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INTRODUCTION

Much of higher cognition involves abstracting away from sensory details and thinking conceptually.
How do our brains learn and represent such abstract concepts? Recent work has proposed that
neural representations in the medial temporal lobe (MTL), which are involved in spatial navigation,
might also support learning of higher-level knowledge structures (Behrens et al., 2018; Bellmund
et al., 2018). Under this view, a range of MTL neurons such as place cells, grid cells, and head-
direction cells may support the ability to mentally “navigate” through conceptual spaces. This
extends the original proposal by Tolman (1948) that people construct “cognitivemaps” that support
broad psychological functions, and offers the exciting potential of understanding the cognitive
processes that underlie category learning, reinforcement learning, and spatial navigation under a
single unified framework.

These ideas are supported by findings that neural representations in the MTL, as well as the
medial prefrontal cortex (mPFC), are involved in “navigation” of simple two-dimensional spaces
of visual stimuli (Constantinescu et al., 2016; Theves et al., 2019, 2020), social spaces (Tavares
et al., 2015; Park et al., 2020), and odor spaces (Bao et al., 2019). A recent study in the Journal
of Neuroscience (Viganò and Piazza, 2020) takes this research further by suggesting that the
entorhinal cortex (EHC) and the mPFC are capable of mapping not only sensory spaces, but also
abstract semantic spaces. In this opinion piece, we first describe the paradigm and results of Viganò
and Piazza (2020), as well as the importance of their findings for the field. We then raise several
methodological concerns and suggest changes to the paradigm to address these issues. Finally, we
discuss potential future research directions including experimental and modeling approaches to
tackle outstanding questions in the field.

EXPERIMENTAL PARADIGM AND RESULTS

Viganò and Piazza (2020) employed a two-dimensional, multisensory space, in which each
exemplar was characterized by the size of a visual image and the pitch of a concurrent auditory
tone (Figures 1A,B). To assess how the brain organizes category knowledge in this space, they used
functional magnetic resonance imaging (fMRI) to measure the distances and directions between
the neural representations of exemplars, both before and after category learning. The experiment
involved three phases: (1) a pre-learning fMRI task, (2) nine days of behavioral training on the
category structure, and (3) a post-learning fMRI task. During pre-learning, participants performed
a 1-back stimulus identity task on the exemplars and on verbal labels (the pseudowords KER,
MOS, DUN, and GAL) that denoted the four later-to-be-learned categories (Figure 1B). During
behavioral training, participants learned to map each exemplar to one of the four categories.
The post-learning task was similar to the pre-learning task, except participants performed a 1-
back category identity task, responding whenever an exemplar was followed by its corresponding
category label or vice versa.
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When searching for neural representations that related
to the distances between categories, the authors utilized
the fact that diagonal category pairs (such as DUN-MOS)
differed in both dimensions and so were further apart than
horizontal/vertical categories (such as KER-MOS) that differed
in only one dimension (Figure 1C, left). They used fMRI-
adaptation to detect sensitivity to small vs. large distances, and
representational similarity analysis (RSA) to assess similarity
between neural representations across categories (Figure 1D,
left). Both analyses revealed a significant cluster in the mPFC
that reflected greater distance between diagonal categories
than horizontal/vertical categories post-learning, but not pre-
learning (Figures 1C,D). An additional fMRI-adaptation analysis
focusing on the EHC showed that the EHC also tracked category
distances. Importantly, a control RSA based on distances between
individual exemplars suggested that the mPFC was not sensitive
to sensory distances between stimuli either pre- or post-learning,
demonstrating its specificity to the more abstract category space.

The authors then used model-based RSA to test for direction-
based grid-like neural codes for “movement” across the category
space. A model was constructed to reflect the predicted
similarities between all eight possible movement directions in the
category space (“moving” from one trial to the next in the 1-back
task). The similarities across directions were calculated assuming
a 6-fold periodicity that would result from using a grid-like code
(Figure 1E, left; see Bellmund et al., 2016; though note that
only eight directions were sampled in this study). A whole-brain
searchlight revealed a cluster in the right EHC consistent with
this model (Figure 1E, right). This EHC signal was not sensitive
to 4, 5, and 7-fold periodicities, and was only present post-
learning. Notably, the authors did not find a direction-modulated
signal in the mPFC.

Together, these results suggest that the neural mechanisms
that underlie spatial processing are recycled to represent not
just sensory spaces but also more abstract category spaces.
Specifically, the mPFC and the EHC represent category distances,
and the EHC tracks the movement directions in that space,
possibly using the same grid-like codes found in spatial
navigation tasks.

DISCUSSION

Despite its innovative paradigm, aspects of the experimental
design warrant further consideration. Specifically, the pre- vs.
post-learning tasks differed in nature (1-back stimulus identity
vs. 1-back category identity), which could have introduced
confounds such as differences in task difficulty—i.e., greater brain
activity due to higher cognitive demand in the category task.
This is one reason why the authors did not report a direct pre-
vs. post-learning whole-brain comparison, even though such a
contrast revealed the same mPFC cluster as reported in the paper
(personal communication, April 9, 2020). One way to address
this issue would be to run the 1-back stimulus identity task post-
as well as pre-learning, attributing any changes in brain activity
to the newly acquired category knowledge. This would allow a
direct whole-brain comparison between pre- and post-learning

stages, providing a better andmore comprehensive test compared
to the pre- post-learning comparison within the mPFC ROI
identified by the analysis after learning (Figures 1C,D, right;
also see Viganò and Piazza, 2020, Figures 2C,F). Indeed, the
authors did run a post-learning 1-back stimulus identity task,
but with fewer number of runs than pre-learning, undermining
the power of the pre-post contrast (personal communication,
April 9, 2020). Additionally, a post-learning 1-back stimulus
identity task might not have activated the learned category
knowledge since it is not required to perform the task. Thus, an
alternative approach would be to introduce a within-participant
“no-learning” control condition, where participants perform a
pre-learning 1-back stimulus identity task and a post-learning 1-
back category identity task on a second, distinct set of stimuli and
category labels. Crucially, participants would not learn category-
to-exemplar mappings in between the tasks (such that in the
post-learning task, participants would need to guess the category
to which exemplars belong). Then, one could examine distance
and direction sensitivity that was unique to the “learned” space.

Another issue concerns the possibility that the direction-
based, grid-like representations of concept space may be partially
driven by more concept-level overlap in one direction than
others. With four categories arranged in a square format, only
a subset of directions across concepts could be sampled (0–
315◦ in 45◦ steps), thereby omitting several key directions (60◦

and 120◦) when testing for a 6-fold periodic signal (Figure 1E,
left). Therefore, the significant correlation with the grid-model
could have been mainly driven by the higher pattern similarity
(lower dissimilarity) in the 180◦ direction. The issue is that the
conditions that are compared in the 180◦ direction contained
stimuli that shared two concept labels (e.g., DUN→GAL then
GAL→DUN) whereas the other direction conditions only shared
one concept label (e.g., one 45◦ movement is from DUN→KER
then KER→GAL, sharing KER). If the brain region carries
information about the concept, the 180◦ direction would show
higher pattern similarity than the other directions whether or
not there is an underlying grid-like signal. One hint of evidence
supporting a grid-like representation the right EHC is that the
pattern dissimilarities appear to increase from “zero” to “small”
to “large” changes in the predicted grid-model RDM (Figure 1E,
right, bar-plot inset). Although the numerical trend matches the
6-fold prediction, it is unclear whether the pattern dissimilarities
for “small” and “large” are statistically distinguishable, and the
main result could still be driven by the small dissimilarities in the
“zero” condition (i.e., 180◦). Future work could use a larger set of
exemplars and concept labels to test a wider range of movement
directions and hence provide further evidence for the emergence
of a grid-like representation in concept space after learning.

It is notable that Viganò and Piazza (2020) did not find
distance-based representations in the hippocampus, for either
category or sensory spaces. Structures in the MTL have been
implicated in a wide range of cognitive functions from spatial
navigation to memory to concept formation. We provide a
brief overview of these functions and speculate on the possible
reasons for the absence of hippocampal involvement in the
current study. First, the hippocampus is a region strongly
implicated in spatial navigation, where place cells are thought
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FIGURE 1 | Task and results summary. (A) An example audiovisual object used in the experiment. Each object was of a particular size and made a sound of a specific

pitch as it visually compressed on the screen. (B) Left: Illustration of the 16 objects in a 2D audiovisual sensory space defined by size and pitch. Right: Objects were

assigned one of four category labels (meaningless pseudowords), which defined the abstract semantic/category space on top of the sensory space. Objects marked

with white and gray circles were both used in the behavioral sessions; only the ones marked in gray were used in the fMRI sessions. (C,D) Brain representations

coding semantic distance. (C) Left: Illustration of greater distances in semantic space between diagonal categories (here KER—GAL) than non-diagonal distances

(here KER—MOS). Right: Whole-brain fMRI-adaptation analysis performed on post-learning data revealed a significant cluster in the mPFC. (D) Left: Representational

similarity analysis (RSA) using a model based on distances between categories. Right: Whole-brain RSA searchlight revealed a significant cluster in the mPFC. (E)

Grid-like representations of semantic space. Left: Assuming a grid-like representation in semantic space, a specific pattern of activation across different movement

directions should be expected (where movement refers to transitions between stimuli on successive trials). A grid-model dissimilarity matrix represents the predicted

pairwise dissimilarities between voxel activity patterns evoked by the different directions as a function of their angular distance in 60◦ periodic space. This grid-model

is then correlated with the voxel activity patterns evoked by the different movement directions to reveal the presence of a grid-like response. Right: whole-brain

searchlight results using the model-based grid-RSA. Maps are thresholded at p < 0.05 uncorrected for visualization. Bar plot inset shows the average dissimilarity

between activity patterns evoked by different directions in the entorhinal cortex, varying as a function of angular distance modulo 60. The figure is adapted from

Viganò and Piazza (2020), Journal of Neuroscience.
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to track an agent’s physical location (O’Keefe and Nadel,
1978). Relatedly, human neuroimaging studies have implicated
the hippocampus in tracking distances in virtual spaces
(Deuker et al., 2016), conceptual spaces (Tavares et al., 2015;
Theves et al., 2019, 2020) and graph-like relational knowledge
structures (Garvert et al., 2017). The MTL has long been
acknowledged for its role in learning and memory (Nadel and
Moscovitch, 1997). MTL structures such as the hippocampus,
EHC, parahippocampal cortex, and perirhinal cortex are involved
in the integration of multiple sources of information such as
object identity and spatio-temporal context into a coherent
episodic event representation that can be consolidated into
memory (Eichenbaum and Cohen, 2008; Knierim et al., 2014).
Interestingly, the role of the MTL in semantic memory has been
debated (Squire and Zola-Morgan, 1991; Mishkin et al., 1998;
Duff et al., 2020) with some researchers arguing for the anterior
temporal lobe (ATL) as the crucial region for representing
semantic knowledge, supported by semantic deficits in semantic
dementia (Ralph et al., 2016). Recent work also showed the
involvement of MTL structures such as the hippocampus in
concept learning and categorization (Davis et al., 2012; Mack
et al., 2016; Bowman and Zeithamova, 2018), with theoretical
proposals arguing for an intrinsic link between episodic memory
and concept formation (Mack et al., 2018). One reason why the
hippocampus was not identified in the experiment by Viganò
and Piazza (2020) may be that the new category knowledge
had already become consolidated into cortex over the nine
days of training, and therefore was no longer hippocampally
dependent (Squire et al., 2015). Consistent with this, studies
that showed hippocampal involvement in concept learning tested
participants relatively early in the learning phase (Davis et al.,
2012; Mack et al., 2016). On the other hand, involvement of the
EHC in representing conceptual information after long periods
of learning as show in Viganò and Piazza’s study can inform
the debate about the possible role of the MTL structures in
organizing semantic knowledge. Future studies could clarify the
differential contributions of these MTL structures by tracking
neural representations at multiple stages of learning, before and
after consolidation.

Another way to uncover the neural representations underlying
abstract concepts is to develop computational models that also
learn categories (Nosofsky, 1986; Kruschke, 1992; Nosofsky
et al., 1994; Ashby et al., 1998; Smith and Minda, 1998; Love
et al., 2004; Sanborn et al., 2010), and search the brain for
representations that match those learned by the models. This
approach has focused on the hippocampus (Mack et al., 2016;
Bowman and Zeithamova, 2018) though a recent model based on
clustering theories of concept learning was able to capture both
hippocampal representations in category learning tasks and place
and grid cell-like representations in navigation contexts (Mok
and Love, 2019). Applied to a concept structure similar to the
one in the current study, the model would learn the centers of
the concept distributions (representing the category prototypes),
and predict stronger activity for category prototypes than non-
prototypes, and more similar representations for movements
between category prototypes compared to movements toward
non-prototype exemplars. This prediction could not be tested

in the current study because the exemplars were equally distant
from their category prototype. By expanding the sensory space to
include more exemplars and testing more movement directions,
future studies may be able to distinguish this model from others,
by comparing the similarity spaces within brain regions with
similarity spaces implied by different computational models (e.g.,
spatial, clustering, exemplar, Bayesian models).

While brain-imaging studies provide growing evidence
for general-purpose neural mechanisms across spatial and
conceptual domains, an older line of behavioral work challenges
these ideas by showing that people violate axiomatic assumptions
in geometric theories of conceptual organization (Tversky and
Gati, 1982). If conceptual spaces are represented geometrically
(Gärdenfors, 2000; Bellmund et al., 2018), then they must obey
several geometric properties, such as the “triangle inequality.”
This states that a direct path between two points cannot be
larger than an indirect one going through a third point. Using
two-dimensional stimuli similar to ones used in neuroimaging
studies (e.g., Constantinescu et al., 2016), Tversky andGati (1982)
showed that people’s judgments of the dissimilarity between pairs
of exemplars imply internal conceptual spaces that violate the
triangle inequality. While augmented geometric models have
been developed to address this problem (Krumhansl, 1978;
Nosofsky, 1991), some theoretical issues remain (Goldstone
and Son, 2012). Therefore, proposals that suggest that spatial
representations underlie human concept learning need to address
this challenge to resolve the tension between neural data and
human behavioral data.

In summary, Viganò and Piazza (2020) provide an important
contribution to the growing evidence for shared neural
mechanisms underlying spatial navigation and abstract
knowledge. Future paradigms should further disentangle
the contributions of the hippocampus, the EHC, and the
mPFC to the representation of category vs. sensory spaces,
assess learning and consolidation-dependent changes in neural
representations, and compare computational models in their
ability to match neural and behavioral data. Together, these
developments will clarify the extent to which we can generalize
mechanistic insights from spatial navigation to the organization
of higher-order knowledge structures.
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