
BIROn - Birkbeck Institutional Research Online

Chen, Taolue and Zhou, J. and Han, Tingting and Lu, J. (2004) Checking
strong open congruence in -calculus. Electronic Notes in Theoretical
Computer Science 91 , pp. 4-20. ISSN 1571-0661.

Downloaded from: http://eprints.bbk.ac.uk/id/eprint/43070/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/386105517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/id/eprint/43070/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Checking Strong Open Congruence in

χ-Calculus 1

Taolue Chen 2

State Key Laboratory of Novel Software Technology
Nanjing University, Nanjing, P.R.China

Jingyang Zhou 3

State Key Laboratory of Novel Software Technology
Nanjing University, Nanjing, P.R.China

Tingting Han 4

State Key Laboratory of Novel Software Technology
Nanjing University, Nanjing, P.R.China

Jian Lu5

State Key Laboratory of Novel Software Technology
Nanjing University, Nanjing, P.R.China

Abstract

The χ-calculus is an important evolution for mobile process calculi. Open congruence is widely
studied in χ-calculus. However, there still lacks an algorithm for checking this bisimulation relation.
In this paper, the symbolic technique is applied to the research of χ-calculus and an efficient
characterization for strong open congruence which does not involve quantification over substitutions
is given. Based on it, an algorithm, which instantiates bound names ’on-the-fly’, is developed to
check strong open congruence for finite control processes.

Keywords: Mobile processes, Chi-calculus, Open congruence, Symbolic bisimulation, Algorithm.

Electronic Notes in Theoretical Computer Science 91 (2004) 4–20

1571-0661 © 2004 Elsevier B.V .

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2003.12.003
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

For more than ten years, various calculi of mobile processes, notably the π-
calculus [13], have been the focus of research in concurrency theory. These
calculi are distinguished from the traditional process calculi like CCS [12] in
that they allow processes to exchange specific values-channel names, thus are
capable of dealing with processes whose communication structures can change
during their evolution. The ability of dynamic creation of communication
links lies at the heart of mobility.

Recently, several publications have focused on many variants of the π-
calculus, such as asynchronous π-calculus [8], the πI-calculus [17]. Apart from
the π-calculus more than any of the above variants, the χ-calculus [2] in-
troduced by Fu, is an important evolution for mobile process calculi. The
χ-calculus is introduced with two motivations in mind [2]. One is to remove
the ad hoc nature of prefix operation in π-calculus by having a uniform treat-
ment of names, thus arriving at a conceptually simpler language. The other is
to materialize a communication-as-cut-elimination viewpoint, therefore taking
up a proof theoretical approach to concurrency theory, an approach that has
been proved very fruitful in the functional world. The difference between π-
calculus and χ-calculus lies mainly in the way communications happen. The
former adopts the familiar value-passing mechanism whereas the latter takes
an information exchange or information update viewpoint.

In the research of algebra theory for mobile process, many studies focus on
the bisimulation equivalence between processes, which is the most influential
one in process algebra. To carry out a systematic study of bisimilarities for χ-
calculus, Fu introduces the notion of L-bisimilarity [3], and shows that the set
of L-bisimilarities forms a four-element lattice. It can also be shown that the
well-known bisimilarity, that is, the open bisimilarity and barbed bisimilarity
are respectively the bottom and the top element of the bisimulaiton lattice. We
refer reader elsewhere [3] for more details. In [3], all of these congruences are
investigated in weak case. However, in strong case, all of the four congruence
coincide, i.e. the strong version bisimulation lattice collapses to only one
element, in this sense, the open congruence is the only sensible congruence in
the research of χ-calculus when we only deal with strong case.

For process algebra, the algorithm which is used to check one process is

1 Supported by NNSFC (60273034, 60233010), 863 Program (2001AA113110,
2002AA116010), 973 Program of China (2002CB312002), JSFC (BK2002203, BK2002409)
2 Email: ctl@ics.nju.edu.cn
3 Email: jingyang@nju.edu.cn
4 Email: hantt@ics.nju.edu.cn
5 Email: lj@nju.edu.cn

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–20 5

mailto:ctl@ics.nju.edu.cn
mailto:jingyang@nju.edu.cn
mailto:hantt@ics.nju.edu.cn
mailto:lj@nju.edu.cn

bisimular to another is important, which is key to make one prototypical pro-
cess description language be used in practice. In CCS and π-calculus, people
have designed all sorts of such algorithms. Generally speaking, all available
algorithms can be classified into two types. One is partition refinement al-
gorithm [1][16], the main advantage of this kind of algorithm is that it can
be used to obtain a minimal realization of a process P , i.e. a process which
has the minimum number of states and transitions among all those bisimilar
with P , however, it involves the computation of finite transition graph, which
is a rather complex task and is inefficient in space; the other is ’on the fly’
algorithm [19][10], in which the state spaces of processes being compared are
created at the same time as the candidate bisimulation relation, so in general,
it has a low space complexity, although it can not be used to give the minimal
realization of process.

Since χ-calculus is an important mobile process calculi, it is necessary
to study bisimulation verification problem for it. However, to the author’s
knowledge, this aspect of work has not been reported. The main work of this
paper is to present an algorithm for the verification of open congruence in
χ-calculus. Since it is well known that the full π-calculus is not decidable and
it is easy to show this result also valid in χ-calculus, in this paper, we focus
on the so called finite control [1] χ-calculus, that is, the process expression
disallows parallel composition | to appear in the bodies of recursive defini-
tions. By confining the process expression to finite control processes, which
is the syntactic counterpart of CCS finite state processes, we get a decidable
equivalence problem. To get our destination, we first introduce an alternative
characterization of the the open congruence in symbolic framework [7][18],
thus we can avoid the universal quantification over substitution in the original
definition which may represent a rather heavy requirement in practice. Based
on it, an efficient algorithm is presented since it is enough to instantiate the
bound name of the action with a single fresh name. Note that in this paper,
the mismatch operator is not included and as usual, we only focus on strong
open congruence.

The rest of the paper is organized as follows: The χ-calculus is reviewed
in the following section. In Section 3, the symbolic characterization for open
congruence is introduced with a proof to show that it captures (concrete) open
congruence. The ’on the fly’ algorithm is presented in Section 4. The paper
is concluded with Section 5 where related work is also discussed.

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–206

2 χ-calculus and Open congruence

In this section, we will review some background material for χ-calculus, we
refer the reader elsewhere [4] for more details. We will write C for the set of
χ-processes defined by the following grammar:

P := 0 | αx.P | P |P | (x)P | [x = y]P | P + P | A(y1, . . . , yn)

where α ∈ N ∪ N̄ . Here N is the set of names ranged over by small case
letters. The set {x̄|x ∈ N} of co-names is denoted by N̄ . The name x in
(x)P is bound. A name is free in P if it is not bound in P . The free names,
the bound names and names of P , as well as the notations fn(P),bn(P) and
n(P), are used in their standard meanings. In sequel we will use the functions
fn(-),bn(-) and n(-) without explanation. We write ᾱ for ā if α = a and for
a if α = ā. Bound names induce the notion of α-equivalence as usual. In
the sequel we will identify processes or actions which differ only on the bound
names, therefore the symbol ≡ means syntactical equality and α-equivalence.
Furthermore whenever we introduce a binary relation on terms we will always
assume it is closed w.r.t. ≡.

The operational semantics is defined by the following labelled transition
system:

Sequentialization:

αx.P
αx
→ P

Sqn

Composition:

P
µ
→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q
µ
→ P ′|Q

Cmp0,
P

y/x
→ P

′

P |Q
y/x
→ P ′|Q{y/x}

Cmp1

Communication:

P
α(x)
→ P ′ Q

ᾱy
→ Q′

P |Q
τ
→ P ′{y/x}|Q′

Cmm0,
P

α(x)
→ P ′ Q

ᾱ(x)
→ Q′

P |Q
τ
→ (x)(P ′|Q′)

Cmm1

P
αx
→ P ′ Q

ᾱy
→ Q′ x �= y

P |Q
y/x
→ P ′{y/x}|Q′{y/x}

Cmm2,
P

αx
→ P ′ Q

ᾱx
→ Q′

P |Q
τ
→ (P ′|Q′)

Cmm3

Restriction:

P
λ
→ P ′ x /∈ n(λ)

(x)P
λ
→ (x)P ′

Loc0,
P

αx
→ P ′ x /∈ {α, ᾱ}

(x)P
α(x)
→ P ′

Loc1,
P

y/x
→ P ′

(x)P
τ
→ P ′

Loc2,

Condition:

P
λ
→ P ′

[x = x]P
λ
→ P ′

Match

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–20 7

Summation:

P
λ
→ P ′

P + Q
λ
→ P ′

Sum

Identity :

P{y1, · · · , yn/x1, · · · , xn}
λ
→ P ′

A(y1, · · · , yn)
λ
→ P ′

A(x1 · · ·xn)
def
= P

We have omitted all the symmetric rules. In the above rules the letter µ ranges
over the set {α(x), αx|α ∈ N ∪ N̄ , x ∈ N} ∪ {τ} of non-update actions and
the letter λ over the set {α(x), αx, y/x|α ∈ N ∪ N̄ , x ∈ N} ∪ {τ} of all
actions. In αx and y/x all names are free. In α(x), the name x is bounded
whereas the other name is free.

The process P{y/x} in the above labelled transitional system is obtained
by substituting y for x throughout P . A substitution {y1/x1, · · ·yn/xn} is a
function from N to N that maps xi onto yi for i ∈ {1, · · · , n} and x onto
itself for x /∈ {x1, · · · , xn}. Substitutions are usually denoted by σ, ρ, etc. The
empty substitution, that is the identity function on N , is written as {}. The
result of applying σ to P is denoted by Pσ. In the below, by α-conversion
it is assumed that a substitution σ acts as an identity on the bound names
of the process and keeps the separation between bound and free names. We
follow this convention in the below and will use it implicitly in the proof.

The following technical lemma [4] states the properties of (concrete) la-
belled transitions.

Lemma 2.1 The following properties hold:

(i) If P
µ
→ P ′ then Pσ

µ
→ P ′σ.

(ii) If P
y/x
→ P ′ and xσ �= yσ then Pσ

yσ/xσ
→ P ′σ{yσ/xσ}.

(iii) If P
y/x
→ P ′ and xσ = yσ then Pσ

τ
→ P ′σ.

As done previously [18], we shall use M, N, L to stand for finite (and
possibly empty) match sequences. A match sequence defines an equivalence
relation on names. Given a match sequence M and the equivalence relation
RM associated to it, we denote by σM a special substitution which selects
a representative out of each equivalence class of RM and maps all names in
the same class to their representative. We write M ⇒ N if M implies N ,
i.e. whenever the tests in M are true, then also the tests in N are true.
Similarly, we write M ⇔ N if both M ⇒ N and N ⇒ M hold. We say
that a substitution σ satisfies a match sequence M if for each x, y, it holds
that M ⇒ [x = y] implies σ(x) = σ(y), that is, the condition Mσ is true.

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–208

We extend the notation M ⇒ N to σ ⇒ ρ if σ equates more than ρ, i.e.
ρ(x) = ρ(y) implies σ(x) = σ(y).

The relations between match sequence and substitution are revealed by
the following lemma [18].

Lemma 2.2 The following properties hold:

(i) If M ⇒ N , then Mσ ⇒ Nσ.

(ii) If M ⇒ N , then σM ⇒ σN .

(iii) If σ ⇒ σ′, then ρ exists s.t. σ = σ′ρ.

In what follows, some notations need be fixed. Let fa denote the set
{αx|α, x ∈ N ∪ N̄} of free actions, ba the set {α(x)|α, x ∈ N ∪ N̄} of bound
actions and u the set {y/x|x, y ∈ N ∪ N̄} of updates and we let δ, λ range
over the set {α(x), αx, y/x|α ∈ N ∪ N̄ , x, y ∈ N} ∪ {τ}.

The strong open congruence, given in this section, is the strong version of
open congruence studied earlier [3][4], which adapts Sangiorgi’s definition for
π-calculus [18] to χ-calculus.

Definition 2.3 Let R be a symmetric relation on C, The relation R is called
an open congruence relation if whenever PRQ, then for any substitution σ, it

holds that if Pσ
δ
→ P ′, then some Q′ exists, such that Qσ

δ
→ Q′ and P ′RQ′.

The open bisimilarity ∼ is the largest open congruence.

It is easy to show that ∼ is indeed a congruence relation. Note that this
definition can be rehearsed as follows:

Definition 2.4 Let R be a symmetric relation on C, The relation R is called
an open congruence if it is closed under substitution and whenever PRQ and

P
δ
→ P ′, then Q′ exists s.t. Q

δ
→ Q′ and P ′RQ′.

The form of this definition has been considered elsewhere [18] and will be
used in the proof of Section 3.

3 Symbolic Characterization

As we state in Section 1, one immediate difficulty to check open congruence
is that the definition of Section 2 involves quantification over substitutions.
In this section, we show a more efficient method to check process bisimilaries,
which is based on the well known symbolic transition system. A symbolic

transition is of the form P
M,δ
�→ P ′, where, M is a match sequence and δ is an

action. Intuitively, M represents the environments under which the action δ
can actually be fired from P . Comparing with it, the transitions defined in

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–20 9

Section 2 are concrete in the sense that they can always be fired regardless of
the context in which terms are placed. Base on it, we define a symbolic open
congruence following Sangiorgi [18].

The symbolic transitional semantics of the χ-calculus is given as follows.
For notational convenience we write MN for the union of M and N . Also the
symmetric rules for Sum and Par have been omitted.

Sequentialization:

αx.P
∅,αx
�→ P

Sqn

Composition:

P
µ
�→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q
µ
�→ P ′|Q

Cmp0,
P

y/x
�→ P ′

P |Q
y/x
�→ P ′|Q{y/x}

Cmp1

Communication:

P
M,a(x)
�→ P ′ Q

N,b̄y
�→ Q′

P |Q
L,τ
�→ P ′{y/x}|Q′

L =

MN [a = b] if a �= b

MN if a = b
Cmm0

P
M,a(x)
�→ P ′ Q

N,b̄(x)
�→ Q′

P |Q
L,τ
�→ (x)(P ′|Q′)

L =

MN [a = b] if a �= b

MN if a = b
Cmm1

P
M,ax
�→ P ′ Q

N,b̄y
�→ Q′ x �= y

P |Q
L,y/x
�→ P ′{y/x}|Q′{y/x}

L =

MN [a = b] if a �= b

MN if a = b
Cmm2

P
M,ax
�→ P ′ Q

N,b̄x
�→ Q′

P |Q
L,τ
�→ P ′|Q′

L =

MN [a = b] if a �= b

MN if a = b
Cmm3

Restriction:

P
M,λ
�→ P ′ x /∈ n(M, λ)

(x)P
M,λ
�→ (x)P ′

Loc0,
P

M,αx
�→ P ′ x /∈ n(M) ∪ {α, ᾱ}

(x)P
M,α(x)
�→ P ′

Loc1

P
M,y/x
�→ P ′ x /∈ n(M)

(x)P
M,τ
�→ P ′

Loc2,

Condition:

P
M,λ
�→ P ′

[x = y]P
L,λ
�→ P ′

L =

M [x = y] if x �= y

M if x = y
Match

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–2010

Summation:

P
M,λ
�→ P ′

P + Q
M,λ
�→ P ′

Sum

Identity :

P{y1, · · · , yn/x1, · · · , xn}
M,λ
�→ P ′

A(y1, · · · , yn)
M,λ
�→ P ′

A(x1 · · ·xn)
def
= P

The following technical lemma shows some properties of symbolic transi-
tion.

Lemma 3.1 The following properties hold:

(i) If P
M,δ
�→ Q, then n(M) ∪ fn(δ) ⊆ fn(P).

(ii) If P
M,δ
�→ Q, then the following properties holds:

· If δ /∈ u, then Pσ
Mσ,δσ
�→ Qσ.

· If δ = y/x and yσ = xσ, then Pσ
Mσ,τ
�→ Qσ.

· If δ = y/x and yσ �= xσ, then Pσ
Mσ,yσ/xσ

�→ Qσ{yσ/xσ}.

(iii) If Pσ
M ′,δ′

�→ Q′, then the following properties holds:

· If δ′ ∈ ba ∪ fa, then P
M,δ
�→ Q with M ′ ⇔ Mσ,δ′ ≡ δσ and Q′ ≡ Qσ.

· If δ′ = τ , then one of the following properties holds:

P
M,τ
�→ Q s.t. M ′ ⇔ Mσ and Q′ ≡ Qσ.

P
M,y/x
�→ Q s.t. M ′ ⇔ Mσ,xσ = yσ and Q′ ≡ Qσ.

· if δ′ = y′/x′, then P
M,y/x
�→ Q with M ′ ⇔ Mσ,y′ = yσ, x′ = xσ and

Q′ ≡ Qσ{y′/x′}.

Proof. By transition induction. �

The following two technical lemmas relate concrete and symbolic transi-
tions.

Lemma 3.2 If PσM
δ
→ P ′′, then the following properties holds:

• If δ = τ , then one of the following properties holds:

· P
N,y/x
�→ P ′ with M ⇒ N [x = y] and P ′′ = P ′σM .

· P
N,τ
�→ P ′ with M ⇒ N and P ′′ = P ′σM .

• if δ �= τ , then P
N,λ
�→ P ′ with M ⇒ N , δ = λσ and P ′′ = P ′σM .

Proof. By transition induction. We only check some typical cases.

• (P1|P2)σM
τ
→ (P ′′

1 |P
′′
2) is derived from P1σM

az
→ P ′′

1 and P2σM
āz
→ P ′′

2 . By

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–20 11

the inductive assumption, we get

P1
N1,bx
�→ P ′

1 P2
N2,c̄y
�→ P ′

2

with

M ⇒ N1, az ≡ (bx)σM , P ′′
1 ≡ P ′

1σM

M ⇒ N2, az ≡ (cy)σM , P ′′
2 ≡ P ′

2σM

Now, we can infer(suppose b �= c, the converse case is similar)

P1|P2
N1N2[b=c],y/x

�→ P ′
1|P

′
2

with (P ′
1|P

′
2)σM ≡ P ′′

1 |P
′′
2 and M ⇒ N1N2[b = c][x = y] since xσM = yσM .

• ((x)P)σM
τ
→ P ′′ is derived from PσM

y/x
→ P ′′(Note that by the convention of

Section 2, ((x)P)σM = (x)PσM and x /∈ n(σ))). By inductive assumption,

we get P
N,z/x
�→ P ′, with M ⇒ N , zσM = y and P ′′ ≡ P ′σM . Now, we infer

(x)P
N,τ
�→ P ′, since by Lemma 3.1(i), x /∈ n(N).

• (P1|P2)σM
y/x
→ (P ′′

1 {y/x}|P ′′
2 {y/x}) is derived from P1σM

ax
→ P ′′

1 and P2σM
āy
→

P ′′
2 . By the inductive assumption, we get

P1
N1,bx′

�→ P ′
1 P2

N2,c̄y′

�→ P ′
2

with

M ⇒ N1, ax ≡ (bx′)σM , P ′′
1 ≡ P ′

1σM

M ⇒ N2, ay ≡ (cy′)σM , P ′′
2 ≡ P ′

2σM

Now, we can infer(suppose b �= c, the converse case is similar)

P1|P2
N1N2[b=c],y′/x′

�→ P ′
1{y

′/x′}|P ′
2{y

′/x′}

with

(P ′
1{y

′/x′}|P ′
2{y

′/x′})σM ≡ (P ′
1σM{σM (y′)/σM(x′)}|P ′

2{σM(y′)/σM(x′)})

≡P ′′
1 {y/x}|P ′′

2 {y/x}

and M ⇒ N1N2[b = c].

The other cases are similar, due to space restriction, we omit the details. �

Lemma 3.3 If P
M,δ
�→ P ′, then the following properties hold:

• If δ = y/x and M ⇒ x = y, then PσM
τ
→ P ′σM .

• If δ /∈ u or δ = y/x and xσM �= yσM , then PσM
δσM→ P ′σM .

Proof. By transition induction. We only check some typical cases.

• Suppose a �= b and (P1|P2)
M1M2[a=b],y/x

�→ (P ′
1{y/x}|P ′

2{y/x}) is derived from

P1
M1,ax
�→ P ′

1 and P2
M2,āy
�→ P ′

2. We can decompose σM1M2[a=b] as σM1ρ1
and

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–2012

σM2ρ2
for some ρ1,ρ2 by Lemma 2.2. From the inductive assumption, we get

P1σM1

(ax)σM1→ P ′
1σM1

P2σM1

(b̄y)σM2→ P ′
2σM2

and moreover it can be inferred that

P1σM1
ρ1

(ax)σM1
ρ1

→ P ′
1σM1

ρ1 P2σM2
ρ2

(b̄y)σM2
ρ2

→ P ′
2σM2

ρ2

(P1|P2)σM1M2[a=b]
τ
→ (P ′

1|P
′
2)σM1M2[a=b]

since by M1M2[a = b] ⇒ x = y and Lemma 2.2, xσM1ρ1
σM2ρ2

= yσM1ρ1
σM2ρ2

and substitution {y/x} is subsumed by σM1ρ1
σM2ρ2

• [x = y]P
M,δ
�→ P ′ is derived from P

N,δ
�→ P ′, we suppose x �= y and δ /∈ u, then

M = N [x = y]. By Lemma 2.2, we can decompose σM as σNρ for some ρ. By

inductive assumption, we get PσN
δσN→ P ′σN , hence ([x = y]P)σM

δσM→ P ′σM .

The other cases are similar and can be proved without difficulty.

�

Now, we give the symbolic characterization for open congruence, which is
called symbolic open congruence.

Definition 3.4 Let R be a symmetric relation on C, The relation R is called
a symbolic open congruence if PRQ implies:

(i) If δ ∈ fa∪ ba and P
M,δ
�→ P ′, then N, λ, Q′ exists,s.t. Q

N,λ
�→ Q′, with M ⇒ N ,

δσM = λσM and P ′σMRQ′σM .

(ii) If P
M,τ
�→ P ′, then one of the following properties holds:

· N, Q′ exists s.t. Q
N,τ
�→ Q′ with M ⇒ N and P ′σMRQ′σM .

· N, y/x, Q′ exists s.t. Q
N,y/x
�→ Q′ with M ⇒ N [x = y] and P ′σMRQ′σM .

(iii) If P
M,y/x
�→ P ′, then one of the following properties holds:

· N, Q′ exists s.t. Q
N,τ
�→ Q′ with M ⇒ N [x = y] and P ′σMRQ′σM .

· N, y′/x′, Q′ exists s.t. Q
N,y′/x′

�→ Q′ with M ⇒ N , (y/x)σM = (y′/x′)σM

and P ′σMRQ′σM .

· N, y′/x′, Q′ exists s.t. Q
N,y′/x′

�→ Q′ with M ⇒ N [x = y][x′ = y′] and
P ′σMRQ′σM .

The symbolic open bisimilarity is the largest symbolic open congruence.

Now, we embark into the proof that ∼ and coincide.

Lemma 3.5 implies ∼.

Proof. Let

R = {(P, Q)|P Q}

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–20 13

first, we prove that R is closed under substitution. Let S = {(Pσ, Qσ)|P
Q,σ arbitrary}, we show S is a symbolic open congruence. Consider the action
δ that Pσ can take, we have following cases:

• δ ∈ fa ∪ ba, then by Lemma 3.1, the transition can be written as Pσ
Mσ,δσ
�→

P ′σ for some M, δ and P ′ s.t. P
M,δ
�→ P ′. Since P Q, we have Q

N,λ
�→ Q′ with

M ⇒ N , δσM ≡ λσM and P ′σM Q′σM . By Lemma 2.2, we have Mσ ⇒
Nσ, and following Sangiorgi’s proof [18], it is not difficult to verify that
σσMσ ⇒ σM , so we have δσσMσ ≡ λσσMσ and similarly, P ′σσMσSQ′σσMσ,

hence Qσ
Nσ,λσ
�→ Q′σ gives the counterpart to the transition of Pσ by Lemma

3.1 and Definition 3.4. In this case, the proposition is correct.

• δ = τ , then the transition can be written as one of two subcases as follows:

· Pσ
Mσ,τ
�→ P ′σ for some M and P ′ s.t. P

M,τ
�→ P ′. By the definition of ,

there are two cases to verify. However, using the same argument as the
first case, the two cases are easily to be checked.

· Pσ
Mσ,τ
�→ P ′σ for some M and P ′ s.t. P

M,y/x
�→ P ′ and xσ = yσ. By

the definition of , there are three cases need to be verified. Here we

only check one as example, the other two are similar. Take Q
N,τ
�→ Q′

with M ⇒ N [x = y] and P ′σM Q′σM , then Qσ
Nσ,τ
�→ Q′σ. Since

xσ = yσ, we have Mσ ⇒ Nσ and use the same argument in the first case,
P ′σσMσSQ′σσMσ, hence, the transition of Pσ can be matched.

• δ ∈ u, then the transition can be written as Pσ
Mσ,y′/x′

�→ P ′σ{y′/x′} for some

M and P ′ s.t. P
M,y/x
�→ P ′ and xσ = x′, yσ = y′. By the definition of , there

are also three cases need to be verified, here we chose the most difficult one.

Take Q
N,y′′/x′′

�→ Q′ with M ⇒ N [x = y][x′′ = y′′] and P ′σM Q′σM . Now,
we have two subcases.
· x′′σ = y′′σ, then Qσ

Nσ,τ
�→ Q′σ. Note that Mσ ⇒ N [x′ = y′] and

P ′σ{y′/x′}σMσ ≡ P ′σσMσ, and by the same argument in the first case
P ′σσMσSQ′σσMσ;

· x′′σ �= y′′σ, then Qσ
Nσ,y′′σ/x′′σ

�→ Q′σ{y′′σ/x′′σ}, and we have Mσ ⇒
Nσ[x′ = y′][x′′σ = y′′σ] and P ′σ{y′/x′}σMσSQ′σ{y′/x′}σMσ.

Now we check naked transition match in Definition 2.4, which is rather easy.

Suppose P
δ
→ P ′, then by Lemma 3.2, P

∅,δ
�→ P ′. Since P Q, by Definition

3.4, the only possible case for Q to match such transition is that Q
∅,δ
�→ Q′,

and P ′ Q′. By Lemma 3.3, Q
δ
→ Q′. Due to Definition 2.4, the proof is

completed. �

Lemma 3.6 ∼ implies .

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–2014

Proof. Let

R = {(P, Q)|P ∼ Q}

We show that R is a symbolic congruence. Suppose P
M,δ
�→ P ′. We check the

following cases:

• δ = y/x and M ⇒ x = y, then by Lemma 3.3, PσM
τ
→ P ′σM . By P ∼ Q,

we have QσM
τ
→ Q′′ with P ′σM ∼ Q′′. By Lemma 3.2, there are two

subcases, we only chose the more difficult one to verify. Q
N,y′/x′

�→ Q′ with
M ⇒ N [x′ = y′] and Q′′ = Q′σM , then we have M ⇒ N [x = y][x′ = y′] and
P ′σMRQ′σM .

• δ = y/x and xσM �= yσM , then PσM
y′/x′

→ Q′σM , where y′ = yσM and

x′ = xσM . By P ∼ Q, we have QσM
y′/x′

→ Q′′ with P ′σM ∼ Q′′. By Lemma

3.2, N , Q′ exists s.t. Q
N,y′′/x′′

�→ Q′, with M ⇒ N , y′/x′ = (y′′/x′′)σM and
Q′′ ≡ Q′σM , thus (y/x)σM = (y′′/x′′)σM and P ′σMRQ′σM .

• δ = τ , then PσM
τ
→ P ′σ, by P ∼ Q, we have QσM

τ
→ Q′′ with P ′σM ∼ Q′′.

By Lemma 3.2, there are two subcases, here we also check one of them.

Q
N,y/x
�→ Q′ with M ⇒ N [x = y] and P ′′ = PσM , then P ′σMRQ′σM .

The other cases are easier. �

Combining the above two lemmas gives the main result of this section:

Theorem 3.7 P ∼ Q iff P Q.

Proof. By Lemma 3.5 and Lemma 3.6. �

4 On-the-fly Algorithm

The definition of symbolic open congruence does not involve the requirement
for considering a universal quantification over substitution, thus paving the
way for an efficient bisimulation checking algorithm.

The algorithm present in Fig.1 and Fig.2 is adapted from the ’on-the-fly’
algorithm for value-passing processes [10] and π-calculus [11]. It combines the
well-known on-the-fly bisimulation algorithm for standard labelled transition
systems with the strategy of instantiating bound name with a single fresh
name. As done previous [11], it assumes a countably infinite subset SN ⊂ N
which is totally ordered. The function nextSN(P, Q) returns the smallest
name in SN that does not appear in the set of free names at states P and Q.

The function bisim(P, Q) starts with the initial pair (P, Q), and calls the
core function, match, which tries to find the smallest bisimulation containing

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–20 15

bisim(P, Q)={
NotBisim:=∅;
return match(P, Q, ∅)�= ∅;

}

match(P, Q, visited)={
if (P, Q) ∈ visited
then return visited ;

else if (P, Q) ∈ NotBisim
then return ∅;

else {

PS{λ|λ∈{fa,u,τ}} = {(P ′, M, δ)|P
M,δ
�→ P ′};

QS{λ|λ∈{fa,u,τ}} = {(Q′, M, δ)|Q
M,δ
�→ Q′};

PSba = {(P ′{z/x}, M, α(z)|P
M,α(x)
�→ P ′, z =

nextSN(P, Q), α ∈ N ∪ N̄};

QSba = {(Q′{z/x}, M, α(z))|Q
M,α(x)
�→ Q′, z =

nextSN(P, Q), α ∈ N ∪ N̄};
PS =

⋃
λ∈{ba,fa,u,τ} PSλ;

QS =
⋃

λ∈{ba,fa,u,τ} QSλ;

temp:=close(PS, QS, visited ∪ {P, Q});
if temp = ∅
then {
NotBisim := NotBisim ∪ {(P, Q)}; return ∅;
}

else if (temp := close(QS, PS, temp)) �= ∅
then return temp;

else {
NotBisim := NotBisim ∪ {(P, Q)}; return ∅;
}

}
}

Fig. 1. The on-the-fly Algorithm (PartI)

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–2016

close(PSet,QSet,visited)={
if PSet = ∅
then return visited ;

else if QSet = ∅
then return ∅;

else {
hasvisit :=visited ;
for each (P, M, δ) ∈ PSet {
if exists (Q, N, λ) ∈ QSet s.t.

(i) δ ∈ fa ∪ ba ⇒ (M ⇒ N ∧ δσM = λσM)
(ii) δ = τ ⇒ ((λ = τ ∧ M ⇒ N) ∨ (λ = y/x ∧ M ⇒

N [x = y]))
(iii) δ = y/x ⇒ ((λ = τ ∧ M ⇒ N [x = y])

∨ (λ = y′/x′ ∧ M ⇒ N ∧ (y/x)σM = (y′/x′)σM)
∨ (λ = y′/x′ ∧ M ⇒ N [x = y][x′ = y′]))

(iv)(temp:=match(PσM , QσM , hasvisit)) �= ∅
then hasvisit :=temp;

else return ∅;
}
return hasvisit ;
}

}

Fig. 2. The on-the-fly Algorithm (PartII)

the pair if two processes in question(P and Q) are open congruent otherwise
returns empty set by matching transitions from them.

The core function, match, performs a depth-first travel on the product of
the two transition graphs which are never fully created, instead, they are gen-
erated together during the construction of the candidate bisimulation relation
which equates them. The parameter visited is used to store pairs that are en-
countered before. If two states fail to match each other’s transitions then they
are not bisimilar and the pair is inserted into NotBisim, which is introduced
to improve the efficiency of algorithm. Thus given two processes P and Q and
a relation visited, function match first checks if (P, Q) has been already in
the relation. If so, return the relation, otherwise if (P, Q) is in NotBisim, then
return ∅, in converse, we produce the outgoing transitions and the next states
set. Note that for bound action, a single fresh name is used to instantiate the
bound name. Then the function close is called to match each other’s deriva-

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–20 17

tives by the definition of symbolic open congruence which involves recursive
calling of function match when applying the substitution σM to the derivatives
and using the extended visited relations.

The pseudo code of the algorithm is described in more detail in Fig.1 and
Fig.2. The correctness of the algorithm is not difficult to justify. First, we
give the following lemma to ensure the termination of the algorithm.

Lemma 4.1 For finite control process P, Q, bisim(P,Q) always terminates.

Proof. Since we only consider the finite control process, that is, the process
expression disallows parallel composition — to appear in the bodies of recur-
sive definitions, and indeed it is built up by parallel composition of processes
that do not contain parallel composition. So it is easy to see that the pro-
cess space searched is finite and by parameter visited, the algorithm stores
and checks if the current processes in question have been checked for each
recursion. Thus the algorithm always terminates. �

The partial correctness can be get by the following lemmas.

Lemma 4.2 If ∀(P, Q) ∈ visited, P Q and R = match(P, Q, visited) �= ∅,
then for ∀(P, Q) ∈ R, P Q holds.

Proof. By induction on the number of recursions of function match, n.

• Initial case: for n = 0, trivial.

• Induction step. if R = match(P, Q, visited) does not return immediately,
then all derivatives of P have been matched by Q for open congruence, and
each of the derivatives is by induction open congruent. So R is built up by
the ’for’ loop when matching the derivatives. By the definition of symbolic
open congruence, provided visited is a set satisfied the condition, then for
∀(P, Q) ∈ R, P Q also holds.

�

By the above lemma, Let visited = ∅, then we can get: if R = match(P, Q, ∅) �=
∅, for ∀(P, Q) ∈ R, P Q.

The following lemma is easy to show when examining the code in Fig.1
and Fig.2.

Lemma 4.3 If R = match(P, Q, ∅) = ∅, then P � Q.

Now, we have the following theorem:

Theorem 4.4 For finite control process P and Q,R = bisim(P, Q, ∅) always
terminate and R �= ∅ if and only if P Q.

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–2018

To see the complexity of the algorithm, since it is well known that the
problem of deciding bisimulaition equivalence of data-independent processes
in value-passing CCS is NP-hard in the size of processes [9], the decision
problem for the mobile process algebra, such as π-calculus and χ-calculus, is
at least NP-hard.

5 Conclusion

In this section, we summarize our work. Our contribution lies in that: (1)
We give a symbolic characterization for strong open congruence in χ-calculus.
Symbolic technique, introduced by Hennessy and Lin [7] is widely used in the
research of process algebra, especially for axiomatizing observation equiva-
lence and bisimulation checking related problem. In this paper, the symbolic
transition system and the definition for symbolic open congruence are given
and the relation to the concrete ones is discussed. The main result is that the
concrete and symbolic open congruence coincide. To our knowledge, this is
the first time to apply the symbolic technique to the research of χ-calculus; (2)
We present an algorithm to check strong open congruence for finite control
processes. Our algorithm falls into the on-the-fly category. Since in strong
case, the open barbed congruence coincide with the open congruence, as a
byproduct, the algorithm can also be used to check open barbed congruence.
It is worth pointing out that although we only deal with χ-calculus in this
paper, our results can be easily adapted to update calculus [14] and fusion
calculus [15] without mismatch, which are the asymmetric and polyadic ver-
sion of χ-calculus.

The present work relies heavily on the symbolic technique, which is widely
used in π-calculus. The characterization for open congruence in this paper
follows the Sangiorgi’s approach [18], in which open style bisimulation is first
introduced a symbolic characterization is also given. However, due to the na-
ture of χ-calculus, the symbolic definition in this paper is more involved. There
is a sea of publication on checking bisimulation relations in process algebra.
For π-calculus, checking open congruence has also been tackled. The Mobility
Workbench [19] implements an ’on-the-fly’ algorithm for open congruence and
Pistore and Sangiorgi [16] present a partition refinement algorithm. As we
know, similar problems for χ-calculus is not considered in the literature.

There are several directions for further research. The weak version con-
gruence has not been investigated. Although we don’t find any difficulty to
adapt the definition and method in this paper to weak open congruence, the
details need to be verified; and more, in weak case, barbed congruence is dif-
ferent from open congruence, checking this bisimulation relation is also very

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–20 19

interesting. The χ-calculus studied in this paper does not include mismatch
operator, and it is interesting to consider bisimulation checking problem in
χ �=-calculus which has been provided and studied elsewhere [5][6].

References

[1] Dam, M., On the decidability of process equivalence for the π-calculus. Theoretical Computer
Science, 1997, 163:214-228.

[2] Fu, Y., A Proof Theoretical Approach to Communications. ICALP’97, Lecture Notes in
Computer Science, Vol 1256, Springer,Berlin, 1997, pp.325-335.

[3] Fu, Y., Bisimulation lattice of Chi calculus, ASIAN’98, Lecture Notes in Computer Science
1256, Springer 1998.

[4] Fu, Y., Bisimulation Congruence of Chi Calculus. To appear in Information and Computation.

[5] Fu, Y. and Z.Yang. Chi calculus with mismatch, CONCUR 2000, Lecture Notes in Computer
Science, Vol 1877, Springer,Berlin, 2000, pp.385-396.

[6] Fu, Y. and Z.Yang. Understanding the Mismatch Combinator in Chi Calculus. Theoretical
Computer Science, 290, 779-830, 2003.

[7] Hennessy, M. and H. Lin, Symbolic bisimulations. Theoretical Computer Science, 138(2):
353-389, 1995.

[8] Honda, K. and M. Tokoro, On asychronous communication semantics, object-based concurrent
computing, Lecture Notes in Computer Science, Vol.612, Springer, Berlin, 1991, pp.21-51.

[9] Jonsson, B. and J.Parrow, Deciding bisimulation equivalences for a class of non-finite-state
programs. Journal of Information and Computation, 107(2):272-302, 11,1993.

[10] Lin, H., ’On-the-fly instantiation’ of value-passing processes. In FORTE/PSTV’98, pp 215-
230. Kluwer Academic Publishers, 1998.

[11] Lin, H., Computing bisimulation for finite-control π-calculus, Journal of Computer Science
and Technology, Vol.15, No. 1, 2000.

[12] Milner, R., Communication and Concurrency, Prentice Hall, 1989.

[13] Milner, R., J.Parrow and D.Walker, A Calculus of Mobile Process, part I/II. Journal of
Information and Computation, 100:1-77, Sept.1992.

[14] Parrow, J. and B. Victor, The update calculus, AMAST’97, Lecture Notes in Computer
Science, Vol 1119, Springer,Berlin, 1997, pp.389-405.

[15] Parrow, J. and B. Victor, The fusion calculus: expressiveness and symmetry in mobile
processes, Logics in Computer Science’98, IEEE Computer Society Press, Silver Spring, MD,
1998, pp.176-185.

[16] Pistore, M. and D. Sangiorgi, A partition refinement algorithm for the π-calculus, In Proc.
CAV’96, Lecture Notes in Computer Science 1102, Springer Verlag.

[17] Sangiorgi, D., π-calculus, internal mobility and agent-passing calculi, Theoret.Comput.Sci.
167(1996), 235-274.

[18] Sangiorgi, D., A theory of bisimulation for π-calculus, Acta Informatica 3 (1996) 69-97.

[19] Victor, B. and F.Moller, The mobility workbench-a tool for the π-calculus. In Proc. CAV’94,
Lecture Notes in Computer Science, pp 428-440. Springer-Verlag, 1994.

T. Chen et al. / Electronic Notes in Theoretical Computer Science 91 (2004) 4–2020

	Introduction
	-calculus and Open congruence
	Symbolic Characterization
	On-the-fly Algorithm
	Conclusion
	References

