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Abstract: Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic 
insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a 
number of assessments of blood glucose levels every day, employing capillary glucometers for the 
monitoring of blood glucose dynamics. In recent years, advances in technology have allowed for 
the creation of revolutionary biosensors and continuous glucose monitoring (CGM) techniques. 
This has enabled the monitoring of a subject’s blood glucose level in real time. On the other hand, 
few attempts have been made to apply machine learning techniques to predicting glycaemia levels, 
but dealing with a database containing such a high level of variables is problematic. In this sense, to 
the best of the authors’ knowledge, the issues of proper feature selection (FS)—the stage before ap-
plying predictive algorithms—have not been subject to in-depth discussion and comparison in past 
research when it comes to forecasting glycaemia. Therefore, in order to assess how a proper FS stage 
could improve the accuracy of the glycaemia forecasted, this work has developed six FS techniques 
alongside four predictive algorithms, applying them to a full dataset of biomedical features related to 
glycaemia. These were harvested through a wide-ranging passive monitoring process involving 25 
patients with DM1 in practical real-life scenarios. From the obtained results, we affirm that Random 
Forest (RF) as both predictive algorithm and FS strategy offers the best average performance (Root 
Median Square Error, RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons (up to 
60 min in steps of 5 min), showing Support Vector Machines (SVM) to have the best accuracy as a 
forecasting algorithm when considering, in turn, the average of the six FS techniques applied (RMSE 
= 20.58 mg/dL). 

Keywords: diabetes mellitus; machine learning; feature selection; time series forecasting 
 

1. Introduction 
Type I diabetes mellitus (DM1) is generally accompanied by excessive blood sugar 

levels caused by the fact that the body is failing to create insulin. Within healthy subjects, 
blood glucose levels are regulated by glucose homeostasis, a closed-loop system [1]. The 
pancreas is the home of β cells that react to excessive glucose levels and create insulin to 
combat hyperglycemia. In DM1 subjects, such regulatory processes do not occur. DM1 is 
an autoimmune disease that causes the immune system to attack the pancreas’ insu-
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lin-producing cells. This is the most aggressive type of diabetes. DM1 subjects are inca-
pable of producing insulin so they have to rely on either exogenous injections of the 
hormone or by wearing an insulin pump for regulation of glucose levels [2]. Management 
of diabetes aims to maintain homeostasis and to keep blood glucose at close to normal 
levels, alongside the avoidance of ketoacidosis, hypoglycemia, and additional longer 
term problems such as cardiovascular disease [3]. 

Normal levels of blood glucose are assumed to be between 80 and 120 mg/dL. Val-
ues below and above such a range would lead to hypoglycemia and hyperglycemia, re-
spectively, and both situations could be inadvisable for the patient. Therefore, the desired 
interval is not too wide. In this sense, subjects with diabetes have to undertake frequent 
capillary blood glucose monitoring in order to maintain close to normoglycemia. 
Thankfully, the requirements for such monitoring have been removed from any patients 
with the advent of continuous glucose monitoring (CGM) technology, e.g., the Dexcom 
G6 (Dexcom Inc, San Diego, CA, USA). Such cutting-edge CGM technology is effective in 
reducing HbA1c (Hemoglobin A1C), achieving the HbA1c target and leading to reduc-
tions in fluctuations in glucose levels [4]. 

Despite the above, patients must also consider their diet and lifestyle to determine 
the amounts of insulin they require each day [5]. Basically, patients continuously make 
predictions as to where their blood glucose level will be in the future and the quantity 
and timing of insulin supplementation they will need to retain metabolic control in order 
to stave off hyperglycemia and hypoglycemia. Making an accurate self-forecast of blood 
glucose levels to set the correct dosage of insulin is a complex process. Patients must take 
a number of important elements into consideration and this can skew the subjective as-
sessment of their needs result in errors. Thus, before being faced with an accurate calcu-
lation of insulin doses, it is necessary to achieve a glucose prediction that has an ac-
ceptable margin of error. The glucose prediction is therefore the first step. 

The goal of a completely operative and functional artificial pancreas (AP) is an am-
bitious target to be reached. Thinking of a device capable of being autonomously main-
tain, in every situation, the blood glucose levels within a healthy range—free from hy-
po/hyperglycemia events—is nowadays far from being a tangible reality. Therefore, it is 
more reasonable to first consider intermediate steps, focusing on those aims which are 
more critical and, once they are under control, go further. In 2009, Kowalski suggested a 
pathway in the long trip to design an AP [6], in which one of the preliminary 
steps—before obtaining a proper calculation of the insulin doses that would be dispensed 
through an insulin pump—is undoubtedly to have a sufficiently accurate prediction. In 
fact, the absence of an accurate forecast of the evolution of glycaemia in a few minutes 
(taking into account past circumstances) could lead to errors in insulin dosage and, con-
sequently, to poor management of blood glucose levels, which can be fatal. 

It is fortunate that greater sophistication has been introduced into the technology for 
DM1 patients. Nowadays, advances in microcontrollers allow for the implementation of 
model predictive control (MPC) solutions that open the door to new options in the 
management of DM1, among other possibilities [7]. New wearable electronic technology 
may be a significant addition to the management scheme, providing a totally novel new 
prospect for managing diabetes and significantly improving the forecast accuracy of 
glucose levels. There are many forms of wearable technology that could be used for 
monitoring not only glucose levels but also a variety of physiological elements. Examples 
include taking electrocardiographs, monitoring heart rate, registering activity and exer-
cise levels, and monitoring interstitial/blood glucose levels. There is a considerable 
amount of wearable technology that can register an individual’s daily activities and 
physiological condition many times each minute. Using such resources, we have devel-
oped a full dataset of biomedical features related to glycaemia. We harvested these by 
undertaking an in-depth passive-monitoring program in the real world with 25 DM1 pa-
tients, helping us to effectively identify patterns which allow us to model the crucial el-
ements of glucose levels. 
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With these data, we can then develop an accurate glycaemia forecast. Some very 
successful MPC-based solutions for glycaemia prediction, which make use of microcon-
trollers, have been presented in the literature [8]. Although time series values-prediction 
is well-trodden in the field of Machine Learning (ML), it is common to perform appro-
priate feature selection such as pre-processing, in order to enhance the efficacy of the 
predictive algorithm. Many of these predictive algorithms have only been applied to 
blood glucose prediction, but to the best of the authors’ knowledge, there has been no 
comparative study not only of the prediction techniques, but also of the feature selection 
techniques. We find that it is complex to make fair comparisons with their results since 
each one uses different databases, with different added features, evaluating them in dif-
ferent ways (at different predictive horizons, different error evaluation metrics, etc.) and 
throughout different monitoring times. With all this, it is complicated to reach a conclu-
sion on which one behaves better and it is not possible to extract overall conclusions. In 
addition, the previous phase of variable selection has not been compared either, so the 
influence of this on the improvement of the prediction has not been studied. The aim of 
the paper is therefore to make a fair comparison of these algorithms with a complete da-
tabase. Moreover, the inclusions of the variables collected in our database are rarely seen 
in studies on blood glucose prediction. 

Thus, in this paper, a rich and complete dataset has been acquired alongside a novel 
process of features selection that enhances the performance and comparison of the pre-
diction has been developed. We believe that this paper will enable a confident combina-
tion of feature selection and forecasting techniques to achieve more precise predictions in 
an assumable predictive horizon (PH). 

In short, the main contributions of this paper are as follows: 
- A brief literature review on variable selection and prediction methods for glycaemia 

values in diabetics. 
- To use an innovative database in the field of DM1, both in terms of the number of 

patients/variables considered and the monitoring time covered. 
- To test different variable selection techniques. 
- To combine these feature selection techniques with different predictive algorithms. 
- To discuss the influence of the variable selection techniques on the performance of 

the predictive algorithm, as well as to study the accuracy achieved. 
This research has employed a number of cutting-edge modeling and forecasting 

techniques. Implementation and analysis have been undertaken using six feature selec-
tion techniques alongside four forecasting techniques. The paper is organized as follows: 
Section 2 describes some previous works on forecasting glycaemia in DM1 to frame our 
research. In Section 3, we present the feature selection techniques and predictive algo-
rithms. The monitoring campaign is depicted in Section 4, while Section 5 details the 
methodology followed in our work, with descriptions of the ML techniques. Section 6 
offers the main results and discussion, and finally, we conclude the paper in Section 7. 

2. Related Works 
As mentioned in Section 1, it is crucial that an accurate range of variables and effec-

tive data collection methodology is employed when predicting blood glucose levels and 
that note is taken in the way they have previously been used. These variables must be 
related as time-series data, as the level of historical occurrences is considered as signifi-
cant. Feature selection using a time-series is not the same as feature selection using 
standard data. With standard static data, target values only refer to the features’ con-
temporary values. However, with feature selection in time-series, the target values are 
related to feature values at various points in the past as well as the contemporary value. 
This means that it is essential in feature selection in time-series to excise redun-
dant/irrelevant variables and features, and selecting the relevant previous values for the 
creation of an effective dataset. In order to forecast glucose levels, it is widely recognized 
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that the effect of previous values has importance. One example is the research of Eskaf et 
al. [9] who found, by employing discrete Fourier transformations, that blood glucose levels 
vary as a result of meals within a single timeframe of eating. This means that there is the 
capacity (which is crucial) to select the correct influential variables and so reduce the di-
mensionality. This is an important stage in processing [10] prior to applying a data mining 
algorithm to any dataset. 

Feature selection methodologies with time-series can be separated into filter, 
wrapper, and embedded techniques [11]. Filter techniques simply use the data in decid-
ing on the features for retention. Wrapper techniques employ a learning algorithm 
wrapped around the feature search, selecting the features on the basis of its performance. 
With embedded methods, weighting is employed to control parameter values. In all 
cases, applications of variable selection methods can affect the course of diabetes melli-
tus. Balakrishnan et al. [12] applied Support Vector Machines (SVM) to rank variables 
affecting type 2 diabetes, and some hybrid methods have been proposed to optimize the 
diagnosis of diabetes [13]. However, there have not been many studies that apply varia-
ble selective methods to features that affect the immediate course of blood glucose in pa-
tients with type 1 DM. This could be due to some variables only recently being considered 
for predicting blood sugar [14]. In 2019, a sequential backward selection algorithm was 
successfully applied using a linear model in a cross-validation (CV) setting, obtaining an 
optimized and reduced subset [15]. Despite this, a study comparing the performance of 
different feature selection methods applied to diabetic patients’ glycaemia has not been 
developed. 

Numerous attempts have been made to develop a reliable prediction of glucose in 
DM1 patients. In this case, there have been approaches from a univariate point of view 
[16], using Autoregressive Integrated Moving Average (ARIMA), Random Forest (RF) 
and Support Vector Machines (SVM) with acceptable results. However, although uni-
variate approximations can be interesting in computationally restricted environments, 
multivariate methods have demonstrated higher accuracy [17]. In this regard, some 
forecasting strategies need to be highlighted where results will be improved after a 
proper feature selection preliminary stage. 

Linear Regression (LR) is probably the simplest methodology. This group of models 
endeavors to discover an assessment of the parameters of the model with the goal that the 
summation of the squared errors is minimized. Although it is the simplest, its accuracy 
could be sufficient, and due to its simplicity, it is easily executable even by limited hard-
ware. In any case, recent approximations using Least Absolute Shrinkage and Selection 
Operator (LASSO) regression have achieved acceptable accuracy and good performance 
[18]. 

There are other methods using the same sort of techniques, for example, Gaussian 
Processes (GP) with Radial Basis Function Kernels (RBF) [19], which permit overall uni-
formity and limitless levels of basic functions. However, these are not often employed, 
although some researchers have used such techniques and the results have shown 
promise [20]. Some recent research has also looked at GP [21], examining the potential for 
automatic insulin delivery that could reduce the number of hypoglycemic events. 

GP is a non-parametric methodology that revolves around creating a model of ob-
servable responses from a number of points in the training data (function values) and 
using them as multivariate normal random variables [22]. It is assumed that the function 
values will be distributed in such a way that the function will operate smoothly. Specifi-
cally, when closeness exists (in an Euclidean distance context) between matching input 
vectors that decay with divergences, the two function values will be closely correlated. 
Employing an assumed distribution by applying a basic probability manipulation allows 
for posterior distribution of hitherto unpredicted function values. 

RF algorithms use a method referred to as bagging, which re-samples data instances 
a number of times in order to create several training subsets on the same training data 
[23]. A decision tree is then designed for every training subset until a tree ensemble has 
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been built. Every tree then inputs a unit vote influencing the outcomes of the incoming 
data instance cost label. Xu [24] diagnosed DM1 employing RS with a public hospital 
dataset, and this methodology performed better (85% success) than a number of other 
methodologies such as the ID3 (Iterative Dichotomiser 3) algorithm (78.57%), the naïve 
Bayes algorithm (79.89%), and the AdaBoost algorithm (84.19%). 

SVM is a dual learning algorithm that undertakes example processing just by com-
puting the dot-product. It is possible to efficiently compute such dot-products between 
feature vectors, employing a kernel function that does not obliterate every corresponding 
feature. Once the SVM learner has been supplied with the kernel function, it seeks out a 
hyperplane that can separate negative and positive examples and simultaneously max-
imize the size of their separation (margin). SVM is not prone to over-fitting and performs 
well in generalization as a result of the max-margin criterion employed throughout op-
timization. Although MLP solutions may solely be a local optimum, SVMs will always 
converge to a global optimum as a result of corresponding convex optimization formula-
tions. The work [25] offered a useful method of hypoglycemic detection based on SVM, 
employing a galvanic skin response using skin temperatures, monitoring of heart rates, 
and a small band. Regrettably, the size and type of the dataset used in this research has 
unintentionally limited the applicability of the results. SVM revolves around employing 
high-dimensional feature spaces (built using transformational original variables) and the 
application of penalties to the resulting complexities by using a penalty term integrated 
within the error function [26]. Other approaches like the stacking-based General Regres-
sion Neural Network (GRNN) ensemble model are truly promising [27–29], but it has not 
been previously applied to DM1. In this sense, the authors of this work intend to analyze it 
in future research. 

In relation to the foregoing, it can be concluded that these techniques have shown 
promise in terms of forecasting the dynamics of glycaemia. Nevertheless, as far as the 
authors are aware, no research has yet been undertaken employing selection techniques 
and a variety of forecasting algorithms utilizing real-world data and a proper feature set 
to reveal the most accurate of the options available. 

3. Feature Selection and Forecasting Time Series 
3.1. Feature Selection Techniques 

Feature selection (FS) involves taking a particular dataset and selecting the most 
useful and applicable features from it. If we have a dataset with d input features, feature 
selection will create a set of k features in such a way that k < d, with k being the smallest 
possible collection of relevant and important features [30]. This means that the ML algo-
rithm can be trained more quickly, the model becomes less complex and easier to deci-
pher, forecasting power is improved, and overfitting is decreased through the selection of 
accurate feature arrangements, amongst other benefits. 

Three types of feature selection methods are available [31], these being wrapper 
methods, filter methods, and embedded methods. Wrapper methods employ a combina-
tion of factors for decisions on the strength of forecasting. Standard wrapper techniques 
include Subset Selection, Forward Stepwise, and Backward Stepwise (RFE) [32]. The 
wrapper technique finds the optimal combination of features. This technique runs every 
variable past a test model created, using them for outcome assessment [33]. Of the three 
techniques, this demands the most computational power. Using the Subset selection 
technique, the model is fitted with all possible combinations of N features [34]. With 
Forward Stepwise techniques, we commence with a null model, i.e., one with only one 
variable, adding features singly and selecting the optimal model that scores the highest 
depending on the metrics used (f.i. A valuation of error). Having selected a predictor 
with this strategy, the model will never regress in the second stage. The process continues 
until we have the optimal feature subset, employing a stop criterion that sets the rules for 
the completion of the feature selection process. Conversely, Backward Stepwise Selection 
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(Recursive Feature Elimination) raises features as it processes. Since these techniques are 
not applied to every feature combination, they require significantly less computational 
power than straightforward subset selection [35]. Essentially, this technique is the oppo-
site of the Forward Stepwise selection technique. The process begins with every predictor 
being present, erasing one after another and selecting the best model from the results. 
This requires essentially the same amount of computational power as Forward Selection. 
Some research has employed and made comparisons between Filter and Wrapper strat-
egies [36]. 

Filter strategies are also referred to as Single Factor Analysis. Employing such tech-
niques, an assessment is undertaken of each individual variable (feature)’s predictive 
power. A variety of statistical methods may be employed to ascertain how robust the 
predictions are [37]. One way of doing this is to undertake correlation of the features and 
the objectives (our predictions). The optimal features are those with the highest correla-
tion. 

The embedded Method (Shrinkage) represents a selection strategy using inbuilt 
variables. In this strategy features are neither selected nor excised. Certain controls are 
applied to parameter values (weights). Another technique is LASSO Regression. With 
this method, regularization is undertaken and certain regression coefficients tend to-
wards zero [38]. As the coefficients fall towards zero they are dropped/rejected. Another 
technique is Ridge Regression (Tikhonov regularization), which incorporates a punish-
ment increasing with the square of the coefficient greatness [39]. Every coefficient is di-
minished by an identical factor (which means no predictor undergoes elimination). 

A selection of the above techniques will be employed in this research using a Ranker 
Strategy [40], which minimizes the metric Root Mean Squared Error (RMSE) and leads to 
reductions in the feature set. Both groups have differing approaches, one univariate and 
one multivariate. Univariate techniques are quicker and easier to scale, but they do not 
take account of variable dependencies. Conversely, multivariate techniques can model 
feature dependencies, but they are not as fast or as easy to scale as univariate techniques 
[41]. The methodology section will give further details on the selected techniques. If we 
minimize the metric, this leads to improvements in forecasting. 

3.2. Forecasting 
Once the FS is complete, we can begin the forecasting task in time series. Wolpert 

and Macready [42] stated that when we lack the information regarding the underlying 
model, we cannot say with certainty that any particular model will always outperform 
another. This means that the optimal strategy is to experiment with a number of tech-
niques in order to discover the most effective model. This research has used both linear 
and non-linear techniques to focus on the algorithms that show the greatest promise. 

Linear regression is one of the simplest techniques. In this model, we search for an 
estimate of the model parameters in order to minimize the sum of the squared errors [43]. 
The modifications incorporate partial least squares/penalized models, e.g., ridge regres-
sion or LASSO. 

One advantage from the proponents of such models is that they are easy to interpret. 
Relationships are indicated by the coefficients and these are generally very simple to 
calculate, meaning that we can afford to employ a number of features. However, per-
formance with these models may be limited [44]. Good results are achieved if the pre-
dictor/response relationship falls on a hyperplane. If we have higher-order relationships, 
e.g., like, cubic, or quadratic, such models may not accurately capture nonlinear rela-
tionships and thus we have to look for a different approach [45]. 

Certain models are capable of understanding non-linear trends. We do not need to 
know the precise type of nonlinearity prior to constructing our model. One of the most 
widely used models is Support Vector Machines (SVM). These are dual learning algo-
rithms that compute the dot-products of data in processing [46]. Proper computation of 
such dot-products between variable rates may be achieved using a kernel function [47]. 
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Using such a function, SVM learners seek out the hyperplane separating the examples 
with the maximum separation (margin) between them. It is recognized that SVMs are 
resistant to overfitting and perform well in terms of generalization as a result of the 
max-margin criterion employed during the optimization process. Additionally, although 
alternative solutions produce only local optimums, SVM will converge to a global opti-
mum due to the corresponding convex optimization formulation [48]. 

There has been considerable interest in the Regression Trees family of modeling al-
gorithms in recent times. Tree-based modeling employs if/then statements to find the 
predictors that will be used for data partitioning. In such subsets, a model is employed 
for forecasting outcomes [49]. Statistically, the addition of randomness when construct-
ing the tree helps to reduce correlations between predictors. This is used in the Random 
Forests (RF) technique [50]. All models from the set are employed in building predictions 
for new datasets, and an average is taken of the predictions, which supplies the ultimate 
forecast. 

RF models undertake variance reductions through the selection of robust complex 
learners with low bias levels. This decreases the number of errors and additionally 
proves strong in overcoming noisy responses [51]. 

Gaussian Processes (GPs) with Radial Basis Function Kernels (RBF) [52] and other 
forms of comparative strategy create consistency overall and allow for a limitless quan-
tity of basic functions, but these are rarely used, even though some past research has 
demonstrated that it can show promise [53]. 

GP methodology is nonparametric, with a focus on taking discernible reactions from 
a variety of training data points (function values) and modeling them as multivariate 
standard random features [54]. It is assumed that there is a priority distribution of these 
function data values, guaranteeing that the function will operate smoothly. 

When the comparing vectors are close (in the sensitivity and separation), the func-
tion values will be closely correlated, with decay occurring upon divergence. We may 
subsequently calculate how the unpredicted function data is distributed by employing an 
assumed distribution and applying a basic probability manipulation. 

4. Database, Available Features and Target to Be Forecasted 
4.1. Description of the Experiment 

In order for this research to harvest a complete empirical collection of features, we 
created a new dataset by employing new ways of monitoring subjects. The glycaemia of 
25 subjects underwent continuous monitoring for up to 14 days as they went about their 
normal routines. This monitoring campaign was awarded approval by the Ethical Re-
search Commission of the University of Murcia on 25 January 2018 (Id.16 83/2017). 

Each volunteer suffers DM1 being treated with a basal-bolus strategy, either em-
ploying slow insulin like Lantus, Levemir or Lantus—which creates a flat action 
curve—or fast insulin like Humalog-Lispro. Using slow insulin in basal coverage lasts for 
over 24 h; fast insulin is used to counter rises in glycaemia which may occur when eating 
or to counter hyperglycemia arising from other causes. Each subject signed an informed 
consent form prior to participation in the research. 

There were 11 women and 14 men in the study cohort, each one receiving professional 
supervision and medical care. The monitoring undertaken was of a passive form that made 
no intervention in patient treatment, with every subject advised to continue with the in-
structions of their physicians. The subjects ranged from 18- to 56-year-olds, with an average 
age of 24.51 years, with the majority of subjects falling into the young adult category. 

All patients had been suffering from diabetes for a minimum of five years; this time 
was set to ensure all patients had familiarity with the way the disease progresses. 

All subjects were given complete information regarding the research aims. Gener-
ally, the subjects’ condition was well controlled, all of them having a glycated hemoglo-
bin(hbA1c) of between 6% and 7% when the experiment began. 



Appl. Sci. 2021, 11, 1742 8 of 20 
 

Every patient claimed to be leading a healthy lifestyle, with none of them under-
taking fewer than three sporting activities per week. Some scheduling was factored in in 
an attempt to make sure that every patient was following some form of routine without 
making drastic alterations to their daily routines. Each subject consumed a balanced diet 
that met their calorific needs. Subjects were asked to maintain their usual life habits and 
to continue following their endocrinologist’s advice. 

The patients in this research were given CGM sensors to wear, the model being the 
Freestyle Libre made by Abbott Company. This revolutionary device comprises a patch 
and a measuring device, permitting patients to make simple checks of their glycemic 
state (interstitial-glucose levels rather than blood-glucose levels). A notable feature of this 
device is that it allows the patient to check their glucose levels as frequently as they wish 
and collect data every 60 s. This device has been quite revolutionary as it is economically 
priced and achieves a reasonable level of accuracy (11.4% Mean Absolute Relative Dif-
ference, MARD). The subjects were asked to note down what fast-insulin dosages that 
had slow-insulin dosages, and also the carbohydrates they consumed through food, 
meaning that the data were empirical rather than subjective. 

The CGM has a maximum lifespan of 14 days, but it can cease functioning prior to 
that. As it cannot be reattached once it has fallen off, it can cease working through acci-
dent, failed adhesion, or excessive humidity. In addition, the initial days of use can be 
inaccurate as the calibration is not solidified. It was proposed that data should be har-
vested from nine days of the usage period, with the initial days being excised as calibration 
was still taking place, and the final one is excised as the device may not have been able to 
cover the full 14-day lifespan. Thus, the experimental phase had 5400 h of data to consider. 

Freestyle Libre is a device using flash glucose monitoring. Glucose levels are trans-
mitted instantaneously when required, employing Near Field Communication (NFC) 
which needs the patient to actively require the data. Certain devices act as transductors 
NFC-Bluetooth (e.g., the popular miao-miao: https://miaomiao.cool/?lang=en, accessed 
January 2021). The Libre sensor can be attached to the device and this means that data 
can be transmitted to a smartphone at regular intervals. 

The dataset was rounded out by use of the smart band Fitbit Charge HR©. This 
advanced fitness device automatically tracks various data and monitors the wearer’s 
heart rate at all times. It can record sleep time, attitude climbed, step numbers, distance 
travelled, and heart rate. It connects using Bluetooth-low-energy and was linked with a 
computer and a small phone so that all necessary trends could be monitored. A number 
of other researchers have already employed Fitbit trackers to monitor the subjects’ health 
[55]. All volunteers were given smart watches to keep a continuous record of their phys-
ical activity (step numbers) over the fortnight, along with heart rate and sleep data. Alt-
hough these devices are not designed for precise medical use, it has been demonstrated 
that they are sufficiently accurate for the data to be used in research. 

This monitoring was undertaken in 2018 and was continually supervised by the 
Endocrinology Departments of the Virgen de la Arrixaca and Morales Meseguer hospi-
tals, two well-respected facilities in Murcia, Spain. 

To the best of the authors’ knowledge, unfortunately there is no previous work 
within the scientific literature with comprehensive data acquisition, since some previ-
ously published studies consider only partial monitoring, and collect only some of the 
features that can be recorded, or simply focus on a limited number of patients and/or 
data collection for just a few days. 

Once all data had been acquired, preprocessing was undertaken on the dataset with 
outliers and gaps being cleaned. For cleaning outliers, extreme value analysis was em-
ployed, either by looking at scatter plots or by searching the values that were deviated 
more than double the mean. With gaps, interpolation methods were employed, with 
finger stick glucose values being added where possible. The sampling period was set at 
five minutes, sufficient to indicate tendencies and rapid changes but not so high that the 
ML algorithms would be overloaded. Data storage was undertaken in compliance with 
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the highest level of data protection regulations regarding personal information. Addi-
tionally, the Ethics Committee of the Universidad de Murcia, Spain, understood super-
vision of the way the patients were monitored. 

The data gathered will be of great assistance to this research and other researchers in 
the future. Table 1 shows a variety of data relating to the population covered by our mon-
itoring. 

Table 1. Data regarding the patients considered in the study. 

Population Feature Value 
Subjects (Number) 25 

Sex 14 men–11 women 
Occupation 16 students–9 office workers 

Population Feature Median Min Max 
Age (years) 24.51 18 56 

Body Mass Index (BMI, kg/m2) 22.20 19.42 24.80 
Duration of diabetes (years). 9 5 29 

Fingersticks per day. 7 5 12 
Insulin units per day (fast insulin + slow insulin, median). 47 36 59 

HbA1C (%). 6.8 6.3 7.8 

4.2. Available Features and Targets to Be Forecasted 
Currently, the majority of past research into diabetes management systems has only 

considered insulin and glycemic levels, with some estimating the effect of meals; it would 
appear to be logical to add other variables that can affect glucose levels if they are sus-
ceptible to estimation or measurement. Overall, researchers have agreed that the re-
markable variables should be meals, glycaemia, and insulin [56], which are the parame-
ters used in most research. Some research recently has looked at other variables, chiefly 
exercise, both in vivo and in silico [57]. Additionally, they have also looked at tempera-
ture and heart rates. In this research we have harvested the following data every five 
minutes, with each element having some effect on a patient’s glucose level: 
- Glycaemia: A collection of previous measurements. 
- Insulin injections: Previous values for fast insulin doses. For diabetic patients this 

hormone, generated exogenously, is the primary controller of how far blood glucose 
levels will fall. 

- Meals: Previous values, as with insulin. It is noteworthy that the patient cohort all 
were experienced in counting their carbohydrates. All food by humans is converted 
and absorbed in the form of glucose, which is then released into the bloodstream, 
causing a virtually instantaneous rise in glycaemia. 

- Exercise: Relevant historical data, with measurements in terms of steps taken. The 
muscles demand more glucose during physical activity; physical activity also en-
hances the circulation of the blood, making insulin more effective during exercise as 
the cellular barriers have greater permeability, meaning glucose has easier access to 
the cells. 

- Heart rate: Contemporary and past values. The heart rate can be increased for a 
wide variety of reasons. Clearly it will rise during physical activity, but stress can be 
a contributor, as can hypo or hyperglycemia. 

- Sleep: We collected data that only showed whether the subject was awake or asleep. 
It would appear logical to register sleep as being related to the length of sleep pre-
viously enjoyed. Poor quality nighttime sleep may cause insulin resistance and im-
balances in glucose dynamics. 
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5. Methodology 
5.1. The Waikato Environment for Knowledge Analysis (WEKA) 

The University of Waikato, New Zealand, has produced the open source software 
Waikato Environment for Knowledge Analysis (WEKA v.3.8) 
(https://waikato.github.io/weka-wiki/, accessed December 2020). This free software is li-
censed with the GNU General Public License. WEKA comprises various algorithms and 
visualization tools to analyze data to use in predictive modeling, alongside graphical 
user interfaces allowing such functions to be easily accessed. A number of standard data 
mining routines can be performed with this software, particularly forecasting, modeling, 
feature selection, visualization, regression, classification, clustering, and data prepro-
cessing. 

The use of WEKA facilitates data entry, algorithm execution and visual context in 
the management of the entire process. This software has been successfully applied many 
times before, and is still being applied in recent literature. This way, Hussain et al. used 
WEKA in 2018 to study educational aspects with data mining techniques [58], and 
Kiranmai et al. also considered such software to classify electrical power problems [59]. 
WEKA is presently booming and new modules are developed every year, like those 
presented in 2009 by Lang et al. for deep learning [60]. 

WEKA includes specific libraries to tune the hyperparameters for each algorithm. In 
this sense, the Auto-WEKA package has been used [61]. Auto-WEKA considers the 
problem of simultaneously selecting a learning algorithm and setting its hyperparame-
ters, overcoming the limitations of previous methods that address these issues in isola-
tion. Auto-WEKA performs such task by using a fully automated approach, taking ad-
vantage of recent innovations in Bayesian optimization. Auto-WEKA helps to more ef-
fectively identify machine learning algorithms and hyperparameter settings, thereby 
achieving an improved performance. 

5.2. Computer Hardware 
Due to the computational demands of the ML algorithms considered in this work, 

they have been executed by a high-performance computer equipped with an AMD Ryzen 
7 1700X processor, operating at 3.8 GHz with 32 GB DDR4 RAM at 2666 MHz CL19 and a 
Solid State Disk Samsung 970 Evo Plus M.2 1000 GB PCI-E 3.0. 

5.3. Data Cleaning, Regularization and Lagged Variables 
The database will undergo a transformation to provide the values that have been 

cleaned and a number of gaps that have been filled. Since the influence of certain features 
could be delayed, every feature apart from the date lacked 72 values (i.e., the previous six 
hours accounted for). WEKA’s TimeSeriesLagManager permits lagged variables to be cre-
ated when necessary. 

5.4. Features Selection 
Feature selection can be undertaken in WEKA with its intuitive graphical interface. 

The AttributeSelection module permits the specification of a variety of Attribute Evalu-
ators and Search Methods. The testing of a number of combinations will be undertaken 
and an evaluation of them will be performed at the forecasting phase. Whichever features 
set provides the most accurate predictions will be selected. 

5.4.1. Search Method 
As mentioned above, a Ranker Strategy has been employed. This means of searching 

evaluates each feature one after the other and ranks them in order [62]. We can employ 
the identical name Ranker for the ordering within the AttributeSelection module. 
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5.4.2. Attribute Evaluators 
Of the available feature selection methods in WEKA, the two most frequently em-

ployed will be chosen: 
- Wrapper methods: employing the ClassifierAttributeEval routine within WEKA will 

permit evaluation or certain approaches. The predictors below will be executed. 
o Linear Regression: This allows for swift computation, with coefficients being 

fixed for all features. 
o Random Forest: As previously stated, this is a tree-based algorithm frequently 

employed for classification. 
o Multilayer Perceptron (MLP): This algorithm makes an estimation of the rela-

tive contributions of input units (which represent the attributes) and the output 
neurons (those which correspond with the problem classes) and uses the in-
formation to identify a subset of pertinent usable attributes to be employed in 
supervised pattern classification [63]. 

o Instance-Based k-nearest neighbor algorithm (IBk) [64]: this is a K-nearest 
neighbor classifier that selects a suitable value for K on the basis of CV; it can 
also perform distance weighting. 

- Filter Methods. For univariate methods, we will employ the predictors listed below. 
o Relief Attribute (Rlf) [65]: Relief feature selection works on the basis of creating a 

score by identifying feature value differences for nearest neighbor instance pairs. 
o Principal Component Analysis (PCA) [66]: With this method, we introduce a 

novel set of orthogonal coordinate axes, simultaneously maximizing sample 
data variants. This makes other directions with more minor variants have less 
significance and so they can be cleaned from the dataset. PCA is extremely ef-
fective in transforming data at lower dimensions and can also show us simpli-
fied underlying data patterns. 

5.4.3. Generated Subsets 
With a combination of exposed techniques as illustrated in Table 2, it is possible to 

generate seven subsets included in the original dataset without FS and subtests with re-
duced data. This can then be evaluated in the forecasting phase. For every exposed case 
of FS, the RMSE metric is the one that will undergo optimization. Additionally, we look 
at the prediction strategies that can be found in the subsection below from the original 
dataset. Table 3 is a tabulation of the various commands employed with WEKA, showing 
the parameters used. 

Table 2. Applied Feature Selection techniques. 

Search Method Attribute Evaluator Predictor Acronym 

Ranker 
Wrapper (Classifier) 

LR Rnk-LR 
RF Rnk-RF 

MLP Rnk-MLP 
IBk Rnk-IBk 

Filter 
Relief Rnk-Rlf 
PCA Rnk-PCA 

Rnk: Ranker; LR: Linear Regression; RF: Random Forest; MLP: Multi-Layer Perceptron; IBk: In-
stance-Based K-nearest neighbor; Rlf: Relief Attribute; PCA: Principal Component Analysis. 
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Table 3. WEKA commands for Feature Selection. 

Technique Command 
Ranker weka.attributeSelection.Ranker -T -1.8E308 -N -1 

Classifier LR 
weka.attributeSelection.ClassifierAttributeEval -execution-slots 100 -B we-
ka.classifiers.functions.LinearRegression -F 5 -T 0.01 -R 1 -E RMSE -- -S 0 -R 1.0E-8 -num-decimal-places 4”
-S “weka.attributeSelection.Ranker -T -1.8E308 -N 100 

Classifier RF 
weka.attributeSelection.ClassifierAttributeEval -execution-slots 100 -B weka.classifiers.trees.RandomForest -F 
5 -T 0.01 -R 1 -E RMSE -- -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1” -S “we-
ka.attributeSelection.Ranker -T -1.8E308 -N 100 

Classifier MLP 
weka.attributeSelection.ClassifierAttributeEval -execution-slots 1 -B we-
ka.classifiers.functions.MultilayerPerceptron -F 5 -T 0.01 -R 1 -E RMSE -- -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 
20 -H a” -S “weka.attributeSelection.Ranker -T -1. 1.8E308 -N 100” 

Classifier IBk 

weka.attributeSelection.ClassifierAttributeEval -execution-slots 1 –B weka.classifiers.lazy.IBk -F 5 -T 0.01 -R 
1 -E RMSE -- -K 1 -W 0 -A \”weka.core.neighboursearch.LinearNNSearch -A 
\\\”weka.core.EuclideanDistance -R first-last\\\”\”“ -S “weka.attributeSelection.Ranker -T -1.8E308 -N 
100” 

Rlf 
“weka.attributeSelection.ReliefFAttributeEval -M -1 -D 1 -K 10” -S “weka.attributeSelection.Ranker -T 
-1.8E308 -N 100” 

PCA 
weka.attributeSelection.PrincipalComponents -R 0.95 -A 5” -S “weka.attributeSelection.Ranker -T 1.8E308 
-N -1 

LR: Linear Regression; RF: Random Forest; MLP: Multi-Layer Perceptron; IBk: Instance-Based K-nearest neighbor; Rlf: 
Relief Attribute; PCA: Principal Component Analysis. 

5.5. Data Modeling and Forecasting 
Having obtained the seven reduced data subsets alongside the original dataset, we 

attempted to create predictions for future values in light of the previous time series col-
lated for every dataset. An attempt has been made to forecast glycaemia for the subse-
quent 12 values. Since it is measured every five minutes, the maximum PH is fixed to 60 
min. This allowed us to evaluate those predictions using real data. The training and test 
have been undertaken using Cross Validation for the time series [67,68]. This way, the 
data used in the training has been excluded from the training dataset. 

To do this, we employed a WEKA (v.1.027) timeseriesForecasting module [69]. 
Therefore, the following algorithms will be used as crosses with every dataset, and also in 
relation to RMSE: 
- Linear Regression (LR) 
- Support Vector Machines (SVM) 
- Random Forest (RF) 
- Gaussian Process (GP) 

Section 3.2 provides descriptions of all methods. Table 4 details the WEKA com-
mands and each method’s parameters. 

Table 4. WEKA commands for forecasting. 

Technique Command 
LR weka.classifiers.functions.LinearRegression -S 0 -R 1.0E-8 -num-decimal-places 4 
RF weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1 

SVM 
weka.classifiers.functions.SMOreg -C 1.0 -N 0 -I “weka.classifiers.functions.supportVector.RegSMOImproved -T 0.001 -V 
-P 1.0E-12 -L 0.001 -W 1” -K “weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007” 

GP weka.classifiers.functions.GaussianProcesses -L 1.0 -N 0 -K “weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 
250007” -S 1 

LR: Linear Regression; RF: Random Forest; SVM: Support Vector Machines; GP: Gaussian Process. 
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6. Results and Discussion: Forecasting Performance 
The different variable selection algorithms give rise to six reduced data subsets 

which, together with the original dataset, has led to seven cases on which to run the 
predictive techniques. Since the data of 25 patients were available, 150 processes of var-
iable selection have been executed and together with the original dataset result in 175 
data sets. The four predictive techniques have been applied to each of them, and a future 
prediction of the values for the following hour has been generated with five-minute in-
tervals, that is, the prediction is made to the next 12 values, executing a CV. It should be 
noted that, as following the subject-wise scheme cannot be done, this could be a draw-
back of the study. 

As an example of the first phase (training), from which a trained model is obtained, 
the graph in Figure 1 is obtained. It can be seen how the model generated with the subset 
generated after applying RF to patient ‘01’ is used to predict at 60 min using RF as a 
predictive technique. As expected, the best inaccuracies correspond to periods of rapid 
oscillation and sharp variation in blood glucose, thus minimizing the error in hours 
without ups and downs. 

 
Figure 1. Example of training stage with RF algorithm of the subset RF from patient ‘01’ for a 60 min PH glycemia pre-
diction. Red, real data of glycaemia; Blue, modeled data. 

The results of the forecasting task are tabulated in Table 5. With each predictive al-
gorithm, and for each subset of data, we calculated the accuracy of the next 60 min (12 
steps) of the glycaemia data. Using the CV technique, we obtained the RMSE (mg/dl) for 
each future step as an average of the 25 patients. Later, as a measure of performance, we 
further obtained an average of the 12 values of RMSE regarding each FS technique 
(RMSEതതതതതതതത). We also estimated the standard deviation in each predicted series with the aim to 
infer the accuracy’s variability. We performed the Shapiro–Wilk test to determine if the 
data presented a normal distribution for each 12-step prediction. The results showed that 
the data were normally distributed (p-values > 0.05). 
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Table 5. RMSE in test stage up to 12-steps glycemia forecasting. Averaged results of 25 subjects. 

 RMSE (mg/dL)   

Subset FS 5 10 15 20 25 30 35 40 45 50 55 60 ۳܁ۻ܀തതതതതതതത Stnd 
Dev. 

Forecasting technique: LR  
No F.S. 9.32 15.15 18.94 22.72 26.23 29.30 31.26 33.33 35.48 37.69 40.03 42.55 28.50 10.32 

LR 9.00 14.17 16.84 20.07 21.79 23.52 25.41 27.36 29.29 31.24 33.25 35.33 23.94 7.98 
RF 9.29 14.53 17.16 20.26 21.82 23.38 25.08 26.84 28.58 30.32 32.09 33.91 23.60 7.41 

MLP 9.22 14.44 17.09 20.25 21.89 23.51 25.26 27.06 28.83 30.61 32.42 34.29 23.74 7.57 
IBk 9.51 14.88 17.57 20.69 22.26 23.83 25.54 27.31 29.07 30.84 32.63 34.48 24.05 7.50 
Rlf 9.75 15.68 18.91 22.47 24.31 26.05 27.91 29.81 31.64 33.39 35.07 36.71 25.98 8.19 

PCA 9.53 14.97 17.77 21.04 22.77 24.42 26.20 28.11 29.92 31.81 33.75 35.74 24.67 7.89 

  ۳ധധധധധധധധ 24.93܁ۻ܀      
Forecasting technique: RF  

No F.S. 13.17 20.87 24.78 28.65 31.03 31.78 32.40 32.92 33.33 33.66 33.92 34.15 29.22 6.50 
LR 9.75 14.96 17.89 20.71 22.37 22.84 23.20 23.43 23.61 23.70 23.76 23.80 20.84 4.45 
RF 7.91 13.21 16.22 19.08 19.74 20.21 20.57 20.83 21.01 21.16 21.26 21.33 18.54 4.14 

MLP 8.88 14.18 17.14 19.97 21.68 22.18 22.53 22.78 22.94 23.04 23.10 23.10 20.13 4.52 
IBk 7.95 13.29 16.27 19.12 20.81 21.30 21.87 22.15 22.35 22.50 22.58 22.59 19.40 4.63 
Rlf 12.39 17.42 20.38 23.25 25.06 25.74 26.27 26.72 27.10 27.40 27.64 27.82 23.93 4.84 

PCA 11.93 17.10 20.08 21.35 22.80 23.80 24.67 25.03 25.65 26.17 26.56 26.85 22.67 4.47 

  ۳ധധധധധധധധ 22.10܁ۻ܀      
Forecasting technique: SVM  

No F.S. 2.38 9.16 16.35 20.10 22.62 25.13 27.69 29.84 32.11 34.25 36.43 38.63 24.56 11.07 
LR 1.99 7.64 13.53 16.45 18.37 20.39 22.51 24.27 26.11 27.85 29.65 31.48 20.02 8.96 
RF 2.33 5.70 11.64 14.57 16.50 18.52 20.63 22.37 24.19 25.92 27.71 29.52 18.30 8.55 

MLP 0.99 6.65 12.56 15.51 17.48 19.54 21.69 23.47 25.32 27.09 28.93 30.78 19.17 9.06 
IBk 3.56 7.73 13.66 16.57 18.48 20.50 22.61 24.36 26.18 27.92 29.73 31.57 20.24 8.69 
Rlf 4.02 8.44 14.82 18.02 20.14 22.30 24.40 25.98 27.62 29.12 30.65 32.16 21.47 8.82 

PCA 3.26 7.77 13.74 16.67 18.62 20.64 22.76 24.52 26.35 28.09 29.89 31.71 20.33 8.79 

  ۳ധധധധധധധധ 20.58܁ۻ܀      
Forecasting technique: GP  

No F.S. 15.96 26.16 37.01 43.79 45.80 47.29 47.62 47.98 48.31 48.66 49.03 49.43 42.25 10.68 
LR 12.08 25.82 31.17 33.37 34.34 34.79 35.02 35.15 35.23 35.28 35.32 35.35 31.91 6.83 
RF 5.32 17.40 22.37 24.49 25.43 25.86 26.07 26.18 26.24 26.28 26.30 26.32 23.19 6.20 

MLP 7.11 19.96 25.26 27.51 28.51 28.97 29.19 29.31 29.38 29.42 29.45 29.47 26.13 6.60 
IBk 10.30 23.40 28.52 30.64 31.57 32.01 32.24 32.36 32.43 32.47 32.50 32.52 29.25 6.53 
Rlf 7.84 24.73 32.56 36.34 38.26 39.28 39.84 40.17 40.38 40.51 40.60 40.66 35.10 9.78 

PCA 15.62 24.24 27.85 29.37 30.02 30.31 30.44 30.50 30.53 30.54 30.55 30.55 28.38 4.42 

  ۳ധധധധധധധധ 30.89܁ۻ܀      
F.S.: Feature Selection; LR: Linear Regression; RF: Random Forest; SVM: Support Vector Machines; GP: Gaussian Process; 
MLP: Multi-Layer Perceptron; IBk: Instance-Based K-nearest neighbor; Rlf: Relief Attribute; PCA: Principal Component 
Analysis. 

As stated in Table 5, we obtained the lower RMSE averaged between the 12 predic-
tions (RMSEതതതതതതതത) using RF as a foresight algorithm with the RF dataset (RMSEതതതതതതതത = 18.54 mg/dL) 
and in an average of the FS technique, the best performance is obtained using SVM as 
predictive technique (RMSEതതതതതതതതതതതതതതതത = 20.58 mg/dL) but we have to note that the better perfor-
mances are located on the early predictions (5, 10, 15 min), and then they rise. Figure 2 
shows the evolution of the accuracy per forecasting algorithm with the different FS ap-
proaches. 



Appl. Sci. 2021, 11, 1742 15 of 20 
 

 

Figure 2. Test stage. RMSE up to 12-step glycemia forecasting. Averaged results of 25 subjects. Upper left, LR. Upper 
right, RF. Lower left, SVM. Lower right, GP. F.S.: Feature Selection; LR: Linear Regression; RF: Random Forest; SVM: 
Support Vector Machines; GP: Gaussian Process; MLP: Multi Layer Perceptron; IBk: Instance-Based K-nearest neighbor; 
Rlf: Relief Attribute; PCA: Principal Component Analysis. 

In relation to Figure 2, we can observe how LR as a forecasting technique (upper left) 
offers an adequate behavior, but mainly in low PHs (5 or 10 min). Later, the error goes up 
for a further PH. It can be seen how the application of a variable selection method means 
a general improvement in performance, in light of the differences between the “no FS” 
line and the others. 

This difference in performance according to FS technique is also observed in the RF 
predictive technique (above right). RF stands out as the best approach to select variables. In 
this case, RF as a forecasting technique generates good short-term accuracy, and in the long 
term it stabilizes at a value that may be acceptable under the best selective techniques. 

SVM as a predictive algorithm (bottom left) presents an excellent performance at 
near PHs but in the long term it rises in a linear fashion. Again, it is observed how the 
selection of variables is necessary to reduce the error, but not all the techniques used re-
sult in a similar behavior. Lightweight RF as FS provides the best result. 

GP shows the worst performance in terms of the prediction algorithm. The variabil-
ity, according to the selection technique, is wide, the worst precision being when not 
using variable selection and the best when RF is used for this task. 

In general, according to the mean values in Table 5, SVM is the best forecasting 
technique with an RMSE value of 20.58 mg/dL (considering all the FS techniques em-
ployed), and the best FS algorithm is RF. The latter (RF as the best FS technique) can be 
seen in the four predictive cases. It is also worth noting that the selection of variables 
always improves accuracy, and in some cases the technique itself can provide significant 
differences. Additionally, it is necessary to show that, for very short PHs, SVM works 
very well, but more broadly, RF could be a more balanced option. Variations in the error 
values at each step between the various 25 patients (standard deviation) are generally 
contained and do not present large variations between methods. 

Figure 3 shows an example of how that prediction behaves at 60 min (12 steps). As 
can be seen, the blue line (prediction) follows the red line (actual data) quite closely, alt-
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hough the error increases at situations of variation. This does not happen under situa-
tions of glycemic stability. Therefore, the patient’s own control will influence the accu-
racy of the prediction. For this reason the predictions have been made with a CV method 
which has foreseen all types of real situations (stability and oscillations) throughout the 
days of monitoring of each subject. 

 
Figure 3. Example of forecasting stage with RF algorithm of the subset RF from patient ‘01’ for a 60 min PH glycemia 
prediction. Red, real data of glycaemia; Blue, predicted data. 

7. Conclusions and Future Works 
In today’s world, DM1 is a disease that requires multidisciplinary attention and re-

search, not only from the medical field, but also from other disciplines such as data en-
gineering. One of the first necessary phases before automating an artificial pancreas is to 
obtain a prediction of future glucose values in the most accurate possible way. Although 
some works have approached this aspect, a complete monitoring of the diabetic patient 
can provide more variables to refine the predictive process. 

In this work, a monitoring time of 14 days was performed, including 25 DM1 pa-
tients, leading to an innovative dataset. Thus, it should be noted that the acquired dataset 
includes not only CGM estimations from a wide scope of people over a long timescale 
and in real life situations, but also incorporates other features such as insulin and eating 
times, and other related variables: heart rate, sleeping time and exercise. 

During the glucose prediction process, it makes sense to establish an adequate pre-
liminary phase of variable selection. Unfortunately, this significant phase has not always 
received the attention it deserves. This explains the reason why it is necessary to check to 
what extent the application of different feature selection techniques has influenced the 
accuracy of predictive algorithms. The results of the present work indicate that such facts 
are definitively relevant. Firstly, the precision obtained in the absence of any variable 
selection technique is clearly poorer than when incorporating it. In fact, among these 
techniques, the RF has been shown to be the best capable to refine the accuracy of gly-
cemic prediction. In addition, numerous results have been obtained that indicate which 
forecasting algorithms clearly work better—that is, RF and SVM—and which FS tech-
niques improve the performance of such techniques. In view of the obtained results, we 
can affirm that Random Forest (RF), as both a predictive algorithm and an FS strategy, 
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offers the best average performance (Root Median Square Error, RMSE = 18.54 mg/dL) 
throughout the 12 considered predictive horizons (up to 60 min in steps of 5 min), 
showing Support Vector Machines (SVM), the best accuracy as forecasting algorithm 
when considering, in turn, the average of the six FS techniques applied (RMSE = 20.58 
mg/dL). 

Future work will be focused on analyzing some promising previous approaches like 
the enhanced k-NN algorithm, which was successfully tested in [70] for biometric 
recognition, and the gradient boosting algorithm, using other databases like the 
D1NAMO project [71], which implied the monitoring of 20 healthy subjects and 9 pa-
tients by recording their electrocardiograms, breathing, accelerometer signals as well as 
glucose levels, including more biosensors that provide more variables in real time and 
thereby improving the accuracy of the glycaemia prediction and extending the PH within 
the glycemic series, and providing early warning of health monitoring [72]. 
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