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Abstract

This paper introduces FLP Spreadsheet Solver, an open source spreadsheet based Decision Support Sys-

tem for Facility Location Problems. Structure of the spreadsheets, interface of the solver, and a Tabu

Search algorithm implemented within the solver are described. An integer programming formulation of the

underlying facility location problem is provided. Computational tests show that FLP Spreadsheet Solver

can solve benchmark p-median and capacitated p-median instances to near optimality. The paper also in-

cludes a case study consisting of the application of FLP Spreadsheet Solver to a healthcare facility location

problem.
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1. Introduction

Facility Location Problems (FLPs) aim to select a subset of locations from a set of candidate locations,

and to determine which customer locations will be served by which facility, to optimize an objective

function that is based on the distances (or the costs) between the facilities and the demands of customer

locations they serve. FLPs arise in both service and manufacturing industries, and in many diverse contexts,

ranging from healthcare to commercial transportation and storage systems (Laporte et al. 2015). FLPs are

considered to be strategical level management problems, the consequences of which reverberate for years

and shape the environment around them, e.g. the location of a manufacturing facility may increase both

the average income of the population and the pollution in its vicinity. An exception to this rule is the set

of operational level FLPs that involve mobile facilities such as ambulances.

Due to the advances in computer hardware and optimisation software in the past two decades, basic

FLPs and some of their variants can be solved to optimality for instances with up to a thousand locations

(Laporte et al. 2015). However, solving an FLP arising in a real-world transportation network is still a

challenging undertaking. Acquiring the geographical data is a preliminary yet non-trivial task. The high-

performance computer codes developed by academics are usually not made available for public use, and
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even if they are, they require adaptation and compilation. The number of variables for mixed integer linear

programming models for FLPs are in quadratic order of the number of locations, which exceeds the capacity

of most freely available general purpose solvers, even for small instances.

In this paper we introduce an Excel-based Decision Support System (DSS) for FLPs, named FLP

Spreadsheet Solver (Erdoğan 2014). Using a Tabu Search algorithm, it can provide near-optimal solutions

for FLPs with up to 200 locations. FLP Spreadsheet Solver can be downloaded from

https://www.euro-online.org/websites/verolog/flp-spreadsheet-solver/ at zero cost, and it can

work on multiple operating systems due to the portability of Excel. Through a link to a publicly available

Geographical Information System (GIS) web service, FLP Spreadsheet Solver can retrieve coordinates of

locations as well as driving distances (or durations), enabling decision makers to perform location analysis

without the need for sophisticated know-how about using the GIS. It has been used for analyzing health-

care facility location decisions in the United Kingdom, and for teaching by academics in Canada, Germany,

Spain, and Turkey.

Although large-scale organizations may find the time and money to invest into the development and

deployment of specialized FLP models and tools, FLPs also arise when both money and time are in short

supply. Typical examples include third sector organizations as well as practical problems arising in the

area of disaster response/humanitarian logistics. With global warming and increasing political instability,

natural and man-made disasters are becoming increasingly prevalent. To minimize the damage of a disaster

and ensure timely response, it is imperative to find effective logistics solutions in a very short span of time.

This need is recognized by Keenan and Jankowski (2019), who state that “Emergency systems require

rapid decision making, and the clarity of information display plays a huge role in their success.” In a

similar vein, Schätter et al. (2019) comment on the lack of decision support tools for disaster management,

and the importance of precise yet comprehensible decision support for logistical operations. Consequently,

we believe that FLP Spreadsheet Solver can be best utilized within the context of humanitarian logistics

due to its ease of use, in addition to the ability to provide effective solutions in a short time on multiple

platforms with zero cost, as well as its visualization capability. As an example, FLP Spreadsheet Solver

may be used for deciding on the locations for provision distribution after a disaster.

The rest of the paper is organized as follows. In Section 2, we provide a brief review of the literature

of FLPs and highlight our contributions. We provide the details of FLP Spreadsheet Solver in 3, including

its interface and the structure of the spreadsheets. A formulation of the underlying unified FLP it solves,

solution algorithm, and performance on benchmark instances are provided in Section 4. In Section 5, we

present a real-world application of the solver in a healthcare facility location problem. Finally, in Section

6, we provide our concluding remarks.
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2. Related work

In this section, we first review the existing literature and software for FLPs, and then provide an outline

of our contributions.

2.1. Literature

FLPs have been studied in depth for more than 50 years. Starting with the seminal paper of Hakimi

(1964), the study of FLPs has grown into one of the largest subfields of Operational Research (OR). We refer

the reader to the recent book by Laporte et al. (2015) and the references therein for an in-depth exposition

to FLPs. Pick et al. (2017) recently presented the state-of-the-art in terms of decision support systems

for location analytics, in addition to current trends and future research directions. Finally, Ahmadi-Javid

et al. (2017) provided a comprehensive survey of healthcare facility location problems, which may benefit

the readers that are particularly interested in the applications of FLPs. Many variants have been proposed

through the introduction of extra features, including but not limited to the capacity of the facilities and

the maximum allowed distance for service. In what follows, we will only describe the basic FLPs, for the

sake of brevity.

The first ever FLPs to be studied are the fundamental problems of p-center and p-median (Hakimi

1964), both of which aim to locate exactly p facilities on a network. The former aims to minimise the

maximum distance between any customer location and the closest facility to it, focusing on equity. The

latter minimizes the sum of the distances from each customer location to the closest facility, emphasizing

performance. Toregas et al. (1971) defined the concept of “coverage”, where a customer location is covered

if an only if it is within a prespecified distance of the closest facility. The authors introduced the Set

Covering Problem (SCP), which aims to minimize the number of facilities to be opened while ensuring

all customers are covered. Church and ReVelle (1974) studied the Maximum Coverage Location Problem

(MCLP) to locate p facilities with the objective of maximizing total coverage, as a remedy to the high-

cost solutions found by the SCP. Later studies also incorporated probabilistic coverage, e.g. the probability

that an ambulance reaches a population center within the preset time limit (e.g. Daskin 1983). Finally,

Cornuejols et al. (1977) presented the Uncapacitated Facility Location Problem (UFLP), which involves

minimizing the sum of the cost of installation of facilities and the cost of transportation between facilities

and customers, and the number of facilities is indeterminate.

We are aware of only three DSS for general FLPs. The first is named SITATION, provided for free

by Daskin (2002), which is capable of solving five classes of FLPs (p-center, p-median, SCP, MCLP, and

UFLP), to a maximum size of 150 locations. The second is an R package called orloca: Operations Research

LOCational Analysis Models (Muñoz-Márquez 2008), which contains algorithms to solve the Fermat-Weber

minisum location problem in the plane. The third and final solver is called Library of Location Algorithms

(LoLA, Kalcsics et al. 2011), which is capable of solving a much larger set of problem types.
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Regarding applications of FLPs, Rakes et al. (2014) have provided a DSS for location analysis regarding

the assignment of families to interim housing post-disaster. Karataş et al. (2017) studied the problem of

allocating helicopters to stations in order to minimise response time, provided an optimisation model and

a simulation model, and applied their results to the incident data from the Aegean coast of Turkey. KC

et al. (2018) used the MCLP to optimize the coverage provided by fire service in Brisbane, Australia. The

authors determined a set of locations for potential fire stations based on population growth estimates.

Finally, Smith et al. (2018) applied a Relational-Algebraic Capacitated Location algorithm to a large-

scale distance constrained UFLP to locate HIV/AIDS diagnostic equipment in South Africa. The problem

instance analyzed by the authors consists of 1800 aggregated demand points and 60 facilities. The authors

compared their results with data from a pilot study of four health districts, and concluded the validity of

their method.

Spreadsheet based DSSs have been advocated by Şeref and Ahuja (2008) and have been gaining im-

portance in the past few years. Erdoğan (2017) has provided an open-source spreadsheet solver for Vehicle

Routing Problems (VRPs), named VRP Spreadsheet Solver, and provided two case studies of its appli-

cation in healthcare and tourism. Bailey and Nowak (2018) have presented a DSS to assign athletes to

events of track-and-field. Finally, Bailey and Michaels (2019) have provided a DSS to assign students to

teachers, which has been successfully implemented in an elementary school in the United States, resulting

in significant time savings.

2.2. Our contribution

FLP Spreadsheet Solver represents an improvement compared to existing available solvers through a

number of added features and advantages. An immediate benefit of FLP Spreadsheet Solver is its access

to a public GIS, which significantly decreases the overall decision support time for real-world problems,

and facilitates the implementation and communication of the results due to better visualization. All three

aforementioned software packages require the distance data for the network being analyzed to be input

separately. Visualizing the solutions on a real map is also significantly harder for these solvers, which

require a map of the region being analyzed to be acquired and incorporated. In addition, the executables

of SITATION and LoLA are not compiled to run on Mac based systems, decreasing their accessibility.

FLP Spreadsheet Solver can solve many of the basic location problems consisting of capacitated and

distance constrained versions of p-center, p-median, MCLP, and UFLP, for up to 200 locations. We underline

that the limit on the number of locations is primarily due to the limitations of the GIS service and

can be manually lifted by the user. We demonstrate in Section 4 that the solver can find near-optimal

solutions to FLPs with up to 600 locations, surpassing the location limit of SITATION. In addition, FLP

Spreadsheet Solver can handle multiple objectives simultaneously and can find solutions that balance equity

and performance, a feature none of the existing solvers have.
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Furthermore, all three existing solvers work in a procedural manner, i.e. the user executes the solvers on

input data, and cannot easily change the optimal or near-optimal results returned by the solvers. A notable

exception is SITATION that allows manual change of locations for facilities. FLP Spreadsheet Solver, on

the other hand, provides the possibility of declarative programming provided by Excel. The end user may

manually change the facilities or the allocation of customers to the facilities by simply clicking on the drop-

down list of locations in appropriate cells (or cutting and pasting a list of customers from one facility to

another), possibly resulting in mathematically sub-optimal solutions that better suit the managerial needs

at hand. The decision maker may then instantaneously evaluate the difference in performance as computed

by the spreadsheet. This improved user interface, coupled with a user function to check feasibility of the

modified solution, provides the end user with an enhanced ability to perform what-if analysis.

In addition, we believe that the most significant contribution of our work is a maximally accessible and

easy-to-use DSS. FLP Spreadsheet Solver owes its accessibility and ease-of-use to:

1. Being free to download, without necessitating registration by the end user.

2. Being multi-platform, working on both Windows and Mac versions of Excel.

3. Being installation-free, since Excel is already installed on most Windows and Mac computers.

4. Being open source, and thus being easily modifiable by an advanced user if needed.

5. Having integrated GIS functions that facilitate data acquisition and problem illustration.

6. Operating within the familiar Excel environment.

3. User interface

FLP Spreadsheet Solver is based on the same design principles as VRP Spreadsheet Solver (Erdoğan

2017), unavoidably resulting in similarities between the user interfaces. The data is kept in five spreadsheets:

Console, Locations, Costs and Coverage, Solution, and Visualization. The spreadsheets are indexed in the

order they should be generated, and the spreadsheets with the higher indices depend on the information

stored in the spreadsheets with lower indices. All spreadsheets employ a color coding scheme, where the

green cells are the input from the user or the result of the solver, yellow cells are automatically computed

by the spreadsheets, orange cells signal a warning, and red cells signal an error or violation of a constraint.

3.1. FLP Solver Console

This worksheet (Figure 1) forms the basis for the rest of the worksheets and contains the number of

locations and facilities, in addition to options regarding GIS functions, visualization parameters, and the

CPU time limit for the solver. Users may select the primary objective function as minimization of the

maximum service distance (p-center), minimization of the total cost (p-median, UFLP), or maximization

of total demand covered (MCLP). The worksheet employs data validation for all entries other than the

GIS key, in order to avoid erroneous data entry.

5



Figure 1: Screenshot of FLP Solver Console worksheet

3.2. Locations

This worksheet contains the name, address, coordinates, and demand for every location (Figure 2). It

also stores which of the locations must be or may be facilities, and which ones cannot. For the locations

that must or may be facilities, the user can also input the setup cost and capacity of a facility to be built

at that location. The coordinates may be retrieved from the GIS web service if the user has a key, which

may be generated at zero cost for research and educational purposes.

Figure 2: Screenshot of Locations worksheet

3.3. Costs and Coverage

Costs and Coverage worksheet (Figure 3), as its name implies, stores the distance, cost, and coverage

data for pairs of locations. In addition to the GIS web service, the distances may be computed using a
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spherical approximation for the shape of the Earth, which is useful if the problem data is based on flight

distances. Users may opt to retrieve the travel time between locations (in minutes) from the GIS service

to be used as distance. All data may be modified manually, e.g. the distance between two locations can be

manually set to a high value to disallow service from one to the other. As a final note, although “demand

covered” is computed as the product of the demand and coverage percentage, it can be manually edited

by the user to apply different types of coverage functions based on the distance.

Figure 3: Screenshot of Costs and Coverage worksheet

3.4. Solution

This worksheet is composed of six columns for each facility, locations served by the facility, their names

and demand, amount of demand covered, and the cost resulting from the service. Users can manually

input solutions by selecting the names of the locations from the drop-down menu in each cell of the second

column, e.g. columns B and L in Figure 4. The three objective functions and their values are displayed on

the top left, and facility specific information is generated on row 6.

3.5. Visualization

Visualization worksheet, depicted in Figure 5, displays the data contained within Solution worksheet

as a scatter plot on the backdrop of a map, obtained from a public GIS by our DSS. Users may manually

change the size of the markers, width of the lines, colors of the markers, as well as adding extra information,

to maximize the amount of information to display. Figure 5 also depicts the data we will be using for our

case study in Section 5.
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Figure 4: Screenshot of Solution worksheet

Figure 5: Screenshot of Visualization worksheet

3.6. Menu

The menu of FLP Spreadsheet Solver has a dedicated ribbon tab, as depicted in Figure 6. Its design

is aimed at increasing user friendliness through the use of buttons with icons. The buttons are numbered

to match the number of the associated worksheet. In addition to setting up the worksheets to store the
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data and running the solver, users may issue commands to determine the coordinates of the locations, the

driving distances or durations between the locations, and run a feasibility check to see if manual changes

have resulted in an infeasible solution.

Figure 6: The dedicated tab and menu for FLP Spreadsheet Solver

4. Model and algorithm

We now present an integer programming model of the problem solved by FLP Spreadsheet Solver, and

the Tabu Search (TS) algorithm it employs, followed by the results of our computational experiments.

4.1. Model

Consider a directed graph G = (V,A), where the vertex set consists of three disjoint subsets V =

V1 ∪ V2 ∪ V3. The first subset V1 contains the vertices that must be chosen as (or already are) facilities.

The second subset V2 is composed of vertices that may be facilities. The third subset V3 consists of vertices

that cannot be facilities. Each vertex i ∈ V has a demand qi, and each vertex i ∈ V1 ∪ V2 has a known (or

estimated) setup cost si that is incurred if i is selected to host a facility, and a capacity Qi. The arc set

A contains all arcs connecting the vertices in V as well as self arcs (i, i)∀i ∈ V . Associated with every arc

(i, j) ∈ A, there is a a cost cij , distance dij , and a probability pij of a facility in location i covering the

demand in location j.

We denote the maximum number of facilities as m, and the binary parameter α, which is equal to 1 if

all m facilities must be located and 0 otherwise. We also write δ to denote the service distance limit. Let

us define xij to be equal to 1 if vertex i is served by a facility at vertex j, and 0 otherwise. In addition, let

us define yj to be equal to 1 if a facility is to be located at vertex j, and 0 otherwise. Finally, let us define

w as the maximum distance between any location and the facility it is served by. The model is then:

lexmin (
∑

(i,j)∈A

cijxij +
∑
j∈V

sjyj , w,−
∑

(i,j)∈A

qipijxij) (1)

subject to
∑
j∈V

xij = 1, ∀i ∈ V (2)

xij ≤ yj ∀(i, j) ∈ A, (3)
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∑
i∈V

qixij ≤ Qjyj ∀j ∈ V1 ∪ V2, (4)∑
j∈V

yj ≤ m, (5)

∑
j∈V

yj ≥ m× α, (6)

w ≥
∑
j∈V

dijxij ∀i ∈ V, (7)

xij = 0 ∀(i, j) ∈ A : dij > δ, (8)

xij ∈ {0, 1} ∀(i, j) ∈ A : dij ≤ δ, (9)

yj = 1 ∀j ∈ V1, (10)

yj ∈ {0, 1} ∀j ∈ V2, (11)

yj = 0 ∀j ∈ V3, (12)

w ≥ 0. (13)

The objective function (1) minimizes the total cost, the maximum distance between every location and

the facility it is assigned to, and maximizes the coverage, in the given lexicographic order. We emphasize

that the users may opt to change the order of objectives. Constraints (2) state that every location must be

assigned to a facility. Constraints (3) require a facility to be located at vertex j for any location i to receive

service from it. The demand assigned to each facility is required to be less than or equal to its capacity by

constraint (4). The maximum number of facilities is set by constraint (5), which is forced as an equality by

constraint (6) if α = 1. Constraints (7) state that w must be greater than or equal to the distance between

each location and the facility it is served by.

The rest of the constraints describe the nature of the variables, or rule out disallowed decisions, or enforce

mandatory decisions. Constraints (8) forbid the assignment of any location to a facility at a distance of

greater than δ, and (9) state the binary nature of the xij variables. Constraints (10), (11), and (12) state

that the vertices in V1 must be facilities, whereas the vertices in V2 may be facilities, and the vertices in

V3 are not allowed to host a facility. Finally, (13) is the nonnegativity constraint for w.

4.2. Solution algorithm

Two of the main components of a metaheuristic algorithm are intensification and diversification (Blum

and Roli 2003), where the former is aimed at improving the solution quality and the latter is aimed at

escaping local optima. Intensification is usually achieved through local search, whereas diversification can

be attained through multiple ways. Some common methods are random perturbations of a given solution

as in Iterated Local Search, changing the order of neighborhoods as in Variable Neighbourhood Search,

combining different solutions as in Genetic Algorithms, and memory structures that prohibit cycling as in

TS. Design of a high performance heuristic requires the two components to be balanced.
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FLP Spreadsheet Solver incorporates a TS algorithm that utilizes different components for the uncapac-

itated and capacitated instances, which we provide below. We start with the uncapacitated case, in which

all locations are assigned to the closest facility for evaluating a solution. Hence, it suffices for the algorithm

to keep the list of locations hosting a facility. The objective function value of each solution is penalized by

a large constant for every missing location and violated distance constraint. The improvement operators

return a candidate move that does not involve any locations in the tabu list unless the move improves the

best known solution, in which case the tabu condition is ignored as per the aspiration criterion (Blum and

Roli 2003).

1. Greedy (uncapacitated): Starts with an empty solution and adds one facility at a time, based on

the minimal increase of the objective value.

2. Exchange (uncapacitated): For every pair of locations i, j ∈ V2 that are not in the tabu list,

where i hosts a facility and j does not host a facility in the current solution, evaluates the result of

moving the facility from i to j and selects the move that results in the best improvement (or least

deterioration) of the objective value.

3. Add: For every location i ∈ V2 that does not host a facility, evaluates the result of locating a facility

at i and selects a location that results in the best improvement (or least deterioration) of the objective

value.

4. Remove: For every location i ∈ V2 that hosts a facility, evaluates the result of removing the facility

at i and selects a location that results in the best improvement (or least deterioration) of the objective

value.

For the capacitated case, the algorithm stores the allocations of the locations to the facilities, and

computes the objective function based on the allocations. The locations allocated to a facility are kept as

an ordered list, with the first element of each list being the location that hosts the facility. Consequently,

exchanging or relocating this first element changes the location of the facility. In addition to the penalization

described above, each violation of the capacity constraint is penalized.

1. Greedy (capacitated): Starts with an empty solution of lists and adds one location to one list at

a time, either to the beginning of the list (as a facility) or to the end (as a location assigned to the

facility). The location and the position it is added to are selected based on the minimal increase of

the objective value.

2. Exchange (capacitated): For all locations i, j ∈ V , evaluates the result of exchanging the positions

of i and j on their lists and returns the move that results in the best improvement (or the least

deterioration) of the objective value.

3. Relocate: For all locations i ∈ V , evaluates the result of relocating i from its position on to another

position and returns the move that results in the best improvement (or the least deterioration) of the

objective value.
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The algorithm is then:

Algorithm 1: Tabu Search

1: if
∑

i∈V qi ≤ Qj ∀j ∈ V1 ∪ V2 then // uncapacitated

2: Invoke Greedy (uncapacitated) to construct an initial solution.

3: else // capacitated

4: Invoke Greedy (capacitated) to construct an initial solution.

5: end if

6: Set the current solution as the best known solution.

7: Initialize the tabu list as an empty list of locations.

8: while time limit is not exceeded

9: if
∑

i∈V qi ≤ Qj ∀j ∈ V1 ∪ V2 then // uncapacitated

10: Invoke Exchange (uncapacitated) for the current solution.

11: if α = 0 then

12: Invoke Add and Remove for the current solution.

13: end if

14: else // capacitated

15: Invoke Exchange (capacitated) and Relocate for the current solution.

16: end if

17: Choose the best move among the candidates and perform it on the current solution.

18: Update the best known solution if a better solution is found.

19: Add the locations in the move in the tabu list, with a tenure of 0.

20: Increment the tabu tenure of all locations in the tabu list.

21: Remove locations in the tabu list with a tenure greater than τ .

22: With probability ρ, remove all locations in the tabu list.

23: end while

4.3. Computational performance

We have performed our computational experiments using Excel 2016 on a computer with a 3.60 GHz

Intel Core i7-7700 CPU and 16 GB of RAM. Although FLP Spreadsheet Solver can solve more than 16

variants of the FLP, we have opted to use the p-median instances available in ORLib (Beasley 2005),

which have been widely used as a benchmark. Due to the inherent limitations of Excel and its built-in

programming language VBA, we have attempted to solve the instances with up to 600 vertices. The CPU

time limit was set to 9 × |V |. Algorithmic parameters were chosen to be τ = m and ρ = 0.005, default

values of the solver based on pilot experimentation.
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The solver was run 10 times for each instance, and the average results are reported in Table 1. The TS

algorithm successfully finds the optimal solution in all 10 runs for 14 instances out of 30, and the overall

average deviation is 0.23%. Hence, we conclude that the TS algorithm is capable of solving instances with

up to 600 vertices to near optimality.

Table 1: Computational results on p-median instances from ORLib

CPU time Average Optimal Average

Instance |V | m (seconds) result solution value deviation (%)

pmed1 100 5 900 5819 5819 0.00

pmed2 100 10 900 4105 4093 0.29

pmed3 100 10 900 4250 4250 0.00

pmed4 100 20 900 3046 3034 0.40

pmed5 100 33 900 1355 1355 0.00

pmed6 200 5 1800 7824 7824 0.00

pmed7 200 10 1800 5639 5631 0.14

pmed8 200 20 1800 4454 4445 0.20

pmed9 200 40 1800 2753 2734 0.69

pmed10 200 67 1800 1261 1255 0.48

pmed11 300 5 2700 7696 7696 0.00

pmed12 300 10 2700 6634 6634 0.00

pmed13 300 30 2700 4374 4374 0.00

pmed14 300 60 2700 2971 2968 0.10

pmed15 300 100 2700 1736 1729 0.40

pmed16 400 5 3600 8162 8162 0.00

pmed17 400 10 3600 6999 6999 0.00

pmed18 400 40 3600 4811 4809 0.04

pmed19 400 80 3600 2859 2845 0.49

pmed20 400 133 3600 1804 1789 0.84

pmed21 500 5 4500 9138 9138 0.00

pmed22 500 10 4500 8579 8579 0.00

pmed23 500 50 4500 4619 4619 0.00

pmed24 500 100 4500 2967 2961 0.20

pmed25 500 167 4500 1845 1828 0.93

pmed26 600 5 5400 9917 9917 0.00

pmed27 600 10 5400 8307 8307 0.00

pmed28 600 60 5400 4504 4498 0.13

pmed29 600 120 5400 3039 3033 0.20

pmed30 600 200 5400 2013 1989 1.21
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Since the uncapacitated and the capacitated solvers differ in terms of their local search operators, we

have also tested the solver on capacitated p-median instances from ORLib. The only different algorithmic

parameter we changed was the tabu tenure limit, for which we have used τ = |V |/3. In line with the

uncapacitated computational tests, the solver was run 10 times for each instance. The average results are

reported in Table 2. The solver found the optimal solution value in all runs for all instances with |V | = 50,

and three instances with |V | = 100. The average deviation for the instances with |V | = 100 is 0.7%, hence

we observe that the solver can also find high quality solutions for capacitated instances of p-median.

Table 2: Computational results on capacitated p-median instances from ORLib

CPU time Average Optimal Average

Instance |V | m (seconds) result solution value deviation (%)

pmedcap1 50 5 900 713 713 0.00

pmedcap2 50 5 900 740 740 0.00

pmedcap3 50 5 900 751 751 0.00

pmedcap4 50 5 900 651 651 0.00

pmedcap5 50 5 900 664 664 0.00

pmedcap6 50 5 900 778 778 0.00

pmedcap7 50 5 900 787 787 0.00

pmedcap8 50 5 900 820 820 0.00

pmedcap9 50 5 900 715 715 0.00

pmedcap10 50 5 900 832.9 829 0.47

pmedcap11 100 10 1800 1013.3 1006 0.73

pmedcap12 100 10 1800 966 966 0.00

pmedcap13 100 10 1800 1026 1026 0.00

pmedcap14 100 10 1800 1026 1026 0.00

pmedcap15 100 10 1800 1112.7 1091 1.99

pmedcap16 100 10 1800 954.2 954 0.02

pmedcap17 100 10 1800 1040.3 1034 0.61

pmedcap18 100 10 1800 1071.7 1043 2.75

pmedcap19 100 10 1800 1039.8 1031 0.85

pmedcap20 100 10 1800 1008.2 1005 0.32

5. Case study: Location of maternity healthcare services

In this section, we provide the details of our case study in healthcare. We first present a statistical

analysis of the demand, and then proceed to the results obtained using FLP Spreadsheet Solver.

5.1. Background

Decisions around the provision and allocation of care services within a regional health service are

multifaceted and often require a delicate balancing across a number of objectives. Operational Research is

thus very suitable in providing insights and quantitative support to those tasked with making such decisions

(Pitt et al. 2016). The support can take different shapes, from providing a practical quantitative analysis
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of the problem, to deciding on the metrics the decisions should be based upon, to the development and use

of more advanced techniques such as optimisation.

In this real-life case study, we were commissioned by an National Health Service (NHS) Trust to look into

the provision and allocation of maternity services within a region in England. The collaborating organisation

asked us to evaluate the model of service provision currently in use and to support, through quantitative

and geographical analysis, decisions about opening, closing, and relocating the maternity service facilities.

In many ways, this was the ideal case study to both illustrate the capability of the FLP Spreadsheet Solver

to tackle real-world facility location problems and to provide advanced analytics support to an important

strategic-level decision making process.

5.2. Setting

The collaborating NHS Trust had recently acquired a number of maternity services within the region

to provide a more integrated approach in their provision. As a result, the maternity service currently

comprises an in-house facility at the Royal United Hospital (RUH) in addition to five maternity facilities in

the community (Chippenham, Trowbridge, Paulton, Shepton Mallet, and Frome) that offer a combination

of prenatal, birthing and antenatal services, with the exception of Frome that does not offer birthing.

We acquired data regarding all six facilities for the financial years 2015/16 and 2016/17 (01/04/2015-

30/03/2017) on bookings, scans, outpatient appointment, admissions, and deliveries. Meticulous data clean-

ing was performed on all datasets before embarking on statistical descriptive analysis as well as location

analysis. For the purposes of this paper, we focus our analysis on deliveries and outpatient appointments.

During the two financial years of the analysis there were 7,711 deliveries performed by the maternity

services. The vast majority (98.76%) was a delivery of a single baby and 1.24% had multiple births (twins

and triplets). Average mother age at the time they booked the delivery appointment was 30.1, ranging

between 15 and 49, with a standard deviation of 5.6. Of all deliveries, 18.35% were classified as high-risk

pregnancies and the remaining 81.65% as low risk. Of those deliveries 99.48% resulted in a live birth, Table

3. Further analysis using the Fishers exact test indicated that there is no statistically significant difference

(p = 0.185) between the outcomes of delivery and the risk classification. We note that the risk classification

of the pregnancy, according to expert guidance, is allocated at the initial stages of the pregnancy and is

not revised during the gestation period.

Table 3: Delivery outcome based on risk of pregnancy

Delivery outcome High Risk Low Risk Total

Live birth 1,404 (18%) 6,267 (82%) 7,671

Stillbirth 8 (25%) 24 (75%) 32

Neonatal death 1 (50%) 1 (50%) 2

Unknown 2 (33%) 4 (67%) 6

Total 1,415 (18%) 6,296 (82%) 7,711
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Table 4 indicates that most of high-risk pregnancies took place in RUH although many take place in

birthing centres or even home births. It is clear that most babies were delivered at RUH and Paulton had

the smallest number of deliveries. Approximately 3% of all deliveries were home births.

Table 4: Location of delivery

Location High Risk Low Risk Total

RUH 1,258 (20%) 4,817 (80%) 6,301

Chippenham 34 (9%) 354 (91%) 388

Trowbridge 42 (11%) 350 (89%) 392

Paulton 12 (6%) 184 (94%) 196

Shepton Mallet 30 (7%) 378 (93%) 408

Home Birth 31 (14%) 195 (86%) 226

Other 8 (31%) 18 (69%) 26

Total 1,415 (18%) 6,296 (82%) 7,711

Although location of delivery is dominated by RUH, a different picture emerges when it comes to

prenatal and antenatal appointments. Not only are there a lot more such appointments (and unique service

users), but also the distribution of workload across the different facilities is more dispersed. Specifically,

during the two financial years under investigation there were 213,342 outpatient appointments managed by

the maternity services. The appointments were made by 13,943 unique service users. The mean appointment

number per service user was 15.30, ranging between 1 and 93, with a standard deviation of 10.13. Around

7% of service users had one appointment, 25% had at most 6 appointments and 50% of service users had at

most 16 outpatients appointments. The most frequent service users had 40 or more appointments during

the 2 years of the data, corresponding to 1.4% of all service users, as depicted in Figure 7.

Figure 7: Distribution of number of appointments per unique service users

Figure 8 indicates the cumulative frequency distribution of appointments by service users. It can be
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observed that service users with 10 or more appointments within the two years of the dataset account for

approximately 65% of all appointments booked, as indicated by the vertical dashed line.

Figure 8: Cumulative frequency distribution of number of appointments by service user

Outpatient appointments took place in all six maternity service locations. The most common facility

was again RUH with almost one in three appointments (30.28%), followed by Chippenham with 24.70% .

Smallest number of appointments was to Frome with 3.17%, Table 5.

Table 5: Maternity service location of outpatient’s appointments

Location Frequency Percent (%)

RUH 64,595 30.28

Chippenham 52,686 24.70

Trowbridge 22,561 10.58

Paulton 20,326 9.53

Shepton Mallet 46,357 21.73

Frome 6,764 3.17

Other 53 0.02

Total 213,342 100.00

As the above data analysis demonstrates, the high volume of outpatient appointments to a number of

community facilities in addition to the main facility located in RUH, necessitated a careful consideration

of their location. Although planners may not be able to change completely the geographical distribution

of the facilities at their disposal, any suggested reduction in the number of facilities may have an adverse

impact on patient access and experience, as well as increased levels of traffic and emissions (over 100,000

journeys per year only for outpatient appointments). As stated by Dantas et al. (2018), socio-economically

deprived populations are less likely to attend hospital appointments, so it is important for any location

analysis to take account of such considerations.
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5.3. Geographical data and scenarios

The United Kingdom holds a census every 10 years, and the results are summarised in terms of Output

Areas (OAs), which are geographical regions which contain approximately equal number of residents. Based

on the census of 2011, each OA contains between 100 and 625 people, corresponding to 40 to 250 households.

The OAs are aggregated into Lower Layer Super Output Areas (LSOAs) with 1000 to 3000 residents and

further aggregated into Middle Layer Super Output Areas (MSOAs) with 5000 to 15000 residents. (Office for

National Statistics 2018)

The demand data was aggregated at the level of MSOAs, which have an average population of 7200 in

England and Wales. This method not only keeps the problem size at a manageable level, but also protects

patient confidentiality. The region being analyzed consists of 123 MSOAs, their centroids at a maximum

driving duration of 2 hours from RUH, with the associated number of service users ranging from 1 to 268

within the two-year period.

To account for socio-economical factors, we have utilized the Index of Multiple Deprivation (IMD), a

measure of relative deprivation for geographical areas (UK Ministry of Housing 2015). It is a combined

measure of deprivation based on a total of 37 separate indicators that have been grouped into seven

domains, each of which reflects a different aspect of deprivation experienced by individuals living in an

area. A higher value of IMD implies worse standards of living. IMD has been calculated for all MSOAs and

has been made publicly available by Public Heath England (2015).

The objective of the model was chosen as the minimization of the sum of the driving times from each

MSOA to the closest facility, weighted (multiplied) by the historical demand as well as the IMD of the

MSOA. Clearly, this objective function favors solutions in which the facilities are closer to the MSOAs with

higher demand and higher IMDs. The objectives, parameters and scenarios of the location analysis were

discussed between the modelling team and the stakeholders. As a result of this discussion, 12 scenarios

were agreed upon, to form the basis of the location analysis, (see Table 6).

To enable the computational analysis, the following simplifications and assumptions were made:

1. In all of the scenarios explored, RUH was the only service which is to be retained at its original location

and was not to be removed from the solution.

2. The duration of the fastest driving route in minutes was used as the distance between two locations.

3. Calculations do not include any capacity considerations associated with each facility.

4. Each service user will be referred and indeed attend the facility that they are allocated to.

Due to the objective function, constant number of facilities, and the lack of a capacity constraint, the

underlying FLP was identified as a p-median problem.
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Table 6: Agreed scenarios for investigation

Scenario

number

Demand

type

Scenario description

1

Deliveries

All deliveries (low and high risk), all facilities (existing locations)

2 Low risk deliveries, all facilities (existing locations), baseline for scenarios 3–9

3 Low risk deliveries, RUH plus 3 community facilities (among existing locations)

4 Low risk deliveries, RUH plus 2 community facilities (among existing locations)

5 Low risk deliveries, RUH plus 1 community facility (among existing locations)

6 Low risk deliveries, RUH plus 3 community facilities anywhere

7 Low risk deliveries, RUH plus 2 community facilities anywhere

8 Low risk deliveries, RUH plus 1 community facility anywhere

9 Low risk deliveries, RUH plus 1 community facility within inner city limits

10

Outpatients

All facilities (existing locations), baseline for scenarios 11–13

11 RUH plus 3 community facilities (among existing locations)

12 RUH plus 2 community facilities (among existing locations)

13 RUH plus 1 community facilities (among existing locations)

5.4. Results

FLP Spreadsheet Solver was used for computing travel times between the MSOAs and the facility

location, finding a solution for each scenario as per the computational setup described in the previous

section, and displaying the results. Table 7 shows the results for the scenarios for deliveries, where the

‘Estimated difference’ is computed as the ratio of the difference of the objective function value of the

scenario and the objective function value for its baseline scenario, divided by the objective function value

for the baseline scenario. Therefore, a larger estimated difference implies a worse outcome.

Through the experiments, we observed that in every scenario in which the number of facilities was

reduced, the objective function value as estimated by the optimisation algorithm is expected to increase,

pointing towards longer travel durations. This is to be expected as service users, on average, would have

to travel farther to access fewer facilities.

In the case of having four birthing facilities in total, Paulton was not part of the best known solution

since the effect of excluding this facility (15%) was the smallest. Excluding either Shepton Mallet or

Trowbridge resulted in an estimated increase of 22% each and Chippenham with 26%. When considering

four birthing facilities in total located anywhere within the region (Scenario 6), existing locations seem to

be well positioned (RUH, Chippenham, Trowbridge and Shepton Mallet). The locations of all facilities are

displayed in Figure 5.

In Scenario 4 with three facilities in total (RUH and two other facilities), excluding Paulton and Shepton

Mallet from the best known solution is preferable to any other combination. This is because the pair was

associated with the smallest estimated increase in the results (37%), with next closest combination being

Chippenham and Paulton (41%). In the case of three birthing facilities in total located anywhere within
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the region, there is a minor difference between existing locations and choosing entirely new hypothetical

locations for the two community facilities (Scenarios 4 and 7, 37% compared to 34%) indicating that

existing facilities are relatively well placed.

Table 7: Results of FLP Spreadsheet Solver for scenarios investigating delivery facilities

Scenario Number of facilities Facilities excluded Estimated difference Baseline

1 5 N/A N/A N/A

2 5 N/A N/A N/A

3 4 Paulton 15% Scenario 2

4 3 Paulton, Shepton Mallet 37% Scenario 2

5 2 Chippenham, Trowbridge, Paulton 76% Scenario 2

6 4 N/A 1 9% Scenario 2

7 3 N/A 1 34% Scenario 2

8 2 N/A 1 64% Scenario 2

9 2 N/A 1 105% Scenario 2

Table 8 shows the results for the scenarios investigating outpatients, with the estimated difference

calculated as described above. In terms of outpatient services (Scenarios 11 to 13), we observed monotonic

increases of the estimated difference with every reduction in the number of community facilities. In the

case of three community outpatients centres in total, Paulton and Frome were not part of the best known

solution. In a two community centre configuration, the best known solution included Chippenham and

Trowbridge and in the one community centre scenario, the best found solution pointed to Frome.

Table 8: Results of optimisation modelling for scenarios investigating outpatients facilities

Scenario Number of facilities Facilities excluded Estimated difference Baseline

10 6 N/A

11 4 Paulton, Frome 20% Scenario 10

12 3 Paulton, Shepton Mallet, Frome 39% Scenario 10

13 2 Chippenham, Trowbridge, Paulton, Shepton Mallet 83% Scenario 10

5.5. Discussion

Our results showed that in all scenarios in which the total number of facilities was reduced, the total

adjusted travelling duration along the optimal routes was longer. This was in line with expectations as

fewer facilities should lead to longer overall travel distances. The key messages we communicated to our

collaborators were as follows:

1. In the case of having four birthing facilities in total (RUH and three in the community), existing facility

1No facility is excluded in this scenario since the solver is not constrained by the location of existing facilities.
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locations seem to be well positioned. In this particular scenario, excluding the existing facility in Paulton

offers the best solution.

2. In the case of three birthing facilities (RUH and two in the community), there is a minor difference

between existing locations and hypothetically choosing new locations, indicating that existing facilities are

well placed. The best found solution in this case is achieved by excluding Paulton and Shepton Mallet from

the configuration.

3. In terms of outpatient services, we observed monotonic increases in the results with every reduction

in the number of community facilities. In the case of three community outpatients centres, Paulton and

Frome were not part of the best known solution. In a two community centre configuration, the best found

solution included Chippenham and Trowbridge and in the one community centre scenario the best found

solution pointed to Trowbridge.

As of early 2019 and as part of an initiative to transform maternity service in the entire region, the

Trust has decided to recommend reducing the total number of birthing facilities from five to three and

have taken on board our findings (key message 2) by putting forward a configuration which includes the

main hospital maternity centre and two additional community facilities. The configuration was in line

with the experimental results, specifically Scenario 4, thus excluding facilities Paulton and Shepton Mallet.

The changes are currently the subject of a public consultation exercise that is being conducted within

the regional health economy (Bath & North East Somerset, Swindon & Wiltshire Local Maternity System

2019).

6. Concluding remarks

In this paper, we have introduced an open source, spreadsheet-based DSS for FLPs, which is capable of

solving capacitated and distance constrained versions of the four basic FLPs: p-median, p-center, MCLP,

and UFLP. It can retrieve GIS data from a web service, and display the solutions on the backdrop of a

map. Due to its accessibility and platform independence, it can be used for teaching and decision making

in practice. Our computational results indicate that it can solve p-median problems with up to 600 vertices

and 200 facilities to near optimality, as well as capacitated p-median problems with up to 100 vertices and

10 facilities.

We have also provided the details of a real-life case study arising in healthcare, which demonstrates the

capabilities of the solver and its usability in practice. The associated analysis consists of solving a series

of p-median problems with the objective function coefficients are computed using travel durations and an

index of deprivation. The solver is observed to be effective in quick yet detailed analysis, and the results
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have been utilized by the collaborating NHS Trust. We conclude that FLP Spreadsheet Solver can be used

in practice for solving FLPs, particularly in the field of humanitarian logistics.
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G. Erdoğan. An open source spreadsheet solver for vehicle routing problems. Computers & Operations Research,

84:62–72, 2017.
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