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Abstract

In this thesis we study the ring of characteristic classes H∗(B Diff+(M)) of smooth fibre

bundles with a particular focus on tautological classes and the ring that they generate.

In the first part we use tools from rational homotopy theory to compute analogues of

tautological rings over fibrations, which provides upper bounds on the tautological rings of

fibre bundles. In some cases we find an upper bound on the Krull dimension that is sharp.

In the second part, we study the classifying space B Diff+(M) using the calculus of em-

beddings which provides a homotopy theoretic approximation. We construct cohomology

classes on the self-embedding tower which extend certain characteristic classes that were

introduced by Kontsevich in [Kon94]. This construction is based on introducing configura-

tion space integrals over the tower itself, which also has some consequences for tautological

classes that we explore.





Acknowledgements

It gives me great pleasure to express my sincere gratitude to Oscar Randal-Williams for his

support, enthusiasm and sharing of ideas throughout my PhD. I always left our conversa-

tions inspired and with new perspectives on my research and mathematics in general. I

would also like to thank Alexander Berglund for his hospitality during my visits to Stock-

holm and for sharing his research with me, which plays an important part in the first part

of this work.

I have been funded for my PhD studies by the Cambridge Trust and King’s College

and I have been supported throughout my studies by the German Academic Scholarship

Foundation. I am grateful for their support — it is hard for me to imagine reaching this

point without it.

It has been a long journey since I have started studying almost 11 years ago and I have

made many great friends along the way. Mathematics has the reputation of being a solitary

activity, but of course this is not quite true and I want to thank them for being there for me

and making this journey the joyful experience it has been. It could not have been the same

without you.

Einen besonderen Dank möchte ich meiner Familie aussprechen, auf deren Rückhalt und

Unterstützung ich mich in jeder denkbaren Situation verlassen konnte. Schlussendlich

danke ich meiner Freundin Lydia: für die Momente der Krise, zu denen man unweigerlich

im Entstehungsprozess einer Dissertation kommt, in denen sie mich wieder aufgebaut hat;

und für so viel mehr.





Contents

Acknowledgements

1. Introduction 1

1.1. Automorphism spaces of manifolds . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Tautological rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Embedding calculus and graph complexes . . . . . . . . . . . . . . . . . . . . 7

Discussion of results 11

I. Tautological classes and rational homotopy theory 17

2. Rational homotopy theory of fibrations 19

2.1. Preliminaries on differential graded coalgebras . . . . . . . . . . . . . . . . . . 20

2.2. Classification of coalgebra bundles . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3. A coalgebra model of the universal 1-connected fibration . . . . . . . . . . . . 28

2.3.1. A cdga model of the universal 1-connected fibration . . . . . . . . . . . 32

3. Fibre integration in rational homotopy theory 35

3.1. Chain level fibre integration integration . . . . . . . . . . . . . . . . . . . . . . 35

3.2. Relation to parametrized stable homotopy theory . . . . . . . . . . . . . . . . 38

4. The Euler ring of Poincaré duality spaces 41

4.1. Algebraic definition of the fibrewise Euler class . . . . . . . . . . . . . . . . . . 41

4.1.1. The fibrewise Euler class for Leray–Hirsch fibrations . . . . . . . . . . 44

4.1.2. The fibrewise Euler class of positively elliptic spaces . . . . . . . . . . 45

4.2. Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1. The Euler ring of complex projective space . . . . . . . . . . . . . . . . 49

4.2.2. The Euler ring of products of odd spheres . . . . . . . . . . . . . . . . . 54

4.2.3. The Euler ring of some low dimensional positively elliptic spaces . . . 57



5. Tautological rings of manifolds via rational homotopy theory 61

5.1. TM-fibrations and tangential homotopy equivalences . . . . . . . . . . . . . . 61

5.1.1. Rational homotopy theory of TM-fibrations . . . . . . . . . . . . . . . . 64

5.2. Relations from the family signature theorem . . . . . . . . . . . . . . . . . . . 69

5.2.1. Tautological rings of fakeHP2 . . . . . . . . . . . . . . . . . . . . . . . 72

5.3. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1. Computational methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2. Complete intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3. Dependence of the smooth structure . . . . . . . . . . . . . . . . . . . . 80

5.3.4. Block bundles and geometric conditions on the fibre . . . . . . . . . . 82

II. Tautological classes and self-embedding calculus 87

6. Embedding calculus and configuration space integrals 89

6.1. Embedding calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1. The Haefliger model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.2. On delooping the self-embedding tower . . . . . . . . . . . . . . . . . . 95

6.2. Configuration space integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3. Possible connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7. A geometric approach to self-embedding calculus 103

7.1. Fibrewise configuration space over B T×2 (M) . . . . . . . . . . . . . . . . . . . . 103

7.1.1. Poincaré embeddings and configuration spaces . . . . . . . . . . . . . 103

7.1.2. A fibrewise Poincaré embedding structure via the bar construction . . 107

7.2. An application to tautological classes . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3. The first non-trivial Kontsevich class on B T×2 (M) . . . . . . . . . . . . . . . . . 123

8. The failure of the family signature theorem over B T×2 (M) 127

Appendices 135

A. Classifying spaces and fibrations 135

A.1. Equivariant classifying spaces and fibrations . . . . . . . . . . . . . . . . . . . 141

B. Computations 143

C. The geometric structure set ofHP2 155



Bibliography 159





Chapter 1.

Introduction

1.1. Automorphism spaces of manifolds

The main object of interest in this thesis is the classifying space B Diff(M) of the topolog-

ical group of diffeomorphisms of a smooth manifold M, which has deep connections to

other fields in mathematics and motivated many important developments in geometric and

algebraic topology. Yet despite extensive research, the homotopy type of the classifying

space has eluded topologists except for low dimensional manifolds. One basic property of

B Diff(M) is that it classifies smooth fibre bundles with fibre M over a base space B up to

bundle isomorphism. More precisely, there exists a universal fibre bundle π : E→B Diff(M)

with fibre M and there is a one-to-one correspondence

[B,B Diff(M)] 1:1
−→ {π : E→B smooth M-bundle over B}/ �

where we associate to a map f : B→B Diff(M) the equivalence class of the pullback bundle

π : f ∗E→B with respect to bundle isomorphism. This justifies the name and is also one of

the fundamental tools to studying it. For example, this implies that the cohomology ring

H∗(B Diff(M)) is the ring of characteristic classes of smooth fibre bundles with fibre M.

The traditional approach to studying B Diff(M) is based on successive approximations

to the space of diffeomorphisms by different automorphism spaces of M. The first rather

coarse approximation to Diff(M) is the given by the monoid of homotopy self-equivalences

hAut(M), whose homotopy type is accessible via the standard toolbox of homotopy the-

ory. A second finer approximation is given by the semi-simplicial group D̃iff(M)• with

k-simplices given by block diffeomorphisms, i.e. diffeomorphisms M × ∆k �
→M × ∆k that re-

strict to diffeomorphisms of σ ×M for each face σ ∈ ∆k. To both of these automorphism

spaces of M one can associate classifying spaces. It was shown by Stasheff in [Sta63] that

B hAut(M) classifies Hurewicz fibrations, and Rourke and Sanderson showed in [RS71] that

B D̃iff(M) classifies block bundles, which over a simplicial complex K is defined as a map

π : E→|K| with trivializations π−1(σ) �→M × σ for every simplex in |K| that preserve the face

structure but not the projection.
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One of the great accomplishments of geometric topology from the 70’s and 80’s is a body

of work that provides a strategy to study B Diff(M) in the so called concordance stable range,

following a two step procedure by successively lifting information to B Diff(M) along the

comparison maps

D̃iff(M)
Diff(M) B Diff(M)

hAut(M)
D̃iff(M)

B D̃iff(M)

B hAut(M)

where the left spaces denote the homotopy fibres.

The first step is based on Browder-Novikov-Sullivan-Wall surgery theory to determine the

homotopy type of the fibre via a comparison map hAut(M)/D̃iff(M)→SG/O(M) to Quinn’s

geometric structure space, which can be shown to be a weak equivalence (with some

technicalities involving path components). The structure space sits in a fibre sequence

SG/O(M)→N(M)→L(M) that involves the space of normal invariants N(M) ' Map(M,G/O)

and the surgery space L(M), whose homotopy groups are the algebraic L-groups L∗(π1(M));

both spaces are computationally accessible (see Quinn’s geometric formulation of surgery

[Qui70]).

The homotopy fibre D̃iff(M)/Diff(M) is closely related to the space of concordances C(M),

i.e. diffeomorphisms of M× I that restrict to the identity on M× 0∪ ∂M× I. It was shown by

Hatcher [Hat78] that there is a spectral sequence with E1-page given by E1
p,q = πq(C(M× Ip))

converging to πp+q+1(D̃iff(M)/Diff(M)). One important feature of concordance spaces is

that they behave well with respect to stabilization C(M)→C(M × I). For example, the space

of stable concordances C (M) = colim C(M × Ik) is an infinite loop space that is closely

related to algebraic K-theory, which was observed by Hatcher [Hat75] and made precise

in Waldhausen’s seminal work on algebraic K-theory of spaces [Wal78, Wal79, WJR13].

Another feature of concordance spaces concerns the connectivity of the stabilization map

C(M)→C(M × I) that we denote by φ(M). The concordance stable range φ(n) ∈ N is the

maximal integer such that φ(M) ≥ φ(n) for all compact n-dimensional manifolds M, and a

deep result of Igusa [Igu88] gives a lower bound φ(n) ≥ min((n − 7)/2, (n − 4)/3). It follows

that the homotopy groups in the spectral sequence above agree with those of C (M) in the

concordance stable range which is accessible via algebraic K-theory. This discussion is
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elegantly encapsulated by a result of Weiss and Williams [WW88] who constructed a map

D̃iff(M)
Diff(M)

−→ Ω∞(S∞ ∧Z/2 C (M))

which is (φ(M) + 1)-connected. One prominent example where this strategy has culminated

in a computation is the following result of Farrell-Hsiang [FH78]

π∗(B Diff∂(Dk)) ⊗Q =

Q if ∗ = 4i and k odd

0 otherwise
(1.1)

in a range of degrees ∗ ≤ φ(k), which relies on Borel’s computation of the algebraic K-theory

of the integers.

A quite different approach to B Diff(M) in the case of surfaces was developed by Madsen

and Weiss [MW07] in their proof of the Mumford conjecture and subsequent far reach-

ing generalization to high-dimensional manifolds M2n due to Galatius–Randal-Williams

[GRW14, GRW18, GRW17]. For oriented manifolds we denote by Diff+(M) the subgroup of

orientation preserving diffeomorphisms. The classifying space B Diff+(M) can be modelled

as a moduli space of manifolds for which one can construct a parametrized version of the

Pontrjagin-Thom collapse map

B Diff+(Md) −→ Ω∞0 MTSO(d), (1.2)

where MTSO(d) is the Thom spectrum of the inverse of the universal bundle γd→B SO(d).

Madsen and Weiss show that for d = 2 this map induces an isomorphism in integral

homology in a range of degrees increasing with the genus of the surface M, which reduces

the computation to a purely homotopy theoretic problem. Galatius and Randal-Williams

have generalized this to simply-connected manifolds of even dimension (, 4) with a slightly

modified Thom spectrum as target. Their seminal result has lead to significant progress

in the past years and promises a far reaching understanding of B Diff(M), especially when

combined with embedding calculus.

1.2. Tautological rings

There are characteristic classes of smooth fibre bundles with closed manifold fibres that we

can construct without knowing anything specific about the fibre Md except its dimension

as follows. Let π : E→B denote an oriented smooth fibre bundle with fibre M and P→B its

associated principal Diff+(M)-bundle. We define the vertical tangent bundle as

TπE := P ×Diff+(M) TM −→ P ×Diff+(M) M � E.

3



For any characteristic class of oriented vector bundles c ∈ H|c|(B SO(d)) the fibre integral

κc :=
∫
π

c(TπE) ∈ H|c|−d(B),

defines a characteristic class of the fibre bundles by naturality of fibre integration which we

call a generalized Miller-Morita-Mumford class (MMM-class for short).1

Definition 1.2.1. The tautological ring R∗(M) is the subring of H∗(B Diff+(M)) generated

by the generalized MMM-classes κc of the universal M-bundle E→B Diff+(M) for all c ∈

H∗(B SO(d)).

Hence, the information in the tautological ring R∗(M) is the same as identifying all relations

among MMM-classes. It serves as a suitable object to study the cohomology of B Diff+(M) of

arbitrary smooth manifolds and as a simple measure to compare their rings of characteristic

classes. A related source of universal characteristic classes is given by H∗(Ω∞MTSO(d)) via

the parametrized Pontrjagin-Thom map (1.2). With rational coefficients the cohomology of

Ω∞MTSO(d) is a polynomial ring on H∗−d(B SO(d);Q) and the image under (1.2) is precisely

the tautological ring.

The tautological ring further plays a distinguished role in connection with the results

of Galatius–Randal-Williams because their results imply that a large part of the stable

cohomology of B Diff+(M) is given by MMM-classes (for example H∗(B Diff+(#gSn
× Sn);Q)

is described completely by MMM-classes in the stable range). This provides some evidence

that the tautological ring captures interesting properties of fibre bundles and is worth

studying. In fact, the tautological ring of surfaces Σg has been studied extensively because

of the close connection of B Diff+(Σg) and the moduli space of Riemann surfaces, which

was the original context of the Mumford conjecture. In comparison, tautological rings

of high-dimensional manifolds have come into focus much more recently for example in

[GGRW17, Gri17, RW18].

We are particularly interested in the ring-theoretic properties of R∗(M) such as the Krull

dimension. These large scale ring-theoretic questions cannot be addressed with the results

of Galatius–Randal-Williams as some products of tautological classes go beyond the stable

range and so necessarily concern the unstable features of H∗(B Diff+(M)), and this will be

the focus of the first part of this thesis.

One important tool to study the tautological ring is a family version of the Hirzebruch

signature theorem, which provides an intricate link between the tangent bundle and the

1Later on we prefer to denote fibre integration by π! : H∗(E)→H∗−d(B).
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topology of a manifold M4k. The signature theorem states that there are polynomials

Lk ∈ H4k(B SO;Q) such that for closed oriented manifold M4k the signature is sign(M) =

〈Lk(TM), [M]〉. The first few of these polynomials are given by

L1 =
1
3

p1

L2 =
1
45

(7p2 − p2
1)

L3 =
1

945
(62p3 − 13p1p2 + 2p3

1).

Representing rational homology classes by rational framed bordism classes, we can define

characteristic classes σi ∈ Hi(B Diff+(Md);Q) of degrees satisfying i + d ≡ 0 mod 4 if d is even

by evaluating a class [ f : Ni
→B Diff+(M), ξ] ∈ Ωfr

i (B Diff+(M)) ⊗Q as the signature

〈σi, [ f : Ni
→B Diff+(M), ξ]〉 := sign( f ∗E) (1.3)

of the total space of the pullback bundle f ∗E→N, which is a closed manifold whose dimen-

sion is divisible by 4 by construction. The family signature theorem can then be stated as

follows.

Theorem 1.2.2 ([RW19]). Let π : E→B be a smooth, oriented fibre bundle with fibre Md a closed,

oriented manifold. Then

κLi =

∫
π

Li(TπE) =

σ4i−d if d is even

0 if d is odd
(1.4)

It follows from [Mey72] that the classes σi ∈ Hi(B Diff+(M);Q) are in the image of the in-

duced map on cohomology of the natural map B Diff+(M)→B O(H, λ), where (H, λ) denotes

the (−1)d/2-symmetric non-degenerate intersection pairing λ on H = Hd/2(M;Z)/tors and

O(H, λ) denotes the automorphism group of (H, λ). This group is arithmetic and thus its clas-

sifying space satisfies strong finiteness conditions, which was first exploited in [GGRW17].

It further implies that for B Diff0(M), the classifying space of the connected component over

the identity, the signature classes σi vanish (this also follows from [CHS57]), which is the

version of the family signature theorem that we will use later on.

Theorem 1.2.3. Let π : E→B be a smooth, oriented fibre bundle with fibre Md a closed, oriented

manifold and trivial fibre transport. Then κLi = 0.

In recent years, the construction of tautological classes has been extended to other families

such as topological fibre bundles and block bundles [ERW14] as well as oriented Hurewicz

fibrations with Poincaré fibre [HLLR17], by which we mean a space homotopy equivalent
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to a (connected) finite CW complex with a choice of fundamental class in [X] ∈ Hd(X;D)

for an orientation system D such that cap product − ∩ [X] induces an isomorphism for all

local coefficient systems2. The ring of tautological classes of such families is much more

computable than R∗(M) because their corresponding classifying spaces are accessible by

methods from homotopy theory. Since any relation that holds among tautological classes

for block bundles or fibrations holds in particular for fibre bundles, this amounts to obtaining

upper bounds to R∗(M) — one of the key ideas of the first part of this thesis that we will

elaborate on later as well.

We will focus on the ring of tautological classes of oriented Hurewicz fibrations with

Poincaré fibre and TM-fibrations introduced in [Ber20a, Ber20b], which is an oriented M-

fibration π : E→B with fibre M a smooth closed oriented manifold together with an oriented

vector bundle TπE→E such that the restriction TπE|π−1(b) is equivalent to the tangent bundle

TM on each fibre π−1(b). The tautological classes of TM-fibrations are the fibre integrals of

the characteristic classes of this vector bundle.

Although fibrations with Poincaré fibre do not have a vertical tangent vector bundle,

one can show that they nonetheless have an Euler class. Given an oriented fibration π :

E→B of Poincaré duality spaces with fibre X of formal dimension d, the diagonal ∆ :

E→E ×B E is a map of Poincaré duality spaces and therefore has an Umkehr map ∆! =

D−1
E×BE∆∗DE : H∗(E)→H∗+d(E ×B E), where DE and DE×BE denote the corresponding Poincaré

duality isomorphisms. We define the fibrewise Euler class as

efw(π) := ∆∗∆!(1) ∈ Hd(E). (1.5)

We recognize this as a fibrewise analogue of the description of the Euler class of a Poincaré

duality space as the Poincaré dual of the diagonal. This construction has been extended in

[HLLR17] to oriented (Hurewicz) fibrations with Poincaré fibre X over general base spaces.

In particular, one can associate a fibrewise Euler class to the universal oriented X-fibration

X ↪→ E π
−→ B hAut+(X),

which classifies oriented fibrations with fibre X.

Definition 1.2.4. The Euler ring E∗(X) of an oriented Poincaré duality space X of formal

dimension d is defined as the subring of H∗(B hAut+(X)) generated by the classes

κi :=
∫
π

efw(π)i+1
∈ Hi·d(B hAut+(X)),

where efw(π) ∈ Hd(E) is the fibrewise Euler class of the universal oriented X-fibration.
2We give a precise definition in Section 7.1.1
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1.3. Embedding calculus and graph complexes

In the past two years a new, promising approach to studying the classifying space B Diff(M)

has emerged based on the calculus of embeddings, which provides homotopy theoretic

approximations to embedding spaces Emb(M,N) of smooth manifolds. More precisely,

there are maps

ηk : Emb(M,N) −→ Tk Emb(M,N),

for all k ≥ 1 where the space Tk Emb(M,N) is called the kth Taylor approximation, and these

approximations assemble in the so called Taylor tower

Emb(M,N)

T∞ Emb(M,N) := holim
(
. . . T3 Emb(M,N) T2 Emb(M,N) T1 Emb(M,N)

)
.

η∞

η1
η2

r3 r2

(1.6)

By deep theorems of Goodwillie and Goodwillie, Klein and Weiss the connectivity of ηk

increases with k if dim(N) − dim(M) ≥ 3, and in particular the limit provides a homotopy

theoretic description of embedding spaces

η∞ : Emb(M,N) '
−→ T∞ Emb(M,N).

This seminal theorem has been the basis for complete computation of the rational homotopy

type of several embedding spaces for example in [ALV07, AT14, FTW17].

If M = N is a closed manifold, then the space of self-embedding agrees with Diff(M). The

Taylor tower is still defined and it induces a map on classifying spaces, but it is not known

if η∞ : Diff(M)→T∞ Emb(M,M) is a weak equivalence. It is commonly expected that it is not

a weak equivalence but that it is close.3 This expectation is based on two types of results

that have appeared in the past decade:

• In many cases one finds that the rational homotopy type of the limit T∞ Emb(M,N)

can be described in terms of certain graph complexes, chain complexes whose ele-

ments and algebraic operations have graphical interpretations. A key input for such

results is Kontsevich’s proof of formality of the little disks operad, which allows for a

computation of a model of the Taylor tower in terms of (derived) mapping spaces of

certain right modules over the (framed) little disks operad. Willwacher has recently

3This is the impression the author got from eaves-dropping on inspiring conversations by the people who

currently advance this exciting research, although this sentiment is not committed to paper yet.
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announced such a description of a space that is a mild modification of a delooping of

T∞ Emb(M,M) and expected to be a close model.

• A second type of result concerns certain characteristic classes of fibre bundles with a

(framed) section and whose fibre is an integral homology sphere that were defined

by Kontsevich in [Kon94]. These classes arise from a very similar graph complex to

the ones that describe the rational homotopy type of embedding spaces, and were

shown to be non-trivial by Watanabe in [Wat09a, Wat09b, Wat18]. Watanabe further

uses these classes to prove non-triviality of π∗(B Diff∂(D2k+1)) ⊗ Q far beyond the

concordance stable range.

It is believed that these two topics are closely related, and in combination these results sug-

gest at the very least that the graphical description of the homotopy type of T∞ Emb(M,M)

and its delooping provides non-trivial information about the classifying space B Diff(M) far

beyond the ranges involved in the respective approaches to studying it that we mentioned

before.

The exact connection between Kontsevich’s characteristic classes and (the graphical mod-

els from) embedding calculus is however not known. The reason that Kontsevich’s name

features prominently in both bullet points above is that both rely on the same tool developed

by Kontsevich, namely configuration space integrals. In the second part of the thesis, we pro-

vide a conceptual explanation of the connection of these two themes based on a homotopy

theoretic version of configuration space integrals that extends Kontsevich’s characteristic

classes and can be defined on the self-embedding tower4.

Finally, there is a fruitful interplay between embedding calculus and the stabilization

methods of Galatius–Randal-Williams. This goes back to an idea of Weiss [Wei15], who

constructed a fibre sequence

B Diff∂(Dd) −→ B Diff∂(M) −→ B Emb�1
2∂

(M,M),

where M is a smooth manifold with non-empty boundary with a fixed disk Dd−1 ↪→ ∂M

and Emb�1
2∂

(M,M) is the space of embeddings M ↪→ M that are the identity on ∂M \ Dd−1

and isotopic relative to ∂M \ Dd−1 to a diffeomorphism fixing ∂M. If we choose a highly-

connected manifold such as Wg,1 = #gSn
× Sn

\D2n−1 with large genus then we understand

two terms in the above fibre sequence well: the total space B Diff∂(Wg,1) by the methods

of Galatius–Randal-Williams and the base Emb�1
2∂

(Wg,1,Wg,1) by embedding calculus (the

4With the caveat that at present we can only deal with configurations of two particles.
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tower converges if n ≥ 3 because of an improved convergence result based on a notion of

codimension using the handle-dimension of the domain and the geometric dimension of

the codomain).

This provides a promising tool to obtain information about B Diff∂(Dd) outside the stable

range. Weiss has used this to show in [Wei15] that the rational Pontrjagin classes pi ∈

H4i(B Top(2n);Q) can be non-trivial for i > n, where Top(2n) denotes the homeomorphisms

of R2n. This is connected to diffeomorphisms of disks by a result from smoothing theory

Diff∂(Dd) ' Ωd+1Top(d)/O(d)), and this technique is currently refined by Randal-Williams

and Kupers. There are further applications, for example in [Kup19] Kupers has shown that

π∗(B Diff∂(Dd)) is finitely generated in each degree for d , 4, 5, 7 which was a long standing

problem in geometric topology.
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Discussion of results

This thesis is divided into two parts with the common theme of tautological classes. In the

first part, we use tools from rational homotopy theory to compute the ring of tautological

classes for fibrations with Poincaré fibre and TM-fibrations. In the second part we develop a

connection between Kontsevich’s characteristic classes and the self-embedding tower, and

we study some implications for tautological classes.

Part I

The first three chapters are mostly contained in my article [Pri19] with only minor modifi-

cations. We start in Chapter 2 with a discussion of the algebraic models for fibrations from

rational homotopy theory. Denote by hAut0(X) ⊂ hAut(X) the connected component of the

identity and by

X ↪→ E0 −→ B hAut0(X) (1.7)

the universal X-fibration with trivial fibre transport. If X is 1-connected then (1.7) is a

fibration of 1-connected spaces that we call the universal 1-connected fibration. Its algebraic

description from rational homotopy type can be expressed in terms of an algebraic model

of X. Our description is based on a Sullivan model (ΛV, d) of X, and we show that a model

of (1.7) is given by the Chevalley-Eilenberg cochain complex of the differential graded Lie

algebra of (positive degree) derivations (Der+(ΛV), [d,−]).

Theorem A (Theorem 2.3.9). Let X be a 1-connected space of finite type with minimal Sullivan

model (ΛV, d) and unit η : Q→ΛV. Then

C
∗

CE(Der+(ΛV);Q)
η∗
−→ C

∗

CE(Der+(ΛV); ΛV)

is a cdga model of the universal 1-connected fibration (1.7).

Remark. It has been pointed out to the author by his examiners that this result can be

extracted from [Laz14]. We will present an elementary proof in this thesis based on a

comparison with Tanré’s model and explain the relation to [Laz14] in Remark 2.3.6. The

theorem is also going to appear as a special case in forthcoming work of Berglund [Ber20b].
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In Chapter 3 we discuss models for fibre integration if the fibre X is a rational Poincaré

duality space in terms of the algebraic models from rational homotopy theory. By a rational

Poincaré duality space X of formal dimension d we mean a space with dim H∗(X;Q) < ∞

and a linear map εX : Hd(X;Q)→Q, called an orientation, that induces a non-degenerate

pairing εX(- ^ -) : Hq(X;Q) ⊗ Hd−q(X;Q)→Q for all q. Given a cdga model π∗ : B→E of a

fibration with fibre X, we show that εX determines a unique element in Ext−d
B (E,B) corre-

sponding to a derived B-module homomorphism Π : E→B[d] that induces fibre integration

on cohomology (see Proposition 3.1.2). And we use this chain level representative Π to

define a representative of the fibrewise Euler class in the algebraic model in Section 4.1.

The above discussion simplifies drastically when one considers rationally positively el-

liptic spaces, i.e. spaces X with dim H∗(X;Q) < ∞, dim π∗(X) ⊗Q < ∞ and χ(X) > 0. This is

because of strong structural properties which imply that H∗(X;Q) is a complete intersection

over Q. Similarly, the algebraic model of the universal 1-connected fibration is a complete

intersection over a polynomial ring5 and we give a simple characterization of the fibrewise

Euler class in this case.

Theorem B (Theorem 4.1.10). If a fibration has an algebraic model given by a complete intersection

E = B[x1, . . . , xn]/( f̄1, . . . , f̄n) over a polynomial ring B (both concentrated in even degrees), then the

fibre is a rationally positively elliptic space with a choice of orientation such that the fibrewise Euler

class is represented by

efw(π) = det
(
∂ f̄i
∂x j

)
∈ E.

For example, we show in Proposition 4.6 that the universal 1-connected fibration with

fibre X = CPn is equivalent to the complete intersection Bn[x]/(xn+1
−

∑n+1
i=2 xixn+1−i) over

the polynomial ring Bn = Q[x2, . . . , xn+1], where |xi| = 2i and x restricts to the generator of

the fibre H2(CPn;Q). Then fibre integration is π!(xn) = 1 and π!(xi) = 0 for i < n (see (4.2)),

and the fibrewise Euler class is represented by e f w(π) = (n + 1)xn
−

∑n
i=2(n + 1 − i)xixn−i by

Theorem B. This reduces the computation of the Euler ring to a purely algebraic problem.

Theorem C (Theorem 4.2.7). E∗(CPn) � Q[κ1, . . . , κn−1, κn+1].

In this case, we can infer some information about R∗(CPn). Using the smooth action of

SU(n + 1) on CPn we show in Corollary 4.2.10 that the map B Diff+(CPn)→B hAut+(CPn)

induces an injection on rational cohomology. In particular E∗(CPn) ↪→ R∗(CPn).

In Chapter 5 we study the ring of tautological classes of TM-fibrations. This is based on

forthcoming work of Alexander Berglund [Ber20b], where he discusses (among other things)
5Provided that X satisfies the Halperin conjecture.
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the rational homotopy theory of TM-fibrations and constructs cocycle representatives of the

characteristic classes of the vector bundle TπE→E over the total space. He has shared a draft

of [Ber20b] with me and has explained his results in a visit to Stockholm in February 2019.

We have been working in an ongoing collaboration and many ideas, especially concerning

elliptic spaces, have been featured in this thesis, for example Proposition 5.1.5 and Example

5.1.10 for M = S2
× S2.

It turns out that even for this simple example when M = S2
× S2, the computation of

the tautological ring of TM-fibrations is algebraically quite complicated. In comparison,

the computation simplifies when we further impose the relations from the family signature

theorem and doing this we can compute an upper bound on R∗(S2
× S2) using a computer

algebra system. However, its presentation as aQ-algebra in terms of generators and relations

is too complicated to print in this thesis6. Instead, we extract in Proposition 5.2.2 an upper

bound on the Hilbert series and the Krull dimension of R∗(S2
× S2). Another way to extract

some palpable information out of our computation is to restrict attention to the much smaller

Euler ring and detect elements which are in the kernel of the map E∗(M)→R∗(M).

Theorem D (Proposition 5.2.3 and 5.2.4). The kernel E∗(M)→R∗(M) is non-trivial for M =

CP2#CP2 and M = S2
× S2.

This is not merely an existence statement but we give concrete elements in the kernel.

In particular, these elements provide computable yet highly non-trivial obstructions to

smoothing a fibration with fibre M = S2
× S2 or M = CP2#CP2.

Another interesting application is the comparison of tautological rings for manifolds that

have the same homotopy type but different characteristic classes. We use surgery theory

in Appendix C to compute a source of such examples given by the geometric structure set

S(HP2), whose elements are equivalence classes of homotopy equivalences f : M '
→HP2,

where M is a smooth closed manifold, up to diffeomorphisms of the domain. We find

in Theorem C.1 that the structure set is countably infinite and that the elements can be

parametrized (up to finite ambiguity) by the value of p1(TM).

Theorem E (Theorem 5.2.5). Kdim R∗(M) = 0 for all but finitely many [ f ,M] ∈ S(HP2).

One notable exception that we know is HP2 itself for which 2 ≤ Kdim R∗(HP2) ≤ 3,

and we expect that this is the only exception together with HP2#Σ, where Σ denotes the

exotic 8-sphere. It is quite surprising that the tautological ring of homotopy equivalent

6and ultimately not so interesting
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manifolds have a common feature at all, and it raises the question how much it depends on

the manifold structure of M.

Part II

We begin with a brief review of embedding calculus and configuration space integrals

in Chapter 6, which contains no original work. We discuss a description of the Taylor

tower which allows for simple description of the delooping of the bottom stages of the

self-embedding tower

B Diff+(M)

B T×∞ Emb(M,M) . . . B T×2 Emb(M,M) B T×1 Emb(M,M),

B η∞

B η1
B η2

B r2

where the superscript × indicates that we consider the homotopy-invertible path compo-

nents of the Taylor approximations (we explain this point in more detail later).

It turns out that B T×1 Emb(M,M) is the classifying space of TM-fibrations, which means

that we can pull back the universal TM-fibration over B T×1 Emb(M,M) to the higher stages

of the tower, i.e. there are oriented fibrations

πk : Ek→B T×k Emb(M,M) (1.8)

with fibre M with an oriented vector bundle TπEk→Ek defined as pull back along B rk.

Remark. From this perspective, we can define tautological rings for each stage of the Taylor

tower and the computation of the tautological ring of TM-fibrations is only the first step

in a hierarchy of approximations. We expect that one can find many more relations in

tautological ring coming from the higher stages and this has been one of the motivations of

the author for studying embedding calculus in the first place.

In Section 6.2 we discuss Kontsevich’s construction of certain characteristic classes via

configuration space integrals. The simplest such class can be constructed as follows.

Let π : E→B be fibre bundle with fibre M and a section s : B→E so that the bundle is

trivialised on a neighbourhood of s and consider the fibrewise configuration space

EC2(π) :=
{
(x1, x2) ∈ E2

|π(x1) = π(x2) and x1 , x2 , s(π(x1))} −→ B,

which is a fibre bundle with fibre the ordered configuration space C2(M \ ∗). One can

construct a fibrewise compactification EC2(π)→B whose fibre is a compact manifold with
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corners and interior C2(M \ ∗). If Md is an odd dimensional homology sphere, one can

further construct a so-called propagator ω ∈ Hd−1(EC2;Z) (this depends on some framing

data) whose powers ωk vanish when restricted to the fibrewise boundary and which have a

canonical lift ω̃k ∈ Hk(d−1)(EC2(π), ∂fibEC2(π);Z). Then the fibre integral

ζ2(π) :=
∫
π
ω̃3 ∈ Hd−3(B;Z) (1.9)

defines a non-trivial characteristic class, originally defined by Kontsevich [Kon94] and

shown to be non-trivial by Watanabe in [Wat09a]. The general construction of the charac-

teristic classes is based on similar fibre integrals over fibrewise configuration spaces with

more particles.

The goal of Chapter 7 is to extend configuration space integral techniques to study

the fibration Ek→B T×k Emb(M,M) over the self-embedding tower that we defined in (1.8)

above. The fundamental issue we are facing is that the set-theoretic configuration space

is not invariant under homotopy equivalences and so there is no meaningful fibrewise

configuration space of fibrations that is invariant under fibre homotopy equivalences.

We address this issue in Section 7.1.1 and propose a homotopy theoretic notion of config-

uration spaces that is robust under homotopy equivalences. This is based on the concept of

Poincaré embeddings [Kle99], which is a homotopy theoretically meaningful analogue of

an embedding. The technical part in Section 7.1.2 is the construction of fibrewise homotopy

configuration spaces for π2 : E2→B T×2 Emb(M,M). An important tool is May’s two-sided

bar construction [May75], which we review in Appendix A.

Theorem F (Theorem 7.1.8). The fibration π2 : E2→B T×2 Emb(M,M) admits the structure of a

fibrewise homotopy configuration space of two particles.

Using the construction of the fibrewise homotopy configuration space, we only need to

extend the construction of the propagator class to define the simplest characteristic class of

Kontsevich over the self-embedding tower.

Theorem G (Theorem 7.3.2). The construction of Kontsevich’s characteristic class ζ2 from (1.9)

can be extended to the second stage of the self-embedding tower.

The statement of this Theorem is quite vague because a precise version involves tech-

nicalities related to choices of framings which we discuss in detail in Section 7.3, and we

refer to Theorem 7.3.2 for a precise statement. But there is also another issue because ζ2 is

a characteristic class of bundles with structure group Diff(M,U), i.e. diffeomorphisms that

restrict to the identity on a fixed open disk U ⊂ M. This group coincides with Diff∂(M \U)
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and one should use a version of embedding calculus relative the boundary, which has not

yet been described in terms of the Haefliger model which we use. The statement in Theorem

G above refers to an ad hoc definition of the Haefliger model in this case. We indicate in

Remark 7.3.3 why we expect this to be a valid model for the Taylor approximations for

embeddings relative to the boundary.

We can make two observations concerning tautological classes over the self-embedding

tower. The first concerns the Euler class. A fact we have not mentioned so far is that for

TM-fibrations π : E→B there are a priori two ways to obtain an Euler class: the fibrewise

Euler class of the fibration π : E→B or the Euler class of the vector bundle TπE→E. In

general, these two Euler classes are not the same for TM-fibrations (Proposition 5.1.5).

We can use the construction of homotopy configuration spaces to show that these classes

become identified over B T×2 Emb(M,M). This is because Theorem F in its full strength

implies that the vector bundle TπE2→E2 provides a regular neighbourhood of the diagonal

map

∆ : E2 −→ E2 ×B T×2 Emb(M,M) E2,

a property which we recognize for the vertical tangent bundle of fibre bundles, which

links the global topology of the fibration π2 : E2→B T×2 Emb(M,M) with the vector bundle

TπE2→E2.

Theorem H (Theorem 7.2.1). The fibrewise Euler class of π2 : E2→B T×2 Emb(M,M) agrees with

the Euler class of the vector bundle TπE2→E2.

A second observation involves the family signature theorem. Recall the definition of

the signature classes σi ∈ Hi(B Diff+(M);Q) in (1.3). As we have pointed out then, these

classes can be defined in the cohomology of the classifying space B O(H, λ) of the group

of automorphisms of the signature pairing, which implies that they are also defined in

H∗(B T×k Emb(M,M);Q) for all k ≥ 1. For k = 1 one can easily check using the rational

homotopy theory of TM-fibrations that the family signature theorem does not hold. This

can be strengthened to k = 2.

Theorem I (Theorem 8.0.1). The family signature theorem does not hold on B T×2 Emb(M,M).

More precisely, for all smooth, closed, oriented manifolds M2d and all i ∈N satisfying d < 2i ≤ 2d−2

the class σ4i−2d − κLi ∈ H4i−2d(B T×2 Emb(M,M);Q) does not vanish.
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Part I.

Tautological classes and rational homotopy theory
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Chapter 2.

Rational homotopy theory of fibrations

Algebraic models of fibrations F→E→B of 1-connected spaces from rational homotopy are

well studied and often given in terms of relative Sullivan algebras [Sul77, Hal83, Tho81,

FHT01] or semidirect products of dg Lie algebras [Tan83]. The main goal of this chapter is

to find an algebraic model of the universal 1-connected fibration

X ↪→ E0 −→ B hAut0(X) (2.1)

for a 1-connected space X in terms of its Sullivan model.

There are essentially two different algebraic approaches to rational homotopy theory,

using either the Quillen equivalence of the category of 1-connected rational spaces of finite

type with the (opposite) category of 1-connected differential graded commutative algebras

of finite type (cdga in short), or with the category of connected differential graded Lie

algebras of finite type. These two algebraic categories are Quillen equivalent with right

adjoint given by the the cdga of Chevalley-Eilenberg cochains C∗CE(−;Q) of a dg Lie algebra.

Tanré gave an algebraic description of (2.1) in [Tan83] in the category of dg Lie algebras

whose input is a dg Lie algebra model of the space X. The main result of this chapter,

Theorem 2.3.9, gives a similar description of (1.7) in the category of cdga’s in terms of a

Sullivan model of X. This is based on Sullivan’s result from [Sul77] that for a 1-connected

space of finite type with minimal Sullivan model (ΛV, d), the dg Lie algebra Der+(ΛV) of

(positive degree) derivations is a dg Lie model of B hAut0(X). Based on this observation,

we will construct an algebraic model of (1.7) as a relative Sullivan algebra with fibre ΛV.

The derivation Lie algebra Der+(ΛV) is not of finite type in general, which makes it quite

technical to discuss its corresponding cdga model. One does not have these difficulties

when considering the differential graded coalgebra CCE
∗ (Der+(ΛV);Q), and consequently,

we start by constructing a coalgebra model of the universal fibration. In the process, we will

give an algebraic classification of coalgebra bundles in Section 2.2 that is similar in spirit

to Tanré’s classification of semidirect products of dg Lie algebras. This classification is not

needed in the proof of the main theorem but conceptually quite clarifying.
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2.1. Preliminaries on differential graded coalgebras

We recall very briefly some basic terminology and properties of cocommutative coalgebras

from [Qui69, App. B] and also [Tan83].

Definition 2.1.1. A differential graded coalgebra C = (C, dC,∆C, εC) is a chain complex

(C, dC) over Q with comultiplication ∆C : C→C ⊗ C and augmentation εC : C→Q that are

chain maps satisfying coassociativity (∆C ⊗ IdC) ◦ ∆C = (IdC ⊗∆C) ◦ ∆C and counitality

(IdC ⊗εC) ◦ ∆C = IdC = (εC ◦ IdC) ◦ ∆C. A differential graded coalgebra is cocommutative

if T ◦ ∆C = ∆C, where T denotes the isomorphism of C ⊗ C′→C′ ⊗ C that sends c ⊗ c′ to

(−1)|c|·|c
′
|c′ ⊗ c.

We denote by dgcc the category of differential graded cocommutative coalgebras over

Q with morphisms given by counital coalgebra maps of degree zero that are chain maps.

Often we will omit subscripts of the differential and comultiplication when it is clear from

context which coalgebra we are referring to, and sometimes we will use Sweedler’s notation

to express the value of the comultiplication as ∆(c) =
∑

c(1) ⊗ c(2).

One important example of a coalgebra is the cofree (conilpotent) cocommutative coalgebra

ΛcV on a graded vector space V. It is defined on the free graded commutative algebra ΛV

with comultiplication

∆(v1 ∧ . . . vn) :=
∑

0≤k≤n, σ∈Sh(k,n−k)

ε(σ)
(
vσ(1) ∧ . . . vσ(k)

)
⊗

(
vσ(k+1) ∧ . . . ∧ vσ(n)

)
where Sh(k,n − k) denotes k-shuffles and ε(σ) = ±1 is the sign determined by the Koszul

rule.

Definition 2.1.2. A coderivation of a coalgebra C is a linear map θ : C→C such that

∆C ◦ θ = (θ ⊗ Id +T ◦ (Id⊗θ) ◦ T) ◦ ∆C. In particular, the differential dC is a coderivation of

degree −1 and the graded vector space of coderivations CoDer(C) is a dg Lie algebra with

bracket given by the commutator and differential [dC,−].

Completely dual to derivations of free algebras, coalgebra endomorphisms and coderiva-

tions θ ∈ CoDer(ΛcV) of a cofree coalgebra ΛcV are determined by their corestrictions

θn : ΛnV θ
−→ ΛV

πV� V.

A coalgebra is coaugmented if there is a section η : Q→C of the counit in dgcc and we

denote η(1) by 1 ∈ C. A coaugmented coalgebra C is conilpotent if C := ker(ε) is a coalgebra

with comultiplication ∆(c) := ∆(c) − c ⊗ 1 − 1 ⊗ c such that for all c ∈ C there exists n such
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that ∆
n
(c) = 0. We will denote by dgccconil the full subcategory of coaugmented conilpotent

coalgebras. Then there is an adjunction [Qui69]

dgLie dgccconil
C

L

> (2.2)

where dgLie is the category of differential graded Lie algebras. We briefly recall the definition

ofC : dgLie→dgccconil from [Qui69, App. B]. For L ∈ dgLie there is an acyclic dg Lie algebra

sL ⊕ L (where sL denotes the suspension (sL)∗ = L∗−1) that contains L as a dg Lie subalgebra

with brackets and differential D determined by

[sl, sl′] = 0 [sl, l′] = s[l, l′] D(sl) = l − sdLl. (2.3)

The enveloping algebra U(sL ⊕ L) is an acyclic dg Hopf algebra that is a free U(L)-module

via the inclusion L ↪→ sL ⊕ L. Quillen’s defintion of the functor C is

C(L) := U(sL ⊕ L) ⊗U(L) Q. (2.4)

Note that U(sL⊕L) is a free U(L)-module on the enveloping algebra of the abelian Lie algebra

sL so that ignoring differentials C(L) � U(sL) is isomorphic to the cofree coalgebra ΛcsL as

a graded coalgebra. We choose C(L) as our definition of the Chevalley-Eilenberg complex

C
CE
∗ (L;Q). More generally, if M is a left U(L)-module then the Chevalley-Eilenberg complex

of L with coefficients in M is CCE
∗ (L; M) := U(sL ⊕ L) ⊗U(L) M.

Remark 2.1.3. This definition of C is different than the one used for example in [FHT01]

where the differential differs by a sign on the quadratic corestriction. The different choices

are isomorphic as dgc coalgebras via a coalgebra isomorphism which only has a non-trivial

linear corestriction given by − IdsL : sL→sL.

Denote by dgLiec the full subcategory of connected dg Lie algebras, i.e. Lie algebras

concentrated in positive degrees; and by dgcc1 the full subcategory of simply connected

coalgebras, i.e. coalgebras whose counit is an isomorphism in degree 0 and C is concentrated

in degrees >1. Then the adjunction (2.2) induces a Quillen equivalenceL a C between dgLiec

and dgcc1 according to [Qui69].

Before we end this section, observe that the category dgcc has a symmetric monoidal

structure given by the tensor product of the underlying chain complexes: For C,C′ ∈ dgcc

the chain complex C ⊗ C′ has a comultiplication ∆C⊗C′ := (IdC ⊗T ⊗ IdC′)(∆C ⊗ ∆C′) and

counit εC ⊗ εC′ . The monoidal unit 1 is the coalgebra on the 1-dimensional chain complex

concentrated in degree zero (Q, d = 0) with comultiplication determined by ∆(1) = 1⊗1 and

counit ε1 = IdQ. Note that the monoidal unit is also the terminal object in dgcc.
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Lemma 2.1.4. Let C ∈ dgcc, then the comultiplication ∆ : C→C⊗C and counit ε : C→Q are maps

in dgcc. Hence dgcc is cartesian monoidal, i.e. the monoidal structure is the product in dgcc.

Remark 2.1.5. The category dgccconil has a model category structure [Qui69] so in particular

it has all small limits and colimits. The analogous statement of Lemma 2.1.4 holds in

dgccconil.

2.2. Classification of coalgebra bundles

We prove a classification of coalgebra bundles which are the algebraic models for fibrations.

This classification is inspired by the geometric classification of fibre bundles via associated

principal bundles. The counter part of principal bundles in rational homotopy theory are

principal L-bundles for a dg Lie algebra L, which have been introduced by Quillen in [Qui69,

App. B] where he also describes the classification of such principal L-bundles.

Definition 2.2.1. A coalgebra bundle with fibre C ∈ dgccconil is a map π : E→B in dgccconil

such that there exists an isomorphism φ : B ⊗ C→E of graded coaugmented coalgebras

satisfying πφ|B⊗1 = IdB and φ|1⊗C ∈ Homdgccconil(C,E). We call such an isomorphism a local

trivialization, and a pair (π : E→B, φ) a trivialized coalgebra bundle with fibre C. Note that

a local trivialization does not need to be a chain map. If it is then we say the bundle is trivial.

We want to formulate the classification of such bundles via the pullback of a universal

bundle, which is also how the classification of semidirect products of dg Lie algebras in

[Tan83] can be phrased. The universal coalgebra bundle with fibre C ∈ dgccconil is obtained

from the universal principal bundles that Quillen described in [Qui69]. In the following,

we set

L = CoDer(C) ∈ dgLie.

Then C and Q are U(L)-modules and the counit ε : C→Q is a U(L)-module map. We will

show that the induced map

Id⊗ε : U(sL ⊕ L) ⊗U(L) C −→ U(sL ⊕ L) ⊗U(L) Q = C(L) (2.5)

is the universal coalgebra bundle with fibre C and local trivialization

φL : C(L) ⊗ C �
−→ U(sL) ⊗ C

j⊗IdC
−→ U(sL ⊕ L) ⊗U(L) C,

where j is the map on enveloping algebras induced by inclusion of the abelian Lie algebra

j : sL→sL⊕ L. Note that φL is only a map of graded coalgebras and does not commute with
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the differential in general because neither the isomorphism C(L) � U(sL) nor the inclusion

of Hopf algebras U(sL)→U(sL ⊕ L) are chain maps.

Given a coalgebra bundle π : E→B with fibre C and a map f : X→B the pullback

f ∗E := lim(X→B ← E) ∈ dgccconil exists. We will show that the canonical map π : f ∗E→X

is a coalgebra bundle with the same fibre. The limit of X→B←E in the category of graded

cocommutative coalgebras is the underlying coalgebra of f ∗E. Thus for a local trivialization

φ : B ⊗ C→E we get fπX = π ◦ φ ◦ ( f ⊗ IdC) : X ⊗ C→B and hence there is an induced map

of graded coalgebras f ∗φ : X ⊗ C→ f ∗E which defines a local trivialization of the pullback.

Theorem 2.2.2. Let C ∈ dgccconil and L = CoDer(C) ∈ dgLie. For B ∈ dgccconil denote the set of

isomorphism classes of trivialized coalgebra bundles with fibre C over B by BunB(C), then

Homdgcc(B,C(L)) −→ BunB(C)

f 7−→
[
π : f ∗(U(sL ⊕ L) ⊗U(L) C)→B, f ∗φL

]
is a one-to-one correspondence, where f ∗φL is the induced local trivialization as described above. If

B ∈ dgcc1 then the above statement is also true if one replaces L by L+ = CoDer+(C).

The transition from principal L-bundles for L = CoDer(C) to coalgebra bundles with fibre

C as in (2.5) corresponds to the construction of associated bundles in geometric topology.

Following this analogy, the proof of Theorem 2.2.2 is based on the algebraic analogue

of the reverse process, that associates to a smooth fibre bundle M→E→B the principal

Diff(M)-bundle
∐

b∈B Diff(M,Eb)→B. We implement this correspondence and construct a

principal L-bundle asscociated to a coalgebra bundle with fibre C by using the classification

of principal L-bundles due to Quillen.

Let us briefly recall some definitions and important properties from Appendix B in

[Qui69].

Definition 2.2.3 ([Qui69]). Given L ∈ dgLie and B ∈ dgccconil then a principal L-bundle

with base B is a triple (E,m, π), where E ∈ dgccconil is a right U(L)-module with module

map m : E ⊗ U(L) −→ E that is a map of dgc coalgebras, π : E→B is a map in dgccconil

satisfying π(e · u) = π(e) · ε(u) and there exists a map of graded coalgebras ρ : B→E so

that ϕ(b ⊗ u) = ρ(b) · u defines an isomorphism ϕ : B ⊗ U(L)→E of graded cocommutative

coalgebras and right U(L)-modules. Note however that ϕ is not a chain map in general.

Such a map ρ is called a local trivialization.

Quillen proved that a principal L-bundle over B with a choice of local trivialization is

determined by a twisting function, a linear map τ : B→L of degree −1 such that

dLτ + τdB +
1
2

[ , ] ◦ (τ⊗τ) ◦ ∆ = 0 and τ(1) = 0. (2.6)
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In particular, the principal L-bundle over B corresponding to a twisting function τ : B→L

has as total space E = B ⊗ U(L) with the obvious module structure and projection and

(co)differential on E defined in terms of τ as

dE(b ⊗ u) = dE(b ⊗ 1) · u + (−1)|b|b ⊗ dU(L)(u)

dE(b ⊗ 1) = dB(b) +
∑

i

(−1)|b(1)|b(1) ⊗ τ(b(2)).
(2.7)

Denote by T (B,L) the set of twisting functions. The functor

T (−,−) : (dgccconil)op
× dgLie→Set

is representable for a fixed B or L via HomdgLie(L(B),−) respectively Homdgcc(−,C(L)),

i.e. there is a commutative diagram

C(L)

B L

L(B)

τL∃!ϕB

τB

τ

∃!ϕL

(2.8)

where ϕB and ϕL are maps in the respective categories. If we consider the principal bundles

E(B,L(B), τB) and E(C(L),L, τL) := U(sL⊕L) corresponding to the universal twisting functions

(see [Qui69, App. B] for definitions), this can be rephrased as a classification of principal

bundles similar to geometric topology: For fixed L, every principal L-bundle over B is

obtained as a pullback from the universal bundle E(C(L),L, τL) along a map B→C(L) in

dgccconil.

We can now implement the construction of the principal L = CoDer(C)-bundle associated

to a coalgebra bundle with fibre C.

Proposition 2.2.4. Let π : E→B be a coalgebra bundle with fibre C ∈ dgccconil and let φ be a local

trivialization. Then

τE|B : B −→ CoDer(C),

b 7−→
(
c 7→ πCφ

−1dEφ(b ⊗ c)
) (2.9)

extends to a twisting function τE by setting τE(1) = 0

Proof. Since we fix a local trivialization, we can assume that E = B⊗C as graded coalgebra

with differential D such that the projection π = πB : (B ⊗ C,D)→(B, dB) and inclusion
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i : (C, dC)→(B ⊗ C,D) are maps in dgcc. Then τ(b)(c) = πC ◦ D(b ⊗ c) and we need to check

that this defines in fact a coderivation and that τ satisfies the twisting condition.

Once can check that τ(b) := πC ◦D(b⊗−) defines a coderivation of C by using that πC is a

map of graded coalgebras. Moreover, it is clear from the definition that τ has degree −1 so

it remains to check dLτ + τdB + 1
2 [ , ] ◦ (τ⊗τ) ◦ ∆ = 0. Let us first compute D(b ⊗ c). Note that

(πB ⊗ πC)∆B⊗C = IdB⊗C, which, combined with D being a coderivation, gives

D(b ⊗ c) =
∑

πBD(b ⊗ c(1)) ⊗ c(2) +
∑

(−1)|b(1)|b(1) ⊗ πCD(b(2) ⊗ c)

= dB(b) ⊗ c +
∑

(−1)|b(1)|b(1) ⊗ πCD(b(2) ⊗ c)

where the second equality uses that πB is a chain map. When we apply D again, the first

summand gives

D(dBb ⊗ c) =
∑

dB(b(1)) ⊗ πCD(b(2) ⊗ c) + (−1)|b(1)|b(1) ⊗ πCD(dBb(2) ⊗ c)

as ∆BdBb = dBb(1) ⊗ b(2) + (−1)|b(1)|b(1) ⊗ dBb(2), and the second summand becomes∑
(−1)|b(1)|dB(b(1)) ⊗ πCD(b(2) ⊗ c) +

∑
(−1)|b(1,2)|b(1,1) ⊗ πCD(b(1,2) ⊗ πCD(b(2) ⊗ c))

where we have set ∆b(1) =
∑

b(1,1) ⊗ b(1,2). Combining these contributions and applying πC

gives

0 = πCD2(b ⊗ c) = πCD(dBb ⊗ c) +
∑

(−1)|b(1)|πCD(b(1) ⊗ πCD(b(2) ⊗ c)). (2.10)

We compare with the twisting condition. Its first two contributions are

[dC, τ(b)](c) = dCπCD(b ⊗ c) − (−1)|b|−1πCD(b ⊗ dCc)

= πCD(1 ⊗ πCD(b ⊗ c)) + (−1)|b|πCD(b ⊗ πCD(1 ⊗ c)),

τ(dBb)(c) = πCD(dBb ⊗ c),

where we have rewritten dC in terms of D using that the inclusion C→C ⊗ B is a chain map

by assumption; the third and last contribution of the twisting condition is(1
2

∑
(−1)|b(1)|[τ(b(1)), τ(b(2))]

)
(c) =

1
2

∑
|b(i)|<|b|

πCD(b(1) ⊗ πCD(b(2) ⊗ c)) − (−1)(|b(1)|−1)(|b(2)|−1)πCD(b(2) ⊗ πCD(b(1) ⊗ c)).

Note that τ(1) = 0 so the sum does not include the contribution from b ⊗ 1 + 1 ⊗ b. One can

check using the cocommutativity of B that the sum of these three terms gives the right side

of (2.10) and thus vanishes. Hence, τ is a twisting function. �
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Corollary 2.2.5. Let C and L be as above and denote by L-BunB the set of isomorphism classes of

trivialized principal L-bundles over B, then

L-BunB −→ BunB(C)

[(E,m, π), ρ] 7−→ [Id⊗ε : E ⊗U(L) C→E ⊗U(L) Q, ρ ⊗ IdC]

is a one-to-one correspondence. We call the coalgebra bundle Id⊗ε : E ⊗U(L) C→E ⊗U(L) Q the

associated coalgebra bundle. Hence, we can think of both principal L-bundles and coalgebra

bundles just as a choice of local trivialization and a twisting function T (B,L).

Proof. We first show that the map E ⊗U(L) C→E ⊗U(L) Q defines a coalgebra bundle. Note

that the forgetful functor U : dgccconil
→dgVect has as right adjoint Λc : dgVect→dgccconil

given by the cofree conilpotent cocommutative coalgebra on V with differential determined

by its linear part. Hence, U preserves colimits. If H is a cocommutative dg Hopf algebra

and M and N are right respectively left H-modules for which the module maps M ⊗H→M

and H⊗N→N are maps in dgccconil, then M⊗H⊗N⇒M⊗N is a diagram in dgccconil, and

U(coeq(M ⊗H ⊗N ⇒ M ⊗N)) = M ⊗H N ∈ dgVect. This should be interpreted as defining

a coalgebra structure on the tensor product as a coequalizer in dgccconil. If N1→N2 is a map

in dgccconil and a H-module map, the induced map M⊗H N1→M⊗H N2 is a map in dgccconil.

The module map E ⊗U(L)→E is a map in dgccconil by definition, and the same is true for

Q as a (left) U(L)-module for every L ∈ dgLie. One can check that the U(L)-module structure

on C given by

m : U(L) ⊗ C −→ C

(θ1 · . . . · θn) ⊗ c 7−→ θ1 ◦ . . . ◦ θn(c)
(2.11)

is a map in dgccconil. The counit ε is a U(L)-module map so that Id⊗ε : E⊗U(L) C→E⊗U(L) Q

is a map in dgccconil. If ρ : B→E is a local trivialization, then φ : B ⊗ C→E ⊗U(L) C given by

φ(b ⊗ c) := ρ(b) ⊗ c defines a local trivialization of the coalgebra bundle. Hence, the above

map is well-defined.

By [Qui69, App.B Prop.5.3], there is a one-to-one correspondence L-BunB→T (B,L) that

associates to a trivialized principal L-bundle its twisting function. This twisting function

is the same as the one obtained from applying Proposition 2.2.4 to the associated bundle.

Moreover, given [π : E→B, φ] ∈ BunB(C) then there is a trivialized principal L-bundle

associated to τE and its associated coalgebra bundle is isomorphic to (π : E→B, φ). �

Corollary 2.2.6. The map defined in (2.5) is a coalgebra bundle with fibre C.
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There is one last technical statement we need for the proof of Theorem 2.2.2 in order to

show that the pullback of a coalgebra bundle is a coalgebra bundle.

Lemma 2.2.7. Let (C,⊗, 1) be a cartesian monoidal category and suppose f : X→B and π : E→B

are two maps in C. Then lim(X→B←E) if it exists is isomorphic to the equalizer of

X ⊗ E X ⊗ B ⊗ E
f⊗E

X⊗π

Proof. In a cartesian monoidal category every object is a coalgebra object. So if there are

h : Z→X and h′ : Z→E satisfying f h = πh′ then (h ⊗ h′)∆Z : Z −→ X ⊗ E equalizes the

above diagram. Hence, there is a unique map H : Z −→ eq(X ⊗ E ⇒ X ⊗ B ⊗ E) so that

the composition of H with eq(X ⊗ E ⇒ X ⊗ B ⊗ E)→X ⊗ E and the respective projections

to X respectively E commute with h respectively h′. Hence, the equalizer has the universal

property of the limit. �

Proof of Theorem 2.2.2. By Corollary 2.2.5, the set BunB(C) is in one-to-one correspon-

dence with the set of twisting functions which is in one-to-one correspondence with

Homdgcc(B,C(L)) by [Qui69]. Thus is remains to show that the pullback of coalgebra bundles

in Theorem 2.2.2 induces this correspondence. Let f ∈ Homdgcc(B,C(L)). The pullback in

the Theorem is the limit

lim(B
f
−→ C(L)←− U(sL ⊕ L) ⊗U(L) C) ∈ dgccconil.

Since dgccconil is a cartesian monoidal category by Lemma 2.1.4 with all small limits, the

above Lemma implies that the pullback in dgccconil of a diagram X→B← E is the cotensor

product X�BE = eq(X ⊗ E⇒ X ⊗ B ⊗ E). If E→B is a coalgebra bundle with fibre C, then

E � B ⊗ C as graded coalgebras. The B-comodule structure induced by πB makes E into

an extended B-comodule so that X�BE � X ⊗ C as graded coalgebras [EM66, Prop2.1].

This isomorphism is a local trivialization and it coincides with the local trivialization f ∗φ

obtained using the universal property of the pullback. In conclusion, f ∗E→X is a coalgebra

bundle with fibre C and local trivialization f ∗φ. We can apply this to the pullback of the

universal coalgebra bundle along f : B→C(L). One can check that the twisting function

from Proposition 2.2.4 is τL ◦ f . Hence, the pullback induces a one-to-one correspondence

as claimed.

The second part of the statement for simply connected base follows from the following

observation about twisting functions τ : B→L = CoDer(C). If b ∈ B is primitive and

dB(b) = 0, then it follows from the twisting equation that [dC, τ(b)] = 0. Consequently, if

B ∈ dgcc1, then τ : B→CoDer+(C) as every element in B2 is primitive and a cycle. In
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particular, T (B,CoDer(C)) = T (B,CoDer+(C)) and so we can consider the 1-truncation if

the base is simply connected. �

2.3. A coalgebra model of the universal 1-connected fibration

We have set up the classification of coalgebra bundles in complete analogy to the classifi-

cation of fibrations: A coalgebra C corresponds to a space X, the dg Hopf algebra U(L) for

L = CoDer+(C) corresponds to hAut0(X), and the classification of X-fibrations as pullbacks

of the universal X-fibration E0→B hAut0(X) corresponds to the classification of coalgebra

bundles by Theorem 2.2.2 where C(CoDer+(C)) plays the role of B hAut0(X). In the light

of this correspondence, it is natural to expect the following theorem for (good) coalgebra

models of a space X.

Theorem 2.3.1. Let X be a 1-connected space of finite type with minimal Sullivan model (ΛV, d)

and dual coalgebra (ΛcV∨, d∨) ∈ dgccconil
1 . Then the associated coalgebra bundle

π : CCE
∗ (CoDer+(ΛcV∨); ΛcV∨)

ε∗
−→ C

CE
∗ (CoDer+(ΛcV∨);Q) (2.12)

is a coalgebra model for the universal 1-connected fibration (1.7).

A possible strategy of proof is probably to do a classification of coalgebra bundles up

to fibre homotopy equivalence similar as in [Tan83], where we say two coalgebra bundles

πi : Ei→Bi for = 1, 2 are fibre homotopy equivalent if there are quasi-isomorphisms F : E1→E2

and f : B1→B2 in dgcc so that π2F = fπ1. But it is much simpler to compare (2.12) with

Tanré’s model of the universal 1-connected fibration in [Tan83], which we briefly recall.

Let L be a dg Lie algebra and Der(L) the graded Lie algebra of derivations with differential

[d,−]. Denote by Der+(L) the truncation Lie algebra of positive degree (see (5.6)), then the

adjoint ad : L→Der+(L) is a dg Lie algebra homomorphism and the mapping cone, denoted

by Der+(L) // ad L, can be given the structure of a dg Lie algebra with bracket determined by

[θ, sl] = (−1)|θ|sθ(l) [sl, sl′] = 0.

Tanré showed that isomorphism classes of semidirect products of dg Lie algebras L o L′ are

in a 1-1 correspondence with maps ϕ : L′→Der+(L) // ad L. This is conceptually analogous

to our classification of coalgebra bundles in Theorem 2.2.2. Moreover, semidirect products

are the models for fibrations in dgLie, and Tanré showed that if L = (LV, d) is a minimal dg

Lie algebra model of X, the semidirect product corresponding to the identity

L −→ Loid
(
Der+(L) // ad L

)
−→ Der+(L) // ad L (2.13)
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is a dg Lie algebra model of (1.7). In particular, applyingC to the above map gives a coalgebra

model for the universal 1-connected fibration, which is by inspection also a coalgebra bundle

over C(Der+(L) // ad L) with fibre C(L). By Theorem 2.2.2 there is a classifying map

Φ : C(Der+(L) // ad L)→C(CoDer+(C(L))), (2.14)

and we show that if L is a free dg Lie algebra (LV, d) then Φ is a quasi-isomorphism and

induces a fibre homotopy equivalence of the corresponding coalgebra bundles with fibre

C(LV, d). This almost gives a full proof of Theorem 2.3.1. The last step will be to compare

coalgebra bundles with fibre C(L) for a dg Lie model L of X with coalgebra bundles with

fibre (ΛcV∨, d∨) for the dual of a Sullivan model of X.

Proposition 2.3.2. Let Φ be the map in (2.14). Then the only non-trivial corestriction is linear,

i.e. it is induced by a map

φ : Der+(L) // ad L −→ CoDer+(C(L))

of dg Lie algebras. Moreover, φ is a quasi-isomorphism if L is a free dg Lie algebra.

Remark 2.3.3. This proposition has been proved in [SS12, Thm 3.17]. We have included it in

this discussion because it is derived from the classification of coalgebra bundles, which has

the (small) advantage that we do not need to check that it induces a map of dg Lie algebras.

Also note that there is a dual statement involving the left adjoint L in [Gat97].

Proof. The sequence

C(L)→C
(
L oid (Der+(L) // ad L)

)
→C(Der+(L) // ad L)

is a coalgebra bundle with fibre C(L) and Proposition 2.2.4 describes the corresponding

twisting function τ : C(Der+(L) // ad L)→CoDer+(C(L)). Note that the total space can be

identified with CCE
∗ (Der+(L) // ad L;C(L)). Since the differential on the total space is the

differential of the Chevalley-Eilenberg complex of a dg Lie algebra, it only has nontrivial

linear and quadratic corestriction. Hence, one can check that τ(χ) = πC(L)D(χ ⊗ −) is

only non-trivial on elements χ ∈ Λ1s(Der+(L) // ad L). Denote by D the differential on the

Chevalley-Eilenberg complex of the semidirect product from [Tan83, VII.2.(11)], then the

corestrictions of the coderivation τ(χ) of C(L) for χ ∈ Λ1s(Der+(L) // ad L) are

τ(s2l)n(sl1 ∧ . . . ∧ sln) = πΛ1sLD(s2l ∧ sl1 ∧ . . . ∧ sln)

=

πΛ1sLD(s2l) = sl n = 0

0 n > 0

29



and

τ(sθ)n(sl1 ∧ . . . ∧ sln) = πΛ1sLD(sθ ∧ sl1 ∧ . . . ∧ sln)

=

πΛ1sLD(sθ ∧ sl1) = (−1)|θ|s[θ, l1] = (−1)|θ|sθ(l1) n = 1

0 n , 1

By (2.8) τ factors through a dgc coalgebra map Φ : C(Der+(L) // ad L) −→ C(CoDer+(C(L)),

which in turn has also only a linear part Φ1 : s(Der+(L) // ad L)→s(CoDer+(C(L)). The

desuspension of Φ1 is described by

(s−1Φ1)(sl) ∈ CoDer+(C(L)) has corestriction : Λ0sL = Q
sl
−→ sL

(s−1Φ1)(θ) ∈ CoDer+(C(L)) has corestriction : Λ1sL = sL
(−1)|θ|sθ
−→ sL

Since we already know that Φ is a dgc coalgebra map on the Chevalley-Eilenberg complexes

of the two dg Lie algebras with only linear part, the desuspension s−1Φ1 =: φ has to be a

map of dg Lie algebras, which is also readily checked.

Before we prove the second part of the statement, observe that there are isomorphisms of

graded vector spaces

CoDer(C(L)) � HomgrVect(ΛsL, sL) � HomU(L)(U(sL ⊕ L), sL)

where the right side is the graded vector space of U(L)-module homomorphisms and sL is the

suspension of L considered as a module over itself. We will discuss differential homological

algebra and semifree resolutions in more detail in section 3.2 and we refer the reader to

that section for the definitions. To finish this proof, we note that HomU(L)(U(sL ⊕ L), sL) is

a differential U(L)-module and one can check that the above isomorphism of graded vector

spaces is in fact an isomorphism of chain complexes. As U(sL⊕L)→Q is a semifree resolution

of Q [FHT01, Prop. 22.4], the homology of CoDer(C(L)) can be identified with (a shift of)

H∗CE(L; L) = ExtU(L)(Q,L).

If L = (LV, d) is a free dg Lie algebra, there is a small free resolution of Q as described in

[Wei94, Prop. 7.2.4] given by I→U(L) ε→Q, where I is the kernel of the augmentation. Then

I is a free U(L)-module on a basis of V because L is free. We can build a semifree resolution

ofQ from it by setting P = sI⊕U(L) with standard differential on U(L) and d(sl) = l− sdU(L)l

for l ∈ I. Hence, HomU(L)(U(sL⊕L), sL) is quasi-isomorphic to HomU(L)(P, sL) which is given

as a bicomplex by

HomU(LV)(sI, sLV) � HomgrVect(V,LV)←− HomU(LV)(U(LV), sLV) � sLV,
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which can be identified with Der(LV) // adLV. There is an inclusion i : P→U(sLV ⊕ LV)

which is a map between semifree resolutions and therefore induces a quasi-isomorphism i∗ :

HomU(LV)(P, sLV)→HomU(LV)(U(sLV⊕LV), sLV) [FHT01, Prop.6.7]. This agrees withφun-

der the identification of Der(LV) // adLV � HomU(LV)(P, sLV) as well as CoDer(C(LV, d)) �

HomU(LV)(U(sLV ⊕LV), sLV). Hence, the map of 1-truncations in the statement is a quasi-

isomorphism. �

Corollary 2.3.4. The map φ∗ : CCE
∗ (Der+(LV) // adLV;C(LV))→CCE

∗ (CoDer+(C(LV));C(LV))

is a quasi-isomorphism in dgcc1 and is compatible with the map induced by the change of coefficients

ε : C(LV)→Q. In particular, φ∗ is a fibre homotopy equivalence of coalgebra bundles with fibre

C(LV).

We need the following lemma to finish the proof of Theorem 2.3.1. It is proved similarly

as [BM20, Lem.3.5].

Lemma 2.3.5. Let φ : C→C′ be a map in dgcc1 and define CoDerφ(C,C′) as the linear maps

η : C→C′ satisfying ∆C′η = (η⊗φ+ T(η⊗φ)T)∆C and differential D(η) = dC′η− (−1)|η|ηdC. Then

φ∗ : CoDer(C) −→ CoDerφ(C,C′) φ∗ : CoDer(C′) −→ CoDerφ(C,C′)

η 7−→ φ ◦ η η′ 7−→ η′ ◦ φ

are chain maps, and quasi-isomorphisms if φ is a quasi-isomorphism and C and C′ are cofree.

Proof of 2.3.1. Let (LX, d) be a minimal Lie model of X and (ΛcV∨, d∨) ∈ dgccconil
1 the dual

of a minimal Sullivan model of X. Fix an injective quasi-isomorphism ψ : ΛcV∨ ↪→ C(LX).

Then by the above lemma there is a zig-zag of quasi-isomorphisms

CoDer(ΛcV∨) '
−→
ψ∗

CoDerψ(ΛcV∨,C(LX)) '
←−
ψ∗

CoDer(C(LX)).

Note that ψ∗ is surjective, and hence by the same argument as in the proof of Theorem 3.12

in [BM20], the pullback P = {(η, η′) ∈ CoDer+(ΛcV∨) × CoDer+(C(LX)) | ηψ = ψη′} in chain

complexes of the above diagram is a differential graded Lie algebra so that the projections of

1-truncationsπ1 : P→CoDer+(ΛcV∨) andπ2 : P+
→CoDer+(C(LX)) are quasi-isomorphisms

in dgLie. Note that both ΛcV∨ and C(LX) are U(P)-modules via these projections and

importantly, ψ is a U(P)-module homomorphism. Hence, we have a sequence of induced

maps

C
CE
∗ (CoDer+(C(LX));C(LX)) C

CE
∗ (P;C(LX))

C
CE
∗ (P; ΛcV∨) C

CE
∗ (CoDer+(ΛcV∨); ΛcV∨),

(π2)∗
'

ψ∗ '
(π1)∗
'
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which are induced by quasi-isomorphisms of dg Lie algebras, and which are all compatible

with the map to CCE(−;Q) induced by the counits. Hence, the above describes a sequence

of fibre homotopy equivalences of coalgebra bundles. Combined with Corollary 2.3.4, this

gives the desired comparison with Tanré’s model of the universal fibration. �

Remark 2.3.6. As we remarked in the introduction, Theorem 2.3.1 can also be extracted

from [Laz14]. The strategy in this paper is actually quite similar; namely it is based on a

classification of extensions of L∞-algebras up to equivalence. A Sullivan model of a space X

can also be interpreted as an L∞-model and its universal extension from [Laz14] corresponds

to the model in Theorem 2.3.1.

2.3.1. A cdga model of the universal 1-connected fibration

The dual of the universal coalgebra fibration in (2.12) determines a cdga model of the

universal 1-connected fibration. When we start with the dual coalgebra of a Sullivan model,

we can can give simpler description of the dual of (2.12) where we do not need consider

coalgebras at all. This also recovers Sullivans dg Lie algebra model B hAut0(X) of Sullivan

in terms of derivations of a minimal Sullivan model of X.

Let L ∈ dgLie and C ∈ dgcc be a U(L)-module. Recall that if the module map U(L)⊗C→C is

a map in dgcc or equivalently that C acts by coderivations, thenCCE
∗ (L; C) := U(sL⊕L)⊗U(L) C

is in dgcc. Thus, the dual CCE
∗ (L; C)∨ is a cdga and isomorphic to

HomgrVect

(
U(sL ⊕ L) ⊗U(L) C,Q

)
� HomR−U(L)

(
U(sL ⊕ L),HomgrVect(C,Q)

)
� HomL−U(Lop)

(
U(sL ⊕ L),HomgrVect(C,Q)

)
,

where the first isomorphism follows by adjunction (C∨ := HomgrVect(C,Q) is a right U(L)-

module so that we have to consider right U(L)-morphisms) and the second isomorphism

follows from the fact that every right U(L)-module determines a left U(Lop)-module. Here,

Lop denotes the opposite dg Lie algebra (Lop, [, ]Lop , dLop) on the same vector space as L with

[x, y]Lop = [y, x]L and dLop(x) = −(−1)|x|dL(x). It is a basic fact that L is isomorphic as dg Lie

algebra to its opposite.

Lemma 2.3.7. Let (L, [ , ], d) ∈ dgLie, then (L, [ , ]op, dop) is a differential graded Lie algebra and

φ : (L, [ , ], d) −→ (L, [ , ]op, dLop)

l 7−→ −(−1)b|l|/2cl

is an isomorphism of differential graded Lie algebras.
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Consequently, U(sL⊕L) is isomorphic to U(sLop
⊕Lop) as a left U(Lop)-module and we get

an isomorphism of cdga’s

HomgrVect

(
U(sL ⊕ L) ⊗U(L) C,Q

)
� HomL−U(Lop)

(
U(sLop

⊕ Lop),C∨
)
.

This is the definition of C∗CE(Lop,C∨) using left-modules, which is isomorphic to Lie algebra

cohomology via right modules by the above Lemma. But it is not necessary to explicitly

work out the isomorphism.

Lemma 2.3.8. Let C ∈ dgcc and L = CoDer(C) ∈ dgLie. Then Lop � Der(C∨) and under this

isomorphism the left U(Lop)-module structure is given by evaluating the derivation.

Thus, we can avoid dualizing the cdga models of spaces and their derivations completely

and we arrive at the following reformulation of Theorem 2.3.1.

Theorem 2.3.9. Let X be a 1-connected space of finite type with minimal Sullivan model (ΛV, d)

and unit η : Q→ΛV. Then

C
∗

CE(Der+(ΛV);Q)
η∗
−→ C

∗

CE(Der+(ΛV); ΛV) (2.15)

is a cdga model of the universal 1-connected fibration (1.7).

We can give a more explicit description of (2.15). Let L be a connected dg Lie algebra that

acts on a connected cgda A of finite type through positive degree derivations. Note that we

have to define positive degree derivations of a cdga as derivations that lower the degree if

we don’t fix our convention for chain complexes to be homologically or cohomologically

graded. In order to be consistent (for the adjunction as well) we consider a cdga A in this

section as negatively graded, so that both grading issues are resolved. In particular, the cgda

HomU(L)(U(sL ⊕ L),A) as the dual of a connected dgc coalgebra is concentrated in negative

degrees. If A is of finite type, then

HomL−U(L)(U(sL ⊕ L),A) �
⊕
n≤0

∏
k≥0

HomVect((ΛsL)k,Ak+n) � HomL−U(L)(U(sL ⊕ L),Q) ⊗ A

is an isomorphism of commutative algebras concentrated in negative degrees. We can work

out the differential on the right side C∗CE(L;Q) ⊗ A under this isomorphism. Denote by {li}

a basis of L and by {a j} a basis of A, and denote by {a∗j} and {(sli)∗}the corresponding dual

bases of A∨ and Λ1sL ⊂ C∗CE(L;Q). Furthermore, we denote the differential on C∗CE(L;Q)⊗A

by D and by d on C∗CE(L;Q). Then under the above isomorphism D is given by

D(x ⊗ 1) = d(x) ⊗ 1

D(1 ⊗ a) = 1 ⊗ dA(a) −
∑

j

∏
i

(
a∗j(li · a) · (sli)∗

)
⊗ a j.

(2.16)
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for x ∈ C∗CE(L;Q) and a ∈ A. Finally, note that if A is a simply connected Sullivan algebra,

then η∗ : C∗CE(L;Q)→C∗CE(L; A) is a relative Sullivan algebra. In the following, we will always

interpret the above cdga’s as positively graded.

Example 2.3.10. Consider an even dimensional sphere S2n with Sullivan model

An = (Λ(x, y), |x| = 2n, |y| = 4n − 1, d = x2
· ∂/∂y).

Then Der+(An) is 3-dimensional with basis η2n−1 := x · ∂/∂y, η2n := ∂/∂x and η4n−1 := ∂/∂y

and differential [d, η2n] = −2η2n−1. Hence, the inclusion of the abelian Lie algebra with

trivial differential a := Q{η4n−1} ↪→ Der+(An) is a quasi-isomorphism of dg Lie algebras and

we get a cdga quasi-isomorphismC∗CE(Der+(An);Q)→C∗CE(a;Q) = (Λz4n, d = 0) and similarly

with coefficients in An. Thus, the cgda model of the universal 1-connected S2n-fibration in

Theorem 2.3.9 is equivalent to

(Λ(z4n), d = 0) −→ (Λ(z4n) ⊗Λ(x, y),D(x) = 0,D(y) = x2
− z4n),

where we use (2.16) with basis {xk, yxl
}k,l≥0 of An and {η4n−1} of a.
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Chapter 3.

Fibre integration in rational homotopy theory

We want to introduce fibre integration as a special case of the following more general

construction. Let π : E→B be a fibration with fibre F and suppose H∗(F; k) vanishes for ∗ > d

and is non-trivial in degree d, where k is some commutative ring. Note that H∗(F; k) is a

k[π1(B)]-module and let φ : Hd(F; k)→k be a k[π1(B)]-module homomorphism, where k is the

trivial k[π1(B)]-module.

Since H∗(F; k) vanishes in degrees higher than d one can project H∗(E; k) onto the d-th row

of the E∞-page of the Serre spectral sequence, and as there are no differentials into this row

we have E∗−d,d
∞ ⊂ E∗−d,d

2 . We define φ-integration as the composition

Φ∗ : H∗(E; k)� E∗−d,d
∞ ⊂ E∗−d,d

2 = H∗−d(B; Hd(F; k))
H(φ)
−→ H∗−d(B; k). (3.1)

Since the cohomological Serre spectral sequence is compatible with cup product, there is a

push-pull identity

φ∗(π∗(x) ^ y) = x ^ φ∗(y) (3.2)

for x ∈ H∗(B; k) and y ∈ H∗(E; k), and thus φ-integration is a H∗(B; k)-module map.

Definition 3.0.1. Let π : E→B be a fibration with oriented Poincaré fibre X of formal dimen-

sion d and suppose π is oriented, i.e. the orientation εX : Hd(X; k)→k is an isomorphism of

k[π1(B)]-modules. Then

π! := (EX)∗ : H∗(E; k)→H∗−d(B; k)

is called fibre integration of π : E→B.

The goal of this chapter is to find formulas for fibre integration and more generally

φ-integration in terms of the algebraic models that we have introduced in the previous

chapter.

3.1. Chain level fibre integration integration

In this section, we will study φ-integration using the algebraic models of fibrations π : E→B

discussed in the the previous chapter. We will work with the dual concept of coalgebra
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bundles given by relative (Sullivan) algebras that we denote by π∗ : B→E. The main

result is that a homomorphism φ : Hd(F;Q)→Q as above defines a unique derived chain

homotopy class Φ : E→B of B-modules that induces φ-integration. We start by recalling

some preliminaries about differential modules and relative Sullivan algebras from [FHT01].

Let π∗ : B→E be a map of cgda’s which gives E the structure of a differential B-module.

For differential (left) B-modules M and N we denote by HomB(M,N) the subcomplex of

HomgrVect(M,N) = ⊕i
∏

n HomVect(Mn,Nn+i) that are B-module homomorphisms, i.e. linear

maps that satisfy f (b · m) = (−1)| f |·|b|b · f (m). Then HomB(M,N) is a differential B-module

with differential D( f ) := dN f − (−1)| f | f dM and module structure (b · f )(m) := b · f (m).

We cannot expect to find a representative of φ-integration in HomB(E,B) for every cgda

model of π. Instead one should consider suitably derived mapping spaces, which, for our

purpose, can be defined ad hoc without reference to model structures via resolutions of dg

modules and differential graded Ext groups, as they have sufficient invariance properties

under quasi-isomorphisms.1

Definition 3.1.1. [FHT01, Ch. 6] A B-module P is called semifree if it is the union of an

increasing sequence of differential B-submodules P(0) ⊂ P(1) ⊂ . . . such that P(0) and each

P(k)/P(k−1) are free B-modules on a basis of cycles. A semifree resolution of M ∈ ModB is a

quasi-isomorphism ϕ : P→M of differential B-modules where P is semifree. The differential

Ext groups are defined as Ext∗B(M,N) := H∗(HomB(P,N)) for a semifree resolution of M.

The most important example of semifree modules in this context are relative Sullivan

models of fibrations. A relative Sullivan algebra is a cdga of the form (B⊗ΛV,D) so that

idB ⊗ 1 : B→B⊗ΛV is a map of cdga’s, and V = ⊕p≥1Vp is a graded vector space with an

exhaustive filtration V(0) ⊂ V(1) ⊂ . . . of graded subspaces so that D|1⊗V(0) : V(0)→B and

D|1⊗V(k) : V(k)→B⊗ΛV(k−1). A relative Sullivan model ofπ∗ : B→E is a quasi-isomorphism

E′→E of B-algebras where E′ is a relative Sullivan algebra.

The following properties of relative Sullivan models can be found in [FHT01] (with some

additional assumptions about finiteness): A relative Sullivan algebra is a semifree B-module,

so a Sullivan model E′→E is a semifree resolution of E. If B is a simply connected cdga

and either the fibre or the base are of finite type then E′ ⊗BQ � (ΛV, d) is a Sullivan model of

the fibre. Moreover, every cdga map π∗ : B→E admits a relative Sullivan model ϕ : E′ '→E,

which is a cofibrant replacement in the standard model structure on cdga. We denote the

relative Sullivan model by E′→E to indicate this fact.

1We are following [FMT10] in this point of view.
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Proposition 3.1.2. Let π : E→B be a fibration with fibre F of 1-connected spaces and assume that

H∗(F;Q) is of finite type and nontrivial in degree d and vanishes above. Let π∗ : B→E be a cdga

model of π where B is simply connected, and denote by E′ '→E a relative Sullivan model. Then the

augmentation of B induces an isomorphism

Ext−d
B (E,B) = H−d(HomB(E′,B)) �

−→ H−d(HomQ(E′ ⊗BQ,Q)) � Hom(Hd(F;Q),Q)

[Φ : E′→B] 7−→ [Φ ⊗B Q : E′ ⊗BQ→B⊗BQ � Q]

In particular, for every φ ∈ Hom(Hd(F),Q) there is a unique element [Φ] ∈ H−d(HomB(E′,B)) and

the composition H∗(E) � H∗(E′)
H(Φ)
−→ H∗−d(B) � H∗−d(B) is the same as φ-integration.

Proof. We assume that B is simply connected so that B≥p
⊂ B is a B-submodule. Consider

the exhaustive filtration of HomB(E′,B) given by Fp = HomB(E′,B≥p). According to [Boa99,

Thm 9.3] the corresponding spectral sequence is conditionally convergent to the completion

lim
←− p

HomB(E′,B)/HomB(E′,B≥p) � lim
←− p

HomB(E′,B /B≥p)

� HomB(E′, lim
←− p

B /B≥p)

� HomB(E′,B)

where we have used that E′ is a projective B-module for the first isomorphism. The E1-page

is H(HomB(E′,Q)) ⊗ Bp. By assumption, E′ = (B⊗ΛV,D) is a relative Sullivan algebra so

that E′ ⊗BQ = (ΛV, d) is a cdga model of the fibre. Hence, the E1-page can be simplified as

Ep,q
1 = Hq((ΛV)∨) ⊗ Bp. Since B is simply connected, the differential on the E1-page is given

by id⊗dB : Ep,q
1 →Ep+1,q

1 and thus the spectral sequence has E2-page Ep,q
2 = Hp(B)⊗Hq((ΛV)∨).

In particular, the spectral sequence vanishes for q < −d. Since the gradings are such that the

differentials are dr : Ep,q
r →Ep+r,q−r+1, there are only finitely many nontrivial differentials. This

implies that the derived E∞-page is zero and so by [Boa99, Thm 7.1] the spectral sequence

converges strongly to

Ep,q
2 = Hp(B) ⊗Hq((ΛV)∨) � Hp(B) ⊗H−q(F)⇒ H(HomB(E′,B)),

and we can recover H(HomB(E′,B)) from the entries of the E∞-page. The only contribution

with total degree −d comes from E0,−d
∞ � E0,−d

2 � Hom(Hd(F;Q),Q) which proves the first

part of the statement.

It remains to show that for φ = Hd(Φ⊗BQ) : Hd(ΛV, d)→Q the induced φ-integration map

coincides with H(Φ) : H∗(E′)→H∗(B). First, we note that E′ = (B⊗ΛV,D) has a filtration

Fp = B≥p
⊗ΛV and that the corresponding spectral sequence converges as Ep,q

2 = Hp(B) ⊗
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Hq(ΛV)⇒ Hp+q(E′). In fact, B also has an analogous filtration Gp = B≥p with only nontrivial

differential on the E1-page. Then Φ induces a map between these two filtrations and the

map on E2-pages is precisely φ-integration defined using this spectral sequence. As we

have defined φ-integration using the Serre spectral sequence, it remains to show that this

spectral sequence is isomorphic to the Serre spectral sequence. Grivel has shown in [Gri79]

that APL(B)→APL(E) has a filtration which gives rise to the Serre spectral squence, and the

construction is based on the construction of the Serre spectral sequence by Dress [Dre67].

Moreover, in the proof of [Gri79, Thm.6.4] he shows that the comparison map of B→E′with

APL(B)→APL(E) is compatible with the above filtration on E′ and the filtration on APL(E) and

induces an isomorphism on the E2-pages. This concludes the proof. �

We can use Proposition 3.1.2 to build a representative of fibre integration for an oriented

fibration π : E→B and oriented Poincaré fibre (X, εX) as follows: Consider a relative Sul-

livan model π∗ : B→(B⊗ΛV,D) and pick a chain level representative εX ∈ Hom−d(ΛV,Q).

The above proposition implies that there is a cycle Π ∈ Hom−d(E′,B) unique up to chain

homotopy that satisfies

Π(1 ⊗ χ) = εX(χ) ∈ Q = B0 (3.3)

for all χ ∈ (ΛV)d, and that this chain map induces fibre integration on cohomology

π! : H∗(E;Q) � H∗(B⊗ΛV,D)
H(Π)
−→ H∗−d(B).

We demonstrate this technique in the following example.

Example 3.1.3. Recall the relative Sullivan model of the universal 1-connected fibration

for an even dimensional sphere X = S2n as discussed in Example 2.3.10. We choose as

orientation εX : Hd(X;Q)→Q the homomorphism determined by εX(x) = 1. For degree

reasons Π(yxk) = 0 and since Π has to be a chain map we have 0 = Π(D(yxk)) = Π(xk+2
−z4nxk).

This determines a Λ(z4n)-module map Π : (Λ(z4n, x, y),D)→(Λ(z4n), d = 0) by

Π(yxk) = 0 and Π(xn) =

0 n = 2k

zk
4n n = 2k + 1

which is a chain map by construction and induces fibre integration on cohomology as it

satisfies (3.3).

3.2. Relation to parametrized stable homotopy theory

Fibre integration can also be viewed as a construction in fibrewise stable homotopy theory.

More precisely, if π : E→B is a fibration then π+ := π q IdB : E+ = E
∐

B→B+ = B
∐

B
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is a map of fibrewise pointed spaces over B. The fibrewise suspension spectra Σ∞B E+ is

strongly dualizable in the category Sp/B of parametrized spectra over B if the fibre of π is

equivalent to a finite CW complex [MS06]. The fibrewise suspension spectra Σ∞B B+ = SB is

self dual so that, if the fibre of π is equivalent to a finite CW complex, the dual of Σ∞B π+

is D(Σ∞B π+) : Σ∞B B+→D(Σ∞B E+) = FB(Σ∞B E+,SB). If the fibre of π : E→B is Poincaré, we can

combine this with

FB(Σ∞B E+,SB)→FB(Σ∞B E+,HBZ)→Σ∞−d
B E+ ∧B HBZ,

where the second map the fibrewise Poincaré duality equivalence constructed in [HLLR17,

Section 3.1], to obtain the version of fibre integration in parametrized stable homotopy

theory

π! : Σ∞B B+→Σ∞−d
B E+ ∧B HBZ.

Rationally, HBZ is equivalent to SB so thatπ! is rationally equivalent to a map of parametrized

suspension spectra. The set of homotopy classes of such maps has been computed in

[FMT10, Thm 1.1] as a differential Ext group. This is consistent with our result. How-

ever, we would like to note that in order to apply Theorem 1.1 from [FMT10] to de-

scribe π! as an element in an differential Ext group, it is essential to use the equivalence

FB(Σ∞B E+,HBZ)→Σ∞−d
B E+∧B HBZ so as to identify π! as a map of fibrewise suspension spec-

tra. The equivalence of parametrized spectra needs Poincaré duality of the fibre. In contrast,

we don’t need to assume this in order to find a unique representative of π! in the differen-

tial Ext groups because the construction works just as well for finding representatives of

φ-integration in general.

Finally, we want to remark that fibre integration has also been described as elements in

differential Ext groups in [FT09, Thm A] for fibrations over Poincaré duality spaces and for

pullbacks of such fibrations.
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Chapter 4.

The Euler ring of Poincaré duality spaces

In this chapter, we will compute the Euler ring for several examples of Poincaré spaces.

The computation is split into two steps. First, we compute the Euler ring of the universal

1-connected fibration over B hAut0(X) that we denote by E∗0(X), and for this computation we

can use the tools from rational homotopy theory developed in the previous chapters. In a sec-

ond step, we will analyse the fibration sequence B hAut0(X)→B hAut+(X)→Bπ0(hAut+(X))

to compute the Euler ring itself.

4.1. Algebraic definition of the fibrewise Euler class

We have defined the Euler class of fibrations with Poincaré fibre over Poincaré spaces in

the introduction in (1.5). In this section, we will give a definition for arbitrary base spaces

using rational homotopy theory and show that it agrees with the definition of the fibrewise

Euler class in [HLLR17]. In the following, we denote by Q[n] the graded vector space with

Q in degree n and for a B-module M define M[n] := M ⊗Q[n].

Proposition 4.1.1. Let B→E′ be a relative Sullivan model of an oriented fibration of 1-connected

spaces π : E→B with Poincaré fibre X of formal dimension d. Let εX be the orientation and

Π ∈ Hom−d
B (E′,B) be a corresponding cycle representing fibre integration. Then the map

Π̄ : E′[−d] −→ HomB(E′,B)

e 7−→ (e′ 7→ (−1)d+d·|e|Π(e · e′))

is a quasi-isomorphism of B-modules.

Proof. It is a simple check that Π̄ defines a B-module homomorphism. By assumption,

E′ = (B⊗Λ,D) is a relative Sullivan algebra and thus has a filtration which induces the Serre

spectral sequence as discussed in the proof of Proposition 3.1.2. In the same proof we have

described a filtration of HomB(E′,B) which strongly converges because there is a horizontal

vanishing line. The map Π̄ is compatible with the two filtrations and induces a map of the
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associated spectral sequences. The induced map on the E2-page is given by

Ep,q
2 = Hp(B) ⊗Hq(ΛV, d)

Id⊗ε̄X
−→ Hp(B) ⊗Hom(Hq−d(ΛV),Q)

where ε̄X : Hq(ΛV)→Hom(Hd−q(ΛV),Q) is the adjoint of Hq(ΛV)⊗Hd−q(ΛV) ∪→Hd(ΛV)
εX
→Q.

Since (H∗(X;Q), εX) is an oriented Poincaré duality algebra, Π̄ induces an isomorphism of

E2-pages. �

With this we get an algebraic model of the Umkehr map of ∆ : E→E ×B E. Let B→E′ be

a relative Sullivan model of π : E→B as above. Then E′ ⊗B E′ is a Sullivan model of E ×B E

and Π ⊗Π : E′ ⊗B E′→B⊗B B = B is a chain level representative of fibre integration for the

parametrized product as it is a cycle and restricts to the induced orientation of the fibre

X ×X. If we denote by ∆ : E′ ⊗E′→E′ the multiplication, we can provide the Umkehr map

as the (dashed) lift in

E′[−d] E′ ⊗B E′[−2d]

HomB(E′,B) HomB′(E
′
⊗B E′,B)

'Π̄

∆!

'Π⊗Π

∆∗

(4.1)

uniquely up to homotopy, since E′ is semifree. This determines the Umkehr map in the

homotopy category of B-modules for any cdga model of the fibration, and enables us to

identify a representative of the fibrewise Euler class in terms of the algebraic models.

Definition 4.1.2. Let π : E→B be a 1-connected oriented fibration with Poincaré fibre (X, εX)

of formal dimension d. Let B→E′ be a relative Sullivan model, then efw(π) := ∆∗∆!(1) ∈

Hd(E′).

It remains to show that this coincides with the naive definition from the introduction

which was only given when the base is a Poincaré complex. This has been carried out in

greater generality in [RW17] and [HLLR17], but in our case there is a simple algebraic proof.

Lemma 4.1.3. Let π : E→B be an oriented fibration with fibre and base simply connected Poincaré

complexes of formal dimension d respectively b. Let B→E′ be a relative Sullivan model. Then the

Umkehr map ∆! : E′→E′ ⊗B E′ agrees on cohomology with D−1
E×BE∆∗DE : H∗(E)→H∗+d(E ×B E)

where ∆ : E→E ×B E and DE = [E] ∩ - and DE×BE = [E ×B E] ∩ - denote the Poincaré duality

isomorphisms.

Proof. Since B is a Poincaré space, B→∗ is a fibration with Poincaré fibre and we can apply the

characterisation of the previous section to get a chain level representative of fibre integration
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map ΠB ∈ HomQ(B,Q) corresponding to evaluating a fundamental class. Suppose B→E′ is

a Sullivan model of the fibration and let Π ∈ HomB(E′,B) be a model of fibre integration of

π. It is well known that ([B] ∩ -) ◦ π! : Hb+d(E)→Hb(B)→Q is an orientation of the Poincaré

algebra H∗(E;Q) itself. In particular, ΠB ◦ Π ∈ HomQ(E′,Q) is a cycle that induces this

orientation thus has to be fibre integration of E→∗. Denote ΠE := ΠB ◦Π so that

HomB(E′,B) E′[−d] HomQ(E′,Q)

(ΠB)∗

'

Π̄

'

Π̄E

is a commuting diagram, where (ΠB)∗ϕ = ΠB ◦ ϕ for ϕ ∈ HomB(E′,B)). We can choose

chain level representatives of fibre integration of E ×B E→B and E ×B E→∗ as Π ⊗ Π :

E′ ⊗B E′→B⊗B B � B and ΠE×BE := ΠB ◦ (Π ⊗ Π) by the same arguments as above. We

therefore have a commutative diagram

HomQ(E Q) HomQ(E′ ⊗B E′,Q)

E′[−d] E′ ⊗B E′[−2d]

HomB(E′,B) HomB(E′ ⊗B E′,B′)

∆∗

'Π̄E

Π̄ '

Π̄E×BE'

Π⊗Π'

∆∗

(ΠB)∗ (ΠB)∗

where the dashed maps denote the maps in the Umkehr maps in the homotopy category

from (4.1) and using the Poincaré duality of E. The diagram shows that they induce the

same map up to chain homotopy and therefore the same on cohomology. �

This lemma implies that the fibrewise Euler class in Definition 4.1.2 agrees with the

construction from the introduction in (1.5) for Poincaré base spaces. This fact also holds for

the fibrewise Euler class constructed in [HLLR17], which is sufficient for proving that the

two definitions agree.

Corollary 4.1.4. Let π : E→B be an oriented fibration of 1-connected spaces with Poincaré fibre X

and relative Sullivan model B→E′. Then efw(π) = ∆∗∆![1] ∈ Hd(E′) agrees with the fibrewise Euler

class constructed in [HLLR17].

Proof. Since rational homology of a space B agrees with rational stably framed bordism, it

suffices to evaluate the Euler class on bordism classes [ f : M→B, ξ] ∈ Ω f r(B) ⊗Q, where we

can assume by performing framed surgery that M is simply connected. The construction in

[HLLR17] is natural under pullback f ∗ : Sp/B→Sp/M, and they show in section 3.2 that the

Euler class they define coincides for base spaces which are Poincaré with the class defined

using the cohomological Umkehr maps from Poincaré duality (see (1.5))).
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The class defined Definition 4.1.2 is natural with respect to pullbacks as well: Let f : B′→B

be a map of simply connected spaces and denote the pullback fibration by π′ : f ∗E→B′. Let

f ∗ : B→B′ be a cdga model of f . Then f ∗ E′ := B′ ⊗B E′ is a relative Sullivan model

of π′. If Π denotes a chain level representative of fibre integration then f ∗Π := B′ ⊗Π :

B′ ⊗B E′→B′ ⊗B B � B′ is a representative of fibre integration of the pullback and if ∆!

denotes a choice of lift for the Umkehr map then

f ∗∆! := B′ ⊗∆! : f ∗ E′ = B′ ⊗B E′ −→ B′ ⊗B E⊗B E[−d] � ( f ∗ E′ ⊗B′ f
∗ E′)[−d]

is a lift for the pullback which is natural with respect to f ∗. If B′ = M is a simply connected

manifold, the Euler class agrees with class defined using the cohomological Umkehr maps

from Poincaré duality by Lemma 4.1.3. Hence, the definitions of the fibrewise Euler class

in Definition 4.1.2 and in [HLLR17] are both natural and agree on rational framed bordism

classes. Therefore, our definition of the fibrewise Euler class agrees with that in [HLLR17].

�

It is quite difficult in general to compute a representative of the fibrewise Euler class using

Definition 4.1.2 as one has to find a chain level fibre integration map and a lift for ∆! in (4.1).

In the next sections, we will discuss examples for which there are simpler descriptions of

the fibrewise Euler class efw(π).

4.1.1. The fibrewise Euler class for Leray–Hirsch fibrations

In the case of fibrationsπ : E→B with oriented Poincaré fibre (X, εX) which are Leray–Hirsch,

i.e. where the restriction map H∗(E)→H∗(X) is surjective, the definition of fibre integration

and the fibrewise Euler class can be simplified significantly. Surjectivity of the restriction

map implies that H∗(E) is a free H∗(B)-module, and we may denote by 1, e1, . . . , ek ∈ H∗(E) a

H∗(B)-basis of the cohomology of E that restricts to a basis 1, x1 = i∗(e1), . . . , xk = i∗(ek) ∈ H∗(X)

of the fibre. If X is a Poincaré complex of formal dimension d, we can order the basis such

that |ek| = d and all other |ei| have lower degree. Since fibre integration is a H∗(B)-module

map. It suffices to determineπ! on a basis and for degree reasonsπ!(ei) = 0 for i < k. If we set

π!(ek) = εX(xk) this restricts to the orientation on the fibre hence determines fibre integration

as

π!

 k∑
i=0

bi · ei

 = εX(xk) · bk (4.2)

for bi ∈ H∗(B). Since the fibre is Poincaré, the (fibrewise) intersection pairing

〈-, -〉 : H∗(E) ⊗H∗(B) H∗(E)
π!(−∪−)
−−−−−−→ H∗(B) (4.3)
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is non-degenerate. This enables us to mimic the construction of the Euler class as the dual

of the fibrewise diagonal.

Proposition 4.1.5 ([RW18]). Let π : E→B be an oriented fibration with Poincaré fibre which is

Leray–Hirsch. Let e0, . . . , ek ∈ H∗(E) be an H∗(B)-module basis and denote by e#
0, . . . , e

#
k ∈ H∗(E) the

dual basis under the non-degenerate pairing (4.3). Then the fibrewise Euler class is

efw(π) =

k∑
i=0

(−1)|ei|eie#
i ∈ Hd(E;Q). (4.4)

Example 4.1.6. Let X = S2n be an even dimensional sphere and recall the cdga model and

fibre integration from the Examples 2.3.10 and 3.1.3. Then 1 and x are a H∗(B hAut0(S2n);Q)-

basis of the cohomology of the total space that restricts to a basis of H∗(S2n) on the fibre,

i.e. the fibration is Leray-Hirsch. Note that the formula for fibre integration in (4.2) gives the

same result as our construction of Π in Example 3.1.3. We can apply the above Proposition

to find a representative of the fibrewise Euler class. The dual basis with respect to the

pairing induced by π! = H(Π) is x# = 1 and 1# = x since π!(x · 1#) = π!(x2) = 0, and we find

that the fibrewise Euler class is represented by efw(π) = 2x.

4.1.2. The fibrewise Euler class of positively elliptic spaces

A simply-connected space X is called rationally elliptic space if the collection of rational

homotopy groups is finite dimensional dim π∗(X) ⊗ Q < ∞, as well as the cohomology

algebra dim H∗(X;Q) < ∞. If in addition the Euler characteristic is positive, it is called

positively rationally elliptic. Rationally elliptic spaces are very rigid owing to strong structure

theorems about their Sullivan models (ΛV, d), which are called elliptic if dim V < ∞ and

dim H(ΛV, d) < ∞.

Proposition 4.1.7 ([FHT01, Prop. 32.10]). Let (ΛV, d) be an elliptic Sullivan algebra and denote

by χ the Euler characteristic of H(ΛV, d). Then χ ≥ 0 and dim Vodd
≥ dim Veven. Moreover, the

following are equivalent:

(i) χ(X) > 0;

(ii) H(ΛV, d) is concentrated in even degrees;

(iii) H(ΛV, d) is the quotient Λ(x1, . . . , xk)/( f1, . . . , fk) of a polynomial algebra on generators xi of

even degree by an ideal generated by a regular sequence;

(iv) (ΛV, d) is isomorphic to a pure Sullivan algebra (ΛQ⊗ΛP, d), i.e. Q = Qeven and V = Vodd

and d|Q = 0 and d|V sends a basis of V to a regular sequence in ΛQ;
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(v) dim Vodd = dim Veven.

A regular sequence in a commutative ring R is a sequence r1, . . . , rk ∈ R such that ri is not

a zero-divisor in R/(r1, . . . , ri−1) for all 1 ≤ i ≤ k. The third characterisation implies that the

rational homotopy theory of positively elliptic spaces is essentially equivalent to the theory

of complete intersections over Q.

Definition 4.1.8. Let B be a commutative ring. A B-algebra E is called finite if it is finitely

generated as a B-module. A finite B-algebra E is a complete intersection if there exists an

n ∈N and f1, . . . , fn ∈ B[x1, . . . , xn] such that E is isomorphic to B[x1, . . . , xn]/( f1, . . . , fn).

From the point of view of fibrations of positively elliptic spaces, we observe that the

derivation Lie algebra of an elliptic Sullivan algebra is particularly simple because dim V <

∞. In fact, Der+(ΛV) is finite dimensional as vector space, which is in sharp contrast to the

general case when it is not even finite dimensional degree wise. This is some evidence that

the theory of fibrations with positively elliptic fibre is considerably more simple than the

general case, which is made precise in the following a conjecture by Halperin.

Halperin Conjecture. Let E→B be a fibration of simply connected spaces and positively

rationally elliptic fibre. Then the fibration is Leray–Hirsch over the Q.

This conjecture is known to be true for a large number of examples [Mei82, ST87, Tho81].

And since positively elliptic spaces always satisfy (rational) Poincaré duality, one can ask

about Euler rings for these spaces. Assuming that the conjecture is true (which is a simple

check for a given positively elliptic space X), then fibre integration and the fibrewise Euler

class of the universal 1-connected fibration E0→B hAut0(X) are determined by (4.2) and

(4.4). But the conjecture implies even more, namely that B hAut0(X) is concentrated in

even degrees and that the cohomology of the total space is a complete intersection over

H∗(B hAut0(X);Q). This has been explained to the author by Alexander Berglund and is

explained in more detail in Remark 4.2.5.

This translates the computation of the Euler ring of positively elliptic spaces into one of

commutative algebra and complete intersections, and we will study it from this point of

view in this section. In the following, we denote by B a commutative ring concentrated

in even degrees (corresponding to the cohomology of the base space) and by E a complete

intersection over B (corresponding to the cohomology of the total space of a fibration with

positively elliptic fibre). For any E-module M there is an E-module structure on the B-linear

dual HomB(M,B) given by (e · ϕ)(m) := ϕ(e · m) for e ∈ E, m ∈ M and ϕ ∈ HomB(M,B). For

a finite B-algebra E there is an isomorphism HomB(E,E) � E ⊗B HomB(E,B) so that we can
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define the trace of any B-endomorphism of E via the evaluation map E ⊗B HomB(E,B)→B.

In particular, any element in E defines an endomorphism by multiplication of which one

can take the trace, giving an element TrE/B ∈ HomB(E,B).

Proposition 4.1.9 ([dSL97]). Let B be a commutative ring and f1, . . . , fn ∈ B[x1, . . . , xn] for a

non-negative integer n. Assume that E = B[x1 . . . , xn]/( f1, . . . , fn) is a finite B-algebra. Then

(i) E is a projective B-module;

(ii) HomB(E,B) is a free of rank 1 as E-module;

(iii) there is a generator λ of HomB(E,B) as an E-module such that TrE/B = det(∂ fi/∂x j) · λ.

The equation in (iii) is the analogue for a complete intersection of the relation trf∗π(−) =

π!(efw(π) ·−) between the (Becker-Gottlieb) transfer trf∗π : H∗(E)→H∗(B), fibre integration and

the fibrewise Euler class for a fibration π : E→B with Poincaré fibre X.

We make this precise as follows: let B be a polynomial ring over Q on finitely many

generators in positive even degrees and augmentation ε. Consider a complete intersection

E = B[x1, . . . , xn]/( f1, . . . , fn) where the xi are all in positive even degree. Then E is a projective

B-module by (i) and since B is a connected graded algebra, E is a free B-module. Denote by

π : 〈E〉→〈B〉 the geometric realization [BG76, Ch.5] of a relative Sullivan model of B→E.

Theorem 4.1.10. Let B and E be as above. Then the homotopy fibre of π : 〈E〉→〈B〉 has the rational

homotopy type of the complete intersection X = Q[x1, . . . , xn]/( f̄1, . . . , f̄n) overQwith f̄i = ε◦ fi. In

particular, X is a rational Poincaré space with an orientation defined by εX(det(∂ f̄i/∂x j)) := χ(〈X〉)

and the fibrewise Euler class is represented by

efw(π) = det
(
∂ fi
∂x j

)
∈ E. (4.5)

Proof. Consider the differential B-algebra E′ := (B ⊗ Λ(xi, yi),D) with |yi| = | fi| − 1 and

D(yi) := fi. This is relative version of a pure Sullivan model and the B-algebra map C : E′→E

determined by C(yi) = 0 and C(xi) = xi is a quasi-isomorphism of differential B-algebras by

the same argument as in the proof of Proposition 4.2.4. Moreover, E′ and B are 1-connected

Sullivan algebras so that B→APL(〈B〉) and E′→APL(〈E′〉) are quasi-isomorphisms and hence

B→E′ is a relative Sullivan model of the fibration π : 〈E′〉→〈B〉. Because B is of finite type, a

cdga model of 〈E′〉→〈B〉 is given byQ⊗B E′ [Tho81] which is a pure Sullivan model. Hence,

the homotopy fibre has the rational homotopy type of a positively elliptic space [FHT01]

with top degree generator given by det(∂ f̄i/∂x j) ∈ X [Mur93, ST87], so that εX as defined

above is a valid choice of orientation.
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Note that 〈E′〉→〈B〉 is formal so that fibre integration π! : H(〈E′〉;Q) � E→H(〈B〉;Q) � B

determines a map of B-modules with respect to our choice of orientation. According

to Proposition 4.1.9, there is a B-module map λ : E→B satisfying (iii). It follows for

degree reasons that λ and π! agree up to a scalar in Q×. One can show that the trace

and the transfer agree using the general theory in [DP80], or by directly checking that

TrE/B(x) = π!(efw(π) · x), as has been done in [RW18, Lemma 2.3] using that E is a finitely

generated free B-algebra. If we evaluate the identity in Proposition 4.1.9(iii) for x = 1, we

find that λ(det(∂ fi/∂x j)) = TrE/B(1) = π!(efw(π)) = χ(〈X〉), which agrees with π!(det(∂ fi/∂x j))

by our choice of orientation εX. Hence, it follows that π! = λ and consequently

det(∂ fi/∂x j) · π! = det(∂ fi/∂x j) · λ = TrE/B = trf∗π = efw(π) · π!

under the identification of H∗(〈E′〉;Q) with E and H∗(〈B〉;Q) with B. The claim follows

because B-linear dual of E is a free E-module by (ii). �

4.2. Computations

We will begin by computing the Euler ring of even dimensional spheres, which exhibits some

of the algebraic problems we will encounter in this section and combines the examples from

the previous sections.

Proposition 4.2.1. The Euler ring of an even dimensional sphere is E∗(S2n) � Q[κ2] with relations

κk
2 = 2k−1κ2k and κ2i+1 = 0.

Proof. We have seen in Example 4.1.6 that efw(π) = 2x ∈ Λ(x, y, z4n) and in Example 3.1.3 that

fibre integration is given by Π(x2k) = 0 and Π(x2k+1) = zk
4n. Thus κ2k = 21−k(23z4n)k = 21−kκk

2.

Since π0(hAut+(S2n)) is trivial, the 1-connected universal fibration is the universal fibration

and the result follows. �

Remark 4.2.2. This result is of course well known and there are easier ways to prove this.

For example, it follows from Example 2.3.10 that B hAut+(S2n) is rationally equivalent to

K(Q, 4n), which reduces to proving this statement on linear bundles.

Observe that E∗(S2n) is finitely generated despite it being defined as a ring with infinitely

many generators. This is in fact true in much greater generality, and follows from a direct

adaptation of the results in [RW18].

Proposition 4.2.3. Let X be a Poincaré duality space with H∗(X;Q) concentrated in even degrees

and let N = dim H∗(X;Q). Then the Euler ring E∗(X) is generated by κ1, . . . , κN−2, κN.
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Proof. Let us start by assuming that the universal fibration is Leray-Hirsch and denote

by B→E the map on (even degree) cohomology. Consider the B-endomorphism given by

− · efw(π) : E→E. Since E is a free B-module, we can apply the Cayley–Hamilton theorem

to get that efw(π) is a root of its characteristic polynomial p(e), which is monic and of degree

N. The coefficients are certain polynomials in TrE/B(efw(π) j). Since TrE/B(c) = π!((efw(π) · c)

for all c ∈ E as discussed in the the proof of Theorem 4.1.10, it follows by fibre integrating

the characteristic polynomial p(efw(π)) that κN−1 lies in the ring generated by κ1, . . . , κN−2.

The same does not hold for κN because the constant term of p(e) contains a κN and fibre

integrating p(efw(π)) · efw(π) will not give a new relation. Fibre integrating p(efw(π)) · efw(π)k

for k ≥ 2 expresses κN+k−1 in terms of lower degree κi and thus κ1, . . . , κN−2, κN generate the

Euler ring.

In the general case, Randal-Williams shows that under the given assumption the same

trace relation from the Cayley-Hamilton theorem still holds for fibre bundles but the

argument applies more generally for Hurewicz fibration with finite CW-fibres [RW18,

pg. 3843]. �

4.2.1. The Euler ring of complex projective space

We start by applying the results from Chapter 2 to get a model of the universal 1-connected

fibration π : E0→B hAut0(CPn) with fibre CPn. In the following, we denote the minimal

model of CPn by Pn := (Λ(x, y), |x| = 2, |y| = 2n + 1, d = xn+1∂/∂y).

Proposition 4.2.4. A cdga model of the universal 1-connected CPn-fibration is given by

Bn :=
(
Q[x2, . . . , xn+1], |xi| = 2i, d = 0

) π
−→ En :=

(
Bn[x]/(xn+1

−
∑n+1

i=2 xi · xn+1−i), |x| = 2, d = 0
)
.

(4.6)

In particular, the universal fibration is formal.

Proof. Note that Der+(Pn) has a (vector space) basis given by θi := xn+1−i∂/∂y for i =

1, . . . ,n + 1 of degree 2i − 1 and η := ∂/∂x of degree 2. The only non-trivial differential on

the derivation Lie algebra is given by [d, η] = −(n + 1)θ1. Denote by an ⊂ Der+(Pn) the

vector space spanned by the cycles θ2, . . . , θn+1 which generate the homology. This is an

abelian dg Lie subalgebra with trivial differential and the inclusion an ↪→ Der+(Pn) induces

a quasi-isomorphism of dg Lie algebras. Hence, the inclusion induces a quasi-isomorphism

of cdga’s

C
∗

CE(Der+(Pn);Q) '
−→ C

∗

CE(an;Q) � (Q[x2, . . . , xn+1], d = 0),
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where xi = (sθi)∗ and has degree 2i. Combining Theorem 2.3.9 with the above quasi-

isomorphism shows that

C
∗

CE(an;Q)
η∗
−→ C

∗

CE(an; Pn) � (C∗CE(an;Q) ⊗ Pn,D)

is a relative Sullivan model of the universal 1-conneted fibration, where η : Q→Pn is the

unit. Here Pn is a left an-module by restricting the Der+(Pn)-action. With respect to the

chosen basis of an and the basis {xk, yxl
}k,l≥0, the formulas in (2.16) are

D(x) = d(x) −
∑
i,k

(xk)∗(θi(x)) · xixk + (yxk)∗(θi(x))) · xiyxk = 0,

D(y) = d(y) −
∑
i,k

(xk)∗((θi(y))) · xixk + (yxk)∗(θi(y)) · xiyxk

= xn+1
−

n+1∑
i=2

xi · xn+1−i.

Consider the map of Bn-algebras C : C∗CE(an; Pn)→En determined by C(y) = 0 and C(x) = x.

The cohomology of C∗CE(an; Pn) can be computed via the spectral sequence of a relative

Sullivan algebra corresponding to the Serre spectral sequence. The spectral sequence de-

generates on the E2-page and thus the cohomology of C∗CE(an; Pn) is a free module over

H∗CE(an;Q) � Bn. Moreover, C sends the Bn-basis {1, [x], . . . , [xn]} of H∗CE(an; Pn) to a Bn-basis

of En. Hence, C is a quasi-isomorphism of Bn-algebras and in particular of cgda’s. �

Remark 4.2.5. The Halperin conjecture implies that one can always find an abelian Lie

subalgebra a of the derivations of the minimal model of a positively elliptic space as above

that is quasi-isomorphic to it. This has been explained to the author by Alexander Berglund

and it gives a shorter proof of the above statement than our original one. In particular, it

implies that the spaces in the universal 1-connected fibration are rationally equivalent to∏N
i=1 K(Q, 2ni) so that the universal fibration is determined by a map of polynomial rings.

This was already observed in [Kur10, Thm 1.1] with different methods. The paper [Kur10,

Prop. 1.3] also states the algebraic model for complex projective spaces, which we learned

after the completion of this work.

We can apply Theorem 4.1.10 to the complete intersection in Proposition 4.2.4, where we

use integral Poincaré duality to fix an orientation on CPn by εCPn(xn) = 1.

Corollary 4.2.6. The fibrewise Euler class in En is represented by

efw(π) = (n + 1) · xn
−

n∑
i=2

(n + 1 − i) · xi · xn−i
∈ En. (4.7)
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Finally, we are able to determine the Euler ring of complex projective spaces.

Theorem 4.2.7. The Euler ring of complex projective space is E∗(CPn) � Q[κ1, . . . , κn−1, κn+1].

Proof. We can compute the Euler ring of the universal 1-connected fibration E∗0(CPn) using

the algebraic models and the representative of the fibrewise Euler class and fibre integration.

In order to extend this computation to the full Euler ring in B hAut+(CPn), we need to study

the spectral sequence of the fibre sequence B hAut0(X)→B hAut+(X)→Bπ0(hAut+(X)) that

describes the universal covering of B hAut+(X). The inclusion CPn ↪→ CP∞ induces a

bijection [CPn,CPn]→[CPn,CP∞] � H2(CPn;Z) and the homotopy equivalences correspond

to generators of H2(CPn;Z). Thus π0(hAut+(CPn)) is finite and it follows by transfer that

H∗(B hAut+(CPn);Q) injects into H∗(B hAut0(X);Q). In particular, the pullback induces an

isomorphism E∗(CPn) �→E∗0(CPn).

The Euler ring is generated by κ1, . . . , κn−1, κn+1 by Proposition 4.2.3, and it remains to

identify relations between the polynomials κi = κi(x2, . . . , xn+1) ∈ Bn which we get by fibre

integrating the representative of the fibrewise Euler class in (4.7). We will show that they

are in fact algebraically independent by showing that det(∂κi/∂x j) is non-zero. It turns

out that the polynomials representing the κi are quite complicated so that it is difficult to

give a closed formula for the determinant of the Jacobian. We will resolve this issue by

focussing on the terms containing xn+1 because it is the variable of the highest degree and

it is not contained in efw(π) so that it only arises through fibre integrating xk for k > n. It

will be sufficient to consider elements modulo decomposables, i.e. for x, y ∈ Bn then x ∼ y if

x − y ∈ (B+
n )2. We will start with the following observation about fibre integration.

1. If k = 2, . . . ,n + 1 then π!(xn+k) ∼ xk ∈ Bn.

Proof. Rewriting xn+2 in terms of the module basis {1, x, . . . , xn
}, one can see thatπ!(xn+2) = x2.

Then π!(xn+k) = π!(xn+1
· xk−1) =

∑n+1
i=2 xi · π!(xn+k−i) and by induction over k, the only inde-

composable contribution is for i = k. �

2. For i = 1, . . . ,n−1 the highest power of xn+1 in κi(x2, . . . , xn+1) is i−1 and the coefficient

ci ∈ Q[x2, . . . , xn] of xi−1
n+1 satisfies ci ∼ i(n + 1)i(n − i) · xn+1−i.

Proof. It follows from degree considerations that the highest power of xn+1 is i − 1 and

ci = A · xn+1−i + decomposables. It remains to determine the coefficient A. When expanding

efw(π)i+1 using (4.7), the only relevant contributions are

(n + 1)i+1xn(i+1)
− (i + 1)(n + 1 − (n + 1 − i))xn+1−ixn−(n+1−i)

· (n + 1)ixni

=(n + 1)i+1(xn+1)i−1
· x2n−i+1

− i(i + 1)(n + 1)ixn+1−i · (xn+1)i−1
· xn
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Now rewrite xn+1 =
∑n+1

i=2 xixn+1−i and collect all terms containing xi−1
n+1 and xi−2

n+1xn+1−i (we

can ignore the rest because it cannot contribute to A) to get

(n + 1)i+1(xi−1
n+1 + (i − 1)xi−2

n+1xn+1−i · xi) · x2n−i+1
− i(i + 1)(n + 1)ixn+1−i · xi−1

n+1 · x
n

The statement follows by fibre integrating and discarding decomposables as in 1 above. �

3. The highest contribution of xn+1 in κn+1 is (n + 1)n+2
· xn

n+1.

Proof. The expression for efw(π)n+2 contains the summand (n + 1)n+2
· xn(n+2) = (n + 1)n+2

·

(xn+1)n
· xn. This is the only summand that fibre integrates to a multiple of xn

n+1, i.e.κn+1 =

(n + 1)n+2
· xn

n+1 + . . . where we can ignore all other terms. �

We can now analyze det(∂κi/∂x j) which contains the summand

∂κ1

∂xn
·
∂κ2

∂xn−1
· . . . ·

∂κn−1

∂x2
·
∂κn+1

∂xn+1
.

It follows from 2 and 3 that the above expression contains C · xN
n+1, where C is a non-zero

constant and N = 1
2 n(n − 1). This is the only possible way to get a monomial in det

(
∂κi
∂x j

)
that contains only xn+1. Hence, the determinant does not vanish and the generating set

κ1, . . . , κn−1, κn+1 is algebraically independent. �

Remark 4.2.8. Theorem 4.2.7 has been studied in the smooth case for n = 2 in [RW18] by

studying the natural smooth 2-torus action on CP2 and that implies our result in this case as

well. This has been extended by Dexter Chua to n ≤ 4, but for large n the algebra becomes

intractable.

Remark 4.2.9. Consider H∗(B hAut0(CPn);Q) as a module over E∗(CPn). Then by [Smi95,

Cor 6.7.11] it is finitely generated as a E∗(CPn)-module if and only if κ1, . . . , κn−1, κn+1 ∈

Q[x2, . . . , xn+1] � H∗(B hAut0(CPn);Q) is a regular sequence. This can be checked by

computing the radical of (κ1, . . . , κn−1, κn+1), as for a parameter ideal the radical is the

unique graded maximal ideal H+(B hAut0(CPn);Q). With this criterion one can check that

H∗(B hAut0(CPn);Q) is finite over the Euler ring for n = 1, 2 (for n = 1 this is obvious) but

not for n = 3, 4. We don’t know how to check this condition for n ≥ 5 in general but we

expect that the cohomology of B hAut0(CPn) is not finite over the Euler ring in this case.

This shows that one cannot hope to find a version of Theorem 3.1 in [RW18] with Euler

rings instead of tautological rings in order to find a lower bound on the Krull dimensions

via Torus actions.
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We end this section with an observation about the natural map induced by the action

of the projective unitary group PU(n + 1)→hAut0(CPn) and the corresponding map be-

tween classifying spaces. It is a classical result that the cohomology ring of B PU(n + 1)

is Q[q2, . . . , qn+1] with generators of degree |qi| = 2i which are related to Chern classes.

Thus B PU(n + 1) has the same rational cohomology ring as B hAut0(CPn), and in particular

both are rationally equivalent to
∏n+1

i=2 K(Q, 2i) by its intrinsic rational formality. Hence,

B PU(n + 1) 'Q B hAut0(CPn) and it can further be shown that the natural map is a rational

equivalence.

Theorem ([Sas74, Kur11]). The natural map B PU(n+1) −→ B hAut0(CPn) is a rational homotopy

equivalence.

Sasao proves this statement using classical homotopy theory to study the fibration se-

quence Mapιm(CPm,CPn)→Mapιm−1
(CPm−1,CPn) for m < n, where the subscript denote the

connected component of the inclusion ιm : CPm ↪→ CPn. In particular, he doesn’t just obtain

results about rational homotopy groups but also statements about the connectivity of the

map. For example, he proves that the inclusion PU(n + 1)→Mapid(CPn,CPn) induces an

isomorphism on fundamental groups and π1(PU(n + 1)) � Z/(n + 1)Z. In contrast, Kurib-

ayashi uses tools from rational homotopy theory as well. His result is based on a rational

model of the evaluation map hAut0(X) × X→X.

We want sketch a simple proof of this result that uses the algebraic models of the CPn-

fibrations over B hAut0(CPn) and B PU(n + 1). It will be easier to prove that the natural map

B SU(n+1)→B hAut0(CPn) is a rational equivalence. This implies the theorem as the natural

map B SU(n + 1)→B PU(n + 1) is a rational equivalence because SU(n + 1)→PU(n + 1) is an

(n + 1)-fold normal covering.

Proof. The statement is a direct consequence of the projective bundle formula which de-

scribes the algebraic structure of the projectivization of a complex vector bundle in terms of

the Chern classes. Let i : B SU(n + 1)→B U(n + 1) be the natural map induced by inclusion

and γn+1→B U(n + 1) the tautological vector bundle. Then there is an algebra isomorphism

H∗(P(i∗γn+1);Q) � H∗(B SU(n + 1);Q)[t]
/(

tn+1 +

n+1∑
k=2

(−1)ki∗ck · tn+1−k
)

where t is the Euler class of the canonical line bundle L→P(i∗γn+1) and i∗ck is the restric-

tion of the k-th Chern class. The projectivization P(i∗γn+1) is the pullback of the univer-

sal CPn-fibration along the natural map c : B SU(n + 1)→B hAut0(CPn). As both En and

H2(P(i∗γn+1);Q) are 1-dimensional in degree 2, the pullback of x ∈ E2
n agrees with t up to a
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scalar, which is 1 for our choice of orientation. It follows that c∗(xk) = −(−1)ki∗ck and hence

c∗ induces an isomorphism of complete intersections. �

The above theorem has the following non-obvious consequence.

Corollary 4.2.10. The natural map B Diff+(CPn) −→ B hAut+(CPn) induces an injection on

rational cohomology.

Proof. Consider the composition B PU(n + 1)→B Diff+(CPn)→B hAut+(CPn) which factors

through the respective connected components of the identity. As π0(hAut+(CPn)) is finite,

the cohomology of B hAut+(CPn) injects into the cohomology of B hAut0(CPn) as the ring of

π0(hAut+(CPn))-invariants. If follows from the previous theorem that H∗(B hAut+(CPn);Q)

injects into H∗(B PU(n + 1);Q) and thus has to inject into H∗(B Diff+(CPn);Q). �

4.2.2. The Euler ring of products of odd spheres

In the following, let X be simply connected and rationally equivalent to a product of (simply

connected) odd dimensional spheres
∏2N

i=1 S2ni+1. Denote by F the set of all factors, then X

has a minimal Sullivan model AF = (Λ(x f ) f∈F, |x f | = 2n f + 1, d = 0). We choose a total

ordering < of F so that f < f ′ implies | f | ≤ | f ′| where | f | = 2n f + 1 is the dimension of

the corresponding sphere. This determines a basis {xS :=
∏

f∈S x f }S⊂F where the product∏
f∈S x f is with respect to the induced total order on S. We define x∅ := 1. The dg Lie algebra

of derivations of AF is graded and has the following basis

Der+(AF) =
⊕
n≥−1

Q
{
η

f
S

∣∣∣ S ⊂ (F, <), #S = n + 1 and |S| < | f |
}

where |S| =
∑

f∈S | f | and η f
S = xS ·

∂
∂x f

. The bracket is given by

[η f
S, η

f ′

S′] =


sgn(S, f ,S′, f ′)η f ′

St(S′\ f ) if f ∈ S′

−(−1)|η
f
S |·|η

f ′

S′ | · sgn(S′, f ′,S, f )η f
S′t(S\ f ′) if f ′ ∈ S

0 otherwise

where the exact form of the signs can easily be worked out but will not matter for the Euler

ring, and hence we omit a discussion here. We denote the corresponding dual basis of

(s Der+(AF))∨ by y f
S. In the following, denote by BF := C∗CE(Der+(AF);Q) the cdga model of

the base with differential d and by EF := (BF⊗AF,D) the cdga model of the total space. Using

(2.16), the we find that the relative Sullivan model of the universal fibration is determined
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by

d(y f
S) = (−1)| f |−|S|

∑
S1tS2=S, g∈S< f \S

sgn(S1, g,S2 ∪ g, f ) · y f
S2∪gyg

S1

D(x f ) = −
∑

S⊂S< f with |S|<| f |

y f
S ∧ xS.

Recall that a chain level representative of fibre integration Π ∈ HomBF(EF,BF) is uniquely

determined up to homotopy by (3.3). We choose as orientation of X the homomorphism

determined by εX(xF) = 1. Since Π lowers degree by |F|, it can only be nontrivial on xF so

that setting

Π(1 ⊗ xS) :=

1 if S = F

0 otherwise
(4.8)

determines the unique element in the 1-dimensional vector space Hom−d
BF

(EF,BF) that satisfies

(3.3). Hence, by Proposition 3.1.2 is has to be a representative of fibre integration and in

particular is a cycle, which can also be easily checked. We construct a representative of

∆! : EF[−|F|]→EF ⊗BF EF[−2|F|] from section 4 to compute the fibrewise Euler class.

But first, note that the integral fibrewise Euler class of a Poincaré complex of odd formal

dimension is a 2-torsion element. From the point of view of rational homotopy theory, there

is no structural difference in the algebraic model of the universal fibration of X if #F is odd

or even, so that one can expect the following.

Proposition 4.2.11. Let X be rationally equivalent to a product of odd dimensional spheres. Then

the fibrewise Euler class efw(π) ∈ H|X|(E0;Q) vanishes. In particular, E∗0(X) = Q.

Proof. Recall that the description of ∆! : EF[−|F|]→EF ⊗BF EF[−2|F|] uses the quasi-isomor-

phism Π̄ : EF→HomBF(EF,BF). Because AF is finite dimensional, HomBF(EF,BF) is a semifree

module itself and it is minimal because AF is a minimal Sullivan model. Hence, Π̄ and

Π ⊗Π are isomorphisms of BF-modules by uniqueness of minimal free resolutions [FHT01,

Ex.8,Ch.6] so that

∆! : EF[−|F|] Π̄
−→
�

HomBF(EF,BF) ∆∗
−→ HomBF(EF ⊗BF EF,BF)

(Π⊗Π)−1

−→
�

EF ⊗BF EF[−2|F|].

The composition of Π̄ with the vector space isomorphism HomBF(EF,BF) � (AF)∨ ⊗ BF

is given by ε̄X ⊗ IdBF where ε̄X : AF→(AF)∨ is the adjoint of εX : AF ⊗ AF→Q. The same

statement holds for Π ⊗Π with the appropriate choice of orientation on X × X given by

εX×X := εX ⊗ εX : (AF ⊗ AF)⊗2
→Q. This is very special to the products of odd dimensional

spheres and holds because the Sullivan model is finite dimensional, which is only ever true

for this situation.
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Note that ∆∗Π̄(1) is contained in (AF ⊗AF)∨ ⊗ 1 so that (Π ⊗Π)−1∆∗Π̄(1) is in AF ⊗AF ⊗ 1 ⊂

EF ⊗BF EF. A direct computation shows that

∆!(1) =
∑

S1tS2=F

±xS1 ⊗ xS2 ∈ EF ⊗BF EF

for some signs that can be worked out. Hence, the fibrewise Euler class is efw(π) = ∆∗◦∆!(1) =∑
S1tS2=F ±xF and since Π(e f w(π)) = χ(X) = 0, the summands must cancel. �

A fact that we have not mentioned so far is that the total space of the universal X-fibration

is equivalent to the classifying space of pointed homotopy equivalences B hAut+∗ (X). In

order to understand the fibrewise Euler class in Hd(B hAut+∗ (X));Q), we need to study the

universal covering spectral sequence of B hAut0,∗(X)→B hAut+∗ (X)→Bπ0(hAut+∗ (X)). We

do not yet know how to do this in general, but in some cases we can deduce that E∗(X) = Q.

Theorem 4.2.12. Let X be either rationally equivalent to (S2k+1)×n or a finite CW complex rationally

equivalent to S2k+1
× S2l+1 for 1 < k < l and n even. Then E∗(X) = Q.

Proof. In the second case, we will show that π0(hAut+(X)) is finite so that the universal

covering spectral sequence collapses and the cohomology of B hAut+∗ (X) injects as the in-

variants of H∗(B hAut∗,0(X);Q) with respect to the action of π0(hAut+0 (X)). In particular, the

fibrewise Euler class is trivial in H2(k+l+1)(B hAut+∗ (X);Q) and therefore the Euler ring is Q.

By [Sul77, Thm.10.3] the group π0(hAut+(X)) is commensurable with an arithmetic sub-

group of the homotopy classes automorphisms of AF. If X 'Q S2k+1
× S2l+1 then the group

of automorphisms of AF modulo homotopy isQ××Q× and the arithmetic subgroups of this

linear algebraic group are finite and hence by commensurability so is π0(hAut+(X)).

In the first case, the cdga model EF of B hAut0,∗(X) is a free algebra on x1, . . . , xn, y1, . . . , yn

with differential D(xi) = −yi. Hence H(EF) = Q and thus B hAut0,∗(X) is rationally con-

tractible. Therefore, B hAut+(X)→Bπ0(hAut+(X)) induces an isomorphism on rational co-

homology and thus every class in H∗(B hAut+∗ (X);Q) is pulled back from Bπ0(hAut+∗ (X)). In

particular, efw(π) = H∗e for some e ∈ Hn·(2k+1)(Bπ0(hAut+(X));Q). By commutativity of the

following diagram

B hAut+∗ (X) Bπ0(hAut+∗ (X))

B hAut+(X) Bπ0(hAut+(X)),

π

H
'Q

h

the fibrewise Euler class efw(π) = H∗e = π∗h∗e is pulled back from the base. Hence, fibre

integrating powers of the fibrewise Euler class gives π!(π∗(h∗e)k) = (h∗e)k
· π!(1) = 0. �
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We expect that one can extend Proposition 4.2.11 to show that efw(π) ∈ Hd(B hAut+∗ (X);Q)

always vanishes by studying the universal fibration of XQ instead. As rationalization is

functorial there is a (continuous) map B hAut+∗ (X)→B hAut+∗ (XQ) and the Euler class in the

cohomology of B hAut+∗ (XQ) pulls back to the Euler class in B hAut+∗ (X).

4.2.3. The Euler ring of some low dimensional positively elliptic spaces

We have already alluded to the rigidity of positively elliptic spaces in Proposition 4.1.7.

Another manifestation of this behaviour has been established by Friedlander and Halperin

in [FH79], where they prove that for an elliptic pure minimal Sullivan algebra (ΛV, d) with

homogeneous basis {xi, y j} of V and degrees |xi| = 2ai and |y j| = 2b j − 1, the sequences of

degrees (ai) and (bi) – called the exponents – satisfy strong arithmetic conditions.

Theorem 4.2.13 ([FHT01, Thm 32.6]). Let (ΛV, d) be a pure minimal Sullivan model with expo-

nents defined as above and denote by d formal dimension of the Poincaré duality algebra H(ΛV, d).

Then

•
∑

j(2b j − 1) −
∑

i(2ai − 1) = d;

•
∑

i 2ai ≤ d;

•
∑

j(2b j − 1) ≤ 2d − 1;

• dim V ≤ d;

• V is concentrated in degrees ≤ 2d−1 and at most one (odd) basis element can have degree > d.

This can be used to classify rationally elliptic spaces in low dimensions. For example,

Herrmann has classified the real homotopy type of elliptic spaces of dimension ≤ 6.

Theorem 4.2.14 ([Her18]). A closed, simply connected, and rationally elliptic manifold of dimension

six or less is

• diffeomorphic to S2 or S3,

• homeomorphic to S4, S2
× S2, CP2, CP2#CP2 or CP2#CP

2
,

• rationally homotopy equivalent to S5 or S2
× S3,

• is 6-dimensional with b2(M) ≤ 2 and has the real homotopy type of one of the following

manifolds

S6, S3
× S3, CP3,S2

× S4, CP2
× S2, SU(3)/T2, orCP3 #CP3
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• is 6-dimensional with b2(M) = 3 and cohomology ring H∗(M;R) isomorphic to a quotient of

R[x1, x2, x3] by one of the following regular sequences

{x2
1, x2

2, x2
3}, {x1x2, x2

1 − x2
2, x2

3}, {x1x2, x2
1 + x2

3, x2
2 + x2

3}, {x2x3, x2
1 − x2

2, x2
1 + x2

3}

{x2x3, x2
1 − x2

2, x2
1 − x2

3}, {x1x2, x2
3, x2

1 − x1x3 + x2
2}, {x1x2, x2

3, x2
1 − x1x3 − x2

2}

and {σx2
1 − x2x3, σx2

2 − x1x3, σx2
3 − x1x2} for σ , 0, 1,

1
2

Remark 4.2.15.

(i) A real homotopy equivalence of a simply connected space induces an equivalence on

real homotopy groups π∗(−) ⊗ R. The reason that the classification theorem above is

stated in terms of the real homotopy type is because it relies on the classification of

cubic forms over R which is not available over Q. Of course any regular sequence

above with rational coefficients determines a rational homotopy type.

(ii) It is a theorem by Sullivan [Sul77, Thm 13.2] that for any simply connected mini-

mal model (ΛV, d) that satisfies Poincaré duality on cohomology there is a simply-

connected compact manifold realizing this rational homotopy type if the dimension

4 - d and otherwise there are constraints on the intersection form and Pontrjagin

classes.

For some of the above examples there are evident manifolds realizing the rational

homotopy type. For example the first two regular sequences correspond to (S2)3 and

S2
× (CP2#CP2). In general, a construction of a manifold associated to one of the (ra-

tional) regular sequence above has been given in [Wal66] via handel decompositions.

The Euler ring E∗0(X) only depends on the rational homotopy type and we can compute

it for all elliptic spaces of dimension ≤ 6 using this classification (although there are some

computational limitations).

Theorem 4.2.16. Let X be a simply connected positively elliptic space with Euler characteristic

χ(X) = n. Then

I if dim X ≤ 4 then E∗0(X) � Q[κ1, . . . , κn−2, κn];

II if dim X = 6 and b2(X) ≤ 2 then

a.) if X 'Q S2
× S4 then E∗0(X) � Q[κ2, κ4];

b.) otherwise E∗0(X) � Q[κ1, . . . , κn−2, κn].
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Proof. The computations will proceed by the same strategy as in Proposition 4.2.4, i.e. by

finding a quasi-isomorphic abelian Lie subalgebra with trivial differential a ⊂ Der+(Λ) of

a minimal Sullivan model of X (see Remark 4.2.5). We denote derivations of a free graded

commutative algebra ΛV for a graded vector space V with homogeneous with basis {xi}

by p∂xi for some p ∈ ΛV. Also recall that the Euler ring is generated by κ1, . . . , κn−2, κn by

Proposition 4.2.3. Hence, it will suffice to check for relations among these classes.

If dim X = 4 it only remains to check the cases X = S2
× S2 and X = CP2#CP2 as the

computation for spheres and complex projective cases has been settled before and since

S2
× S2

'Q CP2#CP
2
.

• A minimal Sullivan model for S2
×S2 is given by Λ := (Λ(x1, x2, y1, y2), d =

∑
x2

i ∂yi) with

|xi| = 2 and |yi| = 3. Then Der+(Λ) is the 8-dimensional vector space Q{xi∂y j, ∂xi, ∂y j}

with the only non-trivial differential given by [d, ∂xi] = −2xi∂yi. Hence, the sub-

space a := Q{x1∂y2, x2∂y1, ∂y1, ∂y2} is a quasi-isomorphic abelian Lie subalgebra

with trivial differential. Then the universal 1-connected fibration is equivalent to

C
∗

CE(a;Q)→C∗CE(a; Λ) and using (2.16) we find that this is equivalent to the complete

intersection

π∗ : B = Q[a1, a2, b1, b2] −→ E = B[x1, x2]/(x2
1 − a2x2 − b1, x2

2 − a1x1 − b2), (4.9)

where {a1, a2, b1, b2} corresponds to the dual basis of a in the same order. The fibrewise

Euler class is determined by Theorem 4.1.10 and one can compute that

κ1 = 8a1a2 κ2 = 28a2
1a2

2 + 64b1b2

κ4 = 244a4
1a4

2 + 1024a2
1b3

1 + 4736a2
1a2

2b1b2 + 1024b2
1b2

2 + 1024a2
2b3

2

using Macaulay2 (see Example B.1). These elements are algebraically independent

and thus the Euler ring is isomorphic to Q[κ1, κ2, κ4].

• A minimal Sullivan model for CP2#CP2 is given by

Λ := (Λ(x1, x2, y1, y2), d = x1x2∂y1 + (x2
1 − x2

2)∂y2)

with |xi| = 2 and |yi| = 3. Then Der+(Λ) is isomorphic as graded vector space to the

one above and the only non-trivial differentials are given by

[d, ∂x1] = −x2∂y1 − 2x1∂y2 [d, ∂x2] = −x1∂y1 + 2x2∂y2.

Then a := {x1∂y1, x2∂y1, ∂y1, ∂y2} is a quasi-isomorphic abelian Lie subalgebra with

trivial differentia and the universal 1-connected fibration is equivalent to the following
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complete intersection

π∗ : B = Q[a1, a2, b1, b2] −→ E = B[x1, x2]/(x2
1 − x2

2 − b2, x1x2 − x1a1 − x2a2 − b1) (4.10)

where {a1, a2, b1, b2} corresponds to a dual basis of a. Then the fibrewise Euler class is

efw = 2(x2
1 + x2

2) − 2(x1a2 + x2a1) and we find that

κ1 = 4a2
1 + 4a2

2

κ2 = 8a4
1 + 48a2

1a2
2 + 8a4

2 + 96a1a2b1 + 64b2
1 + 8a2

1b2 − 8a2
2b2 + 16b2

2

(see Example B.1) where we omitted κ4 because it is quite long. But a simple check

with Macaulay2 reveals that the polynomials are algebraically independent and thus

the Euler ring is isomorphic to Q[κ1, κ2, κ4].

This covers the first case for dim X ≤ 4. The strategy remains unchanged in the other cases

but the computations get more lengthy so that we have outsourced them to the Appendix

in Example B.1. �

It is notable that in all cases except X 'Q S2
× S4 there are no other relations in the

Euler ring E∗0(X) other than the trace relations in Proposition 4.2.3. It would be interesting

if one could find an algebraic criterion that distinguishes positively elliptic spaces with

Kdim E∗0(X) < χ(X) − 1.

Remark 4.2.17. In many of the cases above, the computations can be promoted to determine

E∗(X) as the group of (homotopy classes) of homotopy self-equivalences E(X) is known to

be finite (see for example [Bau96, Pav99]). The author believes this to be true for all finite

CW complexes that are positively elliptic.

Sullivan proved that E(X) is commensurable to an arithmetic subgroup of E(XQ) [Sul77,

Thm 10.3] and in particular that the map E(X)→E(XQ) has finite kernel. Denote by E0(X)

the subgroup of those homotopy equivalences that induce an isomorphism on integral

homology groups. If X is positively elliptic we can use the structure theory in Proposition

4.1.7 to compute E0(XQ) and we claim that it is trivial (but we won’t include a proof here).

It follows that E0(X) is finite. If the automorphism group of the cohomology ring is finite,

which is a simple check, the group of homotopy self-equivalences has to be finite as well.
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Chapter 5.

Tautological rings of manifolds via rational homotopy theory

The goal of this chapter is provide a systematic way to study relations in the tautological ring

using rational homotopy theory. This means that we have to relax the manifold structure

of the fibre and instead study fibrations that have an oriented vector bundle on the total

space which plays the role of the vertical tangent bundle. In the second section, we refine

these techniques by imposing the relations from the family signature theorem which does

not hold for such fibrations.

5.1. TM-fibrations and tangential homotopy equivalences

We first introduce the concept of M-fibrations with a vector bundle on the total space whose

restriction to a fibre is equivalent to the tangent bundle of M. This vector bundle plays the

role of the vertical tangent bundle and we can define MMM-classes as the fibre integrals of

its characteristic classes.

Definition 5.1.1. Let M be a smooth oriented manifold. We define a TM-fibration as an

oriented M-fibration E→B with fibre M and an oriented vector bundle TπE→E over the total

space whose restriction to a fibre TπE|π−1(b) is equivalent to TM for all b ∈ B, i.e. there is a

homotopy equivalence π−1(b)→M covered by a vector bundle isomorphism TπE|π−1(b)→TM.

Remark 5.1.2. The above definition is a special case of ξ-fibrations due to Berglund [Ber20b,

Ber20a]. Given any fibre bundle ξ→X (in the sense of [Dol63]), one can define a ξ-fibration

as an X-fibration π : E→B together with a bundle on the total space (with the same fibre

and structure group as ξ) such that the restriction of each fibre of π is weakly equivalent to

ξ as in the definition above.

We discuss in Appendix A a general classification theory of fibrations developed by

May in [May75], possibly with additional structure, that applies to TM-fibrations. The

appropriate category of fibres is introduced in Example A.2(iii), and the automorphisms of

the distinguished fibre is the following topological monoid.
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Definition 5.1.3. The monoid hAut(TM) of tangential homotopy equivalences is

hAut(TM) :=


TM TM

M M

f̄
�

f

∣∣∣∣∣∣ f ∈ hAut(M), f̄ is linear on each fibre


topologized as a subspace of Map(TM,TM). We denote by hAut0(TM) the connected com-

ponents where the underlying map f is homotopic to the identity. If M is oriented, we

denote by hAut+(TM) the orientation preserving tangential homotopy equivalences.

The classifying space B hAut+(TM), constructed by May as the two-sided bar construction

B(∗,hAut+(TM), ∗) (see Definition A.3), classifies TM-fibrations up to a suitable equivalence

relation by Theorem A.10 (see also [Ber20a, Thm 2.3]). The universal TM-fibration can be

described as

B(∗,hAut+(TM),M) −→ B(∗,hAut+(TM), ∗) = B hAut+(TM), (5.1)

where hAut+(TM) acts on M by evaluating the underlying map f . There is a good description

of the oriented vector bundle over the total space of the universal TM-fibration in (5.1) based

on the following observation.

Proposition 5.1.4 ([Ber20a]). Let hAut(M)TM denote the connected components of hAut+(M)

that preserve the tangent bundle under pull back. Then B(Map(M,B SO(d))TM,hAut(M)TM, ∗) and

B hAut+(TM) are homotopy equivalent. The same is true for B hAut0(TM) and the two-sided bar

construction with hAut0(M) instead.

The analogous statement also holds for the total space of the universal TM-fibration in

(5.1), i.e. it is equivalent to B(Map(M,B SO(d))TM,hAut(M)TM,M). The oriented vector bun-

dle on the total space can be described via the map ev : Map(M,B SO(d))TM ×M→B SO(d),

which is equivariant with respect to the action of hAut(M)TM given by precomposition on

the mapping space and evaluation on M, and therefore induces a map

E := B(Map(M,B SO(d))TM,hAut(M)TM,M)
ε(ev)
−−−−→ B SO(d) (5.2)

by (A.2). We denote the pull back of the universal vector bundle over B SO(d) along

ε(ev) by TπE→E, and we define κc for c ∈ H|c|(B SO(d)) for the universal TM-fibration

π : E→B hAut+(TM) by

κc :=
∫

M
c(TπE) ∈ H|c|−d(B hAut+(TM)).

There is one important observation to make for even dimensional manifolds. Namely,

there are two Euler classes to consider: the fibrewise Euler class of the oriented M-fibration
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E→B hAut+(TM) and the Euler class of the oriented vector bundle TπE→E. Importantly,

these two classes are not the same.

Proposition 5.1.5. Let M be a smooth, closed, oriented manifold and let π : E→B hAut+(TM)

denote the universal TM-fibration with TπE→E as above. Then efw(π) , e(TπE) ∈ Hd(E;Z).

We will give a proof in the next section. But this statement is hardly surprising because the

vector bundle is completely detached from the global topology of the underlying fibration.

For example, there are many vector bundles over the trivial fibration πB : B×M→M whose

restriction to b ×M is isomorphic to TM and whose Euler class is not efw(πB) = 1 × e(M).

This is in stark contrast to a fibre bundle E→B, where the vertical tangent bundle provides

a regular neighbourhood of the diagonal ∆ : E→E ×B E which links the vector bundle and

the topology of the bundle.

Basically for this reason, that the fibrewise Euler class is more intricately linked to the

global topology of the underlying fibration, we prefer to use efw(π) instead of e(TπE) in

defining a homotopical version of the tautological ring. The advantages of this choice will

become more clear later on in computations. With this in mind, we make the following

definition.

Definition 5.1.6. The homotopical tautological ring R∗h(M) is defined as the subring of

H∗(B hAut+(TM);Q) generated by π!((efw)ic(TπE)) =: κeic for all c ∈ H∗(B SO;Q) and all i ≥ 0.

Denote by R∗h,0(M) the image in H∗(B hAut0(TM);Q).

Observe that a smooth fibre bundle E→B with fibre M is a TM-fibration and so by the

classification theory there is a map on classifying spaces

B Diff+(M) −→ B hAut+(TM). (5.3)

It can be shown that this map is induced by the map d : Diff+(M)→hAut+(TM) that sends

a diffeomorphism to its differential and moreover that it preserves κc by naturality of fibre

integration (see [Ber20b]). Hence, it induces a surjection

c : R∗h(M) −→ R∗(M) (5.4)

of tautological rings. In this sense, the homotopical tautological ring provides an upper

bound.

The homotopical tautological ring is more computable, and as in the case for the Euler

ring we approach the computation in a two steps. First, we study the analogue of (5.1)

B(∗hAut0(TM),M) −→ B(∗,hAut0(TM), ∗) = B hAut0(TM), (5.5)
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which is an M-fibration with nilpotent base space, using rational homotopy theory. In a

second step, we infer R∗h(M) from the (homotopy) covering B hAut0(TM)→B hAut+(TM).

We will discuss the first step in the next section and discuss the second step only in examples

where the (homotopy) covering is finite-to-one.

5.1.1. Rational homotopy theory of TM-fibrations

The results of this section are due to Berglund [Ber20a, Ber20b] and are a key ingredient for

the applications in Section 5.2. The rational models are based on Proposition 5.1.4 which

expresses B hAut0(TM) in terms of spaces whose rational homotopy type is well known.

Let us introduce some notation first. Let L be a dg Lie algebra, then its n-th Whitehead

cover for n ∈ Z is defined as

L〈n〉i =


Li i > n

ker(d : Ln→Ln−1) i = n

0 i < n

(5.6)

An element τ ∈ L−1 is called a Maurer-Cartan element if d(τ) + 1
2 [τ, τ] = 0. A Maurer-Cartan

element determines a new dg Lie algebra Lτ with the same underlying graded Lie algebra

and twisted differential dτ = d + [τ,−].

Let A be a cgda and let both L and A of finite type. Then the completed tensor product

A⊗̂L, which is the graded vector space in degree n given by
∏

i Ai
⊗ Li+n, is a dg Lie algebra

with bracket [a ⊗ v, a′ ⊗ v′] = (−1)|a
′
|·|v|a · a′ ⊗ [v, v′]. This grading convention is due to the

fact that by our convention, Λ is a cochain complex whereas Π is a chain complex, and this

choice makes the tensor product into a chain complex.

Let Λ be a Sullivan model for M2d and Π a dg Lie model for B SO(2d), which is given by the

dg Lie algebra on Q{q1, . . . , qd−1, ε}where |qi| = 4i− 1 and |ε| = 2d− 1 with trivial differential

and bracket. The main theorem of [Ber15, Thm 1.5] shows that (rational) homotopy classes of

maps M→B SO(2d) are in one-to-one correspondence with gauge classes of Maurer-Cartan

elements in Λ⊗̂Π. Then the Maurer-Cartan element τ(M) corresponding to the classifying

map of the tangent bundle TM : M→B SO(d) is given by

τ(M) = e(Λ) ⊗ ε +

d−1∑
i=1

pi(Λ) ⊗ qi ∈ (Λ⊗̂Π)−1, (5.7)

where e(Λ), pi(Λ) ∈ Λ are cocycle representatives of the Euler and Pontrjagin classes of M,

and further that Map(M,B SO(2d))TM has a dg Lie model given by (Λ⊗̂Π)τ(M)
〈0〉.
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Remark 5.1.7. Since Π has trivial bracket, the twisting has actually no effect. This is

expected since B SO(2d) is rationally a product of Eilenberg-MacLane spaces and the rational

homotopy type of such mapping spaces is independent of the path component.

The derivation Lie algebra Der+(Λ) acts on Λ⊗̂Π by θ · (x⊗q) := θ(x)⊗q, which determines

the semi-direct product Der+(Λ)n(Λ⊗̂Π) see [Tan83, Ch. VII.2]. In this case, Der+(Λ)n(Λ⊗̂Π)

is the dg Lie algebra on the direct sum of chain complexes and bracket determined by

[θ, x ⊗ q] = θ(x) ⊗ q. Then τ(M) is a Maurer-Cartan element in this semi-direct product, and

we define

gTM :=
(
Der+(Λ) n (Λ⊗̂Π)

)τ(M)
〈0〉, (5.8)

which acts on Λ through the projection to the Der+(Λ).

Theorem 5.1.8 ([Ber20b]). The dg Lie algebra gTM is a Lie model for B hAut0(TM) and the universal

TM-fibration in (5.5) is modelled by

C
∗

CE(gTM;Q) −→ C∗CE(gTM; Λ).

Berglund also determines cocycle representatives of the characteristic classes of the ori-

ented vector bundle over the total space of the universal TM-fibration in (5.5) which we

again denote by TπE→E.

Denote by Pi ∈ C
4i
CE(gTM; Λ) the 1-cochain that is determined by

Pi(s(q j ⊗ x)) = (−1)|x|δi, j · x, Pi(s(ε ⊗ x)) = 0, and Pi(sθ) = 0

for x ∈ Λ and θ ∈ Der+(Λ). Similarly, we define a 1-cochain E ∈ C2d
CE(gTM; Λ) determined by

E(s(q j ⊗ x)) = 0, E(s(ε ⊗ x)) = (−1)|x|x, and E(sθ) = 0.

Theorem 5.1.9 ([Ber20b]). Let TπE→E denote the vector bundle over the total space of the uni-

versal TM-fibration (5.5). Then the characteristic classes of TπE have cocycle representatives in

C
∗

CE(gTM; Λ) given by

e(TπE) = e(Λ) + E and pi(TπE) = pi(Λ) + Pi, (5.9)

where e(Λ) and pi(Λ) are considered as 0-cochains in C∗CE(gTM; Λ).

Berglund has used this to compute the homotopical tautological ring in [Ber20b] for

spheres and low dimensional CPn. Another simple example that we study next is for

M = S2
× S2, which is positively elliptic and therefore we can adapt the strategy that we

used for the proof of Theorem 4.2.16 to this situation.
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Computational strategy for positively elliptic spaces.1 Assume that M2d is a positively

rationally elliptic manifold that satisfies the Halperin conjecture. Let Λ be a pure Sullivan

model, then we can find an abelian Lie subalgebra a ↪→ Der+(Λ) with trivial differential

such that the inclusion is a quasi-isomorphism of dg Lie algebras. It follows that the induced

map of semi-direct products

a n (Λ⊗̂Π) ↪→ Der+(Λ) n (Λ⊗̂Π)

is a quasi-isomorphism. As Λ is formal with a quasi-isomorphism Λ→H(Λ), there is a weak

equivalence a n (Λ⊗̂Π)→a n (H(Λ)⊗̂Π). Since τ(M) determines a Maurer-Cartan element in

H(Λ)⊗̂Π, there is a zig-zag of weak equivalences twisted by τ(M)

(a n (H(Λ)⊗̂Π))τ(M)
〈0〉 '
←− (a n (Λ⊗̂Π))τ(M)

〈0〉 '↪→ (Der+(Λ) n (Λ⊗̂Π))τ(M)
〈0〉 = gTM (5.10)

Observe that these weak-equivalences are compatible with the obvious module structure

on Λ so that these induce quasi-isomorphisms of the rational model from Theorem 5.1.8 to

C
∗

CE

(
(a n (H(Λ)⊗̂Π))τ(M)

〈0〉;Q
)
−→ C

∗

CE

(
(a n (H(Λ)⊗̂Π))τ(M)

〈0〉; Λ
)
. (5.11)

The key point is that the dg Lie algebra an (H(Λ)⊗̂Π))τ(M) has trivial differential and bracket

so that its Lie algebra cohomology is a polynomial ring.

The triviality of the differential is obvious, and the triviality of the bracket follows from

another reformulation of the Halperin conjecture: Let Λ = (ΛQ⊗ΛP, d) be the pure Sullivan

model for M. Then a consists of derivations with non-trivial restriction P→ΛQ. Since τ(M)

can be represented by a Maurer-Cartan element in ΛQ⊗̂Π, the action of a on τ(M) is trivial

and so is the bracket.

Example 5.1.10. M = S2
× S2 with Sullivan model Λ =

(
Λ(x1, x2, y1, y2), d = x2

1∂y1 + x2
2∂y2

)
.

We have seen in Chapter 4.2.3 that a := Q{x1∂y2, x2∂y1, ∂y1, ∂y2} is a quasi-isomorphic abelian

Lie subalgebra of Der+(Λ) with trivial differential. Next, we choose a basis of H(Λ) ⊗Π〈0〉

say 1 ⊗ q1, x1 ⊗ q1, x2 ⊗ q1, 1 ⊗ ε, x1 ⊗ ε, x2 ⊗ ε. Hence, the base of (5.11) is equivalent to a

polynomial ring

B := C∗CE

(
(a n (H(Λ)⊗̂Π))τ(M)

〈0〉;Q
)
� Q[a1, a2, b1, b2, p1,0, p1,1, p1,2, e0, e1, e2]

that correspond to a dual basis of a ⊕ (H(Λ) ⊗Π)〈0〉 in the same order as the basis is listed

above. Hence, the degrees of the polynomial generators are {2, 2, 4, 4, 4, 2, 2, 4, 2, 2}. Since

1This the starting point of the author’s collaboration with Alexander Berglund concerning elliptic spaces.
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only Der+(Λ) acts non-trivially on Λ, the map (5.11) is equivalent to the following complete

intersection

π∗ : B −→ E := B[x1, x2]/(x2
1 − b1 − a2x2, x2

2 − b2 − a1x1).

In this example, we have that Λ ⊗ Π〈0〉 coincides with H(Λ) ⊗ Π〈0〉 and the restriction

of P1 and E with respect to the basis we have chosen is P1 = p1,0 + p1,1x1 + p1,2x2 and

E = e0 + e1x1 + e2x2. Hence, the cocycle representatives are

e(TπE) = 4x1x2 + e0 + e1x1 + e2x2

p1(TπE) = p1,0 + p1,1x1 + p1,2x2

efw(π) = 4x1x2 − a1a2

by Theorem 5.1.9 and Theorem 4.1.10 since e(Λ) = 4x1x2 and p1(Λ) = 0 as the first Pontrjagin

class of S2
× S2 vanishes.

Remark 5.1.11.

(i) Observe that cocyle representatives of the two Euler classes e(TπE) and efw(π) are

different. This is in fact true for arbitrary M and gives a proof of Proposition 5.1.5. But

there is also a simpler and more direct proof that we give after this remark.

(ii) When computing R∗h(M) we are using the fibrewise Euler class by our convention, and

the reason becomes more apparent in this example. Since fibre integrating polynomials

in x1 and x2 has image in the subring of B generated by a1, a2, b1, b2, the homotopical

tautological ring R∗h(M) is a subring of Q[a1, a2, b1, b2, p1,0, p1,1, p1,2] by our choice of

Euler class. As this subring is smaller, one finds more relations among MMM-classes

when compared to the tautological ring defined via the tangential Euler class e(TπE).

It is not hard to see that this is equivalent to computing the tautological ring of the

M-fibration over B(
∏d−1

i=1 Map(M,K(Q, 4i))pi(M;Q),hAut0(M), ∗), which is the classifying

space of M-fibrations with cohomology classes on the total space of degree 4i for

1 ≤ i ≤ d − 1.

(iii) Some of the relations among MMM-classes that follow from this method could have

been deduced using simpler tools, such as a closer analysis of the Serre spectral

sequence. The key advantage we see in this approach is that it is systematic and

reduces the problem to a straightforward computation.

We will now give a proof of Proposition 5.1.5. It is a direct consequence of Theorem 5.1.9

due to Berglund, but there is also the following more direct argument.
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Proof of 5.1.5. Consider a TM-fibration with trivial underlying fibration πSk : Sk
×M→Sk,

i.e. a vector bundle over Sk
×M whose restriction to p×M is equivalent to TM for all p ∈ Sk.

A source of such TM-fibrations are elements in πk(Map(M,B SO(d))TM) via the pullback

bundle of the adjoint. As we have mentioned before, the rational homotopy groups of this

mapping space are H(Λ)⊗̂Π〈0〉 � H(M;Q)⊗̂Π〈0〉 by [Ber15, Thm 1.5]. There is also a simple

description of the algebraic model of the adjoint map a : Sk
×M→B SO(d) corresponding

to α ⊗ ε ∈ (H(M;Q)⊗̂Π)k−1 for any α ∈ H2d−k(M;Q), and the model of the adjoint sends

e ∈ H2d(B SO(2d);Q) to εk × α + 1 × e(M) ∈ H2d(Sk
×M;Q). For any M we can choose k = 2d

and α = 1 ∈ H0(M) and we see that for the corresponding TM-fibration the tangential Euler

class is different than efw(πSk) = 1 × e(M).

The algebraic model of adjoints is discussed for example in [LS07], but we will revisit this

topic in more detail in Chapter 8 which is sufficient to prove this fact about the adjoint. �

Finally, we are at the point when we can make explicit calculations of R∗h(M). We begin with

identifying finite generating sets following [RW18]. The following lemma is a reformulation

of [RW18, Thm A] that applies to TM-fibrations as well.

Lemma 5.1.12. Let M be a closed oriented manifold with cohomology concentrated in even degrees,

then R∗h(M) is a finitely generated Q-algebra.

The proof is based on an analogue of the Cayley-Hamilton theorem trace relations for au-

tomorphisms of finite free algebras (see also Proposition 4.2.3) that holds for the cohomology

of the total space of a fibration with fibre M satisfying the assumptions above considered

as an algebra over the cohomology of the base. This trace relation [RW18, Cor. 2.7] de-

pends only on dim H∗(M;Q), and for a TM-fibration E→B with M = S2
× S2 is given by the

following identity in H∗(E)

c4 = κecc3
−
κ2

ec − κec2

2
c2 +

κ3
ec − 3κecκec2 + 2κec3

6
c −

κ4
ec − 6κ2

ecκec2 + 3κ2
ec2 + 8κecκec3 − 6κec4

24
,

where c = c(TπE) for c ∈ H∗(B SO(d);Q). Randal-Williams identifies a generating set of

R∗h(S2
× S2) from the trace relation above given by {κp2

1
, κp3

1
, κep1 , κep2

1
, κe2 , κe2p1

, κe3 , κe3p1
, κe5}.

Remark 5.1.13. It is also possible to find a generating set of R∗h(S2
× S2) by studying the

reprentatives in the algebraic model Q[a1, a2, b1, b2, p1,0, p1,1, p1,2]. For example, κep1 = 4p1,0

and κp2
1

= 2p1,1p1,2. However, this is not very efficient in most cases as the polynomials

become very large very quickly.

One can compute the representatives of the MMM-classes and their relations using a
computer algebra system. We have used Macaulay2 for these computations and attached
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the code in Appendix B. However, it turns out that the computation is too complicated for
the author’s computer to produce a final answer. There are, however, partial results that
one can extract, for example the following identity in R∗h,0(S2

× S2) (see Example B.2):

0 =κp2
1
κ4

ep1
κe2 − 2κ2

p2
1
κ2

ep1
κ2

e2 + κ3
p2

1
κ3

e2 − κp3
1
κ3

ep1
κe2 − 5κp2

1
κ2

ep1
κep2

1
κe2 + 9κp2

1
κp3

1
κep1κ

2
e2 − 3κ2

p2
1
κep2

1
κ2

e2

− 3κp2
1
κ3

ep1
κe2p1 − 5κ2

p2
1
κep1κe2κe2p1 + 9κ2

p2
1
κ2

ep1
κe3 − κ3

p2
1
κe2κe3 + 4κp3

1
κep1κep2

1
κe2 + 4κp2

1
κ2

ep2
1
κe2

− 7κ2
p3

1
κ2

e2 + 4κp3
1
κ2

ep1
κe2p1 + 12κp2

1
κep1κep2

1
κe2p1 + 6κp2

1
κp3

1
κe2κe2p1 + κ2

p2
1
κ2

e2p1
− 24κp2

1
κp3

1
κep1κe3

− 16κp3
1
κep2

1
κe2p1 + 16κ2

p3
1
κe3

(5.12)

Of course, we don’t necessarily learn much having a concrete presentation anyway. Instead,

we should focus on properties of R∗h(M). For example, one can easily extract upper bounds

on the Krull dimension from the the rational model.

Lemma 5.1.14. Kdim R∗h(S2
× S2) ≤ 7.

Proof. Since the group of homotopy self-equivalences of S2
× S2 is finite [Bau96, Thm 6.3]

the homotopical tautological ring is isomorphic to R∗h,0(S2
× S2). It is finitely generated

by the trace relation and therefore integral over a polynomial subring on Kdim R∗h(S2
× S2)

generators by Noether normalization. As it is contained in Q[a1, a2, b1, b2, p1,0, p1,1, p1,2], the

Krull dimension is ≤ 7 by [Eis95, Cor. 13.5]. �

This is a better upper bound than the one from Randal-Williams using the trace relation

(and easier to compute). And of course we can generalize this to produce upper bounds

for all positively elliptic manifolds that satisfy the Halperin conjecture, i.e. with the notation

introduced above Kdim R∗h,0(M) ≤ dim a n H∗(M;Q) ⊗Π′〈0〉, where Π′ ⊂ Π is the subspace

spanned by the qi’s.

5.2. Relations from the family signature theorem

We will now change focus back to the smooth tautological ring, for which we know one

other source of relations coming from the familiy signature theorem. Denote by R∗0(M) the

image of the tautological ring in H∗(B Diff0(M);Q). Then for all i > dim M/4 the MMM-

class κLi associated to the Hirzebruch L-polynomial Li = Li(p1, . . . , pd−1, e) ∈ H∗(B SO(2d);Q)

vanishes by Theorem 1.2.3. It is worth pointing out, that this is the only source of relations we

know that uses the manifold structure of the fibre bundle.

The goal of this section is to impose these relations in the homotopical tautological ring

to improve the upper bound. This turns out to simplify the computational complexity as

well.
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Definition 5.2.1. We define the Hirzebruch ideal as the ideal IH ⊂ H∗(B hAut0(TM);Q)

generated by all κLi for 4i > dim M and by I≤n
H ⊂ IH the ideal generated by κLi for dim M/4 <

i ≤ n. Then the surjection (5.4) factors through

R∗h,0(M) −→ R∗h,0(M)/(IH ∩ R∗h,0(M)) −→ R∗0(M). (5.13)

We will first revisit out computation for M = S2
× S2. The quotient R∗h,0(M)/(IH ∩ R∗h,0(M))

is generated by fewer elements {κep1 , κep2
1
, κe2 , κe2p1

, κe3 , κe3p1
, κe5} (see [RW19]) which reduces

the computational complexity and we are able to compute it for I≤12
H using Macaulay2.

However, displaying it would take several pages so instead we extract its Krull dimension

and Hilbert series (see the code in Example B.4).

Proposition 5.2.2. For M = S2
× S2 the Hilbert series P

(
R∗h,0(M)/(I≤12

H ∩ R∗h,0(M)),T
)

is given by

1 + T8
(
2 + T8

(
T4 + 1

) (
6T44

− 8T40
− T36

− 2T32
− T28 + 7T24 + 4T20 + T16

− 5T12 + T8
− 4T4 + 1

))
(1 − T4)2 (1 − T8) (1 − T16)

and we can read of that Kdim R∗h,0(M)/(I≤12
H ∩ R∗h,0(M)) = 4.

Another way to extract some more palpable information from these computations is to

restrict attention to the map E∗(M)→R∗(M), since the Euler ring is simpler and smaller

than R∗h(M). But also fibrations occur more naturally in nature than TM-fibrations. We are

particularly interested in elements of the kernel as these provide obstructions to finding

fibre homotopy equivalent fibre bundles.

Proposition 5.2.3. The following elements are in the kernel of E∗(M)→R∗(M) for M = S2
× S2:

36130625κ5
1κ4 − 1257728κ1κ

4
2 − 16765250κ3

1κ2κ4 + 3640975κ1κ
2
2κ4 + 171250κ1κ

2
4,

2854453κ1κ
5
2 + 26160025κ3

1κ
2
2κ4 − 12274935κ1κ

3
2κ4 − 36130625κ3

1κ
2
4 + 11410250κ1κ2κ

2
4,

4913765κ3
1κ

3
2 + 883609κ1κ

4
2 − 6902125κ3

1κ2κ4 − 3833475κ1κ
2
2κ4 + 3631250κ1κ

2
4,

24568825κ5
1κ

2
2 − 561391κ1κ

4
2 − 15829250κ3

1κ2κ4 + 756100κ1κ
2
2κ4 + 2632500κ1κ

2
4,

24568825κ7
1κ2 − 242097κ1κ

4
2 − 5471475κ3

1κ2κ4 + 262825κ1κ
2
2κ4 + 1321250κ1κ

2
4,

614220625κ9
1 − 1063673κ1κ

4
2 − 41486500κ3

1κ2κ4 − 2159400κ1κ
2
2κ4 + 15552500κ1κ

2
4

Proof. The code for the computation of the kernel of E∗0(M)→R∗0(M)/(I≤12
H ∩ R∗h,0(M)) is

presented in Example B.4. We can promote the computation to the full Euler rings by the

standard argument since E(S2
× S2) is finite, and further since the automorphism group

O(H, λ) of the intersection form of S2
× S2 is finite, its classifying space has trivial rational

cohomology so that κLi ∈ R∗(M) vanishes by the family signature theorem. �
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Finally, we want to discuss one further example to illustrate some disadvantages of the

approach presented above. Importantly, we will not rely on the rational homotopy theory

of TM-fibrations developed by Berglund and instead use the techniques developed by

Randal-Williams in [RW19].

Proposition 5.2.4. The kernel of E∗(CP2#CP2)→R∗(CP2#CP2) is non-trivial, and we give some

elements in the Appendix in Proposition B.5.

Proof. The details of the computation can be found in Proposition B.5. Unlike in our

previous strategy, we do not try to identify a small generating set but simply choose κeip j
1

for 1 ≤ i + j ≤ 9. There are many relations among these MMM-classes by fibre integrating

the (multiples of the) trace relation (and its polarization)

c4 = κecc3
−
κ2

ec − κec2

2
c2 +

κ3
ec − 3κecκec2 + 2κec3

6
c −

κ4
ec − 6κ2

ecκec2 + 3κ2
ec2 + 8κecκec3 − 6κec4

24

for various c, and we collect all these identities in an ideal. We also add to this ideal the

expressions for κLi for 1 ≤ i ≤ 9 in terms of the generating set because the automorphism

group of the intersection form ofCP2#CP2 is finite so that κi = 0 for all i > 1 . Finally, one can

compute the intersection of this ideal with the subring generated by κei for i = 2, 3, 5. This

intersection is non-empty and since the Euler ring E∗(CP2#CP2) is a polynomial on these

generators by Theorem 4.2.16, the kernel is non-trivial. �

We will collect some comments about these two methods and their comparison:

(1) We have also attempted to compute R∗0(CP2#CP2)/(IH∩R∗0(CP2#CP2)) using the rational

homotopy theory of TM-fibrations. On the face of it, this case is quite similar to

M = S2
× S2 since both have the same Euler characteristic and even B hAut0(TM) is

rationally equivalent. The rational model is the following complete intersection:

B = Q[a1, a2, b1, b2, p1,0, p1,1, p1,2, e0, e1, e2]

E = B[x1, x2]/(x2
1 − x2

2 − b2, x1x2 − b1 − a2x1 − a1x2)

efw(π) = 2(x2
1 + x2

2) + 2(x1a1 + x2a2)

p1(Tπ(E)) = 3(x2
1 + x2

2) + p1,0 + p1,1x1 + p1,2x2

(5.14)

However, the Macaulay2 computation turned out to be too complicated and was

aborted. For the sake of comparison: the computation for S2
× S2 was a matter of

minutes whereas the computation for CP2#CP2 was aborted after several days of

runtime.
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The key difference is that the first Pontrjagin class vanishes for S2
×S2 but p1(CP2#CP2) =

6 by the signature theorem. This has the effect that the cocycle representatives of

MMM-classes are considerably more complicated polynomials in B for CP2#CP2 be-

cause one has to fibre integrate polynomials in x1, x2 of higher degree. This affects the

Gröbner basis computation.

(2) We did check the results we have obtained in Proposition B.5 using the rational model

(5.14). More precisely, we have computed with Macaulay2 the image of the last

element in Proposition B.5 in the quotient B/I≤9
H (corresponding to the number of

Hirzebruch relations used in the computation in Proposition B.5). It took over ten

days of runtime before it was confirmed that the image was indeed zero.

(3) On the other hand, we also attempted to compute the kernel E∗(S2
× S2)→R∗(S2

× S2)

using Randal-Williams’ method. Now in this case the computation did not stop. This

begs the question why these two different methods work well in these different yet

still similar cases.

The advantage of the approach presented in this thesis is that we can work in small

polynomial rings, but on the other hand the MMM-classes are represented by very

complicated polynomials which slows down the computation. The disadvantage of

Randal-Williams’ approach is that we have to use many generators dictated roughly

by the dimension of M and H∗(M;Q), and the advantage is that the relations are not

very complicated polynomials in the generators.

(4) In all examples we have studied so far the upper bounds on the Krull dimension

on the smooth tautological ring obtained by either method agree, even though we

can better detect the finer algebra structure through the rational homotopy theory of

TM-fibrations.

(5) The computational results that we presented here should be considered only as a

starting point, and we expect that they can be improved using more refined algebraic

tools.

5.2.1. Tautological rings of fakeHP2

In this section, we study how much the tautological ring changes for smooth closed mani-

folds that are homotopy equivalent, specifically manifolds homotopy equivalent toHP2 as

a simple first example. The surprising answer turns out to be that the Krull dimension of

the tautological ring is almost an invariant of the homotopy type in this case.
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We can study the set of manifolds homotopy equivalent toHP2 via surgery theory. The

set of equivalence classes of f : M '
−→ HP2, where M is a smooth closed manifold and

equivalence relation (M1, f1) ∼ (M2, f2) if there exists a diffeomorphism g : M1→M2 such

that f1 ' f2g, is called the geometric structure set S(HP2). It can be determined using Browder-

Novikov-Sullivan-Wall surgery exact sequence, which we have analysed in Appendix C.

The main statement can be phrased as follows.

Theorem (See Thm C.1). There are infinitely many smooth closed manifolds M that are homotopy

equivalent to HP2 and they are (up to finite ambiguity) parametrized by the value of the first

Pontrjagin class p1(TM) ∈ H4(M;Z).

The main theorem of this section is the following.

Theorem 5.2.5. Kdim R∗(M) = 0 for all but finitely many [ f ,M] ∈ S(HP2).

Proof. The basic idea of the proof remains the same, i.e. we want to compute the Krull

dimension of R∗0(M)/(IH ∩ R∗0(M)). But in fact it will suffice to compute the dimension of IH.

The algebraic model of the universal TM-fibration is given by

B = Q[x8, x12, p1,0, p2,0, p2,1, p3,0, p3,1, p3,2, e0, e1]

E = B[z]/(z3
− zx8 − x12)

(5.15)

with coycle representatives of the characteristic classes

efw(π) = 3z2
− x8 p1(TπE) = p1(M) + p1,0

p2(TπE) = p2(M) + p2,0 + p2,1z p3(TπE) = p3,0 + p3,1z + p3,2z2

so that we can compute the Hirzebruch ideal IH ⊂ B as before. Now the key idea is to treat

all manifolds M at the same time by formally adding the parameter p1 of degree 0 to B that

represents the first Pontrjagin class. Denote this polynomial ring by B (and omit e0 and e1).

Then we can define E := E⊗B B as the induced complete intersection over B and replace the

cocycle representatives for p1(TπE) and p2(TπE) by

p1(TπE) = p1z + p1,0 ∈ E and p2(TπE) =
45 + p2

1

7
z2 + p2,0 + p2,1z ∈ E (5.16)

as p2(M) = (45 + p1(M)2)/7z2 by the signature theorem. We further define IH as the ideal

generated by the κLi ∈ B and consider the inclusion ϕ : Q[p1]→B/IH.

For a homomorphism ϕ : R ↪→ S of commutative rings as above and a prime ideal P

of R we call K(R/P) ⊗R S the fibre over P, where K(R/P) denotes the field of fractions of

R/P. It is a classic question in commutative algebra how the fibres vary with P. There are
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strong structural theorems in case R is Noetherian and S is a finitely generated R-algebra

that show that most fibres have common properties. Our statement follows by applying

such a structural result about the dimension of the fibres of ϕ : Q[p1]→B/IH; we use the

following statement from [Eis95, Thm 14.8b]:

Suppose S is a positively graded algebra S =
⊕

i≥0 Si which is finitely generated over the

Noetherian ring R = S0. Then for every integer n there is an ideal Jn of R such that for any

prime P of R

Kdim K(R/P) ⊗R S ≥ n iff P ⊃ Jn.

This has a geometric interpretation: let Y→X be the corresponding map of affine schemes

where Y is projective over X. Then K(R/P)⊗R S is the coordinate ring of the scheme-theoretic

fibre and the theorem implies that the dimension of the fibre is upper semi-continuous in

the target, i.e. it can only jump upwards when varying in X.

For the morphism ϕ : Q[p1]→B/I
≤10
H , we have computed the fibre for certain values

of p1 and found that the dimension of the fibre vanishes (see Example B.7). Since the

dimension of the fibre can only jump upwards, this implies that the generic fibre has

dimension zero. Formulated in terms of the above statement, it implies that for n = 1

the ideal J1 is not zero and thus only finitely many maximal ideals can contain J1. For

[ f : M '
→HP2] ∈ S(HP2) the fibre over the maximal ideal (p1 − p1(M)) ⊂ Q[p1] is isomorphic

to the quotient B/IH � H∗(B hAut0(TM);Q)/IH of the corresponding Hirzebruch ideal and

thus contains R∗h,0(M)/(IH ∩R∗h,0(M)). Hence, for almost all M we have Kdim B/IH = 0 and it

follows from Noether normalization that the quotient is a finite dimensional vector space.

Hence, R∗h,0(M)/(IH∩R∗h,0(M)) is finite dimensional as well and therefore has vanishing Krull

dimension. It follows that Kdim R∗0(M) = 0, and the general statement follows as both the

automorphism of the intersection pairing and E(HP2) are finite (see [Bau96]). �

It is a natural question for which values of p1 the dimension of the fibre ofϕ : Q[p1]→B/IH

does vary from the generic fibre. Or to phrase it in a more geometric way, are there

[M, f ] ∈ S(HP2) for which the upper bound on the Krull dimension of R∗h,0(M)/(IH∩R∗h,0(M))

is positive. At present, we only know one such exception (and we expect it to be the only

one).

Proposition 5.2.6. Kdim R∗(HP2) ≤ 3.

This upper bound is obtained by computing the dimension of the fibre of ϕ : Q[p1]→B/IH

over p1 = 2 (see Example B.7), which is the value of the first Pontrjagin class of HP2 (see

Appendix C). The fact that for HP2 the upper bound is positive is not a coincident but

forced by a result of Randal-Williams [RW19] which implies that Kdim R∗(HP2) > 0 asHP2
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admits a good circle action. We will briefly discuss Randal-Williams result in the following

addendum and discuss its interaction with the commutative algebra perspective.

Addendum – Lower bounds on the Krull dimension and a connection to the Â-genus

Consider a manifold M with a smooth torus action, i.e. a continuous group homomorphism

Tk
→Diff0(M) which induces a map on classifying spaces. The cohomology ring of B Tk is

a polynomial ring H∗T := Q[x1, . . . , xk] where each generator has degree 2. We denote the

image of the tautological ring as R∗T(M) ⊂ H∗T. One of the main results of Randal-Williams

[RW19, Thm 3.1] provides a criterion on the action that guarantees that H∗T is integral over

R∗T(M) – a special case of this theorem is given below. If follows from the going-up theorem

that Kdim H∗T = Kdim R∗T(M) and since R∗(M) surjects onto R∗T(M), we obtain a lower bound

Kdim R∗(M) ≥ Kdim R∗T(M) = k.

Theorem 5.2.7 ([RW19, Cor. B]). Let Tk act effectively on a smooth manifold M such that the fixed

set WT is discrete and non-empty. Then H∗T is integral over R∗T(M) and therefore Kdim R∗(M) ≥ k.

HP2 admits a standard T2
⊂ (C×)2 action given by (λ1, λ2) · [h0:h1:h2] = [h0:λ1h1:λ2h2] with

isolated fixed points [1:0:0], [0:1:0] and [0:0:1]. It follows that Kdim R∗(HP2) ≥ 2. This is

in contrast to almost all manifolds [M, f ] ∈ S(HP2) which cannot admit an effective circle

action (that satisfies the condition on the fixed set) by Theorem 5.2.5. This statement can be

improved by a result of Atiyah and Hirzebruch using index theory.

Theorem 5.2.8 ([AH70]). Let M4k be a compact oriented smooth manifold with w2(M) = 0. If a

connected compact Lie group G acts non-trivially on M then Â(M) = 0.

The Â-genus is the ring homomorphism Â : ΩSO
∗ ⊗Q→Q associated to the multiplicative

sequence induced by the power series of the function x/2
sinh(x/2) . Its first three elements as

polynomials in the Pontrjagin classes are given by

Â1(p1) = −
1
24

p1

Â2(p1, p2) =
1

5760
(−4p2 + 7p2

1)

Â3(p1, p2, p3) =
1

967680
(−16p3 + 44p2p1 − 31p3

1)

and we denote by Â(M4k) the evaluation of Âk on the fundamental class.

A simple computation shows that a manifold M8 with the cohomology ring of HP2

satisfies both Â(M) = 0 and L(M) = 1 (where L denotes the signature genus) if and only if

p1(M) = ±2z. We have computed the Pontrjagin classes of fake quaternionic spaces in (C.3)
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for M 'HP2, and it follows from (C.2) that there are only two elements in the structure set

with vanishing Â-genus: [HP2, Id], which admits a circle action, and [HP2#Σ8, f ] where Σ8

is the unique exotic 8-sphere and f is the homeomorphism withHP2#S8 �HP2. We do not

know if HP2#Σ8 admits a good circle action (although it is likely known), but we will see

later on that it only really matters if there is a good circle action for some smooth structure.

Now we cannot hope to study a geometric concept like circle actions with the homotopical

tautological ring. But it seems interesting that the vanishing of the Â-genus provides an

algebraic way to distinguish the fibres over p1 = ±2 for R∗h,0(M) for ϕ : Q[p1]→B, which to

the author is completely unobvious from the commutative algebra perspective. In some

sense, the Â-genus seems like a good intermediate invariant between the more geometric

concept of circle actions and the algebraic theory presented here. In the remainder of this

section we want to present some evidence that this is not merely a coincidence.

Consider the complete intersection in (5.15) and instead of formally adding a parameter

p1 as in the proof of Theorem 5.2.5 we now add p1 and p2. By abuse of notation, denote

by B the polynomial ring H∗(B hAut0(THP2);Q)[p1, p2] = B[p1, p2] and by E the analogous

complete intersection over B with cocycle representatives

p1(TπE) = p1z + p1,0 ∈ E p2(TπE) = p2z2 + p2,0 + p2,1z ∈ E

which allows us to define the Hirzebruch ideal IH ⊂ B. Then the homomorphism ϕ :

Q[p1, p2]→B/IH now describes a projective scheme over the affine plane whose fibre over

a point (x, y) ∈ Q2 corresponds to the Hirzebruch ideal with (p1, p2) = (x, y). The same

result about the dimension of the fibre still applies, i.e. generically the dimension of the fibre

vanishes. However, the exceptional fibres are now not isolated points but varieties in the

affine plane.

Question. For which points in A2 is the dimension of the fibre of ϕ : Q[p1, p2]→B/IH

positive?

This problem is completely algebraic and detached from the topology of manifolds as

we do not require the signature theorem to hold. We have computed the dimension of the

fibre of ϕ : Q[p1, p2]→B/I
≤10
H for several points in A2 using Macaulay2, and as expected

"generically" the dimension of the fibre is zero.

The interesting observation is that for all points on V(−4p2 + 7p2
1) ⊂ A2 for which we have

computed the dimension of the fibre of ϕ, we found that it is at least 1. We have tested this

for p1 = i and for −4 ≤ i ≤ 4 and p1 = ±1/2,±3/2. For p1 = ±2, 0 the dimension of the fibre

is 3. The variety V(−4p2 + 7p2
1) describes the values of Pontrjagin classes (p1, p2) for which
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the Â-genus vanishes. So even though this question is detached from the existence of circle

actions on manifolds, the vanishing of the Â-genus of this algebraic family still seems to

provide a positive lower bound on the Krull dimension of B/IH for the corresponding value

of the Pontrjagin classes. Conceptually, this is similar to the lower bounds obtained from

circle actions. However, there are some cautioning remarks we should make:

(i) The computation of the dimension of the fibre of ϕ : Q[p1, p2]→B/IH does not deter-

mine the dimension of R∗h,0(M)/(IH∩R∗h,0(M)) – which is what we are really interested in

– but merely provides an upper bound. The computation of R∗h,0(M)/(IH∩R∗h,0(M)) with

Macaulay2 is more complicated yet in principle the same techniques are applicable.

(ii) When writing up this thesis we found by accident another family of examples for

which the fibre of Q[p1, p2]→B/I
≤10
H is positive, given by L2(p1, p2) = 0.

We have summarized our computations in the following picture of A2 where every circle

represents a point in the affine plane for which the Krull dimension of the fibre of ϕ :

Q[p1, p2]→B/I
≤10
H is 1, and every square corresponds to a point where the dimension of

the fibre is 3. We have also indicated the varieties V(L2) and V(Â2), where we expect the

dimension of the fibre to be positive, and for completeness also V(L2 − 1) which contains

the values of p1 and p2 of fake quaternionic projective spaces by the signature theorem.

−2 2

77

p1

p2 Â2(p1, p2) = 0
L2(p1, p2) = 1
L2(p1, p2) = 0

Based on these very limited computations and the connection to lower bounds on the

Krull dimension of tautological rings, we could make the following extremely optimistic

conjecture.

Conjecture 5.2.9. Let M be a closed, oriented, smooth manifold that is rationally positively elliptic.

If Â(M) = 0 then Kdim R∗h,0(M)/(IH ∩ R∗h,0(M)) > 0.
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Clearly, there are many aspects that require further study and in particular we should

test this conjecture for more examples. This point can be made for all of Chapter 3 and

4, and therefore this thesis should be considered only as a starting point in the study of

tautological rings of rationally elliptic manifolds. We will end Part I with discussing some

open questions and further problems in the next section.

5.3. Outlook

In this outlook we will discuss some questions that we hope to address in future work with

the techniques developed in the first part of this thesis, as well as questions that naturally

arise from the results that we have presented here.

5.3.1. Computational methods

One of the immediate improvements that we intend to work on is a more refined approach

to Theorem 5.2.5: Instead of finding an upper bound on the Krull dimension by studying

the dimension of the Hirzebruch ideal IH ⊂ H∗(B hAut0(TM);Q) for M ' HP2, we should

study the quotient R∗h,0(M)/(IH ∩ R∗h,0(M)) directly.

The strategy in the proof of Theorem 5.2.5 can be modified to this situation. Recall

the complete intersection B→E from the proof which is obtained by formally adding the

parameter p1. Then we can define a tautological ring R
∗

⊂ B by fibre integrating polynomials

of the fibrewise Euler class and pi(TπE) in (5.16). A better upper bound to the tautological

ring of a manifold M ' HP2 is the fibre of φ : Q[p1]→R
∗

/(IH ∩ R
∗

) over the maximal ideal

(p1 − p1(M)). And we can apply the same theorem about common properties of the fibres of

φ as in the proof of Theorem 5.2.5.

Question 5.3.1. Most fibres of φ : Q[p1]→R
∗

/(IH ∩ R
∗

) share common properties – are there

interesting properties beyond the dimension that they share? Are the fibres ever isomorphic?

For both families, ϕ : Q[p1]→B/IH andφ : Q[p1]→R
∗

/(IH∩R
∗

), there are algorithms to find

the exceptional fibres. Roughly, one computes the fibre over the generic point of Spec(Q[p1]),

which corresponds to computing a Groebner basis of IH over the field of fractionsQ(p1) and

keeping track of every time one has to divide by a polynomial in Q[p1]. Such algorithms

are described for example [MW10] and they are also implemented in different computer

algebra systems. This is particularly interesting as a first test for Conjecture 5.2.9, which we

should also test for many more examples.

Goal. Improve the computational methods in this thesis.
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5.3.2. Complete intersections

Clearly, the computational results presented in the first part of this thesis are essentially con-

cerned with complete intersections over Q and many of the statements are of independent

interest. We can formulate all the constructions in purely algebraic terms as follows.

Let Λ denote a pure minimal Sullivan model of a connected complete intersection over

Q of formal dimension 2n. Consider the dg Lie algebra (Der+(Λ) n Λ ⊗ Π′〈0〉)τ, where

Π′ = Q{q1, . . . , qn−1} is a trivial dg Lie algebra with |qi| = 4i − 1 and τ is a Maurer-Cartan

element in Λ⊗̂Π′ determined by cohomology classes pi(Λ) ∈ H4i(Λ) for i = 1, . . . ,n − 1. This

dg Lie algebra acts on Λ and we define B(Λ) and E(Λ) as the source and target of

H∗CE((Der+(Λ) nΛ ⊗Π′〈0〉)τ;Q) −→ H∗CE((Der+(Λ) nΛ ⊗Π′〈0〉)τ; Λ). (5.17)

The reason that we don’t record τ in this notation is that if Λ satisfies the Halperin conjecture,

the cohomology groups above don’t depend on τ. However, there are classes p1, . . . , pn−1 ∈

E(Λ) defined as in Theorem 5.1.9 and these do depend on τ. We define a tautological ring

R∗(Λ, τ) ⊂ B∗(Λ) by fibre integrating polynomials in the fibrewise Euler class and these pi.

Similarly, we define the Hirzebruch ideal IH(Λ, τ) ⊂ B(Λ) as the ideal generated by the fibre

integrals of the L-polynomials (where we replace pn by e2).

Remark 5.3.2. Let X be a simply connected space with Sullivan model Λ. Then the dg Lie

algebra (Der+(Λ) n Λ ⊗ Π′〈0〉)τ is model of B(
∏n−1

i=1 Map(X,K(Q, 4i))pi ,hAut0(X), ∗), which

is the classifying space of X-fibrations with a choice cohomology classes of degree 4i for

i = 1, . . . ,n − 1 on the total space whose restriction to the fibre are given by the cohomology

classes corresponding to the Maurer-Cartan element τ.

A key part of the strategy to study fake quaternionic projective spaces was to treat all

values of the Pontrjagin classes at the same time. This can be done in this algebraic setting

analogously: choose a homogeneous basis {xs}s∈S of H4∗(Λ) where S =
⋃

S4i denotes the

corresponding grading. Then we define B(Λ,S) := B(Λ)[S] by formally adding variables

of degree zero and E(Λ,S) := E(Λ) ⊗B(Λ) B(Λ,S) the induced complete intersection over it.

We define cocycles in E(Λ,S) as pi =
∑

s∈S4i
sxs + Pi ( compare with the formulas in Theorem

5.1.9 or in the proof of Theorem 5.2.5), which enables us to define the Hirzebruch ideal

IH(Λ,S) ⊂ B(Λ,S).

Question 5.3.3. The fibre of ϕ : Q[S]→B(Λ,S)/IH(Λ,S) over a maximal ideal corresponding

to a Maurer-Cartan element τ is B(Λ)/IH(Λ, τ). What is the dimension of the generic fibre ϕ :

Q[S]→B(Λ,S)/IH(Λ,S)? Are there examples of complete intersections where it is positive?
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Clearly, this construction is quite a bit more complicated for complete intersections Λ

whose cohomology ring is not as simple as that of HP2. It would be interesting to see

whether we find similar phenomena in the study of the Hirzebruch ideal in this generality.

Finally, Conjecture 5.2.9 is based on the analogous question for complete intersections.

Question 5.3.4. Suppose Λ is of formal dimension 4n and τ ∈ Λ⊗̂Π′ is a Maurer-Cartan

element determined by classes pi(Λ) ∈ H4i(Λ). If 0 = Ân(p1(Λ), . . . , pn(Λ)) ∈ H4n(Λ), then is

Kdim B(Λ)/IH(Λ, τ) positive? Does this hold for Kdim R∗(Λ, τ)/(IH(Λ, τ) ∩ R∗(Λ, τ)) as well?

Phrasing Conjecture 5.2.9 in the required generality for arbitrary complete intersection,

makes it obvious how optimistic the conjecture really is. It should rather be motivation for

testing it for other complete intersections with more complicated cohomology rings.

5.3.3. Dependence of the smooth structure

It is quite surprising that the tautological rings of generic manifolds M 'HP2 have common

properties at all because on the face of it, we don’t expect the space of diffeomorphisms of

homotopy equivalent manifolds to be similar. This begs the following underlying question.

Question 5.3.5. How does the tautological ring R∗(M) depend on the smooth structure of

M?

For example can we distinguish the tautological rings of homeomorphic smooth mani-

folds M1 ≈ M2 that are not diffeomorphic? The technique presented in this chapter only

depends on the rational homotopy type and the rational Pontrjagin classes (which agree

rationally for homeomorphic manifolds by results of Novikov). Hence, it is obvious that

we cannot hope to distinguish them using the tools developed here. And in fact, we can

make a stronger statement based on the following result of Dwyer and Szczarba.

Theorem 5.3.6 ([DS83]). Let M1 ≈ M2 be homeomorphic smooth closed manifolds of dimension

n , 4. Then the classifying spaces B Diff0(M1) and B Diff0(M2) have the same rational homotopy

type.

By inspection of their proof (see below), we see that the zig-zag of rational homotopy

equivalences B Diff0(M1)→Z ← B Diff0(M2) constructed in [DS83] is over the classifying

space of homeomorphisms B Homeo0(Mi). Since tautological classes are defined for topo-

logical bundles (see for example [ERW14]), the above zig-zag induces isomorphism between

tautological rings.
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Corollary 5.3.7. Let M1 ≈M2 be homeomorphic smooth closed manifolds of dimension n , 4. Then

R∗0(M1) � R∗0(M2).

Proof. The proof is basically an inspection of the proof of the above Theorem in [DS83]. For

dim Mi < 4 the statement is vacuous because low dimensional manifolds have a unique

smooth structure and for dim Mi > 4 the proof relies on smoothing theory. In the following,

denote by M the underlying topological manifold and Homeo0(M) the connected component

of the identity of the group of homeormorphisms of M and by Diff′(Mi) the collection

of components of diffeomorphisms that are topologically isotopic to the identity. By a

result from smoothing theory the Homeo0(M)-equivariant homotopy type of the quotient

Homeo0(M)/Diff′(Mi) is equivalent to that of the connected component Γi of the space of

sections of the topological tangent bundle τM

B Gl(n)

M B Top(n)τM

that contains the lift corresponding to the tangent bundle of Mi (to be precise one should

consider simplicial mapping spaces). Denote by ΛQ B Gl(n)→B Top(n) the fibrewise ratio-

nalization (see [BK72]) and by ΓQ the space of sections of the topological tangent bundle to

ΛQ B Gl(n). Then Dwyer and Szczarba show that Γ1 and Γ2 map to the same path component

ΓQc ⊂ ΓQ and that the inclusions are rational equivalences (spaces of sections such as Γi and

ΓQc are nilpotent so this statement is meaningful) which are equivariant with respect to the

action of Homeo0(M). Hence, there is a zig-zag

B Diff′(M1) ' Γ1 //Homeo0(M)
'Q
−→ ΓQc //Homeo0(M)

'Q
←− Γ2 //Homeo0(M) ' B Diff′(M2)

of spaces over B Homeo0(M) via the obvious map. Since MMM-classes are defined in

B Homeo0(M), the above zig-zag induces an isomorphism of tautological rings defined over

B Diff′(Mi). The claim follows by considering the corresponding zig-zag of universal covers

which are given by B Diff0(Mi). �

Remark 5.3.8.

(i) One interesting consequence is that there are lower bounds on the Krull dimension on

the tautological ring obtained by continuous torus actions that satisfy the conditions

of Theorem 5.2.7 with respect to some smooth structure. For example, it follows that

2 ≤ Kdim R∗(HP2#Σ8) ≤ 3.
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(ii) A weaker result holds for the tautological rings R∗(M) and R∗(M#Σ) for simply-

connected manifolds M2n and some exotic sphere Σ by work of [Kra18] which implies

that R∗(M) � R∗(M#Σ) as vector spaces in a range of degrees that depends on the

manifold M.

Question 5.3.9. Is the tautological ring a homeomorphism invariant? Are there relations

that hold in R∗(M1) but not in R∗(M2) for homeomorphic manifolds M1 ≈M2?

Coming back to our result about the tautological ring of M 'HP2, we note that we don’t

actually infer much information about the cohomology of B Diff+(M) itself beyond the fact

the most MMM-classes are zero or more precisely that the image of H∗(B hAut+(TM);Q)

is a finite dimensional vector space. From this point of view, our Theorem 5.2.5 is similar

in spirit to results in [HLLR17] and [BFJ16] where it is shown that for bundles with fibres

certain aspherical manifolds the MMM-classes are trivial.

These results are in a certain tension with the description of the stable cohomology of

B Diff+(M2n#gSn
×Sn) by Galatius–Randal-Williams which is inherently given by tautological

classes. Of course, the homological stability results have no consequences for the large scale

ring theoretic structure of the the tautological ring. But maybe this discrepancy can also be

attributed to the fact that the manifolds we happen to study (and create under stabilization

with #gSn
× Sn) usually have many symmetries: We naturally consider HP2 and not the

element in the structure set S(HP2) with p1(M) = −6718z ∈ H4(M;Z). This leads to the

following question.

Question 5.3.10. Are there manifolds M that do not admit smooth effective actions of

compact connected Lie groups (with respect to any smooth structure) but for which the

Krull dimension of R∗(M) is positive?

Finally, it would be very interesting to find a source of relations in the tautological ring

that requires the manifold structure in the fibre beyond the family signature theorem – either

for a specific manifold M or for arbitrary manifolds. For example, it would be interesting if

we could distinguish the smooth tautological rings of manifolds in S(HP2) beyondHP2.

5.3.4. Block bundles and geometric conditions on the fibre

There are many more situations where one can define versions of the tautological ring.

For example, we can study fibre bundles with fibrewise curvature conditions or where

the structure group is a subgroup of Diff(M) such as the group of symplectomorphisms

Symp(M, ω) for a symplectic manifold (M, ω). The symplectic case is particularly interesting
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because it is essentially a cohomological condition that seems well suited to study with

tautological classes.

Question 5.3.11. Denote by R∗Symp(M, ω) the ring of tautological classes of the universal

bundle over B Symp(M, ω). Is there a universal source of relations among MMM-classes for

the symplectic tautological ring R∗symp(M, ω) that uses the symplectic structure?

There is some evidence that this is the case. This relies on deep theorems of Gromov

that describe the connected component of the identity Symp0(M, ω) for some 4-dimensional

symplectic manifolds such as (S2
× S2, ω), where ω is the symplectic form so that both p× S2

and S2
× p have area 1, and (CP2, ω) with symplectic form induced by the Fubini-Study

Kähler metric. According to [KM05], there are deformation retractions

SO(3) × SO(3) '↪→ Symp0(S2
× S2, ω)

PSU(3) '↪→ Symp0(CP2, ω)

and so we can compare the tautological rings R∗0(M) and R∗symp,0(M) in these cases.

Example 5.3.12.

(i) For S2
× S2 we can show that R∗0(S2

× S2)→R∗symp,0(S2
× S2, ω) has a non-trivial kernel

using a family of torus actions φk : T2
→Diff0(S2

× S2) for k ∈ N. The image of

the MMM-classes in H∗(B T2;Q) under φ∗k is computed in [RW19] and for k = 0 this

action is symplectic with respect to the standard form. It follows from the formulas

of the MMM-classes in H∗(B SO(3) × B SO(3);Q) ↪→ H∗(B T2;Q) discussed in [RW19,

pg. 3871] that 0 = κ2
e3p1
− κep2

1
κe5 ∈ R∗symp,0(S2

× S2, ω). On the other hand, the image of

κ2
e3p1
− κep2

1
κe5 in H∗(B T2;Q) with respect to the action φ1 is non-trivial. Hence, it is an

element in the kernel.

In fact, Randal-Williams uses these torus actions to show that Kdim R∗(S2
× S2) ≥ 3.

Since the symplectic tautological ring is contained in H∗(B SO(3) × B SO(3);Q) which

has Krull dimension 2, it follows that there has to be a kernel. So the above is simply

an explicit description of one element in the kernel.

(ii) The tautological ring of the CP2-bundle over B SU(3) is isomorphic to that over

B PSU(3) as SU(3)→PSU(3) is a finite covering. Let γ3→B SU(3) be the universal

bundle, then the cohomology of the CP2-bundle π : P(γ3)→B SU(3) is described

by the projective bundle formula H∗(P(γ3);Q) = H∗(B SU(3);Q)[x]/(x3 + c2x − c3)

where x = c1(L) of the canonical line bundle L→P(γ3) and c2, c3 are the Chern
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classes in H∗(B SU(3);Q) = Q[c2, c3] of γ3. The vertical tangent bundle is determined

by TπE ⊕ C � L ⊗ π∗γ3 and by using the splitting principle we can compute that

c1(TπE) = −3x and c2(TπE) = 3x2 + c2. Observe that c2(TπE) = e(TπE) and so this also

follows from Theorem 4.1.10. Since p1(TπE) = c2
1(TπE) − 2c2(TπE), one can compute

with Macaulay2 that

R∗symp,0(CP2, ω) �
Q[κe2 , κep1 , κp2

1
, κp3

1
, κp4

1
]

(7κep1 − 4κp2
1
, 7κe2 − κp2

1
, 13κ2

p2
1
− 49κp3

1
)
.

This agrees with the lower bound computed in [RW19] as the maximal torus T2
→PSU(3)

corresponds to the action studied [RW19]. Finally, we compute

ker
(
R∗h,0(CP2)/(IH ∩ R∗h,0(CP2))→R∗symp,0(CP2, ω)

)
= (7κep1 − 4κp2

1
, 13κ2

p2
1
− 49κp3

1
),

but we don’t know if these elements are non-trivial in R∗0(CP2).

Obviously, this relies on knowing the homotopy type of Symp0(M, ω). But it would be

interesting if there is there is a source of relations that uses the symplectic structure which

accounts for the difference.

Another situation in which tautological rings have been defined are (smooth) block bun-

dles that we have introduced in the introduction as the analogues of fibre bundles over

simplicial complexes E→|K|, i.e. over each simplex σ ⊂ K there is a trivialization E|σ→σ ×M

which preserves the face structure E|τ→τ × M for each face τ ⊂ σ but which does not

commutes with the projection π. Recently, Ebert and Randal-Williams have defined gen-

eralization of MMM-classes for block bundles [ERW14] by constructing a stable vertical

tangent bundle, and defined a tautological ring R̃∗(M) ⊂ H∗(B D̃iff
+

(M);Q). Since the space

of block diffeomorphisms sits between diffeomorphisms and homotopy automorphisms,

there is a factorization of tautological rings E∗(M)→R̃∗(M)→R∗(M) and we can ask whether

the elements in the kernel described in Proposition 5.2.3 and Proposition 5.2.4 are in the

kernel of E∗(M)→R̃∗(M).

Question 5.3.13. What is the kernel E∗(M)→R̃∗(M)? How does it compare to the kernel

E∗(M)→R∗(M)?

We suspect that the Euler ring E∗(M) injects into R̃∗(M) for M = S2
× S2 or M = CP2#CP2,

even though the total space of a block bundle over a smooth manifold is a smooth manifold

and so the family signature theorem holds. However, the vertical tangent bundle for block

bundle is stable and therefore the square of the fibrewise Euler class is not identified with
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the corresponding Pontrjagin class (see [RW17, Prop. 3.1]). Furthermore, by analysing the

space level surgery exact sequence

SG/O(M) −→Map(M,G/O) −→ L(M)

for M = S2
× S2 and M = CP2#CP2 we see that the structure space has rational ho-

motopy groups concentrated in even degrees. Since the connected of the base point of

SG/O(M) is equivalent to hAut0(M)/D̃iff0(M), it follows that the Serre spectral sequence of

hAut0(M)/D̃iff0(M)→B D̃iff0(M)→B hAut0(M) collapses at the E2-page. Hence, the coho-

mology of the base injects and there cannot be a kernel for E∗0(M)→R̃∗0(M). However, there

is an issue as the surgery exact sequence is only a fibration for high-dimensional manifolds.

In the above case, the argument might still work because one can do surgery for simply-

connected 4-manifolds but a more careful analysis is required (or for some fake quaternionic

projective space instead).

Another approach is to study the rational homotopy type of B D̃iff0(M) so that can simply

compute R̃∗(M). This has been initiated by Berglund and Madsen who have described the

rational homotopy type of B D̃iff∂,0(M) of highly-connected 2n-manifolds whose boundary

is a sphere [BM13, BM20]

Question 5.3.14. What is the adaptation of the rational model B D̃iff0(M) in [BM13, BM20]

to closed manifolds M and specifically rationally elliptic manifolds.
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Part II.

Tautological classes and self-embedding calculus
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Chapter 6.

Embedding calculus and configuration space integrals

In the second part of this thesis we will study the space of diffeomorphisms of a smooth

closed manifold M considered as the space of self-embeddings using the calculus of embed-

dings, which provides a homotopy theoretic approximation to Diff(M). There has been a lot

of progress recently in the study of the rational homotopy type of these homotopy theoretic

models based on the connection with the homotopy theory of modules over operads. At

the heart of this progress lies the geometric notion of configuration space integrals, which

originated as invariants of links and knots and has been essential in Kontsevich’s proof of

the formality of the little disk operad.

In this chapter, we briefly review some of the basic ideas and constructions of embedding

calculus and an example of how configuration space integrals can be used to study diffeo-

morphism groups. These are two separate topics yet it is commonly believed that they are

closely related and we will comment on the conjectured connection at the end of the chapter.

6.1. Embedding calculus

The material discussed in this section is based on [Wei96, Wei99, GW99]. We will not

attempt to describe the historical development of embedding calculus, but the following

reformulation of Smale-Hirsch immersion theory serves as a good motivation. Let Mm and

Nn and be smooth manifolds and Imm(M,N) the space of smooth immersions and

Mono(TM,TN) =


TM TN

M N

f̄

f

∣∣∣∣∣∣ f̄ fibrewise linear injection


the space of vector bundle monomorphisms. The main result of immersion theory is that

the natural map Imm(M,N)→Mono(TM,TN) that sends an immersion to its differential is a

homotopy equivalence if the codimension dim(N)−dim(M) is positive [Sma59, Hir59, HP64].

We can reformulate this theorem by considering Imm(−,N) as a contravariant functor from

the poset O(M) of open subsets of M ordered by inclusion to Top, the category of compactly
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generated weak Hausdorff spaces. In fact, this defines a sheaf Imm(−,N) : O(M)op
→Top,

and the main result of immersion theory is equivalent to the following pullback square

Imm(V1 ∪ V2,N) Imm(V1,N)

Imm(V2,N) Imm(V1 ∩ V2,N)

|V1

|V2

being a homotopy pullback square, i.e. the map

Imm(V1 ∪ V2,N) −→ holim(Imm(V2,N)→Imm(V1 ∩ V2,N))← Imm(V1,N))

is a weak homotopy equivalence. A functor with this property is called 1-excisive and this

property implies that the value of this functor is determined locally, i.e. we could compute

the homotopy groups of Imm(M,N) by picking an open cover of M and using squares as

above which have a Mayer-Vietoris sequence for the homotopy groups.

We can recover the main result of immersion theory by observing that Mono(−,TN) :

O(M)op
→Top is a 1-excisive sheaf as well (this is a lot easier to check) so that it suffices

to prove that the map of sheaves Imm(−,N)→Mono(−,TN) is a homotopy equivalence for

open subsets V ⊂M that are either empty or diffeomorphic toRm, which again is a lot easier

to check.

This can be generalized to the notion of k-excisive functors F : Oop(M)→Top which in this

context corresponds to functors whose value is determined multi-locally, i.e. by the value

of F on tubular neighbourhoods of not more than k points in M. One can construct for any

functor F : O(M)op
→Top that satisfies the following conditions:

1.) for open sets U ⊂ V ∈ O(M) with embedding j : V→U such that both j : V→U ⊂ V

and j|U are isotopic to the identity, the map F(V) '→F(U) is a homotopy equivalence;

2.) for every sequence of open sets V0 ⊂ V1 ⊂ . . . of open sets in O(M) the canonical map

F(∪iVi) −→ holimi F(Vi) is a weak homotopy equivalence;

the best approximation from the right

TkF : O(M)op
→Top

which is k-excisive, i.e. there is a natural transformation ηk : F→TkF such that ηk(V) :

F(V)→TkF(V) is a homotopy equivalence for all open subsets V ⊂ M diffeomorphic to∐
lR

m for l ≤ k. The functors TkF are called the k-th Taylor approximation of F and assemble
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into a the so-called Taylor tower via a sequence of natural transformations rk : TkF→Tk−1F

F

T1F T2F T3F . . .

η1
η2

η3

r2 r3

(6.1)

If we now come back to the embedding functor Emb(−,N) : O(M)op
→Top, it is in general not

k-excisive for any k ∈N. However, if dim(N)−dim(M) ≥ 3 then the natural transformations

ηk(M) : Emb(M,N)→Tk Emb(M,N) are (k(n − m − 2) + 1 − m)-connected [Wei96, Thm 4.4],

which implies that the limit

η∞ : Emb(M,N) '
−→ holimk Tk Emb(M,N)

is a weak homotopy equivalence.

This is a groundbreaking result in geometric topology and has been essential in studying

the homotopy type of embedding spaces (see for example [ALV07, AT14, FTW17]) as the

construction of the Taylor tower is homotopy theoretic and thus more approachable. The

proof depends on deep theorems of Goodwillie and Klein and we will not discuss them

here as they are not applicable for self-embeddings.

There are many different, more modern constructions of the Taylor approximations, for

example in [BdBW13] where they omit reference to the fixed manifold M, or in terms

of operads and modules for example in [Tur13, BdBW13]. These have some technical

advantages. We will discuss a model for the Taylor approximations Tk Emb(M,N) in the

next section in terms of equivariant function spaces, which we will use in the next chapter.

6.1.1. The Haefliger model

This description of the embedding calculus tower in terms of equivariant function spaces is

due to Goodwillie, Klein and Weiss [GKW03]. For M and N smooth closed manifolds, the

model for T2 Emb(M,N) recovers an approximation to the space of embeddings that was

originally due to Haefliger [Hae63] which motivates the name. We will begin by discussing

the first two stages of the tower before giving the description for k ≥ 3.

The value of an embedding determined at a point is given by its differential and thus

the first Taylor approximation is equivalent to Mono(TM,TN) which we essentially take as

definition

T1 Emb(M,N) := Mono(TM,TN). (6.2)
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For the second stage, consider the space MapS2(M2,N2) of smooth1 S2-equivariant maps

where the symmetric group acts by permuting the factors. Denote by IvMap(M2,N2) the

subspace of strongly isovariant maps, i.e. S2-equivariant maps that satisfy the tangential

isovariance condition (DF)−1(T∆N) = T∆M. Observe in particular, that this condition for

the zero vectors implies that F−1(∆N) = ∆M, i.e. F preserves all isotropy groups and hence is

isovariant. Then the second Taylor approximation T2 Emb(M,N) is defined as the homotopy

limit of the following diagram

IvMap(M2,N2)

Map(M,N) MapS2(M2,N2).
f 7→ f× f

(6.3)

An explicit model for holim(A→B ← C) is given by paths β ∈ BI such that β(0) ∈ A and

β(1) ∈ C, which is the literal pullback if we turn any of the two maps into a fibration.

Consequently, we can choose the following specific model

T2 Emb(M,N) :=
{
( f ,H,G) ∈Map(M,N)×MapS2(M2,N2)I

×IvMap(M2,N2)
∣∣∣∣∣ H(0) = f × f

H(1) = G

}
.

(6.4)

Remark 6.1.1. Haefliger first studied embeddings using a version of the diagram (6.3) that

does not require smooth maps and strongly isovariant maps. He proved that for dim(M) +

1 < 2 dim(N)/3 the map η2 : Emb(M,N)→T2 Emb(M,N) (see (6.6)) is 1-connected [Hae63].

Haefliger’s statement was later improved to show that η2 is (2 dim(N) − 3 − 3 dim(M))-

connected. See [GKW01, Sect. 1.2] for details and references.

Next we give explicit models from [GKW03] for the maps of the bottom part of the

embedding tower (1.6)

Emb(M,N) T1 Emb(M,N)

T2 Emb(M,N).

η1

η2
r2 (6.5)

The map η1 sends an embedding to its differential. To define η2, we observe that for a map

f : M→N the induced map f × f : M2
→N2 is isovariant if and only if f is injective and

strongly isovariant if f is an embedding. Hence, we can define

η2 : Emb(M,N) −→ T2 Emb(M,N)

i 7−→ (i, consti×i, i × i).
(6.6)

1In this section all mapping spaces we consider are spaces of smooth maps.
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The restriction r2( f ,H,G) ∈ T1 Emb(M,N) should be thought of as the (infinitesimal) re-

striction of the isovariant map G : M2
→N2 to the diagonal, which induces a map between

the tubular neighbourhoods. In order to make this precise, we identify the space of S2-

equivariant maps MapS2(M2,N2) with Map(M2,N) as every S2-equivariant map G : M2
→N2

is of the form G(m1,m2) = (g(m1,m2), g(m2,m1)) for g := π1 ◦ G ∈ Map(M2,N). Using this

identification and notation, we can define r2 as

r2 : T2 Emb(M,N) −→ T1 Emb(M,N)

( f ,H,G) 7−→ (vp ∈ TpM 7→ D(p,p)g(vp,−vp) ∈ Tg(p,p)N).
(6.7)

This defines a bundle monomorphism because D(p,p)g(−vp, vp) = 0 implies that

0 = DG(p,p)(vp,−vp) = (D(p,p)g(vp,−vp),D(p,p)g(−vp, vp)) ∈ T(p,p)∆

which in turn implies that (vp,−vp) ∈ T∆M which can only happen if vp = 0.

Lemma 6.1.2. The diagram (6.5) commutes. Moreover, for self-embeddings of a closed manifold M

it is a diagram of topological monoids.

Proof. Let i : M→N be an embedding, then η2(i) = (i, consti×i, i × i) and thus r2(η2(i))(vp) =

Dpi(vp) = r1(i)(vp) showing that (6.5) commutes.

For M = N the space of embeddings coincides with Diff(M) and T1 Emb(M,M) coincides

with the space of bundle maps of the tangent bundle TM, both of which are monoids

under composition. The second stage T2 Emb(M,M) is a monoid under pointwise compo-

sition of the S2-equivariant homotopy, i.e. for ( f ,H,G), ( f ′,H′,G′) ∈ T2 Emb(M,M) there is a

composition

( f ,H,G) · ( f ′,H′,G′) := ( f ◦ f ′,H ◦H′,G ◦ G′) ∈ T2 Emb(M,M)

where (H ◦ H′)t := Ht ◦ H′t ∈ MapS2(M2,M2) is the usual composition. The maps in the

diagram are compatible with composition by the chain rule. �

The Taylor approximation for k ≥ 3 can be expressed similarly as a homotopy limit

of certain mapping spaces. Let R ⊂ S be finite sets, define the space of admissible maps

aMap(MS,NR) to be the subspace of smooth maps f : MS
→NR satisfying (D f )−1(TNR/ρ) =

TMS/ρ for every equivalence relations ρ on R. Here, R/ρ is the quotient set and we con-

sider the corresponding diagonal NR/ρ
⊂ NR as a subspace, and similarly for the induced

equivalence relation on S.
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There are maps between the spaces of admissible spaces induced by pre- and post-

composition with projections of the products encoded by inclusions of the finite sets, i.e. for

R1 ⊃ R2 and S1 ⊂ S2 there are maps

aMap(MS1 ,NR1) −→ aMap(MS2 ,NR2).

f 7−→ πR2 ◦ f ◦ πS1

If we fix an ambient set [k] = {1, . . . , k}, we can can encode the spaces of admissible maps

and maps between them as a functor from a poset Pk whose elements are pairs (R,S) with

objects pairs of non-empty sets R ⊂ S ⊂ [k] and partial order (R1,S1) ≤ (R2,S2) if R2 ⊂ R1

and S1 ⊂ S2.

Proposition 6.1.3 ([GKW03]). The Taylor approximation Tk Emb(M,N) for k ≥ 2 can be described

as

Tk Emb(M,N) :=
(
holim
(R,S)∈Pk

aMap(MS,NR)
)Sk

. (6.8)

Here, the symmetric group Sk acts as on the category Pk and with natural isomorphisms

ηg : aMap ⇒ aMap ◦g for every g ∈ Sk such that ηg·g′ = ηg′ ◦ ηg. Hence, it determines

an action on the homotopy limit. Goodwillie, Klein and Weiss also give a simplified

description Tk Emb(M,N) by choosing a specific model of homotopy limits and computing

the invariants.

Proposition 6.1.4 ([GKW03, Prop. 2.7]). The definition of Tk Emb(M,N) in (6.8) is homeomorphic

to the totatlization of the following incomplete cosimiplicial space

[i] 7−→
∏

1≤k0<k1<...ki≤k

aMap(Mki ,Nk0)st(k0,...,ki), (6.9)

where st(k0, . . . , ki) := Sk0 × Sk1−k0 × . . . × Ski−ki−1 acts on Mki via the inclusion st(k0, . . . , ki) ⊂ Ski

and on Nk0 through the projection onto the first factor.

The face maps d j on the space of i-cosimplices for 0 ≤ j ≤ i+1 of the incomplete cosimplicial

space above are given by

d j :
∏

1≤k0<...ki≤k

aMap(Mki ,Nk0)st(k0,...,ki) −→
∏

1≤k0<...ki+1≤k

aMap(Mki+1 ,Nk0)st(k0,...,ki+1)

(x)k0<...<ki 7−→ (dix)k0<...<ki+1 := xk0<...<k̂ j<...<ki+1
.

Remark 6.1.5. The topological group Diff(M) acts continuously on the incomplete cosimpli-

cial space in (6.9) by precomposition and hence acts on the totalization Tk Emb(M,N). This

was one of the motivations for the construction of the Haefliger style model [BdBW13, pg. 1].

Another practical advantage of the Haefliger model is that it is quite small in comparison

with other models of Tk Emb(M,N).
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6.1.2. On delooping the self-embedding tower

Finally, the focus of this work is not on the group Diff(M) but its classifying space. There-

fore, we are interested in a delooping of the Taylor tower. It follows from the description

in [BdBW13] of Tk Emb(M,M) as a derived endomorphism space that it is a monoid under

composition. However, a delooping of the tower with its restriction maps is more compli-

cated in this model although possible in general and we refer to [KR19, Sect. 3.2] for the

constructions.2

Fixing a model of the self-embedding tower that we can deloop, a final precursory remark

involves the set of path components π0(Tk Emb(M,M)) of the self-embedding Taylor, which

forms a monoid under composition but is in general not a group. Denote by T×k Emb(M,M)

the union of the homotopy invertible path components, i.e. path components that have an

inverse up to homotopy under composition. Then ηk has image in T×k Emb(M,M) because

Emb(M,M) is a group for a closed manifold M, and it suffices to focus on T×k Emb(M,M)

instead. For example, the homotopy invertible elements T×1 Emb(M,M) in the Haefliger

model are tangential homotopy equivalences hAut(TM). We want to further restrict the

connected components when M is an oriented manifold.

Definition 6.1.6. Let M be a closed oriented manifold. Denote by T×k (M) ⊂ Tk Emb(M,M)

the union of path components that are homotopy invertible under composition and whose

image in T1 Emb(M,M) under r2 ◦ . . . ◦ rk is in hAut+(TM).

It will be convenient to add a 0th stage to the tower by defining T0 Emb(M,M) :=

Map(M,M) with r1 : T1 Emb(M,M)→T0 Emb(M,M) given in the Haefliger model by for-

getting the vector bundle map. If M is oriented then T×0 (M) := hAut+(M).

With these conventions, the delooping of the self-embedding tower is given by

B Diff+(M)

B T×∞(M) := holim
(
. . . B T×2 (M) B T×1 (M) B T×0 (M)

)B η∞

B η0

B η1

B r2 B r1

(6.10)

which gives a sequence of approximations of the classifying space B Diff+(M). The first

two stages of this approximation are spaces that we have encountered in the first part of

this thesis: the classifying space of oriented M-fibrations B T×0 (M) = B hAut+(M) and the

classifying space of oriented TM-fibrations B hAut+(TM).

2In the next chapter, we will use the monoid structure for the bottom stages of the self-embedding tower

discussed in Lemma 6.1.2.
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Remark 6.1.7. Observe that tautological classes are already defined in B T×1 (M). In the

first part of this thesis, we have studied relations in R∗(M) enforced by relations of the

homotopical tautological ring R∗h(M) in H∗(B T×1 (M)). From this perspective, we see that this

is only the first step of a hierarchy of relations in the tautological ring enforced by the higher

stages of the Taylor tower, and this provides the conceptual connection between the two

parts.

So far, we do not know any relations in the tautological ring R∗(M) that are enforced from

the higher stages of the tower. But we expect that there is a source of such relations coming

from some graphical calculus and this has been one of the main motivations for the author

to study the self-embedding calculus tower.

We can pull back the universal oriented M-fibration E0→B hAut+(M) = B T×0 (M) along

compositions of the restriction maps B rk in the tower to obtain oriented M-fibrations

πk : Ek −→ B T×k (M) (6.11)

that form a sequence of fibrations

E∞ . . . Ek Ek−1 . . . E1 E0

B T×∞(M) . . . B T×k (M) B T×k−1(M) . . . B T×1 (M) B T×0 (M)

r̄k r̄k−1 r̄1

B rk B rk−1 B(r1)

(6.12)

Denote by TπE1→E1 the vector bundle over the universal TM-fibration E1→B T×1 (M) =

B hAut+(TM) (see (5.2)), then we define TπEk→Ek as the pullback (r̄k ◦ . . . ◦ r̄2)∗TπE1.

The vertical tangent bundle of a fibre bundle is intricately linked to the global topology

of the bundle. In subsequent chapters we will study if similar statements hold for the

TM-fibration TπEk→Ek over B T×k (M).

6.2. Configuration space integrals

We will give an idea of configuration space integrals by examining their role in Kontsevich’s

construction of characteristic classes of certain fibre bundles following the exposition in

[Wat09a] and [Wat09b].

Let Md be an odd dimensional integral homology sphere with basepoint ∞ ∈ M and

neighbourhood∞ ∈ U∞ � Rd, and let Diff(M,U∞) be the group of diffeomorphisms that are

the identity on U∞. The complement M \ ∞ is parallelizable and we consider the space of

orientation preserving framings

Fr+(M; τ) :=
{

f̄ : T(M \ ∞) �
−→M ×Rd

∣∣∣ f |T(U∞\∞) = τ
}
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that agree with a fixed framing τ : T(U∞ \ ∞) �
−→ (U∞ \ ∞) × Rd. Let g ∈ Diff(M,U∞) and

τM ∈ Fr+(TM; τ), then τM · g := (g−1
× IdRd) ◦ τM ◦Dg determines a right action, and

B Difffr(M,U∞; τ) := Fr+(M; τ) ×Diff+(M,U∞) E Diff+(M,U∞) (6.13)

is the classifying space of smooth M-bundles π : E→B with a trivial subbundle B ×U∞ ⊂ E

determining a section s∞(b) := (b,∞), and a framing of the vertical tangent bundle of

E \ s∞(B)→B that agrees with the fixed framing τ on B × (U∞ \ ∞).

We want to construct characteristic classes of such fibre bundles π : E→B. Consider the

fibrewise configuration space of n particles

ECn(π) :=
{
(e1, . . . , en) ∈ En

∣∣∣∀i , j π(ei) = π(e j), ei , e j, and ei , s∞(π(ei))
} πn
−→ B (6.14)

which is a smooth fibre bundle over B with fibre Cn(M \ ∞). The construction of the

characteristic classes relies on fibre integrating certain differential forms over the fibrewise

configuration spaces introduced above. In order to guarantee convergence of such inte-

grals, one seeks a compactify ECn(π) fibrewise to obtain a smooth bundle whose fibres are

manifolds with corners. If we can extend the differential forms to the compactification such

that they vanish on the boundary, fibre integration is well-defined.

On a single fibre, this amounts to compactifying the configuration spaces Cn(M \ ∞) to a

manifold with corners. Such a compactification was first described by Fulton-MacPherson

[FM94] for non-singular algebraic varieties using real blow-ups of the diagonals and adapted

to differential geometry in [AS94]. We will only discuss the compactification for n = 2 and

refer to [Wat09b] and [Les20, Ch. 8] for the general case.

For a smooth manifold N and submanifold M which is transverse to ∂N and satisfies

∂M = ∂N ∩M, there is a smooth manifold Bl(N,M) with corners that is called the blow-up

which is unique up to diffeomorphism and has smooth blowdown map p : Bl(N,M)→N

satisfying

• the restriction p|p−1(N\M) : p−1(N \M)→N \M is a diffeomorphism,

• there is a canonical identification p−1(M) � S(νM⊂N) = (TN|M/TM)# /R>0 such that p

restricts to the projection S(νM⊂N)→M under the identification (the subscript # above

denotes the complement of the zero section);

• any chart adapted to M ↪→ N provides an embedding S(νM⊂N) × [0,∞)→Bl(N,M).

See [Les20, Def. 3.1] for more details (in particular the last point). The compactification of

C2(M \ ∞) is defined as a sequence of blowups. Consider the subspace

ΣM := (∆ ∪∞ ×M ∪M ×∞) \ ∞ ×∞ ⊂M2.
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Then ΣM is diffeomorphic to a submanifold of Bl(M2,∞ × ∞) which is transverse to the

boundary of Bl(M2,∞×∞), so that we can define

C2(M,∞) := Bl(Bl(M2,∞×∞),ΣM) (6.15)

which is a smooth manifold with corners. A similar procedure is applied to configuration of

more particles. It follows from the properties of the blow-up above that any diffeomorphism

of M fixing a neighbourhood of ∞ determines a diffeomorphism of the compactification

C2(M,∞) and thus this can can be carried out fibrewise for the fibrewise configuration space

in (6.14) to obtain a smooth fibre bundle ECn(π)→B with fibre Cn(M\∞) and interior EC2(π).

From now on we assume that the base is a smooth manifold so that we can introduce the

differential forms on ECn(π) that we fibre integrate. The basic case is for n = 2.

Lemma 6.2.1 ([Wat09a, Sect. 2.2]). A framing τM ∈ Fr+(M; τ) determines a map on the boundary

p(τM) : ∂C2(M \ ∞)→Sd−1.

The idea of the construction is that a point in the boundary corresponds to two particles

colliding, say along two smooth paths γi : I→M with γ1(0) = γ2(0), and the image p(τM)

is the normalized difference τM(γ̇1(0) − γ̇2(0)). Since C2(M \ ∞) has the same homology

as Sd−1, it follows from Poincaré-Lefschetz duality that the cohomology class p(τM)∗(u) ∈

Hd−1(∂C2(M,∞);Z), where u ∈ Hd−1(Sd−1;Z) denotes a generator, extends uniquely to a

class in Hd−1(C2(M,∞);Z). For a bundle E→B classified by a map to B Difffr(M,U∞; τ), this

construction generalizes to give a map p(τE) : ∂EC2(π)→Sd−1 for some choice of vertical

framing τE.

Lemma 6.2.2 ([Wat09b, Lem. 2.2]). Let E→B be as above with vertical framing τE, and assume

that B is a smooth manifold. Then there exists a closed formω ∈ Ωd−1
dR (EC2(π)) such thatω|∂EC2(π) =

p(τE)∗VolSd−1 .

The class ω is called the propagator and depends on the choice of vertical framing τE. Let

Γ be a directed graph with vertices {1, . . . ,n}, then for every edge e ∈ E(Γ) there are maps

φe : ECn(π)→EC2(π) by forgetting all particles but the end points of e. We define

ω(Γ) :=
∧

e∈E(Γ)

φ∗eω ∈ Ω
|E(Γ)|·(d−1)
dR (ECn(π)) (6.16)

and the configuration space integral

I(Γ) :=
∫

Cn(M,∞)
ω(Γ) ∈ Ω

|E(Γ)|·(d−1)−n·d
dR (B). (6.17)
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This by itself does not determine a characteristic class of E→B because I(Γ) need not be

closed. The exterior derivative of I(Γ) can be computed using a generalized Stokes’ theorem

for a fibre bundle F ↪→ E→B for a manifold F with non-empty boundary or corners

d
∫

F
α =

∫
F

dα ±
∫
∂F
α (6.18)

for α ∈ Ω∗dR(E) (see [Wat09b, App. A.1]). Hence, dI(Γ) =
∫
∂Cn(M,∞)ω(Γ)|∂ECn(π) because ω is

closed.

The key insight is that the boundary of Cn(M\∞) can be described by pieces corresponding

to configuration spaces of n − 1 particles corresponding to two of the n-particles colliding

(encoded by A ⊂ {1, . . . ,n} of size 2). It turns out that the fibre integrals over the piece of the

boundary corresponding to A agrees with I(Γ′), where Γ′ is a graph with vertices {1, . . . ,n}/A

induced by Γ. This means that we can encode the differential directly on the vector space

spanned by all suitable graphs. This naturally leads to the concept of graph complex.

The graph complex

Let Gn,m be the set of isomorphism classes of graphs Γ of valence at least 3, with bijections

V(Γ) � {1, . . . ,n} and E(Γ) � {1, . . . ,m}, and with an orientation o considered as an orientation

of the vector space ofRV
⊕RH(E) where H(E) is the set of half-edges H(E) = {e+, e−}e∈E. Then

Gn,m generates a vector space over Q and we denote by Gn,m the quotient induced from the

relation (Γ,−o) ∼ −(Γ, o). There is a differential d : Gn,m→Gn−1,m−1 defined as

d(Γ, o) =
∑

e∈E(Γ)

(Γ/e, oe)

where Γ/e is the graph obtained by contracting the edge e, i.e. the graph on the quotient of

V where we identified the endpoints of e and edges E(Γ)\ e, and oe is the induced orientation

(see [Wat09b, pg. 627] for the definition). Denote by G the chain complex (
⊕

n,mGn,m, d).

Theorem 6.2.3 ([Kon94, Wat09b]). Let M be an odd dimensional homology sphere and π : E→B

a smooth Md-bundle over a smooth manifold B that is classified by a map to B Difffr(M,U∞; τ). Let

ω ∈ Ωd−1
dR (EC2(π)) be the propagator form, then

I : G −→ Ω∗dR(B), I(Γ) :=
∫

C|V(Γ)|(M,∞)
ω(Γ) (6.19)

is a chain map and every class in H(G) defines characteristic class of π : E→B.

The main contribution of [Wat09b] is to construct examples of framed M2k+1-bundles with

B = S2n(k−1) for some n > 1 which have non-trivial characteristic classes in the image of I.
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This has consequences for unframed Diff(M,U∞) bundles as well since the homotopy fibre

of B Difffr(M,U∞)→B Diff(M,U∞) is equivalent to Ωd SO(d) so that

πi(B Difffr(M,U∞)) � πi(B Diff(M,U∞))

for even i and > d − 3.

Theorem 6.2.4 ([Wat09b, Cor. 3.2]). For n ≥ 2 and k ≥ 3 odd there is a lower bound on the rational

homotopy groups dimπ2n(k−1)(B Diff∂(D2k+1)⊗Q ≥ dim A2n,3n, whereA2n,3n is a certain quotient

of G2n,3m.

The way we have presented it may obscure that A2n,3n is a combinatorial object, and

for small n the dimensions are known and positive. Hence, this proves the non-triviality

of π2n(k−1)(B Diff∂(D2k+1)) which far exceeds the known results that we presented in the

introduction beyond the concordance stable range.

The simplest graph homology class

The simplest graph characteristic class is associated to theθ-graph, i.e. the graph on 2 vertices

and 3 edges having distinct end points that is a cycle in the graph complex. The construction

of the corresponding characteristic class can be generalized to smooth Md-bundles π : E→B

classified by a map B→B Difffr(M,U∞; τ) over arbitrary base spaces B. However, it does not

arise from a graph complex in this case.

Let τE be a vertical framing and p(τE) : ∂EC2(π)→Sd−1 the induced map on the boundary,

then there exists a unique class ω ∈ Hd−1(EC2(π);Z) such that ω∂EC2(π) = p(τE)∗u for a

generator u ∈ Hd−1(Sd−1;Z) by the same cohomological argument as before. Then we want

to set I(θ) =
∫

C2(M,∞)ω
3. However, unlike for de-Rham forms, we can only fibre integrate

relative classes H∗(EC2(π), ∂EC2(π);Z). Sinceω2
|∂EC2(π) = p(τE)∗(u2) = 0, there exists a choice

of relative class ω̃2 ∈ Hd−1(EC2(π), ∂EC2(π);Z). This choice can be made universally as the

choice of null-homotopy of

Sd−1 ∆
−→ Sd−1

× Sd−1 u×u
−→ K(Z, d − 1) × K(Z, d − 1)

µ
−→ K(Z, 2d − 2),

where u : Sd−1
→K(Z, d − 1) satisfies u∗(ιd−1) = u and µ is the map such that µ∗(ι2d−2) =

ιd−1 × ιd−1. Define ω̃n := ω̃2 · ωn−2
∈ Hn·(d−1)(EC2(π), ∂EC2(π);Z).

Theorem 6.2.5 ([Kon94, Wat09a]). The class ζ2(π, τE) :=
∫

C2(M,∞) ω̃3 ∈ Hd−3(B;Z) is a charac-

teristic class of bundles classified by B Difffr(M,U∞; τ).
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The main contribution of [Wat09a] is to refine this construction to give an invariant of

unframed bundles over B = Sd−3 when M = Sd and d = 2k + 1 is odd. In this case, any

bundle classified by a map to B Diff(Dd, ∂) gives rise to a framed bundle by pulling back

along a map qk : S2k−2
→S2k−2 of large degree. Watanabe constructs a correction term to

ζ2(q∗kπ, τE) that correct for the choice of qk and vertical framing to obtain a rational invariant

Ẑ2 : π2k−2(B Diff(Dd, ∂)) ⊗ Q→Q (see [Wat09a, Thm 2]). He then shows that Ẑ2 evaluates

non-trivially on certain elements constructed in [ABK72].

6.3. Possible connections

There are two overarching questions of current research interest. The first is whether there is

a generalization of Kontsevich’s characteristic classes from a graph complex to more general

manifolds. The second is whether Kontsevich’s classes are related to embedding calculus,

or more precisely whether they are defined over the delooping of the self-embedding tower.

The recent results that express the Taylor tower in terms of automorphisms of framed

configuration spaces considered as modules over the framed little discs operad [BdBW13,

Tur13], combined with results of Willwacher et. al. that give graphical models for such

automorphism spaces in terms of graph complexes that are similar to those for Kontsevich’s

characteristic classes suggest that the answer to both questions is yes.

In the following chapter, we will work on the second question and attempt to define

fibrewise configuration spaces for the fibrations Ek→B T×k (M) as a natural precursor to

defining characteristic classes via configuration space integrals.
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Chapter 7.

A geometric approach to self-embedding calculus

In this chapter, we aim to introduce configuration spaces over the self-embeddings tower

Ek→B T×k (M). The key difficulty is that the set-theoretic fibrewise configuration spaces

of an M-fibration is not invariant under fibre-homotopy equivalences. This is because

configuration spaces are not a homotopy invariant of a space, and in particular homotopy

equivalences of a space do not determine homotopy equivalences of corresponding the

configuration spaces. Instead, we consider a homotopy theoretic definition of configuration

spaces as the complement of a Poincaré embedding structure of the fat diagonal. This

homotopy theoretic notion of embeddings was developed by Klein [Kle99, Kle02] and we

review his definition in Section 7.1.1. We show that such a homotopy theoretic fibrewise

configuration spaces exists for the fibration E2→B T×2 (M) in Section 7.1.2 and this enables us

to define the simplest characteristic class associated to theθ-graph from Theorem 6.2.5 on the

second stage of the tower in Section 7.3. Moreover, it has several interesting consequences

related to tautological classes that we discuss in Section 7.2 and Chapter 8.

7.1. Fibrewise configuration space over B T×2 (M)

This section is conceptually the first step in constructing graph cohomology classes on the

self-embedding tower directly and at the heart of our geometric approach to embedding

calculus. The basic idea is to find a homotopy theoretic replacement of configuration spaces

that is robust under homotopy equivalences, and show that E2→B T×2 (M) has this structure

for each fibre.

7.1.1. Poincaré embeddings and configuration spaces

We will briefly review some concepts and results from [Kle99]. A space K is homotopy

finite if it is homotopy equivalent to a finite complex, and of homotopy dimension ≤ k if is

homotopy equivalent to a k-dimensional CW complex. Klein defines a Poincaré duality

space X (or PD space in short) of formal dimension d as a homotopy finite space equipped

with a local coefficient system (considered as a functor from the fundamental groupoid
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D : Π1(X)→AbGrp which is pointwise free abelian of rank 1), and a fundamental class

[X] ∈ Hd(X;D) such that the cap product

- ∩ [X] : H∗(X;M) �
−→ Hd−∗(X;M⊗D)

induces an isomorphism for every local systemM. Similarly, a Poincaré duality pair (X, ∂X)

satisfies a Poincaré-Lefschetz isomorphism.

Definition 7.1.1. Let f : K→X be a map from a connected homotopy finite space K to a PD

space X of formal dimension d. Then a Poincaré embedding structure for f (PD embedding

in short) is a diagram of spaces
G C

K X

j
f

H

commuting up to a homotopy H such that

(i) The square is homotopy cocartesian, i.e. the map hocolim(K ← G→C)→X is a homo-

topy equivalence1;

(ii) The spaces G and C are homotopy finite;

(iii) The image of the fundamental class under the composite

Hd(X;D) −→ Hd(X,C;D) �
← Hd(K,G;D)

equips (the mapping cylinder of) (K,G) with the structure of a Poincaré duality pair

and similarly for (C,G);

(iv) If hodim K ≤ k, then G→K is (d − k − 1)-connected.

The space C is called the complement and G is called the gluing space. If such a structure

exists we say that f Poincaré embeds.

The prototypical example of a PD embedding is an embedding of smooth closed manifolds

M ↪→ N, where we can choose the literal complement C = N \M and G = ∂νM for a tubular

neighbourhood νM ⊂ N.

Remark 7.1.2. We have slightly modified Klein’s definition here: The diagram in Definition

7.1.1 commutes up to a fixed homotopy, i.e. the homotopy is part of the data, whereas for

1We can use the double mapping cylinder as a model of the homotopy colimit so that the given homotopy

determines a map hocolim(K← G→C)→X.
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Klein the square needs to strictly commute. We prefer our definition since the (Poincaré)

complement of an embedding of smooth closed manifolds M ↪→ N is the literal complement

N \M as we have seen above. These two definitions are equivalent: A strict PD embedding

in the sense of Klein is a PD embedding in our definition as well, and a Poincaré embedding

in our sense determines a strict Poincaré embedding in the sense of Klein for cyl(G→K)→X,

where the map to X is determined by the fixed homotopy.

Ordinary configuration spaces Ck(X) are defined as the complement of the inclusion of

the fat diagonal ∆kX := {(x1, . . . , xk) ∈ Xk
| ∃ i , j with xi = x j} ↪→ Xk. Now suppose that the

inclusion ∆kX ↪→ X is a PD embedding with

G C

∆kX Xk,

H (7.1)

then C can be interpreted as a homotopy theoretic version of the ordinary configuration

space of k particles. We will refer to the complement C of a Poincaré embedding structure

of the fat diagonal as a homotopy configuration space. For closed, smooth or PL manifolds the

inclusion of the fat diagonal is a Poincaré embedding with complement C = Ck(M) as the

fat diagonal admits a regular neighbourhood.

The key advantage of this homotopy theoretic notion of configuration spaces is that it

is better behaved with respect to homotopy equivalences. More precisely, a homotopy

equivalence f : X→X′ induces homotopy equivalences

∆kX Xk

∆kX′ X′k
' f k'

and therefore any Poincaré embedding structure of ∆kX ↪→ Xk will determine a PD embed-

ding for ∆kX′ ↪→ X′k and vice versa. In particular, a homotopy configuration space for X

will also be one for X′.

However, the Poincaré embedding structure might not exist and even if it does, the

homotopy type of the complement is not necessarily unique. This follows for example from

the results of Longoni and Salvatore [LS05] who show that there are homotopy equivalent

smooth closed manifolds whose configuration spaces are not homotopy equivalent. But

either configuration spaces defines a homotopy configuration space (for both manifolds).

But it can be shown that the stable homotopy type of complements is unique (assuming that

the codimension is ≥ 3).
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Proposition 7.1.3 ([AK04, Cor. 6.4]). Assume that f : K→X Poincaré embeds and that the ho-

motopy dimension of K is ≤ dim X − 3. Then the stable homotopy type of any complement C is

unique.

It follows that the cohomology groups of the complement of a PD embedding are unique.

This can also be seen more directly from an application of excision.

Lemma 7.1.4. Let f : K→X be a Poincaré duality embedding with d = dim X and complement C.

Let D andM be local coefficient systems where D is the PD duality coefficient system of X. Then

there is a long exact sequence

. . . −→ Hd−∗(K;M⊗D)
f∗
−→ Hd−∗(X;M⊗D) −→ H∗(C;M) −→ Hd−∗−1(K;M⊗D)→ . . . .

If K is a Poincaré space itself of dimension k then we can replace the corresponding terms in the above

long exact sequence with the Umkehr map f! : H∗−d+k(K; f ∗(M⊗DX) ⊗D−1
K )→H∗(X;M).

Proof. Let G be the gluing space of the Poincaré embedding structure of f . Then we can

replace X by hocolim(K← G→C) and K and C by the mapping cylinders of G→K and G→C,

which can be considered as subspaces of the homotopy colimit. Consider the long exact

sequence of the pair (X,C) and note that we can now use excision for the homotopy colimit

and Poincaré duality for the pair (K,G) to obtain the following diagram

. . . H∗(X,C;M) H∗(X;M) H∗(C;M) . . .

H∗(K,G;M)

Hd−∗(K;M⊗D) Hd−∗(X;M⊗D)

exc. '

PD. '

'PD.

i∗

(7.2)

Here, the bottom map is induced by the inclusion of (the mapping cylinder) i : K→X. The

fundamental class of X can be decomposed [X] = i∗[K,G] + j∗[C,G] for the fundamental

classes of the pairs (K,G) and (C,G) (the above equation is true for chain representatives of

the corresponding fundamental classes). Then for [x] ∈ H∗(X,C;M) we find

i∗([K,G] ∩ i∗x) = i∗[K,G] ∩ x = (i∗[K,G] + j∗[C,G]) ∩ x,

where the last equality follows since the cochain representative x evaluates trivially on

chains in C. Therefore the square commutes, and the claim follows as the inclusion of the

mapping cylinder is equivalent to f . �
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A simple application is the computation of the cohomology ring of the complement C

of a PD embedding structure of the diagonal ∆ : X→X × X for an orientable Poincaré

duality space (i.e. with trivial PD duality systemD). This has been determined for ordinary

configuration spaces in [CT78] and will be relevant later on.

Corollary 7.1.5. Let X be an orientable Poincaré duality space and suppose ∆ : X→X×X Poincaré

embeds with complement C. Then

H∗(C;Z) � H∗(X × X;Z)/(∆!(1)).

Proof. Note that ∆∗ : H∗(X;Z)→H∗(X×X;Z) is injective as it as a left inverse induced by pro-

jection to either factor. Hence, ∆! is injective and thus H∗(C) = Coker(∆! : H∗(X)→H∗+d(X2)).

Since ∆! is a ∆∗-module map, meaning that ∆!(∆∗(a) · b) = a · ∆!(b) for any a ∈ H∗(X × X) and

b ∈ H∗(X), the claim follows as ∆!(x) = ∆!((∆∗π∗i x) · 1) = π∗i x · ∆!(1). �

Remark 7.1.6. The condition in Corollary 7.1.5 on the diagonal being a Poincaré embedding

is rather weak. For example, it is true for topological manifolds or for 2-connected Poincaré

spaces [Kle99, Cor.B]. A complete answer for when the diagonal is a Poincaré embedding

is given in [Kle08].

With this robust homotopy theoretic notion of configuration spaces, we can now state the

goal of this section. Namely, we want to show that the diagonal ∆ : E2→E2×B T×2 (M) E2 admits

in a natural way the structure of a fibrewise Poincaré embedding over B T×2 (M), by which we

mean a diagram of fibrations over B T×2 (M)

G C2

E2 E2 ×B T×2 (M) E2
∆

H (7.3)

together with a fibrewise homotopy H such that the restriction to each fibre is a Poincaré

embedding structure of the diagonal. Then the space C2→B T×2 (M) is a homotopy theoretic

model for the fibrewise configuration space of two particles of E2→B T×2 (M).

7.1.2. A fibrewise Poincaré embedding structure via the bar construction

It will be important to have good models of the oriented M-fibration E2→B T×2 (M) at hand

in order to find an explicit Poincaré embedding structure of the diagonal. We will make

extensive use of May’s work on the classification of fibrations as explained in [May75]. We

have discussed the results we need in Appendix A and have outsourced all technical details
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there as well with the exception of the definition of the two-sided bar construction, which

will appear throughout this section.

Definition 7.1.7. Let G be a topological monoid and let X and Y be left and right G-spaces.

Then the two-sided bar construction B•(X,G,Y) is the simplicial space with n-simplices

given by X × Gn
× Y and face and degeneracy operators given by

di(y[g1, . . . , gn]x) =


yg1[g2, . . . , gn]x i = 0

y[g1, . . . , gi−1, gigi+1, . . . , gn]x 1 ≤ i < n

y[g1, . . . , gn−1]gnx i = n

and si(y[g1, . . . , gn]x) = y[g1, . . . , gi, e, gi+1, . . . , gn]x 0 ≤ i ≤ n.

Denote by B(Y,G,X) the geometric realization of this simplicial space. The classifying space

of G is defined as B G := B(∗,G, ∗) .

The bar construction is functorial with respect to maps (k, f , j) : (Y,G,X)→(Y′,G′,X′) of

triples as above, where f : G→G′ is a map of topological monoids and k : X→X′ and

j : Y→Y′ are f -equivariant. Then (k, f , j) induces a map of the simplicial spaces above and

thus a map of geometric realizations

B(k, f , j) : B(Y,G,X) −→ B(Y′,G′,X′).

The monoid that is relevant for the classification of oriented Hurewicz fibration and fibre M

is the monoid of oriented homotopy self-equivalences hAut+(M) which acts on M through

evaluation. The main theorem of [May75] implies that

Γ B(∗,hAut+(M),M) −→ B(∗,hAut+(M), ∗) (7.4)

is the universal oriented M-fibration, where Γ is the functor that replaces a map by a fibration

(see Definition A.3). More precisely, for a space B ∈ TopCW, the full subcategory of Top of

spaces that are equivalent to CW complexes, there is a bijection between [B,B hAut+(M)]

and the set of oriented M-fibrations over B up to fibre-homotopy equivalence given by

pulling back the universal fibration (7.4) (see Theorem A.10).

Recall that we have defined Ek→B T×k (M) in (6.11) as the pullback of the universal fibration

over B T×0 (M) = B hAut+(M) along the maps B(r1) ◦ . . . ◦ B(rk) : B T×k (M)→B T×0 (M), i.e.

Ek := (B(r1) ◦ . . . ◦ B(rk))∗Γ B(∗,hAut+(M),M)
πk
−→ B T×k (M).

as well as vector bundles TπEk→Ek as pullbacks TπEk := (r̄2 ◦ . . . ◦ r̄k)∗TπE1 of the universal

vector bundle TπE1→E1 whose restriction to each fibre is equivalent to TM→M.
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We will use the Haefliger model for the Taylor tower, in part because the bottom part of

the tower

T×2 (M)
r2
−→ T×1 (M)

r1
−→ T×0 (M) = hAut+(M),

which we have discussed in Section 6.1.1, is a diagram of topological monoids and monoid

maps by Lemma 6.1.2. But more importantly, the Haefliger models T×2 (M) and T×1 (M) act

on M via ( f ,H,G) · p := π1 ◦ G(p, p) for ( f ,H,G) ∈ T×2 (M) and p ∈ M and ( f̄ , f ) · p := f (p) for

( f̄ , f ) ∈ T×1 (M). Since the identity map of M is equivariant with respect to r2 and r1, there are

maps of triples

(∗,T×2 (M),M)
(Id∗,r2,IdM)
−−−−−−−−→ (∗,T×1 (M),M)

(Id∗,r1,IdM)
−−−−−−−−→ (∗,hAut+(M),M)

that give rise to the following commutative diagram

B(∗,T×2 (M),M) B(∗,T×1 (M),M) B(∗,hAut+(M),M)

B(∗,T×2 (M), ∗) B(∗,T×1 (M), ∗) B(∗,hAut+(M), ∗).

(7.5)

All vertical maps are quasifibrations by Theorem A.8, i.e. the inclusion of the fibre of the

projection into the homotopy fibre is a weak equivalence for all points in the base (see

Definition A.6), and every square in (7.5) is a pullback square by Proposition A.11. These

two statements imply that every square in (7.5) is a homotopy pullback square, and in

particular the natural comparison map from (7.5) to the first three stages of (6.12) is a

fibre-homotopy equivalence:

B(∗,T×2 (M),M)
'fw
−→ E2 over B T×2 (M)

and B(∗,T×1 (M),M)
'fw
−→ E1 over B T×1 (M).

(7.6)

Therefore, it suffices to construct the data for a fibrewise Poincaré embedding of the fibrewise

diagonal of B(∗,T×2 (M),M)→B T×2 (M).

The key property of the Haefliger model that we use is that T×2 (M) acts naturally through

the projection to IvMap(M2,M2) not only on M2 and the diagonal ∆ ⊂ M2 but also on

the complement M2
\ ∆. Hence, we can for example consider the following diagram of

quasi-fibrations over B T×2 (M)

B(∗,T×2 (M),M)
B(∆)
−−−−→ B(∗,T×2 (M),M2)

B(incl)
←−−−−− B(∗,T×2 (M),M2

\ ∆)

induced by the T×2 (M)-equivariant diagram M ∆
−→ M2

←↩ M2
\ ∆, where T×2 (M) acts on M

as above and on M2 and M2
\ ∆ through the projection to IvMap(M2,M2) and evaluation.

109



This coincides with the map on fibres over the 0-skeleton of B T×2 (M) and therefore up to

homotopy on all fibres of the projection to B T×2 (M). Hence, B(∗,T×2 (M),M2
\∆) is the natural

candidate for the fibrewise complement of a fibrewise Poincaré embedding structure of the

diagonal.

We can now state our main theorem of this section.

Theorem 7.1.8. The diagonal ∆ : E2→E2 ×B T×2 (M) E2 has the structure of a fibrewise Poincaré

embedding with complement B(∗,T×2 (M),M2
\ ∆) and gluing space S(TπE2).

There are three problems we need to address. First, we need to compare B(∆) with the

fibrewise diagonal ∆ : B(∗,T×2 (M),M)→B(∗,T×2 (M),M) ×B T×2 (M) B(∗,T×2 (M),M), and secondly

we need to construct a candidate for the fibrewise gluing space. In the last step, we will

show that the candidate for the gluing space has a vector bundle reduction given by S(TπE2).

Let us start with the second point, and observe that we would like to use the gluing space

of the standard Poincaré embedding structure of ∆ : M→M2 with complement M2
\∆ given

by the sphere bundle of a tubular neighbourhood S(ν∆). However, IvMap(M2,M2) does not

act naturally on a tubular neighbourhood of the diagonal. Instead we consider a homotopy

theoretic version of the tubular neighbourhood (following the terminology in [Qui88]).

Definition 7.1.9. Let (X,Y) be a pair of spaces. The homotopy link is the space of paths

starting in Y and leaving immediately for positive times

holink(X,Y) := {γ ∈Map(I,X) |γ(0) ∈ Y, γ(t) ∈ X \ Y for t > 0} ⊂Map(I,X).

A version of this construction was first considered by Nash [Nas55] and later used by Hu to

construct analogues of normal bundles (see [HR96, App. B] for some historical references).

Fadell has shown in [Fad65] that ev0 : holink(N,M)→M for a smooth manifold N and

submanifold M ⊂ N is a spherical fibration equivalent to the normal sphere bundle.

Hence, we can consider holink(M2,∆) as natural candidate for the gluing space of the

Poincaré embedding structure of ∆ : M→M2. This space has an action of T×2 (M) through the

projection to IvMap(M2,M2) by post-composition.

Proposition 7.1.10. Let M be a smooth closed manifold, then the following diagram of quasifibrations

over B T×2 (M)

B(∗,T×2 (M),holink(M2,∆)) B(∗,T×2 (M),M2
\ ∆)

B(∗,T×2 (M),M) B(∗,T×2 (M),M2),

B(ev0)

B(ev1)

B(∆)

(7.7)
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which commutes up to homotopy B(evt) : B(∗,T×2 (M),holink(M2,∆))× I→B(∗,T×2 (M),M2), deter-

mines a fibrewise Poincaré embedding structure of B(∆).

Proof. The induced projection π : hocolim(E1 ← E0→E2)→B from the homotopy colimit of

quasifibrations πi : Ei→B is a again a quasifibration over B since

hofibb(π) ≈←hocolim
(

hofibb(π1)← hofibb(π0)→hofibb(π2)
)

'
←hocolim

(
π−1

1 (b)← π−1
0 (b)→π−1

2 (b)
)

= π−1(p).
(7.8)

Hence, it suffices to check that the above diagram is a Poincaré embedding for the fibre over

the 0-skeleton F0 B T×2 (M), where (7.7) restricts to

holink(M2,∆) M2
\ ∆

M M2∆

But since holink(M2,M) is equivalent to the normal sphere bundle [Fad65, Prop. 4.8], this is

equivalent to the standard Poincaré embedding structure of the diagonal. �

We will now address the first problem and compare the bottom horizontal map B(∆) in

(7.7) with the fibrewise diagonal.

Lemma 7.1.11. There is a zig-zag of fibre-homotopy equivalences from the map B(∆) in (7.7) to the

fibrewise diagonal

∆ : B(∗,T×2 (M),M) −→ B(∗,T×2 (M),M) ×B T×2 (M) B(∗,T×2 (M),M). (7.9)

Proof. It will be important for the proof to keep track of the (left) action ϕ : T×2 (M) × X→X

of T×2 (M) on a space X by denoting the pair (X, ϕ) for a left G-space X.

The map B(∆) in (7.7) is induced by the diagonal map ∆ : M→M2 which is equivariant

with respect to the following actions of T×2 (M)

φ1 : T×2 (M) ×M −→M φ1(( f ,H,G),m) := g(m,m),

φ2 : T×2 (M) ×M2
−→M2 φ2(( f ,H,G), (m,m′)) := G(m,m′),

where we use the identification MapS2(M2,M2) ≈Map(M2,M) that sends an S2-equivariant

map G to g := π1 ◦G (since G(m1,m2) = (g(m1,m2), g(m2,m1)) by equivariance). Observe that

B(∗,T×2 (M),M) in (7.9) is B(∗,T×2 (M), (M, φ1)) when we record the action. We have defined

B(∆) as the map induced by the following map of triples

(∗,T×2 (M), (M, φ1))
(Id∗,IdT×2 (M),∆)
−−−−−−−−−−−→ (∗,T×2 (M), (M2, φ2)).
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Since a point ( f ,H,G) ∈ T×2 (M) contains a homotopy H of equivariant maps, we can consider

families of actions, considered as actions on M × I and M2
× I respectively, in the same way

ϕ1 : T×2 (M) × (M × I) −→M × I ϕ1(( f ,H,G), (m, t)) := (π1 ◦Ht(m,m), t),

ϕ2 : T×2 (M) × (M2
× I) −→M2

× I ϕ2(( f ,H,G), (m,m′, t)) := (Ht(m,m′), t),

so that there is a map of triples (∗,T×2 (M), (M × I, ϕ1))→(∗,T×2 (M), (M2
× I, ϕ2)) induced by

∆ × IdI : M × I→M2
× I.

Since H1 = G for a point ( f ,H,G) ∈ T×2 (M), the inclusions i1 : (M, φ1)→(M × I, ϕ1) and

i1 : (M2, φ2)→(M2
× I, ϕ2) are equivariant and induce maps of triples. The restriction for

t = 0 is given by H0 = f × f , and thus there are equvariant maps i0 : (M, ϕ)→(M × I, ϕ1) and

i0 : (M2, ϕ×ϕ)→(M2
×I, ϕ2), where the actionϕ : T×2 (M)×M→M is defined asϕ(( f ,H,G),m) :=

f (m) and ϕ × ϕ denotes the product action on M2.

We arrive at the following commutative diagram

B(∗,T×2 (M), (M, φ1)) B(∗,T×2 (M), (M × I, ϕ1)) B(∗,T×2 (M), (M, ϕ))

B(∗,T×2 (M), (M2, φ2)) B(∗,T×2 (M), (M2
× I, ϕ2)) B(∗,T×2 (M), (M2, ϕ × ϕ)),

B(∆)

B(i1)
'

B(∆×Id) B(∆)

'

B(i0)

B(i1)
' '

B(i0)

(7.10)

where the horizontal maps are induced by the inclusions and homotopy equivalences by

Proposition A.4. The vertical maps are all induced by diagonal maps, and the left vertical

map is B(∆) from (7.7).

By Corollary A.13, the equivariant projections πi : (M2, ϕ × ϕ)→(M, ϕ) induce a homeo-

morphism of the lower right corner

B(∗,T×2 (M), (M2, ϕ × ϕ))
B(π1)×B(π2)
−−−−−−−−−→ B(∗,T×2 (M), (M, ϕ)) ×B T×2 (M) B(∗,T×2 (M), (M, ϕ)).

The (pre-)composition with B(∆) is given by B(π1◦∆)×B(π2◦∆) = B(Id)×B(Id) so that under

this identification the right column is the fibrewise diagonal of B(∗,T×2 (M), (M, ϕ))→B T×2 (M).

The claim now follows, as the top row shows that the two quasi-fibrations

B(∗,T×2 (M), (M, φ1)) −→ B T×2 (M)

B(∗,T×2 (M), (M, ϕ)) −→ B T×2 (M)

are fibre-homotopy equivalent. We can also build an explicit zig-zag of fibre-homotopy

equvialences between their respective diagonals by considering the concordance of quasi-

fibrations given by the diagonal M × I→M2
× I with respect to the product action of ϕ1 on

M2
× I

B(∗,T×2 (M), (M × I, ϕ1)) B ∆
−−−→ B(∗,T×2 (M), (M2

× I, ϕ1 × ϕ1)).
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Before we give the proof of Theorem 7.1.8, we need to introduce a version of the homotopy

link which is better suited to constructing a vector bundle reduction of the gluing space.

Definition 7.1.12. Let Md,Nn+k be smooth closed manifolds and M ⊂ N an embedded

submanifold. Then we can define the transversal homotopy link as

holinkt(N,M) :=
{
γ ∈ holink(N,M)

∣∣∣γ is smooth and γ̇(0) < TM
}

topologized as a subspace of smooth maps MapC∞(I,N).

Lemma 7.1.13. Let M,N be smooth closed manifolds and M ⊂ N an embedded submanifold. Then

the inclusion holinkt(N,M) '
−→ holink(N,M) is a fibrewise homotopy equivalence over M via ev0.

Proof. We will first prove that ev0 : holinkt(N,M)→M has the weak covering homotopy

property (WCHP) [Dol63]. By a version of Hurewicz’s theorem [Dol63, Thm 5.12], this can

be checked on a numerable covering and we may choose a covering {Ui}i∈I of M by open disks

Ui � R
d. Let {Vi}i∈I be a covering of M of open disks in N such that there are charts such that

(Vi,Ui) � (Rd+k,Rd). Then holinkt(N,M)|Ui is fibre-homotopy equivalent to holinkt(Vi,Ui)

by shrinking the paths until the image is contained in Vi. Since the WCHP is preserved

under fibre-homotopy equivalences, it suffices to check that holinkt(Vi,Ui)→Ui has the

WCHP. Using the charts, this is homeomorphic to the map ev0 : holinkt(Rd+k,Rd)→Rd for

which one can easily find a path lifting function.

Let νM be a tubular neighbourhood, then there is a map of the sphere bundle of a tubular

neighbourhood S(νM)→holinkt(N,M) over M by sending vp ∈ S(νM) to the path t 7→ t·vp. By

the same argument as before, the fibre of holinkt(N,M)→M over a point p ∈ Ui deformation

retracts to the fibre of holinkt(Rd+k,Rd)→Rd using the identification (Vi,Ui) � (Rd+k,Rd).

This fibre is equivalent to Sd−1 since we can first homotope a path and replace it by its

differential at zero, and then get rid of the possible part in theRd direction. Hence, the fibre

of ev0 : holinkt(Rd+k,Rd)→Rd deformation retracts onto the fibre of S(νRd⊂Rd+k)→Rd.

Therefore, the map of fibrations S(νM)→holinkt(N,M) over M induces an equivalence

of the fibres and by Dold’s theorem [Dol63, Thm 6.3] it is a fibre-homotopy equivalence.

The claim then follows from [Fad65, Prop.4.8] which shows that S(νM)→holink(N,M) is a

fibre-homotopy equivalence. This map factors through the transversal homotopy link

S(νM) holinkt(N,M)

holink(N,M).

'fw

'fw
(7.11)
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and therefore the inclusion is a fibre-homotopy equivalence as well. �

Remark 7.1.14. The first part of the proof can be simplified by observing that ev0 :

holink(t)(N,M)→M is a locally trivial bundle (for the homotopy link this is [Fad65, Prop. 4.1]).

This is proved by picking adapted charts (Vi,Ui) � (Rd+k,Rd) and observing that one can

construct maps γ : Ui×Ui→Diff0(Dd+k,Dd), where this denotes diffeomorphisms of the disk

isotopic to the identity that restrict to diffeomorphisms of Dd
⊂ Dd+k, satisfyingγ(x, y)(x) = y,

γ(x, x) = Id and γ(x, y)|∂Dd+k = Id for all x, y ∈ Ui. The maps γ are constructed using flows

of vector fields pointing from x to y and cut off by bump functions. It follows that the

evaluation is a fibration by [Dol63, Thm 4.8].

Proof of Theorem 7.1.8. It follows from Lemma 7.1.11 that the fibrewise Poincaré embed-

ding structure of B(∆) discussed in Proposition 7.1.10 determines a fibrewise Poincaré em-

bedding structure of the fibrewise diagonal

∆ : B(∗,T×2 (M),M) −→ B(∗,T×2 (M),M) ×B T×2 (M) B(∗,T×2 (M),M)

with complement B(∗,T×2 (M),M2
\∆) and gluing space B(∗,T×2 (M),holink(M2,∆)). It remains

to prove that B(∗,T×2 (M),holink(M2,∆)) is equivalent to S(TπE2).

We can replace the gluing space by using the transversal homotopy link instead by Lemma

7.1.13. The transversal homotopy link has a map to
(

TM2
|∆

T∆

)#
, the complement of the zero

section of the normal bundle, given by

d/dt : holinkt(M2,∆) −→
(

TM2
|∆

T∆

)#

.

γ 7−→ [γ̇(0)]

We can identify the normal bundle with TM via the isomorphism TM→TM2
|∆

T∆ that sends

vp to [(vp,−vp)], which equips the normal bundle with an action of T×1 (M) by conjugation.

Then the map d/dt is equivariant with respect to r2 : T×2 (M)→T×1 (M).

To see this, consider an isovariant map G ∈ IvMap(M2,M2) and γ ∈ holinkt(M2,∆) and

write γ̇(0) = (vp + wp,−vp + wp) ∈ T(p,p)M2 for unique vp,wp ∈ TpM and p = γi(0). Since

[γ̇(0)] = [(vp,−vp)], we have

r2(G) · [γ̇(0)] = [D(p,p)g(vp,−vp),−D(p,p)g(vp,−vp)] ∈
(

TM2
|∆

T∆

)
(g(p,p),g(p,p))

,
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which agrees with[
d
dt

(G ◦ γ)|t=0

]
=

[
d
dt

(g(γ1, γ2))|t=0,
d
dt

(g(γ2, γ1))|t=0

]
=

[
D(p,p)g(vp + wp,−vp + wp),D(p,p)g(−vp + wp, vp + wp)

]
=

[
D(p,p)g(vp,−vp) + D(p,p)g(wp,wp),D(p,p)g(−vp, vp) + D(p,p)g(wp,wp)

]
=

[
D(p,p)g(vp,−vp),D(p,p)g(−vp, vp)

]
∈

(
TM2
|∆

T∆

)
(g(p,p),g(p,p))

.

Hence, we obtain the following diagram

B(∗,T×2 ,holink(M2,∆)) B(∗,T×2 ,holinkt(M2,∆)) B(∗,T×1 (M),TM#)

B(∗,T×2 (M),M) B(∗,T×2 (M),M) B(∗,T×1 (M),M)

B(ev0)

' ∗

B(ev0)

B r2=r̄2

(7.12)

where the top map labelled by ∗ is given by B(Id, r2, d/dt). The left horizontal map in the

first row is induced by the inclusion of the transversal homotopy link, and it is a homotopy

equivalence by Lemma 7.1.13 and Proposition A.4. All vertical maps are quasifibrations with

spherical fibres by Theorem A.8, and, when restricted to the 0-skeleton of B(∗,T×i (M),M),

the horizontal maps are homotopy equivalences by (7.11). Hence, the right square is a

homotopy pullback and it follows that the gluing space B(∗,T×2 (M),holink(M2,∆)) in (7.7) is

equivalent to r̄∗2 B(∗,T×1 (M),TM#). The statement of the theorem then follows from the next

lemma which proves that B(∗,T×1 (M),TM#) is equivalent to S(TπE1). �

Lemma 7.1.15. The restriction of TπE1→E1 along B(∗,T×1 (M),M)
'fw
−→ E1 from (7.6) is equivalent

to the following vector bundle

B(πTM) : B(∗,hAut+(TM),TM) −→ B(∗,hAut+(TM),M) (7.13)

induced by the tangent bundle πTM : TM→M and the evident action of hAut+(TM).

Proof. Recall that T×1 (M) = hAut+(TM) and that E1→B T×1 (M) is the universal TM-fibration

defined in (5.1) with a vector bundle TπE1→E1 obtained in (5.2) as the pull back along the

evaluation map

B(Map(M,B SO(d))TM,hAut(M)TM,M)
ε(ev)
−→ B SO(d).

Part of this statement is Proposition 5.1.4 that shows that

B(Map(M,B SO(d))TM,hAut(M)TM,M) ' B(∗,hAut+(TM),M) (7.14)
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which is our model for E1. Hence, we need to prove two things: First, we need to show

(7.13) is a vector bundle, and secondly we need to show that it is equivalent to the definition

of the vertical tangent bundle defined via the evaluation map ε(ev) from (5.2) under the

equivalence (7.14).

We will start with the first problem and prove that B(πTM) is a vector bundle by induction

over the skeleta B(∗,hAut+(TM),TM) =
⋃

j≥0 F j and B(∗,hAut+(TM),M) =
⋃

j≥0 F′j (see

[May72, Def. 11.1]) which is really an adaptation of the proof of Theorem A.8. In the

following, we denote B(πTM) by p. Then

F0 = TM and F j \ F j−1 = (F j B hAut+(TM) \ F j−1 B hAut+(TM)) × TM,

F′0 = M and F′j \ F′j−1 = (F j B hAut+(TM) \ F j−1 B hAut+(TM)) ×M

and therefore the restrictions

p|F0 : F0→F′0 and p|F j\F j−1 : F j \ F j−1→F′j \ F′j−1

are vector bundles. Assume by induction that p|F j−1 : F j−1→F′j−1 is a vector bundle. Fol-

lowing the proof of Theorem A.8, we see that there are neighbourhoods U of F′j−1 ⊂ F′j and

deformation retractions H : p−1(U)× I→p−1(U) and h : U× I→U compatible with the projec-

tion p. Moreover, the pair (H1, h1) defines a linear isomorphism on each fibre, proving that

p|p−1(U) : p−1(U)→U is a vector bundle. Hence, p|F j : F j→F′j is a vector bundle for each j. The

colimit p :
⋃

j F j→
⋃

j F′j is a vector bundle by using sequences of deformation retractions

as above which deformation retracts open neighbourhoods of points onto the finite skeleta

similar to the contraction of a mapping telescope.

It remains to prove in the second part that the two vector bundles over E1 are equivalent.

The equivalence in (7.14) is based on the zig-zag of equivalences constructed in [Ber20a]

B(Map(M,B SO(d))TM,hAut(M)TM, ∗)
'
← B(Map(TM, γd),hAut+(TM), ∗) '→B hAut+(TM),

where Map(TM, γd) denotes the space of pairs of maps ( f̄ , f ) for a bundle map f̄ : TM→γd

covering a map f : M→B SO(d), and Map(M,B SO(d))TM denotes the path-component of

the tangent bundle and hAut(M)TM denotes the collection of path-components of hAut+(M)

that preserve the tangent bundle, i.e. act on Map(M,B SO(d))TM by pre-composition. Then
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consider the following commutative diagram

B(∗,hAut+(TM),TM) B(∗,hAut+(TM),M)

B(Map(TM, γd),hAut+(TM),TM) B(Map(TM, γd),hAut+(TM),M)

B(Map(M,B SO(d))TM,hAut(M)TM,M)

γd B SO(d)

ε(ev)

'

'

ε(ev)

where the horizontal maps are vector bundles (the middle one by the same argument as

above) and the left vertical maps are linear isomorphisms on the fibres. It follows that the

vector bundle obtained as pull back along ε(ev) is equivalent to (7.13) under the zig-zag of

equivalences on the right which concludes the proof. �

Addendum – The action of the symmetric group

In this brief addendum, we will discuss a feature of ordered configuration spaces that is

seemingly missing in the discussion above, namely the action of the symmetric group that

permutes particles. It is straightforward to construct suitable actions of S2 for the models

from the previous actions based on the following observation about the bar construction.

Observation. Let (Y,G,X) be a triple as in Definition 7.1.7 and suppose further that X also

has a left action by a group H such that the action of G and H commute. Then H acts on the

simplicial space B•(Y,G,X) and hence on the geometric realization B(Y,G,X).

The symmetric group S2 acts naturally on M2 and M2
\ ∆ and since T×2 (M) acts through

S2-equivariant maps, the actions of T×2 (M) and S2 commute. Hence, the associated bar

constructions are S2-spaces over B T×2 (M) (i.e. the action preserves the projection to B T×2 (M)).

Moreover, S2 acts on S(TπE2) by the (linear) antipodal map on the fibre of TπE2→E2. Since

B(∗,T×2 (M),M) corresponds to the fibrewise diagonal we equip it with the trivial S2 action.

Theorem 7.1.16. The Poincaré embedding structure from Theorem 7.1.8 gives an S2-equivariant

fibre-homotopy equivalence

hocolim
(
E2 ← S(TπE2)→B(∗,T×2 (M),M2

\ ∆)
)
−→ E2 ×B T×2 (M) E2

of S2-equivariant quasifibrations.
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We have discussed the theory of equivariant fibrations and quasifibrations in Appendix

A.1. The theorem shows that the Poincaré embedding structure we have constructed in

Theorem 7.1.8 is in fact compatible with a fibrewise action of S2 which agrees with standard

action on the complement M2
\ ∆ on each fibre.

Proof. We need to check that all of our previous arguments behave well with respect to

the natural action of S2. Let us start with the fibrewise Poincaré embedding structure from

Proposition 7.1.10 given by the square below

B(∗,T×2 (M),holink(M2,∆)) B(∗,T×2 (M),M2
\ ∆)

B(∗,T×2 (M),M) B(∗,T×2 (M),M2).

B(ev0)

B(ev1)

B(∆)

As observed above, M2 and M2
\∆ have natural actions of S2 commuting with the action of

T×2 (M) and the same is true for holink(M2,∆) and M (where the latter is equipped with the

trivial action). It follows that all spaces in the square above are S2-equivariant quasifibrations

over B T×2 (M) by Theorem A.16. The homotopy colimit of the upper left triangle is a quasi-

fibration by the same argument as in the proof of Proposition 7.1.10, and it is an equivariant

quasi-fibration because the map in (7.8) is an equivariant homotopy equivalence as the

homotopy colimit in Top of diagrams of G-spaces is the homotopy colimit in the category

of G-spaces. Therefore, it is sufficient to check that the restriction of the square over the

0-simplex of B T×2 (M) induces an equivariant homotopy equivalence from the homotopy

colimit to M2.

Over the 0-simplex, we can replace the homotopy link by the sphere bundle of a tubular

neighbourhood. If we choose an S2-equivariant tubular neighbourhood, the inclusion

S(ν∆)→holink(M2,∆) is a map of S2-equivariant fibrations over M. Since the inclusion

induces equivalences between the fibres, which have a free S2-action, it follows from an

equivariant Dold Theorem [Wan80b, Thm 1.11] that S(ν∆)→holink(M2,∆) is a fibrewise

S2-homotopy equivalence. Hence, we can replace the homotopy colimit by the standard

Poincaré embedding structure of the diagonal, which does induce an equivariant homotopy

equivalence.

We can then check that the comparison of B(∆) in Lemma 7.1.11 with the fibrewise

diagonal is valid S2-equivariantly as (7.10) is a diagram of S2-equivariant quasifibrations

and fibrewise S2-homotopy equivalences. Finally, it remains to show that the gluing space

is equivariantly equivalent to S(TπE2). This follows again from the existence of equivariant
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tubular neighbourhoods and the fact that the map

d/dt : holinkt(M2,∆)→
(

TM2
|∆

T∆

)#

which is used in (7.12) is a fibrewise S2-homotopy equivalence with respect to the antipodal

action on the normal bundle. �

7.2. An application to tautological classes

Theorem 7.1.8 provides the diagonal ∆ : E2→E2 ×B T×2 (M) E2 with a regular neighbourhood

which is equivalent to the vector bundle TπE2→E2. This links the vector bundle structure

with the global topology of the fibration in an intricate way, and we recognize this property

from fibre bundles where the vertical tangent bundle also provides a regular neighbourhood

of the diagonal. This is the basic reason why for fibre bundles the Euler class of the vertical

tangent bundle and the fibrewise Euler classes coincide (see [HLLR17, Sect. 3.2]), and hence

the same is true for E2→B T×2 (M).

Theorem 7.2.1. The fibrewise Euler class of E2→B T×2 (M) agrees with the Euler class of the vector

bundle TπE2→E2.

We could follow the strategy in [HLLR17] to show that e(TπE2) agrees with the fibrewise

Euler class. But instead we use a fibrewise version of Corollary 7.1.5, which we expect to

be useful as a characterization of the propagator form in the rational homotopy theory of

embedding calculus.

Proposition 7.2.2. Let E→B be an oriented fibration with Poincaré fibre X of formal dimension d

such that the diagonal ∆ : E→E×B E admits the structure of a Poincaré embedding with complement

C. Then H∗(C) � H∗(E ×B E)/(∆!(1)), where ∆! is the fibrewise Umkehr map on cohomology.

The proof is completely analogous but relies on a version of Poincaré duality for fibrations

with Poincaré fibre. This is best expressed using parametrized stable homotopy theory and

spectra and we will briefly recall the necessary objects following the discussion in [HLLR17,

Sect. 3], which are also the crucial ingredients to define the fibrewise Euler class and Euler

ring that we studied in the first part of this thesis.

Let E→B be a fibration with Poincaré fibre and Σ∞B E+ the parametrized suspension spec-

trum. Denote by HBZ and SB the trivial parametrized Eilenberg-MacLane and sphere

spectrum, and by FB(Σ∞B E+,HBZ) the internal parametrized mapping spectrum whose ho-

motopy groups [S−d
B ,FB(Σ∞B E+,HBZ)]B = Hd(E;Z) recover the cohomology of E. Then

119



fibrewise Poincaré duality is an equivalence of HBZ-modules

Dfw
E : Σd

BFB(Σ∞B E+,HBZ) '
−→ Σ∞B E+ ∧B HBZ

which is essential in defining the Umkehr map ∆! : H∗(E)→H∗+d(E ×B E) on the level of

spectra as (Dfw
E×BE)−1

◦ (∆ ∧B Id) ◦ Dfw
E : FB(Σ∞B E+,HBZ)→Σd

BFB(Σ∞B E ×B E+,HBZ) and the

fibrewise Euler class as efw(π) := ∆∗∆!(1) ∈ Hd(E).

Remark 7.2.3. Observe that we have proved in Proposition 4.1.1 a version of fibrewise

Poincaré duality in rational homotopy theory and that Definition 4.1.2 of the fibrewise

Euler class is exactly the same.

We will briefly recall the construction of the fibrewise duality map Dfw
E . We have to shorten

the notation and denote the suspension spectrum Σ∞B E+ by E and omit subscripts although

all constructions are over B. Then the fundamental classes of the fibres [Eb] ∈ Hd(Eb;Z) �

H0(b, (E∧HZ)|−d
b ) assemble in the Atiyah-Hirzebruch spectral to give a fundamental class in

(E∧HZ)−d(B) that we denote by [E]B : Sd
→E∧HZ. Then Dfw

E is defined as the composition

Sd
∧ F(E,HZ)

[E]B∧Id
−−−−−→ E ∧HZ ∧ F(E,HZ) ∆∧Id

−−−−→ E ∧ E ∧HZ ∧ F(E,HZ)
Id∧ ev∧ Id
−−−−−−−−→ E ∧HZ ∧HZ −→ E ∧HZ

and it is an equivalence [HLLR17] which can be checked fibrewise where it reduces to

ordinary Poincaré duality. Moreover, there is also a relative version of fibrewise Poincaré

duality: Let E′ ⊂ E a pair of fibrations over B such that the fibres F′→F are Poincaré duality

pairs. Then the fundamental classes [Eb,E′b] ∈ Hd(Eb,E′b;Z) � H0(b, (E/E′∧HZ)|−d
b ) assemble

to give a fundamental class [E,E′]B : Sd
→E/E′ ∧HZ and we define

Dfw
(E,E′) : Sd

∧ FB(E/E′,HZ) '
−→ E ∧B HZ.

using the diagonal ∆E/E′ : E/E′→E ∧ E/E′. Here, E/E′ = cofib(E′→E) is the cofibre in the

category of parametrized spectra; if the underlying map of fibrations is a cofibration then

it is the suspension spectrum of the fibrewise quotient. Then Dfw
E,E′ is an equivalence by the

same fibrewise argument and relative Poincaré duality.

Proof of 7.2.2. We will first prove a fibrewise version of Lemma 7.1.4 to show that for a map

of fibrations f : K→X over a base space B which admits a fibrewise Poincaré embedding

structure X = hocolim(K← G→C), the cohomology of the complement C is determined by

the map f : K→X on the fibrewise analogue of homology [SB,− ∧HZ].

Denote the induced pushout of parametrized suspension spectra over B the same. We

mimic the proof of Lemma 7.1.4 and study the long exact sequence of the pair (X,C) on
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cohomology, which on the level of spectra this corresponds to studying the long exact

sequence of homotopy groups of FB(X/C,HZ)→FB(X,HZ)→FB(C,HZ). Without loss of

generality we may assume that C→X and G→K are cofibrations so that the homeomorphism

f : K/G→X/C of spaces over B induces an isomorphism of suspension spectra. Let [X]B :

Sd
B→X be a representative of the fundamental class of X. By assumption X is a pushout

hocolim(K← G→C) via the fibrewise Poincaré embedding structure and the fundamental

class [X]B induces a fundamental class of (K,G) via the collapse

Sd [X]B
−−−→ X ∧HZ c∧Id

−−−→ X/C ∧HZ ≈
← K/G ∧HZ

(and similarly for (C,G)). Then the following diagram is analogous to (7.2)

Sd
∧ F(X/C,HZ) Sd

∧ F(X,HZ)

X ∧HZ ∧ F(X/C,HZ) X ∧HZ ∧ F(X,HZ)

X ∧ X ∧HZ ∧ F(X/C,HZ) X ∧ X ∧HZ ∧ F(X,HZ)

X/C ∧HZ ∧ F(X/C,HZ) X ∧ X/C ∧HZ ∧ F(X/C,HZ) X ∧HZ ∧HZ

K/G ∧HZ ∧ F(K/G,HZ)

K ∧ K/G ∧HZ ∧ F(K/G,HZ) X ∧ K/G ∧HZ ∧ F(K/G,HZ) X ∧HZ ∧HZ

K ∧HZ ∧HZ X ∧HZ ∧HZ

K ∧HZ X ∧HZ X ∧HZ

Id∧c∗

[X]B∧Id [X]B∧Id

Id∧c∗

c∧Id

∆X∧Id

II

∆X∧Id

Id∧c∧Id

Id∧c∗

ev
∆X/C

I

ev

≈

∆K/G

ev

f∧Id

ev

≈

ev

f∧Id

f∧Id

(7.15)

The commutativity of most squares are obvious and commutativity of squares I and II follow

from the the following commutative diagram of diagonals

X X/C K/G K

X ∧ X X ∧ (X/C) K ∧ (K/G) K ∧ K.

c

∆X ∆X/C

≈

∆K/G

f
∆K

c∧Id
f∧ f

Observe that the composition of vertical maps on the right in (7.15) is the fibrewise Poincaré

duality map Dfw
X and that under the identification F(X/C,HZ) ≈ F(K/G,HZ) the composition
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of vertical maps on the left is the relative Poincaré duality map Dfw
K,G. Hence, the long exact

sequence in cohomology of (X,C) is determined by the map f .

We now apply this to a fibrewise Poincaré embedding structure of the diagonal

G C

E E ×B E∆

and use Dfw
E to obtain the following commutative diagram[

S−k, S2d
∧ F(E ×B E/C,HZ)

]
B

[
S−k, S2d

∧ F(E ×B E,HZ)
]
B

[
S−k,E ∧HZ

]
B

[
S−k,E ×B E ∧HZ

]
B

[
S−k, SdF(E,HZ)

]
B

[
S−k, S2d

∧ F(E ×B E,HZ)
]
B

� �Dfw
E×BE

∆

�Dfw
E

∆!

�Dfw
E×BE

where the bottom map is the definition of the fibrewise Umkehr map ∆!. The corners

of this diagram are identified with cohomology groups and the first row is equivalent to

the restriction Hk+2d(E ×B E,C)→Hk+2d(E ×B E). Hence, we have shown that the long exact

sequence in cohomomlogy of the pair (E ×B E,C) is equivalent to

. . . −→ H∗−d(E)
∆!
−−→ H∗(E ×B E) i∗

−→ H∗(C) −→ . . .

The rest of the claim follows in exactly the same way as before: the Umkehr map ∆! is

injective as the diagonal has a left-inverse given by projection, and since every element

x ∈ H∗(E) can be written as ∆∗π∗i (x) it follows that the image of ∆! is the ideal generated by

∆!(1) because ∆! is a ∆∗-module map. �

Proof of Theorem 7.2.1. Consider the fibrewise Poincaré embedding structure of the diag-

onal constructed in Theorem 7.1.8

S(TπE2) C

E2 E2 ×B T×2 (M) E2,

π

i

j

∆

where we denote the complement by C and the maps are the one we have constructed before.

Then i∗ j∗∆!(1) vanishes by Proposition 7.2.2 and therefore 0 = i∗ j∗∆!(1) = π∗∆∗(∆!(1)) =

π∗(efw). Then it follows from the Gysin sequence of S(TπE2)→E2 that the fibrewise Euler

class is a multiple of e(TπE2), and since they agree when restricted to a fibre of E2→B T×2 (M),

the two Euler classes must coincide. �
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7.3. The first non-trivial Kontsevich class on B T×2 (M)

The goal of this section is to develop a proof of concept that one can define Kontsevich’s

characteristic classes from Theorem 6.2.3 via configurations space integrals on the embed-

ding calculus tower directly. As we haven’t constructed fibrewise homotopy configuration

spaces for more than two particles, we have to limit ourselves to graph classes involving not

more than two vertices, which effectively leaves only the simplest such class from Theorem

6.2.5 obtained by fibre integrating the class associated to the θ-graph. Observe that this

cohomology class can be constructed and studied without reference to a graph complex as

has been done in [Wat09a], and we follow this point of view here. It is an interesting open

problem whether one can extend the graph complex construction over the self-embedding

tower.

There is a further complication because the graph characteristic classes are defined for

diffeomorphisms that are the identity on some neighbourhood of a fixed point∞ ∈M, which

is equivalent to Diff(M,U∞) = Diff∂(M \U∞) for some fixed neighbourhood∞ ∈ U∞ � Rd.

One can develop embedding calculus for manifolds with boundaries but the Haefliger

model has not been generalized to this context so far. In the following, we give an ad hoc

modification of the Haefliger model to this situation and construct that graph class for it.

Let M be an odd dimensional integral homology sphere and fix a point ∞ ∈ M. Denote

by Map
∞

(M,M) ⊂MapC∞(M,M) the space of smooth maps f : M→M such that f−1(∞) = ∞

and f |U = Id for some neighbourhood U of ∞ ∈ M. Similarly, define MapS2
∞

(M2,M2) ⊂

MapS2
C∞(M2,M2) as the subspace of smooth equivariant maps F : M2

→M2 satisfying

• F−1(∞×∞) = ∞×∞ and F|U×U = Id for some neighbourhood U of∞ ∈M,

• F−1(∞×M) = ∞×M and D(π1 ◦ F)|T∞M : T∞M ⊂ T(∞,p)M2
→T∞M is the identity for all

p ∈M.

where the second condition has similar consequences for M × ∞ by equivariance. The

product map f 7→ f × f determines a map

Map
∞

(M,M) −→MapS2
∞

(M2,M2).

Finally, we define IvMap
∞

(M2,M2) ⊂MapS2
∞

(M2,M2) as the subspace of strongly isovariant

maps.

Definition 7.3.1. We define a model for the second pointed Taylor approximation as

T2(M,∞) := holim
(
Map

∞
(M,M)→MapS2

∞
(M2,M2)← IvMap

∞
(M2,M2)

)
.
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Then T2(M,∞) is a submonoid of T2(M) via the inclusion T2(M,∞)→T2(M). If we consider

the first two stages of the Taylor tower in (6.5), observe that η2|Diff(M,U∞) has image in T2(M,∞)

and that r2|T2(M,∞) has image in tangential homotopy equivalences of TM that are the identity

on TM|U for some neighbourhood of ∞ ∈ M and such that the preimage of ∞ is only ∞.

This can be taken as ad hoc definition for T1(M,∞).

Let τ : T(M \∞)→(M \∞)×Rd be a framing and consider the space of framings Fr+(M; τ)

introduced in Section 6.2. There is a homeomorphism from Fr+(TM; τ) to the space of

bundle maps of T(M \ ∞) to the trivial bundle over a point Rd
→∗ given by τM→πRd ◦ τM

that agrees with πRd ◦τ on a neighbourhood of∞. We denote this space by Bun+
∞(TM,Rd; τ)

(for M = Sd this can be identified with linear maps TRd
→Rd that are standard outside a

compact set). Under this homeomorphism, the action of Diff(M,U∞) on Bun+
∞(TM,Rd; τ)

is given by precomposition with the derivative and thus extends to an action of T1(M,∞)

and consequently by T2(M,∞) via the restriction r2. Then the classifying space of pointed

framed M-bundles is B Difffr(M,U∞; τ) = B(Bun+
∞(TM,Rd; τ),Diff(M,U∞), ∗) and we can

make an analogous definition

B Tfr
2 (M,∞; τ) := B(Bun+

∞(TM,Rd; τ),T×2 (M,∞), ∗) (7.16)

so that there is a map

B(∗, η2, ∗) : B Difffr(M,U∞; τ)→B Tfr
2 (M,∞; τ). (7.17)

Theorem 7.3.2. There exists a cohomology class ζ̄2 ∈ Hd−3(B Tfr
2 (M,∞; τ);Z) such that B(η2)∗(ζ̄2)

agrees with the first non-trivial Kontsevich class ζ2(πuniv, τ) ∈ Hd−3(B Difffr(M,U∞; τ);Z) from

Theorem 6.2.5 of the universal vertically framed M-bundle.

Proof. It suffices to construct a propagator class ω in the cohomology of the fibrewise

configuration space B(Bun+
∞(TM,Rd; τ),T×2 (M,∞),C2(M \ ∞)), where T2(M,∞) acts on the

configuration space C2(M \ ∞) through projection to IvMap
∞

(M2,M2). The strategy of the

construction of ω is analogous as to the case of fibre bundles, and we could again use

(transversal) homotopy links as a homotopy theoretic replacement for the boundary of

the respective compactifications. Instead, we will describe an action of T2(Sd,∞) on the

compactification C2(M,∞) directly.

Observe that the action of T2(M,∞) on C2(M \ ∞) is compatible with the action of

Diff(M,U∞) via η2, and we will describe how this can be extended to the compactifica-
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tion C2(M,∞). Recall from (6.15) that the boundary ∂C2(M,∞) is the union of four pieces

S∞ � p−1(∞×∞) \ ΣM ⊂ Bl(M2,∞×∞)

S∞×M = p−1(∞× (M \ ∞)) ⊂ C2(M,∞)

SM×∞ = p−1((M \ ∞) ×∞) ⊂ C2(M,∞)

S∆ = p−1(∆M\∞) ⊂ C2(M,∞),

where p here denotes the blowdown maps. By definition, all maps in MapS2
∞

(M2,M2) are

required to fix a neighbourhood of ∞ × ∞ so that the actions extends trivially to S∞×∞.

And similarly, since the equivariant maps act trivially on the normal bundle of∞×M and

M×∞ by assumption, the action extends trivially to S∞×M and SM×∞. Lastly, S∆ is identified

with the unit normal bundle of T(M \ ∞) and under this identification, T2(Sd,∞) acts via

r2 : T2(Sd,∞)→T1(Sd,∞) which captures the tangential behaviour on the normal bundle of

the diagonal. Since T1(Sd,∞) acts trivially close to∞, this describes a compatible action on

their union.

Recall from Lemma 6.2.1 that the propagator is constructed via p(τM) : ∂C2(M,∞)→Sd−1

which depends on τM ∈ Fr+(TM; τ) ≈ Bun+
∞(TM,Rd; τ). From the proof in [Wat09a] we see

that p(τM) only depends on τM on S∆. Hence, the map

p(−) : Bun+
∞(TM,Rd; τ) × ∂C2(M,∞) −→ Sd−1

factors through the quotient with respect to the action of T2(M,∞) and there is a commutative

diagram

B(Bun+
∞(TM,Rd; τ),Diff(M,U∞), ∂C2(M,∞)) Sd−1

B(Bun+
∞(TM,Rd; τ),T×2 (M,∞), ∂C2(M,∞))

B(∗,η2,∗)

ε(p(−))

ε(p(−))

(7.18)

Then by the same cohomological argument as for fibre bundles, there exits a unique propa-

gator class

ω ∈ Hd−1(B(Bun+
∞(TM,Rd),T×2 (M,∞),C2(M,∞));Z)

whose square has a canonical choice of relative class ω̃2 in

Hd−1(B(Bun+
∞(TM,Rd; τ),T×2 (M,∞),C2(M,∞)),B(Bun+

∞(TM,Rd; τ),T×2 (M,∞), ∂C2(M,∞));Z).

Finally, for ω̃3 := ω · ω̃2 we can define

ζ̄2 := π!(ω̃3) ∈ Hd−3(B Tfr
2 (M,∞; τ);Z)
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where we fibre integrate over the pair of quasifibrations over B Tfr
2 (M,∞) given by the

two-sided bar construction above and with fibres the Poincaré pair (C2(M,∞), ∂C2(M,∞)).

Crucially, the propagatorωpulls back to the propagator constructed over B Difffr(M,U∞; τ)

by the diagram (7.18), so that ζ̄2 pulls back to ζ2(πuniv, τ) ∈ Hd−3(B Difffr(M,U∞; τ);Z) by

naturality of fibre integration. �

Remark 7.3.3. The author expects that the ad hoc construction T2(M,∞) is equivalent to

the second Taylor approximation of Emb∂(−,M \ int Dd) evaluated on M \ int Dd. This is

because the homotopy fibre of r2 : T2(M,∞)→T1(M,∞) has a similar description of the

usual Layers of the tower in terms of a space of sections of a fibrations with base and fibre

related to configuration spaces of M \ ∞. This shows that T2(M,∞) considered as a suitable

functor is polynomial of degree ≤ 2 and so it only remains to show that it agrees with

Emb∂(−,M \ int Dd) on a union of at most two discs. But we also expect that one can simply

generalize the construction and proofs in [GKW03] to include manifolds with boundaries.
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Chapter 8.

The failure of the family signature theorem over B T×2 (M)

It is unknown how good the Taylor approximation

Diff(M) −→ T∞ Emb(M,M)

is in the codimension 0 case. One possible way to check the connectivity of the above map

is via the family signature theorem, which describes an intricate link between the vertical

tangent bundle and the global topology of the bundle. It is a natural question whether the

same is true for the TM-fibrations TπEk→Ek over the tower. The main result of this section

shows that this does not hold on B T×2 (M).

Theorem 8.0.1. The family signature theorem does not hold universally on B T×2 (M). More precisely,

for all smooth closed oriented manifolds M2d and all i ∈ N satisfying d < 2i ≤ 2d − 2 the class

σ4i−2d − κLi ∈ H4i−2d(B T×2 (M);Q) does not vanish.

We will prove this theorem by constructing elements in the homotopy groups of B T×2 (M)

for which we can control the signature and MMM-classes. In the following, we denote

by G(TM) the space of orientation preserving orthogonal bundle maps of TM covering the

identity for some choice of metric, i.e. G(TM) is isomorphic to the gauge group of the frame

bundle Fr+(TM). Similarly, we denote by hGS2(S(TM)) the space of orientation preserving

fibrewise S2-homotopy equivalences of S(TM) that cover the identity.

Definition 8.0.2. For an oriented smooth manifold M we define

F(M, 2) := hofibId

(
G(TM) −→ hGS2(S(TM))

)
. (8.1)

A point ( f̄ ,H) ∈ F(M, 2) consists of a bundle map f̄ : TM→TM covering the identity

together with a fibrewise S2-homotopy H : S(TM) × I→S(TM) from the map of the sphere

bundle induced by f̄ to the identity. Then F(M, 2) is a monoid under point-wise composition

of H, and we will show later on that B F(M, 2) is equivalent to the space defined in (8.5). The

key advantage in considering F(M, 2) is the following.
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Theorem 8.0.3. There is a continuous map B Ḡ : B F(M, 2) −→ B T×2 (M) such that the com-

position B(r2) ◦ B Ḡ : B F(M, 2)→B T×1 (M) is homotopic to the delooping of the composition

F(M, 2)→G(TM) ↪→ T×1 (M) that forgets the S2-homotopy. In particular, the composition B(r1 ◦ r2)◦

B Ḡ : B F(M, 2)→B T×0 (M) is null homotopic.

The idea of the construction of such a map is simple. For a point ( f̄ ,H) ∈ F(M, 2) we can

define a map

G : F(M, 2) −→MapS2(M2,M2)I

by fixing an S2-equivariant tubular neighbourhood of the diagonal ϕ : TM ↪→ M2 and

defining (Gt)|TM as

Gt( f̄ ,H)(vp) :=



0p |vp| = 0

|vp| ·H1−t(vp/|vp|) 0 < |vp| ≤ 1

|vp| ·H1−t+(|vp|−1)·t(vp/|vp|) 1 ≤ |vp| ≤ 2

vp |vp| > 2

(8.2)

and (Gt)|M2\TM = Id outside the tubular neighbourhood. Observe that Gt : M2
→M2 is an

isovariant map S2-homotopic to the identity IdM2 = G0, and that G1 : M2
→M2 restricted to

the disk bundle of length ≤ 1 is the linear map f̄ on the fibres. Hence, the triple (IdM,G,G1)

is almost an element in T2 Emb(M,M) were it not for the lack of smoothness of the maps

defined. We will therefore find a weakly equivalent model of the Haefliger model where we

relax the smoothness conditions to require only smoothness on a tubular neighbourhood of

the diagonal.

In the following, we will pick a Riemannian metric on M which will also determine a

metric on an S2-equivariant tubular neighbourhood of the diagonal ν(∆M) ⊂ M2. But the

choice will not matter for the constructions.

Definition 8.0.4. Let IvMapC0
(M2,N2) be the space of isovariant maps with the subspace

topology of the space of continuous equivariant maps. For ε > 0 we define IvMapε(M2,N2)

as the subset of IvMapC0(M2,M2) of maps whose restriction to ν<ε(∆M) ⊂M2 is smooth and

satisfies the strong isovariance condition on ν<ε(∆M), and topologized as the subspace of

the inclusion

IvMapε(M2,N2) incl.×rest.
−−−−−−−→ IvMapC0

(M2,N2) ×MapS2
C∞(ν<ε(∆M),N2).

Then we define IvMap∆(M2,N2), the space of isovariant maps that are strongly isovariant

near the diagonal, as the colimit
⋃

n≥0 IvMap1/n(M2,N2). Finally, we define

T2 Emb(M,N) := holim
(
MapC0

(M,N)→MapS2
C0

(M2,N2)← IvMap∆(M2,N2)
)
, (8.3)
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where MapC0
(M,N) and MapS2

C0
(M2,N2) are the spaces of continuous maps with the usual

compact-open topology.

By inspection, the construction in (8.2) defines a map of topological monoids

G : F(M, 2) −→ T2 Emb(M,M). (8.4)

Proposition 8.0.5. The inclusion

T2 Emb(M,N) −→ T2 Emb(M,N)

is a weak homotopy equivalence.

Proof. Consider the comparison of homotopy pullback squares

T2 Emb(M,N) IvMap∆(M2,N2)

T2 Emb(M,N) IvMap(M2,N2)

MapC0
(M,N) MapS2

C0
(M2,N2)

MapC∞(M,N) MapS2
C∞

(M2,N2)

induced by the natural inclusions. The inclusion of the space of smooth maps into the space

of continuous maps is a weak equivalence since one can approximate all continuous maps

by smooth maps and continuous homotopies between smooth maps by smooth homotopies

(see for example [Hir94, Ch. 2]).

Similarly, the comparison IvMap(M2,N2)→ IvMap∆(M2,N2) is a weak equivalence. To

see this, observe that any element in [ f ] ∈ πk(IvMap∆(M2,N2)) is represented by a map

f whose image is contained in IvMap1/N(M2,N2) for some N ∈ N. This follows from an

adaptation of the proof of [Hat02, Prop. A.1] applied to IvMap∆(M2,N2) as the colimit of

metrizable spaces IvMap1/n(M2,N2). We can then approximate the adjoint of f by smooth

maps arbitrarily closely away from Sk
×ν<1/N(∆M) where the adjoint is already smooth. This

can be done equivariantly, for example by observing that MapS2(M2,N2) = Map(M2,N)

and then using ordinary smooth approximations, and preserving the isovariance condition

since the image of the complement Sk
× ν<1/N(∆M) is contained in some complement of a

tubular neighbourhood of the diagonal ∆N ⊂ N2 so that this remains true if the smoothing is
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close enough. This shows that IvMap(M2,N2)→ IvMap∆(M2,N2) is surjective on homotopy

groups and a relative argument shows injectivity.

It follows that the map on homotopy limits T2 Emb(M,N) −→ T2 Emb(M,N) is a weak

homotopy equivalence as the comparison maps in the diagram above are weak equivalences.

�

Remark 8.0.6. An alternative strategy for a proof is to follow the argument in [GKW03] and

check that it extends to this construction of T̄2 Emb(M,N) to prove it is a valid model for the

second Taylor approximation of the embedding functor. In fact, it generalizes for all k ≥ 2

for a weaker notion of admissable maps given by isovariant maps that are only smooth on a

neighbourhood of the fat diagonal and satisfy the strong isovariance condition. Everything

in section 3 and 4 of [GKW03] goes through, and the only adaption of the proof is their

Proposition 5.1, which holds also for the weakened version of admissable maps as it only

requires the existence of jets on the fat diagonal.

In some sense, this already constitutes a proof Theorem 8.0.3 because the Taylor tower

is only well-defined up to weak equivalence so we might as well use T
×

2 (M), where the

statement of Theorem 8.0.3 follows by inspection of the definition of G : F(M, 2)→T
×

2 (M).

On the other hand, if F(M, 2) is in TopCW we can also find lifts (up to homotopy) along the

weak equivalence T2(M) '→T
×

2 (M) so that the Theorem also holds for the Haefliger model.

Proof of Theorem 8.0.3. By [May75, Thm 6.4] the space F(M, 2) is in TopCW if both G(TM)

and hGS2(S(TM)) are. We can express both spaces as equivariant mapping spaces

G(TM) = MapSO(d)(Fr+(TM), SO(d))

hGS2(S(TM)) = MapSO(d)(Fr+(TM),hAutS2(Sd−1))

where SO(d) acts by conjugation on the targets. It follows directly from an equivariant

version of Milnor’s theorem [Wan80c, Cor. 4.13] thatG(TM) has the homotopy type of a CW

complex if M is compact. For hGS2(S(TM)) note that hAut(Sd−1) has the homotopy type of

a O(d)-CW complex by [Wan80c, Thm 4.12]. The symmetric group S2 < O(d) acts by the

antipodal map and the fixed points hAutS2(Sd−1) have the homotopy type of an SO(d)-CW

complex. It follows as above from [Wan80c, Cor. 4.13] that hGS2(S(TM)) ∈ TopCW.

Therefore F(M, 2) ∈ TopCW and there exist lifts (up to homotopy) along weak equivalences

T2 Emb(M,N) B T2 Emb(M,N)

F(M, 2) T2 Emb(M,N) B F(M, 2) B T2 Emb(M,N).

'w 'w

G

Ḡ

B G
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SinceG(TM) is a group, it follows that F(M, 2) is a grouplike topological monoids so that the

image of G lands in the homotopy invertible components of T̄2 Emb(M,N).

The second part of the theorem follows since r2 extends to T̄2 Emb(M,N) and r2G( f̄ ,H) = f̄

and r1r2G( f̄ ,H) = IdM as the bundle map f̄ covers the identity. �

We can now turn to computing the (rational) homotopy groups of F(M, 2) in order to

find counter examples with base space B = Sk for which the family signature theorem fails.

By definition, this involves the computation of rational homotopy groups of G(TM) and

hGS2(S(TM)). Equivalently, we can study the classifying space B F(M, 2), which reduces

to problem to computing the homotopy type of non-equivariant mapping spaces by the

following lemma.

Lemma 8.0.7. The delooping B F(M, 2) is equivalent to the homotopy fibre

hofibS(TM)

(
Map(M,B SO(d))TM −→Map(M,B hAutS2(Sd−1))S(TM)

)
. (8.5)

Proof. Observe that BG(TM) = Map(M,B SO(d))TM by [Hus94, Ch.7 Cor. 3.5] and the anal-

ogous statement holds for B hGS2(S(TM)) ' Map(M,B hAutS2(Sd−1))S(TM) by [BHMP84,

Prop. 4.3]. Furthermore, by [BHMP84, Thm 3.3] there are homotopy equivalences of H-

spaces

Ω Map(M,B SO(d))TM −→ G(TM)

Ω Map(M,B hAutS2(Sd−1)S(TM) −→ hGS2(S(TM))

so that the inclusionG(TM)→hGS2(S(TM)) corresponds to the map induced by the inclusion

B SO(d)→B hAutS2(Sd−1). The claim then follows. �

We can compute the homotopy groups of mapping spaces via the Federer spectral sequence

[Fed56]. For a map f : X→Y from a finite dimensional CW complex X to a simple space Y,

there is an extended spectral sequence (see [BK72, Ch. 9.4]) with E2-page

E2
p,q =

H−p(X;πq(Y)) p + q ≥ 0

0 p + q < 0

that converges to πp+q(Map(X,Y), f ). We will use a more general version available for the

space of sections of a fibration π : E→B with path connected and simple fibre F = π−1(b0)

for b0 ∈ B.

Theorem 8.0.8 ([Sch73, Thm 1.1]). If B is a finite dimensional CW complex and s : B→E a section

of π. Then there is a functorial spectral sequence with E2
p,q = H−p(B;πq(F, s(b0))) which converges
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to πp+q(Γ(π), s), where Γ(π) is the space of sections. Here, πq(F, s(b0)) is a local coefficient system by

lifting loops in B to the identity IdF, which gives a homomorphism π1(F)→Aut(πq(F, s(b0))).

Remark 8.0.9. The fact that F is simple implies that one can ignore base points so that

π1(F)→Aut(πq(F, s(b0))) is well-defined. Alternatively, one can describe the coefficient sys-

tem as a functor

πq(π) : Π(B)→Set∗, Gr, or Ab, b 7−→ πq(π−1(b), s(b)).

Note that the E2-page of the spectral sequence is independent of the section s, which enters

only in computing the differentials dr : Er
p,q→Er

p−r,q+r−1.

This recovers Federers spectral sequence for the trivial fibration X×Y→X and the section

defined by f : X→Y. One can construct this spectral sequence from an exact couple

associated to the long exact sequence of the homotopy groups associated to a Postnikov

tower of Y. Alternatively, following [KR19] it arises as a special case of the Bousfield-Kan

spectral sequence [BK72, Ch. 10.6] associated to the totalization of the cosimplicial space

with k-cosimplices the subspace of Map(∆k
× Singk(B),E) of pairs ( f : ∆k

→E, τ : ∆k
→B)

which satisfy π ◦ f = τ. The totalization is the space of sections of ε∗E→|Sing(B)| where

ε : |Sing(B)|→B is the weak equivalence that replaces a space by its singular complex. This

section space is weakly equivalent to Γ(π) by [KR19, Lem. 5.1].

Proposition 8.0.10. Let d be an even natural number, then B hAutS2(Sd−1) is simply connected and

rationally equivalent to K(Q, d).

Proof. The fundamental group of B hAutC2(Sd−1) is trivial by an equivariant version of

the Hopf degree theorem [tD79, Thm 8.4.1]. Alternatively, it follows from the fact that

the group of orientation preserving homotopy self-equivalences E+(RPd−1) is trivial [BG73,

Cor. 6]. This implies the claim as hAutS2(Sd−1)→hAut+(RPd−1) is an S2-covering with deck

transformation given by composing with the antipodal map, which is S2-homotopic to the

identity for d even.

We will compute the rational homotopy groups using yet another version of the Federer

spectral sequence for maps of principal bundles [Sch73, Thm 2.1]. This version is based on

the observation that maps in hAutS2(Sd−1) are self-maps of the principal bundle Sd−1
→RPd−1.

For principal G-bundles π : E→B and π′ : E′→B′ one can identify the space of G-equviariant

maps with the space of sections of π : E ×G E′→B which has fibre E′, whose homotopy

groups can be computed via the normal Federer spectral sequence.

In this case, the bundle π1 : (Sd−1
× Sd−1)/S2→RPd−1 has fibre Sd−1 and the action of

π1(RPd) on πd−1(Sd−1) is given by the antipodal map which is trivial for d even. Hence, the
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E2-page is E2
p,q = H−p(RPd−1;πq(Sd−1)) whose only infinite contribution for p + q > 0 is

E2
0,d−1 = πd−1(Sd−1)π1(RPd−1) = Z.

Therefore, E∞0,d−1 � Z and all other entries are finite groups. The resulting extensions for

π∗(hAutS2(Sd−1) ⊗ Q are trivial for all degrees except ∗ = d − 1 (note that the fundamental

group is abelian so that − ⊗Q is defined) and the result follows. �

We can compute the rational homotopy groups of Map(M2d,B hAutC2(S2d−1))S(TM) by

replacing the target with its rationalization K(Q, d). In general, for a finite CW complex X

and a nilpotent space Y with rationalization r : Y→YQ, the induced map on mapping spaces

Map(X,Y) f
r∗
−→Map(X,YQ)r f

is a rational equivalence for all maps f : X→Y by [HMR75, Thm 3.11]. We then need to

understand the space of maps into an Eilenberg-MacLane space. This problem has been

studied originally by Thom and he found that

Map(X,K(G,n)) f '

n∏
i=1

K(Hn−i(X; G), i)

for any map f : X→K(G,n) (see [Smi10] for references). Combining these two statement,

we find that for q ≥ 1

πq(Map(M2d,B hAutC2(S2d−1))S(TM)) ⊗Q � H2d−q(M;Q). (8.6)

The same strategy applies to Map(M,B SO(d))TM since the rationalization B SO(d)Q is a

product of Eilenberg-MacLane space determined by Pontrjagin classes and possibly the

Euler class depending on the parity of d, i.e. in even dimension this decomposition is

B SO(2d)Q '
∏d−1

i=1 K(Q, 4i) × K(Q, 2d). We can combine these computations in the following

statement.

Proposition 8.0.11. B F(M2d, 2) 'Q
∏d−1

i=1

(∏4i
k=1 K(H4i−k(M;Q), k)

)
.

Proof. Rationally, the composition B SO(2d)→B hAutS2(S2d−1)→B hAut+(S2d−1) corresponds

to the projection onto the Euler class. Hence, hofib(B SO(2d)→B hAutS2(S2d−1)) is rationally

given by a product of Eilenberg-MacLane spaces corresponding to the Pontrjagin classes.

The claim follows since B F(M, 2) is equivalent to Map(M,hofib(B SO(2d)→B hAutS2(S2d−1))

by Lemma 8.0.7. �
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In a last step, we need to determine the characteristic classes of the vector bundle asso-

ciated to the adjoint maps of non-trivial elements in π∗(Map(M,B SO(d))TM)). We will first

discuss the adjoint of homotopy classes in general for Map(X,K(G,n)) f .

The independence of the homotopy type of the path component f : X→K(G,n) is due to

the grouplike monoid structure of K(G,n) × K(G,n)→K(G,n), which induces a homotopy

equivalence − · f : Map(X,K(G,n))conste→Map(X,K(G,n)) f . A homotopy class of maps ā :

Sk
→Map(X,K(G,n))const is equivalent to a cohomology class α ∈ Hn−k(X; G) � Hn(Sk

∧X; G)

by considering the adjoint a : Sk
× X→K(G,n) via the correspondence a∗ιn = εk × α for a

generator εk ∈ Hk(Sk; G). If we consider the map ā · f : Sk
→Map(X,K(G,n)) f , it has as adjoint

Sk
× X

a×( f◦πX)
−−−−−−−→ K(G,n) × K(G,n) −→ K(G,n)

and hence ιn is pulled back to

εk × α + 1 × f ∗(ιn) ∈ Hn(Sk
× X; G). (8.7)

We can now come to the proof of the main theorem of this section.

Proof of 8.0.1. For d/2 < i ≤ d − 1 consider an element [α] ∈ π4i−2d(B F(M, 2)) such that for

some λ ∈ Q× the element [α]⊗λ corresponds to the generator of the fundamental class εM ∈

H2d(M;Z)→H2d(M;Q) � π4i−2d(K(H2d(M;Q), 4i−2d)) in the decomposition from Proposition

8.0.11. Then the adjoint of the composition S4i−2d
→B F(M, 2)→Map(M,B SO(d))TM gives a

vector bundle TπE→S4i−2d
×M whose rational characteristic classes can be computed by

post-composing with the rationalization B SO(2d)→B SO(2d)Q. Hence, the ith Pontrjagin

class is pi(TπE) = λ · ε4i−2d × εM + 1 × pi(M) by (8.7).

By Theorem 8.0.3, the following square commutes up to homotopy

B F(M, 2) BG(TM)

B T×2 (M) B T×1 (M)

B Ḡ
B(r2)

and since the upper right corner is equivalent to Map(M,B SO(d))TM it follows that the vector

bundle TπE→S4i−2d
×M is equivalent to the pullback of the TM-fibration TπE2→E2 along

a : S4i−2d α
−→ B F(M, 2) B G

−−−→ B T×2 (M).

Therefore the MMM-class κpi pulls back to λ · ε4i−2d, and is a non-zero multiple of κLi

since the fibre integrals of products of lower Pontrjagin classes vanish by construction.

Since the composition B F(M, 2)→B T×2 (M)→B T×0 (M) is null-homotopic by Theorem 8.0.3,

the signature classes vanish and the family signature theorem fails for the map a above. �
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Appendix A.

Classifying spaces and fibrations

Let us start by briefly motivating the classification theory of May guided by the classifica-

tion theory of fibre bundles we have discussed in the introduction. This appendix is based

on [May75] and the goal is to give an account of May’s unified approach to the classifi-

cation theory of fibrations, and some of the techniques and concepts that have been used

extensively in the second part of this thesis.

Definition A.1 ([May75, Def. 4.1]). A category of fibres (F ,F) is a category F with a faith-

ful underlying space functor F→Top and a distinguished object F, and mapping spaces

for X,X′ ∈ F given as subspace Map
F

(X,X′) ⊂ Map(X,X′)w.eq. of the collection of path

components of weak homotopy equivalences such that for all X ∈ F the space Map
F

(F,X)

is non-empty and for every φ ∈ Map
F

(F,X) post-composition induces a weak equivalence

φ∗ : Map
F

(F,F)→Map
F

(F,X).

The objects should be thought of as the allowed preimages of an F -fibration π : E→B

[May75, Def. 2.1] for any point b and the morphisms should be thought of as the quality of

homotopy lifting functions.

Example A.2. (i) Let F ∈ TopCW and (TopCW(F),F) be the category of fibres with objects

all spaces homotopy equivalent to F and MapTopCW(F)(X,X
′) = Map(X,X′)h.eq. the space

of all homotopy equivalences.

(ii) Let F ∈ TopCW and (Top(F),F) be the category of fibres with objects all spaces of the

same weak homotopy type as F and MapTop(F)(X,X
′) = Map(X,X′)w.eq. the space of all

weak equivalences.

(iii) Let E→B be an oriented vector bundle and (TopCW(E→B),E) be the category of fibres

with objects all orientated vector bundles E′→B′ for which there exists maps

E E′

B B′

f̄

f
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where f is a homotopy equivalence and f̄ is an fibrewise linear orientation preserving

isomorphism. The space of maps is given by tangential homotopy equivalences.

The key step in the classification theory is exactly the same as for fibre bundles, namely

the construction of a contractible principal G-bundle E G→B G, where G = Map
F

(F,F) is

the topological monoid of automorphisms of the distinguished fibre in F . Then there is

a formally equivalent classification theory of G-Prin(B), equvialence classes of principal

G-bundles over reasonable base spaces B, as well as equvialence classes of F -fibrations

BunF (B)

[B,B G] 1:1
−→ G-Prin(B) 1:1

−→ BunF (B)

where the maps are induced by pull back of the universal principal G-bundle and the as-

sociated F -fibration. We will briefly discuss the construction of the contractible principal

G-bundle, some properties of the bar construction and the classification theory. The con-

structions are based on the notion of simplicial sets and spaces (see for example [May67]).

Definition A.3. Let G be a topological monoid and let X and Y be left and right G-spaces.

Then the two-sided bar construction B•(X,G,Y) is the simplicial space with n-simplices

given by X × Gn
× Y and face and degeneracy operators given by

di(y[g1, . . . , gn]x) =


yg1[g2, . . . , gn]x i = 0

y[g1, . . . , gi−1, gigi+1, . . . , gn]x 1 ≤ i < n

y[g1, . . . , gn−1]gnx i = n

and si(y[g1, . . . , gn]x) = y[g1, . . . , gi, e, gi+1, . . . , gn]x 0 ≤ i ≤ n.

Denote by B(Y,G,X) the geometric realization of this simplicial space.

The bar construction is functorial with respect to maps (k, f , j) : (Y,G,X)→(Y′,G′,X′) of

triples as above, where f : G→G′ is a map of topological monoids and k : X→X′ and

j : Y→Y′ are f -equivariant. Then (k, f , j) induces a map of the simplicial spaces above and

thus a map of geometric realizations

B(k, f , j) : B(Y,G,X) −→ B(Y′,G′,X′).

With this, we can already define the contractible principal fibration as

E G := B(∗,G,G)
B(Id∗,IdG,const)
−−−−−−−−−−−→ B(∗,G, ∗) =: B G. (A.1)

We will now discuss some properties of the bar construction that we need later-on and that

will provide some justification of the classification property of (A.1).
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There is an additional technical condition on the pair (G, e) that we have to assume

throughout, namely that it is a strong NDR-pair [May72, Def. A.1]. One can easily make

any topological monoid well-pointed [May72, App. A.8] by adding an interval to the identity

element and giving the whiskered space G′ the obvious multiplication such that G′→G is a

map of monoids with new unit the endpoint of the interval. In particular, any G-space will

be a G′-space and so we can largely ignore this technical subtlety for our discussion.

Proposition A.4 ([May75, Prop. 7.3]). If k, f and j are homotopy equivalences, then so is B(k, f , j).

For maps f : Z→Y × X and h : Y × X→Z satisfying h(yg, x) = h(y, gx) for all g ∈ G, there

are induced maps

τ( f ) : Z −→ B(Y,G,X) and ε(h) : B(Y,G,X) −→ Z. (A.2)

These maps can be defined as maps of simplicial spaces τ( f )• : Z•→B(Y,G,X) respectively

ε(h)• : B(Y,G,X)→Z• where Z• is the constant simplicial space Zq = Z with all face and

degeneracy maps being identities, and where the simplicial maps are given by τ( f )q := sq
0 ◦ f

and ε(h)q := h ◦ dq
0. Evidently, τ( f ) factors through the inclusion of the space of 0-simplices

and ε(h) factors through the quotient map Y ×G X→Z.

Now consider the triple (G,G,X) for a left G-space X. It has maps as above with f =

conste × IdX : X→G × X and h given by the action, and we denote the induced maps of the

geometric realization as τ = τ( f ) and ε = ε(h).

Proposition A.5 ([May75, Prop. 7.5]). ε : B(G,G,X)→X is a map of left G-spaces and a strong

deformation retraction with inverse τ.

This implies for example that E G is contractible. The next theorem, which is a mild

generalization of [May75, Thm 7.6], implies that the inclusion of the fibre of (A.1) into the

homotopy fibre is a homotopy equivalence. This property has been formalized by Dold and

Thom and studied in [DT58].

Definition A.6. A map π : E→B is a quasi-fibration if it is surjective and the inclusion

π−1(b) ↪→ hofibb(π) is a weak homotopy equivalence for all b ∈ B. A subspace is called

distinguished if the restriction π|π−1(A) : π−1(A)→A is a quasi-fibration.

There is a standard inductive procedure to check whether a map is a quasifibration due

to Dold and Thom.

Proposition A.7 ([May72, Lem. 7.2]). Let p : E→B be a map onto a filtered space B = ∪F jB. Then

each F jB is distinguished and p is a quasi-fibration provided that
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(1) F0B and every open subset of F jB \ F j−1B for j > 0 is distinguished.

(2) For each j > 0, there is an open subset U of F jB which contains F j−1B and there are homotopies

ht : U→U and Ht : p−1(U)→p−1(U) such that

(a) h0 = Id, ht(F j−1B) ⊂ F j−1B and h1(U) ⊂ F j−1B;

(b) H0 = Id and H covers h, i.e. pHr = htp; and

(c) H1 : p−1(x)→p−1(h1(x)) is a weak equivalence for all x ∈ U.

Note that a pullback square of quasi-fibrations is a homotopy pullback square. In partic-

ular, it is fibre-homotopy equivalent to the square obtained by applying Γ to the projections.

Theorem A.8. Let G be a grouplike topological monoid and p : X→Y be a left G-map that is a

fibration and Z a right G-space. Then P := B(Id, Id, p) : B(Z,G,X)→B(Z,G,Y) is a quasifibration.

Remark A.9. Before we give the proof, we should point out that May proved this statement

for Y = ∗ and the argument below is exactly the same but only mildly modified. One

can identify the homotopy fibre of P using May’s original statement by combining it with

[May75, Prop. 7.8]. However, we find it convenient to have this more general statement at

our disposal and it seems quite natural to prove the statement in this generality.

Proof. We closely follow May’s argument here, which is based on the work of Dold and

Thom about gluing conditions for quasifibrations [DT58] (see [May72, Lem. 7.2]).

Consider the filtration Fi B(Z,G,X) and Fi B(Z,G,Y) by skeleta [May72, Def. 11.1] satisfying

P−1Fi B(Z,G,Y) = Fi B(Z,G,X). In the following, we occasionally abbreviate the filtration by

Fi if it is clear from context if we talk about the filtration of the source or the target of P.

Then

P|F0 : F0 B(Z,G,X) = Z × X
Id×p
−−−−→ F0 B(Z,G, ,Y) = Z × Y,

and the restriction to Fi B(Z,G,X) \ Fi−1 B(Z,G,X) = (Fi B(Z,G, ∗) \ Fi−1 B(Z,G, ∗))×X is given

by

P|Fi−Fi−1 : (Fi B(Z,G, ∗) \ Fi−1 B(Z,G, ∗)) × X
Id×p
−−−−→ (Fi B(Z,G, ∗) \ Fi−1 B(Z,G, ∗)) × Y.

Hence, the first condition of the gluing condition of quasifibrations [May72, Lem. 7.2] is satis-

fied. It remains to check the second condition, i.e. that for each i > 0 there is a neighbourhood

U of Fi B(Z,G,Y) \ Fi−1 B(Z,G,Y) and deformation retractions h and H of U and P−1U onto

Fi−1 B(Z,G,Y) respectively Fi−1 B(Z,G,X) compatible with P so that H1 : P−1(y)→P−1(h1(y))

is a weak equvialence for all y ∈ U.
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Such deformation retractions exists by precisely the same argument as [May72, Lem. 7.2],

and it is exactly at this point that the strong NDR condition is needed. It remains to check that

they induce weak equvialences of the fibres. To check this, let [y] = [z[g1, . . . , gi]y, a] ∈ U\Fi−1

so that gi , e for all i. Then h1([y]) is represented by a non-degenerate representative

[z′[g′1, . . . , g
′

j]y′, a′] with j < i. Since we can choose constant homotopies representing

the strong NDR pairs (X, ∅), (Y, ∅) and (Z, ∅), the non-degenerate representative of h1([y]) is

determined through the pair (k : Gi
×∆i
×I→Gi

×∆i, v : Gi
×∆i
→I) representing the strong NDR

pair (G, e)i
× (∆ j, ∂∆ j): If k1(g1, . . . , gi, a) = (g′′1 , . . . , g

′′

i , a
′′) then h1([y]) = (z[g′′1 , . . . , g

′′

i ]y, a′′)

and the corresponding non-degenerate is determined in [May72, Lem. 11.3], and it follows

that y′ = gy for g ∈ G independent of y and z. Hence, we get a diagram as

p−1(y) ⊂ X p−1(gy) ⊂ X

P−1([y]) P−1(h1[y])

g

ι ι′

H1

where ι and ι′ are homeomorphisms that send x ∈ p−1(y) to [z[g1, . . . , gi]x, a] ∈ P−1([y]) and

similarly for ι′. The key observation is that the non-degenerate representative of H1(ι(x))

agrees with ι′(gx). This is because it is determined again basically through k1(g1, . . . , gi, a).

But then we can complete the square as indicated, and since g restricts to a homotopy

equivalence of the fibres, the claim follows. �

Combining the previous two statements, we see that E G→B G is a principal quasi-

fibration with fibre G and with contractible total space. This is essentially all the necessary

properties needed to mimic the classification property of E G→B G in the classification the-

ory for principal bundles for groups, and thus justifies that one should think of (A.1) as the

universal G-quasifibration.

One last technical point is that quasi-fibrations are not preserved under pullbacks. Hence,

in order to state the classification theorem via pullbacks of universal bundles, we need to

replace quasi-fibrations byF -fibrations. This is done via the usual construction that replaces

a map π : E→B by a fibration Γπ : ΓE→B defined as

ΓE :=
{
(γ, s, e) ∈Map([0,∞],B) × [0,∞] × E

∣∣∣γ(0) = π(e), γ(t) = γ(s)∀t ≥ s
} evs
−→ B (A.3)

(see [May75, Def. 3.2]). In this generality, we need as additional assumption that Γ turns

F -quasifibration into F -fibrations. A category of fibres for which this is true is called Γ-

complete [May75, Def. 5.1]. In practice, we are mostly interested in the categories of fibre

corresponding to Hurewicz fibrations with a given fibre which are Γ-complete [May75,
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Lem. 6.8]. With this in mind, the universal F -fibration is given by

π : Γ B(∗,G,F) −→ B(∗,G, ∗) = B G (A.4)

where G = Map
F

(F,F) acts on F by evaluation. We can now state May’s main theorem.

Theorem A.10 ([May75, Thm 9.2]). Let (F ,F) be a Γ-complete category of fibres with G =

Map
F

(F,F). For a space B of the homotopy type of a CW complex, there is a natural bijection

[B,B G] 1:1
−→ BunF (B).

[ f : B→B G] 7−→ [ f ∗Γ B(∗,G,F)→B]

We will need two more results. The first is useful for comparing quasifibration sequences

obtained from bar constructions.

Proposition A.11 ([May75, Prop. 7.5]). Let (k, f , Id) : (Z,H,X)→(Y,G,X) be a morphism of

triples above. Then the following diagrams are pullbacks

B(Z,H,X) B(Y,G,X)

B(Z,H, ∗) B(Y,G, ∗)

B(k, f ,Id)

B(k, f ,Id)

and
B(Y,G,X) B(∗,G,X)

B(Y,G, ∗) B(∗,G, ∗)

,

where all unlabeled arrows are induced by the (equivariant) maps to a point.

The second statement is useful to study product actions and diagonal maps.

Proposition A.12 ([May75, Prop. 7.4]). For triples (Y,G,X) and (Y′,G′,X′) we can form the triple

(Y × Y′,G × G′,X × X′) via the product actions, and the projections of simplicial spaces define a

natural homeomorphism

B(Y × Y′,G × G′,X × X′) ≈
−→ B(Y,G,X) × B(Y′,G′,X′)

Corollary A.13. Consider two triples (Y,G,X) and (Y,G,X′). Then B(Y,G,X × X′) is naturally

homeomorphic to B(Y,G,X)×B(Y,G,∗) B(Y,G,X′) where we equip X×X′ with the product action. The

homeomorphism is induced by the projections πX : X × X′→X and πX′ : X × X′→X′.

Proof. Consider the cube

B(Y,G,X × X′) B(Y,G,X) ×B(Y,G,∗) B(Y,G,X′)

B(Y2,G2,X × X′) B(Y,G,X) × B(Y,G,X′)

B(Y,G, ∗) B(Y,G, ∗)

B(Y2,G2, ∗) B(Y,G, ∗) × B(Y,G, ∗)

≈

B(π)×B(π′)

B(∆)
∆

≈

where
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• the left face is induced by maps of triples given by the diagonal map ∆ : G→G × G

and projections,

• the horziontal homeomorphisms are those of Proposition A.12,

• the right face is the pullback square of the diagonal ∆ and the vertical map B(π1)×B(π2)

induced by the projections π : X→∗ and π′ : X′→∗.

The commutativity of all square can be checked on the level of simplicial spaces. Since the

right face is a pullback by definition, it follows from commutativity that there is a map

B(Y,G,X × X′) −→ B(Y,G,X) ×B(Y,G,∗) B(Y,G,X′)

induced by the G-equivariant projectons πX : X × X′→X and πX′ : X × X′→X′. More-

over, since the left square is a pullback by Proposition A.11 and all horizontal maps are

homeomorphisms, this map is a homeomorphism. �

A.1. Equivariant classifying spaces and fibrations

We will discuss here a generalization of [May75] to the equivariant setting due to Waner

[Wan80a, Wan80b, Wan80c]. In the following, we fix a compact Lie group H and work in

the category HTop of compactly generated weak Hausdorff spaces with an action of H.

We will give the definition of equivariant fibrations and quasifibrations, and for the latter

we will need to introduce equivariant homotopy groups defined for a pair (X,Y) ∈ HTop as

equivariant homotopy classes of maps

πH′
n (X,Y;φ; H) := πn(XH′ ,YH′ ,Q)

where H′ ⊂ H is an arbitrary closed subgroup and φ : H/H′→Y is an H-map that serves

as basepoint and Q denotes the image (this is slightly modified from [Wan80c, Def. 2.1] but

equivalent).

Definition A.14 ([Wan80b]). A map p : E→B in HTop is an H-equivariant fibration if it

satisfies the H-covering homotopy property. It has fibre F if for each b ∈ B there is some

action of the isotropy group Hb on F such that it is Hb-homotopy equivalent to p−1(b) which

has an Hb-action by restriction. The map p is called an H-quasifibration if

p∗ : πH′
n (E, p−1(b);φ; Hb) −→ πH′

n (B, b; pφ; Hb)

is an isomorphism for each b ∈ B, closed subgroup H′ ⊂ Hb and basepointφ : Hb/H′→p−1(b).
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Remark A.15. The homotopy fibre of an equivariant map p : E→B has a natural action and

the definition of an equivariant quasi-fibration is equivalent to the inclusion p−1(b)→hofibb p

inducing an isomorphism on equivariant homotopy groups for all p ∈ B and subgroups

H′ ⊂ Hb of the corresponding isotropy group.

Since we are only interested in base spaces with a trivial action of H so that the isotropy

groups above always coincide with H, this leads to a considerable simplification in that we

do not need to introduce equivariant categories of fibres. Instead, we can define a category

of fibres for F ∈ HTopCW as in [Wan80b, Def. 1.3.2] (for the special case of α = H) which is a

category of fibres in the sense of Definition A.1:

• Let (HTop(F),F) be the category of fibres with objects X ∈ HTop(F) of the same weak H-

equivariant homotopy type and as mapping spaces all equivariant weak equivalences.

• Let (HTop(F)CW,F) be the category of fibres with objects X ∈ HTop(F) of the same

H-equivariant homotopy type and as mapping space all equivariant homotopy equiv-

alences.

Proposition A.16. Let hAutH(F) denote the space of H-equivariant homotopy equivalences of F.

Then

B(∗,hAutH(F),F) −→ B hAutH(F)

is an H-equivariant quasifibration.

Proof. This is a special case of Proposition 2.2.3 in [Wan80a] for the equivariant category of

fibres ([Wan80a, Def. 1.1.1]) with only one distinguished object F→H/H, so that Λ is a point

and the Λ-monoid (i.e. ordinary monoid) is hAutH(F).

Alternatively, we can yet again check the details in the proof of Theorem A.8 and observe

that the in this situation, we can apply an equivariant version of Lemma A.7 (see [Wan80b,

Lem. 2.3]) to conclude the statement. �

Waner proves an equivariant Γ-completeness which implies that Γ applied to the map in

Proposition A.16 above gives an H-equivariant fibration which is universal.

Theorem A.17 ([Wan80a, Thm 2.4.1]). B hAutH(F) is the classifying space of (HTopCW(F),F)-

fibrations over H-trivial base spaces.
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Appendix B.

Computations

In this appendix we collect all computational results about the Euler ring and homotopical

tautological ring involving computations in Macaulay2.

Example B.1. In this example we finish the proof of Theorem 4.2.16. First, we give the
Macaulay2 code for the complete intersections for universal 1-connected fibrations with
fibre S2

× S2 respectively CP2#CP2 from (4.9) respectively (4.10).

X=S2xS2

B=QQ[a1,a2,b1,b2,Degrees=>{2,2,4,4}];

E=B[x1,x2]/ideal(x1^2-b1-x2*a2,x2^2-b2-x1*a1);

e=4*x1*x2-a1*a2;

T=QQ[k1,k2,k4]

f=map(B,T,matrix{{coefficient(x1*x2,e^2),coefficient(x1*x2,e^3),coefficient(x1*x2,e^5)}});

X=CP2#CP2

B=QQ[a1,a2,b1,b2,Degrees=>{2,2,4,4}];

E=B[x1,x2]/ideal(x1*x2-b1-x2*a2-x1*a1,x1^2-x2^2-b2);

e=2*(x1^2+x2^2)-2*(x1*a2+x2*a1);

T=QQ[k1,k2,k4]

f=map(B,T,matrix{{coefficient(x2^2,e^2),coefficient(x2^2,e^3),coefficient(x2^2,e^5)}});

In both cases, the kernel of f is trivial so that κ1, κ2, κ4 are algebraically independent.

Next we compute the Euler ring for six dimensional positively elliptic spaces. The case

b2(X) = 1 corresponds to S6, CP3 or S2
× S4, where the first two cases are settled already and

it remains to compute E∗0(S2
× S4).

• The minimal model is Λ := (Λ(x2, x4, y3, y7), d = x2
2∂y3 + x2

4∂y7) with |xi| = i and |yi| = i.

• The derivation Lie algebra Der+(Λ) is bigraded by total degree and the restrictions

V→ΛV � ΛiV corresponding to product length. We say a derivation θ has bidegree

(n,m) if it lowers degree by n and θ(V) ⊂ Λm+1V. Then Der+(Λ) has a homogeneous
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basis with respect to bidegree give by

−1 0 1 2

1 x2∂y3 x2x4∂y7 x3
2∂y7

2 ∂x2 x2∂x4 x2y3∂y7

3 ∂y3 x4∂y7 x2
2∂y7

4 ∂x4 y3∂y7

5 x2∂y7

7 ∂y7

where the rows correspond to the total degree and the columns to product length. For

S2
× S4 the differential d is homogeneous of bidegree (−1, 1) and thus [d,−] is a differ-

ential of the same bidegree and we have indicated above the non-trivial differentials

for Der+(Λ).

Hence, a := Q{∂y3, x2∂y7, ∂y7} is a quasi-isomorphic abelian Lie subalgebra with trivial

differential.

• Hence, the complete intersection describing the universal 1-connected fibration is

B = Q[z4, z6, z8] −→ E = B[x2, x4]/(x2
2 − z4, x2

4 − x2z6 − z8)

with fibrewise Euler class efw = 4x2x4 by Theorem 4.1.10. One can easily compute by

hand that κ1 = 0 and κ2 = 64z4z8 and with only slightly more effort that κ4 = 1024z3
4z2

6+

1024z2
4z2

8. Hence, κ2 and κ4 are algebraically independent and E∗0(S2
× S2) � Q[κ2, κ4].

For b2(X) = 2 there are three cases corresponding to CP2
× S2, CP3#CP3 and SU(3)/T2.

The underlying graded commutative algebra of a minimal model in all cases is given by

Λ := Λ(x1, x2, y3, y5) with |xi| = 2 and |yi| = i. The differentials are not homogeneous with

respect to the bidegree yet we find it convenient to display a basis of Der+(Λ) with respect

to bidegree:
−1 0 1

1 xi∂y3 x2
i ∂y5, x1x2∂y5

2 ∂xi y3∂y5

3 ∂y3 xi∂y5

5 ∂y5
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• The minimal model of S2
× CP2 is (Λ, d = x2

1∂y3 + x3
2∂y5). The non-trivial differentials

in (Der+(Λ), [d,−]) are

[d, ∂x1] = −2x1∂y3 [d, ∂x2] = −3x2
2∂y5 [d, y3∂y5] = x2

1∂y5

and one can see that a := Q{x2∂y3, x1x2∂y5, x1∂y5, x2∂y5, ∂y3, ∂y5} defines a quasi-

isomorphic abelian Lie subalgebra with trivial differential. Hence, the complete inter-

section describing the universal 1-connected fibration is

π∗ : B = Q[a2, b2, a4, b4, z4, z6] −→ E = B[x1, x2]/(x2
1−x2a2−z4, x3

2−x1x2b2−x1a4−x2b4−z6)

where the generators of B correspond to a dual basis of a in the same order. The

fibrewise Euler class is efw = 2x1(3x2
2 − x1b2 − b4) − a2(x2b2 + a4).

• The minimal model of CP3#CP3 is (Λ, d = x1x2∂y3 + (x2
1 − x2

2)∂y5). The non-trivial

differentials in (Der+(Λ), [d,−]) are

[d, ∂x1] = −x2∂y3 − 2x2
1∂y5

[d, ∂x2] = −x1∂y3 + 2x2
2∂y5

[d, y3∂y5] = x1x2∂y5

and one can see that a := Q{x1∂y3, x2∂y3, x1∂y5, x2∂y5, ∂y3, ∂y5} defines a suitable Lie

subalgebra. Hence, the complete intersection describing the universal 1-connected

fibration is

π∗ : B = Q[a2, b2, a4, b4, z4, z6] −→ E = B[x1, x2]/(x3
1−x3

2−x1a4−x2b4−z6, x1x2−x1a2−x2b2)

and the fibrewise Euler class is efw = (3x2
1 − a4)(x1 − b2) − (−3x2

2 − b4)(x2 − a2).

• The minimal model of SU(3)/T2 is (Λ, d = (x2
1 + x1x2 + x2

2)∂y3 + (x2
1x2 + x1x2

2)∂y5). The

non-trivial differentials in (Der+(Λ), [d,−]) are

[d, ∂x1] = −(2x1 + x2)∂y3 − (2x1x2 + x2
2)∂y5

[d, ∂x2] = −(x1 + 2x2)∂y3 − (x2
1 + 2x1x2)∂y5

[d, y3∂y5] = (x2
1 + x1x2 + x2

2)∂y5

and one can see that a := Q{x2
1∂y5, x2

2∂y5, x1∂y5, x2∂y5, ∂y3, ∂y5} defines a suitable Lie

subalgebra. Hence, the complete intersection over B = Q[a2, b2, a4, b4, z4, z6] describing

the universal 1-connected fibration is

E = B[x1, x2]/(x2
1 + x1x2 + x2

2 − z4, x2
1x2 + x1x2

2 − x2
1a2 − x2

2b2 − x1a4 − x2b4 − z6)

with efw = (2x1 + x2)(x2
1 + 2x1x2 − 2x2b2 − b4) − (x1 + 2x2)(2x1x2 + x2

2 − 2x1a2 − a4).
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We check algebraic independence using Jacobian criterion (adding a2 as a generator so that
we can compute determinants) via the following Macaulay2 code.

X=CP2xS^2

B=QQ[a2,b2,a4,b4,z4,z6,Degrees=>{2,2,4,4,4,6}];

E=B[x1,x2]/ideal(x1^2-x2*a2-z4,x2^3-x1*x2*b2-x1*a4-x2*b4-z6);

e=2*x1*(3*x2^2-x1*b2-b4)-a2*(x2*b2+a4);

T=matrix{{coefficient(x1*x2^2,e^2),coefficient(x1*x2^2,e^3),

coefficient(x1*x2^2,e^4),coefficient(x1*x2^2,e^5)

coefficient(x1*x2^2,e^7),a2}};

det(jacobian T)

X=CP3#CP3

B=QQ[a2,b2,a4,b4,z4,z6,Degrees=>{2,2,4,4,4,6}];

E=B[x1,x2]/ideal(x1^3-x2^3-x1*a4-x2*b4-z6,x1*x2-x1*a2-x2*b2-z4);

e=(3*x1^2-a4)*(x1-b2)-(-3*x2^2-b4)*(x2-a2);

T=matrix{{coefficient(x2^3,e^2),coefficient(x2^3,e^3),

coefficient(x2^3,e^4),coefficient(x2^3,e^5),

coefficient(x2^3,e^7)a2X}};

det(jacobian T)

X=SU(3)/T2

B=QQ[a2,b2,a4,b4,z4,z6,Degrees=>{2,2,4,4,4,6}];

E=B[x1,x2]/ideal(x1^2+x1*x2+x2^2-z4,x1^2*x2+x1*x2^2-x1^2*a2-x2^2*b2-x1*a4-x2*b4-z6);

e=-(2*x1+x2)*(x1^2+2*x1*x2-2*x2*b2-b4)+(x1+2*x2)*(2*x1*x2+x2^2-2*x1*a2-a4);

T=matrix{{coefficient(x1*x2^2,e^2),coefficient(x1*x2^2,e^3),

coefficient(x1*x2^2,e^4),coefficient(x1*x2^2,e^5),

coefficient(x1*x2^2,e^7),a2}};

det(jacobian T)

Example B.2. Macaulay2 code for producing partial results about R∗h,0(S2
× S2) based on

the algebraic model in Example 5.1.10. The generating set of the tautological ring is given

by {κp2
1
, κp3

1
, κep1 , κep2

1
, κe2 , κe2p1

, κe3 , κe3p1
, κe5} (see [RW19]). We compute the ideal of relations

among the first seven generators as the computation of the ideal of relations of all generators

does not stop otherwise. The result of the computation is that the ideal of relations – defined

as the ideal I below – is generated by one element displayed in (5.12).

B=QQ[a1,a2,b1,b2,p10,p11,p12,Degrees=>{2,2,4,4,4,2,2}];

E=B[x1,x2]/ideal(x1^2-b1-x2*a2,x2^2-b2-x1*a1);

e=4*x1*x2-a1*a2;

p=p10+p11*x1+p12*x2;

T=QQ[k02,k03,k11,k12,k20,k21,k30];

f=map(B,T,matrix{{coefficient(x1*x2,p^2),coefficient(x1*x2,p^3),
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coefficient(x1*x2,e*p),coefficient(x1*x2,e*p^2),

coefficient(x1*x2,e^2),coefficient(x1*x2,e^2*p),

coefficient(x1*x2,e^3)}});

gbTrace=2;

I=ker f;

Remark B.3. We have used the mathematica notebook in [McT14] to compute the Hirze-
bruch L-polynomials.

K[Q_,n_Integer]:=Module[{z,x},SymmetricReduction[SeriesCoefficient[

Product[ComposeSeries[Series[Q[z],{z,0,n}],

Series[x[i]z,{z,0,n}]],{i,1,n}],n],Table[x[i],{i,1,n}],

Table[Subscript[c,i],{i,1,n}]][[1]]//FactorTerms]

# replace n by natural number to compute n-th Hirzebruch polynomial

K[Sqrt[#]/Tanh[Sqrt[#]]&,n]/.c->p

It produces the L-polynomial in the infinite polynomial ringQ[p1, p2, . . .], and we manually

set pi = 0 for i > n and e2 = pn in computations for a manifold of dimension 2n.

Example B.4. We compute R∗h,0(S2
× S2)/(I≤12

H ∩ R∗h,0(S2
× S2)). We use the same model as in

the previous example and add the MMM-classes associated to the Hirzebruch L-classes.

B=QQ[a1,a2,b1,b2,P10,P11,P12,Degrees=>{2,2,4,4,4,2,2}];

E=B[x1,x2]/ideal(x1^2+b1+x2*a2,x2^2+b2+x1*a1);

e=4*x1*x2-a1*a2;

p1=P10+P11*x1+P12*x2;

p2=e^2;

# the following terms are necessary for the L-classes but vanish for degree reason

p3=0;

# repeat until i=12

p12=0;

L1=p1/3;

L2=(7*p2-p1^2)/45;

L3=(2*p1^3-13*p2*p1+62*p3)/945;

L4=(-3*p1^4+22*p2*p1^2-71*p3*p1-19*p2^2+381*p4)/14175;

# we omit printing the formulas for L5,...,L12

I12=ideal(coefficient(x1*x2,L2),coefficient(x1*x2,L3),

coefficient(x1*x2,L4),coefficient(x1*x2,L5),

coefficient(x1*x2,L6),coefficient(x1*x2,L7),

coefficient(x1*x2,L8),coefficient(x1*x2,L9),

coefficient(x1*x2,L10),coefficient(x1*x2,L11),
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coefficient(x1*x2,L12));

H=QQ[a1,a2,b1,b2,P10,P11,P12,k20,k03,k11,k12,k30,k31,k50,MonomialOrder => Eliminate 7];

i=map(H,B,matrix{{a1,a2,b1,b2,P10,P11,P12}});

J1=ideal(k20-i(coefficient(x1*x2,e^2)),k03-i(coefficient(x1*x2,p1^3)),

k11-i(coefficient(x1*x2,e*p1)),k12-i(coefficient(x1*x2,e*p1^2)),

k30-i(coefficient(x1*x2,e^3)),k31-i(coefficient(x1*x2,e^3*p1)),

k50-i(coefficient(x1*x2,e^5)));

J2=i(I12);

J=J1+J2;

I=selectInSubring(1,gens gb J)

This computation produces a presentation of R∗0(S2
× S2)/(I≤12

H ∩ R∗0(S2
× S2)). We will not

display the relations here but instead only compute the Hilbert Series, which is given by

((1 − T16)(1 − T12)(1 − T8)3(1 − T4)2)−1
(
1 − T12

− 2T16
− 3T20

− 3T24 + 4T28 + 6T32 + 13T36 + 14T40
− 11T44

−39T48
− 26T52 + 16T56 + 39T60 + 31T64

− 7T68
− 31T72

− 23T76 + 5T80 + 21T84 + 2T88
− 6T92

)
We have displayed a simplified expression for it in Proposition 5.2.2.

We can then compute the intersection with the Euler ring for Proposition 5.2.3 with the
following Macaulay2 code:

S=B/I;

H=QQ[k1,k2,k4];

f=map(S,H,matrix{{k20,k30,k50}});

K=ker f;
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Proposition B.5. The following elements are in the kernel of E∗(CP2#CP2)→R∗(CP2#CP2):

• 380305504κ3
1κ

4
2 − 760611008κ1κ

5
2 − 850381875κ7

1κ4 + 5015695500κ5
1κ2κ4 − 11175572425κ3

1κ
2
2κ4

+ 9091417850κ1κ
3
2κ4 + 1139406250κ3

1κ
2
4 − 2278812500κ1κ2κ

2
4,

• 380305504κ5
1κ

3
2 − 1521222016κ1κ

5
2 − 3904612875κ7

1κ4 + 22320565900κ5
1κ2κ4

− 47604525745κ3
1κ

2
2κ4 + 37163690890κ1κ

3
2κ4 + 4392856250κ3

1κ
2
4 − 8785712500κ1κ2κ

2
4,

• 380305504κ7
1κ

2
2 − 3042444032κ1κ

5
2 − 13504851875κ7

1κ4 + 75386090700κ5
1κ2κ4

− 154656805337κ3
1κ

2
2κ4 + 115808062874κ1κ

3
2κ4 + 12529026250κ3

1κ
2
4 − 25058052500κ1κ2κ

2
4,

• 6485κ8
1κ4 − 39440κ6

1κ2κ4 + 75327κ4
1κ

2
2κ4 − 34154κ2

1κ
3
2κ4 − 21240κ4

2κ4 + 9370κ4
1κ

2
4

− 39980κ2
1κ2κ

2
4 + 42480κ2

2κ
2
4,

• 2090068808κ2
1κ

5
2 − 4180137616κ6

2 − 382708575κ6
1κ2κ4 − 904779340κ4

1κ
2
2κ4

+ 1162163739κ2
1κ

3
2κ4 + 4356458482κ4

2κ4 + 4962029000κ4
1κ

2
4

− 13927874750κ2
1κ2κ

2
4 + 8007633500κ2

2κ
2
4,

• 204075κ7
1κ2κ4 − 1354060κ5

1κ
2
2κ4 + 2976401κ3

1κ
3
2κ4 − 2169162κ1κ

4
2κ4 + 236000κ5

1κ
2
4

− 960250κ3
1κ2κ

2
4 + 976500κ1κ

2
2κ

2
4,

• 337417972κ4
1κ

3
2κ4 − 1559822964κ2

1κ
4
2κ4 + 1769974040κ5

2κ4 + 23556375κ6
1κ

2
4

− 768426800κ4
1κ2κ

2
4 + 3600505265κ2

1κ
2
2κ

2
4 − 4315754330κ3

2κ
2
4 − 775806250κ2

1κ
3
4 + 1551612500κ2κ

3
4,

• 84354493κ6
1κ

2
2κ4 − 1274923245κ2

1κ
4
2κ4 + 1875010546κ5

2κ4 − 144681875κ6
1κ

2
4

− 93270600κ4
1κ2κ

2
4 + 3160618621κ2

1κ
2
2κ

2
4 − 4790699842κ3

2κ
2
4 − 1040678750κ2

1κ
3
4 + 2081357500κ2κ

3
4

Proof. The proof is based on just two sources of relations among MMM-classes in this

situation: the trace relation and the family signature theorem.

Recall that the trace relation [RW18, Cor. 2.7] for a TM-fibration E→B with fibre M whose

cohomology is concentrated in even degrees only depends on dim H∗(M;Q), and for M =

CP2#CP2 is given by

c4 = κecc3
−
κ2

ec − κec2

2
c2+

κ3
ec − 3κecκec2 + 2κec3

6
c−
κ4

ec − 6κ2
ecκec2 + 3κ2

ec2 + 8κecκec3 − 6κec4

24
(B.1)

where c ∈ H|c|(B SO(2d);Q) denotes the characteristic class c(TπE) ∈ H|c|(E;Q). It implies

that we can rewrite any polynomial in H∗(B SO(4);Q) as polynomials of degree ≤ 5 and

coefficients in the tautological ring. In particular, the set {κeapb
1
}a+b≤5 generates R∗(M) but we

will consider instead the following larger generating set T := {κeapb
1
}a+b≤9 because we can

express more easily the κLi for i ≤ 9 in terms of generators in T. We then simply add all

relations among them obtained from fibre integrating multiples − · eip j
1 of (B.1) for all i, j

with i + j + 4 ≤ 9. In fact, this can be refined by partially polarizing the trace identity for

c = se + tp1 and using the coefficients of snt4−n individually (see [RW18, Sect. 4.4]). Finally,

we add the relations from the family signature theorem, which implies that κLi = 0 for i > 2

since the automorphism group of the intersection of CP2#CP2 is SO(2,Z) which is finite.
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We limit ourselves to adding κL2 , . . . , κL9 because they are linear relations of generators of T

directly.

We have used to following maple code to produce the ideal of relations of generators of

S:

with(PolynomialIdeals);

#set maximal degree of polynomial in e and p1 and characteristic numbers

N := 9;

K00 := 0;

K10 := 4;

K01 := 6;

# function that converts e^a*p1^b into Kab

pf := proc (f)

q := 0;

for a from 0 to N do

for b from 0 to N do

if a+b <= N then q := q+convert(cat(’K’, a, b), symbol)*coeff(coeff(f, e, a), p1, b)

end if

end do

end do

ans := q

end proc;

# recursive function that rewrites powers of p1 using the trace relation

rec1 := proc (n::nonnegint)

if n = 0 then 1

elif n = 1 then p1

elif n = 2 then p1^2

elif n = 3 then p1^3

elif 3 < n then

K11*rec1(n-1)-((1/2)*K11^2-(1/2)*K12)*rec1(n-2)

+(1/6)*(K11^3-3*K11*K12+2*K13)*rec1(n-3)

+(1/24)*(-K11^4+6*K11^2*K12-8*K11*K13-3*K12^2+6*K14)*rec1(n-4)

end if

end proc;

# recursive function that rewrites powers of e using the trace relation

rece := proc (n::nonnegint)

if n = 0 then 1

elif n = 1 then e

elif n = 2 then e^2
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elif n = 3 then e^3 elif 3 < n then

K20*rece(n-1)-((1/2)*K20^2-(1/2)*K30)*rece(n-2)

+(1/6)*(K20^3-3*K20*K30+2*K40)*rece(n-3)

+(1/24)*(-K20^4+6*K20^2*K30-8*K20*K40-3*K30^2+6*K50)*rece(n-4)

end if

end proc;

# function for (s*e+t*p1)^n

pd:=proc (n::nonnegint)

add(factorial(n)*s^k*rece(k)*t^(n-k)*rec1(n-k)/(factorial(k)*factorial(n-k)), k = 0 .. n)

end proc;

# Trace identity for s*e+t*p1

Td:=-pd(4)+pf(e*pd(1))*pd(3)-((pf(e*pd(1))^2-pf(e*pd(2)))*(1/2))*pd(2)

+((2*pf(e*pd(3))-3*pf(e*pd(2))*pf(e*pd(1))+pf(e*pd(1))^3)*(1/6))*pd(1)

+(6*pf(e*pd(4))-8*pf(e*pd(3))*pf(e*pd(1))-3*pf(e*pd(2))^2+

6*pf(e*pd(2))*pf(e*pd(1))^2-pf(e*pd(1))^4)*(1/24);

# polarization

S31 := simplify(coeff(coeff(Td, t^3), s));

S22 := simplify(coeff(coeff(Td, t^2), s^2));

S13 := simplify(coeff(coeff(Td, t), s^3));

# Trace identity for e and p1

T1 := -e^4+K20*e^3+((-K20^2+K30)*(1/2))*e^2+((K20^3-3*K20*K30+2*K40)*(1/6))*e

+(-K20^4+6*K20^2*K30-8*K20*K40-3*K30^2+6*K50)*(1/24);

T2 := -p1^4+K11*p1^3+((-K11^2+K12)*(1/2))*p1^2+((K11^3-3*K11*K12+2*K13)*(1/6))*p1

+(-K11^4+6*K11^2*K12-8*K11*K13-3*K12^2+6*K14)*(1/24);

# the Hirzebruch ideal

H := PolynomialIdeal(K02-7*K20, K03-13/2*K21, -19*K40+22*K22-3*K04, 127*K41-83*K23+10*K05,

8718*K60-27635*K42+12842*K24-1382*K06,

-7978*K61+11880*K43-4322*K25+420*K07,

-68435*K80+423040*K62-407726*K44+122508*K26-10851*K08,

11098737*K81-29509334*K63+20996751*K45-5391213*K27+438670*K09);

# add relations from the polarized trace relation

S := Add(H, PolynomialIdeal(0));

for a from 0 to N do

for b from 0 to N do

if a+b+4 <= N then

S := Add(S, PolynomialIdeal(simplify(pf(e^a*p1^b*S31))))

end if;
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if a+b+4 <= N then

S := Add(S, PolynomialIdeal(simplify(pf(e^a*p1^b*S22))))

end if;

if a+b+4 <= N then

S := Add(S, PolynomialIdeal(simplify(pf(e^a*p1^b*S13))))

end if;

if a+b+4 <= N then

S := Add(S, PolynomialIdeal(simplify(pf(e^a*p1^b*T1))))

end if;

if a+b+4 <= N then

S := Add(S, PolynomialIdeal(simplify(pf(e^a*p1^b*T2))))

end if

end do

end do

We then save this ideal S of the polynomial ring Q[T] (see generating set T above) as a text

file and compute the intersection with the subring generated by κe2 , κe3 , κe5 using Macaulay2.

We have displayed the elements in the Proposition above; in particular it is non-empty and

so gives elements in the kernel E∗(CP2#CP2)→R∗(CP2#CP2) because by Theorem 4.2.16 the

Euler ring is E∗(CP2#CP2) = Q[κ1, κ2, κ4]. �

Remark B.6. This list of elements in the kernel in Proposition B.5 above is in fact not

extensive. There are two more relations but the coefficients of the polynomials are so large

that we can’t display them properly.

Example B.7 (Fake quaternionic projective spaces). We present the code used for computing

the dimension of the Hirzebruch ideal for some different choices of p1.

P1= *insert rational number*

B=QQ[x8,x12,P10,P20,P21,P30,P31,P32,Degrees=>{8,12,4,8,4,12,8,4}];

E=B[z]/ideal(z^3-x8*z-x12);

e=3*z^2-x8;

p1=P1*z+P10;

p2=(45+P1^2)/7*z^2+P20+P21*z;

p3=P30+P31*z+P32*z^2;

p4=e^2;

p5=0;

# same for p6=...=p10=0

L3=(2*p1^3-13*p2*p1+62*p3)/945;

L4=(-3*p1^4+22*p2*p1^2-71*p3*p1-19*p2^2+381*p4)/14175;

#omit the formulas for L5,...,L10
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I10=ideal(coefficient(z^2,L3),coefficient(z^2,L4),coefficient(z^2,L5),

coefficient(z^2,L6),coefficient(z^2,L7),coefficient(z^2,L8),

coefficient(z^2,L9),coefficient(z^2,L10));

dim I10

We have collected the results of a few computations in the following table:

p1 1 2 3 −6718

Kdim B/I≤10
H 0 3 0 0

but we have computed the dimension of I≤10
H for many more values of p1 but have always

found zero. The case p1 = −6718 is included as there is a manifold in the structure set with

this Pontrjagin class.
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Appendix C.

The geometric structure set ofHP2

In this appendix we analyse the Browder-Novikov-Sullivan-Wall surgery exact sequence of

HP2 and compute the geometric structure set S(HP2) as well as the characteristic classes of

the elements [M, f ] ∈ S(HP2). Our references on surgery theory are [Bro72] and [CLM15].

Theorem C.1. The structure set S(HP2) is countably infinite and is parametrized up to finite

ambiguity by the value of the first Pontrjagin class. More precisely, the possible values of Pontrjagin

classes of elements [M, f ] ∈ S(HP2) are p1(M) = (2 − 48l)z for l = 140n or l = 80 + 140n and any

integer n ∈ Z where z ∈ H4(M;Z) is the generator corresponding to the second Chern class of the

tautological line bundle overHP2, and for each possible value of p1(M) there are two elements in the

structure set.

Let us briefly introduce the necessary terminology for the surgery exact sequence for

simply connected manifolds M4d. The geometric structure set S(M) is the set of equivalence

classes of orientation preserving homotopy equivalences f : M′→M where M′ is a smooth

closed oriented manifold, and equivalence relation ( f1 : M′1→M) ∼ ( f2 : M′2→M) if there

exists a diffeomorphism φ : M1→M2 such that f2 ◦φ ' f1. Denote by G/O be the homotopy

fibre of B O→B G, where O = colim O(d) and G := colim hAut(Sd−1). It is the classifying

space of stable vector bundles whose associated stable spherical fibration is trivial.

The surgery exact sequence simplifies (see for example [Bro72, Thm II.3.1]) to

S(M4d) −→ [M,G/O] σ
−→ L4d(Z) � Z

[ξ→M] 7−→
1
8
(
sign(M) − 〈Ld(TM − ξ), [M]〉

)
which is not a homomorphism of groups but S(M4d) is identified with the preimage of σ−1(0),

i.e. elements in the set of degree one normal invariants via the Pontrjagin-Thom construction

whose surgery obstruction vanishes.

We compute [M,G/O] for M =HP2 via the coexact Puppe sequence S7
→S4
→HP2

→S8
→S5

of the attaching map of the top cell of HP2. This induces a long exact sequence of groups

when applying [−,G/O] (as G/O is an infinite loop space). Since the surgery obstruction
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factors through [M,B O], we compare the exact sequences associated to [−,G/O]→[−,B O]

which gives

π5(G/O) π8(G/O)
[
HP2,G/O

]
π4(G/O) π7(G/O)

π5(BO) π8(BO)
[
HP2,BO

]
π4(BO) π7(BO).

(C.1)

The computation of these groups is a classical problem in homotopy theory and well un-

derstood. For k > 0 the homotopy groups of G are isomorphic to πs
k the stable homotopy

groups of spheres (and π0(G) = Z/2) which can be found in [Rav86, pg. 3]. The homotopy

groups of O are known by Bott periodicity [Bot59]. Since Ω B G ' G and Ω B O ' O we

can use the fibration sequence O→G→G/O to compute π∗(G/O), and furthermore the map

on homotopy groups O→G can be identified with the J-homomorphism. The image of the

J-homomorphism is completely understood, and the following account is from [Rav86] but

really due to Adams and Quillen.

Theorem ([Rav86, Thm 1.1.13]). If n , 3 mod 4, then the J-homomorphism Jn : πn(SO)→πs
n is

injective. The order of the image of the J-homomorphism J4k−1 : π4k−1(SO) −→ πs
4k−1 is a cyclic

group of order denominator(Bk/4k), where Bk is the k-th Bernoulli number.

We combine these results in the following table, which allows for a computation of

π∗(G/O) in the relevant range.

k 0 1 2 3 4 5 6 7 8

πk(O) Z/2 Z/2 0 Z 0 0 0 Z Z2

πk(G) Z/2 Z/2 Z/2 Z/24 0 0 Z/2 Z/240 Z/2 ⊕Z/2

Im(Jk) Z/2 Z/2 0 Z/24 0 0 0 Z/240 Z/2

πk(G/O) 0 0 Z/2 0 Z 0 Z/2 0 Z ⊕Z/2

We use this result in (C.1) and obtain

0 π8(G/O) = Z ⊕Z/2
[
HP2,G/O

]
π4(G/O) = Z 0

0 π8(BO) = Z
[
HP2,BO

]
π4(BO) = Z 0

·240 ·24 (C.2)

which determines [HP2,G/O] � Z2
⊕ Z/2 and the image in [HP2,B O]. According to

[Bae02], the generators of π4(B O) and π8(B O) are given by the tautological line bundles

LH→HP1 = S4 and LO→OP1 = S8 over the quaternions and octonions. Denote by abuse
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of notation LH→HP2 the tautological line bundle over HP2 which restricts to LH→HP1

and thus provides a splitting of the lower short exact sequence in the above diagram,

i.e. [HP2,B O] � Z{LH,LO} (where LO→HP2 denotes the pullback of LO→S8 along the col-

lapse map).

It remains to determine the characteristic classes of THP2,LH and LO in order to compute

the surgery obstruction map.

(1) The sphere bundle of LH→HPn is diffeomorphic to S4n+3 and it follows from the Gysin

sequence that the Euler class e(LH) is a generator of H4(HPn;Z) that we denote by z.

Since LH is a complex vector bundle of rank 2, it follows that c2(LH) = e(LH) = z and

consequently

p(LH) = (1 − z)2 = 1 − 2z + z2 and L(LH) = 1 −
2
3

z +
1
15

z2.

(2) Even though the sphere bundle of the octonionic line bundle overOP1 is diffeomorphic

to S15, we cannot compute the Pontrjagin classes in this way because LO is not a

complex vector bundle. Instead we use the results in [BM58, Ker59] that show that

the kth Pontrjagin class of vector bundles E→S4k is divisible by (2k− 1)!ak where ak = 1

for k even and 2 if k is odd. Moreover, it follows from [Ker59] and the construction

of characteristic classes as primary obstructions that these values are obtained by the

generators of π4k(B O). However, we do not know the sign of p2(LO) in terms of c2(LH)

but we can simply choose a generator L′O→S8 whose pullback overHP2 satisfies

p(L′O) = 1 + 6z2 and L(L′O) = 1 +
14
15

z2.

(3) The characteristic classes of HPn have been determined in [Szc64] (see also [MS74,

Prob. 20.4]). Using the fibre bundle π : CP2n+1
→HPn with fibre S3/S1 = CP1, the

tangent bundle satisfies TCP2n+1 � π∗THPn
⊕TπE and the Chern classes of the vertical

tangent bundle are determined over a single fibre as those of TCP1. From this one can

work out that p(HPn) = (1 + z)2n+2/(1 + 4z) where z = c2(LH). For n = 2 this implies

p(HP2) = 1 + 2z + 7z2 and L(HP2) = 1 +
2
3

z + z2.

Proof of Theorem C.1. Consider an element in ξ ∈ [HP2,G/O] and denote its image in

[HP2,B O] by −24l · LH − 240k · L′O. The L-class of THP2
− ξ is

L(THP2 + 24l · LH + 240k · LO) = (1 +
2
3

z + z2)(1 −
2
3

z +
1
15

z2)24l(1 +
14
15

z2)240k

= 1 + (
2
3
− 16l)z + (1 + 224k +

8
5

l(80l − 9))z2.
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The surgery obstruction vanishes if 140k + l(80l − 9) = 0. Since 20 | 140k and 20 - 80l − 9 it

follows that 20 | l and we substitute l = 20l′. The equation becomes 7k + l′(1600l′ − 9) = 0.

Hence, either 7 | l′ or 7 | 1600l′− 9 which implies l′ = 4 (7). Combining these results, we find

solutions for n ∈ Z given by

Case I: l = 140n k = −n(11200n − 9)

Case II: l = 80 + 140n k = −(7n + 4)(1600n + 913).

These two families of solutions provide infinitely many elements in [HP2,G/O] whose

surgery obstruction vanishes. Moreover, the total Pontrjagin class is

p(THP2 + 24l · LH + 240k · L′O) = 1 + (2 − 48l)z + (1440k + 24l(48l − 5) + 7)z2 (C.3)

which varies with n and we see that the structure set contains infinitely many different

diffeomorphism types of manifolds. �
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[KM05] J. Kȩdra and D. McDuff. Homotopy properties of Hamiltonian group actions.

Geom. Topol., 9:121–162, 2005.

[Kon94] M. Kontsevich. Feynman diagrams and low-dimensional topology. In First

European Congress of Mathematics, Vol. II (Paris, 1992), volume 120 of Progr.

Math., pages 97–121. Birkhäuser, Basel, 1994.

[KR19] A. Kupers and O. Randal-Williams. The cohomology of Torelli groups is alge-

braic. arXiv e-prints, page arXiv:1908.04724, August 2019.

[Kra18] M. Krannich. On characteristic classes of exotic manifold bundles. arXiv e-prints,

page arXiv:1802.02609, Feb 2018.

[Kup19] A. Kupers. Some finiteness results for groups of automorphisms of manifolds.

Geom. Topol., 23(5):2277–2333, 2019.

[Kur10] K. Kuribayashi. On the rational cohomology of the total space of the universal

fibration with an elliptic fibre. In Homotopy theory of function spaces and related top-

ics, volume 519 of Contemp. Math., pages 165–179. Amer. Math. Soc., Providence,

RI, 2010.

164



[Kur11] K. Kuribayashi. Rational visibility of a Lie group in the monoid of self-homotopy

equivalences of a homogeneous space. Homology Homotopy Appl., 13(1):349–379,

2011.

[Laz14] A. Lazarev. Models for classifying spaces and derived deformation theory. Proc.

Lond. Math. Soc. (3), 109(1):40–64, 2014.

[Les20] C. Lescop. Invariants of links and 3-manifolds from graph configurations. arXiv

e-prints, page arXiv:2001.09929, January 2020.

[LS05] Riccardo Longoni and Paolo Salvatore. Configuration spaces are not homotopy

invariant. Topology, 44(2):375–380, 2005.

[LS07] G. Lupton and S. B. Smith. Rationalized evaluation subgroups of a map. I.

Sullivan models, derivations and G-sequences. J. Pure Appl. Algebra, 209(1):159–

171, 2007.

[May67] J. Peter May. Simplicial objects in algebraic topology. Van Nostrand Mathemat-

ical Studies, No. 11. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-

London, 1967.

[May72] J. P. May. The geometry of iterated loop spaces. Springer-Verlag, Berlin-New York,

1972. Lectures Notes in Mathematics, Vol. 271.

[May75] J. P. May. Classifying spaces and fibrations. Mem. Amer. Math. Soc., 1(1,

155):xiii+98, 1975.

[McT14] C. McTague. Computing hirzebruch polynomials. https://www.mctague.org/

carl/blog/page/4/, 2014.

[Mei82] W. Meier. Rational universal fibrations and flag manifolds. Math. Ann.,

258(3):329–340, 1981/82.

[Mey72] W. Meyer. Die Signatur von lokalen Koeffizientensystemen und Faserbündeln.

Bonn. Math. Schr., (53):viii+59, 1972.

[MS74] J. W. Milnor and J. D. Stasheff. Characteristic classes. Princeton University Press,

Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics

Studies, No. 76.

165

https://www.mctague.org/carl/blog/page/4/
https://www.mctague.org/carl/blog/page/4/


[MS06] J. P. May and J. Sigurdsson. Parametrized homotopy theory, volume 132 of Math-

ematical Surveys and Monographs. American Mathematical Society, Providence,

RI, 2006.

[Mur93] A. Murillo. The top cohomology class of certain spaces. J. Pure Appl. Algebra,

84(2):209–214, 1993.

[MW07] I. Madsen and M. Weiss. The stable moduli space of Riemann surfaces: Mum-

ford’s conjecture. Ann. of Math. (2), 165(3):843–941, 2007.

[MW10] A. Montes and M. Wibmer. Gröbner bases for polynomial systems with param-

eters. J. Symbolic Comput., 45(12):1391–1425, 2010.

[Nas55] John Nash. A path space and the Stiefel-Whitney classes. Proc. Nat. Acad. Sci.

U.S.A., 41:320–321, 1955.
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