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Abstract  1 

This experimental investigation has validated the feasibility of utilizing 2 

silicomanganese (SiMn) slag, marine sand and seawater in concrete production. 3 

Compressive and splitting tensile strengths of concrete were evaluated. Assessment was 4 

also performed on concrete durability which included water absorption, sorptivity, 5 

chloride penetration and sulphate resistance. SiMn slag was found to reduce concrete 6 

compressive and tensile strengths by 9.2% and 17.5% respectively. Nevertheless, the 7 

concrete exhibited comparable durability to conventional concrete at 90-day age, 8 

though it showed reduced value at 28-day age. The research also illustrated that marine 9 

sand improved concrete durability by at least 42.3% and 11.5% in aspect of sorptivity 10 

and chloride penetration respectively, while seawater showed little effect. More durable 11 

concrete can be produced by utilizing SiMn slag, marine sand and seawater for potential 12 

industrial application. 13 

Keywords: Silicomanganese (SiMn) slag, Marine sand, Seawater, Compressive 14 

strength, Splitting tensile strength, Concrete permeability 15 

  16 
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1. Introduction 1 

The demand of concrete has increased rapidly due to robust growth in construction 2 

industry. More recently, construction activities have expanded to coastal areas as a 3 

result of land reclamation projects in countries having limited land [1]. In this 4 

connection, immense amounts of concrete ingredients, especially sand and freshwater, 5 

are consumed which can eventually lead to gradual resources depletion unless new 6 

sources are found. Furthermore, these material resources are not locally available and 7 

the necessary transportation cost has incurred extra project expenses. A more 8 

economical and innovative solution is to use marine sand and seawater as replacing 9 

materials, since they are abundant in coastal region. The incorporation of marine sand 10 

and seawater has already been practiced in concrete construction due to convenience in 11 

extraction, reduced transportation need and hence cost saving [2, 3]. However, the 12 

presence of salt content especially chloride can render steel corrosion of reinforced 13 

concrete, produce cracks in concrete through expansion and subsequently cause 14 

deterioration of the concrete. Therefore, to make full use of marine sand and seawater 15 

successfully, appropriate methods have to be searched and developed to mitigate 16 

corrosion issue in concrete. 17 

To address corrosion issue, desalting treatment can be employed on marine sand and 18 

seawater to reduce salt content to a threshold level [4]. This method is generally not 19 

recommended in practice due to high operating cost and additional requirement of 20 

exquisite quality control and management. Another more feasible remedy is to 21 

incorporate mineral admixture that can improve concrete performance. Extensive 22 

researches have shown that permeability of concrete can be minimized by adding 23 

admixtures such as metakaolin and silica fume as they provide filling effect to refine 24 

micro-pores in concrete [5, 6]. As such, corrosion of reinforcing steel in concrete can 25 
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be minimized as a result of lower oxygen ingress. Moreover, a more drastic method is 1 

to replace conventional steel bars with non-corrodible reinforcement such as fiber 2 

reinforced polymers [7, 8]. In this case, corrosion will not be an issue as corrodible steel 3 

is absent. 4 

As the application of marine sand and seawater in concrete is impeded by steel 5 

corrosion, research on respective effect of these materials on concrete performance has 6 

not attracted enough attention. These materials can, however, be used without much 7 

refinement in mass concrete for foundation, maritime structure and retaining wall, 8 

where steel reinforcement is not required. This leads to the need to further study effect 9 

of marine sand and seawater in concrete. Several researches indicated that concrete 10 

mixed with marine sand and seawater possessed higher early-age compressive and 11 

tensile strengths, but exhibited slightly lower long-term strengths when compared to 12 

normal concrete [3, 9]. Ogirigbo and Ukpata [10] found that chloride from marine sand 13 

and seawater could react with cement hydrate to form Friedel’s salt which promoted 14 

early hydration of concrete. In addition, Islam et al. [11] reported 10% lower late-age 15 

compressive strength due to gradual loss of hydration product caused by salt crystal 16 

formation. Nevertheless, investigation carried out by Tjaronge et al. [12] showed that 17 

concrete made with marine sand and seawater could achieve targeted 28-day 18 

compressive strengths and also result in homogeneous compaction. In addition, Shi et 19 

al. [5] found that seawater concrete exhibited higher compressive strength at all age. In 20 

this regard, appropriate experiments are still required to iron out the discrepancy. 21 

For durability of marine sand and seawater concrete, relatively less research has been 22 

performed when compared to strength. The published literature generally showed that 23 

marine sand had property to improve concrete durability [2, 13]. Huiguang et al. [2] 24 

found that lower clay content of marine sand increased concrete resistance against 25 
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chloride penetration. Liu et al. [13] demonstrated that chloride from marine sand could 1 

reduce concrete porosity and hence its carbonation resistance. As for concrete mixed 2 

with seawater, pore structure analysis conducted by Tjaronge and Irfan [14] implied 3 

that seawater could provide good bonding of cement matrix and aggregate. Shi et al. [5] 4 

showed that concrete mixed with seawater exhibited better chloride penetration 5 

resistance. However, limited research has been conducted in durability aspect 6 

especially when marine sand and seawater are used together in concrete and as such, 7 

further investigation is essential. 8 

Apart from using locally available materials, incorporation of industrial waste in 9 

producing concrete also has great advantage of lowering manufacturing cost. 10 

Silicomanganese (SiMn) slag as shown in Figure 1 is a waste produced during 11 

extraction of silicon and manganese metals from ores for use as alloying elements in 12 

steel [15]. Production of SiMn is economically preferred and adapted because in this 13 

extraction method, there is less loss of manganese as metal inclusion in steelmaking 14 

[16]. As such, a large amount of wastes that include SiMn slag have been produced. 15 

Statistics showed that the smelting plants from Samalaju Industrial Park in Malaysia 16 

have already produced 400,000 tonnes of SiMn slag and these wastes are disposed of 17 

through landfill [17]. This waste disposal method not only causes environmental 18 

pollution, but also is costly and space-consuming. In the context of sustainability and 19 

effective recycling of wastes, there is an urgency to carry out further research to utilize 20 

SiMn slag. One feasible option is for it to be substituted as component in concrete. 21 
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 1 

Figure 1: Silicomanganese slag 2 

To date, several researches have been performed to utilize SiMn slag as partial cement 3 

replacement in concrete [18-20]. It was shown by Nath and Kumar [18] that concrete 4 

incorporated with SiMn slag as partial cement replacement could achieve comparable 5 

28-day compressive strength to normal concrete, though lower strength was observed 6 

at early age. This was mainly due to inactive pozzolanic reaction of SiMn slag during 7 

the early stage. Moreover, Frías et al. [20] found that cementitious paste blended with 8 

cement and SiMn slag in small amount (5%-15%) could improve its resistance to 9 

aggressive solutions like NaCl, Na2SO4 and seawater. The reason was that SiMn slag 10 

could refine pore structure of cementitious mixture by filling up concrete void. From 11 

the review, SiMn slag as cement replacement can yield good result. However, to 12 

substitute SiMn slag for cement, additional grinding process is required which can 13 

eventually increase production cost [21]. 14 

Therefore, it is more cost-effective if SiMn slag can directly be used as coarse aggregate 15 

in concrete without undergoing extra treatment. There is limited investigation being 16 

carried out using SiMn slag to replace gravel as coarse aggregate for concreting. Further 17 
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cost reduction can be made when locally available materials of marine sand and 1 

seawater are utilized. From the perspective of sustainability and cost-effectiveness, full 2 

replacement of the conventional materials is beneficial. Hence, in this investigation, 3 

innovative concreting materials of SiMn slag, marine sand and seawater are used to 4 

replace ordinary materials of gravel, river sand and tap water respectively. The aim of 5 

this research is to study effect of the aforementioned materials on strength and 6 

durability of concrete. 7 

2. Materials and methods 8 

2.1. Materials characterization 9 

2.1.1. Cement 10 

Ordinary Portland cement (OPC) graded as CEM 1 42.5 N was obtained from local 11 

supplier, Cahaya Mata Sarawak (CMS) and used as binder in this research. It conformed 12 

to the requirements stated in ASTM C150 [22]. 13 

2.1.2. Coarse aggregate 14 

Coarse aggregates used in this research included crushed limestone (B1) and crushed 15 

SiMn slag (B2) which had nominal sizes of 19.0 mm and 25.0 mm respectively. Particle 16 

size distribution of the two types of aggregate is presented in Figure 2. Both aggregate 17 

size distribution curves were within upper and lower bounds as specified in ASTM C33 18 

[23]. Specific gravities of the aggregate B1 and B2 were determined as 2.64 and 2.97 19 

respectively as presented in Table 1. Chemical composition of SiMn slag is shown in 20 

Table 2. 21 

2.1.3. Fine aggregate 22 

Two types of sand, river sand and marine sand, were used as fine portion of aggregate 23 

in concrete. The marine sand was sampled at Miri Tanjung Lobang Beach located in 24 

Malaysia. Due to highly fine property of the sand, quarry dust retrieved from quarrying 25 
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waste was used to replace 30% sand by volume in order to ensure desirable concrete 1 

workability. Particle size distributions of blended river sand (C1) and blended marine 2 

sand (C2) together with upper and lower size distribution limits of ASTM C33 are 3 

shown in Figure 2 [23]. Grading curve of C1 was close to the ASTM limit while it was 4 

slightly beyond for C2 which indicated higher proportion of fine particle. The grading 5 

of C2 aggregate can be further improved by blending with higher percentage of quarry 6 

dust. However, it was not done due to economic reason and hence C2 aggregate was 7 

still adopted for this study despite its non-conformation with recommended grading. 8 

2.1.4. Mixing water 9 

For mixing water, tap water (D1) and seawater (D2) were used. Table 3 summarizes 10 

chemical composition of the seawater. 11 

2.1.5. Superplasticizer 12 

Superplasticizer (SP), sodium naphthalene sulphonate formaldehyde was used as 13 

chemical admixture for ensuring sufficient workability of concrete. 14 

 15 

 16 

Figure 2: Particle size distribution of coarse and fine aggregates 17 
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Table 1: Physical properties of aggregates 1 

Properties of aggregates B1 B2 C1 C2 

Fineness modulus 6.75 9.25 3.18 2.59 

Specific gravity 2.64 2.97 2.67 2.70 

Water absorption (%) 0.66 0.21 - - 

Flatness ratio 0.68 0.55 - - 

Elongation ratio 0.68 0.59 - - 

Aschenbrenner & 

Zingg catergory 
Equidimensional 

Flaky and 

elongated 
- - 

 2 

Table 2: Chemical composition of SiMn slag  3 

Chemical composition SiMn slag (%) 

Silicon dioxide (SiO2) 41.49 

Calcium oxide (CaO) 21.04 

Aluminium oxide (Al2O3) 13.95 

Manganese oxide (MnO) 8.12 

Magnesium oxide (MgO) 4.61 

Ferric oxide (Fe2O3) 4.47 

Potassium oxide (K2O) 1.35 

 4 

Table 3: Chemical composition of seawater 5 

Density 

(26 oC) 

pH 

(26 oC) 

Composition (mg/l) 

Na Mg Ca K Cl SO4 

1.01 g/cm3 8.1 17840 460 613 456 19675 1730 

 6 

2.2. Mix proportion 7 

Table 4 shows mix proportion designed for this study. Six types of concrete mixture 8 

were proposed to study the influence of different materials on hardened concrete 9 

properties. Hereafter, abbreviation of “Mix (B/C/D)” was used to indicate different type 10 

of materials used for three components of concrete, whereby B denoted coarse 11 

aggregate, C denoted fine aggregate and D denoted mixing water. Mix 1 (B1/C1/D1) 12 

was control mix which contained conventional materials of limestone, river sand and 13 

tap water as mixing ingredients. For all the mixes, water to cement ratio was kept 14 

constant at 0.32. Besides, SP content used for all mixes was 1 %. The workability of 15 

each mix was also examined through concrete slump test as summarized in Table 4. 16 



10 
 

Table 4: Mix proportion of concrete mixture 1 

Components 

Proportions (kg/m3) 

Mix 1 

(B1/C1/D1) 

Mix 2 

(B2/C1/D1) 

Mix 3 

(B1/C2/D1) 

Mix 4 

(B1/C1/D2) 

Mix 5 

(B1/C2/D2) 

Mix 6 

(B2/C2/D2) 

Cement 550 550 550 550 550 550 

Limestone 965 0 965 965 965 0 

SiMn slag 0 1115 0 0 0 1115 

River sand 520 520 0 520 0 0 

Marine sand 0 0 515 0 515 515 

Quarry dust 167 167 173 167 173 173 

Tap water 176 176 176 0 0 0 

Seawater 0 0 0 176 176 176 

Superplastizer 5.5 5.5 5.5 5.5 5.5 5.5 

Slump value (mm) 121 77 89 82 88 78 

Note: 

B1 – Limestone, B2 – SiMn slag; C1 – River sand, C2 – Marine sand; D1 – Tap water, D2 – Seawater 

 2 

2.3. Test methods 3 

2.3.1. Compressive strength 4 

Cylinder and cube compressive strengths were determined for each type of mix. 5 

Cylindrical moulds having dimension of 100 mm x 200 mm and cube moulds of 100 6 

mm were used respectively. The samples were cured for 7, 28 and 90 days and tested 7 

by using 3000kN semi-auto compression testing machine in accordance with the  8 

ASTM C39 requirement [24]. 9 

2.3.2. Splitting tensile strength 10 

Splitting tensile test was used to evaluate concrete tensile strength. In carrying out the 11 

test, cylindrical concrete samples with size of 100 mm x 200 mm were prepared. The 12 

splitting tensile strengths of all mixes were measured at concrete ages of 7, 28 and 90 13 

days. The samples were tested in accordance with the ASTM C496 requirement [25]. 14 

2.3.3. Water absorption and permeable pore 15 

Water absorption and permeable pore volume of concrete were measured based on the 16 

ASTM C642 test method [26]. 50 mm concrete cubes were prepared and tested at the 17 

respective age of 28 and 90 days. 18 
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2.3.4. Sorptivity 1 

Sorptivity test was conducted to measure rate of water absorption of concrete in 2 

accordance with the ASTM C1585 requirement [27]. The test was carried out on 3 

concrete samples after 28-day and 90-day curing. 100 mm x 200 mm cylindrical 4 

samples were trimmed into dimension of 100 mm x 50 mm by using Covington slab 5 

saw. The samples were then conditioned in oven for 7 days at 50 oC temperature. Side 6 

and top surfaces of the samples were sealed while the bottom face was in contact with 7 

water for absorption. Mass changes of the samples were measured for 8 days. Initial 8 

and secondary sorptions were then calculated. 9 

2.3.5. Rapid chloride ion permeability 10 

Concrete permeability for each mix was also examined by performing rapid chloride 11 

ion penetration test. The test procedure recommended by ASTM C1202 [28] was used 12 

for this study. Cylindrical concrete samples with dimension of 100 mm x 50 mm were 13 

prepared. The samples were cured for 28 and 90 days before the test. After standard 14 

conditioning, the samples were connected to two cells, whereby one cell was filled with 15 

3.0 % NaCl solution while the other cell contained 0.3 N NaOH solution. Electric 16 

current which passed through the samples was measured for 6 hours and the 17 

corresponding charge was determined. Table 5 showed the guideline for assesssing 18 

concrete permeability with respect to the flow charge. 19 

Table 5: Concrete permeability based on RCPT (ASTM C1202, 2012) 20 

 Charge passed (coulombs) Permeability of concrete  

 > 4,000 High  

 2,000–4,000 Moderate  

 1,000–2,000 Low  

 100–1,000 Very low  

 < 100 Negligible  

 21 
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2.3.6. Resistance to sulphate attack 1 

Sulphate immersion test was conducted for each concrete mix to evaluate its resistance 2 

to sulphate attack. The test was conducted in accordance with the ASTM C1012 3 

guideline [29]. 100 mm concrete cubes were casted, cured for 7 days and then immersed 4 

in 5 % sodium sulphate solution for 7, 28 and 90 days. Concrete compressive strength 5 

at each immersion durations was measured. Subsequently, reduction of the compressive 6 

strength was determined. 7 

3. Results and discussions 8 

3.1. Concrete workability 9 

Table 4 shows slump values which measure the workability of concrete of different 10 

mixes. All the slump values were in the range of 77 mm to 121 mm which indicated 11 

ample workability for concrete pumping [30]. Control mix, Mix 1 (B1/C1/D1) was 12 

noted to exhibit the highest slump value. Meanwhile, incorporation of SiMn slag as 13 

coarse aggregate replacement, as in Mix 2 (B2/C1/D1), reduced the slump value 14 

significantly by 36 %. This was attributed to poor particle size distribution exhibited by 15 

SiMn slag. Referring to Figure 2, approximately 70 % of SiMn slag aggregate was 16 

retained on 25 mm sieve. Hence, there was a lack of finer particle to lubricate aggregate 17 

skeleton for achieving desirable concrete workability. This research mainly focuses on 18 

using 100 % SiMn slag in coarse aggregate replacement as it better utilizes industrial 19 

by-product that can produce more sustainable and economic concrete. Nevertheless, 20 

partial replacement of coarse aggregate by SiMn slag may result in well graded 21 

aggregate and hence better workability. In this regard, further research is recommended 22 

to confirm this finding. 23 

Mix 3 (B1/C2/D1) concrete, manufactured with marine sand, showed 26 % lower slump 24 

value compared with the control mix using river sand. This was due to fine property of 25 
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marine sand which possessed higher net particle surface area. This increased water 1 

demand and hence additional water was required for achieving similar workability to 2 

control concrete. Fineness modulus of marine sand and river sand were determined as 3 

2.59 and 3.18 respectively, indicating lower average aggregate size exhibited by marine 4 

sand. Mix 3 (B1/C2/D1) can achieve better workability by replacing marine sand with 5 

more quarry dust as this increases fineness modulus of aggregate which exhibits less 6 

water demand. Nevertheless, this will contribute to drawback of cost increase. 7 

Replacement of tap water with seawater in Mix 4 (B1/C1/D2) showed 32 % lower 8 

slump value than control mix. The result was in line with finding of Younis et al. [31] 9 

that concrete mixed with seawater required extra 15 % superplasticizer to achieve 10 

comparable workability to control concrete. The presence of salt in seawater reduces 11 

concrete setting time whereby concrete losses its workability at higher rate. 12 

Furthermore, the use of marine sand and seawater as in Mix 5 (B1/C2/D2) showed 27 % 13 

reduction of slump value, while further incorporation of SiMn slag as in Mix 6 14 

(B2/C2/D2) exhibited 36 % reduction. In short, although concrete incorporated with 15 

SiMn slag, marine sand and seawater exhibited lower slump value, it can still provide 16 

satisfactory workability in practice.  17 

3.2. Effect on compressive strength 18 

Cylinder and cube compressive strength of concrete at 7-day, 28-day and 90-day ages 19 

is illustrated in Figure 3 and Figure 4 respectively. The compressive strength of all 20 

concrete samples increased orderly with curing age. Both types of concrete strength 21 

exhibited similar trend lines. By using the experimental data, relationship between 22 

cylinder and cube compressive strengths was analyzed through linear regression 23 

method. The resultant relationship is presented as Equation 1: 24 
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 fcy = 0.6945fcu + 0.12 Equation 1 

where fcy and fcu are cylinder and cube compressive strength respectively. 1 

The cylinder strength was normalized by dividing it with the cube strength as illustrated 2 

in Figure 5 and the cylinder to cube strength ratio was determined as 0.70. The result 3 

was also compared well with British Standard and published literature. Concrete 4 

strength ratio calculated from British Standard was 0.83 [32]. Meanwhile, Neville [33] 5 

provided a more comprehensive cylinder and cube strength relationship which took into 6 

consideration of various shapes and sizes of concrete samples and gave 0.61 strength 7 

ratio. Also, Elwell and Fu [34] claimed that concrete cylinder to cube strength ratio 8 

ranged from 0.60 and 0.90. Replacement of British Standard by Eurocode for concrete 9 

design has advocated use of concrete cylinder strength rather than cube strength [35]. 10 

In this connection, Equation 1 can be beneficial in conversion of cube strength into 11 

cylinder strength. 12 

Table 6 presents variation of concrete compressive strength for all mixes with respect 13 

to the control. Utilizing SiMn slag as coarse aggregate in concrete generally decreased 14 

compressive strength regardless of age. Reduction of compressive strengths was 15 

computed as 5.1 %, 8.0 % and 9.2 % at 7, 28 and 90 days respectively for Mix 2 16 

(B2/C1/D1), while it was 7.6 %, 8.2 % and 8.3 % respectively for Mix 6 (B2/C2/D2). 17 

As shown in Table 1, SiMn slag aggregate exhibited high flatness and elongation ratio 18 

which was categorized as elongated and flaky aggregate, while limestone aggregate 19 

belonged to equidimensional category. Therefore, the reduction of compressive 20 

strength was attributed to angular shape and smoother surface of SiMn slag which 21 

weakened its bonding with cement paste. Similar observation was reported in study 22 

conducted by Kazjonovs, Bajare and Korjakins [36], whereby steel punch was used as 23 
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coarse aggregate. In this case, flaky steel punch exerted high and concentrated stress on 1 

concrete interface which resulted in brittle failure at relatively low load. 2 

For concrete containing marine sand and seawater, as in Mix 3 (B1/C2/D1), Mix 4 3 

(B1/C1/D2) and Mix 5 (B1/C2/D2), 7-day compressive strength increased by 2.3 %, 4 

4.0 % and 3.4 % respectively. The strength increase can be attributed to formation of 5 

Friedel’s salt which resulted from reaction between free chloride and aluminate ferrite 6 

monosulfate (AFm) hydrate [10, 37]. The Friedel’s salt can fill up pores and provide 7 

blocking effect which reduces concrete porosity and densifies pore structure. As a result, 8 

the concrete exhibited higher strength. The results tied well with previous studies 9 

performed by Katano et al. [3], Shi et al. [5] and Wegian [9], wherein higher early 10 

strength was observed due to Friedel’s salt. Meanwhile, for long-term compressive 11 

strength, slight reduction was observed for all concrete mixes containing marine sand 12 

and seawater. For example, the reductions at 90 days for Mix 3 (B1/C2/D1), Mix 4 13 

(B1/C1/D2) and Mix 5 (B1/C2/D2) were 3.3 %, 1.7 % and 2.0 % respectively. The 14 

strength deterioration was attributed to gradual crystallization of salt from marine sand 15 

and seawater within concrete pore at the later age. Accumulation of salt crystals can 16 

cause concrete expansion which develops micro-crack, resulting in strength reduction 17 

[38]. The decrease of long-term strength caused by excessive salt content is verified by 18 

sulphate salt immersion test, the results of which are presented later. Besides, Mix 6 19 

(B2/C2/D2) concrete exhibited similar compressive strengths to Mix 2 (B2/C1/D1) 20 

concrete at all ages. This implies that marine sand and seawater do not bring about 21 

much negative effect to compressive strength on concrete batched with SiMn slag. As 22 

such, there is potential for concrete manufactured with SiMn slag, marine sand and 23 

seawater to be used for commercial purpose from perspective of compressive strength. 24 
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 1 

Figure 3: Development of cylinder compressive strength 2 

 3 

Figure 4: Development of cube compressive strength 4 
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 1 

Figure 5: Correlation between cylinder and cube compressive strength 2 

Table 6: Strength variation with respect to control mix 3 

Concrete age 

Variation of compressive strength (%) 

Mix 2 

(B2/C1/D1) 

Mix 3 

(B1/C2/D1) 

Mix 4 

(B1/C1/D2) 

Mix 5 

(B1/C2/D2) 

Mix 6 

(B2/C2/D2) 

7 days -5.1 2.3 4.0 3.4 -7.6 

28 days -8.0 -1.9 -2.2 -1.6 -8.2 

90 days -9.2 -3.3 -1.7 -2.0 -8.3 

Concrete age 

Variation of splitting tensile strength (%) 

Mix 2 

(B2/C1/D1) 

Mix 3 

(B1/C2/D1) 

Mix 4 

(B1/C1/D2) 

Mix 5 

(B1/C2/D2) 

Mix 6 

(B2/C2/D2) 

7 days 3.7 11.3 8.8 9.8 -11.8 

28 days -9.0 -3.6 -5.6 -3.7 -11.8 

90 days -17.5 3.7 -2.6 -4.9 -14.5 

 4 

3.3. Effect on splitting tensile strength 5 

Development of concrete splitting tensile for all mixes is presented in Figure 6. The 6 

results showed that the strength ranged from 3.6 MPa to 4.6 MPa, 4.6 MPa to 5.2 MPa 7 

and 5.2 MPa to 6.4 MPa at 7 days, 28 days and 90 days respectively. All the concrete 8 

tensile strength increased orderly with curing time. 9 

Overall result showed reduction of splitting tensile strength in concrete manufactured 10 

with SiMn slag. At 90-day age, the strength reduction was 17.5 % and 14.5 % for Mix 11 

2 (B2/C1/D1) and Mix 6 (B2/C2/D2) respectively. Similar to compressive strength, the 12 
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tensile strength decrease was due to flaky and elongated geometry exhibited by SiMn 1 

slag which caused brittle and premature failure of concrete. It will be important that 2 

future research is extended to develop methods to produce round shaped SiMn slag for 3 

use as coarse aggregate in concreting. One possible method is by appropriate grinding 4 

and then screening, but extra cost and time may be incurred. Moreover, another reason 5 

was that smooth surface exhibited by SiMn slag had lessened adhesion and hence 6 

bonding of aggregate with cement paste. The results are in accordance with findings 7 

reported by Kazjonovs et al. [36] who used smooth steel punch as coarse aggregate.  8 

Marine sand and seawater improved concrete splitting tensile strength at 7-day age by 9 

11.3 %, 8.8 % and 9.8 % for Mix 3 (B1/C1/D2), Mix 4 (B1/C1/D2) and Mix 5 10 

(B1/C2/D2) respectively. Similar to compressive strength, the strength increment at 11 

early age was due to pore refinement promoted by Friedel’s salt formation [10, 37]. 12 

Furthermore, Wegian [9] also showed that concrete mixed with and cured in seawater 13 

possessed higher bonding strength and thus greater tensile strength. On long-term basis, 14 

concrete containing marine sand and seawater achieved comparable tensile strength to 15 

the control. Research performed by Wegian [9] and Limeira, Agullo and Etxeberria [39] 16 

also indicated that marine sand and seawater had negligible effect on concrete tensile 17 

strength at later age. 18 

Generally, splitting tensile strength and compressive strength of concrete shows similar 19 

result trend. In this connection, correlation between tensile and compressive strength is 20 

established by using regression analysis based on experimental data. These two 21 

parameters can be as expressed as a power function shown as Equation 2 below.  22 

 fct = 0.2153fcy
0.7978

 Equation 2 
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,where fct is the splitting tensile strength and fcy is the cylinder compressive strength. 1 

The computed relationship has an acceptable R2 value of 0.81. To show validity of the 2 

equation, comparison is made with Australian Standard (AS) and American Concrete 3 

Institute (ACI) as depicted in Figure 7. The AS [40] provides a more conservative 4 

relationship between splitting tensile and compressive strength, while Equation 2 shows 5 

closer relationship to that in ACI [41]. This implies that incorporation of SiMn slag, 6 

marine sand and seawater has minimal effect on the relationship. 7 

 8 

Figure 6: Splitting tensile strength of concrete incorporating SiMn slag, marine 9 

sand and seawater 10 
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 1 

Figure 7: Correlation between splitting tensile and compressive strength 2 

3.4. Water absorption and permeable pore of concrete 3 

Figure 8 presents water absorption and permeable pore volume of concrete at 28 and 4 

90 days. The water absorption ranged from 3.86 % to 5.30 % and 3.73 % to 4.78 % for 5 

28-day and 90-day ages respectively, while the concrete contained 11.25 % to 14.03 % 6 

and 10.79 % to 13.04 % pore volume respectively at these ages. The result generally 7 

indicated that water absorption increased with pore volume and vice versa. It also 8 

showed that water absorption and pore volume slightly decreased with concrete age. 9 

This was ascribed to more complete hydration of cement which produced increased 10 

calcium silicate hydrate (CSH) to fill up concrete pore. 11 

The use of SiMn slag significantly reduced water absorption of concrete. This was due 12 

to lower water absorption capability of SiMn slag aggregate. As shown in Table 1, the 13 

SiMn slag and limestone aggregates were found to possess 0.21 % and 0.66 % water 14 

absorption respectively. In this regard, SiMn slag aggregate retains less amount of water 15 

and hence the resultant concrete exhibits lower water absorption. As for pore volume, 16 

it was reduced for concrete containing SiMn slag as well. This indicated that reduction 17 
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of concrete water absorption was also attributed to lower porosity possessed by SiMn 1 

slag concrete. Similar observation was made in study conducted by Alsayed and Amjad 2 

[42], whereby natural and crushed aggregates were used. Although the obtained water 3 

absorption values cannot effectively and directly measure concrete quality, they still 4 

are below 10 % and hence within the range of good concrete defined by Neville [43]. 5 

Water absorption and pore volume of concrete containing marine sand, as in Mix 3 6 

(B1/C2/D1), significantly decreased at both 28-day and 90-day ages. This was because 7 

of smaller particle size possessed by marine sand. In this regard, the fine marine sand 8 

can provide more densified microstructure. Cheng et al. [44] also showed that marine 9 

sand minimized concrete porosity and hence capillary water absorption. For effect of 10 

seawater, Mix 4 (B1/C1/D2) concrete exhibited slightly lower water absorption and 11 

pore volume than the control. In alkaline environment of concrete, Friedel’s salt could 12 

precipitate from AFm hydrate and chloride which was stable in high pH and able to fill 13 

concrete pore [5, 45, 46]. Although the study indicates that the porosity can be slightly 14 

reduced by Friedel’s salt, the effect on permeability is not significant as shown in 15 

sorptivity test which will be explained and elaborated later. Also, effect of seawater is 16 

not noticeable in Mix 5 (B1/C2/D2) as the pore refinement contributed by marine sand 17 

is more dominant. 18 

From the results and explanation presented so far, it is logical that concrete incorporated 19 

with SiMn slag, marine sand and seawater exhibits the lowest water absorption and pore 20 

volume, as confirmed by test result of Mix 6 (B2/C2/D2). Nevertheless, water 21 

absorption and pore volume cannot best represent concrete durability as it only 22 

indicates water retention capacity. In fact, rate of water absorption is a better indicator 23 

of quality concrete. Therefore, concrete permeability has to be further assessed with 24 
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sorptivity and rapid chloride ion penetration tests, of which the results of these studies 1 

are presented in the following section. 2 

 3 

Figure 8: Immersed water absorption and volume of permeable pore of concrete 4 

incorporating SiMn slag, marine sand and seawater 5 
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Concrete casted with SiMn slag, as in Mix 2 (B2/C1/D1), exhibited higher sorptivity at 1 

28-day age, but similar sorptivity at 90-day age when compared with control mix. 2 

Higher sorptivity at 28-day age was due to weaker bonding of smooth SiMn slag with 3 

cement matrix. According to Giaccio and Zerbino [47], coarse aggregate possessing 4 

smooth surface will reduce concrete bonding strength and result in more porous 5 

interface. As a result, water ingress is higher.  As for the improved sorptivity at 90-day 6 

age, it might be attributed to weak pozzolanic reaction occurring within interfacial 7 

transition zone of the concrete. The mechanism of pozzolanic reaction involves 8 

formation of calcium silicate hydrate (CSH) or calcium aluminate hydrate (CAH) from 9 

reaction between calcium hydroxide and silicate or aluminate component [48]. Based 10 

on test result in Table 2, SiMn slag comprised 41 % and 14 % of silicon dioxide and 11 

aluminium oxide respectively. Although SiMn slag aggregate possesses relatively small 12 

specific surface area, it is still possible that small scale pozzolanic reaction can take 13 

place, especially on interface between the aggregate and cement paste. Study performed 14 

by Masateru et al. [49] also showed that pozzolanic reaction which occurred on outer 15 

layer of coal fly ash aggregate, could refine its interface with cement matrix. As a result, 16 

some refinement may have been made on the concrete which reduces its porosity and 17 

hence sorptivity. As the expected pozzolanic reaction only occurs on interface between 18 

SiMn slag and cementitious matrix, which is relatively small-scale, improvement is not 19 

reflected in the compressive strength of concrete. Nevertheless, further investigation 20 

has to be carried out to confirm this finding. 21 

The use of marine sand in Mix 3 (B1/C2/D1) significantly improved concrete durability 22 

as its sorptivity reduced by nearly half at both 28-day and 90-day ages. This was 23 

because marine sand aggregate was smaller in size which provided more compacted 24 

concrete. Previous study conducted by Cheng et al. [44] showed that marine sand could 25 
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reduce porosity of cement paste, which optimized pore distribution, providing concrete 1 

with a denser microstructure. As shown in Mix 4 (B1/C1/D2), sorptivity of concrete 2 

mixed with seawater was almost the same as that of control mix. The result shows 3 

dissimilar effect as presented in the water absorption test. This implies that reduction 4 

of concrete porosity promoted by Friedel’s salt is not adequate to improve its 5 

permeability as it is also dependent on pore characteristics such as pore size and 6 

connectivity. The effect on permeability may not be detected and reflected in the test 7 

as variations of water absorption and porosity are small. The result was also confirmed 8 

by Mix 5 (B1/C2/D2) whereby seawater was used for casting. As for Mix 6 (B2/C2/D2), 9 

the result showed the ability of marine sand to offset drawback of SiMn slag aggregate 10 

on concrete sorptivity at 28-day age and even improve it at 90-day age. Overall, the use 11 

of SiMn slag, marine sand and seawater can produce concrete with lower sorptivity and 12 

hence make it more durable than normal concrete. 13 

Table 7: Sorptivity at initial and secondary stages of concrete incorporating 14 

SiMn slag, marine sand and seawater 15 

 
Mix 

Initial sorptivity (mm/sec1/2) 

 28-day 90-day 

 Mix 1 (B1/C1/D1) 0.0052 0.0041 

 Mix 2 (B2/C1/D1) 0.0070 0.0043 

 Mix 3 (B1/C2/D1) 0.0030 0.0020 

 Mix 4 (B1/C1/D2) 0.0055 0.0050 

 Mix 5 (B1/C2/D2) 0.0032 0.0021 

 Mix 6 (B2/C2/D2) 0.0048 0.0035 

 
Mix 

Secondary sorptivity (mm/sec1/2) 

 28-day 90-day 

 Mix 1 (B1/C1/D1) 0.00095 0.00085 

 Mix 2 (B2/C1/D1) 0.00135 0.00095 

 Mix 3 (B1/C2/D1) 0.00055 0.00050 

 Mix 4 (B1/C1/D2) 0.00095 0.00090 

 Mix 5 (B1/C2/D2) 0.00060 0.00055 

 Mix 6 (B2/C2/D2) 0.00065 0.00055 

 16 

17 



25 
 

 1 

 2 

Figure 9: Cumulative absorption of concrete 3 

 4 

3.6. Effect on rapid chloride ion penetration 5 

Alternatively, concrete permeability can also be measured based on its resistance to 6 

chloride ion penetration. Figure 10 summarizes chloride ion permeability of concrete 7 
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of all the mixes at 28-day and 90-day ages. At 28-day age, concrete chloride penetration 1 

resistance which was measured as charge passed through it, ranged from 1885.6 to 2 

2752.7 Coulomb (C). In this case, the concrete was graded as “moderate” permeability 3 

except for Mix 3 (B1/C2/D1) and Mix 5 (B1/C2/D2) which were graded as “low” 4 

permeability. Meanwhile, the charge which passed through 90-day concrete ranged 5 

from 1421.8 to 1659.8 C and all concrete was classified as “low” permeability. This 6 

showed that concrete resistance to chloride ion penetration improved with curing. This 7 

was due to more complete hydration of cement which developed more CSH to fill 8 

concrete pore. 9 

Mix 2 (B2/C1/D1) concrete which contained SiMn slag exhibited higher chloride 10 

permeability at 28-day age, but it showed similar permeability to control concrete at 11 

90-day age. The result showed same trend as that of sorptivity test. Similarly, same 12 

explanation can be given to the improvement of concrete resistance to chloride ion 13 

penetration at later age, whereby weak pozzolanic reaction might have occurred to 14 

refine aggregate interface. In this case, chloride can also be bound onto extra CSH and 15 

CAH which provides improved chloride binding capacity of concrete. Investigation by 16 

Frías et al. [20] also showed that pozzolanic reaction resulted from SiMn slag enhanced 17 

concrete resistance against penetration of aggressive chemicals such as chloride, 18 

sulphate and seawater. Since both sorptivity and chloride penetration test results show 19 

that SiMn slag concrete possesses comparable permeability to normal concrete on long 20 

term, it has potential to be used commercially. 21 

As observed in Mix 3 (B1/C2/D1), the use of marine sand improved concrete resistance 22 

to chloride ion penetration at both 28-day and 90-day ages. The finer particle size of 23 

marine sand reduced concrete pore volume and refined it into more compacted 24 

microstructure. According to Cheng et al. [44], another possibility was that marine sand, 25 
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being more fine and having higher surface area, can retain more water to promote 1 

hydration through internal curing. As for seawater, the test result of Mix 4 (B1/C1/D2) 2 

showed that it had negligible effect on chloride permeability of concrete. This also 3 

implied that permeability reduction of Mix 5 (B1/C2/D2) concrete, which was made 4 

from both marine sand and seawater, was ascribed to effect of marine sand. As for Mix 5 

6 (B2/C2/D2), it had been shown that marine sand improved concrete resistance to 6 

chloride penetration as well. 7 

In summary, test results of chloride ion permeability of all mixes agree well with those 8 

of sorptivity. It has been proven that using of the combination of SiMn slag, marine 9 

sand and seawater for concreting can result in more durable concrete than conventional 10 

concrete. 11 

 12 

 13 

Figure 10: Chloride ion permeability of concrete incorporating SiMn slag, 14 

marine sand and seawater 15 
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3.7. Effect on resistance to sulphate attack 1 

Sulphate immersion test measures concrete resistance to sulphate attack in term of 2 

compressive strength loss. Figure 11 depicts the loss of compressive strength for all 3 

concrete mixes at 7-day, 28-day and 90-day immersion periods. It was observed that 4 

loss of concrete compressive strength increased with immersion time. After 7 days of 5 

immersion, the strength loss ranged from 0.28 % to 1.69 % which was negligible. 6 

Meanwhile, strength loss after 28 days of immersion increased slightly to the range 7 

between 2.07 % and 3.53 %. Concrete strength loss after 90 days of immersion, which 8 

became more noticeable, was between 7.92 % and 9.90 %. The strength loss was due 9 

to formation of expansive ettringite and gypsum from reaction between sulphate and 10 

hydration products such as CAH and calcium hydroxide, which induced stress in 11 

concrete [50]. Another deterioration mechanism was formation of salt crystal within 12 

concrete pore which cause damage through expansion and subsequently concrete 13 

micro-crack developed. 14 

Although variation between the mixes was minimal, it had been observed that SiMn 15 

slag exhibited slightly lower resistance to sulphate attack than the control for all 16 

immersion duration. As the test was carried out after 7-day of curing, initial lower 17 

hydration rate of SiMn slag concrete had made it more permeable to sulphate intrusion 18 

which caused more damage. It was also shown in Mix 3 (B1/C2/D1), Mix 5 (B1/C2/D2) 19 

and Mix 6 (B2/C2/D2) that marine sand could enhance concrete resistance to sulphate 20 

attack. As explained previously, finer marine sand had produced concrete with lower 21 

permeability that reduced sulphate ingression. Also, the result showed that seawater 22 

slightly reduced concrete damage caused by sulphate attack. This was due to lower 23 

porosity of the concrete contributed by Friedel’s salt. On the whole, concrete 24 
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incorporated with SiMn slag, marine sand and seawater displayed slightly higher 1 

resistance against sulphate attack. 2 

 3 

Figure 11: Loss of compressive strength for all concrete mixes  4 
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4. Conclusion 1 

The result of this experimental investigation has provided better insight into strength 2 

and durability of concrete incorporating with SiMn slag, marine sand and seawater. In 3 

this regard, the following conclusions can be drawn: 4 

1. Incorporation of SiMn slag as coarse aggregate for concreting had reduced concrete 5 

workability by 36 % due to poor aggregate size grading. Marine sand and seawater 6 

also reduced concrete slump by 26 % and 32 % respectively. 7 

2. With incorporation of SiMn slag, both compressive and tensile strength of concrete 8 

had been reduced by as much as 9.2 % and 17.5 % respectively as flaky characteristic 9 

of the aggregate had resulted in weaker bonding with cement paste. It was proven 10 

that concrete manufactured with marine sand and seawater achieved higher strength 11 

at early age, but lower late strength against the conventional concrete. 12 

3. SiMn slag concrete exhibited lower water absorption, with value of 4.1 % and 3.9 % 13 

at 28-day and 90-day ages respectively, against the control concrete with value of 14 

5.3 % and 4.8 % at these ages, due to lower water absorption characteristic of SiMn 15 

slag aggregate. Water absorption of the concrete can be further reduced to 3.9 % and 16 

3.7 % at 28-day and 90-day ages respectively by incorporating with marine sand and 17 

seawater which had characteristic to better fill up concrete pore. 18 

4. Both sorptivity and rapid chloride penetration test results showed that incorporation 19 

of SiMn slag increased concrete permeability at 28-day age when compared with 20 

conventional concrete. However, similar permeability of two types of concrete was 21 

shown by the tests at 90-day age. Also, the use of marine sand reduced concrete 22 

permeability and was able to offset drawback of SiMn slag aggregate in the aspect 23 

of durability. 24 
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5. Sulphate immersion test demonstrated that loss of concrete compressive strength due 1 

to sulphate attack was small after 7-day and 28-day test periods. But, the loss became 2 

more significant after 90-day immersion time with the highest loss value of 9.9 %. 3 

Despite the limitation, it is possible to produce more durable concrete with 4 

incorporation of SiMn slag, marine sand and seawater for potential industrial use. For 5 

future research, it is necessary to carry out investigation to validate possible pozzolanic 6 

reaction occurring at the out surface of SiMn slag aggregate. 7 

  8 
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