), and Eyster, Rabin, and Vayanos 

(2018).  
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Moreover, our study is more comprehensive in terms of empirical designs. For example, 

earlier studies (e.g., Frazzini, 2006; Birru,2015; and George, Hwang, and Li, 2015) focus on the 

earnings announcement setting whereas ours shows that target prices not only play an important 

role in generating PEAD, but also has a broader asset pricing implication on general price drifts. 

Empirical results regarding trading volumes and selling pressures further strengthen our argument. 

In proposing target price as a behavioral bias which results in market underreaction to positive 

news and general price drift, our study adds to the empirical literature on market underreaction, 

such as Hou and Moskowitz (2005), Hou (2007), Cohen and Lou (2012), Lou (2012), and Lou 

(2014). 

Since investors’ expectations on future stock prices are unobservable, we use the 

distribution of analyst-target-price forecasts as a proxy for the distribution of investors’ target 

prices. Relative to analysts’ earnings forecasts and recommendations, the data on analyst-target-

price forecasts have been under-studied. We contribute to the literature by providing a novel 

application of analyst-target-price forecasts. 

 

2. Data  

2.1. Sample Description 

We take analyst-target-price forecasts from the Institutional Brokers’ Estimate System (I/B/E/S), 

quarterly financial statements from COMPUSTAT and financial market data from the Center for 

Research in Security Prices (CRSP). The sample period spans from 1999 to 2015 and is determined 

by the availability of analyst-target-price forecasts. 
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We focus on quarterly earnings announcements that are available in both COMPUSTAT 

and I/B/E/S9. Following Livnat and Mendell (2006) and standard literature, we impose these 

restrictions: 

(1) Ordinary common shares listed on the NYSE, AMEX, or NASDAQ; 

(2) The earnings announcement date is reported in both COMPUSTAT and I/B/E/S, and the 

earnings report dates in COMPUSTAT and in I/B/E/S differ by no more than one calendar 

day; 

(3) The price-per-share at the end of the fiscal quarter is available from COMPUSTAT and is 

greater than $5; 

(4) The market value of equity at the fiscal quarter-end is available and is larger than $5 million; 

(5) Daily stock returns are available in CRSP for the dates around the earnings announcement. 

Moreover, we should be able to assign a stock to one of the 125 DGTW portfolios based 

on size, book-to-market ratio and momentum (Daniel, Grinblatt, Titman, and Wermers 

1997); 

(6) Earnings surprise (CAR(0,1)), which is defined as  the cumulative abnormal return from 

the announcement day and the day following the announcement, should be positive; 

(7) Data available to compute our main variable of interest, FracSat. 

 

2.2. Measurement of Earnings Surprise and the PEAD 

We compute daily abnormal returns as raw daily returns minus daily value-weighted returns on a 

portfolio of firms with similar size, book-to-market ratio and momentum. We follow the 

categorization outlined in Daniel, Grinblatt, Titman, and Wermers (1997). For robustness, we also 

                                                            
9 We use the link table provided by Prof. Byoung-Hyoun Hwang from Cornell University. This link table provides a mapping from 
I/B/E/S ticker to CRSP permno and can be downloaded from his personal webpage: http://www.bhwang.com/code.html.  
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consider abnormal returns adjusted by the six Fama-French benchmark portfolios formed on size 

and book-to-market ratio. We compute Fama-French benchmark adjusted returns as the raw daily 

returns minus daily value-weighted returns on a portfolio of firms with similar size and book-to-

market ratio. 

Our main proxy for earnings surprise is CAR(0,1), which is the sum of the DGTW-adjusted 

returns from day 0 to day 1, where day 0 is the announcement day. If news is announced on a non-

trading day, or on a trading day but after stock markets are closed, we use the ensuing trading day 

as the announcement day. We define a positive earnings surprise as an announcement with a 

positive CAR(0,1). 

We compute CAR(2,30), CAR(2,45), and CAR(2,61) as the cumulative DGTW-adjusted 

abnormal returns after the announcement. CAR(2,30) is the sum of daily abnormal returns from 

day 2 to day 30; CAR(2,45) is the sum of daily abnormal returns from day 2 to day 45; CAR(2,61) 

is the sum of daily abnormal returns from day 2 to day 61. We winsorize CAR(2,30), CAR(2,45), 

and CAR(2,61) at the 1st and 99th percentiles to mitigate the effect of extreme observations. 

 

2.3. Measurement of the Fraction of Satisfied Investors  

The main variable of interest is the fraction of investors whose target prices are exceeded. Since 

investors’ expectations are unobservable, we follow the spirit of Diether, Malloy and Scherbina 

(2002) by using analyst-target-price forecasts to approximate the distribution of investors’ target 

prices, and then construct the fraction of satisfied investors. This approximation is appropriate for 

two reasons. First, investors can easily gain access to analyst target prices in various ways. For 

example, online brokers, such as Charles Schwab, offer access to analysts’ reports. In addition, 

several websites, such as Yahoo! Finance and TIPRANKS, provide detailed information on each 
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individual analyst’s target price forecast (see Appendix Figure A1 for detailed analyst-target-price 

forecasts on Alphabet Inc. (Ticker: GOOGL) provided by TIPRANKS). Second, target price 

forecasts are important elements from analyst reports (Bradshaw 2002) and prior empirical studies 

provide evidence that analysts’ target prices subsume information contained in analysts’ earnings 

and earnings growth forecasts (Asquith, Mikhail and Au 2005; Da, Hong, and Lee, 2016). 

Therefore, we expect investors to respond strongly and incrementally to analyst-target-price 

revisions.  

To implement our empirical test, we construct the fraction of satisfied investors as follows. 

First, we select 12-month analyst-target-price forecasts that are announced within the 90-day 

window preceding the earnings announcement. Further, we require an analyst-target-price forecast 

to be greater than the month-end stock price right before the target price forecast is announced 

(both prices are adjusted to take into account of distribution events such as stock splits and stock 

dividends). This requirement is based on the proposition that only optimistic investors hold a long 

position in a stock. Practically, few target price forecasts are below the market price at the time 

the forecast is announced and untabulated results show that this requirement does not materially 

alter our findings.  

We compute the main variable, FracSat, as the fraction of analysts whose target price 

forecasts are exceeded by the price at the end of day 1, where day 0 is the earnings announcement 

day or the ensuing trading day if news is announced on a non-trading day or after markets are 

closed. Both prices are adjusted to take into account of distribution events such as stock splits and 

stock dividends. The calculation of FracSat is in the spirit of Frazzini (2006), who calculates CGO 

(Capital Gain Overhang) after earnings announcement. We consider four alternative ways to 

construct this proxy in the Section 3.2.  
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2.4. Control Variables 

Our control variables are constructed as follows: (1) Capital Gain Overhang is the percentage 

deviation of the stock price from the aggregate purchase price of mutual funds; (2) Market 

Capitalization (in million $) is the market value of common stocks measured at the end of the most 

recent June; (3) Book-to-Market is the firm's book-to-market ratio, where book value of equity is 

measured as of the fiscal year end in calendar year t-1, and market value of equity is measured as 

of the end of December of calendar year t-1; the book-to-market ratio so computed is matched 

with earnings announcements from July of year t to June of year t+1; (4) Past Return(t−7,t−1) is 

the cumulative raw return over the six-month period ending one month prior to the month of the 

earnings announcement; (5) Institutional Ownership is the fraction of total shares outstanding held 

by institutional investors as of the end of the quarter prior to the earnings announcement; (6) 

Nearness to 52-week High is the ratio of closing price on day −11 to the highest closing price from 

the prior 52 weeks; (7) Turnover is measured as the average of the daily ratios of the number of 

shares traded to the total number of shares outstanding from day −40 to day −11;10  (8) Amihud 

Ratio is the average of the daily ratios of absolute stock return to its dollar volume from day −40 

to day −11; (9) SUE is the standardized unexpected earnings, defined as the difference between 

the actual earnings per share and the median of analyst forecasts in the 90 days prior to the earnings 

announcement, scaled by price; (10) Earnings Volatility is measured as the standard deviation of 

quarterly earnings surprises from a seasonal random walk model over the preceding four years; 

(11) Earnings Persistence is the first-order auto-regressive coefficient of quarterly earnings-per-

share over the preceding four years; (12) Reporting Lag is the number of days between the fiscal 

                                                            
10 For NASDAQ stocks, the trading volume is adjusted based on Gao and Ritter (2010). 



13 
 

quarter-end date and the earnings announcement date; (13) # of Analysts is the number of analysts 

reporting earnings-per-share forecasts for the firm; (14) # of Announcements is the number of firms 

announcing quarterly earnings on the same earnings announcement day (or the ensuring 

announcement day); (15) Friday is a dummy variable which equals one if the announcement day 

is a Friday, and zero otherwise; (16) Fama-French 10 industry fixed effects; (17) Time fixed effects. 

We winsorize all control variables at the 1st and 99th percentiles to mitigate the effects of extreme 

observations. 

 

2.5. Summary Statistics 

Table 1 presents descriptive statistics for all variables in our sample, which contains 52,071 firm-

quarter observations with a positive CAR(0,1) and non-missing control variables. The mean 

FracSat is 17.8%. The distribution of FracSat is such that it equals zero until the 65th percentile. 

In our later tests, we categorize an observation as having a “High Fraction Satisfied” if FracSat is 

above the 80th percentile and as having a “Low Fraction Satisfied” otherwise. In untabulated results, 

we show that the findings are robust for the cutoffs from the 70th percentile to the 85th percentile. 

We use the 80th percentile for a conservative reason. In the panel regressions, we use a continuous 

variable of FracSat. To further address this concern, we construct several alternative measures of 

FracSat, including a continuous measure and dummy measures. Section 3.2 will introduce these 

alternative measures in detail. 

[Table 1 Here] 

In Panel C of Table 1, we examine the determinants of FracSat. Our analysis shows that 

FracSat is negatively related to Capital Gain Overhang, size, book-to-market ratio and 
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institutional ownership, while positively related to Nearness-to-52-Week-High, analyst dispersion, 

momentum, and idiosyncratic volatility. 

2.6. Informativeness of Analyst-Target-Price Forecasts 

In this section, we study market reactions to analyst-target-price revisions. Our aim is to justify 

the proposition that analyst-target-price forecasts can approximate investors’ target prices in mind. 

For each target price revision, we compute the cumulative abnormal return from the target price 

revision day to the ensuing trading day. We use the subsequent trading day as the revision day if 

the revision occurs on a non-trading day or after market-hours. Abnormal returns are DGTW-

adjusted returns. 

We conduct quarterly Fama-MacBeth regressions of this cumulative abnormal return on 

the percentage change in the target price forecast, Target Price Revision. Sometimes, target price 

revisions are associated with concurrent revisions in quarterly earnings forecasts and stock 

recommendation levels. Thus, our analysis controls earnings forecast revisions and stock 

recommendation changes, which are defined as follows. Earnings Forecast Revision is the 

percentage change in quarterly earnings forecasts.11 Recommendation Revision is the change in 

recommendation levels.12 If no earnings forecast or recommendation revision is made on the day 

of the target price revision, we check for revisions in the 90-day period prior to the target price 

revision announcement. If a revision was made within that window, we include the most recent 

earnings forecast revision or recommendation revision as a control. Otherwise, Earnings Forecast 

Revision or Recommendation Revision is set to zero. In our regression analysis, we include 

                                                            
11 We obtain similar results when constructing Earnings Forecast Revision based on annual earnings forecasts 
12 We obtain information regarding analyst stock recommendations from the I/B/E/S detailed recommendation file. The I/B/E/S 
recommendation file tracks all recommendations made by each analyst. Recommendations (ITEXT) include: “Strong Buy,” “Buy,” 
“Hold,” “Underperform,” and “Sell.” We assign the following numerical scores: 5 (strong buy), 4 (buy), 3 (hold), 2 (underperform), 
and 1 (sell). A high value indicates a more bullish view. 
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Earnings Forecast Revision and Recommendation Revision, as well as dummy variables, 

I(Earnings Forecast Revision) and I(Recommendation Revision), denoting whether any revisions 

were made prior to the target price revision announcement. In separate regressions, we also 

experiment with a Recommendation Upgrade dummy and a Recommendation Downgrade dummy. 

We report the time-series average of coefficient estimates in Table 2. Newey-West (1987) standard 

errors are reported in the parentheses. *, **, *** indicates significance at 10%, 5%, or 1%, 

respectively. 

[Table 2 Here] 

Results reported in Table 2 reveal that analyst-target-price forecast revisions are strongly 

positively associated with two-day abnormal returns around revision announcements. The estimate 

of 0.110 (t-statistic = 10.89) implies that a 10% increase in the target price forecast (e.g., from $10 

to $11) is associated with 1.10% more positive two-day cumulative abnormal returns around the 

price revision. 

Although both revisions in earnings forecasts and recommendations also have significant 

market reaction, the positive association between target price revision and market reaction remains 

substantial, both economically and statistically, when controlling for revisions in earnings 

forecasts and recommendations. These findings suggest that the general population of investors 

does react to information contained in analyst-target-price forecasts. Thus, it is appropriate to use 

analyst-target-price forecasts to approximate target prices from the general population of investors. 

 

3. Main Results 

3.1. FracSat and the Post-Earning-Announcement Drift 
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We hypothesize that the post-earning-announcement drift is generated by a large fraction of current 

investors who anchor on their target prices and become satisfied once the market price exceeds 

their anchoring prices. In order to test this hypothesis, in each calendar quarter, we first assign 

stocks with a positive earnings surprise into quintiles based on CAR(0,1). Within each quintile, we 

divide stocks into two groups based on FracSat. Because the distribution of FracSat is such that 

it equals zero until the 65th percentile, we categorize an observation as having a “High Satisfied 

Fraction” if FracSat is above the 80th percentile and as having a “Low Satisfied Fraction” 

otherwise. In untabulated analysis, we find that our results are robust for different cutoffs from the 

70th percentile to the 85th percentile. In the panel regressions, we use a continuous variable of 

FracSat to mitigate the concern for using different cutoffs. To further address this concern, we 

construct alternative measures of FracSat, including a continuous measure and dummy measures. 

Section 3.2 introduces these alternative measures in detail. After sorting stocks into 10 (5×2) 

portfolios, we compute the time-series means of CAR(2,30), CAR(2,45), and CAR(2,61) for these 

portfolios. Results are reported in Table 3. 

[Table 3 Here] 

We find that PEAD is present only among observations with a high FracSat. For example, 

when FracSat is high, the difference in CAR(2,61) between top- and bottom-quintile-CAR(0,1) 

observations is 2.20% (t-statistic = 3.25). That is, the initial earnings surprise (CAR(0,1)) positively 

predicts the subsequent stock market response (CAR(2,61)). In sharp contrast, when FracSat is 

low, the difference in CAR(2,61) between top- and bottom-CAR(0,1)-quintile observations is 0.50% 

(t-statistic = 1.12). That is, price reacts fully and immediately in the first two trading days, and 

there is no significant subsequent drift in the ensuing three calendar months. Moreover, within the 

top CAR(0,1) quintile, stocks with a high satisfied fraction have an average CAR(2,61) of 2.30%, 
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while stocks with a low satisfied fraction only have an average CAR(2,61) of 0.62%. The difference 

is 1.68% with a t-statistic of 2.42. This suggests that, given the same level of earnings surprise, a 

high FracSat leads to a sluggish market response to good news. This difference is not statistically 

significant for the rest of the CAR(0,1) quintiles. Similar patterns are obtained for CAR(2,30) and 

CAR(2,45) as well. Overall, this evidence is consistent with our conjecture that high FracSat 

generates under-reaction to good news and positive PEAD. 

We next test our prediction using panel regressions. There are two advantages of this 

approach. First, it allows us to control for variables that have been found to affect the PEAD. 

Second, it allows us to examine the robustness of our results for a continuous measure of FracSat, 

to mitigate the concern that different cutoffs might affect our sorting results. 

We follow the previous literature (e.g., Hirshleifer, Lim, and Teoh 2009) in estimating the 

following panel regressions with time and industry fixed effects: 

CAR(2, τ)i,t = α + β1×RankCAR(0,1)i,t + β2×FracSati,t×RankCAR(0,1)i,t  

+ β3×FracSati,t + γ1×Xi,t + γ2×RankCAR(0,1)i,t ×Xi,t + εi,t, ,             (1) 

where i indexes firms and t indexes time. CAR(2,τ) denotes CAR(2,30), CAR(2,45), or CAR(2,61).  

In each calendar quarter t, we assign stocks (with a positive CAR(0,1)) into quintile 

portfolios based on CAR(0,1). RankCAR(0,1) equals one for stocks from the bottom CAR(0,1) 

quintile, and five for stocks from the top CAR(0,1) quintile. X represents a set of lagged control 

variables, including: (1) Capital Gain Overhang; (2) log(Market Capitalization); (3) log(Book-to-

Market); (4) Past Return(t−7,t−1); (5) Institutional Ownership; (6) Nearness to 52-week High; (7) 

Turnover; (8) Amihud Ratio; (9) SUE; (10) Earnings Volatility; (11) Earnings Persistence; (12) 

Reporting Lag; (13) log(# of Analysts); (14) # of Announcements; (15) Friday; (16) Fama-French 

10-industry fixed effects; (17) Time fixed effects.  We have also included the interaction between 
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RankCAR(0,1) and all control variables, such as Capital Gain Overhang and Nearness to 52-week 

High. Results are reported in Table 4.13 

[Table 4 Here] 

These regressions confirm our results from double sorts. For example, in column 1, we use 

CAR(2,30)  as the dependent variable, and find a coefficient of 0.003 (t-statistic = 2.46) on FracSat 

× RankCAR(0,1) and a coefficient of 0.002 (t-statistic = 0.29) on RankCAR(0,1). These estimates 

suggest that when no target price gets exceeded (i.e., FracSat = 0%), there is no significant 

difference in CAR(2,30) between top- and bottom-quintile-CAR(0,1) observations; but when all 

target prices get exceeded (i.e., FracSat = 100%), the difference in CAR(2,30) between top- and 

bottom-quintile-CAR(0,1) observations increases by 2.00% (t-statistic = 2.46).14 This result is both 

statistically significant and economically large. Moreover, it matches the double sorting results 

reported in Table 3. Regressions on CAR(2,45) and CAR(2,61) produce similar results. 

Results in Table 4 also help us interpret the spread in PEAD between all satisfied investors 

(FracSat = 100%) and no satisfied investors (FracSat = 0%), given the same level of earnings 

surprise. For example, column 3 shows that, within the top CAR(0,1) quintile observations, the 

CAR(2,61) when all investors are satisfied is 1.50% higher than the CAR(2,61) when no investor 

is satisfied.15 This is consistent with the double sorting results reported in Table 3. Similar results 

are obtained with CAR(2,30) and CAR(2,45) as well. 

                                                            
13 In order to save space, we do not report the coefficient estimates for interaction terms between RankCAR(0,1) and all control 
variables in Table 4, we report the full results of Table 4 in Appendix Table A.5.  
14 When FracSat equals 0%, the difference in CAR(2,30) between top- and bottom-quintile-CAR(0,1) observations equals to 
0.002×(5−1) + 0.003×0%×(5−1) = 0.80%. When FracSat equals 100%, the difference equals 0.002×(5−1) + 0.003×100%×(5−1) 
= 2.00%. 
15 Within the top CAR(0,1) quintile, the difference in CAR(2,61) between FracSat = 100% (all investors get satisfied) and FracSat 
= 0% (no investors get satisfied) is calculated as 0.006 × 5 × (100% − 0%) −0.015 × (100% − 0%) = 1.50%. 
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These results suggest that, investors are more likely to sell their stocks when the market 

price is above their target-price anchors. This increased willingness to sell has the potential to 

generate market underreaction after positive news and positive PEAD. 

 

3.2. Alternative Measures for FracSat and Earnings Surprise 

A potential concern is that the results documented here may be mechanical. Because FracSat is 

likely driven by an extremely positive earnings surprise, it is possible that even within the top 

CAR(0,1) quintile, sorting by FracSat is a further sort on the earnings surprise. We address this 

concern in four ways.  

First, we examine the correlation between FracSat and CAR(0,1) .  As shown in Panel B 

of Table 1, the correlation coefficient between FracSat and CAR(0,1) is low (0.21). Thus, the 

results are not likely to be purely mechanical. Moreover, in the panel regressions reported in Table 

4, the interaction term of FracSat and RankCAR(0,1) effectively controls for the level of positive 

earnings surprise when testing the effect of FracSat on the PEAD.  

Second, we construct four alternative measures of FracSat and re-conduct our regression 

analyses. For the first alternative measure, we change the timing of FracSat. We define FracSat1 

as the fraction of analysts whose target price forecasts are exceeded by the stock price one week 

before the earnings announcement. By construction, this alternative measure, FracSat1, should not 

be mechanically correlated with CAR(0,1). As shown in Panel A of Table 5, the correlation 

between FracSat1 and CAR(0,1) is only −0.01. Yet, as shown in Panel B1, we still find consistent 

results with this alternative measure in the panel regressions.  

[Table 5 Here] 
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To address the concern that our main proxy for FracSat only captures a ratio and is zero 

up to the 65th percentile, we construct a second alternative proxy, FracSat2, as the relative 

difference between the stock price and the target prices: 

FracSat2 = (Prc – Min[TP])/(Max[TP] – Min[TP]),               (2) 

where Prc is the closing price in day 1, Min[TP] is the minimum target price, and Max[TP] is the 

maximum target price. If the maximum equals to the minimum target price, FracSat2 is set to 1 if 

Prc exceeds the target price, and zero otherwise.  

We also construct two dummy variables as alternative proxies for FracSat, FracSat3 and 

FracSat4, by comparing Prc to the mean and median target price, respectively. If Prc is greater 

than or equal to the mean (median) target price, FracSat3 (FracSat4) is set to 1, and zero otherwise.  

As shown in Panels B2-B4 of Table 5, all these alternative measures of FracSat have 

reasonably low correlations with CAR(0,1), and our results are robust using these alternative 

proxies for FracSat. 

Thirdly, we consider two alternative proxies of earnings surprise, one based on seasonal 

earnings growth model (SUE1), and the other based on analyst forecast consensus (SUE2). 

Specifically, SUE1 is defined as the difference in earnings per share before extraordinary items 

between quarter t and quarter t−4, scaled by the price at quarter t. SUE2 is defined as the difference 

between the actual earnings per share and the median of analyst forecasts announced within the 

90-day window prior to the earnings announcement, scale by price. By construction, SUE1 and 

SUE2 should not be mechanically correlated with FracSat. Indeed, as shown in Panel A of Table 

6, the correlation coefficient between FracSat and SUE1 (SUE2) is 0.02 (0.09). We re-conduct the 

analysis in Table 4 using these two measures and reports results in Panels B1 and B2 of Table 6. 

We find similar results based on these two alternative proxies for the earnings surprise as well.  
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[Table 6 Here] 

As our final way to purge out the concern on the relation between FracSat and CAR(0,1), 

we examine the effect of CAR(0,1)×FracSat on buy-sell imbalance around announcements. 

Specifically, we have two findings: (1) CAR(0,1) itself generates a buying pressure, suggesting 

that investors buy stocks on good news; (2) CAR(0,1)×FracSat generates a selling pressure. These 

findings not only provide direct evidence for our argument, but also show that our results are not 

merely driven by the mechanical relation between CAR(0,1) and FracSat. That is, if FracSat just 

captures extreme CAR(0,1), CAR(0,1)×FracSat should generate stronger buying pressure which 

goes against our findings (see Section 3.3 for details). 

In the main tests, we use DGTW-adjusted daily returns to compute CAR(0,1), CAR(2,30), 

CAR(2,45), and CAR(2,61). To check the robustness of our results to different return adjustments, 

we also adjust daily returns by Fama-French six benchmark portfolios formed on size and book-

to-market ratio and repeat our main analyses in Table 4. Our results are robust to this alternative 

specification. These results are reported in Appendix Table A.1. 

 

3.3. Trading Volume  

In this section, we investigate trading volume patterns around earnings announcements in order to 

provide direct evidence on our argument. Intuitively, our mechanism should be driven by the 

selling pressure from investors who anchor at their target prices and are satisfied with their 

investment outcomes once the market price exceeds their target-price anchors. Therefore, for a 

given level of positive news, stocks with a high fraction of satisfied investors should experience 

higher abnormal trading volume and more sell-initiated trades (i.e., lower buy-sell imbalance) 

around earnings announcements than those with a low FracSat. 
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To test these predictions, we use Trade and Quote (TAQ) database, which contains intraday 

transactions data (trades and quotes) for all securities listed on all U.S. equity exchanges. 

Following standard literature on market microstructure, we include the following filters for trades: 

(1) Market-hour trades, i.e., trades happened between 9:30 to 16:00; 

(2) Trades with positive price and positive share volume; 

(3) Trades issued in NYSE, AMEX or NASDAQ; 

(4) Good trades (Correction Indicator = 0, 1, or 2); 

(5) Condition of sales should not fall in to the following categories: “Opened Last (O)”, 

“Sold Sale (Z)”, “Bunched (B)”, “Pre- and Post-Market Close Trades (T)”, “Sold last 

(L)”, “Bunched sold (G)”, “Average Price Trades (W)”, “Rule 127 trade (J)”, and “Rule 

155 trade (K)”. 

We first study abnormal trading volume around the earnings announcement. We construct 

Abnormal Trading Volume (Abn_Vol) as the ratio of the average daily trading volume from day 0 

and day 1 to the average daily trading volume from day −40 to day −11. Abnormal Dollar Trading 

Volume (Abn_DVol) is defined as the ratio of the average daily dollar trading volume from day 0 

and day 1 to the average daily dollar trading volume from day −40 to day −11. Dollar trading 

volume is defined as the product of executed price and traded shares for each trade. 

To further investigate the role of FracSat in buying and selling activities, we use the 

algorithm of Lee and Ready (1991) to infer the direction of trades as buy- initiated or sell-initiated. 

The methodology involves a two-step approach: a quote test first (compare trade price to the mid-

point of bid and ask five seconds ago, i.e., the 5-second rule), then a tick test (compare current 

trade price with previous price). Buy-Sell Imbalance (BSI) is defined as: 

 

BSI  = (Buy – Sell)/(Buy + Sell),                                                       (3) 
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where we compute buy-initiated (sell-initiated) trading volume as the total buy-initiated (sell-

initiated) trading volume from day 0 and day 1. We define Dollar Buy-Sell Imbalance (DBSI) 

similarly by replacing trading volume with dollar trading volume: 

DBSI  = (DBuy – DSell)/(DBuy + DSell).                                               (4) 

 

We estimate panel regressions on RankCAR(0,1), FracSat, FracSat × RankCAR(0,1), and 

the same set of control variables as in equation (1):   

Proxyi,t = α + β1×RankCAR(0,1)i,t + β2×FracSati,t×RankCAR(0,1)i,t 

+ β3×FracSati,t + γ1×Xi,t + γ2×RankCAR(0,1)i,t ×Xi,t + εi,t ,           (5) 

 

where i indexes firms and t indexes time. Proxyi,t refers to Abn_Vol, Abn_DVol, BSI, or DBSI. 

When we use Abn_Vol and Abn_DVol as the dependent variables, we expect β2 to be positive and 

significant; when we use BSI and DBSI as the dependent variables, we expect β2 to be negative 

and significant. 

[Table 7 Here] 

The results presented in Table 7 are consistent with our conjecture. For Abn_Vol 

(Abn_DVol), the coefficient estimate on the interaction term FracSat × RankCAR(0,1) is 0.883 

(1.368)  with a t-statistic of 2.83 (3.34). This shows that, for a given level of positive news, stocks 

with a high FracSat experience more trading volume than stocks with a low FracSat. For BSI 

(DBSI), the coefficient estimate on the interaction term FracSat × RankCAR(0,1) is −0.007 

(−0.007)  with a t-statistic of −2.55 (−2.59). This shows that, for a given level of positive news, 

stocks with a high FracSat experience more sell-initiated trades than stocks with a low FracSat. 

The results on BSI and DBSI also confirm that our main results based on FracSat and CAR(0,1) 

are not purely driven by the potential mechanical relation between FracSat and CAR(0,1). 
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Specifically, columns 3 and 4 show two patterns: (1) CAR(0,1) itself generates a buying pressure 

(β1 is positive), suggesting that investors buy stocks on good news; (2) CAR(0,1)×FracSat 

generates a selling pressure (β2 is negative). These results cannot be obtained if FracSat merely 

captures extremely high CAR(0,1). That is, if FracSat just captures extreme CAR(0,1), 

CAR(0,1)×FracSat should generate stronger buying pressure (both β1 and β2 should be positive), 

which goes against our findings. 

We show in Section 4.1 that the effect of FracSat on the price drift is concentrated on 

stocks with low institutional ownership. Therefore, it is natural to expect that the results 

documented here tend to be driven by increased sell-initiated trades from retail investors. However, 

we have no access to any database that can directly identify investor types for each trade. As 

suggested by Lee and Radhakrishna (2000), trades with dollar size less than 5,000 USD (small 

trades) can be used as a proxy for individual investor trades. Nevertheless, the literature argues 

that this methodology is only efficient before 2001, due to the introduction of decimalization in 

2000 and the growing use of computerized trading algorithms (for instance, see Hvidkjaer, 2008; 

Barber, Odean, and Zhu, 2009; Han and Kumar, 2013; among others). Thus, we can only conduct 

this analysis for the first two years in our sample. Despite limited observations, we still find that, 

for a given level of positive news, stocks with a high FracSat experience more sell-initiated trades 

from retail investors. This is consistent with the results in Section 4.1, which shows that the effect 

of FracSat is concentrated on stocks with low institutional ownership. These results are reported 

in Appendix Table A.2. 

 

3.4. Trading Strategy based on FracSat and CAR(0,1) 
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In this section, we develop an improved PEAD trading strategy based on the previous empirical 

evidence. Specifically, at the end of each calendar month t, we select stocks that have made 

earnings announcements in the past two months (i.e., month t−1 and month t) and a price no less 

than $5 at the end of month t. We focus on the sample with a positive CAR(0,1), and then sort 

these stocks into quintiles based on CAR(0,1). Within each quintile, stocks are further divided into 

two groups based on FracSat. Because the distribution of FracSat is such that it equals zero until 

the 65th percentile, we categorize an observation as having a “High Satisfied Fraction” if FracSat 

is above the 80th percentile and as having a “Low Satisfied Fraction” otherwise. In untabulated 

results, we find that our results are robust for different cutoffs from the 70th percentile to the 85th 

percentile. We require that each of the ten portfolios should consist of at least five stocks. We hold 

these ten portfolios for one month and study their equal-weighted return patterns in month t+1. We 

report Fama-French (1993) three-factor adjusted returns in Panel A of Table 8, and Fama-French-

Carhart four-factor adjusted returns in Panel B of Table 8. Newey-West (1987) adjusted standard 

errors are reported in parentheses. 

[Table 8 Here] 

Panel A of Table 8 shows that a trading strategy which longs stocks with a high FracSat in 

the top CAR(0,1) quintile and shorts stocks with a high FracSat in the bottom CAR(0,1) quintile 

yields a three-factor adjusted return of 0.68% per month (t-statistic = 2.01). On the contrary, the 

difference in returns between the stocks with a low FracSat in the top CAR(0,1) and the stocks 

with a low FracSat in the low CAR(0,1) is −0.27%  and is not statistically significant (t-statistic = 

−1.28). The difference between these two long-short trading strategies is 0.95% per month and 

statistically significant (t-statistic = 2.56). Results are similar when we adjust portfolio returns with 
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the four-factor model, which are shown in Panel B of Table 8. We report value-weighted results 

in the Appendix Table A.3, which are qualitatively similar. 

This evidence is consistent with our previous argument that investors do have a target price 

in mind as a forward-looking anchor, and once the stock price exceeds the target price, they are 

more likely to sell the stock, generating a price drift. 

 

3.5. Discussions of Alternative Explanations 

An alternative explanation for our results is that high FracSat may be associated with high 

idiosyncratic volatility, and existing research has documented that the PEAD is stronger in stocks 

with high idiosyncratic volatility (Mendenhall, 2004). This is not the case. On one hand, in Panel 

B of Table 1, we report that the correlation between FracSat and idiosyncratic volatility is only 

−0.04, indicating that FracSat captures a very different perspective apart from idiosyncratic 

volatility. On the other hand, in untabulated results, we include idiosyncratic volatility and its 

interaction with CAR(0,1) into regressions but still find similar results as reported in Table 4.  

 Another alternative explanation is based on analyst responsiveness. Zhang (2008) reports 

that the PEAD is stronger in stocks with unresponsive analysts. In Zhang (2008), if at least one 

analyst updates his earnings forecast within one-day window after the earnings announcement, the 

firm is defined to have responsive analysts.  Lack of analyst responsiveness presumably generates 

stale target prices, which may in turn drive FracSat. Our results cannot be explained by this 

mechanism based on the following reasons. First of all, we construct FracSat using the most recent 

analyst-target-price forecasts before the earnings announcement, which mitigates analysts’ timing 

behavior in forecast revisions (e.g., analysts may have timing behavior and update target 

price/earnings forecasts immediately after announcements). We further check the correlation 
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between FracSat and analyst responsiveness measure of Zhang (2008), which is fairly low (0.04).  

In untabulated results, we control analyst responsiveness and its interaction with CAR(0,1) in the 

regressions and find similar results as reported in Table 4. 

 

4. Further Discussions 

4.1. FracSat and Institutional Ownership 

We next investigate how our results vary with institutional ownership. Since individual investors 

generally have limited information sources and insufficient skills analyzing firms’ fundamentals 

and analyst target-price forecasts are readily available from financial media, they are more likely 

to anchor their expectations on future stock prices at analyst-target-price forecasts. In contrast, 

institutional investors have professional in-house research teams and should rely less on target 

prices estimated by analysts. Therefore, analyst-target-price forecasts should better approximate 

the distribution of investors’ target prices on stocks with low institutional ownership. Meanwhile, 

the low institutional ownership implies that there is little arbitraging activity to correct the 

mispricing. Thus, we conjecture that our results should be stronger within the subsample with low 

institutional ownership.  

To test this conjecture, we sort our sample based on institutional ownership in each quarter: 

those with an institutional ownership below the 30th percentile ("Low IO") and those with an 

institutional ownership above the 70th percentile ("High IO"). We conduct the same panel 

regressions as specified in Equation 1 and Table 4 for both subsamples. Results are reported in 

Panel A of Table 9. 

[Table 9 Here] 
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Consistent with our hypothesis, we find that results are stronger in the subsample with low 

institutional ownership. When we use CAR(2,61) as the dependent variable, the coefficient 

estimates on the interaction of FracSat and RankCAR(0,1) are 0.010 (t-statistic = 3.71) and 0.005 

(t-statistic = 1.48) for the low IO subsample and the high IO subsample, respectively. The 

difference between the two coefficient estimates is 0.005 (t-statistic = 1.79).16  Similar results are 

obtained when we replace CAR(2,61) with CAR(2,30) or CAR(2,45) as the dependent variable.  

 

4.2. FracSat and Uncertainty 

We further conjecture that the effect of FracSat on PEAD should be stronger for stocks with high 

uncertainty. For stocks with high uncertainty, investors have difficulty collecting and processing 

related information and are more likely to anchor their expectations of future stock prices at target 

prices estimated by analysts. Therefore, analyst-target-price forecasts can better approximate the 

distribution of investors’ target prices on stocks with high uncertainty. Meanwhile, stocks with 

high uncertainty are usually associated with high arbitraging costs and tend to have greater 

mispricing. Thus, we expect target prices to have greater impacts on the subsample of stocks with 

high uncertainty.  

We use idiosyncratic volatility to capture firm-level uncertainty and compute it using raw 

daily returns from day −40 to −11, where day 0 is the earnings announcement day, or the ensuing 

day if the announcement is made on a non-trading day or after market-hours. We regress these raw 

daily returns on Fama-French (1993) three-factor model and take the standard deviation of the 

residuals as idiosyncratic volatility before the earnings announcement. We require at least 15 daily 

                                                            
16 In order to estimate the statistical significance for the difference in coefficient estimates on FracSat×RankCAR(0,1) between the 
low IO and high IO subsamples, we create a dummy variable that equals 0 for the low IO subsample, and equals 1 for the high IO 
subsample. We interact all variables with this dummy and conduct the analysis by adding these additional interaction terms to our 
main regression.  
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returns to compute this measure. Then, we sort our sample based on idiosyncratic volatility in each 

quarter: those with an idiosyncratic volatility below the 30th percentile ("Low IV") and those with 

an idiosyncratic volatility above the 70th percentile ("High IV"). We conduct the same panel 

regressions as specified in Equation 1 and Table 4 for both subsamples. Results are reported in 

Panel B of Table 9. 

We find that our previously documented results are stronger in the subsample with high 

idiosyncratic volatility. For example, when we use CAR(2,61) as the dependent variable, the 

coefficient estimates on the interaction of FracSat and RankCAR(0,1) are 0.003 (t-statistic = 1.35) 

and 0.010 (t-statistic = 2.87) for the low IV subsample and the high IV subsample, respectively. 

The difference between the two coefficient estimates is 0.007 (t-statistic = 1.99).17  Similar results 

are obtained when we replace CAR(2,61) with CAR(2,30) or CAR(2,45) as the dependent variable. 

This subsample analysis suggests that the effect of FracSat on the PEAD is stronger for firms 

under great uncertainty.  

 

4.3. FracSat and General Price Drift 

Although we have focused on post-earnings-announcement drift as the main test setting, our 

mechanism can be extended to explain price drifts more broadly. Specifically, a high positive stock 

return (e.g., due to positive news) with a high FracSat should be accompanied with a 

disproportionately higher subsequent return drift than a stock with the same level of high positive 

return, but a low FraSat. 

                                                            
17 In order to estimate the statistical significance for the difference in coefficient estimates on FracSat×RankCAR(0,1) between the 
low IV and high IV subsamples, we create a dummy variable which equals 0 for the low IV subsample, and equals 1 for the high 
IV subsample. We interact all variables with this dummy and conduct the analysis by adding these additional interaction terms to 
our main regression. 
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 To test this conjecture, FracSat is now measured as the fraction of analysts whose target 

price forecasts are exceed by the price at the end of month t. We focus on 12-month target price 

forecasts announced within the 90-day period prior to month t. Again, we include target price 

forecasts that are higher than the price at the time the forecast is announced. This requirement is 

based on the assumption that only optimistic investors hold a long position in a stock.18  

We construct the following trading strategy based on FracSat and short-term monthly 

returns. At the end of each month t, we select stocks with a positive return from the current month 

(Return(t) > 0) and assign them into quintiles based on Return(t). Among the stocks from the top 

Return(t) quintile, we long those with a FracSat above the 80th percentile and short those with a 

FracSat below the 80th percentile. The portfolios are equally-weighted and held for one, two or 

three months. We follow Jegadeesh and Titman (1993) to track the long-short portfolio 

performance. We report the value-weighted results in the Appendix Table A.4. 

[Table 10 Here] 

Table 10 reports performance statistics for the long-short portfolio returns. The economic 

significance of the target price effect is substantial. For the one-month holding period, the long-

short portfolio trading strategy earns abnormal returns of 0.65% per month in terms of Fama and 

French’s (1993) three-factor alpha (t-statistic = 2.52), and 0.44% per month in terms of Fama-

French-Carhart’s (1997) four-factor alpha (t-statistic = 1.96). When increasing the holding period 

to three months, the three-factor alpha is 0.77% per month (t-statistic = 3.56) and four-factor alpha 

is 0.58% per month (t-statistic = 3.31). 

 

5. Conclusion 

                                                            
18 This requirement is not crucial. We obtain similar results if we remove it.  
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We argue that investors have target prices in mind for the stocks that they own. Target prices serve 

as forward-looking anchors for investors, and once a stock’s trading price exceeds their target 

prices, investors are satisfied and more likely to sell the stock. This increased willingness to sell 

once the target price has been met and, correspondingly, the reluctance to sell a stock whose target 

price has not yet been met, can lead to a sluggish market reaction to news and generate a price drift 

after the announcement. 

Overall, the results presented in our paper are consistent with this conjecture. We find that 

among stocks with a positive earnings surprise, those with a high fraction of satisfied investors 

exhibit positive return drifts. In comparison, among stocks with a low fraction of satisfied investors, 

the price reacts fully and immediately. Moreover, we show that this phenomenon is stronger 

among stocks with low institutional ownership and high uncertainty. The effect can also be 

generalized to explain the general price drift following positive returns. 

Meanwhile, for a given level of positive news, we find that stocks with a high FracSat also 

experience higher abnormal trading volume and more sell-initiated trades (i.e., lower buy-sell 

imbalance) around the earnings announcement than stocks with a low FracSat. This further 

supports our conjecture that, for stocks with a high FracSat, the majority of the current investors 

are willing to sell. 

Our empirical results focus on positive news due to data limitation. However, our 

mechanism should also be able to explain the market underreaction following negative news. 

Therefore, investors’ target-price anchors may help explain the phenomenon that negative 

information diffuses only gradually across the investing public (e.g., Hong, Lim, and Stein, 2000).  
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Figure 1 

This figure illustrates the distribution of investors’ target prices. In Figure 1a, the black and gray curves depict the 
distribution of investor target prices for stocks A and B respectively. In Figure 1b, the shaded area represents the 
fraction of satisfied investors when the price becomes $11 for stock A. In Figure 1c, the shaded area represents the 
fraction of satisfied investors when the price becomes $11 for stock B. Figure 1d illustrates the scenario with negative 
price shocks. 
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Table 1 
Descriptive Statistics 

This table reports descriptive statistics of Cumulative Abnormal Returns around quarterly earnings announcements, 
FracSat and lagged firm characteristics, as well as the determinants of FracSat. The sample contains all quarterly 
earnings announcements in I/B/E/S from 1999 to 2015 that have a positive CAR(0,1), a price-per-share greater than 
$5 and data available to compute the FractSat measure. Daily abnormal return is computed as the raw daily return 
minus the daily value-weighted return on a portfolio of firms with similar size, book-to-market ratio and momentum. 
CAR(0,1) is the sum of daily abnormal returns from day 0 to day 1,  where day 0 is the earnings announcement day 
or the ensuing trading day if news is announced on a non-trading day or after market-hours. CAR(2,30), CAR(2,45), 
and CAR(2,61) are the sum of daily abnormal returns from day 2 to day 30, day 45, and day 61, respectively. FracSat 
is the fraction of analysts whose target price forecasts are exceeded by the stock price at the end of day 1; we focus 
on 12-month target price forecasts announced within 90 days prior to the earnings announcement. Capital Gain 
Overhang is the percentage deviation of the stock price at the end of day 1 from the aggregate purchase price of 
mutual funds (Frazzini 2006). Market Capitalization (in million $) is measured as of the most recent June. Book-to-
Market is the firm's book-to-market ratio, where book value is measured as of the fiscal year end in calendar year t-
1, and market value is measured as of December of calendar year t-1; the book-to-market ratio so computed is matched 
with earnings announcements from July of year t to June of year t+1.  Past Return(t−7, t−1) is the raw return over the 
six-month period ending one month prior to the month of the earnings announcement. Institutional Ownership is the 
fraction of total shares outstanding held by institutional investors as of the end of the quarter prior to the earnings 
announcement. Nearness to 52-week High is the ratio of closing price on day −11 to the highest closing price from 
the prior 52 weeks. Turnover is measured as the average of daily ratios of the number of shares traded to the total 
number of shares outstanding from day −40 to day −11. Amihud Ratio is the average of daily ratios of absolute stock 
return to its dollar volume from day −40 to day −11. SUE1 is the difference in earnings per share before extraordinary 
items between quarter t and quarter t−4, scaled by the price at quarter t. SUE2 is the standardized unexpected earnings, 
defined as the difference between the actual earnings per share and the median of analyst forecasts in the 90 days 
prior to the earnings announcement, scaled by price. Earnings Volatility is measured as the standard deviation of 
quarterly earnings surprises based on a seasonal random walk model over the preceding four years. Earnings 
Persistence is the first-order auto-regressive coefficient of quarterly earnings-per-share over the preceding four years. 
Reporting Lag is the number of days between the fiscal quarter-end date and the actual earnings announcement date. 
# of Analysts is the number of analysts reporting earnings-per-share forecasts for the corresponding earnings 
announcement. # of Announcements is the number of firms announcing earnings on the same earnings announcement 
day. Panel A reports summary statistics, and Panel B reports the correlation between FracSat and firm characteristics. 
In Panel C, we report the coefficient estimates from panel regressions of FracSat on firm characteristics. We include 
time and industry fixed effects with standard errors clustered by time (reported in parentheses). *, **, and *** denote 
significance at 10%, 5% and 1%, respectively. 

Panel A: Summary Statistics 

Variable N Mean St. Dev. P5 Q1 Median Q3 P95 

CAR(0,1) 52,071 0.056  0.054  0.003 0.017  0.039  0.076  0.169  

CAR(2,30) 52,071 0.011  0.113  −0.164 −0.045 0.010  0.066  0.194  

CAR(2,45) 52,071 0.013  0.145  −0.217 −0.057 0.013  0.085  0.246  

CAR(2,61) 52,071 0.016  0.171  −0.261 −0.068 0.015  0.100  0.290  
FracSat 52,071 0.178  0.303  0.000 0.000  0.000  0.278  1.000  
Capital Gain Overhang 52,071 0.012  0.415  −0.701 −0.057 0.061  0.241  0.455  
Market Capitalization 52,071 6582  16631 130  470  1378  4576  29948 
Book-to-Market 52,071 0.556  0.439  0.099 0.268  0.457  0.726  1.319  
Past Return(t−7,t−1) 52,071 0.101  0.384  −0.377 −0.096 0.061  0.233  0.681  
Institutional Ownership 52,071 0.669  0.212  0.248 0.544  0.710  0.832  0.947  
Nearness to 52-week High 52,071 0.811  0.187  0.426 0.714  0.864  0.953  1.000  

(Continued)
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CAR 
(0,1) 

Capital 
Gain 

Overhang 

Market 
Cap 

Book-to-
Market

Past 
Return

Institutional 
Ownership

Nearness 
to 52-week 

High
IV SUE1 SUE2

FracSat 0.21 0.09 -0.05 0.05 0.08 0.02 0.17 -0.04 0.02 0.09 

Panel C: Determinants of FracSat 

 Variable (1) (2) 

Capital Gain Overhang -0.037*** -0.044*** 

 (0.009) (0.009) 

Nearness to 52-week High 0.334*** 0.380*** 

 (0.019) (0.022) 

Analyst Dispersion  0.153*** 

  (0.032) 

Ln(Market Capitalization)  -0.011*** 

  (0.001) 

Ln(Book-to-Market)  -0.009*** 

  (0.002) 

Past Return(t−7,t−1)  0.027*** 

  (0.008) 

Institutional Ownership  -0.010 

  (0.009) 

Idiosyncratic Volatility  1.718*** 

  (0.220) 

   

Observations 52,071 52,071 

R2 0.114 0.123 

 
  

Table 1 -- Continued         

Panel A: Summary Statistics 

Variable N Mean St. Dev. P5 Q1 Median Q3 P95 

Turnover 52,071 0.008  0.007  0.001 0.004  0.007  0.011  0.022  
Amihud Ratio 52,071 0.032  0.183  0.000 0.000  0.002  0.008  0.101  
SUE1 52,071 0.002 0.089 −0.028 −0.002 0.002 0.006 0.031 
SUE2 52,071 0.002 0.005 −0.003 0.000 0.001 0.003 0.009 
Earnings Volatility 52,071 0.031  0.096  0.001 0.003  0.008  0.022  0.124  
Earnings Persistence 52,071 0.288  0.371  −0.254 0.003  0.252  0.570  0.921  
Reporting Lag 52,071 30  10  16  22  28  35  50  
# of Analysts 52,071 7  6  1  3  6  10  20  
# of Announcements 52,071 226  131  31  125  220  305  460  

Panel B: Correlation 



43 
 

Table 2 
Informativeness of Analyst Target Prices: Fama-MacBeth Regressions 

 

This table reports the time-series mean of coefficient estimates from quarterly cross-sectional regressions of 
Cumulative Abnormal Returns around analyst Target Price Revision, Earnings Forecast Revision and 
Recommendation Revision. The sample contains all analyst target price revisions with a price-per-share greater than 
$5 from 1999 through 2015. CAR(0,1) is the sum of daily abnormal returns from the target price revision day to the 
ensuing trading day, where daily abnormal return is the daily raw return minus the daily value-weighted return on a 
portfolio of firms with similar size, book-to-market ratio and past performance. Target Price Revision is the percentage 
change in the analyst-target-price forecasts. Earnings Forecast Revision is the percentage change in the analyst annual 
earnings-per-share forecast. Recommendation Revision is the change in the analyst recommendation levels. 
Recommendation Upgrade is an indicator variable that equals one when the recommendation revision is an upgrade 
and zero otherwise. Recommendation Downgrade is an indicator variable that equals one when the recommendation 
revision is a downgrade and zero otherwise. T-statistics are computed using Newey-West (1987) standard errors and 
are reported in parentheses. *, **, and *** denote significance at 10%, 5% and 1%, respectively. 
 

 

 
(1) 

 

CAR(0,1) 

(2) 
 

CAR(0,1) 

(3) 
 

CAR(0,1) 

   

Target Price Revision   0.110*** 
(0.010)

0.088*** 
(0.009)

0.086*** 
(0.009)

Earnings Forecast Revision   0.003** 
(0.001)

0.003** 
(0.001)

Recommendation Revision 
  

0.009*** 
(0.001)

 

Recommendation Upgrade 
   

0.011*** 
(0.002)

Recommendation Downgrade 
   

-0.016*** 
(-0.002)

     
Average Adj. R2  0.146 0.173 0.175 
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Table 3 
FracSat and the Post Earnings Announcement Drift 

This table reports the time-series mean of CAR(2,30), CAR(2,45) , and CAR(2,61) for portfolios based on CAR(0,1) 
and FracSat. The final sample contains all quarterly earnings announcements in I/B/E/S from 1999 to 2015 that have 
a positive CAR(0,1), a price-per-share greater than $5 and data available to compute the FracSat measure. Daily 
abnormal return is computed as the raw daily return minus the daily value-weighted return on a portfolio of firms with 
similar size, book-to-market ratio and momentum. CAR(0,1) is the sum of daily abnormal returns from day 0 to day 
1,  where day 0 is the earnings announcement day or the ensuing trading day if news is announced on a non-trading 
day or after market-hours. CAR(2,30), CAR(2,45), and CAR(2,61) are the sum of daily abnormal returns from day 2 
to day 30, day 45, and day 61, respectively. FracSat is the fraction of analysts whose target price forecasts are exceeded 
by the stock price at the end of day 1; we focus on 12-month target price forecasts announced within 90 days prior to 
the earnings announcement. In each calendar quarter, we first assign stocks with a positive earnings surprise into five 
groups based on CAR(0,1) quintiles. Within each group, we divide stocks into two parts: those with a FracSat above 
the 80th percentile (“High Fraction Satisfied”) and those with a FracSat below the 80th percentile (“Low Fraction 
Satisfied”). Then, we compute the equally-weighted CAR(2,30) (Panel A), CAR(2,45) (Panel B), and CAR(2,61) 
(Panel C) for these ten portfolios sorted by CAR(0,1) and FracSat, as well as the difference between top- and bottom-
quintile-CAR(0,1) portfolios. T-statistics are computed using Newey-West (1987) standard errors and are reported in 
parentheses. 

 

Panel A.  CAR(2,30)   Panel B. CAR(2,45) 

CAR 
(0,1) 

Low 
FracSat 

High  
FracSat 

 H−L t-stat 
CAR
(0,1)

Low 
FracSat

High  
FracSat

 H−L t-stat 

P1 0.22% −0.30%  −0.52% (−1.72) P1 0.12% −0.11%  −0.23% (−0.48)

P2 0.33% 0.24%  −0.09% (−0.27) P2 0.28% 0.24%  −0.04% (−0.09)

P3 0.69% 0.33%  −0.36% (−1.31) P3 0.57% 0.50%  −0.07% (−0.17)

P4 0.28% 0.70%  0.42% (1.43) P4 0.32% 1.03%  0.71% (1.41) 

P5 0.76% 1.44%  0.68% (1.80) P5 0.39% 1.73%  1.34% (2.21) 

            

H−L 0.54% 1.75%  1.21% (3.40) H−L 0.28% 1.84%  1.56% (2.39) 

 (1.88) (4.50)     (0.65) (3.42)    
 

Panel C. CAR (2,61) 

CAR 
(0,1) 

Low 
FracSat

High  
FracSat

H−L t-stat 

P1 0.12% 0.10% −0.02% (−0.02)

P2 0.34% 0.41% 0.07% (0.13)

P3 0.54% 0.51% −0.03% (−0.07)

P4 0.17% 0.98% 0.81% (1.29)

P5 0.62% 2.30% 1.68% (2.42)

     

H−L 0.50% 2.20% 1.70% (2.11)

 (1.12) (3.25)   
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Table 4 
FracSat and the Post-Earnings-Announcement Drift: Panel Regressions 

This table reports the coefficient estimates from panel regressions of CAR(2,30), CAR(2,45), and CAR(2,61) on 
FracSat, CAR(0,1), and the interaction between FracSat and CAR(0,1), respectively. The final sample contains all 
quarterly earnings announcements in I/B/E/S from 1999 to 2015 that have a positive CAR(0,1), a price-per-share 
greater than $5 and data available to compute the FracSat measure. Daily abnormal return is computed as the raw 
daily return minus the daily value-weighted return on a portfolio of firms with similar size, book-to-market ratio and 
momentum. CAR(0,1) is the sum of daily abnormal returns from day 0 to day 1,  where day 0 is the earnings 
announcement day or the ensuing trading day if news is announced on a non-trading day or after market-hours. 
CAR(2,30), CAR(2,45), and CAR(2,61) are the sum of daily abnormal returns from day 2 to day 30, day 45, and day 
61, respectively. In each calendar quarter t, we assign stocks into quintile portfolios based on CAR(0,1). RankCAR(0,1) 
equals one for stocks from the bottom CAR(0,1) quintile, and five for stocks from the top CAR(0,1) quintile. FracSat 
is the fraction of analysts whose target price forecasts are exceeded by the stock price at the end of day 1; we focus 
on 12-month target price forecasts announced within 90 days prior to the earnings announcement. All control variables 
are as described in Table 1. We also control for all the interactions between control variables and RankCAR(0,1). We 
include time and industry fixed effects with standard errors clustered by time (reported in parentheses). *, **, and *** 
denote significance at 10%, 5% and 1%, respectively. 
 

 (1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

RankCAR(0,1) 0.002 0.002 0.004 
 (0.005) (0.007) (0.009) 

FracSat × RankCAR(0,1) 0.003** 0.004*** 0.006*** 
 (0.001) (0.001) (0.002) 

FracSat -0.009** -0.011** -0.015** 
 (0.004) (0.005) (0.007) 

Capital Gain Overhang -0.009 -0.007 -0.002 
 (0.007) (0.009) (0.012) 

Ln(Market Capitalization) 0.001 0.001 0.002 
 (0.001) (0.001) (0.002) 

Ln(Book-to-Market) -0.001 -0.002 -0.002 
 (0.002) (0.002) (0.003) 

Past Return(t−7,t−1) 0.007 0.011 0.012 
 (0.007) (0.008) (0.010) 

Institutional Ownership 0.000 0.011 0.014 
 (0.007) (0.008) (0.010) 

Nearness to 52-week High -0.013 -0.013 -0.033 
 (0.017) (0.022) (0.027) 

Turnover -0.145 -0.452 -0.412 
 (0.287) (0.360) (0.396) 

Amihud Ratio -0.019* -0.020 -0.005 
 (0.010) (0.014) (0.020) 

   (Continued)
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Table 4 -- Continued    

 (1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

SUE 0.654* 1.428*** 1.726*** 
 (0.368) (0.463) (0.575) 

Earnings Volatility -0.013 -0.009 -0.031 
 (0.022) (0.028) (0.035) 

Earnings Persistence 0.004 0.008** 0.012*** 
 (0.003) (0.004) (0.004) 

Reporting Lag 0.000 0.000 0.000* 
 (0.000) (0.000) (0.000) 

Ln(1+ # of Analysts) -0.001 -0.004 -0.006 
 (0.002) (0.003) (0.004) 

# of Announcements -0.000 -0.000 -0.000 
 (0.000) (0.000) (0.000) 

Friday 0.004 0.007 0.007 
 (0.004) (0.005) (0.006) 
   

Intact with RankCAR(0,1) Yes Yes Yes 

    

Observations 52,071 52,071 52,071 

R2 0.017 0.016 0.016 
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Table 5 
Alternative Proxies of FracSat and the Post-Earnings-Announcement Drift 

This table reports the correlation coefficients between alternative measures of FracSat and firm characteristics in 
Panel A and the coefficient estimates from panel regressions of CAR(2,30), CAR(2,45), and CAR(2,61) on an 
alternative proxy for FracSat, CAR(0,1), and the interaction between FracSat and CAR(0,1), respectively in Panel B. 
FracSat1 is the fraction of analysts whose target price forecasts are exceeded by the stock price one week before the 
earnings announcement; we focus on 12-month target price forecasts announced within 90 days prior to the earnings 
announcement. FracSat2 is defined as the difference between the stock price at the end of day 1 and the minimum 
target price, over the difference between the maximum and the minimum target price. If only one target price is 
available, this proxy is set to 1 if the stock price at day 1 exceeds the target price, and zero otherwise. If the stock price 
at the end of day 1 is below the minimum target price, this variable is set to zero. FracSat3 is a dummy variable that 
equals one if the stock price at the end of day 1 exceeds the mean target price, and zero otherwise.  FracSat4 is a 
dummy variable that equals one if the stock price at the end of day 1 exceeds the median target price, and zero 
otherwise. The final sample contains all quarterly earnings announcements in I/B/E/S from 1999 to 2015 that have a 
positive CAR(0,1), a price-per-share greater than $5, and data available to compute the FracSat measure. Daily 
abnormal return is computed as the raw daily return minus the daily value-weighted return on a portfolio of firms with 
similar size and similar book-to-market ratio. CAR(0,1) is the sum of daily abnormal returns from day 0 to day 1,  
where day 0 is the earnings announcement day or the ensuing trading day if news is announced on a non-trading day 
or after market-hours. CAR(2,30), CAR(2,45), and CAR(2,61) are the sum of daily abnormal returns from day 2 to day 
30, day 45, and day 61, respectively. In each calendar quarter t, we assign stocks into quintile portfolios based on 
CAR(0,1). RankCAR(0,1) equals one for stocks from the bottom CAR(0,1) quintile, and five for stocks from the top 
CAR(0,1) quintile. All control variables are the same as in Table 4 and are as described in Table 1. We also control 
for all the interactions between control variables and RankCAR(0,1). We include time and industry fixed effects with 
standard errors clustered by time (reported in parentheses). *, **, and *** denote significance at 10%, 5% and 1%, 
respectively. 

Panel A. Correlation 

  FracSat1 FracSat2 FracSat3 FracSat4 

CAR(0,1) −0.01 0.19 0.23 0.23 

Panel B1. FracSat1: One Week Before the Earnings Announcement 

 (1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

RankCAR(0,1) 0.007 0.009 0.017** 
 (0.005) (0.006) (0.007) 

FracSat1 × RankCAR(0,1) 0.003** 0.004* 0.006** 
 (0.002) (0.002) (0.003) 

FracSat1 -0.015*** -0.018*** -0.024*** 
 (0.005) (0.007) (0.008) 
   

Controls Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes 

Observations 52,071 52,071 52,071 

R2 0.017 0.016 0.015 

(Continued) 
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Table 5 --Continued 

Panel B2. FracSat2: (Prc-Min[TP])/(Max[TP]-Min[TP]) 

 (1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

RankCAR(0,1) 0.002 0.002 0.005 
 (0.005) (0.007) (0.009) 

FracSat2 × RankCAR(0,1) 0.002** 0.002* 0.003** 
 (0.001) (0.001) (0.001) 

FracSat2 -0.007** -0.006 -0.009* 
 (0.003) (0.004) (0.005) 

Controls Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes 

Observations 52,071 52,071 52,071 

R2 0.017 0.016 0.015 

Panel B3. FracSat3: I(Prc ≥ Mean[TP]) 

 
(1) 

CAR(2,30)

(2) 

CAR(2,45)

(3) 

CAR(2,61) 
RankCAR(0,1) 0.001 0.001 0.004 

 (0.005) (0.007) (0.009) 
FracSat3 × RankCAR(0,1) 0.003*** 0.004*** 0.006*** 

 (0.001) (0.001) (0.002) 
FracSat3 -0.010*** -0.015*** -0.019*** 

 (0.004) (0.005) (0.006) 
Controls Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes 
Observations 52,071 52,071 52,071 

R2 0.017 0.016 0.016 

Panel B4. FracSat4: I(Prc ≥ Median[TP]) 

 
(1) 

CAR(2,30)

(2) 

CAR(2,45)

(3) 

CAR(2,61) 
RankCAR(0,1) 0.001 0.002 0.005 

 (0.005) (0.007) (0.009) 
FracSat4 × RankCAR(0,1) 0.002** 0.004*** 0.006*** 

 (0.001) (0.001) (0.001) 
FracSat4 -0.007** -0.012*** -0.016*** 

 (0.004) (0.005) (0.006) 
Controls Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes 
Observations 52,071 52,071 52,071 

R2 0.017 0.016 0.016 
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Table 6 
Alternative Proxies for Earning Surprise: Seasonal Earnings Growth and Analyst Consensus 

This table reports correlation coefficients between alternative measures of earnings surprise and firm characteristics 
in Panel A and the coefficient estimates from panel regressions of CAR(2,30), CAR(2,45), and CAR(2,61) on FracSat, 
SUE measures, and the interaction between FracSat and SUE measures, respectively in Panel B. SUE1 is defined from 
a seasonal random walk model, i.e., the difference between earnings per share before extraordinary items in quarter t 
and t−4, scaled by the price at quarter t. SUE2 is defined as the difference between the actual earnings per share and 
the median of analyst forecasts reported to I/B/E/S in the 90 days prior to the earnings announcement, scaled by price. 
Following the previous analysis, the final sample contains all quarterly earnings announcements in I/B/E/S from 1999 
to 2015 that have a positive SUE, a price-per-share greater than $5, and data available to compute the FracSat measure. 
In each calendar quarter t, we assign stocks into quintile portfolios based on SUE. RankSUE equals one for stocks 
from the bottom SUE quintile, and five for stocks from the top SUE quintile. Daily abnormal return is computed as 
the raw daily return minus the daily value-weighted return on a portfolio of firms with similar size and similar book-
to-market ratio. CAR(2,30), CAR(2,45), and CAR(2,61) are the sum of daily abnormal returns from day 2 to day 30, 
day 45, and day 61, respectively, where day 0 is the earnings announcement day or the ensuing trading day if news is 
announced on a non-trading day or after market-hours. FracSat is the fraction of analysts whose target price forecasts 
are exceeded by the stock price at the end of day 1; we focus on 12-month target price forecasts announced within 90 
days prior to the earnings announcement. We include CAR(0,1) and all control variables applied in Table 4 in the 
regressions. We also control for all the interactions between control variables and RankCAR(0,1). We include time 
and industry fixed effects with standard errors clustered by time (reported in parentheses). *, **, and *** denote 
significance at 10%, 5% and 1%, respectively. 

Panel A. Correlation 

 SUE1 SUE2 

FracSat 0.02 0.09 

Panel B1. SUE1- Seasonal Earnings Growth 

 (1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

RankSUE1 0.004 0.007 0.003 
 (0.005) (0.006) (0.008) 

FracSat × RankSUE1 0.004*** 0.004** 0.005*** 
 (0.001) (0.002) (0.002) 

FracSat -0.005 -0.001 -0.003 
 (0.004) (0.005) (0.005) 
   

Controls Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes 

    

Observations 60,630 60,630 60,630 

R2 0.018 0.019 0.017 

(Continued)
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Table 6 --Continued 

Panel B2. SUE2 - Analyst Consensus 

 
(1) 

CAR(2,30)

(2) 

CAR(2,45)

(3) 

CAR(2,61) 
RankSUE2 0.013*** 0.011* 0.016** 

 (0.004) (0.006) (0.007) 
FracSat × RankSUE2 0.003** 0.003** 0.003* 

 (0.001) (0.001) (0.002) 
FracSat -0.006 -0.005 -0.004 

 (0.005) (0.006) (0.006) 
 0.013*** 0.011* 0.016** 
   

Controls Yes Yes Yes 
Intact with RankCAR(0,1) Yes Yes Yes 

   
Observations 63,133 63,133 63,133 

R2 0.015 0.015 0.013 
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Table 7 
FracSat and Trading 

 

This table reports the coefficient estimates from panel regressions of Abn_Vol, Abn_DVol, BSI, and DBSI on FracSat, 
CAR(0,1), and the interaction between FracSat and CAR(0,1), respectively. Abn_Vol is abnormal trading volume, 
defined as the average trading volume from day 0 and day 1 over the average trading volume from day −40 to day 
−11; Abn_DVol is abnormal dollar trading volume, defined as the average dollar trading volume from day 0 and day 
1 over the average dollar trading volume from day −40 to day −11, where day 0 is the earnings announcement day or 
the ensuing trading day if earnings are announced on a non-trading day. BSI is buy-sell imbalance, defined as the 
difference between buy-initiated trading volume and sell-initiated trading volume over the sum of these two. Buy-
initiated and sell-initiated trades are identified using Lee and Ready (1991)’s algorithm and are summed from day 0 
to day 1, respectively. DBSI is dollar value buy-sell imbalance, which is defined similar to BSI by replacing buy-
initiated and sell-initiated trading volume with buy-initiated and sell-initiated dollar trading volume. The final sample 
contains all quarterly earnings announcements in I/B/E/S from 1999 to 2015 that have a positive CAR(0,1), a price-
per-share greater than $5, data available to compute the FracSat measure, and data available to compute the dependent 
variables from TAQ. In each calendar quarter t, we assign stocks into quintile portfolios based on CAR(0,1). 
RankCAR(0,1) equals one for stocks from the bottom CAR(0,1) quintile, and five for stocks from the top CAR(0,1) 
quintile. FracSat is the fraction of analysts whose target price forecasts are exceeded by the stock price at the end of 
day 1; we focus on 12-month target price forecasts announced within 90 days prior to the earnings announcement. All 
control variables are the same as in Table 4 and are as described in Table 1. We also control for all the interactions 
between control variables and RankCAR(0,1). We include time and industry fixed effects with standard errors clustered 
by time (reported in parentheses). *, **, and *** denote significance at 10%, 5% and 1%, respectively. 
 

 (1) 

Abn_Vol 

(2) 

Abn_DVol 

(3) 

BSI 

(4) 

DBSI 

RankCAR(0,1) 1.012*** 1.808** 0.034*** 0.034***
 (0.339) (0.814) (0.010) (0.010)

FracSat × RankCAR(0,1) 0.883*** 1.368*** -0.007** -0.007**
 (0.312) (0.410) (0.003) (0.003)

FracSat -1.980** -2.778*** 0.020* 0.020*
 (0.874) (1.041) (0.011) (0.011)

     

Controls Yes Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes Yes 

     

Observations 47,363 47,363 43,045 43,045 

R2 0.018 0.017 0.103 0.101 
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Table 8 
Trading Strategy Based on FracSat and CAR(0,1) 

This table reports the three-factor and four-factor adjusted returns for a trading strategy based on CAR(0,1) and 
FracSat. The final sample contains all quarterly earnings announcements in I/B/E/S from 1999 to 2015 that have a 
positive CAR(0,1), a price-per-share greater than $5, and data available to compute the FracSat measure. At the end 
of each calendar month t, we select stocks in our sample that have made earnings announcements in the past two 
months (i.e., month t−1 and month t) and a price no less than $5 at the end of month t. We then sort these stocks into 
five groups based on CAR(0,1) quintiles. Within each of the five groups, stocks are further divided into two parts: 
those with a FracSat above the 80th percentile (“High Fraction Satisfied”) and those with a FracSat below the 80th 
percentile (“Low Fraction Satisfied”). We require that each of the ten portfolios should consist of at least five stocks. 
We hold these ten portfolios for one month and compute their equal-weighted return patterns in month t+1. We report 
Fama-French (1993) three-factor adjusted returns in Panel A, and Fama-French-Carhart four-factor adjusted returns 
in Panel B. Daily abnormal return is computed as the raw daily return minus the daily value-weighted return on a 
portfolio of firms with similar size, book-to-market ratio and momentum. CAR(0,1) is the sum of daily abnormal 
returns from day 0 to day 1,  where day 0 is the earnings announcement day or the ensuing trading day if news is 
announced on a non-trading day or after market-hours. FracSat is the fraction of analysts whose target price forecasts 
are exceeded by the stock price at the end of day 1; we focus on 12-month target price forecasts announced within 90 
days prior to the earnings announcement. Newey-West (1987) adjusted standard errors are reported in parentheses. 
 

Panel A: Three-factor Adjusted Returns  Panel B: Four-factor Adjusted Returns 

CAR 
(0,1) 

Low 
FracSat 

High  
FracSat 

H−L 
CAR
(0,1)

Low 
FracSat 

High  
FracSat 

H−L 

P1 0.00% 0.10%  P1 0.09% −0.03%  

P2 0.03% 0.24%  P2 0.08% 0.13%  

P3 −0.03% 0.27%  P3 −0.01% 0.14%  

P4 −0.20% 0.20%  P4 −0.14% 0.06%  

P5 −0.27% 0.77%  P5 −0.17% 0.72%  

        

H−L −0.27% 0.68% 0.95% H−L −0.26% 0.76% 1.01% 

 (−1.28)  (2.01)  (2.56)  (−1.22)  (2.22)  (2.72)  
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Table 9 
Subsample Analysis on Institutional Ownership and Idiosyncratic Volatility 

This table reports the coefficient estimates from panel regressions of CAR(2,30), CAR(2,45), and CAR(2,61) on 
FracSat, CAR(0,1), and the interaction between FracSat and CAR(0,1), respectively, for institutional ownership 
subsamples and for idiosyncratic volatility subsamples. In each calendar quarter, we sort our sample based on 
institutional ownership (idiosyncratic volatility): those with an institutional ownership (idiosyncratic volatility) below 
the 30th percentile and those with an institutional ownership (idiosyncratic volatility) above the 70th percentile . The 
final sample contains all quarterly earnings announcements in I/B/E/S from 1999 to 2015 that have a positive CAR(0,1), 
a price-per-share greater than $5, and data available to compute the FracSat measure. Daily abnormal return is 
computed as the raw daily return minus the daily value-weighted return on a portfolio of firms with similar size, book-
to-market ratio and momentum. CAR(0,1) is the sum of daily abnormal returns from day 0 to day 1,  where day 0 is 
the earnings announcement day or the ensuing trading day if news is announced on a non-trading day or after market-
hours. CAR(2,30), CAR(2,45), and CAR(2,61) are the sum of daily abnormal returns from day 2 to day 30, day 45, and 
day 61, respectively. FracSat is the fraction of analysts whose target price forecasts are exceeded by the stock price 
at the end of day 1; we focus on 12-month target price forecasts announced within 90 days prior to the earnings 
announcement. We assign stocks into quintile portfolios based on CAR(0,1) independently. RankCAR(0,1) equals one 
for stocks from the bottom CAR(0,1) quintile, and five for stocks from the top CAR(0,1) quintile. All control variables 
are the same as in Table 4 and are as described in Table 1. We also control for all the interactions between control 
variables and RankCAR(0,1). We include time and industry fixed effects with standard errors clustered by time 
(reported in parentheses). *, **, and *** denote significance at 10%, 5% and 1%, respectively. 
 

Panel A. IO Subamples 

 CAR(2,30) CAR(2,45) CAR(2,61) 

 Low IO High IO Low IO High IO Low IO High IO

 (1) (2) (3) (4) (5) (6) 

RankCAR(0,1) 0.011 -0.000 -0.001 -0.010 -0.000 -0.001
 (0.008) (0.012) (0.012) (0.016) (0.014) (0.020)

FracSat × RankCAR(0,1) 0.005*** 0.002 0.009*** 0.003 0.010*** 0.005
 (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

FracSat -0.014** -0.008 -0.022*** -0.008 -0.024*** -0.009
 (0.006) (0.007) (0.007) (0.009) (0.009) (0.012)

       

Controls Yes Yes Yes Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes Yes Yes Yes 

       

Observations 17,335 17,357 17,335 17,357 17,335 17,357 

R2 0.031 0.031 0.033 0.029 0.034 0.026 
(Continued) 
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Table 9 --Continued 

Panel B. IV Subsamples  

 CAR(2,30) CAR(2,45) CAR(2,61) 

 Low IV High IV Low IV High IV Low IV High IV

 (1) (2) (3) (4) (5) (6) 

RankCAR(0,1) -0.006 0.006 -0.010 -0.004 -0.018 0.002
 (0.008) (0.011) (0.010) (0.014) (0.013) (0.017)

FracSat × RankCAR(0,1) 0.003** 0.006** 0.002 0.008** 0.003 0.010***
 (0.001) (0.002) (0.002) (0.003) (0.002) (0.004)

FracSat -0.013*** -0.021** -0.013** -0.024* -0.016** -0.027*
 (0.004) (0.010) (0.005) (0.013) (0.006) (0.015)

       

Controls Yes Yes Yes Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes Yes Yes Yes 
       

Observations 17,335 17,357 17,335 17,357 17,335 17,357 

R2 0.076 0.028 0.086 0.028 0.072 0.030 
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Table 10 
Trading Strategy Based on FracSat and Short-Term Return 

This table reports performance statistics for trading strategies based on FracSat. The sample contains common stocks 
from 1999 to 2015 that have a positive Return(t), price-per-share greater than $5 and data available to compute the 
FracSat measure. FracSat is the fraction of analysts whose target price forecasts are exceeded by the stock price at 
the end of month t; we focus on 12-month target price forecasts announced within 90 days prior to the earnings 
announcement. At the end of each month, we assign stocks into quintiles based on the return of that month, Return(t). 
We then focus on stocks from the top Return(t) quintile. Among the stocks from the top Return(t) quintile, we long 
those with a FracSat above the 80th percentile and short those with a FracSat below the 80th percentile. The portfolios 
are equally-weighted and held for one, two or three months. We report performance statistics of the long-short 
portfolio returns. T-statistics are computed using Newey-West (1987) standard errors and are reported in parentheses.  
 

 1 month 2 months 3 months 

Raw Return 0.63% (2.30) 0.74% (3.12) 0.71% (3.08) 

Three-Factor Alpha 0.65% (2.52) 0.79% (3.54) 0.77% (3.56) 

Four-Factor Alpha 0.44% (1.96) 0.58% (3.23) 0.58% (3.31) 
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Table A.1 
Robustness Check: Fama-French size and book-to-market portfolio adjusted CAR 

This table reports the coefficient estimates from panel regressions of CAR(2,30), CAR(2,45), and CAR(2,61) on 
FracSat, CAR(0,1), and the interaction between FracSat and CAR(0,1), respectively, based on Fama-French 
size/book-to-market portfolio adjusted Cumulative Abnormal Returns around quarterly earnings announcements. The 
final sample contains all quarterly earnings announcements in I/B/E/S from 1999 to 2015 that have a positive CAR(0,1), 
a price-per-share greater than $5, and data available to compute the FracSat measure. Daily abnormal return is 
computed as the raw daily return minus the daily value-weighted return on a portfolio of firms with similar size and 
similar book-to-market ratio. CAR(0,1) is the sum of daily abnormal returns from day 0 to day 1,  where day 0 is the 
earnings announcement day or the ensuing trading day if news is announced on a non-trading day or after market-
hours. CAR(2,30), CAR(2,45), and CAR(2,61) are the sum of daily abnormal returns from day 2 to day 30, day 45, and 
day 61, respectively. FracSat is the fraction of analysts whose target price forecasts are exceeded by the stock price 
at the end of day 1; we focus on 12-month target price forecasts announced within 90 days prior to the earnings 
announcement. In each calendar quarter t, we assign stocks into quintile portfolios based on CAR(0,1). RankCAR(0,1) 
equals one for stocks from the bottom CAR(0,1) quintile, and five for stocks from the top CAR(0,1) quintile. All control 
variables are the same as in Table 4 and are as described in Table 1. We also control for all the interactions between 
control variables and RankCAR(0,1). We include time and industry fixed effects with standard errors clustered by time 
(reported in parentheses). *, **, and *** denote significance at 10%, 5% and 1%, respectively.  

 

 (1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

RankCAR(0,1) −0.000 −0.000 −0.001 
 (0.001) (0.001) (0.001) 

FracSat × RankCAR(0,1) 0.004*** 0.006*** 0.008*** 
 (0.001) (0.002) (0.002) 

FracSat −0.012*** −0.017*** −0.022*** 
 (0.004) (0.006) (0.007) 
   

Controls Yes Yes Yes 

Intact with RankCAR(0,1) Yes Yes Yes 

    

Observations 52,590 52,590 52,590 

R2 0.017 0.019 0.020 
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Table A.2 
FracSat and Small Trades 

This table reports the coefficient estimates from panel regressions of small trade BSI and DBSI on FracSat, 
respectively. The final sample contains all quarterly earnings announcements in I/B/E/S in 1999 and 2000 that have a 
positive CAR(0,1), a price-per-share greater than $5, data available to compute the FracSat measure, and data available 
to compute the dependent variables from TAQ. We use small trades to compute BSI, and DBSI. As suggested by Lee 
and Radhakrishna (2000), trades with dollar size less than 5,000 USD (small trades) are used as a proxy for individual 
investor trades. Following Barber, Odean and Zhu (2009), trade size is based on 1991 real dollars and adjusted using 
the Consumer Price Index. BSI is small buy-sell imbalance, defined as the difference between small buy-initiated 
trading volume and small sell-initiated trading volume over the sum of these two. Buy-initiated and sell-initiated trades 
are identified using Lee and Ready (1991)’s algorithm and are summed from day 0 to day 1 respectively, where day 
0 is the earnings announcement day or the ensuing trading day if earnings are announced on a non-trading day. DBSI 
is dollar value small buy-sell imbalance, which is defined similar to BSI by replacing small buy-initiated and small 
sell-initiated trading volume with small buy-initiated and small sell-initiated dollar trading volume. FracSat is the 
fraction of analysts whose target price forecasts are exceeded by the stock price at the end of day 1; we focus on 12-
month target price forecasts announced within 90 days prior to the earnings announcement. In each calendar quarter 
t, we assign stocks into quintile portfolios based on CAR(0,1). RankCAR(0,1) equals one for stocks from the bottom 
CAR(0,1) quintile, and five for stocks from the top CAR(0,1) quintile. All control variables are the same as in Table 4 
and are as described in Table 1. We include time and industry fixed effects with standard errors clustered by time 
(reported in parentheses). *, **, and *** denote significance at 10%, 5% and 1%, respectively. 
 

 (1) 

BSI 

(2) 

DBSI 

RankCAR(0,1) 0.049*** 0.049*** 
 (0.003) (0.003) 

FracSat × RankCAR(0,1) −0.019* −0.020* 
 (0.011) (0.011) 

FracSat 0.061 0.062 
 (0.044) (0.044) 

   

Controls Yes Yes 

   

Observations 3,858 3,858 

R2 0.079 0.078 
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Table A.3 
Trading Strategy Based on FracSat and CAR(0,1): Value-weighted 

This table reports the three-factor and four-factor adjusted value-weighted returns for a trading strategy based on 
CAR(0,1) and FracSat. The final sample contains all quarterly earnings announcements in I/B/E/S from 1999 to 2015 
that have a positive CAR(0,1), a price-per-share greater than $5, and data available to compute the FracSat measure. 
Daily abnormal return is computed as the raw daily return minus the daily value-weighted return on a portfolio of 
firms with similar size, book-to-market ratio and momentum. CAR(0,1) is the sum of daily abnormal returns from day 
0 to day 1,  where day 0 is the earnings announcement day or the ensuing trading day if news is announced on a non-
trading day or after market-hours. FracSat is the fraction of analysts whose target price forecasts are exceeded by the 
stock price at the end of day 1; we focus on 12-month target price forecasts announced within 90 days prior to the 
earnings announcement. At the end of each calendar month t, we select stocks in our sample that have made earnings 
announcements in the past two months (i.e., month t−1 and month t) and a price no less than $5 at the end of month t. 
We then sort these stocks into five groups based on CAR(0,1) quintiles. Within each of the five groups, stocks are 
further divided into two parts: those with a FracSat above the 80th percentile (“High Fraction Satisfied”) and those 
with a FracSat below the 80th percentile (“Low Fraction Satisfied”). We require that each of the ten portfolios should 
consist of at least five stocks. We hold these ten portfolios for one month and compute their value-weighted return 
patterns in month t+1. We report Fama-French (1993) three-factor adjusted returns in Panel A, and Fama-French-
Carhart four-factor adjusted returns in Panel B. Newey-West (1987) adjusted standard errors are reported in 
parentheses. 
 

Panel A: Three-factor Adjusted Returns  Panel B: Four-factor Adjusted Returns 

CAR 
(0,1) 

Low 
FracSat 

High  
FracSat 

H−L 
CAR
(0,1)

Low 
FracSat 

High  
FracSat 

H−L 

P1 0.00% 0.14%  P1 0.03% −0.01%  

P2 0.04% 0.26%  P2 0.06% 0.15%  

P3 −0.04% 0.21%  P3 −0.03% 0.08%  

P4 −0.19% 0.14%  P4 −0.15% 0.03%  

P5 −0.08% 0.79%  P5 0.01% 0.72%  

        

H−L −0.08% 0.65% 0.73% H−L −0.03% 0.74% 0.76% 

 (−0.38) (1.88) (1.92)  (−0.13) (2.13) (2.00) 
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Table A.4 
Trading Strategy Based on FracSat and Short-Term Return: Value-weighted 

This table reports performance statistics for value-weighted trading strategies based on FracSat. The sample contains 
common stocks from 1999 to 2015 that have a positive Return(t), a price-per-share greater than $5, and data available 
to compute the FracSat measure. FracSat is the fraction of analysts whose target price forecasts are exceeded by the 
stock price at the end of month t; we focus on 12-month target price forecasts announced within 90 days prior to the 
earnings announcement. At the end of each month, we assign stocks into quintiles based on the return of that month, 
Return(t). We then focus on stocks from the top return quintile. Among the stocks from the top return quintile, we 
long those with a FracSat above the 80th percentile and short those with a FracSat below the 80th percentile. The 
portfolios are value-weighted and held for one, two or three months, separately. We report performance statistics of 
the long-short portfolio returns. T-statistics are computed using Newey-West (1987) standard errors and are reported 
in parentheses.   

 

 1 month 2 months 3 months 

Raw Return 0.69% (2.04) 0.66% (2.46) 0.55% (2.16) 

Three-Factor Alpha 0.72% (2.31) 0.69% (2.75) 0.61% (2.61) 

Four-Factor Alpha 0.48% (1.72) 0.48% (2.25) 0.42% (2.13) 
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Table A.5 
FracSat and the Post-Earnings-Announcement Drift: Panel Regressions 

This table reports the coefficient estimates from panel regressions of CAR(2,30), CAR(2,45), and CAR(2,61) on 
FracSat, CAR(0,1), and the interaction between FracSat and CAR(0,1), respectively. The final sample contains all 
quarterly earnings announcements in I/B/E/S from 1999 to 2015 that have a positive CAR(0,1), a price-per-share 
greater than $5 and data available to compute the FracSat measure. Daily abnormal return is computed as the raw 
daily return minus the daily value-weighted return on a portfolio of firms with similar size, book-to-market ratio and 
momentum. CAR(0,1) is the sum of daily abnormal returns from day 0 to day 1,  where day 0 is the earnings 
announcement day or the ensuing trading day if news is announced on a non-trading day or after market-hours. 
CAR(2,30), CAR(2,45), and CAR(2,61) are the sum of daily abnormal returns from day 2 to day 30, day 45, and day 
61, respectively. In each calendar quarter t, we assign stocks into quintile portfolios based on CAR(0,1). RankCAR(0,1) 
equals one for stocks from the bottom CAR(0,1) quintile, and five for stocks from the top CAR(0,1) quintile. FracSat 
is the fraction of analysts whose target price forecasts are exceeded by the stock price at the end of day 1; we focus 
on 12-month target price forecasts announced within 90 days prior to the earnings announcement. All control variables 
are as described in Table 1. We also control for all the interactions between control variables and RankCAR(0,1). We 
include time and industry fixed effects with standard errors clustered by time (reported in parentheses). *, **, and *** 
denote significance at 10%, 5% and 1%, respectively. 
 

 (1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

RankCAR(0,1) 0.002 0.002 0.004 
 (0.005) (0.007) (0.009) 

FracSat × RankCAR(0,1) 0.003** 0.004*** 0.006*** 
 (0.001) (0.001) (0.002) 

FracSat -0.009** -0.011** -0.015** 
 (0.004) (0.005) (0.007) 

Capital Gain Overhang -0.009 -0.007 -0.002 
 (0.007) (0.009) (0.012) 

Ln(Market Capitalization) 0.001 0.001 0.002 
 (0.001) (0.001) (0.002) 

Ln(Book-to-Market) -0.001 -0.002 -0.002 
 (0.002) (0.002) (0.003) 

Past Return(t−7,t−1) 0.007 0.011 0.012 
 (0.007) (0.008) (0.010) 

Institutional Ownership 0.000 0.011 0.014 
 (0.007) (0.008) (0.010) 

Nearness to 52-week High -0.013 -0.013 -0.033 
 (0.017) (0.022) (0.027) 

Turnover -0.145 -0.452 -0.412 
 (0.287) (0.360) (0.396) 

Amihud Ratio -0.019* -0.020 -0.005 
 (0.010) (0.014) (0.020) 

   (Continued)
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Table A.5 -- Continued    

 (1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

SUE 0.654* 1.428*** 1.726*** 
 (0.368) (0.463) (0.575) 

Earnings Volatility -0.013 -0.009 -0.031 
 (0.022) (0.028) (0.035) 

Earnings Persistence 0.004 0.008** 0.012*** 
 (0.003) (0.004) (0.004) 

Reporting Lag 0.000 0.000 0.000* 
 (0.000) (0.000) (0.000) 

Ln(1+ # of Analysts) -0.001 -0.004 -0.006 
 (0.002) (0.003) (0.004) 

# of Announcements -0.000 -0.000 -0.000 
 (0.000) (0.000) (0.000) 

Friday 0.004 0.007 0.007 
 (0.004) (0.005) (0.006) 

Capital Gain Overhang 
×RankCAR(0,1) 

-0.000 -0.001 -0.003 

(0.002) (0.002) (0.002) 

Ln(Market Capitalization)
×RankCAR(0,1) 

-0.001* -0.001* -0.001** 

(0.000) (0.000) (0.000) 

Ln(Book-to-Market) 
×RankCAR(0,1) 

0.000 0.001 0.001 

(0.001) (0.001) (0.001) 

Past Return(t−7,t−1) 
×RankCAR(0,1) 

-0.000 -0.000 -0.000 

(0.002) (0.002) (0.003) 

Institutional Ownership 
×RankCAR(0,1) 

-0.000 -0.003 -0.005* 

(0.002) (0.003) (0.003) 

Nearness to 52-week High
×RankCAR(0,1) 

0.006 0.010* 0.016** 

(0.004) (0.006) (0.007) 

Turnover 
×RankCAR(0,1) 

-0.031 -0.012 -0.019 

(0.077) (0.098) (0.110) 

Amihud Ratio 
×RankCAR(0,1) 

0.003 0.005 0.001 

(0.003) (0.004) (0.006) 

SUE 
×RankCAR(0,1) 

0.078 -0.124 -0.176 

(0.093) (0.119) (0.145) 

Earnings Volatility 
×RankCAR(0,1) 

-0.001 -0.004 -0.002 

(0.006) (0.008) (0.010) 

Earnings Persistence 
×RankCAR(0,1) 

-0.001 -0.002 -0.002* 

(0.001) (0.001) (0.001) 

  (Continued)
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Table A.5 -- Continued    

 

(1) 

CAR(2,30) 

(2) 

CAR(2,45) 

(3) 

CAR(2,61) 

Reporting Lag 
×RankCAR(0,1) 

0.000 -0.000 -0.000 

(0.000) (0.000) (0.000) 

Ln(1+ # of Analysts) 
×RankCAR(0,1) 

0.000 0.002* 0.002* 

(0.001) (0.001) (0.001) 

# of Announcements 
×RankCAR(0,1) 

0.000 0.000 0.000 

(0.000) (0.000) (0.000) 

Friday 
×RankCAR(0,1) 

-0.003* -0.003* -0.004** 

(0.001) (0.002) (0.002) 

   

Observations 52,071 52,071 52,071 

R2 0.017 0.016 0.016 
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Figure A.1 
Analyst-Target-Price Forecasts for Alphabet Inc (Ticker: GOOGL) from TIPRANKS 

This figure shows detailed analyst-target-price forecasts for Alphabet Inc (Ticker: GOOGL) from TIPRANKS. 
TIPRANKS (https://www.tipranks.com/) is a financial media specialized in providing detailed analyst forecasts and 
research articles to the public. On the stock summary page, each forecast record consists of the name of the analyst, 
the brokerage firm where the analyst is from, recommendation level, target prices, action, and the date the forecast is 
announced. Almost all forecast records are free and can be openly accessed. 


