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A computational platform for high-throughput
analysis of RNA sequences and modifications
by mass spectrometry
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Tony Kouzarides 5, Benjamin A. Garcia1✉ & Hendrik Weisser 3✉

The field of epitranscriptomics continues to reveal how post-transcriptional modification of

RNA affects a wide variety of biological phenomena. A pivotal challenge in this area is the

identification of modified RNA residues within their sequence contexts. Mass spectrometry

(MS) offers a comprehensive solution by using analogous approaches to shotgun proteomics.

However, software support for the analysis of RNA MS data is inadequate at present and

does not allow high-throughput processing. Existing software solutions lack the raw perfor-

mance and statistical grounding to efficiently handle the numerous modifications found on

RNA. We present a free and open-source database search engine for RNA MS data, called

NucleicAcidSearchEngine (NASE), that addresses these shortcomings. We demonstrate the

capability of NASE to reliably identify a wide range of modified RNA sequences in four

original datasets of varying complexity. In human tRNA, we characterize over 20 different

modification types simultaneously and find many cases of incomplete modification.
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RNA is an extensively modified biological macromolecule.
Over 150 chemically distinct modifications have been
reported. The presence of methylated adenine, cytosine,

and guanine in RNA was uncovered in the 1960s1, and pseu-
douridine has been referred to as the “fifth base” for decades2.
However, widespread interest in these epitranscriptomic marks
has been raised by recent reports that underscore their impor-
tance in a wide variety of developmental signalling. In stem cells
the intracellular effector proteins SMAD2 and SMAD3 promote
binding of the N6-methyladenosine (m6A) writer complex to a
subset of mRNAs associated with early cell fate decisions3.
Likewise, a number of modifications are associated with disease. It
has been demonstrated that the loss of taurine modification in the
anticodon of mitochondrial tRNA-Leu is responsible for mito-
chondrial myopathy, encephalopathy, lactic acidosis, and stroke-
like episodes (MELAS)4. m6A is implicated in obesity5 and
associated with defects in functional axon regeneration in mice6.
Aberrant methylation of cytosine-5 (m5C) in tRNAs has been
linked to neuro-developmental disorders7.

Recent interest in epitranscriptomics has also been spurred by
technical advances in next-generation sequencing (NGS) tech-
nology, which has allowed modifications in mRNA to be profiled
individually. All of the approaches based on Solexa/Illumina
sequencing use antibodies to immunoprecipitate modified RNA,
and/or apply chemical or enzymatic treatments to alter it and
read out modifications as mutations or truncations in the pre-
paration of cDNA8,9. The primary caveat of these methods is that
only a single type of modification can be profiled in each
experiment, and specific chemical, enzymatic and/or antibody
reagents do not exist for every modification. Further complica-
tions can be caused by lack of specificity of the existing anti-
bodies, in particular m6A and m6Am10. Steps have been made
towards uncovering modifications directly using long-read
sequencing platforms11,12, but many technical challenges stand
between these approaches and routine use, not least a significant
error rate in base calling13. NGS-based methods have also gen-
erated conflicting results in the past14,15, underscoring the need
for orthogonal approaches.

Mass spectrometry (MS) is currently the only technique that
can directly and comprehensively characterize chemical mod-
ifications in RNA sequences. The majority of RNA MS has
focused on reducing the RNA to mono-nucleosides and applying
workflows analogous to metabolite analysis16. While these tech-
niques are effective in determining what modifications are present
in a sample, all information about the location and co-occurrence
of modifications is lost. This information is critical in complex
samples to attribute modifications to specific RNAs. Even in
simpler cases, modification location and co-occurrence may be
important for a phenotypic effect; for example, in microRNA 2′-
O-methylation of the 3′-most nucleic acid sterically inhibits 3′
exonuclease digestion, which increases the half-life of the mod-
ified microRNA in the cell17. For this reason there is an interest in
analyzing samples in as close to their native states as possible.
Analysis of intact RNA oligonucleotides by tandem mass spec-
trometry (MS/MS) is capable of determining modification sites
with single-nucleotide resolution, by comparing mass spectra
with a sequence database18. However, oligonucleotides are chal-
lenging to separate via mass spectrometry-compatible liquid
chromatography (LC). The current approach of choice is
reversed-phase ion-pair liquid chromatography19.

In addition to the experimental challenges, difficulties
emerge in interpreting the acquired data. Considerable efforts
toward automating data analysis have been made in recent
years, starting with SOS20 in 2002, Ariadne21 in 2009, OMA/
OPA22 in 2012, and RNAModMapper23 in 2017, all of which
are programs for database-matching or decoding the

complicated patterns of oligonucleotide fragmentation. How-
ever, none of the existing software solutions offers key features
necessary to analyze data from large-scale experiments. First,
no software can efficiently handle the analysis of RNA oligo-
nucleotide data—especially of more complex samples or
involving many different modifications—in batch-compatible
fashion. Second, statistical validation strategies, such as false-
discovery rate (FDR) estimation, are not implemented. This
leads to unreliable sequence assignments and subjective manual
assessment of spectra for validation. Third, existing solutions
do not tie into any larger analytical framework, making inte-
gration with other (e.g. quantitative) data difficult. In contrast,
shotgun proteomics has been sequencing peptides reliably for
many years, and the inference, identification and quantification
of proteins from constituent peptides has been automated to
such a degree that the field has matured into answering bio-
logical questions at a more fundamental level24.

To fill this fundamental gap, we present a fast, scalable
database-matching tool called NucleicAcidSearchEngine (NASE)
for the identification of RNA oligonucleotide tandem mass
spectra. Our software is implemented within the OpenMS fra-
mework, an open-source toolset for processing mass spectro-
metric data25. NASE will be fully integrated into the primary
distribution of OpenMS in the upcoming version 2.5, and will
then be available for download as part of OpenMS at https://
www.openms.de. In the meantime OpenMS builds containing
NASE are available at https://www.openms.de/nase. Beyond
speed and sensitivity, NASE provides advanced features like FDR
estimation, precursor mass correction, and support for salt
adducts. Powerful visualization capabilities are available through
OpenMS’ data viewer. By supporting the common interface of
The OpenMS Proteomics Pipeline26, NASE can be easily used in
automated data analysis workflows. This interoperability also
enables the label-free quantification of RNA oligonucleotides
based on NASE search results.

Using four original datasets we demonstrate the capability of
NASE to reliably identify a variety of RNA types from different
sources, and show how data visualization and label-free quanti-
fication can augment the interpretation of identification results.

Results
RNA oligonucleotide MS datasets. Using nanoflow ion-pair
liquid chromatography coupled to high-resolution tandem
mass spectrometry (nLC-MS/MS), we generated four datasets
from RNA samples of increasing complexity. First, oligonu-
cleotides with the sequence of mature Drosophila let-7 micro-
RNA, 21 nt in length, were produced synthetically in
unmodified and modified (2′-O-methylated at the 3′ uridine)
forms (“synthetic miRNA” dataset). We characterized a 1:1
mixture of both forms of this RNA. Replicate measurements
were acquired using different normalized collision energy
(NCE) settings in the mass spectrometer. Second, we prepared
two samples of an in vitro-transcribed yeast lncRNA (NME1,
340 nt long), one of which was treated with an RNA methyl-
transferase (NCL1) catalyzing the 5-methylcytidine (m5C)
modification (“NME1” dataset). Third, we used size exclusion
chromatography to produce two samples containing long
ribosomal RNAs (18S and 28S) from a human cell line (“human
rRNA” dataset). Fourth, we generated three biological replicates
of human total tRNA from a cellular extract — a complex
mixture of highly modified RNAs (“human tRNA” dataset).
The “NME1”, “human rRNA” and “human tRNA” samples
were all digested with an RNA endonuclease (RNase T1) to
generate oligonucleotide sequences of a length amenable to
mass spectrometry.
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A powerful search engine for RNA MS data. We developed a
sequence database search engine for the identification of (mod-
ified) RNA sequences based on tandem mass spectra. The soft-
ware, termed NucleicAcidSearchEngine (NASE), was
implemented within the OpenMS framework and combines
existing functionality (e.g. for data input/output, filtering, and
FDR estimation) with newly developed features. (See Methods
section for details.) Given a mass spectrometry data file and a
FASTA file containing target and decoy (shuffled or reversed)
RNA sequences as inputs, NASE generates oligonucleotide-
spectrum matches with statistically meaningful FDR scores.
OpenMS’ interactive viewer, TOPPView27, was extended to
support RNA identification results obtained using NASE, mir-
roring and augmenting existing functionality for visualizing
peptide identifications in proteomics experiments.

In addition to the built-in FDR calculation, NASE provides
other features that set it apart from alternative tools that are
currently available. Even with extensive preparation, nucleotide
samples frequently contain salt adducts (in the form of cations
attached to the phosphate backbone). NASE searches can take
this into account, by allowing users to specify chemical formulas
of adducts to consider in the precursor mass comparisons.

Furthermore, NASE supports the correction of precursor
masses for MS2 spectra that were sampled from isotopologue
peaks other than the monoisotopic one. Especially for longer
sequences, MS2 precursor ions are often picked from higher-
intensity, heavier isotopologues by the mass spectrometer’s data-
dependent acquisition software. Without adjustment, the pre-
cursor masses would not closely match the theoretical (mono-
isotopic) masses of the correct oligonucleotides, leading to no
assignment or incorrect matches. We implemented a correction
that considers offsets corresponding to multiples of a neutron
mass when comparing precursor and oligonucleotide masses.
This feature greatly increases NASE’s ability to identify
oligonucleotides with longer sequences. Curiously, we observed
cases where the instrument software erroneously estimated the
precursor (“selected ion”) m/z value to be below the apparent
monoisotopic peak. We found that this could be corrected by
allowing a negative offset (−1) in the precursor mass correction.

Finally, through the OpenMS toolbox NASE enables seamless
label-free quantification of the oligonucleotides that were

identified in a sample. A corresponding analysis pipeline can be
easily created and run using a graphical workflow editor.
Supplementary Fig. 1 shows an example pipeline from our
analysis of the NME1 data, using the editor that is conveniently
included with OpenMS28.

MS-based sequencing of an intact synthetic microRNA. In our
analysis of data from the synthetic miRNA sample, we found a
strong dependence of sequence coverage on the Normalized
Collision Energy (NCE) value. Identical samples were run with
NCE ranging from 5 to 55. The best results were obtained for an
NCE of 20 (Supplementary Fig. 2). Subsequent LC-MS/MS ana-
lyses, including of the NME1 and tRNA samples, were thus
carried out with this NCE setting.

At the optimal NCE, both unmodified and modified RNA were
detected, and the location of the modification could be
determined with high confidence. 874 spectra were identified
that passed our hyperscore cutoff, matching sequences of length
5–21 nt, including the full-length let-7. The shorter sequences
correspond to artefacts of incomplete solid-phase RNA synthesis,
which are easily detectable by LC-MS. In the full 21-nt sequence
we averaged over two-fold MS2 ion coverage of the let-7
sequence, with one or more forward (a-B/a/b/c/d) ion and one
or more reverse (w/x/y/z) ion detected at each base (see Fig. 1, ion
naming scheme from McLuckey et al.29). This demonstrates our
ability to sequence even relatively long (>20 nt) RNAs.

Performance comparison of search engines for RNA MS data.
We processed the NME1 data using the three search engines
Ariadne, RNAModMapper, and NASE. We ran target/decoy
database searches using m5C as a variable modification and
combined results from all replicates. We then compared the
search engines in terms of: A, the number of identified spectra at
different FDR thresholds; B, the sequence length distribution of
the identified oligonucleotides at 5% FDR (Fig. 2). NASE iden-
tified significantly more spectra at a given confidence level than
the other tools. It also found longer oligonucleotides, which
would be more informative for identifying RNAs in complex
samples. About 10% of the oligonucleotide-spectrum matches
generated by NASE at 1% FDR included sodium (2.9%) or
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Fig. 1 A tandem mass spectrum of synthetic let-7 denoting all of the assigned peaks. a-B/a/b/c/d ions are shown in red, w/x/y/z ions in green. The
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potassium (7.2%) adducts and would have been missed without
the adduct search capabilities.

Note that Ariadne’s performance in this comparison was
hampered by the fact that a recommended tool for data
preprocessing, the commercial software SpiceCmd, was not
available to us. RNAModMapper had previously been evaluated
based on searches against “expected” sequences only (i.e. no
decoys), followed by manual validation of spectral assignments23,30.

Detection of differential methylation sites. To assess the per-
formance of our software at detecting RNA modifications, we
compared the NASE search results for the NME1 lncRNA with
and without NCL1 incubation (Fig. 3a). Following common
practice in the proteomics field31, we considered results at a high
confidence level after filtering to 1% FDR and removing “single
hits” (oligonucleotides identified only based on a single spectrum)
in each run. At this level, 72% and 73% sequence coverage were
achieved for the control and the NCL1-treated sample, respec-
tively. As Fig. 3a shows, there is good agreement between the
unmodified oligonucleotides that were identified in both samples,
indicating that our method works reproducibly. In the high-
confidence set, m5C-modified oligonucleotides were only found
in the NCL1-treated sample where they would be expected. Two
illustrative examples are the isobaric oligonucleotides “UCA-
CAAAU[m5C]G” (at position 21-30 in the NME1 sequence) and
“UAAC[m5C]CAAUG” (pos. 299-308) that were identified based
on 29 and 10 spectra in multiple charge states (−2 to −5). Two
additional identifications were made of the sequence “UAACC
[m5C]AAUG”, i.e. with a shifted localization of the modification.
Figure 4a shows a corresponding data section from the NCL1-
treated sample, visualized as a two-dimensional LC-MS map.
Identifications of the unmodified, adducted, and modified var-
iants of the two oligonucleotides are displayed in the context of
MS1 signal intensities. At the bottom, “UCACAAAUCGp” (left)
and “UAACCCAAUGp” (right) can be seen eluting in over-
lapping peaks. (In our notation, “p” at the end of a sequence
represents the 3′ phosphate generated by RNase T1 cleavage.) In
the middle, the corresponding mono-methylated oligonucleotides
are convincingly detected, with a mass shift of 14 Da and a slight
RT shift relative to their unmethylated counterparts. At the top,

the unmodified oligonucleotides were identified with a sodium
adduct (mass shift of 22 Da). A corresponding image showing the
loss of signal for the modified oligonucleotides in the control
sample is available as Supplementary Fig. 3. In Fig. 4b we com-
pare spectrum matches for the two modified oligonucleotides,
showcasing the high quality of the matches as well as our MS2
visualization capabilities, including the newly added ion coverage
diagrams.

Label-free quantification of RNA MS data. We quantified the
identified oligonucleotides in the two NME1 samples, using a
label-free, feature detection-based approach. Figure 3b sum-
marizes the results. Although all oligonucleotides come from the
same RNA, they were quantified with signal intensities spanning
several orders of magnitude. This is indicative of widely varying
ionization efficiencies during MS analysis, a common caveat that
generally limits label-free quantification to relative comparisons
between similar samples.

Of 26 and 36 different oligonucleotide sequences that were
identified as part of the high-confidence set in the control and
NCL1-treated sample, respectively, 25 and 32 could be quantified
in either sample based on at least one replicate (corresponding to
96% and 89% success rates). Unmodified oligonucleotides were
quantified at similar levels in both NME1 samples, with a
correlation of 0.94 of the log-intensities per sample (median of
the technical replicates) for oligonucleotides in all charge/adduct
variants (0.98 when considering only the “best” variant in terms
of reproducibility across replicates, as measured by the coefficient
of variation). Methylated oligonucleotides were only identified
and quantified in the NCL1-treated sample, but their unmodified
counterparts exhibited lower feature intensities in the treated
sample compared to the control, consistent with a partial shift of
the ion current to the modified variants (Supplementary Fig. 4).

More advanced capabilities for LC-MS-based quantification,
including retention time alignment, inference of identified
analytes across samples, and labelling approaches, are already
available in OpenMS for proteomics experiments. With future
improvements to the support for nucleic acids in the framework,
these features will become available for RNA analyses as well.
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Comparative analysis of human ribosomal RNA. Taoka et al.
recently published a complete landscape of the modifications on
human ribosomal RNA in TK6 cells32. We acquired LC-MS/MS
data on human rRNA in HAP1 cells, analyzed it using NASE and
compared our results to their published findings (see Supple-
mentary Data 1). For this comparison we filtered spectrum
matches to 5% FDR and removed “single hits”; where oligonu-
cleotides with the same raw sequence were identified in different
modification states (incl. unmodified), only the one with highest
spectral count was considered. Our approach achieved 39%
sequence coverage for 18S rRNA and 25% for 28S rRNA, which is
far from complete, but much higher than the coverage achieved
by Taoka et al.32 using Ariadne on comparable data (RNase T1
digest; 13% for 18S and 7% for 28S). Using NASE we identified
more and longer oligonucleotides; in the Ariadne data, almost a
third of the oligonucleotides are short and match in several
locations in the rRNA, making them unsuitable for modification
mapping without additional information.

Taoka et al.32 reported 68 post-transcriptional modifications
(not counting pseudouridines) on 18S and 28S rRNA in regions
where we have sequence coverage. For 57 of these modifications
(84%) our identifications agreed exactly. In addition, five
modifications were mis-localized by one position and two by
two positions in our results. In three of the remaining four cases,
it is plausible that the unmodified ribonucleotides were correctly
detected, because the identifications are supported by high
spectral counts (26, 39, 170) and the modification stoichiometry
is not expected to be 100% according to Taoka et al.32.

We further identified 10 modifications based on six oligonu-
cleotides that are not supported by the published data, with half
of these coming from only two multi-modified oligonucleotides.
The oligonucleotides were all found with low spectral counts
(2–4) and likely constitute false positives—with one exception,

the sequence “AUC[mG]CCCCAG” which matches in 28S rRNA
and was identified 25 times. It would be an interesting candidate
to investigate for cell line-specific differences in rRNA
modifications.

Analysis of a complex, highly modified transfer RNA sample.
Previous work on tRNA has shown that it is heavily modified33.
Our analysis confirms this. We ran NASE on the “short RNA”
fraction of a cell extract sample that had been digested with
RNAse T1. We searched for 23 variable modifications with dif-
ferent molecular masses, which had previously been identified to
be present in yeast or human tRNA34,35. Most of these represent
sets of isobaric modifications which we cannot distinguish, such
as position-specific variants of the same modification; e.g. “mC?”
was used to represent any singly-methylated adenosine (incl. Cm,
m5C etc.). Note that it was not feasible to search this dataset with
this high number of variable modifications using other available
database-matching tools (RNAModMapper, Ariadne).

After filtering to 5% FDR and keeping only sequences that were
found in the majority of replicates, the effective FDR in the
dataset was 2.7%. At this level 13,654 spectra were matched to 304
different oligonucleotides. The sequences of human tRNAs are
highly similar, especially for tRNAs of one isotype, i.e. tRNAs that
bind the same amino acid. Consequently, only 48 (16%) of the
identified oligonucleotides map to a unique tRNA sequence;
however, 234 (77%) and 289 (95%) map uniquely to a single
tRNA isoacceptor (same anticodon) or isotype, respectively.
Considering only the oligonucleotides that map uniquely to a
specific isoacceptor, the highest sequence coverage was achieved
for tRNA-ArgTCG (Fig. 5a). Coverage levels along the tRNA
sequences were far from uniform, with the majority of identified
oligonucleotides overlapping the anticodon loop and 3′ anticodon
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uniquely localized; “blank” sites indicate uncertainty between two possible locations, due to the absence of discriminating peaks in the corresponding mass
spectrum. b Label-free quantification results for identified oligonucleotides, comparing feature-based signal intensities in the two samples (averaged across
replicates). Gray circles show all individual charge/adduct states, while black dots indicate the “best” representative (lowest coefficient of variation across
replicates) for quantifying each oligonucleotide. Oligonucleotides that were only identified and quantified in the NCL1-treated sample, all of them
methylated, are depicted on the y axis. The notation “[m5C?]” is used here for cases where the methylation could not be uniquely localized. No modified
oligonucleotides were identified in the control sample. The gray diagonal line represents equal intensity in both samples.
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stem, or the T-loop and 3′ T-stem (Fig. 5b). We hypothesize that
the corresponding parts of the tRNA structure are more amenable
to RNase T1 digestion than other regions.

Many of the oligonucleotides we identified contained multiple
modifications. In the search, up to three modifications per
oligonucleotide were allowed, to limit the combinatorial space of
modified sequences that needed to be explored. Of the unique
oligonucleotides identified, 12% were unmodified (accounting for
21% of the identified spectra), while 35% carried one, 28% carried
two, and 25% carried three modifications (accounting for 32%,
31% and 16% of the identified spectra, respectively). All
modifications considered in the search were detected as part of
identified oligonucleotides. However, the prevalences of different
modifications differed widely—see Table 1 for details.

Existing data on the modification landscape of human cytosolic
tRNAs is incomplete (e.g. MODOMICS lists information for 36

tRNAs covering 16 isotypes) and at least some modifications are
differentially regulated, complicating comparisons. We will focus
on cytosine monomethylation (mC, represented by “mC?” in our
search) as one example that has been studied more thoroughly,
e.g. via bisulfite sequencing to detect m5C. We identified 36
unique oligonucleotides containing one (32) or two (4) mC site
(s), based on a total of 1728 matched spectra. In all, 30
oligonucleotides mapped uniquely to a single tRNA isoacceptor
(codon); a further four mapped to a single tRNA isotype (amino
acid) but multiple isoacceptors. The two remaining oligonucleo-
tides “AUU[mC]CAG” and “ADU[mC]CAG” could have come
from either tRNA-ArgACG (pos. 46-52) or tRNA-Tyr (pos. 58-
64); however, for tRNA-Tyr a conserved methylation (m1A) at
A58 would be expected, making tRNA-ArgACG the more
plausible origin. Excluding this ambiguous case, at the level of
isotypes a total of 19 unique mC sites were identified. Seven of

UCACAAAUCGp + Na+

a

b

UAACCCAAUGp + Na+

UCACAAAU[m5C]Gp/UAAC[m5C]CAAUGp

UCACAAAUCGp/UAACCCAAUGp

Fig. 4 Interactive data visualization using TOPPView, showing data from the NCL1-treated NME1 sample. a MS1 view (RT-by-m/z) of a data section.
LC-MS peaks are shown as small squares, colored according to their signal intensities. Small black diamonds and horizontal lines indicate MS2
fragmentation events; oligonucleotide sequences identified by NASE from the MS2 spectra are shown in dark red font. Black boxes outline features
detected for label-free quantification, which have been annotated with the corresponding oligonucleotides. All oligonucleotides shown have a charge state
of −3. b “Identification view” comparing two MS2 spectra, identified by NASE as the sequences “UAAC[m5C]CAAUGp” and “UCACAAAU[m5C]Gp”.
Matching peaks between the acquired and theoretical spectra are annotated and highlighted in red and green. On the right in each spectrum plot, an ion
coverage diagram shows which of the theoretical fragment ions of the sequence were matched in the MS2 spectrum (in any charge state).
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these sites agree with the “canonical” m5C sites in the VL
junction of tRNAs at consensus sequence positions 48–507. Other
common mC sites in tRNAs are pos. 32 and pos. 34, the wobble
position in the anticodon. We observed mC32 for tRNA-Arg
(m3C reported in MODOMICS) and tRNA-Gln (Cm reported),
and mC34 in tRNA-Met (Cm reported) and tRNA-Leu (m5C
reported). In addition, we identified the oligonucleotide “A[mC]
U[mC]CA[mG]” a total of 35 times, which matches at pos. 31-37

in tRNA-Trp and implies mC at both pos. 32 and 34, as well as
mG at pos. 37. No data for tRNA-Trp is available in
MODOMICS.

Beyond methylcytidine, known recurring modifications that we
identify in several tRNAs include monomethylation at G10,
dihydrouridine at U20, mono- or dimethylation at G26, N6-
threonylcarbamoyladenosine (t6A) at A37 and monomethylation
at A58. Interestingly, we observe 5-methoxycarbonylmethyl-2-
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Fig. 5 Human tRNA analysis results. a A schematic depiction of Homo sapiens tRNA-ArgTCG, showing identified sequences that map uniquely to this
isoacceptor (yellow for unmodified and orange for modified residues). Total coverage is 52%. Two different modification variants were observed at U34
(wobble position) and C40. b Aggregated coverage of the consensus tRNA sequence by oligonucleotides identified in the human tRNA dataset. Some
oligonucleotide positions in long tRNAs (tRNA-Leu, tRNA-SeC, tRNA-Ser) were adjusted to fit the consensus sequence. Complementary regions in the
acceptor stem (orange), D-stem (green), anticodon stem (blue) and T-stem (red) are highlighted. D D-loop, Ac anticodon loop, V variable region, T T-loop.

Table 1 Summary of modifications detected in the HAP1 tRNA data using NASE.

Search mod. Represented (isobaric) modification(s) Spectra with mod.

t6A N6-threonylcarbamoyladenosine 2906
mA Adenosine monomethylation (base only) 2429
mU? Uridine or pseudouridine monomethylation (sugar or base) 2233
mC? Cytidine monomethylation (sugar or base) 1728
mG? Guanosine monomethylation (sugar or base) 1512
mcm5s2U 5-methoxycarbonylmethyl-2-thiouridine 1185
D Dihydrouridine 998
i6A N6-isopentenyladenosine 816
m1I 1-methylinosine 718
ac4C/f5Cm? N4-acetylcytidine or 5-formyl-2′-O-methylcytidine 672
ms2t6A 2-methylthio-N6-threonylcarbamoyladenosine 633
acp3U 3-(3-amino-3-carboxypropyl)uridine or -pseudouridine 571
I Inosine 404
m2,2G N2,N2-dimethylguanosine 326
hm5Cm 2′‐O‐methyl-5-hydroxymethylcytidine 194
Q Queuosine 191
mchm5U 5-(carboxyhydroxymethyl)uridine methyl ester 187
mcm5U 5-methoxycarbonylmethyluridine 150
mcm5Um 5-methoxycarbonylmethyl-2′-O-methyluridine 145
cm5U 5-carboxymethyluridine 97
galQ/manQ Galactosyl- or mannosyl-queuosine 40
yW Wybutosine 37
hm5C 5-hydroxymethylcytidine 31

Table columns: 1. Short code of the modification specified as a search parameter. 2. The set of modifications implied by the corresponding mass shift, since e.g. positional isomers (Cm, m3C, m5C etc.)
generally cannot be distinguished. A question mark in the short code (column 1) indicates that modification of the ribose or the base (implying different masses of “a-B” ions) should both be considered.
Forms that are not expected to occur in human tRNA (e.g. Am, Im) are not listed. 3. Number of times identified as part of an oligonucleotide-spectrum match.
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thiouridine (mcm5s2U) at the wobble U34 of tRNA-ArgTCG/T,
tRNA-GlnTTG, tRNA-GluTTC and tRNA-LysTTT; this specific
modification has been characterized in cow (tRNA-ArgTCT) and
rat (tRNA-GluTTC and tRNA-LysTTT), but has not been directly
located in human samples36. This modification, which is installed
by three consecutive enzymatic steps, has been reported to be
induced in oncogenic conditions, and is important for tuning the
expression of protein factors based on their codon content37.

The ability to identify and localize multiple different
modifications simultaneously is an unique advantage of the
oligonucleotide MS approach. In many cases we find additional,
alternatively modified (or unmodified) variants of “expected”
oligonucleotides. In particular, for an oligonucleotide that
matches the T-loop region in several tRNA-Ala genes we robustly
detect the doubly methylated form (mU55 and mA58), both
singly methylated forms and the unmodified form. For the
equivalent oligonucleotides in tRNA-CysGCA, we found at least
60 matches for each of the double methylation and a single
methylation at A58. In oligonucleotides overlapping the antic-
odon loop and the 3′ anticodon stem, we detect multiple forms
e.g. for tRNA-GluCTC (unmodified and mC39), tRNA-GlyCCC

(mU39 with and without mU32), tRNA-Met (either or both of
mC34 and t6A37) and tRNA-iMet (unmodified and t6A38). In
tRNA-GluTTC we find mcm5s2U as well as its precursor mcm5U
at U33 (presumably mis-localized from the wobble U34). For
tRNA-Ser we observe several different forms in this region—
primarily mA37 and t6A42 with or without mU44 for tRNA-
SerGCT, and N6-isopentenyladenosine (i6A) at A37 with either,
both or neither of mU39 and mU44 for tRNA-SerA/CGA. In
tRNA-LysTTT, among a number of identified oligonucleotides all
covering pos. 31–42, the four with highest spectral counts (all
above 25) show what could be interpreted as a modification
cascade: first t6A at pos. 37, then addition of mcm5U at pos. 34,
followed by conversion to mcm5s2U at pos. 34, and finally
conversion to ms2t6A at pos. 37; see Fig. 6 for annotated spectra.
Based on our data alone it is impossible to determine whether
these and other cases correspond to partial modifications of a
particular tRNA, or to mixtures of differently modified tRNAs
from separate genes. However, overall these results support newer
findings that question the stoichiometric and static nature of
tRNA modifications, and favor the notion of a complex and
dynamic tRNA modification landscape38.

Discussion
NASE is an open-source database search engine for RNA, opti-
mized for high-resolution MS data. It supports arbitrary mod-
ifications, salt adducts, and FDR estimation through a target/
decoy search strategy. Moreover, integration with the OpenMS
toolbox enables high-quality data visualization, e.g. for manual
validation of spectral assignments, and label-free quantification of
RNA oligonucleotides. We have tested NASE against a range of
sample types and complexities, spanning synthetic nucleic acids,
in vitro-transcribed sequences, and cell extracts. In all of these
experiments we have been able to effectively identify RNA
sequences and their modifications.

NASE contains many unique functionalities that are not cur-
rently realized in other database search tools for RNA. To our
knowledge, no other tools account for precursor mass defect
resulting from instrumental selection of higher isotopologue
peaks. This functionality is a major contributor to the excellent
performance of NASE in identifying longer oligonucleotides
compared to other database-matching tools. NASE also provides
powerful correction for cation adduction events, which lessens
the impact of sodium and potassium ions on sequence char-
acterization. In addition, OpenMS in general and NASE

specifically were designed to be fast. Our search times for complex
samples are orders of magnitude faster than other tools. The
searches on the NME1 and let-7 data take seconds; the much
more complicated 23-modifications searches of the tRNA dataset
took <30 min per file on our server (using 40 parallel threads).
For comparison, an analogous search using RNAModMapper was
not feasible, with an estimated running time of one month. An
equivalent search with Ariadne did not return any modified
oligonucleotides.

The open-source nature of OpenMS and NASE enables users
to modify the software to fit their specific needs, to extend the
existing functionality, and to create new interoperating programs.
Already, many analysis tools have been implemented within the
OpenMS framework to support mass spectrometry-based pro-
teomics and metabolomics experiments. The present work, and
here in particular the pioneering application of label-free quan-
tification, gives a foretaste of the power of leveraging these
methods for the analysis of nucleic acid data. Future develop-
ments will streamline the use of OpenMS tools and algorithms,
e.g. for improved quantification and comparisons across many
samples, in the field of epitranscriptomics. In conclusion, the
development of NASE is an important step towards the large-
scale analysis of RNA by mass spectrometry.

Methods
Liquid chromatography-tandem mass spectrometry. RNA samples were sepa-
rated by reversed-phase ion-pair liquid chromatography (using 200 mM HFIP+
8.5 mM TEA in H2O as eluent A, and 100 mM HFIP+ 4.25 mM TEA in methanol
as eluent B) and characterized by negative ion MS/MS in a hybrid quadrupole-
orbitrap mass spectrometer (Q Exactive HF, Thermo Fisher). A gradient of 2.5 to
25% eluent B eluted oligonucleotides from various lengths of nanoflow Acclaim
PepMap C18 solid phase (Thermo Fisher) at 200 nL per minute. The length of the
gradient was varied according to the complexity of the sample. Precursor ion
spectra were collected at a scan range of 600–3500 m/z at 120k resolution in data-
dependent mode, with the top five MS1 species selected for fragmentation and MS2
at 60k resolution.

RNA samples. A variety of RNA samples were characterized by nanoflow LC-MS/
MS (nLC-MS/MS) and sequence analysis performed using NASE. Initial work was
carried out on a mature Drosophila let-7 sequence that was prepared by solid-phase
synthesis and purchased from IDT. This sequence is a 21 nt long microRNA that
was among the first miRNAs to be characterized39. The RNA was chemically
synthesized in unmethylated and methylated forms, i.e. with or without a 2′-O-
methyluridine (Um) at position 21. A sample was prepared by mixing both forms,
and was characterized by nLC-MS/MS without further processing, but with varying
normalized collision energy (NCE) settings to give different levels of precursor
fragmentation.

Subsequent experiments were carried out on NME1, a 340 nt long
Saccharomyces lncRNA. NME1 RNA was generated by in vitro transcription, and
two samples with and without NCL1 enzyme treatment were prepared. NCL1 is a
yeast RNA methyltransferase that catalyzes the 5-methylcytidine (m5C)
modification40. RNA was extracted and digested with RNase T1; this endonuclease
produces shorter oligonucleotides by cleaving immediately after guanosine
residues. nLC-MS/MS analysis of technical triplicates of 100 ng of oligonucleotides
was performed.

For the human ribosomal RNA dataset, total RNA was extracted from HAP1
tissue culture by using Qiazol reagent according to the manufacturer’s instructions.
Samples were generated by size-exclusion chromatography of total RNA.41 Briefly,
total RNA was fractionated through an Agilent Bio SEC-5 column using a mobile
phase of 100 mM ammonium acetate (pH 5) at a flow rate of 250 uL per minute.
Two fractions containing long ribosomal (18S and 28S) RNA were digested with
RNase T1 and 250 ng of oligonucleotides were subsequently analyzed by nLC-MS/
MS in technical triplicate.

The most complex sample was a solution of digested crude human cellular
tRNA, which was isolated in three biological replicates from HAP1 tissue culture
using an RNeasy kit (Qiagen) according to the manufacturer’s instructions. Briefly,
RNAs can be fractionated by length by differential elution, with RNAs less than 200
nucleotides mostly made up of tRNA, and the larger fraction being mostly rRNA.
The “shorter” RNA fraction was digested with RNase T1, and the resultant
oligonucleotides were characterized by nLC-MS/MS in technical triplicate, with
100 ng being injected each time.

NASE implementation. NASE was implemented in C++ within the OpenMS
framework. The OpenMS library was extended with classes representing (modified)
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Fig. 6 Annotated spectra of four oligonucleotides originating from tRNA-LysTTT.Matched a-B/a/b/c/d ions are shown in red, w/x/y/z ions in green. All
oligonucleotides cover the same region around the anticodon, but represent different modification states, evocative of stepwise addition and conversion of
modifications by the associated enzymes. Each of these spectra had a precursor with a charge state of −5 with the exception of “ACUUUU(t6A)AUCUG”,
which was −3. All of these spectral assignments had a hyperscore of at least 140 in NASE.
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ribonucleotides (based on data from the MODOMICS database42), RNA sequen-
ces, and endoribonucleases. A generalized data structure for spectrum identifica-
tion results (supporting peptides/proteins, nucleic acid sequences, and small
molecules) and an algorithm for theoretical spectrum generation of RNAs were
added as well. NASE itself is an executable tool that supports the common interface
of The OpenMS Proteomics Pipeline26.

Data processing with NASE works as follows: Inputs are an RNA sequence
database (FASTA format) and a mass spectrometry data file (mzML format). RNA
sequences are digested in silico using enzyme-specific cleavage rules for the user-
specified RNase. Tandem mass spectra are pre-processed (intensity filtering,
deisotoping) and mapped to oligonucleotides based on precursor masses. Mass
offsets due to salt adducts or precursor selection from heavier isotopologue peaks
can be taken into account. Next, theoretical spectra of relevant oligonucleotides in
the appropriate charge states are generated and compared to the experimental
spectra; matches are scored using a variant of the hyperscore algorithm43. If the
sequence database contains decoy entries, the resulting oligonucleotide-spectrum
matches can be statistically validated through the automatic calculation of q-values,
a measure of the FDR44. Supported output formats are an mzTab-like45 text file,
suitable for further analysis, and an XML file, suitable for visualization in
TOPPView.

In order to provide support for label-free quantification of identified
oligonucleotides, NASE interfaces with the OpenMS tool
FeatureFinderMetaboIdent (FFMetId). FFMetId handles the core step of the
quantitative workflow, the detection of chromatographic features in the LC-MS
data. As a variant of the proteomics tool FeatureFinderIdentification46, FFMetId
provides targeted feature detection for arbitrary chemical compounds. NASE can
write an output file with all relevant information about the oligonucleotides it
identified, which is directly suitable as an input file for FFMetId.

Sequence database searches. For NASE analyses, all proprietary raw files were
converted to mzML format47 without compression and with vendor peak-picking
using MSConvert48 (https://github.com/ProteoWizard). The full list of fragment
ion types (a-B, a, b, c, d, w, x, y, z) was considered for peak matching. Precursor
and fragment mass tolerance were both set to 3 ppm.

For the synthetic let-7 data, an extensive set of potential adducts (Na+, K+,
Na22+, K2

2+, NaK2+, Na33+, K3
3+, Na2K3+, NaK2

3+) was used during the search
because of the substantial salt that remained from the RNA synthesis reactions.
Two copies of the let-7 sequence, one with a fixed 2′-O-methylation of uridine
(Um) at the 5′ position, were specified in the FASTA sequence file. The small size
of the sequence database prevented the use of a target/decoy approach for FDR
estimation. We thus used a stringent hyperscore cutoff of 150 (corresponding to
the 1% FDR in the tRNA sample, see below) to define a high-confidence set of
results.

In the three other datasets, results from target/decoy database searches were
initially exported from NASE at 10% FDR (spectrum match-level), then further
filtered in post-processing depending on the analysis.

For the NME1 data, the sequence database contained the NME1 (target)
sequence as well as a shuffled decoy sequence.

For the human rRNA data, to allow direct comparison with published results,
we used a sequence database containing 18S and 28S rRNA from TK6 cells (plus
reversed decoys). A set of seven variable modifications, including
monomethylations of all four canonical ribonucleotides, was defined based on
known ribosomal PTMs.

In our search of the tRNA data, 23 variable modifications (based on reported
modifications in human tRNA36) were specified, at a maximum of three
modifications per oligonucleotide. The FASTA file contained 420 human tRNA
sequences collected from the tRNA sequence database tRNAdb35 (http://trna.
bioinf.uni-leipzig.de) plus the same number of reversed decoy sequences.

See Table 2 for additional dataset-specific parameters.

Search engine comparison. The NME1 data was processed with two other pub-
licly available RNA identification engines, in addition to NASE: Ariadne21 and
RNAModMapper23. To this end, the raw files were converted to MGF format using
MSConvert. Cleavage and variable modification settings in the searches were the
same as for NASE and appropriate for the samples.

For Ariadne, the online version at http://ariadne.riken.jp was used in July 2019.
The “Calc as partial modifications” option was enabled. The precursor and
fragment mass tolerances were left at their default values (5 and 20 ppm).
Alternatively, using the parameters from the Taoka et al.49 (20 and 50 ppm) made
no appreciable difference for Ariadne’s performance in our tests.

For RNAModMapper, a program version from July 2018 was used with settings
recommended by the author, Ningxi Yu. All available ion types (a-B, w, c, y) were
enabled; precursor and fragment mass tolerances were set to 0.02 and 0.1 Da,
respectively.

Label-free quantification. In order to perform label-free quantification on the
NME1 dataset, target coordinates (chemical sum formulas, charge states, median
retention times) for oligonucleotides identified at 1% FDR were exported from
NASE. Based on these coordinates, feature detection in the LC-MS raw data
(mzML files) was carried out with the OpenMS tool FeatureFinderMetaboIdent.
The results were exported to text format using OpenMS’ TextExporter, for sub-
sequent processing and visualization in R 3.5.150. Results from both NME1 samples
were merged and feature intensities for oligonucleotides were summed up over
multiple charge and adduct states, where available. To equalize differences between
replicates and ensure comparability between conditions, the quantities for oligo-
nucleotides that differed only in the localization of a cytidine methylation, as well
as for the overlapping oligonucleotides “UAACCCAAUGp” and “UCA-
CAAAUCGp” (and their variants), were aggregated.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Mass spectrometry data files and search results (as well as label-free quantification results
for the “NME1” dataset) were deposited in the PRIDE51 repository with dataset
identifiers PXD012094 [https://www.ebi.ac.uk/pride/archive/projects/PXD012094]
(synthetic let-7), PXD016308 [https://www.ebi.ac.uk/pride/archive/projects/PXD016308]
(NME1), PXD016323 [https://www.ebi.ac.uk/pride/archive/projects/PXD016323]
(human rRNA) and PXD016328 [https://www.ebi.ac.uk/pride/archive/projects/
PXD016328] (human tRNA).

Code availability
Source code for OpenMS, including NASE, is available on GitHub (https://github.com/
OpenMS/OpenMS) under a three-clause BSD license. R scripts for post-processing of
NASE results are available by request.
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