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Generation and evaluation of artificial mental health records
for Natural Language Processing
Julia Ive 1✉, Natalia Viani 2, Joyce Kam2,7, Lucia Yin 2,7, Somain Verma 2,7, Stephen Puntis 3, Rudolf N. Cardinal 4,5,
Angus Roberts 2, Robert Stewart 2,6 and Sumithra Velupillai 2

A serious obstacle to the development of Natural Language Processing (NLP) methods in the clinical domain is the accessibility of
textual data. The mental health domain is particularly challenging, partly because clinical documentation relies heavily on free text
that is difficult to de-identify completely. This problem could be tackled by using artificial medical data. In this work, we present an
approach to generate artificial clinical documents. We apply this approach to discharge summaries from a large mental healthcare
provider and discharge summaries from an intensive care unit. We perform an extensive intrinsic evaluation where we (1) apply
several measures of text preservation; (2) measure how much the model memorises training data; and (3) estimate clinical validity
of the generated text based on a human evaluation task. Furthermore, we perform an extrinsic evaluation by studying the impact of
using artificial text in a downstream NLP text classification task. We found that using this artificial data as training data can lead to
classification results that are comparable to the original results. Additionally, using only a small amount of information from the
original data to condition the generation of the artificial data is successful, which holds promise for reducing the risk of these
artificial data retaining rare information from the original data. This is an important finding for our long-term goal of being able to
generate artificial clinical data that can be released to the wider research community and accelerate advances in developing
computational methods that use healthcare data.
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INTRODUCTION
Natural Language Processing (NLP) can potentially improve
healthcare by facilitating analysis of unstructured text. A key
obstacle to the development of more powerful NLP methods in
the clinical domain is data accessibility, mainly due to ethical
constraints on sharing documents that contain personal informa-
tion, such as electronic health records (EHRs)1. There have been
efforts to make de-identified EHR data available for research, but
these usually come with strict governance regulations. There are
also very few resources specific to mental health available. In the
machine learning community, similar problems are typically
solved by using artificially generated data, e.g., Bachman, Gulrajani
et al.2,3 in image processing. Text generation is an active area of
NLP research covering tasks, such as dialogue generation,
machine translation (MT), summarisation, and story generation.
Generation of medical data destined to help clinicians in their

daily work is a commonly addressed issue4,5. For instance, Jing
et al.4 tackle the generation of medical imaging reports (up to 50
words), using a hierarchical recurrent neural network decoder. The
decoder generates a sequence of topic representations condi-
tioned on image and image tag information. Each representation
then conditions the generation of respective sentences. Another
example is the study by Liu5, where generative models are used to
predict the content of EHR notes conditioned on past patient data.
However, the replacement of genuine training data with artificial
training data remains understudied.
The attempt closest to ours is the one of Lee6. They generate

short-length (<20 tokens) chief complaint documents, using
diagnosis, patient- and admission-related information as

conditions. They employ a fairly simple encoder–decoder (ED)
architecture. The clinical validity of the generated text is
investigated by using it as test data for NLP models built with
real data.
The utility of the generated data for downstream NLP tasks is

rarely analysed. Furthermore, few studies investigate to what
extent these models retain rare information from the original data
—rare information could potentially contain sensitive information.
To our knowledge, there have been no attempts to automatically
generate full EHR notes for NLP purposes. Here, we focus on the
generation also of mental health records (MHRs), an understudied
clinical domain, and EHR type. Compared to other clinical
domains, MHRs are characterised by a greater extent of complex
narrative and rely less on structured coding.
In this work, we create artificial medical data using state-of-the-

art text generation models. We guide the generation of EHRs with
the help of key phrases. These key phrases are sense-bearing
elements extracted from the real text. Using them as guidance
ensures semantic integrity and relevance of the generated text.
We attempt to control the proximity of generated data to original
data and vary the quantity of phrases provided. We seek to
compensate missing information with the clinical information
related to patients and their hospital admissions (Fig. 1).
We perform an extensive intrinsic evaluation of generated text

to (1) measure text preservation by using a range of shallow
automatic metrics, (2) measure how much the models memorise
information from the training data, and (3) assess the clinical
validity of the generated text through human evaluation.
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At the extrinsic evaluation step, we use generated data in a text
classification experiment, involving several standard NLP models
(both neural and non-neural). Using the original test data, we
assess performance of each model trained using artificial data
against the one built using genuine data (Fig. 2). Useful artificial
data models should demonstrate similar performance results to
models developed on genuine data. Most importantly, the
artificial models should correctly show performance differences
between different classification algorithms so that in a real-life
scenario, NLP methods developed by external providers where
models have been developed on artificial data would perform
similarly on the genuine data.
Our study is an important first step towards our long-term goal

of generating artificial data that: (a) are statistically close to
original data and hence useful for NLP development, and (b) can
be released to the wider research community under appropriate,
but less strict governance regulations as they should not retain
rare or unusual information from the original data that could pose
any disclosure risks.
Our main goals are: (1) test the hypothesis that statistically and

clinically valid data could be generated with our proposed
approach; (2) test the hypothesis that the generated medical
data could be useful for downstream NLP tasks; (3) test whether
this generation process could be efficiently controlled by key
phrases with the potential to control the risk of rare information
seeping through into the generated artificial data.
It should be emphasised that data we use in this study is

already de-identified (defined as removing protected health

information (PHI)). Thus, in our study, the focus is not on de-
identification per se, rather, it is to try to quantify and assess
whether other unusual or rare information from the already de-
identified input data leaks into the synthetic data, and with that
analyse and reason about the potential impact of this for releasing
this type of data to the research community with less strict
governance procedures.

RESULTS
Datasets
We use EHRs from two different databases: a MHR database and
the MIMIC-III database7,8. Two text classification tasks are studied:
diagnosis code and phenotype, further described below.

CRIS MHR dataset. We use discharge summaries of pseudo-
anonymised and de-identified MHRs from the Clinical Record
Interactive Search (CRIS) database at the South London and
Maudsley (SLaM) NHS Trust9. The de-identification was performed
with respect to patient identifiers (e.g., patient, and relative names
and phone numbers, etc.) that were replaced with placeholders10.
From all the discharge summaries present in the database, we
retain only those coded with common mental health ICD-10
diagnoses.
For the text generation experiments, the dataset is divided into

training, validation, and test sets (train-gen-mhr, val-gen-mhr, and
test-gen-mhr, respectively). We report the frequency of ICD-10
codes in the test set (Table 1). The final training set (train-gen-mhr)
consists of 24,273 patient IDs, 537K lines, and 12M tokens; the
validation set (val-gen-mhr) consists of 1348 patient IDs, 30K lines,
and 653K tokens; and the test set (test-gen-mhr) consists of 1349
patient IDs, 29K lines, and 659K tokens.
Ten percentage and 20% of test-gen-mhr are randomly selected

for the development and test purposes, respectively, for the text
classification task (diagnosis code). This results in train-class-mhr,
dev-class-mhr, and test-class-mhr.

MIMIC-III dataset. We use the MIMIC-III dataset for a phenotyping
classification task described by Gehrmann et al.11. Phenotyping is
the task of determining whether a patient has a medical condition
or is at risk for developing one. This dataset includes discharge
summaries of ~1000 patients annotated with 13 phenotypes (e.g.,
advanced cancer, chronic pain, obesity, depression, etc.). For our
generation experiments, we extract all the MIMIC-III discharge
summaries of patients with the three first diagnoses (represented
by the two first characters of each respective ICD-9 code),
matching at least one sequence of the three first diagnoses for the
patients from our phenotyping dataset. Thus, our text generation
dataset does not contain the patients from the phenotyping
dataset. The de-identification of the MIMIC data was performed
with respect to PHI (e.g., to doctor names and years of dates in
addition to patient information) that were replaced with
placeholders12.

Fig. 1 Overview of the text generation procedure. Key phrases are
extracted from paragraphs in the original data (genuine paragraph),
and combined with clinical information (ICD-10 diagnosis code,
gender and age). This is used in our text generation model,
producing an artificial paragraph.

Fig. 2 Overview of the extrinsic evaluation procedure. An NLP
model is built on 1) genuine data and 2) artificial data. Both models
are tested on real (genuine) test data. Comparing these results gives
an indication of the usefulness of using artificial data for NLP model
development.

Table 1. Mental health diagnoses from discharge summaries in the
CRIS database. We report frequency for test-gen-mhr.

ICD-10 Description Freq (%)

F20 Schizophrenia 29

F32 Major depressive disorder, single episode 21

F60 Specific personality disorders 16

F31 Bipolar affective disorder 14

F25 Schizoaffective disorders 11

F10 Mental and behavioural disorders due to use of
alcohol
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All the extracted data is then split into two subsets: train-gen-
mimic (9767 patient IDs, 10,926 admission IDs, 1.2M lines, and 20M
tokens) and val-gen-mimic (126 patient IDs, 132 admission IDs, 13K
lines, and 224M tokens). The annotated phenotyping dataset (test-
gen-mimic, 1045 patient IDs, 1560 admission IDs, 183K lines, and
3M tokens) is used as test set. The phenotyping dataset was
initially collected for MIMIC-II. We could not hence reliably identify
text fields in MIMIC-III for records with duplicated admission IDs.
We simply merged those records together giving preferences to
annotations with a higher rate of positive labels. This resulted in a
small reduction of the initial dataset (<1%). For the phenotype
classification task, 10% and 20% of test-gen-mimic are randomly
selected for the development and test sets, respectively. This
results in the three following sets: train-class-mimic, dev-class-
mimic, and test-class-mimic.

Intrinsic evaluation
In our experiments, we attempt to control the proximity of the
generated data to the original data, and vary the quantity of
phrases provided. We seek to compensate missing information
with the clinical information related to patients and their hospital
admissions: patient gender and age, Boolean switch indicating
death, diagnosis description, timestamp of a record relative to
admission date, record section (summary, discharge plan, or
comments), and the ordinal number of a sentence in a section.
Overall, we test the following three experimental setups: (a)

artificial text generation using all the extracted key phrases (all),
(b) using a set of best-scored key phrases plus clinical information
(top+meta), and (c) using the one best-scored key phrase
per sentence plus the clinical information (one+meta). As a
baseline method, we take all of the extracted key phrases (key,
reproducing the inputs instead of generating outputs). This
baseline represents the worst possible generation model that
copies the input without generating any context to it.
The intrinsic evaluation step allows to determine some types of

differences and similarities between the generated text and the
authentic text (that is used for the extraction of key phrases that
serve as input to the model). We report perplexity (PPL); a set of
metrics comparing lexical content of original and generated data:
ROUGE-L, BLEU, and TER; as well average sentence lengths. PPL
reflects the confidence of the model in the produced output
(the higher the value the lower the confidence). ROUGE-L13

measures the longest in-sequence common n-gram recall
between generated and original text, BLEU14 — n-gram precision,

whereas TER15 — the minimum number of edits (substitution,
insertion, deletion, and shift of a word) required to change a
generated sentence so that it exactly matches a genuine one.
Overall, ROUGE-L measuring recall and BLEU measuring precision
are complementary, whereas TER gives an idea of the amount of
changes performed to the real text.
Table 2 reports the results of the intrinsic evaluation for both

generation test sets. As expected, the more information we input,
the closer the generated text is to the original one: all provides the
closest results (av. ROUGE-L= 0.8 for both test sets). key sentences
are the shortest, which means that the risk of these generated
sentences losing important information is higher.
The most promising results are obtained from the top+meta

model. This model results in longer sentences compared to the
other models, while still retaining the most balanced scores across
the other metrics.
Figure 3 reports the cumulative distributions (CDFs) of the TER

bins for the key, all, top+meta, and one+meta sentences for test-
gen-mhr. all practically restores the majority of the original
sentences (only 20% of the test-gen-mhr sentences have high
TER ≥ 0.5). Input with minimum original words on the other hand
(one+meta), results in 85% of the generated sentences having
high TER ≥ 0.5. Finally, the distribution of the top+meta TER scores
is almost uniform. A similar observation is made for the test-gen-
mimic results.
As we are interested in keeping only the key meaning of the

original text and modifying its context, in our further analysis, we
focus on the text generated by top+meta and one+meta.

Memorisation evaluation
According to the standard procedures our generation models are
trained to recreate real data, there is thus an actual risk that the
models will overfit, memorise training data, and produce
disclosing patient information in their outputs. In the design of
our experiments, we have left the identification and masking of
PHI cases (e.g., names and addresses) to be handled in the
preprocessing. The data we work with were already de-identified
using bespoke, standard procedures. In addition, the least
frequent words were removed to not be included in the model
vocabulary. However, also indirect references to some rare events,
e.g., “the accident was widely reported in the press” in the
generated text could potentially identify a patient. As mentioned,
in our study, the focus is on trying to assess the risk of such

Table 2. Qualitative evaluation and average sentence lengths on the
CRIS data (test-gen-mhr) and the MIMIC-III data (test-gen-mimic). Models
providing data closest to the original data according to all the scores
are highlighted in bold.

PPL ROUGE-L↑ BLEU↑ TER↓ ∼l

test-gen-mhr

genuine − − − − 22.44

all 7.24 0.76 40.88 0.39 17.84

top+meta 15.57 0.58 25.10 0.59 15.02

one+meta 37.46 0.40 10.29 0.80 10.63

key − 0.58 7.75 0.56 10.21

test-gen-mimic

genuine − − − − 17.55

all 3.22 0.81 53.45 0.31 14.5

top+meta 5.14 0.68 37.28 0.49 12.39

one+meta 9.75 0.47 16.66 0.74 9.72

key − 0.59 8.70 0.56 7.94

Fig. 3 Cumulative distributions (CDFs) of the TER bins for the key,
all, top+meta, and one+meta sentences for test-gen-mhr. X-axis
plots TER bins. Y-axis—respective cumulative frequencies of the test-
gen-mhr sentences.
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unusual or rare information from the already de-identified input
data leaking into the synthetic data. For the best-performing top
+meta train-gen-mhr model, we assess how well our model
memorises the training data.
Inspired by Carlini et al.16, we regenerate sentences from the

training data that contain rare (lower frequency quartile) n-grams.
We experiment with 2-grams and 3-grams as the average length
of extracted key phrases, as well as with 5-gram (as longer text
spans). For each n, we randomly select 1K unique sentences with a
rare n-gram each. In a contrastive setting, we also randomly select
1K unique sentences with a high-frequency n-gram each (upper
frequency quartile). Note that 1-grams with frequency 1 were
already excluded from the training data to limit the
vocabulary size.
We first analyse how many of those selected n-grams are

already extracted as key phrases in the input (%, in). Table 3 shows
that low-frequency n-grams are extracted as key phrases more
often than high-frequency n-grams: e.g., 16% of all the high-
frequency 2-grams and 40% of all the low-frequency 2-grams. In
the generated output (%, out), both low-frequency and high-
frequency 2-grams are equally present (48% for both cases). This
means that only 8% of the low-frequency 2-grams are memorised
and restored in the output, while 32% of the high-frequency 2-
grams is restored in the output.
Presence/absence of an n-gram in the output is however

dependent on the decoding procedure. Thus, we also report the
average PPL values that reflect the confidence of the model in
reproducing samples from the training set (the higher the value
the lower the confidence). Table 3 shows that the PPL values tend
to show higher values for restoring sentences with low-frequency
n-grams, demonstrating the challenge of the task.
Overall, we consider there is a low risk that our model reveals

identifiable information. The model is not prone to overfitting. The
main proportion of rare information is provided with the input key
phrases and can be controlled. We imagine applying filters (e.g.,
pretrained classifiers) to model inputs that would detect rare key
phrases, containing information on rare diseases, religion, race, or
sexuality, etc. Also not many n-grams could be potential
identifiers. For instance, ~20% of tokens in rare 2-grams restored
in the output are stopwords, punctuation or numerical values that
could be filtered out even with a rule-based procedure.

Human evaluation
For the human evaluation task, we made an assumption that good
artificial text should either: (1) keep the main clinical meaning of
the genuine text or (2) modify it so that it remains valid (given the
associated diagnosis). Hence, we defined seven fine-grained
annotation categories that reflect the proportion of the original
meaning preserved (Table 4): from meaning fully preserved up to
meaning modified, contradicts the diagnosis, and makes no sense
from the clinical point of view. These are further grouped into

four more generic categories: SAME, GOOD, BAD/IRRELEVANT, and
NO SENSE.
Annotations were carried out by Joyce Kam (annotator 1),

Somain Verma (annotator 2), and Lucia Yin (annotator 3), all
medical students, native English speakers, experienced in
annotating clinical text, for test-gen-mhr for both top+meta and
one+meta. The students were provided with a file per discharge
summary containing parallel genuine and generated text, as well
as the diagnosis information.
A total of 120 documents were double-annotated for both top

+meta and one+meta (~1K sentences per setup). Figure 4 shows
the annotation results for top+meta. For each document, we
defined A1 as the first annotator and A2 as the second annotator.
Annotations were carried out as follows: annotator 1 vs. annotator
2, 38% of the data; annotator 1 vs. annotator 3, 51% of the data;
and annotator 2 vs annotator 3, 11% of the data. We measure the
inter-annotator agreement using accuracy and Cohen’s kappa
coefficient (κ) over groups. The accuracy is 0.78, for top+meta, and
0.87, for one+meta; κ is 0.54 for top+meta, and 0.49 for one+meta.
Results with both scores indicate a sufficient agreement between
the annotators. Computing agreement per annotator pair did not
change results significantly. For both top+meta and one+meta,
the most frequent categories are “Modified, does not contradict
the diagnosis” (3) (49% and 66%, respectively) and “Preserved,
details omitted” (2) (24% and 24%, respectively). Most of the
disagreement is between the groups GOOD and NO SENSE
(κ= 0.37, fair). Annotations for category 4 (contradiction to the

Table 3. Memorisation assessment for 1K samples per n-gram group
in the top+meta train-gen-mhr model. high denotes n-grams from the
upper frequency quartile; low—n-grams from the lower frequency
quartile; %,in denotes percentage of target n-grams in the input key
phrases; and %,out—in the respective generated output. Highest PPL
values are highlighted in bold.

2-gram 3-gram 5-gram

High Low High Low High Low

%, In 16 40 4 12 0.3 0.8

%, Out 48 48 43 34 41 29

PPL, K 18 25 17 24 21 24

Table 4. Annotation categories for the human evaluation of the
meaning of the generated text.

Category Group

1 Fully preserved SAME

2 Preserved, details omitted GOOD

3 Modified, does not contradict the diagnosis GOOD

4 Modified, contradicts the diagnosis BAD/IRR

5 Modified, irrelevant BAD/IRR

6 No clinical sense NO SENSE

7 Incomprehensible NO SENSE

Fig. 4 Matrix of inter-rater annotation agreement for 1K top
+meta sentences. For each document, we defined A1 as the first
annotator and A2 as the second annotator. Each cell in the matrix
represents the number of sentences marked by an annotator with a
certain category (as defined in Table 4).
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diagnosis) are very rare (~1% for both top+meta and one+meta)
and were mainly assigned by only one annotator.
As reported by the annotators, the quality of the generated text

was in general high as compared to their expectations. However,
the annotation task was considered challenging for some specific
cases (e.g., long sentences that were partially incomprehensible,
but could still make sense).
In Table 5, we report seven examples of generated sentences

(all paraphrased), with corresponding annotation categories. The
second and third examples represent “good cases”, as generated
texts are clinically valid and do not contradict the diagnosis. In the
remaining sentences, instead, we have a few undesirable cases:
the fourth sentence contradicts the diagnosis, while the sixth
sentence does not make sense from the clinical point of view.
Finally, the last sentence is not comprehensible at all. In Table 6,
we report two examples of generated sentences (all paraphrased),
with disagreement on annotation categories. In the first case, the
artificial sentence includes a nonsensical fact; however, the main
symptom is retained (“NO SENSE” vs. “GOOD”). In the second case,
it seems as though one symptom is introduced in the artificial
sentence; however, the wording is not too far from the original
one (“BAD/IRR” vs. “GOOD”).

Extrinsic evaluation
Table 7 shows our text classification results (F1-scores) for test-
class-mhr. Globally, we compare performances of the three
classification models: (a) a Latent Dirichlet allocation (LDA) model
with 150 topics17 trained on train-gen-mhr/ train-gen-mimic with
the Random Forests (RF)18 algorithm; (b) an n-gram (up to 5) bag-
of-words (BoW) model with RF; and (c) a Convolutional Neural
Network (CNN) inspired by Kim19. Within each model, we compare
each distribution of F1-scores produced using a synthetic training
set to a distribution for the original data, and report the two-
sample Kolmogorov–Smirnov (2S-KS) equality test for not
normally distributed independent samples. F1-scores do not
compute means, the common practice is to assume that they

are not normally distributed20. We perform two types of
comparisons using 2S-KS: (a) comparisons between different
models trained with the same type of data (e.g.,: LDA genuine vs.
BoW genuine); and (b) comparisons within a model trained with
the different types of data (e.g., LDA genuine vs. LDA top+meta,
LDA genuine vs. LDA one+meta, etc.). For example, Table 7 reports
the 0.51 p-value for LDA top+meta, which is computed against the
LDA genuine sample. The same table reports the significance in
performance differences (marked with *) for LDA genuine vs. BoW
genuine, and LDA top+meta vs. BoW top+meta, etc.
CNN is the best-performing model, showing a significant

improvement over LDA, which in turn significantly outperforms
BoW (CNN F1-scoreav= 0.48, LDA F1-scoreav= 0.39, and BoW F1-
scoreav= 0.28, all genuine). Artificial data from our top+meta and
one+meta methods are useful for our chosen downstream NLP
tasks, and manage to maintain model performance differences.
Similar tendencies are observed for all the three models in spite of
their intrinsic differences: BoW is focused on n-gram counts, LDA is
topic oriented with the focus on keywords and CNN combines the
adjacent distributed representations of words to analyse concepts.
Not surprisingly, the all setup provides the results closest to the
original.
On the other hand, the key baseline (only all the key phrases

without text generation) performs poorly for two models out of
three: LDA and CNN. For CNN, it even distorts the results: key LDA
outperforms key CNN (ΔF1-scoreav= 0.05), whereas CNN outper-
forms BoW for the real data. Thus, in most cases our generation
methods manage to capture useful information for downstream
NLP tasks. top+meta, where only ∼31% of original words
per sentence is used, performs consistently well for two out of
three models (LDA and CNN).
We also analyse errors of the best-performing genuine and top

+meta CNNs. Firstly, we focus on the “bad errors” of both models:
false negatives (FNs) and false positives (FPs), where the model
has high confidence in the wrong result. The majority of “bad
errors” are due to FPs (420 and 256, for top+meta and genuine,
respectively) rather than FNs (110 and 127, for top+meta and

Table 5. Examples of artificial sentences and respective real sentences (all paraphrased) for test-class-mhr.

Fully preserved real There was no clear evidence that he was responding to unseen stimuli.

art. No clear evidence of responding to unseen stimuli.

Preserved, details omitted real He did not have a clear understanding of why he was there or what was the problem with him.

art. He has no clear understanding why he is there.

Modified, does not
contradict the diagnosis

real That afternoon police were called after she assaulted her mother.

art. This afternoon police were called by her mother.

Modified, contradicts the
diagnosis

real He was not experiencing low mood or anhedonia and therefore does not meet the criteria for depressive
disorder.

art. Today he continues to experience low mood and anxiety.

Modified, irrelevant real Her partner wants him to stay with him.

art. Her partner wants him to get out of bed.

No clinical sense real She acknowledged that paracetamol overdose could damage her liver.

art. Paracetamol overdose could damage her shoulder.

Incomprehensible real This relapse of heavy drinking may have been caused by the disruption of her accommodation relocation.

art. It was felt that heavy drinking may not be a accommodation relocation.

Table 6. Examples of disagreements on artificial sentences and respective real sentences (all paraphrased) for test-class-mhr.

GOOD vs. NO SENSE real When he was approached by the police, he started removing his trousers and becoming quite aggressive.

art. He had started removing the hair of the window, becoming quite aggressive.

GOOD vs. BAD/IRR real She appeared as though she felt under threat but the ward was very chaotic at that time with loud bangs.

art. Chaotic and loud bangs in her interactions.
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genuine, respectively). Moreover, 42–45% of the genuine errors
are found in top+meta as well. As an interesting result, while the
number of FPs was higher for top+meta, the genuine model
resulted in a slightly higher number of FNs.
In terms of precision and recall, the genuine model had a

slightly higher recall than precision, while the top+meta model
showed comparable values. Overall, the top+meta CNN reflects
the behaviour of the genuine CNN, also when looking at the
different diagnoses, and even potentially improves it by slightly
reducing its FN count.
As a sanity check, we perform a series of ablation experiments

to verify if the real key phrases in the artificial data influence the
classifiers. Again for the top+meta setup, we remove the common
key phrases from both the genuine and artificial data, and
compare the performance of our classifiers. We focus on the best-
performing LDA and CNN. Table 7, last four lines, shows the results
of those experiments. We again observe comparable perfor-
mances for the genuine and artificial models. This confirms that
our artificial data captures relevant information.

Finally, Table 8 shows our text classification results for test-gen-
mimic. CNN is again the best-performing model showing a
significant improvement over BoW, which significantly outper-
forms LDA (CNN F1-scoreav= 0.46, BoW F1-scoreav= 0.34, and
LDA F1-scoreav= 0.23, all genuine). Artificial data from top+meta
and one+meta again manage to correctly reveal performance
differences between models. top+meta has the optimal perfor-
mance for BoW and CNN. Both top+meta and genuine samples
have relatively high probabilities to belong to the same
distribution with p-values of 0.28 and 0.13 for BoW and CNN,
respectively.

DISCUSSION
We present an approach to generate clinical documents (EHR
discharge summaries), based on the Transformer model. To
maintain semantic coherence at a paragraph level, the sentence
by sentence generation is guided by key phrases. Different
configurations of the amount of key phrases are applied, as well as
clinical information, to investigate how much of the original data
is needed to generate useful artificial data. We demonstrate the
validity of our approach on two EHR datasets: on discharge
summaries from a large MHR system, and discharge summaries
from an intensive care unit. MHR notes are particularly challenging
as they contain more complex narratives, and this type of clinical
documentation tends to rely less on structured coding.
An extensive intrinsic evaluation shows that the top+meta

model, which uses very little information from the original text,
memorises few rare n-grams. This is promising in terms of
assessing the risk of these models retaining information from the
original data that should ideally be rephrased, to ensure that the
artificial data minimises any traces of the original data. The clinical

Table 7. Text classification results (F1-scores) for test-class-mhr (fivefold
CV; results averaged per class). We use 2S-KS test for (a) comparisons
between models trained with the same type of data; * marks
statistically significant improvements for LDA over BoW, and CNN over
LDA (α= 0.05, n1= n2= 30); (b) comparisons within a model trained
with the different types of data (column KS test). Models using less
than all key phrases that provided results closest to those with real
data are highlighted in bold. We also report results of our ablation
experiments when the training data contain only the context of key
phrases, real, or generated.

ICD-10

F20 F32 F60 F31 F25 F10 av. KS test,
(D, p-value)

BoW

genuine 0.47 0.31 0.32 0.20 0.14 0.24 0.28

all 0.47 0.33 0.27 0.23 0.17 0.23 0.28 0.07, 0.88

top+meta 0.48 0.36 0.29 0.20 0.14 0.26 0.29 0.09, 0.61

one+meta 0.46 0.34 0.29 0.23 0.14 0.26 0.29 0.07, 0.80

key 0.47 0.27 0.26 0.11 0.12 0.23 0.24 0.17, 0.02

LDA

genuine* 0.55 0.47 0.35 0.32 0.25 0.40 0.39

all* 0.55 0.44 0.35 0.31 0.26 0.37 0.38 0.11, 0.35

top+meta* 0.52 0.43 0.37 0.29 0.25 0.40 0.38 0.09, 0.51

one+meta* 0.50 0.45 0.36 0.28 0.23 0.39 0.37 0.14, 0.10

key* 0.54 0.45 0.38 0.30 0.24 0.40 0.39 0.07, 0.88

CNN

genuine* 0.66 0.59 0.51 0.37 0.23 0.53 0.48

all* 0.65 0.57 0.47 0.27 0.24 0.50 0.45 0.14, 0.10

top+meta* 0.63 0.55 0.45 0.31 0.23 0.42 0.43 0.20, 4e−3

one+meta* 0.59 0.52 0.42 0.25 0.15 0.43 0.39 0.22, 1e−3

key 0.57 0.34 0.33 0.23 0.20 0.35 0.34 0.37, 1.9e−09

No key phrases

CNN

genuine 0.48 0.34 0.22 0.22 0.15 0.12 0.25

top+meta 0.30 0.30 0.09 0.25 0.09 0.03 0.18 0.24, 2.7e−04

LDA

genuine* 0.41 0.40 0.32 0.22 0.20 0.26 0.30

top+meta* 0.29 0.37 0.28 0.23 0.14 0.25 0.26 0.23, 4.4e−04

Table 8. Text classification results (averaged F1-scores) for test-class-
mimic. We use 2S-KS test for (a) comparisons between different models
trained with the same type of data. * Marks statistically significant
improvements for LDA over BoW, and for CNN over LDA (α= 0.05,
n1= n2=65); and (b) comparisons within a model trained with the
different types of data (column KS test). Models using less than all key
phrases that provided results closest to those with real data are
highlighted in bold.

av. KS test, (D, p-value)

LDA

genuine 0.23

all 0.21 0.22, 0.08

top+meta 0.21 0.21, 0.08

one+meta 0.21 0.23, 0.05

key 0.13 0.54, 5.15e−09

BoW

genuine* 0.34

all* 0.32 0.14, 0.53

top+meta* 0.31 0.17, 0.28

one+meta* 0.27 0.29, 0.01

key* 0.30 0.19, 0.20

CNN

genuine* 0.46

all* 0.45 0.12, 0.68

top+meta* 0.40 0.20, 0.13

one+meta* 0.36 0.35, 4e−4

key 0.24 0.59, 1.5e−10
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validity is at the same time to a large extent preserved, as
indicated by the human evaluation task.
Furthermore, an extrinsic evaluation is performed in down-

stream NLP text classification tasks with two datasets: diagnosis
code and phenotype classification. Using the artificial data as
training data leads to comparable results as to those obtained
from using the original data.
We have created a light-weight solution that any holder of

clinical data could apply, in order to generate synthetic data to
outsource NLP algorithm development. Clinical institutions do not
often have the internal expertise for NLP development and
getting the appropriate authorisation to allow this data to be
accessed by external organisations is often time-consuming. That
is why we show that comparison of NLP models trained with
synthetic data holds for real data. The main purpose is to speed up
the external NLP development process with some kind of proxy of
real data and get a fair model faster, while still adhering to
governance procedures in using clinical data. Of course, in a
clinical production setting, these best NLP models should be
rebuilt with real data and properly tested.
We demonstrate that our methodology is not prone to

overfitting and the data it generates can easily be shaped by
the input selection. This means that the sensitive information in
the original training data can be efficiently protected. Our findings
have important implications for our long-term goal to generate
artificial data that can be released to the wider research
community.
There are several directions to take our work further. The

methodology of generation with key phrases could be replaced by
other types of modelling that minimises genuine input, e.g.,
adversarial learning approaches. Advances in privacy preserving
algorithms, such as those by Sánchez and Batet21 or Anandan
et al.22 could inspire alternative approaches to assess the amount
of the remaining potentially identifiable information.
Finally, we have investigated only one downstream NLP task.

Looking forward, a more universal approach to generate data for
other clinical NLP tasks (e.g., information extraction or temporal
modelling) is needed. For such other NLP tasks, this text
generation approach might not be optimal, as other constraints
are imposed. Moreover, other types of clinical use cases might
require multiple documents per patient; how to address long-
itudinal coherence would need further analysis. Assessing clinical
validity for other tasks might also require defining the human
evaluation task slightly differently.
Having ways of generating artificial clinical data from already

PHI de-identified original data that further alleviates the risk of
containing any sensitive information could have a huge impact on
the development of novel NLP, and other data science approaches
for analysing EHR data, particularly by making data more widely
available to the research community. This, in turn, could have
significant impact in using retrospective, secondary healthcare
data for translational research that can be used to improve quality
of care for patients. To date, there are no agreed-upon metrics and
thresholds to use for assessing the risk of revealing identifiable
information from free-text data, but more importantly, there are
also very few studies that provide an evaluation of how realistic
artificially generated data are, and the impact of this for
downstream tasks. Our study is a first step in addressing these
issues, and we will further evaluate and analyse these questions
initially by organising a workshop with service users, clinical and
computer science researchers, as well as information governance
practitioners in healthcare services.

METHODS
Ethics approval information
The de-identified CRIS database has received ethical approval for
secondary analysis: Oxford REC C, reference 18/SC/0372. The data are

used in an entirely anonymised and data-secure format and therefore,
under UK law, does not require informed consent from patients whose
data are represented here. Instead, patients are routinely informed of the
data resource and have the opportunity to opt out (taken up by four
people to date). CRIS data is made available to approved researchers
working on approved projects. Projects are approved by the CRIS
Oversight Committee, a body setup by and reporting to the SLaM
Caldicott Guardian. Researchers are approved by application to SLaM NHS
Trust. The study protocol presented here is CRIS approved project
reference number 18-103 (“Towards Shareable Data in Clinical Natural
Language Processing: Generating Synthetic Electronic Health Records”). No
further approvals were required for work on this nature.
The study has been carried out in accordance with relevant guidelines

and regulations for the MIMIC-III data.

Text generation models
In our attempt to find an optimal way to generate artificial EHRs, we
experiment with the neural Transformer model23, an ED architecture24,25,
state-of-the-art in text generation. In this architecture, the decoder is a
conditional Language Model. It generates a new word at each timestep
taking into account the previously generated words, as well as the
information provided by the encoder (a sequence of hidden states—
roughly speaking, a set of automatically learned features). For different
tasks, the input to the encoder may vary: questions for
question–answering, source text for MT, story prompts for storytelling,
etc. In this work, we follow the approach of Peng et al.26 and guide the
generation of EHRs with the help of key phrases. These key phrases are
sense-bearing elements: using them as guidance ensures semantic
integrity and relevance of the generated text.
We extract key phrases at the paragraph level, match them at the

sentence level and further use them as inputs into our generation model.
Thus, each paragraph is generated sentence by sentence (standard
practice in text generation) but taking the information ensuring its
integrity into account. In short, the model fills related textual context
around given key phrases.
Key phrases are extracted from each original paragraph of train-gen-mhr

or train-gen-mimic. We use the Rake algorithm27. For both datasets, this
results in approximately five key phrases with an average length of two
words per sentence (all setup). The top-scored key phrases make around
three key phrases per sentence (top+meta setup). One best key phrase
per sentence is chosen for one+meta. The key phrases and the clinical
information are simply concatenated in the input to the model (e.g., input
“F20 F 23 female allergies”, see Fig. 1). We do not mark borders of key
phrases. The clinical information is represented with mostly abbreviations
each having a separate embedding.
We train our models for the gap-filling task. In the input, we have the

clinical information and the key phrases and in the output, we have the full
original EHR record. For example, a training example: input “F20 F 23
female allergies” -> “A female in her twenties has allergies” (Fig. 1). The
model is trained to restore the text highlighted in bold.

Text classification models
For both the CRIS and MIMIC classification datasets, we cast detection of
each diagnosis/phenotype as a binary classification task to better analyse
each result in isolation. For small and unbalanced clinical training data,
such as the CRIS data in this study, a best practise is to use k-fold cross
validation (CV, where k is usually 5 or 10) to ensure that every example
appears both in the training and test data. In this way, any important
information will not be missed from the training data of a model, whereas
with bigger data there is more chance to have a proper distribution of
information for both training and test data. For the MIMIC phenotyping
task, the test set is released together with the data. We follow Gehrmann
et al.11, reuse the provided test set and cast the task as a binary
classification task. Considering the random initialisation of parameters in
our models, for each experiment we retrain the model five times to
increase reliability of our estimations. The three classification models (BoW,
LDA, and CNN) are chosen as three state-of-the-art models at different
stages of the development of NLP, in the order of the typical performance
improvement. For the KS test computations, we consider the data points
from each five runs of each model for binary prediction training as a single
sample.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
On request, and after appropriate arrangements, the CRIS data and modelling
employed in this study can be viewed within the secure system firewall (details in
section Ethics Approval Information). Access to the MIMIC-III data was obtained
following the Physionet requirements: https://mimic.physionet.org/gettingstarted/
access (accessed 18 October 2019.) The study has been carried out in accordance
with relevant guidelines and regulations.

CODE AVAILABILITY
Our models are trained on real, de-identified, but protected data (CRIS data are
protected under a governance model, MIMIC data requires authorisation). Thus our
trained models can not be made publicly available online. There are multiple
implementations of the Transformer model publicly available, thus the procedure to
create a model is straightforward.

We train Transformer models as provided by the OpenNMT-py toolkit (version
0.2.1)28 with default parameters. Each model is trained for 30K steps. We noticed that
this quantity of epochs is necessary for the stabilisation of the model PPL. For all the
generation models we use a vocabulary of around 50K most frequent words. Outputs
are produced with the standard beam decoding procedure (default beam size 5). We
use the implementation of the Rake algorithm available at https://github.com/
csurfer/rake-nltk.

Data extraction and preprocessing scripts are publicly available online: https://
github.com/KCL-Health-NLP/artificialMHR. Our preprocessing pipeline, including
sentence detection uses the spaCy toolkit (https://spacy.io/, version 2.0.18). We
lowercase all the text. In addition, we replace dates with a placeholder date. We
discard all the sentences with length under five words. We replace all the out-of-
vocabulary words and words with frequency 1 with the UNK placeholder.

To build our text classification models, we use the implementation of LDA
available in the Gensim toolkit (version 3.6.0)29 with 150 topics. All other parameters
are those provided by default. The model is trained on train-gen-mhr and train-gen-
mimic respectively with stopwords removed as defined by the respective NLTK list
(version 3.4)30.

For both LDA and BoW models, we use the RF implementation available in Scikit-
learn (version 0.20.2)31 with the following parameters: the balanced subsample class
weight and a maximum depth of 2. All other parameters are those provided by
default.

For the CNN model, the word embedding dimensionality is 500. Both convolution
layers have ten hidden units and filters of three and eight. The size of max-pooling
layers is set to two. We use two dropout layers (one before and one after the
convolution layers) with probabilities of 0.5 and 0.8. The last dropout layer is followed
by a dense layer. The size of hidden units of the dense layer is 50. We use random
uniform initialisation and L2 regularisation. To optimise the usage of computational
resources, in each experiment we fix the size of a record to the upper quartile of the
distribution of record length values (in words). All the hyperparameters are tuned on
the validation sets (dev-class-mhr and dev-class-mimic respectively). The model uses
Word2Vec embeddings32 pretrained using the Gensim toolkit (version 3.6.0) on train-
gen-mhr and train-gen-mimic respectively. The CNN model is implemented using the
Keras toolkit (https://keras.io, version 2.2.4).

Experiments with the CRIS data are performed on an Azure Tesla GK210 GPU (NC6
configuration with the Tesla K80 Accelerator), experiments with the MIMIC data – on
a GeForce GTX 1070 8Gb GPU.
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