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Abstract 

Measurement and Modelling of Soft Solid Layers in Cleaning Applications 

Fouling and effective cleaning are important operating issues in the food and pharmaceutical 

industries, which need to be managed well to ensure process hygiene and productivity. In order 

to understand fouling and cleaning mechanisms, methods are required to quantify soft solid 

soil or deposit characteristics by measuring these in situ. This dissertation describes the 

development of millimanipulation and two new fluid dynamic gauging (FDG) devices, namely 

sideways FDG (SiDG) and integrated FDG (iFDG), and demonstrates their application for in 

situ measurement. Computational fluid dynamic (CFD) simulations of the flow patterns using 

the volume of fluid method were performed which enables previously inaccessible information 

to be extracted from the experimental data.  

The millimanipulation device reported by Magens et al., J Food Eng, 197 (2017) 48-59 

measures the force experienced by a blade as it is pushed through a soil layer. The deformation 

of layers of viscoplastic petroleum jelly, soft white paraffin and toothpaste were studied and 

simulated using the regularized Bingham and the bi-viscosity models. The simulations gave 

good agreement with experimental results: combining visualisation and an interrupted testing 

mode allowed the material’s yield stress to be estimated. 

The SiDG device allows one to study the initial and long-term swelling of soft solid layers. 

The concept was implemented, commissioned and demonstrated by monitoring the swelling of 

gelatin, poly(vinyl acetate) (PVAc) and complex model soil layers at different pH and 

temperatures. All these materials underwent rapid initial hydration, followed by different 

longer term behaviour: gelatin and PVAc layers at pH < 11 exhibited Fickian diffusion control 

while at pH ≥ 11, PVAc exhibited relaxation control associated with hydrolysis.  
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In the iFDG system the distances between the nozzle head and the soil layer, and the metallic 

substrate, are measured simultaneously by incorporating an inductive sensor in the gauging 

nozzle. The iFDG device was taken from concept to demonstration with a range of gauging 

liquids: water, UHT milk (opaque), a more viscous Newtonian fluid (washing-up liquid) and 

non-Newtonian aqueous solutions of 1 wt% and 3 wt% carboxymethyl cellulose (CMC). The 

CFD simulations gave good agreement with the experimental data. An ice growth experiment 

was performed using the iFDG device to demonstrate its application to monitoring growth of 

fouling layers. 

The CFD simulations were extended to consider the coupled flows which can arise in FDG 

measurements, where the stressed imposed by the gauging liquid flow can deform the soft solid 

soil layer. Two-fluid simulations were performed to estimate the change of topography of a 

petroleum jelly layer subject to FDG testing at different clearances. Acceptable agreement 

between the simulation results and measurements was obtained, and the observed differences 

were attributed to tubing-induced artefacts. A short feasibility study considered extending the 

approach to the three-fluid problem when a coherent liquid jet impinges horizontally on a 

horizontal plane coated with a soft solid soil layer. The results showed promising agreement 

with experiments on water jet cleaning of petroleum jelly layers. 

Jheng-Han Tsai 
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Nomenclature 

Latin    

A Oscillation amplitude ° 

a Radius of cleaned area m 

a0 Radius when cleaning front is first seen m 

Bn Bingham number  - 

b Length of berm of sample layer m 

b0 Original length of berm of sample layer m 

CNaOH Concentration of sodium hydroxide solution kg/m3 

Cc Cable capacitance  F 

Cd Discharge coefficient - 

Cr Resonance capacitor  F 

D Dryer diameter  m 

Di Internal diameter of silicon rubber tube m 

Do External diameter of silicon rubber tube m 

Di Change of internal diameter of silicon rubber tube m 

D Rate of deformation tensor (𝐃 = 
1

2
(∇𝐯 + (∇𝐯)𝑇)) 1/s 

di Inner diameter of nozzle tube m 

dj Jet diameter  m 

dt Diameter of nozzle throat m 

E Elasticity modulus  Pa 
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FC Removal force at point C N/m 

FC’ Removal force at point C’ N/m 

FD Removal force at point D N/m 

Fw Removal force  N/m 

�̅�𝑤 Average removal force  N/m 

G′ Elastic modulus Pa 

G″ Viscous modulus Pa 

g Gravity vector m/s2 

gi Elastic constant of Maxwell model Pa 

h Nozzle-layer clearance m 

hb Height of berm of sample layer m 

hf Water film thickness m 

hnew New clearance after ZFDG operation m 

ho Nozzle-substrate clearance m 

K Cleaning rate parameter m/s0.2 

k Flow consistency index of simple power law 1/sn 

k’ Cleaning rate constant m-s/kg 

kD Kinetic constant of simple power law 1/sn 

kHB Flow consistency index of Herschel-Bulkley model Pa 

km Kinetic constant 𝑘(𝛿∞ − 𝛿0) m/sn 

ks Kinetic constant m2-s/kg 

L Initial length of sample layer m 

Lc Cable inductance H 

Li Inductance of inductive coil H 

Lp Length of sample layer behind blade m 

l Length of nozzle tube m 
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M Momentum in the liquid film per unit length kg/s2 

MY Momentum flux required to cause yield kg/s2 

m Amount of solvent in a polymer  kg 

mBP Smoothing parameter of Bingham-Papanastasiou model - 

m∞ Amount of solvent at swelling equilibrium kg 

�̇� Mass flow rate  kg/s 

�̇�𝑎𝑐𝑡𝑢𝑎𝑙 Actual mass flow rate of gauging liquid kg/s 

�̇�𝑖𝑑𝑒𝑎𝑙 Ideal mass flow rate of gauging liquid kg/s 

N1 – N2  Difference of normal stress differences Pa 

n Flow behaviour index of simple power law - 

�̂� Surface normal - 

�̂�𝑤 Unit vector normal - 

nD Diffusion index of simple power law - 

nHB Flow index of Herschel-Bulkley model - 

P Differential pressure (P − P0) Pa 

P Measured pressure Pa 

P0 Ambient pressure Pa 

Ptrue Real pressure for pressure transducer calibration Pa 

p Pressure  Pa 

pk-pk Peak to peak voltage V 

Q Volumetric flow rate m3/s 

QD Viscous dissipation W/m 

R2 Goodness of fit - 

RP Relative productivity  - 

Rc Resistance of cable  

Re Reynolds number  - 
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Rej Reynolds number of jet based on nozzle diameter - 

Ret Reynolds number at FDG nozzle throat - 

Ri Resistance of inductive coil  

Rq Roughness m 
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Chapter 1 Research Motivation 

1.1 Introduction and Background 

Fouling on surfaces has attracted growing attention in the food and biotech sectors in recent 

years, which results in a series of concerns, such as hygienic issues, contamination, reduction 

of productivity, corrosion of equipment surfaces, and increasing operating costs [1, 2]. 

Removing these fouling deposits on equipment surfaces often require large volumes of water 

and/or chemical agents at high temperature, leading to high consumption of water, materials 

and energy. These are also associated with large environmental impacts [3]. Müller-Steinhagen 

reported an estimate of production losses caused by fouling on heat exchanger surfaces, which 

accounted for around 0.25 % of the annual GDP in industrialised countries [4]. Moreover, 

USDA figures in 2019 showed that more than 500 billion tons of dairy products, double that 

of the 2000’s, was produced that year across the world [5]. Based on this trend, annual 

production of 1000 billion tons can be expected in the next decade, and the consumption of 

water, chemicals and energy would be dramatic. Further studies of cleaning fouling deposits 

on equipment surfaces for mitigating the economic and environmental impacts are thus 

required.   

Quantitative understanding of fouling mechanisms and deposit characteristics are needed to 

develop more effective and efficient cleaning processes. For physical cleaning methods, where 

removal is driven by forces generated by a flowing fluid, a range of parameters need to be 

known (either by measurement or prediction). These include the fluid shear, removal force, 

and mass transfer characteristics of the flow: the strength of adhesion between the foulant and 

equipment surface; the thickness and change in thickness of fouling layers; and the mechanical 

properties of fouling deposits (e.g. yield stress). Quantitative models linking the characteristics 

of the flow and the behaviour of the fouling layer (with and without chemical action) can then 

be developed or used in simulations. With these tools, the required flow rate for cleaning 
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devices (e.g. cleaning jets) and operating times can be estimated for developing cleaning 

protocols or refining existing ones, for example to avoid overconsumption of water and 

chemicals. 

However, some fouling deposits have proved difficult to remove and measure. Some of these 

deposits are porous, and contain a large amount of liquid when immersed in a liquid 

environment. On being touched or removed from the liquid, they collapse readily, increasing 

the difficulty of studying them. Furthermore, conventional mechanical instruments, such 

thickness gauges, cannot be employed for measuring the thickness of such layers accurately 

and easily. Even through some non-contact techniques like tomography allow thicknesses to 

be measured with high accuracy, installation of these is often pricey or may not be viable [6]. 

Innovation and development of hardware for studying such challenging layers is therefore 

needed. These may require detailed simulation of the operation in order to extract intrinsic 

properties of the deposit from the measurements.  

This dissertation focuses on two measurement techniques developed in the P4G research group 

in the Department of Chemical Engineering and Biotechnology at Cambridge, for studying soft 

solid fouling layers in situ, namely fluid dynamic gauging (FDG) and millimanipulation.  

The first FDG device was constructed by Tuladhar [7]. The FDG device considered in this 

work was constructed by previous PhD student Shiyao Wang [8], to demonstrate the zero 

discharge concept (ZFDG). FDG devices are able to measure the thickness of soft solid layers 

immersed in a liquid environment in situ and in real time. Simulations of the fluid flow pattern 

in the FDG device allow the stress imposed on the layer by the gauging flow, and hence its 

strength, to be determined by in situ measurements. While devices such as the ZFDG allow the 

thickness, growth (and shrinkage) rates and removal shear stress of fouling layers to be 

quantified, the initial swelling rate was not able to be monitored reliably. For layers which 

change shape rapidly on contact with liquids, this is a phase where information is needed in 

order to determine the mechanisms involved. 

Millimanipulation measures the forces required to disrupt a deposit layer as a result of it being 

dislodged by a moving blade. This allows the forces active in the layer and at the layer/substrate 

interface to be measured. Unlike FDG, where a liquid flow imposes a force, in 

millimanipulation a known deformation is imposed. The millimanipulation device was built by 

previous PhD student, Ole M. Magens [9], to measure adhesion forces. Simulations are 
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required to estimate layer properties, such as the yield stress and rheology. Estimating these 

properties from in situ measurements, avoiding changing the properties by removing the 

deposit from the substrate, will allow more reliable understanding of deposit behaviour.  

The dissertation present the improvement and development of these two techniques to enable 

the characteristics of fouling layers to be studied in situ. They are linked by the application 

field and by the type of modelling involved, namely computational fluid dynamics (CFD) 

simulations of flows of non-Newtonian fluids featuring a free surface. 

 

1.2 Research Aims 

The aims of this PhD project are to understand the characteristics of fouling deposits and 

fouling-related cleaning methods for establishing a more sustainable cleaning practice. This 

involves developing the apparatuses and techniques of FDG and millimanipulation, supported 

by experiments and computational fluid dynamics (CFD) simulations. The CFD methodology 

is also applied to cleaning viscoplastic soil layers using an impinging water jet. The FDG 

component follows builds on the Wang’s work on ZFDG [8]. Two new versions of ZFDG are 

developed, namely sideways FDG (SiDG), which allows one to study the initial and long-term 

swelling of soft solid layers, and integrated FDG (iFDG), which enables the distances between 

the nozzle head and the soil layer, and the metallic substrate, to be determined simultaneously. 

The millimanipulation project builds on the Magens’s work [9], to boost the capability of his 

millimanipulation device for tracking the deformation and slip of soft layers in situ.  

In both cases, viscoplastic materials are studied as the model soils simulating fouling deposits 

which are difficult to remove.  

The aims and relative objectives of the work are: 

i. To extend the applicability of Magen’s millimanipulation device – studying the 

removal behaviour of viscoplastic layers, including the topography, flow and force 

distributions, using experiments and computational fluid dynamic studies. 

ii. To design, construct and commission two test FDG devices – the sideways concept for 

measuring the initial swelling and cleaning behaviour is introduced and demonstrated 

via studies of a range of soil layers (e.g. polyvinyl acetate). The feasibility of integrating 
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an inductive proximity sensor into a FDG nozzle (iFDG), simplifying FDG 

measurements, is demonstrated for different substrates and various gauging liquids. 

iii. To develop simulations of the flows in SiDG and iFDG devices – CFD models are 

constructed, which allows flow patterns and the stresses imposed on the soil and 

substrate by the flow, for different gauging solutions (e.g. water, viscosity and non-

Newtonian fluids) to be estimated. These model are extended to simulate the coupled 

deformation of viscoplastic layers and FDG gauging flows using the volume-of-fluid 

(VOF) approach. 

iv. To apply the CFD tool developed in (iii) for an initial study of the removal of a 

viscoplastic soil layer using an impinging water jet.  

 

1.3 Structure of the Dissertation 

This dissertation is organised in six chapters. This first chapter introduces the background of 

the research and its aims.  

Chapter 2 reviews the fouling problem and challenges in cleaning, especially for cleaning-in-

place processes (CIP). A life cycle assessment of cleaning-in-place in the production of 

powdered egg yolk is presented which highlights that cleaning is a sustainability hotspot in 

manufacturing processes. Cleaning mechanisms and methods, including the development of 

millimanipulation, are introduced and summarised. The techniques of measuring the 

characteristics of soft solid layers are compared and the evolution of FDG is presented.   

Chapter 3 focuses on the development of the millimanipulation device, including visualisation, 

measurement of adhesive strength and interrupted testing, for a commercial petroleum jelly, a 

pharmaceutical soft white paraffin and a commercial toothpaste. A new estimation of yield 

stress of soft layers is presented and discussed. A CFD model of the millimanipulation device 

is presented. A test case using Carbopol® gel is presented and compared with the literature. 

Simulations are compared with experimental data.   

Chapter 4 presents the design, construction, commission and calibration of two innovative FDG 

devices and an improved ZFDG apparatus as well as the software with graphical user interface 

(GUI) required to drive the device. The applications of the SiDG technique to measure the layer 

thickness and swelling of polyvinyl acetate, gelatin and a complex model soil are described. 
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2D and 3D computational fluid dynamics studies of SiDG are presented and the results are 

compared with experimental data. The flow patterns and induced shear stress are analysed. The 

tests for the concept of iFDG using substrates of copper and mild and stainless steel as well as 

different gauging liquids, including water, whole ultrahigh-temperature milk, commercial 

washing-up liquid and 1 and 3 wt % carboxymethylcellulose (Non-Newtonian) solutions are 

demonstrated. CFD models of iFDG for these fluids is presented.  

Chapter 5 describes the experiments of coupled deformation of a viscoplastic layer (a 

commercial petroleum jelly) and FDG flows. The evolutions of pressure drop and topography 

of the sample layer in both ejection and suction modes and at different clearances are discussed. 

The experimental results are compared with CFD simulations. A further application of the CFD 

model for cleaning the viscoplastic layer using an impinging water jet is presented, and the 

results compared with experimental measurements.  

Chapter 6 presents the conclusions of the investigations and topics for future work.  
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Chapter 2 Literature Review 

2.1 Fouling Problems and Cleaning Processes 

Fouling is the deposition of unwanted material on a surface during processing. It is a 

widespread issue, especially in the food and biotechnology sectors, and often results in reduced 

operating efficiency, unhygienic conditions, and increase in energy consumption. Fouling 

creates a need for cleaning, requiring downtime and lost production, cleaning agents and 

energy. The mechanisms causing fouling have been classified as (1) 

precipitation/crystallisation, (2) sedimentation, (3) corrosion, (4) chemical reaction, (5) 

solidification and (6) biofouling. Deposition often involves a combination of these mechanisms 

[10].  

Crystallisation is often observed in membrane and heat transfer operations. Taking membrane 

distillation as an example, solutes accumulate adjacent to the membrane surface due to water 

vapour going through the membrane, resulting in supersaturated conditions there. The solutes 

then crystallise on the membrane surface. This phenomenon is called scaling, and is widely 

observed in heating hard water (containing calcium sulphate and calcium carbonate) [11]) as 

well as milk stone (calcium phosphate and proteins) deposited on heat exchanger surfaces in 

dairy industry [12].  

Sedimentation means that the particulate material falls or rises under gravity and collects on a 

surface.  

Corrosion fouling is where the surface itself undergoes a change or reaction to form a fouling 

layer [13].  

Generally, chemical reaction fouling involves a multistep mechanism, presented in Fig. 2.1(a) 

[14]. Precursor A (soluble) flows through a heat exchanger with the fluid, and can react to form 

insoluble species B on the equipment surface. Alternatively, A reacts to become B in the bulk, 
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which then moves to a surface and deposits there. Chemical reaction fouling often occurs in 

organic fluids, such as are found in oil refining and the petrochemical sectors. This is mainly 

attributed to autoxidation, polymerisation and thermal decomposition [15]. In the dairy sector, 

some of the whey proteins present in milk react at the conditions used for pasteurisation and 

sterilisation to form proteinaceous deposits [16]. 

Solidification refers to freezing components generating on a coolant side surface, such as ice.  

The formation of biofilms comprises a series of steps. The macromolecules presenting in a bulk 

solution transport to a surface, and then attach on the surface. The attaching microbial grow 

(cell-to-cell) to form a biofilm. This mechanism is shown in Fig. 2.1(b) [17]. Biofilms often 

develop on equipment surfaces in the food and biotechnology sectors [18] and in water 

treatment plants [19]. In addition, the presence of fouling deposits such as scaling facilitates 

nutrients to be adsorbed on equipment surfaces and promotes the growth of microorganisms.  
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(a) 

 
(b) 

 

Fig. 2.1. (a) General multistep chemical reaction fouling mechanism published by 

Watkinson and Wilson [14]. (b) Sequential stages in biofilm formation, presented by 

Nonjabulo et al. [20] and Tiranuntakul [21].  

 

These fouling mechanisms are complex and controlled by various factors, such as temperature, 

pressure, pH, fluid composition, fluid velocity, and surface properties. In order to mitigate 

fouling, understanding of the fouling mechanisms is needed.  

Cleaning is the removal of fouling deposits from equipment surfaces, and the nature of the 

fouling deposit determines the most appropriate cleaning method [22]. Wilson [22] proposed a 

procedure for identifying factors in developing cleaning methods. Firstly, the characteristics of 
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the deposit need to be established. Specification of cleaning techniques, acceptable cleaning 

criteria, variability for current processes, and the worst case scenarios also need to be 

considered. A cleaning protocol subsequently needs to be validated. In addition, ageing is a 

critical stage in the fouling growth, as it often increases the difficulty of cleaning. Examples 

included the ageing of deposits on heat exchanger surfaces in crude oil preheat trans [23] and 

in dairies [24]. In order to alleviate the consequences caused by ageing and find the optimal 

cleaning cycle, monitoring and modelling can be used. For example, computational fluid 

dynamics (CFD) has been used to simulate the crystal growth on a heat exchanger surface [25].  

Industrial cleaning methods are often categorised into physical and chemical techniques. 

Physical methods rely on mechanical action/forces to break attachment to the surface; chemical 

methods reduce the force needed to remove the layer. High pressure jets and brushing are 

physical methods used for cleaning in the food and biotech sectors. Pigging techniques, in 

which a ‘pig’ (a scraper) is inserted in a pipeline and driven by pressure to scrape deposits off 

the pipeline surface, are widely used to clear petroleum pipelines. The ‘ice pigging’ method, 

presented by Quarini et al.[26], sweeps deposits off the internals of process equipment by 

pumping a concentrated ice suspension through the item. The ‘ice pig’ has one noteworthy 

advantage: if gets stuck, it can be left to melt in place.  

Chemical methods often employ multiple-agent formulations. Dosage chemicals react with the 

foulants, and make them weaker and easier to be removed by the available forces. Acidic agents 

are widely used to remove mineral scale, such as calcium carbonate scales in desalination units 

[27]. Alkaline-based agents are employed to clean proteinaceous deposits, making the deposits 

swell due to increased (antagonistic) interactions. The swelled foulants form a gel-type matrix, 

which is easier to be eroded by shear [28]. In general, cleaning processes combine chemical 

and mechanical force to achieve the removal within a desired timescale. . 

For a plant which produces the same product regularly, the above fouling and cleaning 

processes can be considered as a fouling-cleaning cycle, reported by Wilson [29] (Fig. 2.2). 

The cycle starts from a pristine surface without any fouling deposition. After operating for 

some time, deposits attach and grow on the surface, which lowers the production efficiency 

and causes hygiene issues. A cleaning step is thus required to solve the problem. In order to 

recover the performance of the surface, several treatments need to be conducted, such as 

disinfection. The process also involves two different fouling components: one reversible and 
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one irreversible. Taking membrane filtration as an example, reversible fouling means loosely 

bound foulants on the membrane surface, such as cake layers. These can be removed readily 

by conventional physical methods. By contrast, irreversible fouling refers to deposit which 

forms and attaches to the membrane through strong adhesive forces. Examples are biofilm and 

pore-blocking. The foulant cannot be removed using physical means alone, and chemical 

agents are usually required [30]. However, after chemical cleaning, the performance of surface 

will degrade and is not the same as the pristine material. After cleaning, the surface then enters 

the cycle again. 

 

Pristine surface 

Initial conditioning

Processing – fouling 

Cleaning

Disinfection/Pretreatment 

Process restart

Process environment
Temperature

Pressure

pH

Fluid composition

 

Fig. 2.2. Fouling-cleaning cycle reported by Wilson [29]. Symbols: solid bar – heat transfer 

surface; dotted bar – membrane surface.  

 

In the food manufacturing sectors (e.g. breweries and dairies), cleaning of vessels and pipelines 

consumes a large amount of water and/or chemical solutions and increases downtime, resulting 

in a significant increase in total costs. Automated cleaning-in-place (CIP) systems are now 

common in modern manufacturing plants. CIP is a method for cleaning process equipment, 

pipelines and tanks without disassembly. The techniques used are determined by the nature of 

the deposit or soil. CIP brings several benefits, such as maintaining product quality, safety, and 



 

12 

 

reduced downtime [31]. In cases where CIP involves recirculation of water or chemical agents, 

it can reduce water and chemical consumptions.  

The demand for food is expected to increase significantly due to the fast growing global 

population; however, the natural resources available are approaching their limits. In order to 

be able to supply sufficient food for future generations, the food sector has paid more attention 

to sustainability, meaning that not only the economic viability but also the environmental 

impact has to take into consideration. Sustainable production usually balances productivity, 

use of resources (e.g. land, water and chemicals), and pollutant emissions. In a food 

manufacturing process, a large volume of water is often consumed in the cleaning step, and 

this can be a hotspot in the food production life cycle. For example, Blondin et al. [32] reported 

that approximately 430 billion litres of wastewater were discharged in the fruit and vegetable 

industry in the US per year. Further studies of cleaning to promote the sustainability are thus 

required.  

One of the methods used to quantify sustainability is life cycle assessment (LCA). As part of 

this work, a LCA study of cleaning-in-place operations in the production of egg yolk powder 

was conducted by the author in order to estimate the impact of cleaning. The assessment is 

presented in Appendix A. The environmental impact scores arising from the consumption of 

water, energy and chemicals in the cleaning process were calculated and a series of potential 

improvement methods were analysed. The results demonstrate that the CIP processes are 

hotspots in powdered egg yolk manufacturing, as in dairy processing. Both are cases where 

fouling and cleaning involves soft solid deposits which are difficult to clean and need to be 

studied in situ, i.e. examples of the materials that the FDG and millimanipulation techniques 

were developed to study. 

 

2.2 Understanding of Cleaning Mechanisms 

2.2.1 Techniques to study cleaning mechanisms 

Cleaning mechanisms in industrial cleaning processes have been categorised into 4 groups, 

namely diffusive dissolution, cohesive separation, viscous shifting and adhesive detachment 
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(or peeling), by Joppa et al. [33] (see Fig. 2.3). In diffusive dissolution, the soil at the surface 

dissolves and is then removed from the surface by mass transfer. Examples include mineral 

salts in acid and sugars in water [34]. Cohesive separation and adhesive detachment happen 

when the force imposed on the soil layer overcomes cohesive and adhesive forces, respectively. 

Viscous shifting is similar to a case of two immiscible fluids (e.g. removal of petroleum jelly 

by a water jet, discussed in 2.2.4), where the soil is mobile and can be pushed out by the 

cleaning fluid [35].  

 

Viscous shifting

Diffusive dissolution Cohesive separation

Adhesive detachment 

(Peeling)

 

Fig. 2.3. Schematic of the modes in cleaning mechanisms (Adapted from Joppa et al. [33]).  

 

These mechanisms often do not occur alone. In order to establish the most appropriate cleaning 

method, understanding the soil removal characteristics is required. This thesis focuses on 

physical cleaning methods, so measurements of fluid shear, mechanical friction, mechanical 

properties of fouling materials, and thickness of soil layers are necessary. In addition to these 

characteristics, the initial swelling of fouling layers has been reported to be an important feature 

when studying cleaning mechanisms [36], especially in the removal of proteinaceous fouling 

deposits. Xin et al. [37] proposed a cleaning model including this parameter for the removal of 

a model milk foulant from a stainless steel substrate. The initial swelling stage of proteinaceous 

deposits is mainly controlled by the interaction between protein and sodim hydroxide; however, 

the swelling rate can be very fast and difficult to monitor [38]. Saikhwan et al. [39] studied 

alkaline cleaning of a number of model proteinaceous dairy soils using FDG and reported that 
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the device they used could not measure the initial thickness and early swelling behaviour due 

to the time taken to establish gauging flow at the start of their cleaning experiments (up to 3 

mins).  

In addition, most fouling deposits cannot be loaded into conventional measurement devices, 

(e.g. standard rheometers or thickness gauges), so alternative methods for measuring the 

deposits in situ are desired. Some hydrodynamic devices have been used to study the 

mechanical properties of soils, such as the parallel plate flow cell (PPFC), radial-flow cell, 

rotating disc, plynometer, impinging jet and fluid dynamic gauging (FDG), as well as non-

hydrodynamic devices such as millimanipulation.  

The radial-flow cell consists of two parallel discs separated by a narrow gap. A liquid is 

pumped through a hole at the centre of the upper disk outwards through the gap, so a controlled 

shear stress can be generated and the adhesion forces of soil on the disc surfaces can be assessed 

[40]. The configuration of the rotating disk is usually a one plate system (sometimes two 

parallel plates).  A holder filled with a sample is mounted on the disc and spun at a constant 

rotational speed. Cell adhesion can be quantified by measuring the number of cells before and 

after spinning [41]. The millimanipulation, PPFC, impinging jet, and FDG techniques are 

discussed in later sections.  

 

2.2.2 Evolution of millimanipulation 

In the past decade, techniques for studying the deformation of soft soils at different length 

scales have been developed. Zhang et al. [42] demonstrated a ‘micromanipulation’ device for 

investigating the bursting strength of mammalian cells. In this, a single cell was squeezed 

between two parallel flat surfaces, with one of the probes connected to a force transducer to 

monitor the force involved. Liu et al. [43] presented a variant of the micromanipulation 

technique which used a T-shaped stainless steel probe to pull a fouling deposit away from a 

surface, again measuring the required force. The effect of different scraping depths was studied. 

A modified micromanipulation tool was subsequently reported by Akhtar et al. [44]. The 

results obtained from micromanipulation were compared with results from atomic force 

microscopy (AFM) for deposit-surface interactions, and similar trends were observed.  
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Ashokkumar and Adler-Nissen [45] reported a scraping device which measured the force 

required to remove pancake cooked in place from different surface materials. Ali et al. [46] 

developed a similar mm-scale scraping device, which they called ‘millimanipulation’, to study 

the forces generated as viscoplastic layers were removed from solid surfaces. With this device, 

a force transducer was mounted above a platform, and the force generated on the scraping blade 

was measured when the platform moved and the sample contacted the blade. Magens et al. [9] 

reported an improved version of this device described for evaluating different surface coatings. 

Fuchs et al. [47] used an apparatus similar to these [9, 43, 46] to measure the binding forces of 

soils and their cleaning behaviour. Cuckston et al. [48] modified the Magens et al. device to 

include a flow system, which allowed the sample to be immersed or removed from solution 

before or during testing. A video camera allowed the removal behaviour of the layers to be 

visualised.  

Millard et al. [49] reported a blade-coating study, whose apparatus was similar to the Magens 

et al. device  [9], but at a different length scale (cm). A yield stress fluid, a Carbopol 980 gel, 

with different concentrations was used as the soil and occupied a 140 cm-long and 12 cm-wide 

channel. A vertical plate (12 cm square) was used to scrape the sample at speeds ranging 

between 1 and 500 mm/s. The influence of the initial liquid thickness, scrape depth, scrape 

speed and fluid yield stress were studied.  

The working action of millimanipulation is depicted in Fig. 2.4. The vertical blade moves 

horizontally through the sample layer of initial thickness 0 at a constant velocity, V and scrape 

depth, s. The sample is dislodged and the blade leaves a layer with residual thickness . The 

force required to deform and move the sample is composed of three components: (i) the force 

to deform undisturbed material ahead of the blade (Region I), (ii) the force required to move 

the deformed material in I, upwards and forming a berm of height h (Region II), and (iii) the 

force to overcome the shear resistance acting on the blade edge (Region III) [50]. Ali et al. [46] 

showed a method to record the deformation of their test soil, Vaseline, by marking the sample 

with black lines as reference points. Millard et al. [49] presented particle image velocimetry 

(PIV) measurements based on tracking bubbles present inside the sample to estimate the local 

velocity.  
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Fig. 2.4. Schematic of millimanipulation action, adapted from Ali et al. [46]. 

 

Numerical simulations have been used to predict the behaviour of samples during 

micromanipulation. Mercade-Prieto et al. [46, 51] utilised the finite element method (FEM) 

code ABAQUS to simulate the compression of core-shell capsules between two parallel plates. 

However, they did not extend the model to the mode reported by Liu et al. [43]. Simulations 

of the millimanipulation geometry have yet not been reported. Although the Ali et al. 

millimanipulation device could measure the removal force for soft solid layers, the information 

is limited in terms of applicability (e.g. scale up). The distributions of velocity and shear 

stresses generated during testing are important for cleaning. A model to predict and provide 

this information thus needs to be developed.   

 

2.2.3 Techniques and modelling of duct and pipeline cleaning 

The PPFC is the most common device used for studying microbial adhesion to surfaces 

immersed in an aqueous environment, in which the rate of adhesion is determined by 

calculating the number of microorganisms transported to the surface at a controlled mass flow 

rate [52]. Bakker et al. [53] employed CFD simulations to establish the velocity profiles for 

four different PPFCs, and the numerical results were validated by the profiles measured by 

particle image velocimetry.  
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CIP cleaning of a pipeline is also popular. A number of studies of interactions between 

immiscible fluids in pipe cleaning applications have been conducted. Cole et al. [54] 

investigated the cleaning of toothpaste in a pipe by passage of a second fluid (water) to flush 

the soil out. Experiments at both lab and pilot scales were conducted. Three removal steps were 

identified, namely core removal, thin film removal and patch removal. In the core removal step, 

the bulk of the soil was removed from the pipe. The residual layer near the wall was then 

sheared away by the cleaning fluid (thin film removal). In the final stage, called patch removal, 

residual patches was removed. Alba and Frigaard [55] studied cleaning of viscoplastic fluids 

from an inclined pipe. An integrated experimental-theoretical approach (control volume 

analysis) was created for estimating the interfacial and shear stresses. The solutions were 

compared with the results measured by Ultrasonic Doppler Velocimetry, which showed that 

the model could predict the interaction between Newtonian and shear-thinning fluids well. 

However, the approach overestimated the cleaning velocity due to the fact that the inertial 

stresses at the soil front was not considered.  

In addition to the integrated experimental-theoretical approach, CFD modelling has also 

employed. de Sousa et al. [56] used Galerkin FEM approaches to simulate the displacement of 

fluids by gas in capillary tubes. Two materials were tested, including a power-law shear-

thinning liquid and a viscoplastic fluid simulated by the Bingham-Papanastasiou model [57]. 

Experimental data from the literature were reproduced by the simulations with good agreement. 

A decrease of residual layer thickness caused by increasing the viscosity was observed. 

Thompson et al. [58] subsequently improved the de Sousa et al. model and found that the mass 

fraction of layers on the wall depended on the power-law index, so the efficiency of gas-

displacement for shear-thickening fluids was lower than that of Newtonian and shear-thinning 

fluids. Subsequently, Freitas et al. [59] numerically analysed the interactions between two 

viscoplastic fluids in a plane channel using FEM. Both fluids were simulated by the Bingham-

Papanastasiou model [57], and the interfacial capillary forces between them were considered 

The results showed that compared to changing the yield stress of the displacing fluid, changing 

the yield stress of the displaced fluid had greater more impacts on removal.  
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2.2.4 Techniques and modelling of impinging jet  

Impinging liquid jets, emitted by moving nozzles and static or rotating spray balls, are 

commonly used for cleaning industrial tanks and vessels. The soil is removed directly by the 

jet hitting the deposit surface or by the radial thin film flowing away from the point of 

impingement. The film generates a high shear stress which erodes or peels the deposit away. 

Currently, automated CIP systems are designed and constructed based on a series of empirical 

studies. To aid of the development of impinging jets and minimising the risks and costs, a 

model of impinging jet cleaning is required.  

A number of experimental studies and analytical models for impinging jets have been reported. 

Yeckel and Middleman [60] considered the case where the radial film generated by an 

impinging water jet removed a viscous oil film on a horizontal substrate. The oil was removed 

by the radial shear flow induced by the jet [60]. Buoyancy effects, and the effect of the oil 

motion on the water flow, were not considered. The model for the oil flow was based on the 

Reynolds lubrication approximation. Hsu et al. [61] investigated impinging jet rinsing flows 

on both Newtonian and elastic fluid layers. For Newtonian fluids, the growth of cleaning circle 

was nearly linear, but the elasticity of the viscoelastic fluids caused ‘recoil’ of the circle. 

Walker et al. [62] extended the Hsu et al. work to study the free surface of non-Newtonian 

coating fluids by a rinsing water jet. The results demonstrated that the flow structure depends 

on the viscosity ratio between the jet and the soil.  

Wilson et al. [63] presented an analytical model for the flow of a liquid film generated by a 

liquid jet impinging on a vertical wall. The momentum in the liquid film per unit length, M, 

was given by 

 𝑀 =
6

5
𝜌𝑈2ℎ𝑓 (2.1) 

where  is the liquid density, U is the average velocity in the film and hf the film thickness. 

Wilson et al. [64] subsequently presented results for cleaning of petroleum jelly from vertical 

and horizontal plates by water jets impinging normally on a flat substrate. The rate of growth 

the circular cleaned area (radius: a) was proportional to M : 

 
𝑑𝑎

𝑑𝑡
= 𝑘′𝑀 (2.2) 
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The key part of this work was the assertion that some soft solids are removed by a peeling 

mechanism. Glover et al. [65] proposed a model for the cleaning of two soil layers, polyvinyl 

acetate (PVA) and petroleum jelly, by an impinging water jet. The model of cleaning by jets 

was created by fixed and moving nozzles in batch processes (fixed jet). 

Bhagat and Wilson [66] developed the Wilson et al. model [63], describing the hydrodynamics 

in the thin film as involving three flow regions, namely a boundary layer formation zone 

(BLFZ), laminar film zone (LZ) and turbulent zone (TZ). Bhagat et al. [67] identified scenarios 

of ‘strong’ and ‘weak’ soils. The strong soil is one which is difficult to remove so a is close to 

the jet radius, and vice versa. Fernandes et al. [68] subsequently modified the Bhagat et al. 

models to describe cleaning of viscoplastic layers (a commercial petroleum jelly) from Perspex 

and glass surfaces using impinging water jets. They measured the shape of the berm of removed 

material: it depended on the ratio of the water film thickness to the initial thickness of the layer.  

Although these analytical models can give exact solutions, they are based on some assumptions 

and cannot be applied to more complex problems and geometries. For complex cases, 

numerical methods (e.g. computational fluid dynamics, CFD), are required. CFD is a numerical 

method for predicting fluid flow behaviour by solving the equations of fluid motion. In CFD 

analysis, the spatial domain is divided to a number of mesh points or elements, and numerical 

solutions are matched to these points [69]. Thus, CFD can deal with very complex geometries. 

Numerical simulations for estimating soil cleaning using an impinging liquid jet are limited. 

Joppa et al. [33] presented a CFD simulation of jet cleaning of a swellable starch-based model 

soil introducing diffusive dissolution. A transient Dirichlet boundary condition [70] was 

employed for calculating the volume fraction of soil, based on two assumptions: the effect of 

the layer thickness on the flow was negligible and the layer remained smooth during cleaning. 

The results were validated successfully and could be applied for more complex geometries and 

conditions.  

Although the Joppa et al. [33] case simulated deformation of the layer surface, the effect of the 

layer thickness on the impinging flow was neglected. Numerical simulations for the 

interactions between the soft film surface and jet flow are still limited, and more studies are 

required. 
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2.3 Techniques for Measuring Layer Characteristics 

2.3.1 Introduction 

Knowledge of the characteristics of fouling deposits are critical for cleaning, but studies and 

analysis of deposit characteristics are challenging because the soil layers are often immersed 

in aqueous environments and some (e.g. foods and biofilms) collapse when touched. Not only 

availability, but also affordability of the measurement techniques are important. Current 

methods for monitoring the characteristics of fouling layers are summarised and compared in 

Table 2.1. 
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Table 2.1. Research techniques for studying characteristics of fouling layers 

Technique Properties of soils in situ Spatial 

resolution 

Reference 

Energy dispersive X-ray 

spectroscopy (EDX) 

Chemical composition and metallic 

coating thickness 

No 10 nm [71-73] 

     

X-ray diffraction Crystallographic structure and 

chemical composition 

No NA [73, 74] 

     

Atomic force microscopy 

(AFM) 

Adhesion force and surface 

roughness 

No nm [72, 75, 76] 

     

Confocal microscopy Surface roughness Yes m [77, 78] 

     

Fluid dynamic gauging 

(FDG) 

Surface topography and strengthens Yes ~5 m [79] 

     

Magnetic resonance 

imaging (MRI) 

Spatial information Yes ~100 

m/pixel 

[80-82] 

     

Scanning electronic 

microscopy (SEM) 

Surface topography and composition No 20 nm [72, 83] 

     

Ultrasound Element thickness Yes 10 m [84, 85] 

     

White light 

interferometry 

Surface morphology, roughness and 

thickness 

Yes ~5 m [86, 87] 

     

 

Atomic force microscopy (AFM) is a type of scanning probe microscopy with a very high 

resolution of about nanometre using a sharp tip (probe) to scan the sample surface. The 

measured deflection force between the tip and surface can be used to describe the surface 

properties, such as Young’s modulus and stiffness [76]. Goode et al. [75] used AFM to measure 

the adhesion forces between different substrates (stainless steel and fluoro-coated glass) and 

soils (whey protein, condensed milk and caramel). However, the AFM tip was easier to be 

functionalised by the substrate surfaces than the deposits, so the tip was modified before tests 

using SS and glass microparticles.   

Confocal microscopy is an optical microscopy technique using a spatial pinhole to eliminate 

out-of-focus light for enhancing resolution, to micrometre scales [78]. The technique was used 
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by Piepiórka-Stepuk et al. [77] to study milk fouling on stainless steel substrates with different 

roughnesses.  

Ultrasound thickness sensing is a non-destructive method for measuring the thickness of a solid 

object by calculating the time period between emission and return of the ultrasound wave. 

Ubeda et al. [84] developed a low-power ultrasound gauging system to measure the removal 

of milk foulant inside a heat exchanger with a detection accuracy of more than 80%.  

X-ray diffraction (XRD) is used to determine chemical composition and crystallographic 

structure by analysing elastic scattering of X-ray photons by atoms in a periodic lattice, using 

Bragg's law [74]. Hagsten et al. [73] used XRD to study the crystalline structure of high 

temperature milk fouling deposits. 

Energy dispersive X-ray spectroscopy (EDX) is an analytical technique for measuring 

composition distributions of samples by analysing the interaction between the source X-ray 

and the sample. Li et al. [72] analysed the fouling properties including composition and surface 

topographies on zirconia ceramic ultrafiltration membranes for filtering limed sugarcane juice 

using AFM, EDX, scanning electronic microscopy (SEM), and Fourier-transform infrared 

spectrometry (FTIR). SEM utilises a focused electron beam to scan the sample surface, and the 

signals generated by the interaction between the beam and sample are used to detect the surface 

topography and composition [83].  

Magnetic resonance imaging (MRI) is a non-invasive technology which can produce 3-

dimensional images of non-ferric samples and has been widely used for disease diagnosis. The 

principle of MRI is to use a strong static magnetic field to align protons in the sample, and 

radiofrequency pulses are then applied to excite these protons. The energy subsequently 

released from the protons can be detected and the phenomenon is called nuclear magnetic 

resonance (NMR). Electric signals do not include spatial information, so a gradient magnetic 

field is employed to generate a 3D image [82]. Creber et al. [80] reported a MRI study of 

biofilm accumulation and shrinkage during cleaning of reverse osmosis membranes. The 

distributions of both water flow and biofilm inside a membrane module was captured by MRI 

and good agreement was obtained between experimental and lattice Boltzmann simulations.  

White light interferometry is a non-destructive measurement method in which light traveling 

from the target surface to a certain point is detected for estimating the surface roughness of a 
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sample [87]. Larimer et al. [86] utilised an interferometric optical microscope to monitor the 

thickness and surface morphology of P. putida biofilms over time, and the measured thickness 

of bacterial growth showed good agreement with a theoretical prediction.  

Although these existing techniques can help to understand the characteristics of soils, not all 

can measure the material’s properties in situ. Even though measurements in situ are feasible, 

the installation is often expensive, such as ultrasound and MRI. An affordable technique is still 

desired.  

 

2.3.2 Fluid Dynamic Gauging (FDG) 

In the food and biotechnology sectors, some fouling deposits have proved difficult to remove 

and measure, since these layers are often weak and contain a large amount of liquid, and 

collapse when removed from their immersed environment. Conventional mechanical 

instruments such as thickness gauges cannot measure the thickness of this type of soil layer 

accurately and easily. While the accuracy of measurement by some non-contact methods 

discussed above (e.g. ultrasonic) is high, installation of these is often expensive or may not be 

feasible [6].  

The technique of fluid dynamic gauging (FDG), firstly proposed by Tuladhar et al. [7], was 

developed to deal with this problem. The concept built on the existing method of pneumatic 

proximity gauging, reported by Macleod et al. [88], but using a liquid as the fluid rather than a 

gas. FDG allows measurement of the thickness of soft solid layers in situ in real time. A 

schematic of a typical FDG nozzle and the principle of FDG operation are shown in Fig. 2.5. 

Liquid is ejected or withdrawn from a nozzle located near the deposit surface. The thickness of 

the layer is estimated in three steps. (i) Firstly, an alternative method is used to determine the 

clearance, ho (the nozzle relative to the substrate). (ii) The clearance, h, between the nozzle and 

layer is determined thus:  when liquid is withdrawn and/or ejected through the nozzle at a set 

mass flow rate, �̇�, the pressure drop across the nozzle, P = P − P0, will be a function of �̇� 

and the nozzle geometry. 

 P = f(�̇�, h/dt) (2.3) 
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where dt is the diameter of nozzle throat. The measured pressure drop at a controlled mass flow 

rate can thus be used to determine h, and (iii) thereby to establish the thickness of the soft layer, 

from  = ho – h. In general, P is expressed as a discharge coefficient, Cd, which is a normalised 

energy loss across the nozzle [89]: 

 𝐶d =
�̇�𝑎𝑐𝑡𝑢𝑎𝑙

�̇�𝑖𝑑𝑒𝑎𝑙
=

4�̇�

𝜋𝑑t
2√2𝜌∆𝑃

 (2.4) 

The development and applications of the FDG technique are summarised in Table 2.2. The first 

FDG device, reported by Tuladhar et al. [7], consisted of a siphon tube, one end of which was 

a nozzle positioned near to the surface being gauged by a micrometre screw gauge and 

immersed in a reservoir, and the other end was connected to a flow rate measuring device. Fig. 

2.6 is a schematic of their device. When the liquid level was fixed, the suction pressure would 

be equivalent to the hydrostatic head under siphon action. The volume of liquid flowing out of 

the tank through the siphon tube was measured over time, and the thickness measurement could 

be calculated using Eq. (2.3). Measuring the mass flow rate to estimate the thickness is denoted 

‘mass mode’ or ‘flowing mode’. In this setup, only suction mode measurements can be made. 

The technique was employed for measuring the thickness change of whey protein deposits, 

supermarket butter and sticky foam on SS substrates in water and NaOH solution. Tuladhar et 

al.[90] subsequently monitored the growth of ice films in a duct flow of 10% sucrose solution 

with a flow velocity of 400 < Re (Reynolds number) < 2000, and the results proved that FDG 

could perform measurements in a high Re duct flow (up to 10,000).  

 



 

25 

 

 

Chew et al. [79] extended the FDG technique to quantify the strength of tomato paste fouling 

deposits and its removal characteristics. A CFD model was created to predict the shear stress 

exerted on the layer surface induced by the FDG flow. Changes in thickness, measured by 

FDG, could then be used to estimate the deposit strength. The estimated shear stress for 

removing the tomato paste could be extended to predict the required velocity for cleaning the 

paste in a pipeline. Chew et al. [91] subsequently used an FDG  device to measure the swelling 

of two polystyrene co-polymers in various commercial solvents for cleaning of emulsion 

polymerisation reactors. The removal behaviour of the materials was related to the swelling 

rate and dissolution of the layers, and could be extended to find the optimal cleaning strategies 

and schedule batch production.  

In a further application of FDG reported by Chew et al. [92], filter papers and suspensions of 

glass ballotini suspensions were employed to mimic dead end microfiltration. The FDG nozzle 

was located above the paper to monitor the growth of fouling layers. This study confirmed that 

FDG could be used to gauge layers on porous surfaces such as filters and membranes in situ, 

in real-time. 

P

ho

dt

di

P0

h



 

Fig. 2.5. Schematic of FDG operation. Solid and dashed streamlines indicate ejection and 

suction modes, respectively. 
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Suction

head

 

Fig. 2.6. Schematic diagram of the first FDG apparatus, reproduced from Tuladhar et al. [7]. 

 

Gu et al. [89] employed the FDG technique to measure the thickness of layers on a curved 

surface. A cylindrical SS rod positioned inside an acrylic tube served as the gauging surface, 

and the FDG gauge was mounted in the outer wall of the annular channel to make 

measurements on the rod. Cases with slower and with turbulent annular flows (14000 < Re < 

32000) were investigated. In general, the measured mass flow rate depends on the clearance, 

but one exception was observed in their experiments. The mass flow rate was independent of 

the clearance at small clearance (h/dt < 0.1) due to leakage from the small gap between the 

nozzle rim and curved surface. 

Gordon et al. [93] constructed an automated, scanning FDG (sFDG) for measuring the 

thickness of soil layers at several points on the same sample by installing two perpendicular 

linear slides under the water tank, which allowed the nozzle to move to different points on the 

sample. Gelatine, polyvinyl alcohol (PVA) and baked tomato purée deposits were gauged with 

a resolution of ±5 m, and the feasibility of using sFDG as an imaging device was 

demonstrated.  

Jones et al. [94] proposed ‘pressure mode’ operation by fixing the flow rate of liquid withdrawn 

through the nozzle and recording the pressure drop, for measuring the thickness of fouling 

deposits in dead-end and cross-flow microfiltration. Lewis et al. [95] studied the thickness and 

strength of cake foulants during microfiltration of suspended Saccharomyces cerevisiae yeast 
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using FDG. Ali et al. [96] measured the thickness of fouling deposits on a curved surface in 

opaque and viscous mineral oil with a viscosity of 44 mPa s at elevated temperature and 

pressure. The results showed that the practical working range of h/dt from 0.05 to 0.25 was not 

affected by pressure and temperature. 

Yang et al. [97] subsequently presented a different operating mode for FDG, namely zero-

discharge fluid dynamic gauging (ZFDG), wherein a fixed volume of gauging liquid was 

withdrawn and then ejected through the nozzle using a syringe pump, so that the net flow of 

liquid was zero with advantages for hazardous, sterile and aseptic operations. Wang and Wilson 

[98] subsequently used an automated ZFDG device to monitor swelling of PVA and gelatin 

layers over time at different pH, and the measurements showed good agreement with 

gravimetric methods. Lemos et al. [99] subsequently reported a ZFDG device for measuring 

the thickness of biofilms and the shear stress required to remove these from a cylindrical 

surface. Tests for Pseudomonas fluorescens biofilms on both high density polyethylene and SS 

cylinders were conducted.  

Lewis et al. [100] reported an investigation in the development of an automatic and more 

accurate FDG system for measuring the growth rate of cake foulants in cross-flow filtration. A 

linear variable differential transformer (LVDT) with a resolution of ±0.5 µm was installed on 

the gauging nozzle to indicate its position and enhance accuracy. A resolution of the clearance 

relative to the layer surface, from −6 m to +7 m, was achieved. Wang et al. [6] then 

introduced an extended application of ZFDG to measure the thickness of soft solid layers 

immersed in a series of Newtonian liquids with a range of viscosities, from water to paraffin 

oil, under aseptic (closed system) conditions. The aseptic condition was achieved by fitting a 

flexible polypropylene film over the top of the tank. 

A study of cake growth during microfiltration of Kraft lignin suspensions using FDG was 

carried out by Lewis et al. [101]. The transition points for pore blocking were identified, and a 

significant flux decline of approximately 75 %, resulted from pore fouling, was observed. An 

approach for diagnosing membrane fouling was presented. This experiment showed good 

agreement with the critical flux model, indicating that it was available to be applied for 

improvements of microfiltration. Wang et al. [8] subsequently applied the ZFDG system for 

quantifying the shear stress of bacterial spore removal from different substrates and monitoring 
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the erosion rate of Rhodopseudomonas plaustris biofilms from with and w/o graphene-coated 

carbon papers.  

However, so far, two major challenges for operating FDG devices remain to be solved. One is 

that measurements require a second method to determine the clearance between the nozzle and 

the substrate. For example, in the operation of the current ZFDG device reported by Wang et 

al. [8], feeler gauges were employed to determine the initial clearance, which introduces some 

inaccuracy to measurements of thicknesses of soil layers. It is also a very time-consuming 

process. A second issue is that several minutes can elapse after the sample is initially immersed, 

before reliable measurements can be made. Soft solid layers can change their properties 

noticeably over these time periods, so it would be advantageous to eliminate this delay.  
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Table 2.2. Evolution and applications of the FDG technique (E – experimental-based; CFD 

– computational fluid dynamics simulations) 

Year Applications Gauging liquid Gauging materials E/CFD Ref. 

2000 Thickness 

measurement in fouling 

studies 

Water and alkali (NaOH) 

solution 

Whey protein deposit, 

supermarket butter and 

sticky foam 

E [7] 

2002 Swelling and removal 

of whey protein to CIP 

of dairy heat exchanger 

fouling deposits 

NaOH solution Whey protein films E [28] 

2003 Monitoring the 

swelling of soft films in 

flowing 

systems 

Water and sucrose solution SS plates and ice 

deposits 

E [90] 

2004 Measurement of the 

strength of soft deposits 

Water and sucrose solution Tomato paste E/CFD [79] 

2004 Validation of FDG 

simulation 

Water and CMC solution 316 SS plates E/CFD [102] 

2006 Study of cleaning 

kinetics 

NaOH and sodium 

metasilicate solution/ 

cleaning agent (TPU) and 

organic solvent MEK 

Polystyrene co-polymers E [91] 

2006 Study of removal of 

food soils for surface 

treatment 

Water Baked tomato paste E [103] 

2006 Study of cleaning of 

milk fouling deposits 

NaOH solution Whey protein foulants E [104] 

2007 Study of fouling layers 

on porous surface 

(micro- and macro-

filtration) 

Ballotini suspension in 

water 

Ballotini fouling  on 

filter papers 

E/CFD [92] 

2009 Thickness and strength 

measurement on curved 

surface 

Water 316 SS and acrylic 

curved surfaces 

E/CFD [89] 

2009 Operation in duct flows Water Perspex surface E/CFD [105] 

2010 Investigation in fouling 

deposition of 

microfiltration 

Ballotini suspensions in 

dodecane and water 

Ballotini fouling on 

membranes 

E [94] 

2010 Studies of swelling 

kinetics and 

deformation behaviour 

Water Layers of gelatine, 

polyvinyl alcohol (PVA) 

and baked tomato 

deposits 

E [93] 

2011 Thickness 

measurement for 

fouling and cleaning in 

annular devices 

Water and water with 

whey protein 

316 SS rod and whey 

protein fouling 

E/CFD [106] 

2011 Study of cake build-up 

in cross-flow 

microfiltration 

Ballotini suspensions in 

water 

Ballotini cakes E/CFD [107] 
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2011 Optimisation of FDG 

nozzle (CFD 

modelling) 

Water  CFD [108] 

2012 Investigation in 

enzyme-based cleaning 

Protease and buffer 

solutions 

Gelatin and egg yolk 

films 

E [109] 

2012 Study of cake fouling 

in cross-flow 

microfiltration 

Yeast suspension in water Yeast cakes on 

membranes 

E [95] 

2013 Thickness 

measurement of fouling 

deposits in opaque 

liquids 

Mineral oil Oil deposits E/CFD [96] 

2014 Study of removal of 

cohesive fouling layers 

NaOH solution Waxy maize starch 

layers 

E [110] 

2014 Thickness 

measurement of soft 

solid layers 

Water Petroleum jelly layers E/CFD [97] 

2015 Study of swelling of 

soft solid layers 

Water and NaOH solution Poly(vinyl acetate) 

(PVAc) and gelatin films 

E/CFD [98] 

2016 Measurement of cake 

thickness in 

ultrafiltration 

TiO2 suspension in water TiO2 cake E/CFD [111] 

2016 Measurement of 

biofilm thickness on 

cylindrical surfaces 

Nutrient medium Pseudomonas 

fluorescens biofilms 

E/CFD [99] 

2016 Cake fouling studies in 

cross-flow filtrations 

Water Yeast deposits E/CFD [100] 

2016 Swelling and hydration 

studies 

Alkaline solutions Egg yolk layers E [112] 

2016 Thickness 

measurement of soft 

layers 

Water, sucrose solutions, 

glycerol and paraffin oil 

316 SS discs E/CFD [6] 

2017 Investigation of cake 

fouling in cross-flow 

microfiltration 

Kraft lignin suspension in 

water 

Kraft lignin cakes on 

membranes 

E [101] 

2017 Studies of cake 

thickness and strength 

for microfiltration 

Kraft lignin suspension in 

water 

Kraft lignin cakes on 

membranes 

E [113] 

2017 Assessment of adhesion 

of 

Bacillus spores 

Water Bacillus films E [114] 

2018 Study of cleaning for 

complex food soils 

Water and NaOH solution Layers of complex fat, 

protein and carbohydrate 

soil mixture 

E [115] 

2018 Investigation of cake 

thickness and cohesive 

strength in 

microfiltration 

Kraft lignin suspension in 

water 

Kraft lignin cakes on 

membranes 

E [116] 
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2018 Measurement of 

thickness and strength 

of biofilms 

Nutrient medium Escherichia coli and 

Burkholderia cepacia 

biofilms 

E [117] 

2018 Measurement of 

thickness and strength 

of biofilms in cross 

flow filtration system 

Nutrient medium Pseudomonas 

aeruginosa PAO1 

biofilm 

E [118] 

2018 Study of biofilm and 

spore removal 

Water Rhodopseudomonas 

palustris biofilms,  

Bacillus cereus and B. 

megaterium spore 

E [8] 

2019 Study of fouling layers 

on membrane surfaces 

Microcrystalline cellulose 

(MCC) suspension in 

water 

MCC fouling layers E [119] 

2019 Study of initial 

swelling of soft sold 

layers 

Water and NaOH solution Petroleum jelly, 

poly(vinyl acetate), 

gelatin and complex 

model soil layers 

E/CFD [120] 

2019 Study of soil layers 

immersed in various 

liquids 

Water, UHT milk, 

Washing-up liquid, 1 wt% 

and 3 wt% carboxy-

methylcellulose solutions 

Skimmed milk ice films E/CFD [121] 

 

2.3.3 CFD Studies of FDG 

Tuladhar et al. [28] reported that the forces induced by FDG flows on soft layers could cause 

deformation of the surface, which resulted in inaccuracy to thickness measurements. However, 

due to the deformation, the gauging flows could be employed to estimate the strength of sample 

layers. In order to understand the FDG flow patterns and estimate the stresses imposed on the 

layer surface, calculation methods are required.  

The first numerical investigations for FDG were conducted by Chew et al. [102], using the 

commercial partial differential equation solver, FastfloTM to solve the governing continuity and 

Navier-Stokes equations. Different axisymmetric FDG nozzle shapes with Newtonian liquid 

flows were simulated to estimate wall shear stress distributions.  

Colombo and Steynor [122] performed experiments in a geometry similar to FDG using a non-

Newtonian fluid (carboxymethyl cellulose (CMC) solution) at various concentrations (less than 

1%). They observed that the ratio profile of mass flow rate and clearance were similar to those 

for Newtonian fluids. The CMC solution could be simulated as a Newtonian fluid by 

characterising the Cd values and Metzner–Reed Reynolds number [123]. Chew et al. [102] 
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tested the applicability of this approach for FDG with power-law fluids. However, the shear 

stress distribution of FDG could not be calculated, because in the approach, a constant viscosity 

was used, which could not describe the local behaviour of CMC.  

Chew et al. [92] subsequently simulated the flow field and stress distribution on a porous 

surface (membrane), where Darcy’s law was used to quantify the local flux through the 

membrane. The predicted pressures agreed with measured pressures, demonstrating that the 

flow patterns depended on the Reynolds numbers of nozzle throat and filter paper, and h/dt.   

Gu et al. [89] presented CFD simulations for FDG in turbulent annular flows (14000 < Re < 

32000) and on a curved surface using the commercial finite-element-based software COMSOL 

Multiphysics®. Good agreement between experimental and simulation results was obtained for 

quasi-static case, but for turbulent case, the simulations could not be attempted due to 

divergence at high Reynolds numbers. Gu et al. [105] subsequently simulated FDG in steady, 

laminar, duct flows. The numerical solutions showed good agreement in Cd with the 

experimental results, within 6 %, and proved the applicability of CFD simulations for 

predicting the flow fields of FDG. Peralta et al. [108] used CFD simulations to find the optimal 

nozzle external geometry of the FDG nozzle. The numerical results were compared with 

analytical solutions based on lubrication assumptions and very good agreement was obtained. 

These simulations focused on Newtonian fluids; however, in the food and biotech sectors, 

many cases involve non-Newtonian fluids, such as ketchup [124] and honey. In order to 

estimate the FDG flow pattern, CFD simulations including a viscosity model are needed. The 

other issue is that the surface being gauged has, up to now, been assumed to be flat and rigid. 

The case of coupled flows, of FDG interacting with a deformable soil layer, remains to be 

studied. This would allow one to derive more information from gauging tests on such layers. 

 

2.4 Summary 

Cleaning is an important operation in the food and pharma sectors and optimisation of cleaning 

operations is important for improving the sustainability of these industries. This requires 

quantitative knowledge of cleaning mechanisms, soil properties and behaviour. Techniques for 

studying mechanisms and measuring the characteristics of fouling deposits have been 
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reviewed. Some challenges in these techniques have been identified, and this dissertation 

focuses on three employed in the P4G research group at Cambridge.  

 

Millimanipulation 

The current millimanipulation device proposed by Magens et al. [9] can only measure the 

removal force of soft solid layers, which limits its applicability. Other properties and removal 

behavior of soft solid layers are very important while exploring the cleaning mechanisms. 

Extending the capability of the device is required.  

 

FDG 

Two challenges for operating FDG devices been identified. One is that before measurements 

are made, a second method is needed to determine the location of the substrate, which affects 

the accuracy of thickness measurements. A second is that several minutes can pass after the 

sample is initially immersed before measurements can be made. Soft solid layers can change 

their properties significantly over this time period. Eliminating this initial period is desirable. 

In order to deepen the understanding of cleaning processes and further find more sustainable 

operations, the above challenges need to be solved. This dissertation aims to improve the 

existing techniques and develop new devices. More quantitative information about soft solid 

layers is collected from the current millimanipulation device. It is tested by studying the 

removal behaviour of viscoplastic layers, including commercial petroleum jelly, 

pharmaceutical soft white paraffin and commercial toothpaste. 

Two innovative FDGs are designed, constructed, and commissioned. One of which can feature 

the initial behaviour of samples while being immersed into liquid without delay. A series of 

demonstration tests are performed using this device for studying the swelling and removal 

behaviours, on soft layers of petroleum jelly, polyvinyl acetate, gelatin and a complex model 

soil. The other can determine the clearance and thickness simultaneously. The concept is tested 

for different substrates, including copper and mild and stainless steel as well as various gauging 
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liquids, including water, whole ultrahigh-temperature milk, commercial washing-up liquid and 

1 and 3 wt % carboxymethylcellulose solutions (non-Newtonian).  

In addition to the new devices, more information can be obtained from CFD modelling of the 

flow and the deformation of the soil. In the millimanipulation case, this is a free boundary 

problem with a soil of complex rheology as well as a moving wall. In the FDG case, with is a 

coupled two-phase problem between a Newtonian and a non-Newtonian fluid. A series of CFD 

models for both millimanipulation and FDG cases are constructed based on the real geometries 

and tested at different conditions. These are validated and compared with the experimental 

data. 

The experience gained from developing these CFD approaches allows the author to consider 

other multiphase problems, and a short study of cleaning a viscoplastic soil by an impinging 

liquid jet is investigated and presented.
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Chapter 3 Deformation of Viscoplastic Fluid in 

Millimanipulation 

3.1 Introduction 

As discussed in previous chapters, understanding the interaction between the soft solid layer 

and the substrate is required for designing an efficient cleaning system. A number of existing 

hydrodynamic methods have been used to quantify the removal behaviour of materials 

immersed in a liquid environment to mimic cleaning, such as the parallel disc flow chamber 

[53], impinging liquid jets [65], and fluid dynamic gauging [8].  

Conventional methods have also been employed to measure deformation forces for layer 

materials at different length scales, such as atomic force microscopy (AFM)[44] at the 

nanoscale and indentation at the mm-scale. Indentation testing has been widely employed for 

measuring mechanical properties of materials. An indenter is pressed into the sample surface 

at a given speed, and the force, penetration depth and deformation are measured. A constitutive 

model is used to estimate the associated material properties. Huang et al. [125] used ‘normal’ 

indentation to assess the elastic modulus, yield stress, plastic flow consistency and plastic flow 

index for the model elastoviscoplastic material, plasticine®. Fig. 3.1 shows results for 

indentation on petroleum jelly and soft white paraffin. The profiles are noisy and do not present 

useful information for either materials. The mm-scale millimanipulation device presented by 

Magens et al. [9] is thus employed for studying the removal of such soft layers. 
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Fig. 3.1. Indentation results for (a) petroleum jelly and (b) soft white paraffin. 5 mm thick, 

30 mm square samples were prepared on a 316 stainless steel substrate using a 

spreader. The tests were performed by the author using a texture analyser (TA.XT 

plus, Stable Micro Systems) equipped with a 14.23 mm diameter hemispherical probe 

at 20 °C. The probe speed and trigger force were 1 mm/s and 0.01 g, respectively. 

Black arrows denote the direction of the probe (→ downward; ← upward). The bump 

at B is caused by adhesion to the probe. 

 

Fig. 3.2(a) shows the action of the millimanipulation device. A vertical blade moves 

horizontally through a sample layer with initial thickness, 0, and length, L, at a fixed velocity, 

V, and depth s, generating a heap ahead of the blade with height hb and length b, leaving a layer 

of thickness  behind the blade. The distance that the blade travels through the sample and the 

length upstream of the blade are labelled x and L − x, respectively. The force required to 

dislodge the layer has contributions from three regions (Fig. 3.2(b)). That in region I is 

associated with making the material deform; that in region II does work in pushing the 

dislodged material up the blade. The region III force overcomes the resistance experienced by 

the bottom of the blade, which can be mitigated by bevelling the edge [50].    
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Fig. 3.2. (a) Schematic of millimanipulation action, adapted from Ali et al. [46], and (b) 

photograph of pharmaceutical soft white paraffin during millimanipulation testing 

(𝛿0 = 5 mm, s = 2 mm). 

 

In this chapter, three viscoplastic materials, namely a pharmaceutical soft white paraffin, a 

commercial petroleum jelly and a personal care toothpaste, were used as test materials. Sample 

layers with different lengths and thicknesses were scraped by the millimanipulation device at 

different scrape depths and velocities. Visualisation was employed to capture salient 

dimensions during scraping, including berm length, berm height and sample length.  Particle 

image tracking was used to capture the velocity distribution. The experimental data were 

compared with CFD simulation results obtained with the VOF approach and dynamic mesh 

algorithms. A series of sensitivity tests on the parameters of the viscosity models used in the 

simulations was conducted.  
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3.2 Materials and Methods 

3.2.1 Device 

The configuration of the millimanipulation device presented in Fig. 3.3 is similar to that 

reported by Magens et al. [9]. The sample layer is fixed on a two-axis, x-(horizontal) and z-

(vertical) directions, moving platform, controlled by two linear slides (Standa 8MVT40-13-1-

MEn1 and Standa 8MT50-100BS1-MEn1, respectively). The x-axis slide has a maximum 

speed of 20 mm/s with a resolution of 5 m. A force transducer (ME-Meßsysteme GmbH 

KD40s ±2 N) is linked to a vertical blade, which hangs from an arm on a frictionless pivot, to 

measure the horizontal force when the blade contacts the layer. The measurement range of the 

transducer is ± 2 N. The transducer signal is amplified and collected as an analogue input by a 

multifunction I/O device (National Instruments, USB-6009, 8 AI (14-Bit, 48 kS/s)). The signal 

is converted to force using a calibration profile, which needs to be determined previously 

following the method presented by Liu [126]. The location and force data are collected and 

analysed using a control script coded by the author in Python 3.6.  
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Fig. 3.3. Photograph of the millimanipulation apparatus. Components: A – arm; B – blade; 

F – force transducer; P – pivot; S – sample; X – horizontal positioner; Z – vertical 

positioner. 

 

3.2.2 Sample preparation 

A commercial petroleum jelly (Atom Scientific Ltd, GPS5220), a pharmaceutical soft white 

paraffin (GSK) and a commercial toothpaste (Cavity Protection Caries, Colgate) were selected 

as test materials. Layers of the petroleum jelly and soft white paraffin were coated on a 316 SS 

substrate (50 × 50 mm2, thickness 2 mm) using a spreader tool [127], with variation in height 

of ±0.07 mm and width of 30 mm [128]. The variation was measured using a confocal thickness 

sensor, which is described in section 4.3.4.1. Toothpaste layers were prepared by squeezing the 

toothpaste onto the same substrate, then shaping it using the spreader tool.  
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3.2.3 Visualisation  

A high speed camera (Basler ace, acA640-750um) is mounted sideways on to the blade to 

capture the deformation of the sample layer as it is moved towards the blade. Fig. 3.2(b) is an 

example of an image captured by this camera. The videos were analysed using Python scripts. 

For particle tracing tests, a commercial black spray (HYCOTE, Matt Black Spray Paint) was 

sprayed over a mask to create some black points on the side of the sample viewed by the 

camera. Care was taken to avoid points being too large, or too high, as this would cause poor 

resolution in the particle tracking algorithms. An open source python package, namely Trackpy 

v0.3.2, was employed for particle image velocimetry [129]. 

 

3.2.4 Rheology of test materials 

Rheological tests on the materials were performed by PhD student Rubens Rosario Fernandes. 

Stress-controlled tests were performed at 20 °C on a Kinexus lab+ rotational rheometer 

(Malvern Instruments, UK) using roughened parallel plates and cone-plate with a diameter of 

40 mm and a gap of 1 mm. Strain-controlled tests were also carried out using a ARES rheometer 

(TA Instruments, USA) with smooth parallel plates (diameter: 50 mm; gap: 1mm). 

A number of methods are in regular use for determining the critical stress at which a 

viscoplastic fluid changes from predominantly solid-like to fluid-like behaviour. The term 

critical stress, c, is used here, to be consistent with the rheological literature [130]: in 

mathematical treatments the term ‘yield stress’, alluding to a sharp bifurcation in behaviour, is 

commonly used. The critical shear stress was estimated from measurements made with 

increasing steady shear stress ramps [131]. The results obtained for petroleum jelly and soft 

white paraffin with ramps of 10 Pa/min are plotted in Fig. 3.4(a,ii) and (b,ii), respectively. The 

critical shear stress is marked by two features: an abrupt increase in shear strain and a sharp 

drop in apparent viscosity. The critical yield stresses for petroleum jelly and soft white paraffin 

were 280 ± 10 Pa and 460 ± 10 Pa, respectively. In Fig. 3.4(a,i) and (b,i), the shear stress-shear 

strain relationships for both materials below c could be fitted by a line with gradient unity, 

indicating that the materials exhibit Hookean elastic behaviour below their yielding points (see 

plots-triangulation). Above c, the materials deform more readily. Comparing the apparent 
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viscosity of SWP with that of PJ, the decrease at the critical stress for SWP is steeper, indicating 

that this material exhibits more strongly plastic behaviour. The difference of the normal stress 

differences, N1 − N2 for both materials have also been done, showing distinct behaviours around 

their critical shear stresses.  
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Fig. 3.4. Plots of (i) shear stress versus shear strain and (ii) apparent viscosity for (a) 

petroleum jelly and (b) soft white paraffin at 20 °C. Symbols – experimental data. 

Vertical line indicates critical shear stress. Loci in (ii): red line – regularised Bingham 

(Eq. (3.10)): blue dashed line – bi-viscosity model, with (a,ii) showing three values of  

𝜇0, namely 5 kPa s, 100 kPa s and 1 MPa s considered in simulations. Triangles 

indicate Hookean elastic behaviour.  

 

Fig. 3.5 shows the results obtained with toothpaste analysed using the same procedure. The 

rheological response is similar to PJ and SWP, and can be roughly classified into two trends, 

above and below the critical shear stress (around 126 Pa). However, the behaviour below the 

yield stress is significantly different with the apparent viscosity increasing strongly with shear 

stress. This results in dominance of elastic behaviour at low shear stress, which is similar to 
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that reported by Yang et al. [132] using an oscillatory time sweep measurement. By contrast, 

the apparent viscosity declines rapidly, when the applied shear stress exceeds 126 Pa. Shear-

thinning behaviour was also observed by Ahuja et al. [133]. 
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Fig. 3.5. Plots of (a) shear stress versus shear strain and (b) apparent viscosity for toothpaste 

at 20 °C. Symbols – experimental data. Triangle indicates Hookean elastic behaviour. 

Vertical dashed line (b) indicates critical shear stress.  

 

3.2.5 Model Formulation  

A simplified 2-dimensional, transient and symmetric millimanipulation model was created, 

since the ratio of the blade width to layer thickness is much greater than 10. The models were 

constructed in the open source software OpenFOAM version 4.0 on a SuperServer 1027R-

WRF4+ server with 12 cores (Intel® Xeon® E5-2630V2 Processor 2.60GHz). The volume of 

fluid (VOF) method was employed for this study, in which all domains are solved by a 

momentum conservation equation using averaged density and viscosity: 

Here  and  are the average density and average viscosity, respectively. v is the velocity vector 

and p is the pressure. g is the gravity vector, but this term can be neglected for these viscoplastic 

materials due to their high yield stresses, y. In the tests, the estimates of ghb/y for PJ and 

SWP are less than 0.14 and 0.089, respectively. The volume fraction of the sample phase in 

each grid cell is , and the volume fraction of the air phase is 1 −  (0 ≤ ≤ 1). The average 

density and viscosity in each cell are given by linear laws of mixtures, viz.  

 𝜌 (
𝜕𝐯

𝜕𝑡
+ 𝐯 ∙ ∇𝐯) = −∇𝑝 + 𝜇∇2𝐯 + 𝜌𝐠 (3.1) 
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 sample  (1 − air (3.2) 

The mass continuity equation in terms of can be written as  

 
𝜕𝛼

𝜕𝑡
+ ∇ ∙ (𝐯𝛼) = 0 (3.4) 

In this study, the rheology of the petroleum jelly and soft white paraffin were described by the 

bi-viscosity model and regularised Bingham model. Tests were also performed on toothpaste 

layers. Simulation of those tests was not performed due to this material (Cavity Protection 

Caries, Colgate) undergoing elastic deformation below its yield stress. The elasticity-

dominated deformation cannot be describe by common viscosity models, such as Hershel-

Bulkley. The standard OpenFOAM solver also did not support elastic fluids and extension to 

such materials was considered to be beyond the scope of this project.  

CFD simulations for viscoelastic fluids increase the use of computation memory. One of the 

reasons why more memory is needed is the large number of variables to record. An additional 

term is required for calculating the polymeric extra stress tensor, p. This term is used to 

describe the elastic behaviour. Eq. (3.1) can be re-written as 

The polymeric stress tensor is then solved using an extra constitutive equation, and several 

methods have been proposed [134]. Taking the Oldroyd-B constitutive equation proposed by 

Oldroyd and Wilson [135] as an example, this gives: 

Here p is the polymeric viscosity,  is the relaxation time, and D is the rate of deformation 

tensor (𝐃 =  
1

2
(∇𝐯 + (∇𝐯)𝑇)). 

∇
𝝉𝑝

 is the upper convected time derivative of p, written as  

 sample(1 − air (3.3) 

 𝜌 (
𝜕𝐯

𝜕𝑡
+ 𝐯 ∙ ∇𝐯) = −∇𝑝 + 𝜇∇2𝐯 + 𝜌𝐠 + ∇ ∙ 𝝉𝑝 (3.5) 

 𝝉𝑝 + 𝜆 
∇
𝝉𝑝

= 2𝜂𝑝𝐃 (3.6) 
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Favero et al. [136] developed an OpenFOAM package including Oldroyd-B, Giesekus and 

FENR-P theories for simulating viscoelastic fluids. Habla et al. [137] used this OpenFOAM 

solver to simulate two common viscoelastic effects, namely the Weissenberg effect and die 

swell, and the results were compared with the literature. This package was also tested for the 

millimanipulation case here; however, it did not work and caused serious numerical issues. In 

addition, whilst an adhesive removal model for the cleaning of toothpaste has been reported by 

Yang et al. [132], a simulation including the cohesive failure of toothpaste has not yet been 

reported.  

Specifying a constitutive model relating the stress and deformation generated by it is an 

important part of simulations. 

(i) Bi-viscosity model (BVM): 

This approach was proposed by O'Donovan and Tanner [138]. A creeping viscosity, 0, 

describes the fluid behaviour when the imposed shear stress is less than its yield stress, y.  

 𝜇 = {

𝜇0                              , �̇� <
𝜏𝑦

𝜇0

𝜏𝑦
�̇�⁄ + 𝑘𝐻𝐵�̇�𝑛𝐻𝐵−1,  �̇� ≥

𝜏𝑦

𝜇0

 (3.8) 

where �̇� is the shear rate. When the shear stress is larger than the yield stress, the viscosity is 

described by the Herschel-Bulkley model, in which kHB and nHB are the flow consistency and 

flow index, respectively. The standard OpenFOAM solver incorporates calculation routines to 

implement the bifurcation in behaviour, and the bi-viscosity model is determined by 

 𝜇 = 𝑚𝑖𝑛 (𝜇0,
𝜏𝑦

�̇�
+ 𝑘𝐻𝐵�̇�𝑛𝐻𝐵−1) (3.9) 

 

(ii) Regularised Bingham model (RBM): 

Regularisation is often used in numerical simulations to avoid the bifurcation in behaviour 

associated with yielding [139]. This Bingham-Papanastasiou model [57] was used here: 

 
∇
𝝉𝑝

≡
𝜕𝝉𝑝

𝜕𝑡
+ 𝐯 ∙ ∇𝝉𝑝 − (∇𝐯)𝑇 ∙ 𝝉𝑝 − 𝝉𝑝 ∙ ∇𝐯 (3.7) 
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 𝜇 = 𝜇𝑝 +
𝜏𝑦

�̇�
[1 − 𝑒−𝑚𝐵𝑃�̇�] (3.10) 

where p is the plastic viscosity and mBP is the smoothing parameter, also called the 

regularisation parameter. The rheological parameters were obtained by fitting the experimental 

data to these expressions (see Fig. 3.4(ii)).  

The fluid properties are summarised in Table 3.1. 

 

 

Table 3.1. Fluid properties at 20 °C. Subscripts: PJ – petroleum jelly; SWP – soft white 

paraffin 

Parameter  Value 

air  0.0148 mPa s 

air  1 kg/m3 

   

PJ Bi-viscosity Min(5000, 280/�̇� + 5.9) Pa s 

Min(105, 280/�̇� + 5.9) Pa s 

Min(106, 280/�̇� + 5.9) Pa s 

 Regularised Bingham 12.4 + 249/�̇�[1 – exp(–8869�̇�)] Pa s 

PJ  812 kg/m3 

PJ-air
a  0.07 N/m 

   

SWP Bi-viscosity Min(106, 460/�̇� + 21.5�̇�−0.9) Pa s 

 Regularised Bingham 0.0881 + 452/�̇�[1 – exp(–10934�̇�)] Pa s 

SWP  838.5 kg/m3 

SWP-air  0.07 N/m 

a  is the surface tension [140]. 
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These constitutive models are time independent, so the contribution of time dependent 

phenomena such as creep cannot be considered here. 

The geometry of the simulation is presented in Fig. 3.6. AB is the blade and CD is the substrate. 

s is the scraped depth and L is the initial length of the sample layer. 0 and  are the initial layer 

thickness and residual thickness, respectively. The blue area is specified as the sample layer. 

All walls (AB and CD) are set as rigid, no-slip and impermeable, because the VOF simulation 

cannot support other sample-substrate interactions. Other boundaries are considered as open to 

atmosphere (p = 0). Lengths AB and CD were specified as 10 mm and 50 mm, respectively. 

Other dimensions were set by the test conditions. 

A thin and flat-shaped 3-dimensional geometry with a uniform-structured mesh (mesh size: 

0.05 mm) was built in the mesh generator, blockMesh, since a 3-D mesh is necessary in 

OpenFOAM for calculation. The standard OpenFOAM solver, interDyMFoam, was used, as 

this is a VOF solver written for two immiscible fluids with optional mesh motion [141, 142]. 

The simulation results were validated according to the guidelines provided by NASA's NPARC 

alliance [143]. When the model was solved to t = 10 s, about 12 h was taken for computation.  
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Fig. 3.6. Geometry for millimanipulation simulations. 
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3.2.6 Test case   

Maillard et al. [49] reported an investigation for the deformation of Carbopol® 980 gels in a 

configuration, which was similar to the millimanipulation device, but at larger length scale. 

The Carbopol which exhibited Herschel-Bulkley behaviour was filled in a 140 cm × 12 cm 

channel, and a 12 cm wide blade was used. As with the millimanipulation device, the channel 

base was moved at speeds between 1 and 100 mm/s to bring the gel layer into contact with the 

vertical blade. The test ranges of initial thickness of Carbopol and scrape depth were 5-37 mm 

and 3-10 mm, respectively. A crude PIV measurement was carried out by observing the 

velocities of the bubbles inside the fluid. Maillard’s PhD dissertation [144] included a short 

CFD study with a predetermined berm shape: she did not consider the free boundary problem.  

The yield stress of Carbopol depends on its concentration [145]. The yield stresses of the 

Carbopol solutions studied [49] were 42, 49 and 98 Pa, which are noticeably lower than those 

of petroleum jelly and soft white paraffin. The ghb/y value here is more than 4, so the gravity 

term cannot be neglected in the simulation. The dynamic similarity can be gauged from the 

Bingham number, Bn, with a characteristic shear rate, V/s, giving 

 𝐵𝑛 =
𝜏𝑦

𝑘𝐻𝐵
(
𝑠

𝑉
)
𝑛

 (3.11) 

The values of Bn for the Maillard et al. cases taken for comparison (Table 3.2), were 1.7 and 

3, but the values for PJ and SWP were 9.5-949 and 16-26, respectively. The lower Bn in the 

Maillard et al. cases indicate that viscous and yielding contributions both contribute strongly 

to the flow behaviour, while the larger Bn values in the PJ and SWP tests indicate that plasticity 

dominated these. 

The dynamic mesh employed here cannot simulate the scenario of a confined space filled with 

Carbopol employed in the Maillard et al. work (i.e. all boundaries apart from the top surface 

are specified as walls), so the open boundary was used to approach it. All boundary conditions 

were the same as the models for PJ and SWP, but the dimensions differed. Lengths AB and 

CD (Fig. 3.6) were 150 mm and 800 mm, respectively. Other sizes were set by the test 

conditions. Table 3.2 lists the properties of Carbopol for the cases considered here.  

 



 

48 

 

Table 3.2. Parameters for Carbopol tests, taken from Maillard et al. [49] 

Fluid Parameter Value 

Air air 0.0148 mPa s 

 air 1 kg/m3 

 Carbopol-air 0.07 N/m 

   

Carbopol Carbopol Min(104, 98/�̇� + 58�̇�−0.65) Pa s 

Min(3.33 × 104, 98/�̇� + 58�̇�−0.65) Pa s 

Min(105, 98/�̇� + 58�̇�−0.65) Pa s 

 Carbopol 1000 kg/m3 

   

   

 Test conditions 0 = 7 mm, s = 5 mm, V = 1, 5 mm/s 

  0 = 20 mm, s = 5 mm, V = 1 mm/s

  0 = 25 mm, s = 5 mm, V = 5 mm/s 

 

 

3.3 Results and Discussion 

3.3.1 Experiments 

3.3.1.1 Effect of scrape depth 

The force measured by the millimanipulation force transducer is presented as the normalised 

removal force, Fw, which is the force per unit width of the blade in contact with the layer (here, 

30 mm). Fig. 3.7(a) shows the evolution of Fw with time (and displacement) for PJ with 0 = 5 

mm and various scrape depths. The removal force increases with scape depth, which is 
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expected since the volume of petroleum jelly being deformed increases (see average removal 

force, �̅�𝑤 in inset).  

In Fig. 3.7(a): there is an initial rise in Fw over the fast few mm (distance varying between 

material) followed by a steady increase, at a less rapid rate, as more material is deformed and 

the berm builds up. For scrape depths of 1 and 2 mm, Fw remains approximately constant to 

the end of the test; however, at s = 3 mm, the force declines a small amount after t = 3 s. This 

is attributed to occurrence of slip, which is discussed in the next section.  

The soft white paraffin profiles in Fig. 3.7(b) show a similar trend to those for petroleum jelly, 

whereby the removal force increases with scrape depth. However, the force increases gradually 

after the initial rapid increase. This is because compared to petroleum jelly, a larger fraction of 

the dislodged material climbed up along the blade during scraping, meaning that more material 

experienced deformation so that the force required is larger (see Fig. 3.8(a) and (b)). The 

volume of SWP involved is smaller than in the PJ case.  

Toothpaste behaved noticeably differently from both petroleum jelly and soft white paraffin. 

Fig. 3.7(c) shows that a more gradual initial rise followed by a steady increase. This initially 

slow rise is due to the fact that elasticity dominates as the imposed stress is less than its yield 

stress (Fig. 3.5). The elastic behaviour is also evident from the shape of berm (see Fig. 3.8(c)), 

where the whole sample deforms while being scraped.  
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Fig. 3.7. Evolution of Fw for (a) petroleum jelly, (b) soft white paraffin and (c) toothpaste. 

Test conditions: 𝛿0 = 5 mm for PJ and SWP, 𝛿0 = 2 mm for toothpaste, L = 30 mm, V 

= 1 mm/s. Insets show average removal force, �̅�𝑤, for the period from t = 3 s to 10 s 

(between dashed lines). 
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(a) 
3 mm

 

(b) 
3 mm

 
(c) 3 mm

 

  

Fig. 3.8. Images for (a) petroleum jelly at s = 1 mm, (b) soft white paraffin at s = 0.3 mm 

and (c) toothpaste at s = 0.5 mm, at t = 15 s. Test conditions: 𝛿0 = 5 mm for PJ and 

SWP, 𝛿0 = 2 mm for toothpaste, L = 30 mm and V = 1 mm/s. 

 

3.3.1.2 Slip 

The phenomenon of wall slip has been observed with a number of soft solid and viscoplastic 

materials such as potato granules [146]. Slip is an example of adhesive failure, occurring when 

the force required to overcome the internal interactions of the sample (cohesive failure) is larger 

than that for the sample-substrate interaction (adhesive failure). Petroleum jelly and soft white 

paraffin also exhibited slip under some conditions. Chang et al. [147] studied a method to 

eliminate the wall slip effect occurring in a rheometer for Vaseline® (petroleum jelly). Slip for 

petroleum jelly and soft white paraffin was studied by comparing the results using a smooth 

cone with that using rough parallel plates in rheological tests. A lower force is needed at a 

given shear stress when slip is present (smooth cone). In Fig. 3.9, the stress difference between 

the smooth cone and rough plate for soft white paraffin is more than the difference for 

petroleum jelly, meaning that soft white paraffin exhibits more slip behaviour than petroleum 

jelly.  
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Fig. 3.9. Plots of shear stress versus shear rate using smooth cone and rough parallel plate 

for (a) petroleum jelly and (b) soft white paraffin. Colour: black – rough parallel 

plate; blue – smooth cone. 

 

The scrape depth and sample length were selected based on the occurrence of slip. For a 

petroleum jelly sample with a length of 30 mm, the maximum scrape depth which would not 

result in slip was 2 mm. The occurrence of slip can be identified by the length of the sample 

ahead of the blade, L − x (see Fig. 3.2). In general, without slip, the distance will decrease 

steadily during scraping. L − x at L = 20 and 30 mm shown in Fig. 3.10(a,i) decrease over time, 

but in the shortest case (L = 10 mm) deviates from the expected trend at about 1.25 s, marked 

A, reaching an asymptotic value (L − x = 7.22 mm) after 9.5 s (marked B). This point indicates 

that the whole sample was being moved back and total adhesive failure had occurred (pure slip, 

see Fig. 3.11(a)). These behaviours are also manifested in the berm height. In Fig. 3.10(a,ii), 

the berm height for L = 20 and 30 mm increases steadily until the end of the test, but the growth 

rate of the 10 mm long sample decreases after point A and stops at B, which is consistent with 

the L − x profile. This also indicates that the sample did not experience bulk deformation after 

B. These changes are reflected in the measured forces, in Fig. 3.10(a,iii). Fw at L = 10 mm 

deviates from others at A: by point B, the value is about 1.6 N/m and lower than those recorded 

for longer lengths. In contrast, the Fw profiles for L = 20 and 30 mm are identical because only 

cohesive failure is occurring (no slip, see Fig. 3.11(c)), meaning that the friction provided by 

both lengths is large enough to keep the sample in place.   

The shear stress active at the wall can be estimated from w = Fw/L and these values are plotted 

in Fig. 3.10(a,iv). The initial sample length, L, was used for calculation since the whole sample 

moved when slip occurred. The shear stress required to cause adhesive failure of petroleum 

jelly is about 160 Pa, which is less than the bulk yield stress (280 Pa) measured by the 
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rheometer. This is useful information for quantifying the adhesion strength, but cannot be 

employed for assessing deformation. Magens et al. [9] used the same device to measure the 

adhesion strength of baked cake batters on surfaces with different roughness and surface energy 

by fixing the cake sample within a meshed ring, which confined rupture to occur at the interface 

with the substrate.  

A pair of tests for petroleum jelly with s = 2 mm to L = 10 and 20 mm are shown in Fig. 3.10(b). 

These results are similar to that with s = 1 mm, and slip only occurred with the 10 mm long 

sample. The point where slip happened (marked C) is close to that at s = 1 mm, but point D 

(occurrence of adhesive failure) is earlier than B. This is attributed to the larger scrape depth, 

giving rise to a larger force imposed on the sample. The predicted shear stress for causing 

complete slip (Fig. 3.10(b,iv)) is around 160 Pa, in agreement with the estimate from the 

smaller scrape depth, which confirms that the adhesion strength between PJ and 316 SS is 

about160 Pa and provides a method for measuring adhesive strength in situ. 
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Fig. 3.10. Millimanipulation profiles showing occurrence of slip for petroleum jelly at s = 

(a) 1 mm and (b) 2 mm: (i) length of layer behind blade, L − x; (ii) height of berm, 

hb; (iii) removal force, Fw; and (iv) approximate wall shear stress, 𝜏w(= Fw/L), Black 

dashed line shows expected L – x profile. Test conditions: 𝛿0 = 5 mm, V = 1 mm/s, 

various sample lengths. 
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(c)

(a)
Pure slipV

(b)
V Partial slip

V No slip

 

Fig. 3.11. Schematics of (a) pure slip, (b) partial slip and (c) no slip. Dashed line indicates 

the initial profile of the tested sample. 

 

The results of testing slip for soft white paraffin at different scrape depths and sample lengths 

are shown in Fig. 3.12. The scrape depth required to cause slip is significantly smaller than that 

for petroleum jelly. In all cases, complete adhesive failure was not observed, indicating that a 

larger scrape depth is required. Labels A to E indicate the occurrence point of slip for different 

scrape depths. Fig. 3.12(b,i) shows that slip occurs later with sample length (points B, C, and 

D), indicating that longer samples provide more friction to prevent slip. The slip behaviour is 

similar to the observation in the petroleum jelly tests.  
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The Fw values in Fig. 3.12(iii) are similar before slip occurred, and do not show a significant 

relationship with the sample length. All the estimated average wall shear stress values in Fig. 

3.12(iv) are less than the yield stress obtained from the rheometer. The force measured before 

reaching complete slip contained contributions from both cohesive and adhesive failure (partial 

slip, see Fig. 3.11(b)), so these values cannot be utilised to calculate the adhesion strength.  
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Fig. 3.12. Millimanipulation profiles showing occurrence of slip for soft white paraffin at s 

= (a) 0.3 mm, (b) 0.4 mm and (c) 0.5 mm: (i) length of layer behind blade, L − x; (ii) 

height of berm, hb; (iii) removal force, Fw; and (iv) approximate wall shear stress, 

𝜏w(= Fw/L), Black dashed line shows expected L – x profile. Test conditions: 𝛿0 = 5 

mm, V = 1 mm/s, various sample lengths. Note: The width of camera frame is 20 

mm, so the L – x profile for L = 20 mm cannot be recorded. 
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3.3.1.3 Effect of scrape velocity 

Fig. 3.13 shows the effect of scraping velocity for the three materials. Petroleum jelly, soft 

white paraffin and toothpaste exhibit similar trends, with Fw increasing with increasing 

scraping speed, indicating that the values contain a contribution from viscous forces. The 

increases of Fw for three materials are not linearly proportional to the speed, indicating that 

these materials are not a Newtonian fluid. The Fw-V behaviour of PJ and SWP will be discussed 

in detail in section 3.3.2.  
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Fig. 3.13. Effect of scrape speed on Fw for (a) petroleum jelly, (b) soft white paraffin and (c) 

toothpaste. Test conditions: L = 30 mm; petroleum jelly, 𝛿0 = 5 mm and s = 1 mm; 

soft white paraffin, 𝛿0 = 5 mm and s = 0.3 mm; toothpaste, 𝛿0 = 2 mm and s = 1 mm. 

Insets show average removal force, �̅�𝑤, for the period from t = 3 s to 10 s. 
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3.3.1.4 Particle image visualisation 

Fig. 3.14 compares images and relative velocity distributions calculated from particle image 

tracking for petroleum jelly at various scrape depths. The data are noisy. Each coloured point 

represents a (black) point identified on the layer wall by the software. Its velocity was then 

estimated and is presented as V*, where V* is the scaled velocity. At s = 1 and 2 mm, higher 

relative velocities only occurred above and ahead of the level of the blade (V* > 0.2), while 

other regions were nearly static. This indicates that only this region underwent deformation. 

The relative velocity increases with berm height and close to the blade. This is because as the 

blade scraped, the petroleum jelly in the layer ahead of the blade experienced cohesive failure. 

After the berm was generated, the top of berm continued to be shunted upwards. This area 

therefore has the highest velocity compared to other regions. In Fig. 3.14(b,ii), there are only a 

few coloured points in the region of V* ~ 0.3. This is attributed to folding of petroleum jelly 

while being scraped. This would make some points be hidden by the berm and result in the 

disappearance of identified points.  

By contrast, at s = 3 mm (Fig. 3.14(b,iii)), a large region is deformed, and extends to the bottom 

edge of the blade. When the blade continued to move, the region of measurable deformation – 

the yield zone – reaches the substrate. The whole sample then moved, indicating that a mixture 

of adhesive failure and bulk deformation was occurring, as discussed above. This case is one 

of those where slip occurred (see Fig. 3.10).  
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Fig. 3.14. Deformation of petroleum jelly: (a) image and (b) distribution of relative velocity, 

V* = �̅�/V, where �̅� is the mean local velocity measured from particle image tracking. 

Test conditions: 𝛿0 = 5 mm, L = 30 mm, V = 1 mm/s, and t = 3 s, with (i) s = 1 mm; 

(ii) s = 2 mm; and (iii) s = 3 mm. Grey dashed line in (b) shows the blade position. 
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Fig. 3.15 presents images and relative velocity distributions for soft white paraffin at small 

scrape depths. The particle image tracking is again noisy. At s = 0.3 and 0.5 mm, deformation 

occurred above and behind the level of the blade, which is similar to petroleum jelly. The berms 

are steeper, which is consistent with the rheological tests (more plastic). However, at large 

scrape depth, the region where V* > 0.2 is large, indicating that the whole sample was moving 

and slip had occurred. This is a case where slip was observed in the other performance measures 

(see Fig. 3.12).  

 



 

63 

 

 (a) (b) 

(i)  

 

 

3 mm

z

 
2 4 6 8 10 12 14

0

2

4

6

8

10

12
SWP

z 
(m

m
)

x (mm)

0

0.2

0.4

0.6

0.8

1
V* (-)

 
(ii)  

 

 

3 mm

z

 2 4 6 8 10 12 14
0

2

4

6

8

10

12
SWP

z 
(m

m
)

x (mm)

0

0.2

0.4

0.6

0.8

1

V* (-)

 

(iii)  

 

 

3 mm

z

 
2 4 6 8 10 12 14

0

2

4

6

8

10

12

z 
(m

m
)

x (mm)

0

0.2

0.4

0.6

0.8

1

V* (-)

SWP

 

Fig. 3.15. Deformation of soft white paraffin: (a) image and (b) distribution of relative 

velocity, V* = �̅�/V, where �̅� is the mean local velocity measured from particle image 

tracking, for (i) s = 0.3 mm; (ii) s = 0.5 mm; and (iii) s = 1 mm. Test conditions: 𝛿0 

= 5 mm, L = 30 mm, V = 1 mm/s, and t = 3 s. Grey dashed line in (b) shows the 

blade position. 
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3.3.1.5 Relaxation 

The rheological results in Fig. 3.4 indicate that petroleum jelly and soft white paraffin exhibit 

elastic behaviour when the imposed shear stress is lower than the critical stress. The BVM and 

RBM models employed for simulating PJ and SWP are not time-dependent, so time dependent 

phenomena such as elastic behaviour cannot be captured. Chou et al. [148] demonstrated that 

a series of sudden halts and restarts of steady paste extrusion could be used to estimate the 

viscous and plastic contributions to the force required to extrude ceramic pastes through 

cylindrical dies. This concept was applied here. A number of tests were performed with 

interrupted motion, moving the blade (5 s), holding it in place (60 s), then moving it again.   

Fig. 3.16 shows results obtained from relaxation tests on PJ and SWP. Smaller scrape depths 

and long sample lengths were chosen to avoid slip. The profiles in Fig. 3.16 (i), show similar 

trends, namely a rapid increase in Fw to a plateau value, labelled FC. After the blade stopped, 

Fw decreases abruptly from FC to FC’, and then declines gradually to a steady value, FD, when 

the next scraping cycle starts (FC’ to FD). The value of FC – FC’ is greater than FC/2 for both 

materials. The sharp decrease is attributed to the absence of the viscous contribution. This can 

be determined by a characteristic shear rate, V/s, exerted in region I (see Fig. 3.2). These 

characteristic shear rates for PJ and SWP are 1 and 3.33 s-1, respectively. From the rheological 

results (Fig. 3.4(i)), the shear stress at these shear rates is larger than the yield stress, indicating 

that the viscous contributions are important.  

This measure of the viscous contribution, (FC – FC’) provides an estimate of the apparent 

viscosity from the scaling relation, (FC – FC’)/s ~ (V/s). The values calculated for PJ and SWP 

are 940 and 570 Pa s, respectively: both are significantly lower than the values measured in the 

low shear rate region in Fig. 3.4. At these conditions, the samples did not yield, which is 

expected.  

FD is a residual force associated with yielding, and is about 0.5 N/m in both cases. The decay 

trends were fitted to a simple exponential decay relationship, giving 

PJ 
𝐹𝐶′ − 𝐹𝐷 = 0.35𝑒

−𝑡
15.6 

R2 = 0.837 

 

(3.12) 

SWP 
𝐹𝐶′ − 𝐹𝐷 = 0.30𝑒

−𝑡
25.9 

R2 = 0.749 (3.13) 
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Here t is the time elapsed since the blade stopped moving.  

The estimated characteristic times, about 16 s for PJ and 26 s for SWP, could be caused by 

creep or spreading of the sample after scraping stopped, shown in Fig. 3.17. The scraping 

system is not completely 2-D, since the material spreads not only upwards but also sideways.  

A series of stress relaxation tests with different initial strains using the rheometer were 

performed by PhD student Rubens Rosario Fernandes. These tests were conducted with 

imposed a single strain, holding for a long time, and results are plotted in Fig. 3.16(iii). 60 is 

the measured stress at t = 60 s. The profiles are similar to those obtained for millimanipulation, 

plummeting sharply followed by an exponential decay. 

Whilst the relaxation data obtained from the millimanipulation device fitted the exponential 

decay well, the rheological data did not fit a simple exponential decay as well. Also, the 

characteristic times in the millimanipulation tests are consistently longer than those in the 

rheometer. The characteristic times obtained from the rheometer for PJ are from 12.3 s to 14 s, 

and the values for SWP are between 14.8 s and 16.7 s.  

This finding about the decay times obtained with the millimanipulation do not map simply to 

the decay times in the rheometer, even though the profiles of FC’ and  were fitted directly 

(given as follows and Fig. 3.16(iv), respectively).  

The consistent deviation of the characteristic times could be attributed to the geometry 

difference between the millimanipulation device and rheometer. The FD value is associated 

with the yield stress, providing an opportunity to predict y, which will be discussed in the 

following section. 

  

 

PJ 𝐹𝐶′ = 0.50 + 0.35𝑒
−𝑡

14.6        
R2 = 0.838 

 

(3.14) 

SWP 𝐹𝐶′ = 0.49 + 0. 29𝑒
−𝑡

13.0   
R2 = 0.785 (3.15) 
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Fig. 3.16. Interrupted testing of (a) petroleum jelly, and (b) soft white paraffin: (i) Fw - Labels 

A, C, E indicate the end of motion, B, D, F the restart; (ii) FC’ − FD, red line shows 

fit to exponential decay, Equations (3.12) and (3.13); (iii) 𝜏 – 𝜏60 and (iv) 𝜏 at different 

applied strains (in %). Test conditions: 𝛿0 = 5 mm, L = 30 mm, s = 1 mm for PJ and 

s = 0.3 mm for SWP, V = 1 mm/s, scraping time = 5 s, relaxation time = 60 s. 
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A B C

10 mm

 

Fig. 3.17. Images of petroleum jelly subject to interrupted scraping, taken at times labelled 

A, B and C in Fig. 3.16(a,i). Conditions: 𝛿0 = 5 mm, s = 1 mm, V = 1 mm/s, scraping 

time = 5 s, and relaxation time = 60 s. 

 

Interrupted testing of toothpaste is reported in Fig. 3.18. The trend is slightly different from PJ 

and SWP. As the blade contacts the toothpaste, the measured force increased rapidly, followed 

by a graduate increase, not reaching a plateau, as with steady deformation (Fig. 3.7(c)). The 

maximum value of Fw (FC) in each cycle increases with time. Even though FD also increases 

with time, the value of FC − FD is not constant. Also, the restart points (B and D) are not sharp.  

The relaxation trend is similar to the trends of PJ and SWP with FC – FC’ < FC/2. The decay 

over the relaxation period was also fitted to the equation of quasi-exponential decay.  

Toothpaste 
𝐹𝐶′ − 𝐹𝐷 = 0.48𝑒

−𝑡
8.22 

R2 = 0.800 (3.16) 

 
𝐹𝐸′ − 𝐹𝐹 = 0.55𝑒

−𝑡
11.22 

R2 = 0.840 (3.17) 

However, the decay time changes from one cycle to the next, which is different from the 

constant decay times of PJ and SWP. 
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Fig. 3.18. Interrupted testing of toothpaste: (a) Fw: Labels A, C, E indicate cessation of 

motion, B, D, F the restart; (b) FC’ − FD; red line shows fit to exponential decay, 

Equation (3.16). Test conditions: 𝛿0 = 2 mm, L = 30 mm, s = 1 mm, V = 1 mm/s, 

scraping time = 5 s, relaxation time = 60 s. 

 

3.3.1.6 Estimation of yield stress 

The FD values of PJ and SWP provide a possible route to estimate the material’s yield stress. 

The vertical blade has similarities to a metal cutting blade, the theory of which [149, 150] is 

well developed. Using FD as an indicator of the force due to plastic deformation gives a way 

of estimating the critical shear stress. Fig. 3.19 is a schematic of the metal cutting model. 

Assuming a linear yield plane OA, the force imposed on the material to cause yield is Fwsec, 

so the yield stress, y
e1, can be estimated from  
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 𝜏y
e1 =

𝐹w tan𝜙

𝑠
 (3.18) 

Here  is the cutting angle, and is calculated from the berm length, b (extracted from 

photographs), and the scrape depth, s.  

 

O

A


Fw

b

sz

x

B

 

Fig. 3.19. Schematic of the cutting model.  

 

The evolution of the berm lengths and estimated yield stresses for PJ and SWP are plotted in 

Fig. 3.20. The y
e1 value in each case fluctuates due to the fact that the materials were not 

homogeneous so the surface of the berms were not smooth. The average values of y
e1 for PJ 

and SWP are about 550 Pa and 790 Pa, respectively, and are larger than the c values obtained 

from the rheometer. However, the Fw values are expected to be affected by the viscous 

contributions. The viscous contributions can be calculated by the relationship obtained from 

the interruption tests (see Fig. 3.16 (i)),y
e2 = y

e1×(FC’/ FC) and y
e3 = y

e1×(FD/ FC). Good 

agreement between y
e2 and the rheological value, c, for both materials is evident in Fig. 

3.20(a) and (b). Appling this estimation method for other cases (Fig. 3.20(c)), the y
e2 values 

also agree with c. These results indicate that y
e2 can be employed to estimate the yield stress 

of a new material.  
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These results also indicate that the millimanipulation device allows to measure the cohesive 

and adhesive strengths of viscoplastic materials by the interrupted testing shown here and the 

method proposed by Magens et al. [49], respectively.  
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Fig. 3.20. Evolution of the berm length (black line) and estimate of yield stress from cutting 

theory (Equation (3.18), red line) for (a) petroleum jelly, s = 2 mm, L = 20 mm and 

(b) soft white paraffin, s = 0.3 mm, L = 30 mm. Test conditions: 𝛿0 = 5 mm, V = 1 

mm/s. Horizontal dashed lines indicate the yield stress obtained from rheometrical 

testing. (c) Effect of characteristic shear rate on estimated yield stress. Symbols: open 

– PJ; solid – SWP. 
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The berm length profiles and estimates of toothpaste for different scrape depths are presented 

in Fig. 3.21. With three different values of s, the yield stress obtained from the rheological test 

lies between the estimates of y
e2 and y

e3, but the y
e2 values of PJ and SWP are similar to c. 

This could be attributed to two reasons, namely the inconsistent deformation of toothpaste and 

selection of reference force (FC, FC’ and FD).  

The deformation of toothpaste is different from that of PJ and SWP, because toothpaste 

deforms when the applied shear stress is below c. The phenomenon can be observed from the 

rheological data in Fig. 3.5(b). This also results in larger deformation region (see Fig. 3.22). 

The whole sample deforms at t = 10 s (Fig. 3.22(c)), which causes overestimation of 

visualisation. Moreover, the measured force increases with time and did not reach a steady 

value during tests. The reference values, FC, FC’ and FD are not sufficient to describe the change 

of Fw, and more factors are required. 
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Fig. 3.21. Evolution of the berm length (black line) and estimate of yield stress from cutting 

theory (Equation (3.18), red line) for toothpaste at s = (a) 0.5 mm, (b) 1 mm and (c) 

1.5 mm. Test conditions: 𝛿0 = 2 mm, L = 30 mm, and V = 1 mm/s. Horizontal dashed 

lines indicate the yield stress obtained from rheometrical testing. 
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(a) t = 0 s (b) t = 3 s (c) t = 10 s 

3 mm

 

3 mm

 

3 mm

 

Fig. 3.22. Images for toothpaste as the blade scraped at t = (a) 0 s, (b) 3 s and (c) 10 s. Test 

conditions: 𝛿0 = 2 mm, s = 0.5 mm, L = 30 mm and V = 1 mm/s. 

 

3.3.2 CFD simulations 

3.3.2.1 Test cases 

Maillard et al. [49] did not present full data sets of removal forces, berm length and berm height 

at any one condition, so comparisons are made based on some of the cases which were 

presented as figures in their paper. Fig. 3.23 compares the predicted topographies of berms and 

images reported by Maillard et al. at different blade displacements. The predicted shapes are 

similar to the experimental ones, but slightly larger. One difficulity is that Maillard et al. did 

not provide a scale bar for their images and these images were not completely profile pictures.  

A Carbopol model without gravity is solved (Fig. 3.23(a)). The predicted berm height is larger 

if g is not considered. There is relatively good agreement if gravity is included.  
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Fig. 3.23. Comparison of predicted topography using bi-viscosity model (𝜇0 = 100 kPa s) 

with the experiments reported by Maillard et al. [49] for Carbopol at x = (a) 150 mm 

and (b) 300 mm. Maillard et al. did not provide a length scale in their images so the 

fitting is subject to some uncertainty. Test conditions: 𝛿0 = 7 mm, s = 5 mm, and V = 

5 mm/s. Cyan lines show simulation results. Red dashed line in (a) indicates 

calculation without gravity. 

 

Fig. 3.24(a) shows the normal force acting on the blade (i.e. horizontal) and the tangential force 

(acting upwards) extracted from the simulations using the biviscosity model with different 

values of 0, as well as the experimental values reported by Millard et al. The evolution of 

predicted normal forces acting against the blade are consistent with the measured forces, but 

overestimate the experimental data by about 50%. One possible reason is the experimental 

configuration. Maillard et al. left a 1 mm gap between the sides of the 120 mm-wide blade and 

channel edges to mitigate wall friction, which allowed relaxation and flow at the boundary and 

could affect the measurement.  

The tangential forces obtained from the simulations are similar to the measured forces for x < 

100 mm. After that, the predicted values decrease gradually. This is attributed to the dynamic 

mesh algorithm in OpenFOAM. Too much change in a mesh will cause numerical issues, 

resulting in some inaccuracy and uncertainty. For example, when the model was solved to x = 

100 mm, the region where mesh changed covered one quarter of the whole geometry. The 

simulation results do not show noticeable differences between 0 = 100 kPa s and 10 kPa s, 

indicating that the creeping viscosity does not have significant impacts on the forces exerting 
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on the blade. The application of the Herschel-Bulkley model to represent the thixotropic fluid, 

Carbopol, is widely used [151-153], and the steady state data in the paper show good 

agreement.   

Maillard et al. [49] proposed a relationship between the berm height and length, hb
2 = (b – 

b0), where  is a factor and b0 is the fast initial increase of berm length. Fig. 3.24 (b) compares 

the squared berm height and berm length between the simulations and experimental results 

reported by Maillard et al. Acceptable agreement is evident, and the experimental values are 

in the region covered by the predicted results using 0 = 100 kPa s and 10 kPa s, indicating that 

modelling using a creeping viscosity between 0 = 100 kPa s and 10 kPa s could provide better 

agreement. In addition, the predicted results for 0 = 10 kPa s at 0 = 7 mm and20 mm show a 

similar trend to the experiments, namely the berm height at 0 = 7 mm higher than that at 0 = 

20 mm.  

Maillard et al. reported that a noticeable difference of the aspect ratio (h/b) was observed 

between 0 < 7 mm and ≥ 7 mm. This phenomenon could be explained by the simulations. At 

0 = 20 mm and s = 5 mm, there was a gap beneath the blade, which allowed the Carbopol to 

flow through and resulted in a lower berm height. By contrast, at 0 = 7 mm, the gap was too 

small (2 mm), so Carbopol accumulated in front of the blade and formed a higher berm during 

tests.  

These results demonstrate that this CFD model is acceptable to be employed for predicting the 

deformation of Carbopol while being scraped, and can be applied for other materials in 

millimanipulation tests.  
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Fig. 3.24. Comparisons of simulations using bi-viscosity model and experiments reported 

by Maillard et al. [49] for Carbopol with s = 5 mm, 𝜏c = 98 Pa, different 𝛿0: (a) 

removal forces, V = 5 mm/s; (b) squared berm height as a function of length of the 

heap formed behind the blade, b (see Fig. 3.2), V = 1 mm/s. 

 

3.3.2.2 Mesh sensitivity test 

Fig. 3.25 shows the results of a mesh sensitivity test using cubic elements and the regularised 

Bingham model for petroleum jelly at three different uniform mesh sizes. The berm shapes in 

Fig. 3.25(a) are similar and show good agreement with the image. Also, the predicted Fw values 

using the 50 m and 20 m elements are similar and agree with the experimental results, but 

Fw using the 100 m mesh is lower than the measured value. These results indicate that both 



 

78 

 

50 m and 20 m mesh sizes are acceptable for the millimanipulation simulation. The 20 m 

mesh is more computationally expensive, so the 50 m mesh was chosen. 
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Fig. 3.25. Mesh sensitivity test using the regularised Bingham model for petroleum jelly at 

three different uniform mesh sizes (cubic elements): (a) predicted berm shapes with 

image and (b) predicted removal force. Test conditions: petroleum jelly, 𝛿0 = 5 mm, 

L = 30 mm, V = 1 mm/s, and t = 3 s. Colour indicates mesh size: blue – 100 𝜇m; 

magenta – 50 𝜇m; red – 20 𝜇m. 

 

3.3.2.3 Validation 

Fig. 3.26(i) compares the predicted berm shapes for the bi-viscosity and regularised Bingham   

models with experimental images for petroleum jelly at the same time as that in Fig. 3.14 (t = 

3s). These tests did not exhibit slip. With s = 1 mm, both models give similar shapes. It is 

difficult to prepare a petroleum jelly layer with a uniform and smooth surface, because the 

material is inhomogeneous. The agreement can be considered agreeable. For the larger scrape 

depth (Fig. 3.26(b,i)), the RBM gave better agreement. This is because the smoothing 

parameter in the RBM provides a better description around the yield stress (Fig. 3.4). 

Comparisons for other measures (forces and distributions) will be discussed later.  

With the RBM giving better agreement, its predicted relative velocity distributions are plotted 

in Fig. 3.26(ii). Higher velocities occurred mainly close to the blade and above the level of the 

blade, which is similar to the experimental data in Fig. 3.14. This phenomenon was also 

reported by Millard et al. using Carbopol 980 [49]. The velocity distributions of the BVM did 

not differ noticeably from the results predicted with the RBM.  
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Fig. 3.26. Comparison of (i) berm shape predicted with regularised Bingham (cyan loci) and 

bi-viscosity (magenta) rheological models, and (ii) velocity distributions predicted 

with regularised Bingham model for petroleum jelly at s = (a) 1 mm and (b) 2 mm. 

Test conditions: 𝛿0 = 5 mm, L = 30 mm, V = 1 mm/s and t = 3 s. 

 

Fig. 3.27(i) compares the berm shapes predicted for SWP with images at t = 3 s. The berm 

shapes obtained from both models are similar and slightly taller than that in the image. This is 

attributed to spreading outwards of the sample during the experiment. Unlike PJ, at larger s, 

the BVM shows better agreement than the RBM. This is because the bi-viscosity model 

describes the rapid transition at the critical shear stress well. 

The relative velocity distributions in Fig. 3.27(ii) are also similar to the distributions observed 

in the experiments in the absence of slip (Fig. 3.15). 
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Fig. 3.27. Comparison of (i) berm shape predicted with regularised Bingham (cyan loci) and 

bi-viscosity (magenta) rheological models, and (ii) velocity distributions predicted 

with bi-viscosity model for soft white paraffin at s = (a) 0.3 mm and (b) 0.5 mm. Test 

conditions: 𝛿0 = 5 mm, L = 30 mm, V = 1 mm/s and t = 3 s. 

 

The volume of  the dislodged berm (patterned cyan area in Fig. 3.28(a)) can be calculated using 

the Maillard et al. relationship (h2 = (b – b0)) [49] with two assumptions, b0 = 0 and a parabolic 

berm. In this study, the berm length and height were estimated by a visualisation programme, 

so b0 could be very small and is assumed to be zero, which is different from the Maillard et al. 

experiment, in which b0 was estimated visually. The relationship can be  

 𝑉𝑡𝑠 =
2ℎ𝑏

3

3𝜅
 (3.19) 

The volume is equal to the scraped volume, Vst, so t ∝ hb
3 or b3/2. In Fig. 3.28(b) and (c), the 

profiles of PJ and SWP follow the relationship well at t > 5 s. The initial deformation does not 

meet the trend due to the main fact that the sample edge contacting the blade was not perfectly 

rectangular, increasing uncertainty of deformation.  
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Fig. 3.28. (a) Schematic of berm volume estimated from hb
2 = 𝜅(b – b0). Comparisons of 

simulations using BVM and RBM and experiments: t ∝ hb
3 and b3/2 for (b) petroleum 

jelly at s = 1mm and (c) soft white paraffin at s = 0.3 mm. Test conditions: 𝛿0 = 5 

mm, L = 30 mm, and V = 1 mm/s. Cyan area denotes estimated area. Colour: black 

– measured; cyan – bi-viscosity model; magenta – regularised Bingham model. 

 

3.3.2.4 Quasi-steady state 

The force profiles obtained with petroleum jelly at different values of s in Fig. 3.7(a) show an 

initially rapid increase, followed by an approach to an asymptote as the berm of dislodged 

material builds up. In order to compare the profiles with the model predictions, average values, 

�̅�𝑤, for experiments and simulations were calculated from t = 3 s to 10 s (see Fig. 3.7(a)) and 

are plotted in Fig. 3.29. The error bars represent the change of force over this period. The 

measured and calculated forces increase with s. The RBM overestimated �̅�𝑤 even though it 

fitted the rheological data and predicted the shape of berm well (shown above). By contrast, 

the biviscosity model gave good agreement with the experimental �̅�𝑤 values.  
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Comparing with the scrape depth for PJ, the depth used for SWP in the absence of slip is 

smaller, which limits the study of the scrape depth effect for SWP.  
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Fig. 3.29. Effect of scraping depth on removal force for petroleum jelly at 𝛿0 = 5 mm, V = 1 

mm/s and L = 30 mm. Symbols: black square – experimental data; cyan triangle – bi-

viscosity model; magenta circle – Regularised Bingham model; model parameters in 

Table 3.1. 

 

Fig. 3.13 shows that �̅�𝑤 for petroleum jelly and soft white paraffin increased with scraping 

speed. Compared the data with the simulation predictions using both viscosity models (Fig. 

3.30), the �̅�𝑤 values are at the same order of magnitude. The predicted values using the RBM 

show good agreement at V > 1 mm/s, but at lower speed, �̅�𝑤 is overestimated.  

The bi-viscosity model with a creeping viscosity of 5 kPa s gives good fits for PJ apart from V 

= 0.05 mm/s. Larger 0 values (100 kPas and 1 MPa s) were used to the apparent viscosity in 

Fig. 3.4(a,ii), which are more close to the apparent viscosity. However, the results do not give 

better agreement than that using 0 = 5 kPa s, and the values at V = 1 mm/s are overpredicted. 

This indicates that 0 = 5 kPa s is the upper limit for simulations. On the other hand, the bi-

viscosity model cannot describe the transition of the material from solid to fluid well (see Fig. 

3.4(a,ii)). Modelling using the BVM with a lower viscosity (0 = 5 kPa s) can be an alternative 

approach to simulate the transition.  
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Fig. 3.30(b) shows that neither viscosity model captures the effect of scraping speed for SWP. 

The order of magnitude is connect. Strongly plastic behaviour is evident in Fig. 3.4(b,i), where 

the stress is nearly constant as the stress is more than the yield stress. The simulations can 

capture the behavior and forces.  

The interrupted testing discussed above has shown that both materials exhibit noticeable creep, 

which is important while being scraped at low speeds. Neither viscosity model captures the 

creeping motion below the yield point well [154], so the accuracy of the simulations at low 

velocity is not expected to be strong.  
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Fig. 3.30. Effect of scraping speed on removal force for (a) petroleum jelly, s = 1 mm and 

(b) soft white paraffin, s = 0.3 mm. Test conditions: 𝛿0 = 5 mm and L = 30 mm. 

Symbols: black square – experimental data; cyan – simulation, bi-viscosity model, 

𝜇0 values indicated; magenta circle – simulation, Regularised Bingham model. 

 

3.3.2.5 Simulated dynamics  

Fig. 3.31(i) and (ii) compare the predicted force, Fw, berm height, h, and berm length, b, profiles 

for the two viscosity models with the experimental data for petroleum jelly at different values 

of s. For the RBM, good agreement with the measured forces can be observed in both cases 

before t = 3 s, after which the model overestimated the values. By contrast, the bi-viscosity 
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model predicted Fw well over the test period. Both models show reasonable agreement for the 

berm length. The predicted berm heights from both models are slightly higher than the 

measured ones. This systematic error could be caused by the sideways movement of PJ when 

contacted by the blade (see Fig. 3.17). The simulation is 2-dimensional so it cannot capture this 

effect.  

Fig. 3.31(a,i) shows that the RBM gave good agreement during the initial deformation. The 

longer term dynamics are considered less important in the cleaning applications. The noise in 

the Fw profiles mainly arises from the numerical peaks caused by the mesh motion. The values 

were estimated by integrating the pressure along the blade, so when the mesh moved, high 

pressure values occurred at the interface between static and moving mesh elements.  

Maillard et al. [49] reported that the change of berm length and height with time in their 

Carbopol tests followed the relationship, hb
2 = (b – b0). Fig. 3.31(iii) shows the data from 

Fig. 3.31(ii) plotted in this form. Both experimental and simulation results follow the trend 

roughly (with b0 large). The trend could be attributed to the smaller influence by gravity 

(absence of slumping). Maillard et al. also used the ratio, (𝜏𝑦 + 𝑘𝐻𝐵 (
𝑉

𝑠
)
𝑛

) /𝜌𝑔, to classify 

material’s deformation. The values for Carbopol® 980 reported by Maillard et al. were 0.007-

0.021, indicating that compared to the influence of the shear rate, the effect of gravity is more 

important. The value for PJ is about 0.036, meaning that the effect of the shear rate is more 

significant than that of gravity.  

One possible reason why the simulations cannot capture the long-term behaviour of the 

materials is that the contribution to the measured force from the dislodged material marked II 

in Fig. 3.2(b), was not captured well. Fig. 3.31(i) shows the rate of viscous dissipation in the 

material above the initial layer thickness (I/II interface), QD, calculated from by FwV. FwV is 

the total rate of viscous dissipation by the blade. The viscous dissipations predicted from both 

viscosity models at s = 1 mm are similar and small. The contributions from viscous dissipation 

at larger scrape depth are higher, but still small.   

 



 

86 

 

 (a) s = 1 mm (b) s = 2 mm 

(i) 

0 5 10
0

1

2

3
PJ

F
w
 (

N
/m

)

t (s)

0

1

2

3

Q
D
 (

m
W

/m
)

QD

 

0 5 10
0

1

2

3

4

5

F
w
 (

N
/m

)

t (s)

0

1

2

3

4

5
PJ

Q
D
 (

m
W

/m
)

QD

 
(ii) 

0 5 10

0

1

2

3

4

5

6

PJ

hb - solid

b - dashed

h
b
, 
b

 (
m

m
)

t (s)
 

0 5 10

0

1

2

3

4

5

6

7

8

PJ

hb - solid

b - dashed

h
b
, 
b

 (
m

m
)

t (s)
 

(iii) 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
PJ

(h
b
/s

)2
 (

-)

(b/s) (-)
 

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5
PJ

(h
b
/s

)2
 (

-)

(b/s) (-)
 

Fig. 3.31. (i) Comparisons of experimental and predicted removal forces as well as 

calculated viscous dissipation along z-axis, (ii) evolution of berm height, hb, and 

length, b, and (iii) hb
2 versus b, for petroleum jelly at s = (a) 1 mm and (b) 2 mm. Test 

conditions: 𝛿0 = 5 mm, L = 30 mm and V = 1 mm/s. Solid lines show Fw: black – 

measured; cyan –bi-viscosity model; magenta –regularised-Bingham model. Dashed 

lines – estimated contribution from viscous dissipation in the material moving up the 

blade. 

 

Fig. 3.32 (i) shows that the bi-viscosity model gives better agreement with Fw for SWP in these 

two cases. The increase in Fw was not captured well. Although Fw for SWP is similar to the 

value for PJ at s = 1 mm, the rate of viscous dispassion is smaller. This is due to the smaller 
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deformation volume. Systematic errors are evident in the predictions of the berm height. In Fig. 

3.32 (a,ii), both simulated berm lengths show nearly the same trend, but are lower than the 

measured height. The berm length should be related to the berm height via a mass balance. The 

difference could result from the visualisation process. The berm length was determined by 

measuring the horizontal distance between the blade and the first point of the change of surface 

slope, which is sensitive to the image resolution. For the larger scrape depth, both models give 

a better description of the berm length.  

Fig. 3.32(iii) shows that the berm shapes of experimental and simulation data fit the quadratic 

relationship at (hb/s)2 > 0.1, and have similar trends. The ratio of shear to hydrostatic stress 

components for SWP is around 0.059 and higher than PJ, meaning that the shear contribution 

of SWP is stronger. On the other hand, the contributions from viscous dissipation in Fig. 3.32(i) 

are nearly negligible. 

The consistent failure to overestimate the berm shape of PJ mainly due to the time-dependent 

sideways spreading, which has been observed by the interrupted tests (see Fig. 3.8). By 

contrast, folding behaviour of SWP during tests results in lower berm height than the predicted 

berm height. Both behaviours, including spreading and folding cannot be simulated by the 

model.  
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Fig. 3.32. (i) Comparisons of experimental and predicted removal forces as well as calculated 

viscous dissipation along z-axis, (ii) evolution of berm height, hb, and length, b, and 

(iii) hb
2 versus b, for soft white paraffin at s = (a) 0.3 mm and (b) 0.5 mm. Test 

conditions: 𝛿0 = 5 mm, L = 30 mm and V = 1 mm/s. Solid lines show Fw: black – 

measured; cyan –bi-viscosity model; magenta –regularised-Bingham model. Dashed 

lines – estimated contribution from viscous dissipation in the material moving up the 

blade. 
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3.3.2.6 Model sensitivity  

Pervious sections compared the experimental data with the results predicted from two viscosity 

models, namely the regularised Bingham and the bi-viscosity model. The question to be 

answered is whether the millimanipulation device could be used to determine the rheology of 

the layer material from in-situ testing. The sensitivity of the model parameters needs to be 

established as this will indicate whether or not they could be estimated reliably from such tests.  

Two cases using different model parameters are considered here.  

Case I – Petroleum jelly using the regularised Bingham model  

The rheological data in Fig. 3.4(a,ii) show that the RBM gave a better description of the 

apparent viscosity than the BVM. The effect of changing each parameter (y: 249 Pa, mBP: 

8869, p: 12.4 Pa s) in RBM by  20% is shown in Fig. 3.33. Changing the smoothing index 

and plastic viscosity by  20% gives negligible difference. By contrast, the effect of changing 

the yield stress is strong, especially on Fw, which is consistent with the high Bn value. These 

results indicate that it is possible to employ the millimanipulation device to estimate the yield 

stress. This applies to materials with large Bn, i.e. yield ≫ viscous contribution.  
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Fig. 3.33. Sensitivity study for regularised Bingham model. Effect on (i) removal force and 

(ii) berm height with changes in (a) yield stress 𝜏y, (b) smoothing index mBP, and (c) 

plastic viscosity, 𝜇p. Test conditions: petroleum jelly, 𝛿0 = 5 mm, L = 30 mm, s = 1 

mm and V = 1 mm/s. 

 

The profiles of Fw and h in Fig. 3.34 present the effect of changing the surface tension, PJ-air 

(0.07 N/m). Values of 0.1PJ-air and 10PJ-air are selected. While 10PJ-air is not realistic, a high 

value is required to test the effect of the surface tension due to the high yield stress of PJ. 

Decreasing PJ-air has less influence on Fw and h due to the fact that deformation is controlled 

by the yield stress. However, the results for 10PJ-air shows smaller removal force and lower 

berm height. This is because under these conditions, the surface tension dominates during test. 

When the sample is scraped, the surface tension acts to decrease the surface area and reduces 

the height of the berm. 
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Fig. 3.34. Sensitivity study for surface tension. Effect on (a) removal force and (b) berm 

height. Test conditions: petroleum jelly, regularised Bingham model, 𝛿0 = 5 mm, L 

= 30 mm, s = 1 mm and V = 1 mm/s. 

 

Case II – Soft white paraffin using the bi-viscosity model  

For the BVM, in order to observe the influence of changing a parameter (kHB or nHB), it is 

important to adjust another parameters to compensate for the effect. Taking changing n by  

20% as an example, the viscosity above the yield stress can be rearranged to give the following 

results for the apparent viscosity. 

The characteristic shear rate, V/s, is used for �̇�. kHB is adjusted to maintain the value of 

𝑘𝐻𝐵�̇�𝑛𝐻𝐵−2 constant. The original model parameters for y, kHB, and nHB are 460 Pa, 21.5 Pa 

s0.1 and 0.1, respectively. 

 𝜇 =
𝜏𝑦

�̇�
[1 +

𝑘𝐻𝐵

𝜏𝑦
�̇�𝑛𝐻𝐵−2] (3.20) 
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Fig. 3.35(a,i) shows that the yield stress has a significant impact on Fw, and Fw increases with 

y. The behaviour is similar to the effect of changing scrape depth, in which a larger scrape 

depth cause more material to deform and the force required to dislodge material increases. In 

addition, by increasing the resistance for deforming the material, the berm height rises (Fig. 

3.35(a,ii)), because it is more difficult to deform. The material is dislodged upwards directly 

when being scraped.  This indicates that adjusting the value of yield stress to match the required 

force and berm height obtained from the experiments can be used to estimate material’s yield 

stress. 

By contrast, in Fig. 3.35(b) and (c), no noticeable influence is observed as n and 0 are changed. 

However, the berm height increases slightly with 0 (Fig. 3.35(c,ii)). A fluid with higher 

viscosity would exhibit more solid behaviour, which is similar to increasing y. The profiles of 

berm height for 0 = 1 MPa s and 10 MPa s are similar, which indicates that the upper limit of 

applied viscosity in this case is 1 MPa s.  

 

 (a) (b) (c) 

(i) 

0 5 10
0

1

2

3
 Exp

 Sim (- 20% y)

 Sim (y)

 Sim (+ 20% y)

F
w
 (

N
/m

)

t (s)

SWP

 

0 5 10
0

1

2

3
SWP Exp

 Sim (- 20% nHB)

 Sim (nHB)

 Sim (+ 20% nHB)

F
w
 (

N
/m

)

t (s)
 

0 5 10
0

1

2

3
SWP Exp

 Sim (0 = 100 kPa s)

 Sim (0 = 1 MPa s)

 Sim (0 = 10 MPa s)

F
w
 (

N
/m

)

t (s)
 

(ii) 

0 5 10

0

1

2

3

4

5
SWP Exp

 Sim (- 20% y)

 Sim (y)

 Sim (+ 20% y)

h
b
 (

m
m

)

t (s)
 

0 5 10

0

1

2

3

4

5
SWP Exp

 Sim (- 20% nHB)

 Sim (nHB)

 Sim (+ 20% nHB)

h
b
 (

m
m

)

t (s)
 

0 5 10

0

1

2

3
SWP

 Exp

 Sim (0 = 100 kPa s)

 Sim (0 = 1 MPa s)

 Sim (0 = 10 MPa s)

h
b
 (

m
m

)

t (s)
 

Fig. 3.35. Sensitivity study for bi-viscosity model. Effect on (i) removal force and (ii) berm 

height by changing in (a) yield stress 𝜏y, (b) flow index, nHB, and (c) creeping 

viscosity, 𝜇0. Test conditions: soft white paraffin, 𝛿0 = 5 mm, L = 30 mm, s = 0.3 

mm and V = 1 mm/s. 
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3.4 Conclusions 

In this chapter, the millimanipulation device reported by Magens et al. [9] was used to study 

the development of layers of petroleum jelly, soft white paraffin and toothpaste in situ. A 

computational fluid dynamics simulation with the RBM and the BVM was used to predict the 

deformation of PJ and SWP while being scraped.  

A series of visualisation studies were performed to capture the shape and deformation of the 

layer during scraping. Wall slip was observed for PJ and SWP under some conditions. 

Combining visualisation with the force on the blade, the adhesive strength (slip) of soft layers 

could be estimated. Interrupted testing allowed the characteristic time for stress relaxation to 

be determined, and change in forces on interruption could be applied with a simple metal 

cutting theory to estimate the yield stress.  

Rheological investigations of PJ and SWP indicated that both exhibited yield stress behaviour. 

The simulation results of PJ with the RBM gave better agreement with the experimental data, 

but SWP with the BVM showed good fits with the measured berm height and force. This is 

thought to be due to the description of the rheology in the yielding transition. The predicted 

velocity distributions were similar to those obtained from visualisation. The sensitivity tests 

for the rheological parameters in the simulations showed that the yield stress was the dominant 

factor for two viscosity models and the creeping viscosity in the bi-viscosity model was also 

important.  

Based on these findings, the millimanipulation device could be employed to determine the 

basic rheological behaviour of soils, which are difficult to be loaded in a rheometer. 

Furthermore, after improving the resolution and accuracy of the visualisation, combining the 

method with the CFD simulation would be possible to estimate the rheological parameters.   

In addition, the Maillard et al. [49] results could be simulated if a confined-space boundary 

condition could be simulated. More work on the model is needed, such as finding an alternative 

dynamic mesh algorithm.
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Chapter 4 Fluid Dynamic Gauging Devices 

4.1 Introduction 

This chapter presents calibrations and fundamental studies for the ZFDG device created by 

Wang et al. [6] and two innovative FDG developments as well as the application to study 

swelling and shrinkage of soft solid layers. The first development is sideways ZFDG, namely 

SiDG, which was created using a horizontal FDG nozzle integrated with a vertical positioner 

as a conveyor to allow layers to be moved from air into the gauging liquid environment, and 

then measured immediately. This concept was proposed by PhD student Georgina Cuckston 

and Professor Ian Wilson. With the current ZFDG system, there is a delay lasting up to several 

minutes can elapse after the sample is initially immersed (to zero the nozzle) before reliable 

measurements can be made. Soft layers can change their properties significantly over this initial 

period and it would be advantageous to eliminate this delay.  

The second development is integrated ZFDG, namely iFDG, in which an inductive proximity 

sensor (IPS) is installed with the FDG nozzle for replacing an extensive pre-calibration process. 

In the current ZFDG system, during calibration, ho is set using feeler gauges, which can 

introduce inaccuracy in the measurement of layer thicknesses. It would be preferable to have a 

built-in location technique. The inductive sensor measures the distance between an inductive 

coil and a metallic target by generating a magnetic field using an oscillating voltage on the coil. 

An eddy current is induced in the target by the magnetic field, resisting the field and decreasing 

the amplitude of the voltage on the coil. As the coil approaches the metallic object, the induced 

eddy current increases and the oscillating voltage decreases more. The voltage change is thus 

employed to estimate the distance. This technique has been widely applied for non-contact 

measurement devices with benefits such as long life time and low maintenance [155].  

Moreover, it will not be affected by non-metallic fouling and layer’s liquid environment, and 

could be built into the FDG nozzle. Each of the FDG development, were designed, constructed 
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and commissioned. PhD student Georgina Cuckston provided complex model soil layers to test 

on the SiDG. A range of materials which undergo swelling were chosen, prepared, and 

measured using both FDG devices at different liquid environments. 

Fig. 4.1 demonstrates the principle of FDG operation and geometry of a typical FDG nozzle 

head. The detailed FDG operation has been shown in section 2.3.2. The pressure drop, P − P0, 

is a function of the nozzle throat diameter, dt, nozzle rim width, wr, nozzle rim thickness, we, 

inner diameter of the nozzle tube, di, converging angle of the nozzle, , flow rate and ho. Thus, 

the pressure drop can be used to estimate ho, if other parameters are constant. The length of the 

nozzle tube is labelled as l. The key dimensions for all FDG devices employed in this chapter 

are shown in Table 4.1. 

 

l



wr

we

P

ho

dt

di

P0

 

Fig. 4.1. Schematic of FDG nozzle geometry. Solid and dashed streamlines indicate ejection 

and suction modes, respectively. 
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Table 4.1. Comparison of design parameters of FDG test rigs 

 Parameters ZFDG SiDG iFDG 

Gauging nozzle dt (mm) 1.0 1.0 0.95 

 di (mm) 5.85 4 6 

 do (mm) 10 6 20 

 we (mm) 0.15 0.2 1 

 wr (mm) 1.0 0.5 5.02 

 (°) 45 45 45 

 l (mm) 310 295 300 

 Material 310 SS 316 SS PEEK 

Gauging surface Material 316 SS 316 SS 316 SS 

Gauging variables Resolution ± 10 m ± 10 m ± 10 m 

 Ret regime 375~1312 375 0.0045~398 

Gauging liquids  Deionised water  Deionised water, alkali 

solution  

Deionised water, 

whole UHT milk, 

skimmed UHT milk, 

washing up liquid, 

1% and 3% CMC 

solutions 

Sample materials  Petroleum jelly Petroleum jelly, 

gelatin, PVAc, 

complex model food 

soil (CMS) 

Deionised water ice, 

whole UHT milk ice, 

skimmed UHT milk 

ice 

Pressure transducer Brand SensorTechnics SensorTechnics OMEGA 

 Operating 

limits 

−8 ~ 9 kPa 

(E < 1%)a 

−8 ~ 9 kPa 

(E < 1%) 

0 ~ 35 kPa 

Syringe pump Brand Harvard Apparatus (E 

< 1%) 

Harvard Apparatus 

(E < 1%) 

Harvard Apparatus 

(E < 1%) 

Positioners  Brand Zaber (z-axis) 

Standa (x&y-axis) 

Zaber (x&z-axis) Zaber (z-axis) 

Standa (x&y-axis) 

 Resolution 2 m (z-axis) 

0.31 m (x&y-axis) 

2 m (x&z-axis) 2 m (z-axis) 

0.31 m (x&y-axis) 

a E is error.  
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4.2 ZFDG 

4.2.1 Materials and Methods 

4.2.1.1 ZFDG Apparatus 

Fig. 4.2 shows a schematic diagram and a photograph of the ZFDG apparatus. The ZFDG 

system was built by Wang et al., and a detailed description of this system was reported by 

Wang et al. [6, 98]. A syringe pump (Harvard Apparatus PHD Ultra Series; Hamilton glass 

syringe, internal diameter 23 mm) infuses and withdraws liquid with accuracy better than 1%. 

A cylindrical Perspex tank of diameter 130 mm contains the gauging liquid, and the liquid 

depth is set at around 100 mm. The tank is fixed on a motorized XY scanning stage (8MTF-

75LS05, STANDA) controlled by a two-axis stepper & DC motor controller (8SMC4-USB-

B9-2, STANDA), which allows the nozzle to be moved to different locations in the tank. The 

nozzle is connected to a straight stainless steel tube of length 310 mm to develop laminar flow 

profile. The clearance from the nozzle to the layer surface is controlled by a positioner (Zaber 

Technologies, T-LSR075B).  

For data collection, the pressure drop across the nozzle is measured by a pressure transducer 

(PT) (SensorTechnics HMAP001-BU7H5) connected to a tapping located approximately 40 

mm above the nozzle exit, with a limit of between around −8 kPa and 9 kPa. The transducer 

generates a voltage, which is collected as an analogue input by a multifunction DAQ (National 

Instruments, USB-6210,16 AI (16-Bit, 250 kS/s)), and processed to give the pressure drop 

reading. The relationship between the real pressure, Ptrue, and voltage collected by the DAQ, 

VDAQ, was calibrated by a digital pressure indicator (Druck DPI 600 (IS)), and an example of a 

calibration plot is shown in Fig. 4.3. The data were subjected to a linear fit, giving 

 Ptrue = −8700 + 3544VDAQ (R2 = 0.9999) (4.1) 

The relationship is linear and is followed in both ejection (positive P) and suction (negative 

P) modes of operation.  

The data collection and control for the original system was originally performed using a 

LabVIEW (National Instruments) application. As part of this work, the system has been 

migrated to a platform using the programming language Python 3.6. This made it simpler to 
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integrate with other equipment and software for data analysis and automatic control, as well as 

making it amenable for freeware.  
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Fig. 4.3. Pressure transducer calibration plot. Symbols: blue square – measured pressure; red 

solid line – linear fitting.  
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Fig. 4.2. (a) Schematic diagram and (b) photograph of ZFDG system.  Components: D – DAQ; 

M – sample mount; N – nozzle; PT – pressure transducer; SP – syringe pump;  XY – 

x- and y-axis positioner; Z – z-axis positioner. 
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4.2.2 Model Formulation 

The geometry of the ZFDG apparatus has been reported by Wang et al. [6] and key nozzle 

dimensions are shown in Fig. 4.4. The nozzle internal diameter and throat diameter are 5.85 

mm and 1 mm, respectively.  The tank diameter is 130 mm, and the liquid depth is 60 + ho mm.  

A 2-dimensional, transient and axi-symmetric ZFDG model was created with water as the 

gauging liquid (isothermal, laminar regime with incompressible, Newtonian fluid). The CFD 

simulations are similar to the cases presented by Wang et al. [98], but the models are solved 

using the open source software OpenFOAM version 4.0 on a SuperServer 1027R-WRF4+  

server with 12 cores (Intel® Xeon® E5-2630V2 Processor 2.60 GHz). The computational time 

required for the transient model to reach steady-state is about 3000 s.     

 

4.2.2.1 Governing equations 

The behavior of the liquid follows the Navier-Stokes (N-S) equation.  

 𝜌 (
𝜕𝐯

𝜕𝑡
+ 𝐯 ∙ ∇𝐯) = −∇𝑝 + 𝜇∇2𝐯 + 𝜌𝐠 (4.2) 

Here,  is the liquid density, v is the velocity vector, p is the pressure,  is the dynamic 

viscosity, and g is the gravity vector. Previous studies showed that gravity did not have a 

significant influence on the FDG flow field, so this term can be neglected [102].   

The continuity equation applies, which for an incompressible fluid is 

 ∇ ∙ 𝐯 = 0 (4.3) 

The gauging fluid, water, is Newtonian with constant viscosity. The density and viscosity of 

water at 16.5 °C were 997.3 kg/s and 1.123 mPa s, respectively [98]. In OpenFOAM, the N-S 

equation is solved using the finite volume method [156] with a pressure-velocity coupling 

algorithm (pimpleFoam), consisting of a pressure-implicit split-operator scheme proposed by 

Issa [157] and a semi-implicit pressure linked scheme reported by Patankar and Spalding [158]. 
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4.2.2.2 Boundary conditions 

The boundaries of the simulation domain are labelled in Fig. 4.4 and boundary conditions are 

listed in Table 4.2. In Fig. 4.4, the fluid is injected and ejected via AK. Region EFGHIJK is the 

nozzle tube, which is solid. All walls are specified as no-slip and impermeable [98]. Plane BC 

represents surface being gauged. In order to reduce the calculation time, the simulation domain 

is shrunk and the boundary of the tank is replaced by open boundaries. v and p were set to be 

zero for all calculation domains as the initial condition.  

A less well developed flow field often happens at a large clearance and in suction mode, as 

setting the inlet/outlet of the nozzle tube to be a parabolic velocity profile. Fig. 4.5(a) compares 

the effect of specifying a parabolic and a constant velocity profile at the outlet, for different 

nozzle lengths, l, at ho/dt = 0.5 in suction mode. The nozzle length cannot be shorter than 50 

mm, since in suction mode, the recirculation region extends about 50 mm above the nozzle 

throat. The Cd values obtained with a parabolic velocity profile decrease with l. In contrast, the 

values obtained for the constant velocity outlet condition are similar (and close to the 

experimental value). This is because with a longer nozzle tube, a larger downstream area is 

required to develop the parabolic outlet velocity. When the downstream area is fixed, the flow 

pattern cannot become fully developed, resulting in a higher pressure drop (lower Cd). The less 

developed flow pattern can be observed by the predicted outlet velocity. In Fig. 4.5(b), the 

velocity distributions at l = 100 and 200 mm are fluctuated, but at l = 60 mm, the predicted 

velocity is the same as the boundary condition. A less well developed flow pattern calculated 

by OpenFOAM is different from that obtained from the commercial finite element software 

COMSOL Multiphysics®, which has been widely used for predicting the FDG flow pattern 

(section 2.3.3). In COMSOL, if the flow field cannot become fully developed, the predicted 

values on the boundary will be manipulated to match the boundary condition, but the values 

close to the boundary will fluctuate.   
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Fig. 4.4. Geometry and mesh distribution of ZFDG simulation. Inset shows mesh. All 

dimensions in mm. 
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Fig. 4.5 (a) Effect of setting a parabolic velocity profile at the outlet on Cd. (b) Comparisons 

of velocity distributions at the outlet with a parabolic velocity outlet at different l. 

Test case conditions: �̇� = 20 ml/min and ho/dt = 0.5, suction mode. 
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Table 4.2 Boundary conditions in the CFD model (vr and vz are the radial and axial 

velocities, respectively.) 

Boundary Description Boundary condition 

AB Axisymmetric ∂𝑣𝑟

𝜕𝑟
= 0, 

∂𝑣𝑧

𝜕𝑟
= 0 and 

∂𝑝

𝜕𝑟
= 0 

AK Inlet/outlet 
𝑣𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =  

8�̇�

𝜌𝜋𝑑i
2 (1 −

4𝑟2

𝑑i
2 )𝑜𝑟 

4�̇�

𝜌𝜋𝑑i
2 

𝑣𝑠𝑢𝑐𝑡𝑖𝑜𝑛 =  
−8�̇�

𝜌𝜋𝑑i
2 (1 −

4𝑟2

𝑑i
2 )𝑜𝑟 

4�̇�

𝜌𝜋𝑑i
2

 

a 

BC, CD, EF, FG, 

GH, HI, IJ, and JK 

Wall vr = 0 and vz = 0 

DE Open boundary p = 0 

a vejection and vsuction are the velocities for ejection mode and suction mode, respectively. Fully 

developed laminar flow or constant velocity profile is imposed at the inlet/outlet. �̇� is the 

mass flow rate delivered by the syringe pump. r is radial distance and di is the internal 

diameter of the nozzle. 

 

A comparison of discharge coefficient predicted from the models with a parabolic and a 

constant velocity inlet/outlet is plotted in Fig. 4.9(a). There is no significant difference between 

both boundary conditions for both modes. This indicates that both velocity profiles can be 

specified as the inlet/outlet boundary conditions; however, the predicted flow pattern is 

required to be checked while setting the oulet to be a parabolic profile. When using 

OpenFOAM to estimate the flow pattern of FDG, setting the inlet/outlet boundary condition to 

be a constant velocity profile is better for a preliminary study. In this study, the inlet/outlet of 

the gauging nozzle is set to have a parabolic velocity profile. 

Non-uniform meshes were set up with triangular-shaped elements generated by a mesh 

generator, Gmsh (version 3.0.6), as shown in the inset on in Fig. 4.4. Although the model is 

axisymmetric 2-dimensional, a 3-dimensional mesh is required for OpenFOAM so a wedge 

shape mesh with an angle of 2.5° was created.  
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The mesh size around the nozzle rim gives rise to differences in the calculation of the pressure 

drop. A mesh resolution study (spatial convergence) was performed by monitoring the change 

in Cd while adjusting the mesh size around the nozzle for a given set of geometry and flow rate 

conditions. The results are shown in Fig. 4.6. Cd approaches an asymptote as the minimum 

mesh size is reduced, indicating that a mesh size of less than 5 m around the nozzle is 

acceptable for this case. A minimum mesh size of 1.448 m was chosen for the positions closest 

to the nozzle rim, while the mesh size expands to 2.871 mm on the tank wall far away from the 

nozzle. The simulations reported here employed 131776 mesh elements. The simulations 

followed the validation guidelines presented by NASA's NPARC alliance [143], and nearly 

75000 iterations were solved for each conditions. The consistency of computation was tested 

by checking mass balance for the inlet and side boundaries, and the difference was less than 

0.11 %. The temporal convergence is not applicable for this steady-state study.  
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Fig. 4.6. Effect of the mesh size on Cd. Test case conditions: �̇� = 20 ml/min and ho/dt = 0.1, 

ejection mode.  

 

4.2.3 Calibration 

In FDG measurements, the pressure drop, P, is expressed as a discharge coefficient Cd (Eq. 

(2.4)), which is a normalised energy loss across the nozzle [89]. Fig. 4.7 shows calibration plots 

of Cd against dimensionless clearance, ho/dt, for various flow rates. The hollow symbols 

represent cases where the pressure drop exceeded the measurement limit of the pressure 

transducer, from −8 kPa to 9 kPa. Fig. 4.7(a) shows that in ejection mode, Cd rises gradually 
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with increasing ho/dt, reaching around 0.7 at ho/dt = 0.3. After this, it drops slightly at ho/dt = 

0.35 and then approaches a plateau. The gentle decline results from redistribution of eddies in 

the liquid beyond the outer edge of the rim, which will be discussed later. The eddy causes an 

increased pressure drop, so Cd decreases a small amount (the local velocities are low in this 

region). Similarly, Cd in suction mode rises smoothly with increasing ho/dt, but does not 

experience a gentle decline. This is because the structure of the flow field of suction mode does 

not change significantly as ho/dt increases.  

In Fig. 4.7(b), (c) and (d), the difference in Cd value measured during ejection and suction 

modes diminishes with increasing flow rate. Moreover, as increasing flow rate, the difference 

becomes noticeable at lower values of ho/dt, which will be shown and to be due to the influence 

of vortices in ejection mode. 
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(a) �̇� = 20 ml/min (Ret = 375) (b) 40 ml/min (Ret = 750) 
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Fig. 4.7. Experimental calibration plots of Cd against dimensionless clearance for �̇� = (a) 20 

ml/min, (b) 40 ml/min, (c) 60 ml/min and (d) 70 ml/min. Solid symbols – 

experimental data; hollow symbols – experimental data out of measurement range; 

Colours: blue – ejection (E), red – suction (S). 

 

4.2.3.1 Experimental validation 

Chew et al. [102] reported that the flow patterns in FDG nozzles share similarities with  radial 

laminar flow between parallel plates, whose solution has been presented by Middleman [159]. 

This analytical solution is used to assess the results from OpenFOAM CFD simulations. Fig. 

4.8 shows distributions of velocity magnitude from the ZFDG simulations alongside the 

analytical solutions for �̇� = 20 ml/min. At this mass flow rate, the Reynolds number at the 

throat of the nozzle is around 375, so the flow is in the laminar regime.  

In Fig. 4.8(a), it is clear that at both (i) ho/dt = 0.05 and (ii) 0.20, the velocity magnitude is large 

near the inner rim of the nozzle, and then declines gradually with increasing radial distance. 
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The distribution becomes that of a fully developed laminar velocity profile at the outer rim of 

the nozzle. The maximum velocity for a given flow rate depends on the gap between the nozzle 

and the substrate. This is expected from conservation of mass (volume), where the volumetric 

flow rate, Q, is given by 

 Q = 2rhvr (4.4) 

Fig. 4.8(b) show the radial velocity profiles at r = 0.6 mm, 1 mm and 1.4 mm at (i) ho/dt = 0.05 

and (ii) 0.20. At ho/dt = 0.05, the CFD results are similar to the analytical solutions: the 

velocities decrease further along the gap. The predicted velocity profile at r = 0.6 mm and ho/dt 

= 0.20 is very different from the analytical solution. This is because there is a small eddy close 

to the inner rim, labelled A in Fig. 4.8(a) (ii). The eddy results in recirculation so that the 

velocity becomes negative at the upper wall. This phenomenon becomes significant with 

increasing clearance.  
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Fig. 4.8. (a) Distributions of radial velocity magnitude in ejection mode with �̇� = 20 ml/min 

at ho/dt = (i) 0.05 and (ii) 0.2: (b) Comparison of velocity distributions in the gap 

under the rim at different radial locations. 

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

z 
(m

m
)

r (mm)

-0.20

0.80

1.8

2.8

vr (m/s)

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

z 
(m

m
)

r (mm)

-0.18

0.020

0.22

0.42

0.62

vr (m/s)

A



 

108 

 

Experimental data obtained for FDG calibration are plotted alongside ZFDG simulations in 

Fig. 4.9, for �̇� = 20 ml/min and 40 ml/min in both ejection and suction modes. Fig. 4.9(a) 

shows good agreement between experimental and simulation results for both ejection and 

suction modes. The gentle decline in ejection mode mentioned above has been captured by the 

simulation. Fig. 4.10 shows the distributions of streamlines at ho/dt = 0.35 and 0.4. It is obvious 

that at ho/dt = 0.35, there are two eddies occurring outside the nozzle, one located near the 

nozzle edge and another one close to the substrate. By contrast, as ho/dt increases to 0.4, the 

original eddy on the edge of the nozzle disappears and another eddy become larger. This change 

of flow pattern is thought to cause the observed decrease in Cd values.  

In Fig. 4.9(b), reasonable agreement between simulation and experimental results is obtained 

for ho/dt less than 0.2. The region of ho/dt below 0.15 is the one of interest for dynamic gauging, 

as Cd is linear in ho/dt. The gentle decline in Cd as a function of ho/dt happens at larger values 

of ho/dt in the simulation when compared to the experimental data; the deviation in suction 

mode is significant. These differences indicate that 2-D axi-symmetric model is not able to 

predict the FDG flow pattern accurately at higher flow rates and ho/dt. One reason is that when 

the flow rate increases, eddies in liquid may not be cylindrically symmetric. 

 

(a) �̇� = 20 ml/min (Ret = 375) (b) 40 ml/min (Ret = 750) 
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Fig. 4.9. Calibration plots of Cd against dimensionless clearance for �̇� = (a) 20 ml/min and (b) 

40 ml/min. Solid symbols – experimental data; hollow symbols – experimental data out 

of measurement range; lines – simulation results with a parabolic velocity inlet/outlet; 

dashed lines – simulation results with a constant velocity inlet/outlet. Colours: blue/cyan 

– ejection (E), red/magenta – suction (S). 
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(a) ho/dt = 0.35 (b) ho/dt = 0.4 

  

Fig. 4.10. Distributions of streamlines in ejection mode with �̇� = 20 ml/min at ho/dt = (a) 

0.35 and (b) 0.4. 

 

Fig. 4.11 compares the distributions of the wall shear stress on the lower surface in both ejection 

and suction modes computed using both CFD and analytical approximation. The distributions 

in suction mode show good agreement with the analytical expression. The shear stress imposed 

on the substrate decreases as the velocity declines along the rim, or as the clearance increases. 

However, in ejection mode, there are noticeable peaks at the nozzle inner rim. These result 

from the velocities changing direction at the nozzle mouth, indicating that the flow changes are 

more significant in ejection mode than in suction mode. These results are consistent with the 

literature, for example, Yang et al. [97] suggested that suction to be better for studies the layer 

strength, because a lower flow rate of ejection mode should be used to prevent deformation 

caused by the shear stress peaks. 
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Fig. 4.11. Distribution of shear stress on base for �̇� = 20 ml/min. Solid lines – simulations: 

dashes – analytical solution. Blue: ho/dt = 0.1, red: ho/dt = 0.15, black: ho/dt = 0.2 

and pink: ho/dt = 0.25. 

 

The flow patterns and shear stresses generated by the FDG flow have been predicted by CFD 

simulations, and the results compared with analytical solutions and experimental indicators. 

They show good agreement, indicating that OpenFOAM is suitable for FDG flow field 

estimation.  

 

4.3 SiDG 

4.3.1 Construction 

4.3.1.1 Device 

A schematic diagram and a photograph for this SiDG device is presented in Fig. 4.12. As with 

the ZFDG apparatus, the syringe pump (Harvard Apparatus PHD Ultra Series; Hamilton glass 

syringe, internal diameter 23 mm) is employed to infuse and withdraw gauging liquid through 

a new 316 stainless steel tube, 295 mm long, to develop a laminar velocity profile, with a nozzle 

(dt = 1, di = 4 mm,  = 45° and wr = 0.5 mm) connected to the end of the tube. The tube is 
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mounted horizontally and passed through a seal, whereby an O-ring is used with some 

petroleum jelly for lubrication and its location is at 110 mm from the base, in one wall of a 

Perspex cubic tank (150×150×150 mm3) filled with gauging solution at a liquid level of around 

130 mm. The tube is moved using a linear slide (Zaber Technologies T-LSR075B), with a 

repeatability of 2 m and a backlash of less than 13 m. The pressure drop, P, across the 

nozzle is recorded by the same pressure transducer (SensorTechnics HMAP001-BU7H5, range 

−8 kPa to 9 kPa), which is connected to a tapping installed on the tube at approximately 50 mm 

away from the nozzle outlet. A K-type thermocouple is fixed on the wall close to the nozzle 

head to monitor the temperature of the gauging liquid, and the temperature can be controlled 

by a heating coil at the bottom of the tank. The thermocouple signal is transferred to an 

amplifier to enhance its amplitude.  

Both transducer and thermocouple signals after amplifiers are then collected by the 

multifunction DAQ (National Instruments, USB-6210,16 AI (16-Bit, 250 kS/s)). The pressure 

drop is estimated from the signal based on the calibration test presented above. The sample 

substrate is mounted vertically on a suspended arm, which is fixed on a second positioner 

(Zaber T-LSR075B). This setup allows both the region and time of the sample submerged in 

the liquid environment to be controlled. All information, including measured pressure drop, 

positioner data, and temperature are collected using a program written in Python 3.6 script. 

 



 

112 

 

 

4.3.2 Model Formulation 

The CFD model is similar to the ZFDG cases presented previously. The gauging fluid in this 

study is water, and it density and viscosity are 997.3 kg m-3 and 1.123 mPa s (16.5 °C), 

respectively [98]. The algorithms and convergence criteria follow the previous case, but the 

geometries and boundary conditions are different due to the fact that the liquid-air interface 
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Fig. 4.12. (a) Schematic diagram and (b) photograph of SiDG apparatus. Components: H – 

coil for heating/cooling liquid; M – sample mount; N – nozzle; O – o-ring seal; PT – 

pressure transducer; SP – syringe pump; X – horizontal (nozzle) positioner; Z – 

vertical (sample) positioner. 
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above the nozzle is a free surface and quite close to the nozzle. Thus, the liquid surface cannot 

be neglected and an asymmetric model is not available. However, Chew et al. [92] reported 

that the simulation results were not sensitive to various boundary conditions with both 

permeable and impermeable walls. Also, feasibility of FDG operated in a duct flow with large 

Reynolds numbers has been proven [28, 105]. 

In order to investigate in the effect of the free surface, a 3-dimensional transient model and a 

2-dimensional transient asymmetric model were created. Both geometries are presented in Fig. 

4.13, and the boundary conditions are summarised in Table 4.3. Fig. 4.13(a) shows a simplified 

3D geometry. The nozzle is located at the centre of a box and normal to the substrate (ACGE). 

ABFE is the open surface and was set to be a wall [92]. BDHF is the tank wall (no-slip and 

impermeable), and other boundaries are open boundary (p = 0). The key nozzle dimensions are 

the same as that in Fig. 4.13(b). In the 2D case, shown in Fig. 4.13(b), C’D’ was set up as open 

boundary and all other boundaries are walls.  

Non-uniform triangular-shaped meshes were created using Gmsh. The calculation time for the 

2D transient model to approach a steady-state condition was around 3000 s, but for the 3D case, 

it took more than one week. 
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Fig. 4.13. Geometry of (a) 3D and (b) 2D axi-symmetric SiDG simulations. Inset shows 

mesh. All dimensions is mm. Boundaries defined in Table 4.3. 
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Table 4.3. Boundary conditions in the CFD models 

3D Boundary 

(apart from nozzle, 

in Fig. 4.13(a)) 

2D Boundary 

(Fig. 4.13(b)) 

Description Boundary condition 

 A’B’ Axisymmetric ∂𝑣𝑟

𝜕𝑟
= 0, 

∂𝑣𝑧

𝜕𝑟
= 0 and 

∂𝑝

𝜕𝑟
= 0 a 

 A’K’ Inlet/outlet 

𝑣𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =  
8�̇�

𝜌𝜋𝑑i
2 (1 −

4𝑟2

𝑑i
2 ) 

𝑣𝑠𝑢𝑐𝑡𝑖𝑜𝑛 =  
−8�̇�

𝜌𝜋𝑑i
2 (1 −

4𝑟2

𝑑i
2 ) 

b 

ACGE, BDHF and B’C’, D’E’, 

E’F’, F’G’, 

G’H’, H’I’, 

I’J’, and J’K’ 

Wall v = 0 

ABDC, CDHG and 

EFHG 

C’D’ Open boundary p = 0 

ABFE  Free surface v = 0 (Wall) or  p = 0 (Open 

boundary) 

a vr and vz are the radial and axial velocities in 2D, respectively. 

b vejection and vsuction are the velocities for ejection mode and suction mode, respectively. Fully 

developed laminar flow is imposed at the inlet/outlet. �̇� is the mass flow rate delivered by 

the syringe pump. r is radial distance and di is the internal diameter of the nozzle. 

 

The numerical study followed the validation procedure proposed by NASA's NPARC alliance 

[143]. About 75000 iterations were computed for 2D and 3D simulations. The error in the mass 

balance between the inlet and open boundaries was about 0.26%, indicating that the simulation 

consistency is acceptable. The temporal convergence is not applicable for this case, because it 

is a steady-state simulation. Fig. 4.14 shows a mesh sensitivity study for spatial convergence 

using the discharge coefficient (pressure drop) as an indicator. The test was conducted by 

refining the mesh size in the domain beneath the nozzle rim, since P is based on the flow 
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pattern beneath the nozzle rim. In Fig. 4.14, there is no significant change when the mesh 

element size is less than 10 m. A minimum mesh size of 3.56 m was set around the nozzle 

rim and expended to 1.33 mm near the side boundaries. About 190 000 mesh elements were 

used in the models.  
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Fig. 4.14. Effect of mesh size on Cd, axisymmetric simulation. Test case conditions: water 

at 20 C, �̇� = 20 ml/min, ho/dt = 0.1, ejection mode. Horizontal dashed line indicates 

experimental value at this condition. 

 

4.3.3 Commissioning  

Fig. 4.15 shows a comparison of the local speed distributions estimated for the 3D and 2D 

asymmetric models. It is clear that the maximum velocities appear under the nozzle rim in both 

cases, which is similar to previous studies [97], and there is no obvious difference between 

both models. Comparing the estimated pressure drop of the 3D model with the 2D result at �̇� 

= 20 ml/min, ho/dt = 0.1, the difference in suction mode was below 1%, and that in ejection 

mode was around 7%. Both errors are less than 10% and acceptable for engineering 

applications. These results indicate that the assumption of 2D asymmetric model is acceptable 

to be utilised for prediction of the SiDG flow pattern. There are significant differences between 

both modes. In ejection mode, shown in Fig. 4.15(a), a parabolic velocity profile exists beneath 

the nozzle rim and decays downstream. However, in suction mode, Fig. 4.15(b), a fast stream 

flows up the centre of the tube, and circulation occurs close to the wall.  
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Fig. 4.16(a) plots the discharge coefficient versus the dimensionless clearance for SiDG. It is 

obvious that at smaller ho/dt, Cd in both ejection and suction modes increases remarkably with 

increasing clearance, followed by approach to an asymptote of about 0.72. This trend is similar 

to that of ZFDG shown above and other FDG configurations. The deviation between both 

modes from ho/dt ~ 0.1 to 0.4 is attributed to the difference of flow fields, which are evident in 

the simulations and has been discussed in section 4.2.3. At ho/dt < 0.05, Cd in both modes 

approaches a low asymptotic value (around 0.08), which is different from that presented in Fig. 

4.7. This is attributed to bending of the arm, on which the substrate is mounted. The arm bent 

and the clearance between the nozzle and substrate became larger, while being imposed by a 

force, so the measured Cd values are higher than the predicted ones. Compared the simulation 

results with the experimental data, good agreement can be observed, indicating that the 

simulations can be employed to predict the SiDG flow field.  
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Fig. 4.15. Comparison of predicted speed (velocity magnitude) distributions in 3D (left) and 

2D asymmetric (right) simulations for (a) ejection mode and (b) suction mode. 

Arrows in (b) indicate flow direction, and are not to scale. Conditions: �̇� = 20 

ml/min, ho/dt = 0.1. 

 

A further test was conducted by gauging different locations along the SS substrate to confirm 

that the sample mount was truly vertical. The results in Fig. 4.16(b) show that the discharge 
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coefficient decreases gradually with increasing z, indicating that the clearance between the 

nozzle head and substrate decreases as the gauging location approaches the top of the substrate. 

This corresponds to a slope of the substrate of 0.121°, which was used for selecting an initial 

gauging clearance to prevent the nozzle head touching the layer surface.  
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Fig. 4.16. Calibration plots of (a) Cd against dimensionless clearance and (b) positions on 

sample mount. Experimental conditions: water at 20 C, �̇� = 20 ml/min, Re = 375. 

Lines – simulation; Open square symbols – experimental Cd: blue – ejection; red – 

suction; Open triangle symbols – estimated h: blue – ejection; red – suction. 

 

Fig. 4.17 shows distributions for predicted wall shear stress at ho/dt = 0.05, 0.1, 0.15 and 0.2 in 

ejection and suction modes. At ho/dt ≤ 0.1, large shear stresses were induced by the gauging 

flow beneath the nozzle rim, and the values differ significantly between the two modes. In 

ejection mode, a sharp peak is generated at the inner edge of the rim, resulted from the 

redistribution of velocity. By contrast, the shear stress is relatively smooth and lower magnitude 

in suction mode at larger clearances, indicating that this mode is more suitable for soft solid 

layers with its low deformation stresses.  

Fig. 4.17 also presents dimensionless shear stresses, *
w, on the right axis. *

w is calculated 

from 𝜏𝑤/1

2
𝜌𝑈2, whereby ½U2 is the inertial head in the flow and U is the mean velocity at the 

nozzle throat. An useful information has been observed: the predicted shear stress value would 

be close to the initial head (*
w = 1) at h/dt  ~ 0.05 in suction mode.  
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Fig. 4.17. Distribution of predicted shear stress on gauged surface calculated by OpenFOAM 

simulations for the cases in Fig. 4.16(a), for ho/dt = 0.05 (red); 0.10 (brown); 0.15 

(blue); 0.20 (black). Conditions: �̇� = 20 ml/min, Ret = 375. Vertical dashed lines and 

grey shaded pattern indicate the region of the nozzle footprint. Note: r < 0 – ejection 

mode; r > 0 – suction mode. Second y-axis shows scaled wall shear stress, 𝜏𝑤
∗ =

𝜏𝑤/1

2
𝜌𝑈2, where U is the mean velocity in the nozzle throat. 

 

Another useful reference result is the average wall shear stress, 𝜏�̅�, imposed on the substrate 

under the nozzle rim between r = ri and ro. Zhou et al. [114] estimated the average wall shear 

stress induced by the FDG flow using an approximation, which has been mentioned above and 

is shown as follows [159]. 

 

𝜏�̅� =
1

𝑟𝑜2 − 𝑟i
2 ∫ 2𝑟𝜏w𝑑𝑟

𝑟o

𝑟i

 

 =
𝜇𝑄

4𝜋(ℎ/2)2

2

𝑟i + 𝑟o
 

(4.5) 

and the dimensionless form:   

 𝜏�̅�
∗ = 4𝜋

𝜇𝑟i
𝜌𝑄

(
𝑟i
ℎ
)
2 𝑟i
𝑟i + 𝑟o

 (4.6) 

Fig. 4.18 compares the analytical solutions and the simulation results for both ejection and 

suction modes. The wall shear stresses in ejection mode are noticeably higher than those in 
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suction mode at ho/dt > 0.2, and greater than the analytical results. For ho/dt ≤ 0.15, the results 

obtained from Eqn. (4.6) are 70 % larger than the simulation results. This is attributed to the 

assumption that, the flow profile beneath the nozzle rim is parabolic (fully developed), which 

is not correct at small clearances. The analytical result can be used for order of magnitude 

estimate for this quantity under these flow conditions. If more precise values are required, a 

series of simulations covering the range of interest would be required.   
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Fig. 4.18. Effect of clearance on dimensionless average wall shear stress under the nozzle 

rim, 𝜏�̅�
∗ , for the cases in Fig. 4.17. Solid blue circles – ejection; open red triangles - 

suction. Locus shows the analytical result, Eqn. (4.6), assuming viscous flow 

between two parallel discs. 

 

4.3.4 Applications  

4.3.4.1 Materials and methods 

In this study, all sample materials were coated on rectangular 316 SS substrates (25 × 100 mm2, 

thickness 0.7 mm, Rq = 2.391 µm). These substrates were cleaned by three steps before sample 

were applied. Firstly, they were soaked in alkali solution (NaOH, pH = 12) for 24 h, which is 

a useful cleaning agent for protein. Next, the substrates were soaked in isopropyl alcohol and 

then acetone with sonication. If there was any residual sample remaining on the substrate, the 
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substrate was scrubbed with a plastic and steps 1 and 2 were repeated. Finally, they were dried 

in air.    

A commercial petroleum jelly (Atom Scientific Ltd, GPS5220) was used to create model layers 

using a spreader tool on the substrates with a thickness of 0.7 ± 0.07 mm measured by a 

confocal LED thickness sensor (CTS: a Micro-Epsilon IFC2461 controller paired with an 

IFS2405 sensor). A detailed description of the spreader tool was given in Wang’s dissertation 

[127].  

In order to generate PVAc layers on the 316 SS substrates, a confined area (15 × 10 mm2) on 

the substrate was surrounded by tapes firstly. A commercial glue (Evo-stik® Wood Adhesive 

Resin) was then squeezed on to the area, followed by scraping off extra glue using a rule. The 

surface tension of PVAc helped it to spread to give a uniform and flat layer after drying in air 

for more than 94 hrs [98]. The thickness of the dry film was about 0.3 mm measured by a digital 

micrometer (Mitutoyo absolute digital indicator, ID-C112MB). A PVAc layer with a thickness 

of 0.3 mm could be prepared by two layers of tapes (0.571 mm).   

Layers of gelatin were prepared by dissolving 9 g gelatin (Dr. Oetker Platinum Grade Leaf 

Gelatine) in 100 ml deionised water at 85 °C for more than 30 min. A confined area (15 × 10 

mm2) was generated by tapes on the substrates, and then approximately 0.15 ml solution (three 

droplets) were then pipetted on this area, followed by drying in air for about 24 h. A uniform 

film was generated by the surface tension of the solution. The measured thickness of the dry 

layer was 0.8 ± 0.1 mm. 

The complex model food soil (CMS) is made of 18% fat, 5.7% protein, 24% carbohydrate, 

0.3% salt and 52% water. The detailed procedure for preparing the CMS soil has been described 

by Cuckston et al. [48]. The mixture soil was coated on the substrate in a confined area (15 × 

10 mm2), the same as that for previous layers, using the spreader with a fixed thickness of 0.4 

mm. The wet thickness of the layer was averagely 0.4 ± 0.05 mm, after removing the tapes. 

The prepared layers were then dried in air for 24 h, and moved into a preheated oven to bake 

for 7 min at a fixed temperature 204 °C. The tray of samples was moved out for cooling to 

room temperature immediately after reaching 7 minutes. The initial dry thickness of the CMS 

layers were measured using the micrometer; however, the measurement was often 

overestimated due to the fact that the thickness recorded by the micrometer relies on the highest 

point of samples but there were lots of stubs on the CMS deposit.  
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The PVAc, gelatin and CMS layers could absorb solution up into the untested area due to their 

porous microstructures by capillary suction, resulting in prewetting in SiDG tests. Before tests, 

breaks between each test regions had to be created. A band of around 5 mm was generated by 

removing the layer using a scrap, shown in Fig. 4.20(e). For the 100 mm long substrates used 

in these tests, this resulted in four test regions.  

The CTS measures a layer’s thicknesses by detecting light reflected from a sample surface. The 

technique also enables thickness measurements for transparent materials by corrections of the 

material refractive index [160]. The region measured by the CTS is about 9 m in diameter, 

compared to at least 2 mm in diameter, including the nozzle throat diameter and rim, for SiDG. 

With these benefits, the CTS sensor was thus employed to measure swelling of layers in wet 

conditions.  

 

4.3.4.2 Results and discussion 

Swelling of soft solid layers 

In the repeatability and swelling studies for various soft solid layers, layers of petroleum jelly, 

gelatin, PVAc and the CMS were submerged in deionised water at 20 °C, followed by 50 

gauging cycles. At initial 10 cycles, the syringe pump ejected, and then withdrawn with a 

duration of 2 s, which allowed the pressure drop to be measured over a short time. After this, 

both ejection and suction modes lasted 5 s and with an interspersion of 5 s between each cycle. 

The first measurement could be conducted 10 s after the sample contacted the solution. This 

delay was attributed to the slow response of the syringe pump. The shear stress induced by the 

gauging flow exerted on the sample surface becomes large with decreasing clearance. When 

the induced shear stress exceeds a material’s yield stress, the layer will deform. In order to 

prevent deformation of layers and ensure measurement in the linear region of Cd vs. ho/dt, an 

upper limit of 500 Pa, and a lower limit of 140 Pa were set. The nozzle head would move 0.02 

mm close to the surface, when the measured pressure was less than 140 Pa, and vice versa. The 

procedure is the same as the feedback mode discussed in Wang’s dissertation [127]. 

Repeatability tests for SiDG were performed by gauging 3-4 sample points on a sample 

substrate using different materials, presented in Fig. 4.19. The CTS sensor was employed to 
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measure the initial dry thickness of petroleum jelly, since the stress imposed on the surface and 

induced by the micrometer is higher than the yield stress of petroleum jelly and will make the 

layer deform. In Fig. 4.19(a), very good repeatability for petroleum jelly is obtained with a 

deviation of less than 0.35 m, which is higher than the resolution of SiDG. Similarly, it is 

noticeable in Fig. 4.19(b) that the repeated tests for gelatine demonstrate good intra sample 

repeatability with a deviation of less than 5 m. 

Fig. 4.19(c) shows good repeatability among four PVAc samples in suction mode with a 

deviation of about 2.4 m, but after 800 s, there are two discontinuous points. This is attributed 

to the backlash of the x-axis positioner. When the measured pressure drop surpassed the 

maximum pressure limit, the nozzle would be triggered to move away from the layer surface. 

However, the O-ring installed on the tank wall for preventing flooding would resist the 

movement of the nozzle, which resulted in a smaller movement than the theoretical one.  

Fig. 4.19(d) presents a repeatability study for CMS layers. The data for the three measurements 

fluctuate with time, but show good repeatability with a deviation of about 3.5 m. The 

fluctuation is due to the rough surface of CMS. In the process of CMS preparation, layers broke 

after drying in air, causing a lot of cracks to be generated on the surfaces. These cracks changed 

the flow field of SiDG and then had influence on the measurement of SiDG. Overall, these 

results of repeatability testing indicate that this SiDG device can be employed for thickness 

measurements with confidence due to its good repeatability. 
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Fig. 4.19. Repeatability testing for (a) petroleum jelly film (𝛿0: around 719 ± 70 𝜇m), (b) 

gelatin films (𝛿0: P1, 91 𝜇m; P2, 91 𝜇m; P3, 91 𝜇m; P4, 85 𝜇m), (c) PVAc glue layers 

(𝛿0: P1, 341 𝜇m; P2, 321 𝜇m; P3, 314 𝜇m; P4, 304 𝜇m), and (d) CMS layers (𝛿0: P1, 

339 𝜇m; P2, 343 𝜇m; P3, 337 𝜇m) immersed in deionized water (pH = 5.6, 20 °C) 

for �̇� = 20 ml/min, using suction mode. 

 

Swelling profiles for 4 materials are shown in Fig. 4.20, using the change in 

thickness,(measured thickness,  – initial dry thickness, 0). Fig. 4.20(a) presents that 

petroleum jelly film was gauged for 50 cycles, alternating between ejection and suction modes. 

No significant change was observed. This is because the shear stresses induced on the surface 

in both modes were less than the yield stress of the viscoplastic petroleum jelly (about 280 Pa, 

as discussed in section 3.2.4). For instance, the maximum shear stress obtained from 

simulations at a clearance of 0.05 in ejection mode is about 184 Pa.  When the shear stress 

surpasses the yield stress, the material will undergo deformation. 

The swelling profiles of gelatin for both ejection and suction modes in Fig. 4.20 are similar, 

with a small difference of about 20 m. This is attributed to the elastic behaviour of gelatin. A 

larger estimated thickness from ejection mode than that of suction was also observed by Wang 

et al. using the ZFDG device [98]. Both profiles show a quick increase of thickness at the initial 

stage (t < 300 s) due to hydration of water, after which the swelling rate slows. These features 
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have been reported in previous FDG work [98, 109] and studies using a gravimetric tool [161, 

162]. The volume fraction of the sample polymer due to swelling is defined as /0, and the 

initial hydration caused around 2.4. Fig. 4.20(c) shows similar swelling behaviors with PVAc. 

This material swelled quickly over first 200 s, after which, it swelled gradually to the end of 

measurement.   

However, in Fig. 4.20(d), the suction results for the CMS layers are larger than that from 

ejection mode, and both swelling profiles fluctuate. These are thought to result from the 

microstructure of the dry soil layers. Fig. 4.20(e) shows a photograph of a dry CMS layer, and 

it is noticeable that the sample was porous and with a lot of cracks on the surface (giving spongy 

characteristics). As the syringe pump ejected, the layer like a sponge was compressed and a 

smaller thickness would be observed. By contrast, it would be pulled up while being 

withdrawn, and a larger thickness was then estimated. The fluctuations were caused by non-

smooth layer surfaces.  
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Fig. 4.20. Swelling profiles of (a) petroleum jelly (𝛿0: 720 𝜇m), (b) gelatin (𝛿0: 85 𝜇m), (c) 

PVAc (𝛿0: 263 𝜇m), (d) CMS (𝛿0: 339 𝜇m) immersed in deionized water (pH = 5.6, 

20 °C) with �̇� = 20 ml/min, and (e) photograph of dry CMS soil before immersion. 

Solid blue squares – ejection; open red triangles – suction. 

 

Fig. 4.21 compares swelling profiles measured by CTS and SiDG. The swelling of the gelatin 

film measured by CTS was performed by CET IIB student, Cheyanne Xie [128], and the 

measurements for PVAc and CMS layers using CTS were conducted by PhD student Georgina 

Cuckston.  
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Fig. 4.21. Comparison of swelling behaviour measured by the CTS and SiDG devices (�̇� = 

20 ml/min, 2 repeats) (a) gelatin layers (𝛿0 85 𝜇m) submerged in pH 12 solution at 

20 °C, suction mode; (b) PVAc layers (𝛿0 around 196 𝜇m) immersed in deionized 

water at 20 °C, suction mode; error bars show the range of repeated measurements. 

(c) CMS immersed in pH = 9 solution (𝛿0 around 300 𝜇m), ejection mode. Solid blue 

diamonds – SiDG, ejection; open red triangles – SiDG, suction; black squares – CTS 

(2 repeats). (d) Schematic of CTS beam located on a CMS crack during thickness 

measurement. Green dash line – CTS beam. Wine and grey shaded pattern indicate a 

crack and substrate (t3 > t2 > t1). 

 

In Fig. 4.21(a), both profiles show good agreement with a quick swelling at the initial hydration 

stage, followed by a nearly constant swelling rate to over 1500 s. However, a systematic 

difference between both measurements can be observed, which resulted from the measurement 

procedure for CTS. The peaks of water and gelatin could not be identified due to their similar 

reflection indexes. Thus, an alternative method was required, in which the gelatin layer was 

moved out from the liquid environment repeatedly for CTS measurements. Even though the 

sample layer was measured in air, there was still a residual water film on the sample surface, 
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causing the discrepancy. The test also demonstrates that SiDG is a valuable technique for 

thickness measurement of materials whose reflection indexes similar to solution.  

The CTS measurement for PVAc is compared with the results measured by SiDG, in Fig. 

4.21(b). Over the first 300 s, good agreement between two measurement techniques is obtained. 

After that, both approach asymptotic values with a small discrepancy of about 14 m. This is 

attributed to the different initial layer thicknesses.  

In Fig. 4.21(c), the swelling profiles for both CTS and SiDG show noticeable differences from 

that of PVAc and gelatin films.  of CTS #1 test experiences a rapid increase due to hydration, 

and then approaches an asymptote of about 0.17 mm; however, the results of CTS #2 fluctuates 

before 600 s, followed by increasing markedly to above 0.2 mm. By contrast, the profiles of 

SiDG increase steadily, and at the end of tests, these reach similar values to that for CTS. This 

is caused by the presence of cracks in the of CMS layers. A schematic for this behaviour is 

presented in Fig. 4.21(d). t denotes the contact time of the CMS sample immersed in the 

gauging liquid, and t3 > t2 > t1. It is possible to locate the CTS beam at a crack or at a flat surface 

(crack-free region) during measurements due to its small spot (9 m). In Fig. 4.21(d), the beam 

is located at the centre of a crack, and the initial hydration stage cannot be observed. However, 

a rapid increase of thickness is measured when the crack merges after t = t3. The expected 

swelling profile is similar to that of CTS #2. By contrast, the results of CTS #1 can be explained 

as being due to the CTS beam being located at a crack-free region. On the other hand, the SiDG 

measurements show an average value due to its layer diameter of about 2 mm. Compared to 

the size of cracks, the influence can be neglected, but the presence of cracks beneath the nozzle 

rim will decrease the pressure drop (overestimated Cd), resulting in an underestimated 

thickness. The effect of surface roughness on FDG measurements has been studied by Wang 

et al. [6].  

A 3D simulation was reformed to investigate this phenomenon. A geometry with four 

triangular channels beneath the nozzle head simulating cracks, was created and is shown in 

Fig. 4.22(a).  
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(a) 

 
(b) 

 

Fig. 4.22. Simulation of dynamic gauging on an idealized cracked surface, representing an 

unswollen CMS layer. (a) Geometry of 3D SiDG simulation with pairs of parallel V-

notch (1.08 mm) cracks, and (b) estimated speed (velocity magnitude) distribution 

for ejection mode. Conditions: �̇� = 20 ml/min, ho/dt = 0.1. 

 

The gauging conditions were �̇� = 20 ml/min, ho/dt = 0.1 for both modes, and the results showed 

8% and 3% differences of Cd from measurements for suction and ejection, respectively. The 

predicted velocity distribution is plotted in Fig. 4.22(b), and it is evident that the velocity profile 

under the nozzle rim has been changed due to the cracks. These confirm the presence of cracks 

impacts the flow pattern.   
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Effect of pH 

Acid or base conditions can make polymeric chains become charged, resulting in repulsion 

inside the matrixes. This is one of the mechanisms causing polymer swelling. A series of 

swelling tests for gelatin and PVAc layers at various pH were conducted using the ZFDG 

device by Wang et al. [98]; However, the early period swelling could not be investigated due 

to the ZFDG configuration. The SiDG allows the shortest time period of about 10 s to be 

monitored, and the results for gelatin and PVAc films swelling at different pH are shown in 

Fig. 4.23 and Fig. 4.24. 

In Fig. 4.23, the swelling profiles for pH 5.6-11, show a similar trend, a rapid hydration increase 

at the beginning, followed by decreasing swelling rates with increasing time. By contrast, at 

pH 12, the falling rate behaviour is not significant at t > 500 s. This is because at high pH value, 

the amine groups in the gelatin are deprotonated, resulting in expansion of the matrix. A similar 

phenomenon was reported by Wang et al. [98] in a swelling test of gelatin film at pH 11.6. 

These swelling profiles were fitted by the Ritger and Peppas model [163]: 

 𝑚 = 𝑚∞𝑘D𝑡𝑛D (4.7) 

where m is the amount of solvent in the polymer taken up from the liquid environment after 

time t, m∞ is the total amount of solvent taken up while reaching a swelling equilibrium, kD is 

the kinetic constant, and nD is the diffusion index. It is supposed that the amount of solvent is 

linearly proportion to the change of the layer thickness, , and the equation can be written as 

 ∆𝛿 = 𝛿 − 𝛿0 = (𝛿∞ − 𝛿0)𝑘D(𝑡 − 𝑡i)
𝑛D = 𝑘mΔ𝑡i

𝑛D (4.8) 

Here ∞ is the thickness at swelling equilibrium, ti is the time when the polymer was submerged 

into solution, and km is a kinetic constant, equivalent to kD(∞ − 0) [6]. As nD is proves to be 

0.5, the swelling behaviour is dominated by Fickian diffusion. Swelling data of pH 5.6, 11 and 

12 are plotted against (t – ti)
1/2 in Fig. 4.23(b). It is obvious that profiles of pH 11 and 12 show 

good linear relationships, but at pH 5.6 experiences a linear increase before 250 s, and then 

deviates from the initial trend, which indicates that there is a second swelling mechanism 

occurred at t > 250 s. This transition has been reported by Offner and Shott [164]. Also, the 

swelling study investigated by Wang et al. [98] showed a second swelling mechanism 

happened after 5000 s, and nD increased with increasing pH. However, in this study, the initial 
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swelling is more interesting so that swelling tests for longer times were not conducted. The 

volume fraction of solvent in the polymer (voidage), , is defined as 1 – 0/In Fig. 4.23(a), 

the voidages for all cases increase rapidly to about 0.7 at the hydration stage, exceeding 0.8 at 

t = 1500 s, indicating that the relaxation of the gelatin matrix is very strong.  
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Fig. 4.23. (a) Comparison of effect of pH on swelling for gelatin layers. Conditions: �̇� = 20 

ml/min, suction mode, water at 20 °C. (b) Some of the data sets fitted to Eqn. (4.8) 

with nD = ½. 

 

In the PVAc films in Fig. 4.24(a), swelling at pH below 11 is not affected by pH noticeably 

and the swelling rates decreases steadily towards the end of measurements. This behavior is 

similar to that seen with gelatin layers and attributed to diffusion-dominated swelling. By 

contrast, the thickness at pH 11 increases rapidly at t < 700 s. Furthermore, profiles of pH 11.7 

and 12 in Fig. 4.24(b) show a relatively strong influence by pH on swelling. These indicate that 

a different mechanism is active at higher pH. PVAc is one type of hydrogels, and in general, 
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swelling of hydrogels involves two mechanisms, being solvent diffusion inside the polymer 

matrix and relaxation of the polymer [165]. In a high pH environment, PVAc will experience 

hydrolysis and produce acetic acid and poly(vinyl alcohol) (PVA) [166]. The pKa of PVA is 

10.67 [167] so that base can cause PVA chains to be ionised and repel each other [168]. Thus, 

the mechanism at high pH can be expected to be “reaction-driven swelling”.  

All profiles at early times were fitted by Eq. (4.8) and the parameters obtained are summarized 

in Table 4.4. At pH < 11, nD is at a region between 0.66 and 0.71, meaning that swelling was 

controlled by both diffusion and a second mechanism [169]. At pH ≥ 11, the diffusion indexes 

are around 1. This is attributed to a transition, from mixed diffusion-controlled swelling to 

reaction-driven swelling mentioned above. In both regions (pH < 11 and ≥ 11), the relaxation 

rate has a linear relationship with pH. Most of the literature on this topic is concerned with 

adhesive applications and focuses of the moisture content of the PVAc rather than its thickness. 

This study confirms that the water content of the PVAc material would increase with increasing 

pH due to hydrolysis-driven expansion, reported by Mathew et al. [170]. 

In terms of voidage, at pH < 11, the maximum  is less than 0.25, but at pH ≥ 11, relaxation-

controlled swelling occurred and the swelling behaviour became more complex. The voidage 

at pH 11 approaches about 0.28 at the end of initial linear increase, followed by falling swelling 

rate, and finally reaching approximately 0.38. At pH 11.7, the trend of voidage is similar to 

that of pH 11 at the beginning and the swelling rate decreased after 200 s. However,  

approaches a peak of about 0.37 at t ~ 1230 s. By contrast, at pH 12, the voidage reaches a peak 

value after swelling of mixed diffusion control, and then decreases due to shrinkage. After 800 

s, the voidage maintains at about 0.32. These results demonstrate that the SiDG device enables 

swelling and shrinkage to be recorded at both early times and long times.   
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Fig. 4.24. Comparison of effect of pH on swelling (and void fraction) for PVAc films with 

swelling models (Eq. (4.8)) at (a) pH ≤ 11 and (b) pH > 11. Conditions: �̇� = 20 

ml/min, suction mode, water at 20 °C. Vertical dashed lines in (a) and (b) indicate 

the end of the linear fitting region for pH  11.  The error bars describe the range of 

repeated tests. 
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Table 4.4. Swelling parameters obtained by fitting initial PVAc swelling data to Equation 

(4.8) 

pH km 

m/sn 

nD 

- 

R2 

5.6 0.328 0.71 0.981 

9 0.533 0.69 0.973 

10 0.560 0.66 0.984 

11 0.067* 1.09 0.995 

11.7 0.174* 1.00 0.994 

12 0.259* 1.06 0.981 

* Since nD ~ 1 in these cases, this is effectively the initial linear swelling rate. 

 

4.4 iFDG 

4.4.1 Construction 

4.4.1.1 iFDG Concept  

A non-contact technique, namely inductive proximity sensing (IPS), has been widely utilised 

for distance measurements with advantages such as long lifespan and low-maintenance [155]. 

This device is also feasible for operation in dirty and wet environments such as fouling, since 

influences on the measurement from non-metallic deposit components with low magnetic 

permeability can be neglected. The principle of IPS is to detect a coil approaching a metal 

target by measuring the change of the amplitude of an oscillating voltage. An oscillating 

voltage is supplied to a circuit with an inductive coil, and a magnetic field is generated around 

the coil. When the coil moves close to the target, an eddy current will flow in the metal object. 

The induction current will result in an increase of load on the circuit and decrease of the voltage 
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amplitude. Thus, the status of the metal target can be determined by measuring the change in 

the amplitude. 

The configuration of the IPS used in this study contains three major parts, shown in Fig. 

4.25(a): the sensor head, the processing circuit and the driving logic. The sensor head is 

composed of an inductive coil, a resonance capacitor and a cable connected to other parts. The 

coil was wound using an enamelled wire (solderable self-bonding enamelled copper wire, 

diameter 0.25 mm, Scientific Wire Company) with 61 turns, and then fixed beneath an original 

FDG nozzle head. The coil and nozzle head were then covered by epoxy (Marine Weld 

Waterproof Epoxy Adhesives, JB8272, JB Weld) for protection, then cut to the desired shape 

using a lathe. Fig. 4.25(b) shows the layout of the nozzle head. The inductance of the coil is 

34.1 H, measured by a RCL meter (PM6303, Philips). A capacitor labelled Cr (100 nF) is 

connected with the coil in parallel for adjusting the supplied frequency to reach a resonance 

frequency and receive a maximum oscillating voltage. A shielded cable with a length of 30 cm 

connects the sensor part to the processing circuit. 

In the driving logic part, an input signal (AC sinusoidal waveform, 83.33 kHz, ±10 V) is 

supplied by a function generator (Feedback, FG601). However, the output current and voltage 

of the generator are not high enough to support the desired resolution for thickness 

measurements. Therefore, an amplifier with a voltage of 15 V for compensation, provided by 

a DC power supply (B&K Precision, Triple output DC power supply, model 1672) is employed 

to boost the amplitude. A commercial data acquisition device (National Instruments, USB-

6210, 16 AI (16-Bit, 250 kS/s)) is used to collect the peak-to-peak voltage waveform (pk-pk) 

across the sensor part, and these data are processed by a programme in Python 3.6. 
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Fig. 4.25. (a) Schematic diagram of the inductive sensor system. (b) Geometry of the iFDG 

nozzle head. Symbols: Blue circles – inductive coils; Red – epoxy. All dimensions 

are mm. 

 

4.4.1.2 FDG device 

A schematic and a photograph for the iFDG device are presented in Fig. 4.26. This iFDG 

system was constructed based on the ZFDG system discussed in section 4.2.1. A Harvard 

syringe pump (Harvard Apparatus PHD Ultra Series; Hamilton glass syringe, internal diameter 

23 mm) was utilised to eject and withdraw solution at a fixed flow rate. A rectangular Perspex 

tank (187 × 166 mm2, and height: 100 mm) contained the gauging liquid, and the liquid level 
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was maintained at around 50 mm. In order to scan the sample surface, the tank was fixed above 

the motorised XY stage (STANDA, 8MTF-75LS05) driven by the controller (STANDA, 

8SMC4-USB-B9-2), but with a space for the tubes supplying freezing liquid discussed later. 

The original FDG nozzle shown in Fig. 4.25(b) was made of polyethyletherketone (PEEK) 

with a length of 300 mm to develop a laminar velocity profile. This nozzle was mounted on a 

linear slide (Zaber Technologies, T-LSR075B) for controlling the clearance between the 

sample surface and nozzle head. A gauge pressure transducer (PT) (OMEGA, PXM409-

350HGUSBH) was employed to monitor the pressure drop across the nozzle and located 50 

mm above the nozzle throat with a measurement range of 0 ~ 35 kPa. These data were collected 

by the same program as the IPS. 

Ice growth experiments were conducted using an integrated tank, whereby a CPU cooling block 

(EK-Velocity RGB - AMD Full Nickel, 58 × 58 mm2) with a metal side for chilling and others 

are insulated, was embedded at the bottom of the tank and labelled as F in Fig. 4.26(b). The 

coolant was a water/ethylene glycol (1:1 by volume) mixture and circulated from a cooling 

bath (Thermo Scientific Haake DC30-K20 Digital Control bath, 115VAC 60Hz) through the 

block. The test solution was drawn from one side of the tank and then pumped back to the other 

by a peristaltic pump (Masterflex® L/S® Series Peristaltic Pumps) to enhance mixing. Three 

temperatures, namely that of the cooling bath, the bulk solution in the tank and the chilling side 

of the block, were monitored using K-type and two T-type thermocouples, respectively.  
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Fig. 4.26. (a) Schematic and (b) photograph of iFDG. Components: F – freezer; I – inductive 

coil; M – sample mount; N – nozzle; P – pressure transducer; SP – syringe pump; 

XY – x- and y-axis positioner; Z – z-axis positioner.  

 

4.4.2 Model Formulation 

The iFDG simulations used the same solvers and iterative converge criteria in OpenFOAM as 

the ZFDG models presented in section 4.2.2. A simplified 2D asymmetric model was employed 

to simulate the iFDG case due to the fact that the tank wall is far from the nozzle head and the 

flow out of the tube is unimportant [102]. The geometry and key dimensions are shown in Fig. 

4.27. In Fig. 4.27, AB is the asymmetric axis and AK is the inlet, described as a fully developed 

laminar velocity profile. BC, DE, EF, FG, GH, HI, IJ, and JK are wall (no-slip). CD was set to 

be open (p = 0). The information about gauging solutions will be discussed in following section 

(summarised in Table 4.5).  
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Fig. 4.27. 2D axi-symmetric iFDG simulations, and inset shows mesh. All dimensions is 

mm. 

 

A series of converge tests were performed according to the validation guidelines reported by 

NASA's NPARC alliance [143]. Approximately 75000 iterations were computed to reach a 

steady value. The spatial convergence was checked by a mesh sensitivity study, shown in Fig. 

4.28. In this study, different mesh sizes were tested, but following the same mesh growth rule, 

in which the minimum mesh element was generated around the nozzle rim and developed to 

the maximum mesh size at the side boundary. The pressure drop (then calculated to Cd) was 

chosen as reference, because p is sensitive to the meshes around the nozzle rim. In Fig. 4.28, 

it is noticeable that the model is not sensitive to the mesh size, and the Cd value approaches an 

asymptote (0.35), as the mesh volume is smaller than 1000 m3. This indicates that an element 

size of less than 1000 m3 is acceptable. Thus, the minimum mesh size was set to be about 2 

m3 close to the nozzle rim, and expanded to the maximum size of around 2200 m3 at the 

outlet. Approximately 230000 mesh elements were employed in the simulation. The temporal 

convergence is not applicable here, which has been discussed above. The fundamental 
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consistency for the simulations was tested by calculating mass balance between the inlet and 

outlet, and the results show 0.22 % errors.   
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Fig. 4.28. Effect of mesh size on Cd. Conditions: UHT milk at 20 °C, �̇� = 20 ml/min, Ret = 

165.8, for ho/dt = 0.2, ejection mode. Horizontal dashed line indicates experimental 

value at this condition. Solid black square is the mesh size used in the simulations. 

 

4.4.3 Commissioning 

4.4.3.1 Materials and methods  

The iFDG concept was tested by three different metallic substrates: mild steel plate (50 × 50 

mm2, thickness 1.990 mm, relative permeability ~2000 [171]), 316 stainless steel plate (50 × 

50 mm2, thickness 1.852 mm, relative permeability ~1 [172]), and copper foil (50 × 50 mm2, 

thickness 3.148 mm, relative permeability 1 [173], Goodfellow, 214-378-94, 99.9% copper). 

Furthermore, the mild steel substrate was covered by several layers of PVC tapes (PVC 

Electrical Insulation Tape, RoHS), thin glass slips (ACADEMY, glass cover slips) and 

microscope slides (Menzel Gläser) for testing the effects of different sample materials. The 

mild steel substrate was also tested in various liquid environments, including deionised water, 

milk, washing up liquid and carboxymethylcellulose (CMC) solutions.  

The test liquids for testing the inductive proximity sensor and calibration of the iFDG device 

can be classified to four categories: Newtonian liquid with low viscosity – deionised water; 
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opaque Newtonian liquid with low viscosity – whole UHT milk (Sainsbury's Whole Long Life 

Milk); opaque Newtonian liquid with high viscosity – washing up liquid (Fairy Original, 

Procter and Gamble); non-Newtonian liquid – 1 wt% and 3 wt% carboxymethylcellulose 

(CMC) solutions. The CMC solutions were prepared by dissolving CMC powder (CMC 

sodium salt, BDH Laboratory Supplies) in deionised water, then agitating the solution at about 

60 °C for more than 72 h. 

The rheology of whole UHT milk, washing up liquid, 1 wt% and 3 wt% CMC solutions was 

measured by Dr. Simon Butler using a Malvern Kinexus lab+ rotational rheometer at 20 °C. 

These fluid properties are listed in Table 4.5 along with the Reynolds number at the nozzle 

throat, Ret, utilised in the calibration experiments. The Reynolds numbers of power law fluids 

were calculated by [174] 

 𝑅𝑒t = 23−𝑛 (
𝑛

3𝑛 − 1
)
𝑛 �̅�2−𝑛𝑑𝑡

𝑛𝜌

𝑘
 (4.9) 

Here n and k are the flow behaviour index and flow consistency index of the power law 

equation ( = k(�̇�)n-1), respectively. �̅� is the average velocity. 

 

Table 4.5. Fluid properties of gauging liquids at 20 °C [98]. �̇� is the shear rate 

Gauging solution  

(kg/m3) 

 

(Pa s) 

Ret 

(-) 

Deionised water 997.3 1.12×10-3 398 

Whole UHT milk 1006.3 2.83×10-3 166 

Washing up liquid 1005.8 1.01 0.022 

1 wt% CMC solution 984.2 Min(0.22, 0.476 �̇� -0.27) 1.4~3.4 

3 wt% CMC solution 996.6 Min(37.62, 30.1 �̇� -0.57) 0.0045 

 

 

The measured apparent viscosity for 1 wt% and 3 wt% CMC solutions are presented in Fig. 

4.29(a) and (b). These show obviously shear-thinning behaviours at high shear rates. By 
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contrast, at the low shear rate region, a high viscosity plateau can be observed. These were 

fitted by the truncated Ostwald-de-Waele power law model used in OpenFOAM. The fitting 

results are shown in Table 4.5 and plotted on the figures.  

As the concentration of CMC solutions is more than 2.5 wt%, the solution exhibits viscoelastic 

behaviour [175]. Thus, an oscillatory frequency sweep test was conducted for the 3 wt% CMC 

solution using an ARES rheometer (TA Instruments), by PhD student Janaki Umashanker. Fig. 

4.29(c) shows good agreement between experiments and simulations using an 8 mode Maxwell 

model with R2 = 0.94341. Its parameters are listed in Table 4.6. The data show that the 

suspension follows the Cox-Merz rule ((�̇�)~*()) reasonably well.  
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Fig. 4.29. Apparent viscosity of (a) 1 wt% and (b) 3 wt% CMC solutions at 20 °C and steady 

shear. Blue triangles – experimental data, red line – truncated power law model 

(parameters in Table 4.5). (c) Oscillatory shear sweep for 3 wt% CMC solution at 20 

°C, shear stress amplitude: 13.6 Pa. Symbols – experimental data. Lines – fit to eight 

mode Maxwell model, shown in Table 4.6, and Cox-Merz rule.  

 



 

146 

 

Table 4.6. Parameters of eight mode Maxwell model 

Mode i 

(s) 

gi 

(Pa) 

1 10.0 1.82

2 3.73 0.157 

3 1.39 3.45 

4 0.518 5.98 

5 0.193 12.6 

6 0.0720 36.3 

7 0.0268 0.0250 

8 0.0100 223 

 

4.4.3.2 Results and discussion 

A calibration test for three different substrates was performed using deionised water as gauging 

solution, in which the nozzle head was located at 6 mm away from the substrates initially, and 

then moved close to them. The results are plotted in Fig. 4.30(a). For h ≤ 1 mm, a linear 

relationship between the distance and measured peak to peak value for three substrates can be 

observed, which is applicable and viable to integrate with FDG measurements. The slopes at 

this region for these substrates are significantly different, which is attributed to different 

conductivities. When the magnetic field approaches a substrate with higher conductivity, a 

higher eddy current is induced on the substrate [176]. Thus, the slopes are in the order of mild 

steel (18.2 S/mm) < 316 SS (36 S/mm) < copper (62.7 S/mm), and these conductivities are 

listed in the inset of Fig. 4.30(a). As the inductive coil moves away from the metallic substrate, 

the region of magnetic field passing through the substrate become smaller and a lower eddy 

current is induced, causing the peak to peak voltage value to approach an asymptote of 12 V. 

The data of pk-pk value versus clearance were fitted by a linear model and shown in the caption 

of Fig. 4.30(a). These fittings indicate that at h < 1 mm, the change of peak to peak values can 

be employed as a position reference for the FDG device. However, in the IPS application, the 
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temperature of the coil causes effects on the pk-pk voltage, namely temperature drift. A 

temperature drift test was conducted, showing that the pk-pk voltage decreased with 

temperature and the deviation was about −1.5 m/°C. 

In order to study the effect of sample materials with low conductivity on the iFDG device, two 

and three microscope slips (thickness: 205 and 385 μm) and two and four layers of PVA tape 

(thickness: 119 and 238 μm) were fixed on the mild steel substrate with deionised water as 

gauging liquid and tested. The results are shown in Fig. 4.30(b). The trends with are the same 

as that without coating.  

A further experiment was conducted with various glass slides placed on the mild steel substrate, 

plotted in Fig. 4.30(c). It is clear that these profiles are identical to the uncoated one. Both 

experiments demonstrate that non-metallic samples have no influence on the inductive 

measurement, and this technique is also feasible for studying samples on a non-metallic 

substrate by mounting the non-metallic substrate on a metallic holder. 

Various liquids were tested with the inductive sensor and measurements were repeated 10 times 

for each liquid. These results in Fig. 4.30(d) show the same linear trends of peak to peak value 

with increasing clearance. Each measurement point can be identified from others, indicating 

that a resolution of ± 10 m can be achieved. Moreover, it can be expected that using the copper 

and 316 SS substrates will give a better resolution due to their sharper slopes of pk-pk versus 

h. These results confirm that the iFDG concept is viable, and the main factor determining 

precision is the fluid flow relationship. 
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Fig. 4.30. Calibration plots of induction sensor head. (a) Gauging fluid, water; error bars 

show standard deviation over 10 repeats. Vertical dashed line shows limit of useful 

range for FDG measurements, h/dt = 0.25 (long dashed line). Data in this region fitted 

to trend pk-pk = 7.17 + 1.6h (mild steel); 4.96 + 2.39h (316 SS); 2.66 + 2.59h 

(copper). Inset shows effect of conductivity on slope. (b) Mild steel substrate without 

and with tapes or glasses submerged in water. (c) Mild steel substrate with different 

layers of glass slides. (d) Different liquids with mild steel substrate, in the region of 

h/dt used for locating the substrate for FDG tests. 

 

Fig. 4.31 presents profiles of discharge coefficient versus dimensionless clearance for 

Newtonian fluids deionised water, whole UHT milk and washing up liquid at different flow 

rates. All profiles show a similar trend, with a linear increase of Cd with increasing ho/dt at low 

clearance, followed by approach to an asymptotic value at large ho/dt. This behaviour has been 

reported in previous FDG studies using different configurations. The plateau at large clearance 

is attributed to disappearance of pressure drop caused by the gap between the nozzle rim and 

the gauging surface.  

In Fig. 4.31(a) and (b), it is evident that there is a difference of Cd value between ejection and 

suction modes at ho/dt = 0.2~0.6, which is attributed to difference of the flow patterns in both 

modes. This phenomenon has been observed from simulations, investigated by Chew et al. 
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[102] and Ali et al. [96]. Fig. 4.31(c) shows a slight difference between two modes. This is 

because at very low Reynolds number, viscous dissipation dominates, resulting in similar flow 

patterns and pressure drops. In Fig. 4.31(c), at ho/dt < 0.145, the profile levels off at low 

clearance, which is an artefact caused by the limit of the pressure transducer being reached.   

The magnitude of the discharge coefficients at the asymptote in Fig. 4.31(a), (b) and (c) are in 

the order of the employed Reynolds number (deionised water (Ret 398): 0.74 > UHT milk (Ret 

166): 0.65 > washing up liquid (Ret 0.022): 0.0135). This behaviour was reported by Tuladhar 

et al. [7]. The values are small at low Ret because Cd is defined in terms of inertial losses but 

at small Ret viscouslosses dominate [79]. Fig. 4.31(a), (b) and (c) show good agreement 

between CFD predictions and experimental data, indicating that the simulations are valid. Also, 

Fig. 4.31(b) and (c) confirms that the iFDG device is feasible for use with opaque and viscous 

liquids, respectively. 
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Fig. 4.31. Cd-dimensionless clearance profiles for Newtonian liquids at 20 °C. Lines – 

simulation; symbols – experimental data: (a) deionized water, �̇� = 20 ml/min, Ret = 

398; blue – ejection, red – suction. (b) UHT milk, �̇� = 20 ml/min, Ret = 165.8; cyan 

– ejection; magenta – suction. (c) washing up liquid at 20 °C, �̇� = 1 ml/min, Ret = 

0.022; navy– ejection; pink – suction.  

 

Fig. 4.32 shows calibration plots of Cd against ho/dt for the 1wt% and 3 wt% CMC solutions. 

The operation regions (flow rate) were chosen based on the upper and lower limits of the 
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pressure transducer. The same trends as other liquids, namely a linear region at lower clearance 

followed by reaching an asymptote, is evident. By contrast, there are significant differences 

between ejection and suction modes at higher ho/dt, but the profile of the washing up liquid 

with higher Reynolds number does not exhibit this behaviour.  

This could be attributed to the viscoelasticity of the CMC solutions, but the constitutive 

equations and models did not include viscoelastic behaviours, so that the behaviours cannot be 

predicted at both concentrations. However, the valuable finding is that the simulation results 

fits between the experimental suction and ejection data. Moreover, the interesting region in 

FDG measurements is the linear region (at ho/dt < 0.3), meaning that the iFDG technique is 

viable for applications of non-Newtonian liquids.  
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Fig. 4.32. Cd-dimensionless clearance profiles for CMC solutions at 20 °C. Lines – 

simulation; symbols – experimental data: (a) 1 wt% CMC solution at �̇� = 5 and 10 

ml/min, Ret = 1.4 and 3.4, respectively; blue – ejection; orange – suction. (b) 3 wt% 

CMC solution, �̇� = 0.5 ml/min, Ret = 0.0045. Lines – simulation; Black– ejection; 

yellow – suction.  

 

Based on the good agreement between the experimental data and simulation results above, the 

OpenFOAM models can be employed to predict the distribution of shear stress induced by the 

FDG flow on the gauging surface. The estimated distributions of shear stress over the main 

region of interest for washing up liquid and 1 wt% CMC solution are plotted in Fig. 4.33(a) 
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and (b), respectively. The results are compared with the inertial head at the nozzle throat, ½U2, 

by calculating a scaled wall shear stress, 𝜏𝑤
∗ = 𝜏𝑤/1

2
𝜌𝑈2, plotted on the right y-axis. There is no 

noticeable difference between ejection and suction modes, since the flows are in the creeping 

flow regime at low Ret. This is also evident from the fact that the 𝜏𝑤
∗  values are much larger 

than the inertial heads. 

Even though a significant difference between ejection and suction modes at small clearance 

has been reported in previous studies, which is not found in this investigation, some similar 

behaviours can be observed. A peak shear stress peak appears at the inner edge of the nozzle 

rim, followed by a smooth decay to the outer edge. Also, the wall shear stress decreases with 

increasing ho/dt. The other thing is that CMC is a shear thinning fluid - this does not introduce 

major difference in the shear stress distributions.   
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Fig. 4.33. Distribution of shear stress on gauged surface obtained from OpenFOAM 

simulations for (a) washing up liquid at 20 °C, �̇� = 1 ml/min, Ret = 0.022, and (b) 1 

% CMC at 20 °C, �̇� = 10 ml/min, Ret = 3.4, for ho/dt = 0.1 (red); 0.2 (brown); 0.3 

(blue); 0.4 (black). Vertical dashed lines and grey shaded pattern indicate the region 

of the nozzle footprint. Note: r < 0 shows results for ejection mode; r > 0 suction 

mode. Second y-axis presents scaled wall shear stress, 𝜏𝑤
∗ = 𝜏𝑤/1

2
𝜌𝑈2, where U is the 

mean velocity at the nozzle throat.  
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4.4.4 Measuring the Growth of a Soft Solid Layer 

4.4.4.1 Calibration 

There are two major steps for iFDG calibration. First of all, the inductive sensor was calibrated 

by setting a clearance using feeler gauges, and then the nozzle head was moved vertically using 

the positioner and the peak to peak voltage at each position was recorded to be a voltage-

clearance reference. Next, the FDG part was calibrated by measuring the pressure drop at 

different locations to generate a Cd-ho/dt reference.  

 

4.4.4.2 Materials and methods  

An ice growth experiment was performed using skimmed UHT milk (Sainsbury's Skimmed 

Long Life Milk) as gauging liquid. The hardness of the ice produced from the skimmed milk 

was between that of whole milk (softer) and water (harder), which sewed to demonstrate 

iFDG’s capacity. The temperature of the cooling bath was set to be −10 °C or −15 °C. 

During iFDG measurements, the substrate was submerged and mounted under the nozzle. The 

nozzle head was then moved towards to the surface at a certain clearance, and then the peak to 

peak voltage was recorded and analysed based on the pk-pk-ho reference to calculate ho. The 

gauging liquid was ejected and withdrawn for 5 s to generate a steady pressure drop, and the 

p was used to estimate h using the Cd-ho/dt reference. Finally, the ice layer thickness could be 

predicted from ( = ho – h). When the measured pressure drop surpassed the upper limit of the 

sensitive region (1000 Pa), the nozzle moved away 0.3 mm from the surface. This procedure 

was set in the program for preventing the layer to undergo deformation or the nozzle head to 

be stuck in the ice. The induced shear stress exerted on the layer surface became large, and 

could cause deformation, as the FDG head was close to the surface. If the ice growth rate was 

fast, ice would grow to touch and then cover the nozzle head. By contrast, the nozzle moved 

0.1 mm towards the substrate when the pressure drop was lower than 300 Pa. 
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4.4.4.3 Results and discussion 

Tuladhar et al. [90] demonstrated a FDG application for measuring the rapid growth of an ice 

film on a cold surface in a duct flow. This experiment was an easy and simple way to confirm 

the feasibility of thickness and swelling measurements for soft solid layers using FDG. It is 

used here to show the benefits from the inductive senor without an extra pre-calibration.  

In this study, the substrate was cooled by pumping coolant through the chilling block from the 

cooling bath but without heating in bulk, so the bulk temperature decreased gradually and 

finally reached an equilibrium temperature, which can be considered as a batch process. A sub-

cooling condition is required for ice nucleation and ice crystallisation, so that before nucleation 

happened, the temperature on the substrate surface was lower than the freezing temperature of 

ice. Initially, deionised water was employed as gauging liquid to produce an ice layer; however, 

the growth rate was too fast to be measured and ice blocked the nozzle throat. As a result, 

skimmed UHT milk was chosen for the freezing experiments because of its lower ice growth 

rate. Its opaque characteristic can also be a challenge for the iFDG demonstration. Furthermore, 

whole milk was tested, but the ice grew very slowly in the case and the rate was slower than 

the removal rate of FDG. In this case, no noticeable thickness change could be observed. 

An ice growth test was carried out by controlling the temperature of the cooling bath from 0 to 

−10 °C, and the result is shown in Fig. 4.34(a). The three temperatures decrease steadily until 

the surface temperature approaches −3.3 °C, at which point ice nucleation started and the 

temperature increases slightly (labelled N) due to recalescence. The ice growth rate is nearly 

constant, at about 0.01 mm/s: once the ice thickness reaches around 2.52 mm (labelled C) and 

starts to decrease. This is because the ice contacted part of the nozzle head, but did not block 

the nozzle throat. The gauging liquid still could be ejected and withdrawn through the throat, 

but the measured pressure drop was not for an asymmetric geometry and could not be trusted. 

The phenomenon was confirmed by draining the tank, and observing that ice had formed 

around the nozzle head. 

Fig. 4.34(b) shows a thickness measurement after an ice layer had formed. It is evident that the 

ice growth rate decreases and the thickness approaches a plateau of about 6.2 mm over around 

1800 s. The plateau means that the ice stopped to grow or a steady-state condition was reached 

(ice growth rate = removal rate by gauging flow). At t ~ 1500 s, a thickness jump is observed 

(labelled S), caused by non-uniform ice growth mentioned above.    
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Fig. 4.34. Deposit thickness and temperature profiles for ice growth from UHT skimmed 

milk on a mild steel plate. (a) Onset of ice growth, coolant temperature −10 °C. Label 

N indicates nucleation event, C indicates contact with nozzle; (b) following initial ice 

formation, coolant temperature −15 °C. S indicates a sudden restart in ice growth. 

Symbols – FDG thickness measurement; lines – temperatures. Colors: blue – 

ejection; red – suction; orange – bulk; pink – cooling bath; dark cyan – substrate. 
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4.5 Conclusions  

In this study, the existing ZFDG device was calibrated and the calibration plot shows similar 

behaviour to previous studies using different FDG configurations. A CFD model was created 

in OpenFOAM and compared with the experimental results. Good agreement has been 

observed, indicating that this simulation can be employed to describe the ZFDG flow patterns.  

The ability of the SiDG device to monitor the early stage as well as long term behaviour of 

swelling for soft solid layers submerged in a liquid environment has been demonstrated. 

Swelling of gelatin, PVAc and CMS layers were measured at various pH, and these results 

show that all materials experienced an initial hydration over a short period. After the hydration 

stage, swelling of gelatin was controlled by Fickian diffusion. A similar tread can be observed 

on the swelling profile of PVAc at pH < 11; however, at pH ≥ 11, the relaxation control 

dominated due to the fact that hydrolysis and ionisation happened. On the other hand, cracks 

on a CMS sample surface had a significant impact on the measurements using SiDG. A 3-

dimensional CFD model with cracks beneath the nozzle rim was solved and the results show 

8% and 3% measurement errors for ejection and suction modes due to the presence of cracks, 

respectively.   

The iFDG concept, which is to integrate an alternative method for locating the substrate, has 

been demonstrated. An inductive proximity sensor was incorporate with the FDG nozzle. A 

linear relationship between the measured peak to peak voltage and the clearance was obtained 

and employed to be a reference for the nozzle location. Mild steel, 316 SS and pure copper 

substrates were tested, and the results showed that the trend of the pk-pk voltage against the 

clearance changed with substrates’ conductivities. By contrast, non-metallic layers including 

PVC tapes and glass slides did not have influence on the trend. The iFDG device was calibrated 

with deionised water, UHT milk (opaque), viscous washing up liquid and non-Newtonian CMC 

solutions, at different throat Reynolds numbers. CFD simulations were also conducted and 

showed good agreement with the experimental results. An ice growth test using the iFDG was 

performed, demonstrating the feasibility of iFDG measurements.  

The iFDG concept was investigated after the SiDG concept. There is no fundamental reason 

preventing IPS being incorporated in the SiDG apparatus, further extending the device 
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reasonably. The iFDG concept brings with its scope for commercial exploitation, as the 

precision of the measurements is now independent of the accuracy of the linear drive.
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Chapter 5 Multi-phase Modelling in Cleaning 

Applications 

5.1 Introduction 

The deformation of soft deposit layers has a significant impact on the thickness measurements 

using FDG [28]. Some soft solid materials are weak because they contain a lot of liquid. During 

FDG operations, shear and normal stresses are induced by the gauging liquid flow on the 

surface being gauged, which can result in layer deformation and cause difficulties in 

measurements. A study of the deformation of a soft solid layer caused by FDG flow is therefore 

required. In earlier chapters, the substrate has been set to be a rigid plane. Ultimately, the 

development of a simulation tool for modelling layer deformation would allow the soft layer’s 

rheological properties to be evaluated. This requires a coupled model, where the flow of 

gauging liquid determines the shape of the layer and vice versa. This has not been considered 

previously. Viscoplastic layers are a good candidate material for studying coupled deformation, 

since (i) several fouling deposits exhibit viscoplastic behaviour during cleaning, namely 

deformation when the imposed shear stress is greater than its yield stress, and (ii) once the FDG 

flow stops the layer will remain in its deformed state, facilitating experimental investigation.  

The interaction between viscoplastic layers and FDG flows are also related to flows in cleaning 

operations in the food and pharmaceutical sectors. For instance, in multiple-product factories, 

the process equipment needs to be cleaned frequently. Liquid jets - using water, solvents or 

other cleaning agents - are employed to remove layers of deposited material from equipment 

surfaces [63, 177]. The rate of removal of the deposit layer will depend on the film 

hydrodynamics and the layer deformation. The simulation tool created for coupled layers with 

FDG flow will be applied to the modelling of cleaning of a viscoplastic layer using an 

impinging water jet, which is an exploratory study for assessing the applicability of the model.  
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5.2 Coupled Deformation of Viscoplastic Layers and FDG Flow 

5.2.1 Materials and Methods 

The ZFDG device discussed in section 4.2 was employed for this study. The commercial 

petroleum jelly (Atom Scientific Ltd, GPS5220) was selected as the test soil material, which 

was the same batch as the petroleum jelly tested in section 3.2.4. It is hydrophobic and 

insoluble, and exhibits viscoplasticity at room temperature. This means that its properties are 

stable (do not change with time of contact with water, the gauging fluid). The material is used 

in the pharmaceutical sector as a component of ointments, where it poses cleaning problems. 

For these reasons, it is a suitable candidate for a model study.   

The petroleum jelly was spread across square 316 SS substrates (50 × 50 mm2, thickness about 

1.97 mm) using a spreader tool to a depth of 2 ± 0.05 mm [128]. After preparation, samples 

were scanned by a confocal thickness sensor (CTS) (Micro-epsilon IFC2461 controller paired 

with an IFS2405 sensor) integrated with an automated x-y stage (8MTF-75LS05 and 8SMC4-

USB-B9-2, STANDA), to measure the initial topography. The sample was then subject to a 

ZFDG gauging flow (water, 20 °C, flow rate: 20 ml/min) for a given clearance and flow rate 

(and direction) for a set time. A range of conditions were investigated. The samples were then 

exposed to air for at least one day after testing to allow the surface to dry, then scanned again 

using the CTS in order to determine any change in the layer topography.  

 

5.2.2 Model Formulation 

The ZFDG system described in section 4.2.2 was used in the simulation of deformation of soft 

layers. The geometry and dimensions are depicted in Fig. 5.1. The tank diameter and length 

were shortened to 10 mm and 12 mm, respectively, to reduce the calculation time, but the 

nozzle length remained at 60 mm to capture recirculation in the nozzle in suction mode.  

In order to compare with experiments, a 2-dimensional, transient and cylindrically-symmetric 

ZFDG model was constructed with water as the gauging liquid. A petroleum jelly layer was 

created under the nozzle with a thickness 2 mm. The calculations were performed using 

OpenFOAM version 4.0.  
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5.2.2.1 Governing equations 

The OpenFOAM solver interFoam is chosen for this two-phase (water and petroleum jelly) 

system, employing the VOF method. In the VOF approach, the entire domain is described by 

a momentum conservation equation using average density and viscosity, and for each grid cell. 

The local volume fraction of petroleum jelly phase (PJ) is 𝛼 and the volume fraction of water 

phase is (1 − ), with 0 ≤ ≤ 1. The average density and viscosity in each cell are given by 

simple laws of mixtures.  

  = PJ + water(1 − ) (5.1) 

 

  = PJ + water(1 − ) (5.2) 

The governing equations are the momentum equation; 

 𝜌 (
𝜕𝐯

𝜕𝑡
+ 𝐯 ∙ ∇𝐯) = −∇𝑝 + 𝜇∇2𝐯 + 𝜌𝐠 (5.3) 

and the mass continuity equation, written in terms of 𝛼. 
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Fig. 5.1. Geometry of coupled deformation of petroleum jelly layer and FDG simulation. All 

dimensions in mm. 
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𝜕𝛼

𝜕𝑡
+ ∇ ∙ (𝐯𝛼) = 0 (5.4) 

The fluid properties are summarised in Table 5.1.  

 

 

In Chapter 3, the Bingham-Papanastasiou model (Regularised Bingham model, RBM) was 

shown to describe the petroleum jelly’s viscoplastic behaviour better than the bi-viscosity 

model. In this work, the RBM is used, with the rheological parameters (for the same batch) 

reported in section 3.2.4. The boundary conditions for this simulation are listed in Table 5.2.  

There were some challenges in solving the model. A minimum mesh size of less than 30 m 

was required for specifying the initial interface between water and petroleum jelly when the 

clearance was 0.03 mm. A 3-D model could not be constructed, since the computer could not 

support the number of these mesh elements required. Moreover, a 2-D axisymmetric  geometry 

(wedge-shaped in OpenFOAM) with a dynamic mesh algorithm to refine the mesh could not 

be employed, because the complex FDG geometry required a non-uniform mesh, which was 

not accepted by the algorithm. The dynamic mesh algorithm will be introduced in next section. 

Table 5.1. Fluid properties (subscripts: water – water, PJ – petroleum jelly) at 20 °C [98]. 

Rheology data for petroleum jelly provided by PhD student Rubens Rosario Fernandes. 

Parameter Value 

water 1.123 mPa s 

water 997.3 kg/s 

water-PJ
a 0.07 N/m 

  

PJ 12.4 + 249/�̇�[1 – exp(–8869�̇�)] Pa s 

PJ 812 kg/m3 

a is the surface tension [140]. 
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In OpenFOAM, in order to simulate a 2-D axisymmetric condition, a 3D wedge-shaped mesh 

with an angle of 2.5°, which is a portion of the simulated cylinder, needs to be created.  

A wedge-shaped geometry of 167600 structured mesh elements was generated initially with a 

minimum mesh size of 1 m around and beneath the nozzle rim for capturing the deformation 

of petroleum jelly, using OpenFOAM’s function ‘blockMesh’. About 74000 mesh elements 

were used for petroleum jelly and the other elements were initially occupied by water. The 

model was calculated using the SuperServer 1027R-WRF4+ mentioned in section 4.2.2. The 

computational time required for solving 0.1 s was about 3 days. 

 

Table 5.2 Boundary conditions in the CFD model (vr and vz are the radial and axial 

velocities, respectively) 

Boundary Description Boundary condition of 

momentum 

Boundary condition 

for species 

AB Axisymmetric ∂𝑣𝑟

𝜕𝑟
= 0, 

∂𝑣𝑧

𝜕𝑟
= 0 and 

∂𝑝

𝜕𝑟
= 0  

∂𝛼

𝜕𝑟
= 0 

    

AK Inlet/outlet 
𝑣𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =  

8�̇�

𝜌𝜋𝑑i
2 (1 −

4𝑟2

𝑑i
2 ) 

𝑣𝑠𝑢𝑐𝑡𝑖𝑜𝑛 =  
−8�̇�

𝜌𝜋𝑑i
2 (1 −

4𝑟2

𝑑i
2 ) 

a  = 1 

    

BC, CD, EF, 

FG, GH, HI, 

IJ, and JK 

Wall vr = 0 and vz = 0 ∇α = 0 

    

DE Open boundary p = 0  = 1 

a vejection and vsuction are the velocities for ejection mode and suction mode, respectively. Fully 

developed laminar flow is imposed at the inlet/outlet. �̇� is the mass flow rate delivered by 

the syringe pump. r is radial distance and di is the internal diameter of the nozzle tube. 
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5.2.3 Results and Discussion 

Deformation tests were performed using the ZFDG apparatus in both ejection and suction 

modes at two clearances (ho/dt = 0.1 mm and 0.03 mm) with water at 20 oC, �̇� = 20 ml/min 

and durations of 1, 1.5, 2 and 3 s. The maximum shear stress at ho/dt = 0.03 obtained from 

simulations is around 800 Pa, higher than the petroleum jelly’s yield stress, and  the shear stress 

imposed on the layer under the nozzle rim is everywhere greater than the yield stress. For 

reference, the predicted maximum shear stress for ho/dt = 0.1 is lower than the yield stress.  

The reproducibility of layer topography and pressure drop at ho/dt = 0.03 was low, and more 

than one hundred experiments were conducted for each mode. There were several factors which 

would affect the experimental reproducibility, such as the roughness and homogeneity of the 

petroleum jelly, resolution of the z-axis positioner, and the mounting platform not being 

completely level.  

There were also some technical issues which limited the ZFDG tests. A stable and given 

pressure drop could not be created when the syringe pump was operated for less than 1 s due 

to tubing expansion, which is discussed below. Moreover, the response from the syringe pump 

was often delayed when a command was sent from the computer, resulting in shorter 

ejection/suction times than those set. 

The pressure drop measured across the nozzle in suction mode at ho/dt = 0.1 with and without 

the petroleum jelly present are plotted in Fig. 5.2. In Fig. 5.2(a), the pressure drop initially 

decreases to a plateau value of around −1100 Pa, and stays at this value until the end of the 

flow, then rises to 0 Pa with some overshoot. When petroleum jelly is present (Fig. 5.2(b)), 

similar trends are seen, but in reaching the plateau and at the cessation of flow (P → 0 Pa), 

the profiles are smooth with no overshoot. This is attributed to the petroleum jelly having finite 

elasticity (Fig. 3.4(a)) and therefore some relaxation at the cessation of flow.  
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Fig. 5.2. Evolution of pressure drop across the nozzle (a) without and (b) with petroleum 

jelly. Suction mode, �̇� = 20 ml/min, ho/dt = 0.1. 

 

For both cases, there is an initial period for the flow to be established (around 150 ms), which 

is attributed to compliance in the apparatus (tubing). The simulations did not replicate this.  

Fig. 5.3 shows the pressure drop in ejection mode at ho/dt = 0.1 at the same flow rate with and 

without petroleum jelly. In Fig. 5.3(a), the profiles all rise rapidly to approximately 700 Pa, 

with some overshoots, followed by a steady value which persists until flow is stopped, when 

the pressure return to 0 Pa, again with some overshoot. When the layer is present (Fig. 5.3(b)), 

there is no overshoot, as with suction. However, when the flow is stopped and the pressure falls 

to 0 Pa, there is some overshoot in both cases. This is due to a hydraulic shock when the syringe 

pump is stopped.  

Apart from the ‘overshoot’ and pressures reaching a plateau smoothly, there is no significant 

difference in the data for a clean plate and one coated in petroleum jelly. No measureable 

deformation appears to be occurring for ho/dt = 0.1 with �̇� = 20 ml/min. 
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Fig. 5.3. Evolution of pressure drop across the nozzle (a) without and (b) with petroleum 

jelly. Ejection mode, �̇� = 20 ml/min, ho/dt = 0.1. 

 

Fig. 5.4 shows the pressure profiles obtained in suction mode at ho/dt = 0.03 and the same flow 

rate: the stresses generated on the jelly layer are expected to be greater. The measurement limit 

of the pressure transducer is from approximately −8000 Pa to 9000 Pa. In the absence of 

petroleum jelly, the pressure decreases slowly and exceeds the measurement limit. After the 

cessation of flow, the pressure increases gradually to 0 Pa, which is different from the cases at 

larger clearances. A possible explanation for this observation is that the water pressure inside 

the nozzle caused the plastic tubing connecting the nozzle tube to the syringe to contract during 

suction. After the flow stopped, the plastic tubing returned to its original shape as water flowed 

into the tubing, extending the flow period for a few tenths of seconds. 
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Fig. 5.4. Evolution of pressure drop across the nozzle (a) without and (b) with petroleum 

jelly. Suction mode, �̇� = 20 ml/min, ho/dt = 0.03.  

 

The data in Fig. 5.4(b) differ considerably from Fig. 5.4(a). Whilst the way in which the 

measurement limit of −8 kPa is initially exceeded shows some similarity with Fig. 5.4(a), the 
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pressure recovery behaviour at all durations occurs at a similar time. Firstly, the data for 1 s 

appears anomalous since the pressure variation extends over 2 s. This is due to the nozzle 

‘sucking up’ petroleum jelly, blocking it. The blockage remained after flow was stopped at t = 

1 s, but then slowly cleared away resulting in the rise in pressure seen at t ~ 1.5 s. Secondly, 

the data for t = 1.5 s shows similar behaviour to that for t = 1 s, due to the blocking effect. 

Thirdly, the data for t = 2 s shows significant difference to that for the clean plate. This is due 

to the formation of a ‘cleaning crater’, discussed further, which results in a sharp increase in 

ho/dt as material is removed that, in turn, lowers P. The same behaviour occurs with the 3 s 

test: after 2 s the gauging flow has created a crater, which is why these data appear similar to 

those for 2 s despite a longer period of flow.  

The effect of tubing shrinkage was investigated by using different length silicon rubber tubes 

at the same operating condition. The results are shown in Fig. 5.5(a). The pressure with a 37 

cm tube increases more quickly than that with a 75 cm tube at the end of a test. This is because 

the volume of a 75 cm tube is larger, and needs longer time to recover to the original shape. 

Long tubes are not recommended for ZFDG operations: stiffened or metal tubing should be 

used to eliminate the tubing effect. 
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Fig. 5.5. (a) Evolution of pressure drop across the nozzle without petroleum jelly using 37 

cm and 75 cm plastic tubes for a duration of 2 s in suction mode. (b) Ballooning effect 

using a 37 cm silicon rubber tube with 3/8 inch internal diameter, Di for a duration 

of 1 s in ejection mode. �̇� = 20 ml/min, ho/dt = 0.03.  

 

In addition to the effect from tubing shrinkage, the ballooning effect at the beginning of the 

test is important. Tubing ballooning often occurs in drilling and well completions, where the 

tubing expands radially and shortens due to the Poisson ratio effect when pressure is applied to 
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the inside of the tube [178]. Fig. 5.5(b) shows the evolution of pressure drop and estimated 

internal diameter change, Di, given by [179] 

 ∆𝐷i =
𝐷i

2𝑝

4(𝐷o
2 − 𝐷i

2)𝐸
[(1 − 𝜐)𝐷i

2 + (1 + 𝜐)𝐷o
2] (5.5) 

where Di and Do are the internal and external diameters of silicon rubber tube, respectively. E 

is the modulus of elasticity and  is the Poisson’s ratio. 

The tube swelled while creating the pressure drop (filling the tube). At cessation of the syringe 

pump, the pressure and diameter recovered. Moreover, the operation took approximately 1 s to 

create the pressure drop, indicating that this ZFDG unit cannot reach steady operation within 1 

s.  

Fig. 5.6(a) shows that in ejection mode, the pressure drop without petroleum jelly decays 

steadily after the cessation of operation, and the length of the decay is independent of the test 

duration (see Fig. 5.6(c)). This behaviour results from release of pressure from the tubing 

mentioned above. By contrast, in the absence of petroleum jelly, the pressure increases over 

the first second and reaches a plateau of about 9000 Pa, which is the transducer limit. When 

flow stopped, it declined slowly to 0 Pa.  

With petroleum jelly present, the pressure drop decreases immediately after reaching a peak of 

about 9000 Pa, and returns to a plateau value of around 220 Pa. This is because at this clearance, 

the shear stress induced by FDG flow exceeds the petroleum jelly’s yield stress, and the jelly 

layer deforms rapidly to a new shape where the shear stress is at or lower than its yield stress. 

After deformation, the new topography still results in a pressure drop across the nozzle. The 

pressure drop is smaller because the clearance has increased from h = 0.03 mm to some value 

hnew, where hnew ≤ 1.05 mm. Thereafter, the pressure remained at this new value until the 

cessation of flow. All deformation occurred within 1 s.  

These P(t) profiles all indicate that there is a machine-related timescale involved in starting 

the FDG flow (due to software activation and tubing compliance). 
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Fig. 5.6. Evolution of pressure drop across the nozzle (a) without and (b) with petroleum 

jelly; (c) the pressure decay against adjusted time, without petroleum jelly. Ejection 

mode, �̇� = 20 ml/min, ho/dt = 0.03. 

 

5.2.3.1 CFD Simulations 

The experimental results have shown that a test with a duration of less than 1 s could not be 

carried out reproducibly. At a small clearance (ho/dt = 0.03) in ejection mode, all deformation 

occurred within 1 s. Moreover, the crater shapes in ejection mode were at a steady-state 

condition, because the samples were taken out from the liquid environment and then scanned 

by the CTS after the event. These indicate that an alternative method is needed to study 

deformation occurring within the first 1 s.  

Fig. 5.7 shows the topography of the layer measured by the CTS and those taken from 

simulations for suction mode FDG with ho/dt = 0.1 and �̇� = 20 ml/min at t = 0.5 s. Also plotted 

is the distribution of shear stress on the layer surface for the case with petroleum jelly. All the 

CTS topographies are nearly flat. The resolution of the CTS is 1 nm, and the measured 

roughness of the petroleum jelly is ± 0.05 mm. The variation is due to the natural variability in 

spreading the jelly (which is a dense suspension). The simulations show the same topography, 
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indicating that the petroleum jelly did not experience irreversible deformation during FDG 

treatment; there is good agreement between experiments and modelling. The maximum shear 

stress with these conditions is about 70 Pa, which is lower than the measured yield stress of the 

petroleum jelly (280 Pa) so plastic deformation is not expected.  
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Fig. 5.7. Topography of the layer after gauging in suction mode, with �̇� = 20 ml/min at ho/dt 

= 0.1. (a) CTS measurements, (b) simulation results, (c) distribution of shear stress 

on soil surface. Vertical dashed lines and grey shape show nozzle region. Legend 

shows time of exposure. Red dashed line in (c) denotes yield stress. 

 

Similarly, comparing ejection mode data with simulation predictions for the same values of 

ho/dt and �̇�, there is no observable deformation in either the experimental data or simulations, 

showing that the layer did not experience erosion during FDG.  

Fig. 5.8 shows the results for a case where the maximum shear stress imposed by the gauging 

flow exceeded the jelly yield stress (Fig. 5.8(c) w/o PJ). The CTS measurements show small 
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peaks in the centre of the sample after 1 s and 1.5 s, indicating that the layer is being drawn 

into the nozzle. Petroleum jelly was found inside the nozzle tube after the experiments. Craters 

are evident after 2 s and 3 s. The clearance changed from the initial 0.03 mm to the maximum 

1.05 mm. An obvious change between 1.5 and 2 s, from central hillocks to craters, suggests 

suction-induced breakage which was seen in the CFD simulations.  

Fig. 5.8(b) shows that petroleum jelly was withdrawn into the nozzle continuously during FDG 

treatment, and withdrawal was then interrupted due to breakage. The breakage in the simulation 

could attributed to the non-uniform mesh size. The mesh size in the nozzle tube was larger than 

in the region beneath the nozzle rim to reduce the computational time. However, in the 

experiments, the breakage phenomenon could result from either the non-homogeneity of 

petroleum jelly or bubbles trapped inside the layer. Both conditions made the layer weak and 

be broken off easily. After interruption (breakage), the induced stress was not high enough to 

withdraw the material as well as to make the layer change again. The topographies thus remain 

at the condition of interruption. These larger craters result in a smaller pressure drop across the 

nozzle. These data show reasonable agreement between the CTS measurements and 

simulations. Time scales are considered below. 

The predicted shear stresses at different times in Fig. 5.8(c) were smaller than the yield stress. 

In order to study the stress required to cause deformation, the von Mises stress (von Mises 

criterion) was employed, which is used to determine yielding of ductile materials [180]. The 

material will start yielding as the von Mises stress reaches its yield strength which is related to 

the shear yield stress by √3y. The stress is a scalar value and can be calculated from  

 𝜎𝑣 = √
(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2+(𝜎33 − 𝜎11)

2 + 6(𝜎12
2 + 𝜎23

2 + 𝜎31
2 )

2
 (5.6) 

where ij is a term in the Cauchy stress tensor, all of which are calculated by OpenFOAM.  

The distributions of von Mises stress, v, are plotted in Fig. 5.8(d), showing that at t ≤ 0.05 s, 

the v values at the centre are higher than √3y, indicating that the material was yielding and 

pulled up into the nozzle. The results also show that the upper normal force dominated while 

being withdrawn. By contrast, at t ~ 0.05 s and beyond, v is below √3y, meaning that the 

layer stopped deforming.  
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Fig. 5.9 compares the evolutions of pressure drop between the experiments and simulation. The 

predicted timescale and pressure drop are shorter and higher than the experimental values, 

respectively. It is thought to be attributed to the difference between the experiment and the 

numerical simulation. From the numerical points of view, at the beginning of calculation, the 

variables are tested to match the governing equations from the initial condition. However, the 

inlet was specified to the desired value initially, which was different from other parts in the 

calculated domain. This caused numerical issues and high pressure. By contrast, although the 

syringe pump reached the set speed rapidly in the experiment, compared to the timescale of 

simulation, it is slower. The ballooning effect discussed above also delayed the operation about 

1 s. Furthermore, the predicted pressure drop exceeded the measurement limit (−8 kPa), which 

increases difficulty of comparison between the experimental and simulation results. At t > 0.1 

s, the predicted pressure drop plummeted to an asymptotic value (about 400 Pa). The value is 

higher than the experimental result at t = 3 s due to the difference of topography.   



 

175 

 

1

2

3

1

2

3

Von Mises stress
(d)

Wall shear stress

Sim

 1 s

 1.5 s

 2 s

 3 s

z 
(m

m
)

Exp
(a)

(b)

(c)

 0 s

 0.005 s

 0.05 s

 0.5 s

z 
(m

m
)

S
-2 -1 0 1 2

101

103
 PJ_0.005 s

 PJ_0.05 s

 PJ_0.5 s
v
 (

P
a)

r (mm)

0

400

800

 w/o PJ

 PJ_0.005 s

 PJ_0.05 s

 PJ_0.5 s

 w
 (

P
a)

0.4 0.6 0.8

1.8

2.0

2.2

 

Fig. 5.8. Topography of the layer after gauging in suction mode, with �̇� = 20 ml/min at ho/dt 

= 0.03. (a) CTS measurements, (b) simulation results and distribution of (c) shear 

stress and (d) von Mises stress on soil surface. Vertical dashed lines and grey shape 

show nozzle region. Legend shows time of exposure. In (a) and (b), substrate is at z 

= 0 mm. The inset in (b) shows a zoomed-in picture for the gap between the nozzle 

head and layer. w/o PJ represents without petroleum jelly. Cyan dashed lines in (c) 

and (d) denote 𝜏y and √3𝜏y, respectively. 
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Fig. 5.9. Comparison of absolute pressure drop between experimental and simulation results. 

Suction mode with petroleum jelly, �̇� = 20 ml/min, ho/dt = 0.03. tsim denotes 

simulated time.  

 

Experimental data and simulation results for the corresponding ejection mode case are shown 

in Fig. 5.10. The experimental profiles in Fig. 5.10 are all similar, indicating that deformation 

occurred within the first 1 s. The clearance increased from 0.03 mm to the maximum 1.53 mm, 

which is consistent with the observed reduction in pressure drop over this period. 

Fig. 5.10(c) shows that all induced wall shear stresses were lower than the yield stress. The 

distributions of von Mises stress are plotted in Fig. 5.10(d). At t = 0.005 s, the v values on the 

crater surface are higher than √3y, and the layer was deforming. By contrast, at t ≥ 0.05 s, the 

v values became lower than √3y that at t = 0.005 s, and the predicted layer was static. In this 

case, the normal force imposed on the layer surface dominated. Fig. 5.10(d) shows that the 

largest stress initially occurred at the inner rim. The material in the centre was forced outward 

as a crater was formed. Once this gap had opened, the maximum pressure decreases until the 

material no longer deforms plastically. The average diameter and volume of the crater in the 

CTS measurements after all durations are about 3.12 mm and 7.78 mm3, respectively. The 

diameter and volume of the predicted crater are smaller (at 3.04 mm and 2.56 mm3, 

respectively), indicating that the simulation tended to underestimate the deformation. One 

reason for this could be the surface roughness of the petroleum jelly. The average roughness is 

about ± 0.05 mm, which is larger than the clearance (0.03 mm) and could result in the nozzle 

rim contacting the petroleum jelly. When the nozzle head contacted the layer, the pressure drop 
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increased during ejection and caused a deeper and larger crater to be generated. Another reason 

is that the rheological model does not capture the flow behaviour completely. 

Comparing the predicted pressure drop to the experimental values (Fig. 5.11), it is similar to 

the trend in suction mode, namely shorter timescale and higher predicted initial pressure drop. 

This is mainly contributed to the ballooning effect discussed above. In addition, the predicted 

pressure drop after the crater formed is slightly higher than the experimental values, since the 

predicted gap between the layer surface and the nozzle rim (point A in Fig. 5.10(c)) is smaller 

than the CTS topographies, causing a higher pressure drop. 
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Fig. 5.10. Topography of the layer after gauging in ejection mode, with �̇� = 20 ml/min at 

ho/dt = 0.03. (a) CTS measurements, (b) simulation results and distribution of (c) 

shear stress and (d) von Mises stress on soil surface. Vertical dashed lines and grey 

shape show nozzle region. Legend shows time of exposure. In (a) and (b), substrate 

is at z = 0 mm. The inset in (b) shows a zoomed-in picture for the gap between the 

nozzle head and layer. Cyan dashed lines in (c) and (d) denote 𝜏y and √3𝜏y, 

respectively. 
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Fig. 5.11. Comparison of pressure drop between experimental and simulation results. 

Ejection mode with petroleum jelly, �̇� = 20 ml/min, ho/dt = 0.03. tsim denotes 

simulated time. 

 

5.3 Conclusions 

The volume-of-fluid method was employed with the FDG model to calculate the coupled 

deformation of viscoplastic layers and the gauging flow. The experimental measurements show 

that in ejection mode, deformation occurred within one second and did not change thereafter. 

However, in suction mode, petroleum jelly was withdrawn into the nozzle and then stopped 

after some finite time. As withdrawing was interrupted by breakage, the jelly surface became 

hill-shaped.  

Acceptable agreement was obtained between the experimental and simulated deformation 

topographies in ejection mode. The distributions of predicted von Mises stress as a function of 

time indicated that in ejection mode, the FDG flow exerted a downward force at the centre of 

the layer, resulting in formation of a hole under the centre of the nozzle. The deviation from 

the CTS measurement could be attributed to the roughness of petroleum jelly and insufficient 

resolution of the z-axis positioner. In suction mode, the material was simulated to be withdrawn 

into the nozzle continuously, and the withdrawal was then broken off. However, in the 

simulations, the breakage was resulted from the non-uniform mesh size, but it was attributed 

to the inhomogeneity of layer and bubbles in layers.  
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The simulated timescale in both modes did not agree with the experimental timescale. These 

differences could be attributed to the simulation limits such as the ballooning effect and the 

numerical approach.  

These findings may help understand the operation of ZFDG flows and characterise the removal 

behaviour of viscoplastic layers. Although the model could not capture the experimental 

dynamics well, some behaviours can be elucidated by the simulations.  

 

5.4 Deformation of a Viscoplastic Soil Layer by an Impinging Jet 

Reasonable agreement between experimental and simulation results for the shape of a 

petroleum jelly layer subject to dynamic gauging was obtained above, indicating that the CFD 

approach could be employed to predict the petroleum jelly behaviour while being cleaned. In 

this section, the simulation tool is extended to the modelling of removal of a petroleum jelly 

layer by an impinging water jet (see Fig. 5.12(c)). An impinging water jet was set normal to a 

horizontal Perspex plane with a petroleum jelly layer. This is a topic which has been 

investigated at some length in the P4G research group, but has not been reported by others as a 

coupled CFD problem.  

For studying the cleaning a soil layer using an impinging jet, people have either used a cleaning 

kinetic model based on (I) shear flow (where the water film drags the soil layer away from the 

point of impingement), such as the following equation reported by Yeckel and Middleman [60]. 

 
𝑑𝛿

𝑑𝑡
= 𝑘𝑠𝜏𝑤 (5.7) 

where  is the layer thickness, ks is a kinetic constant, and w is the wall shear stress, or (II) 

momentum flow rate (pushing the soil): Wilson et al. [64] presented a model for cleaning a 

viscoplastic layer from vertical and horizontal plates by water jets impinging normally on a flat 

substrate. The rate of growth the circular cleaned area (radius: a) was proportional to the 

momentum in the liquid film per unit length, M, giving 

 
𝑑𝑎

𝑑𝑡
= 𝑘′𝑀 (5.8) 
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where k’ is a kinetic constant. The key part of this work was the assertion that some soft solids 

are removed by a peeling mechanism. 

Glover et al. [65] subsequently used the Wilson et al. [64] model to calculate the momentum 

flow rate for estimating the rate of cleaning a layer of yield stress material. The model was 

modified to  

 
𝑑𝑎

𝑑𝑡
= 𝑘′(𝑀 − 𝑀𝑌) (5.9) 

where MY is the momentum flux required to cause yield.  

Both cleaning kinetic models need calculation of hydrodynamic parameters, either the wall 

shear stress or the momentum flux. Bhagat and Wilson [66] subsequently presented a 

hydrodynamic model of flow in the liquid film including the development of boundary layers 

(see Fig. 5.12(a)). After the jet impinges normally on the surface, the velocity redistributes and 

a boundary layer forms. The film thickness, hf, in the first zone, the boundary layer formation 

zone (BLFZ), was given by  

 
ℎf

𝑑j
= 0.125 (

𝑑j

𝑟
) +

1.06

√𝑅𝑒j

(
𝑟

𝑑j
)

1/2

 (5.10) 

Here dj is the jet diameter, r is the radial position and Rej is the Reynolds number of the jet 

based on the nozzle diameter. The momentum flux for BLFZ was 

 𝑀 = −1.3746𝜌0.5𝑈0
1.5√𝜇𝑟 + 𝜌𝑈0

2𝑑j [0.125 (
𝑑j

𝑟
) +

1.06

√𝑅𝑒j

(
𝑟

𝑑j
)

0.5

] (5.11) 

Here U0 is the average velocity in the jet,  is the dynamic viscosity of the liquid, and Q is the 

volumetric flow rate. The wall shear stress was given by 

 
𝜏𝑤 = 𝜇

𝑈0

2.12√
𝜇𝑟
𝜌𝑈0

 
(5.12) 

The liquid then flows radially outwards as a fully developed laminar film. The film thickness 

in this laminar film zone (LZ) was given by: 
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ℎf

𝑑j
=

3.792

𝑅𝑒j
(

𝑟

𝑑j
)

2

+ 0.1975 (
𝑑j

𝑟
) (5.13) 

with momentum flux  

 
𝑀 =

0.3516𝜌𝑈0
2𝑑j

3

16𝑟2 [
3.792
𝑅𝑒j

(
𝑟
𝑑j

)
2

+ 0.1975 (
𝑑j

𝑟 )]

 
(5.14) 

 and wall shear stress  

 
𝜏𝑤 = 𝜇

𝑈0

4𝑟 [
3.792
𝑅𝑒j

(
𝑟
𝑑j

)
2

+ 0.1975 (
𝑑j

𝑟 )]

2 
(5.15) 

The flow undergoes a transition to a turbulent film at transition radius, rt, given by  

 
𝑟t
𝑑j

= 0.2964(𝑅𝑒j)
1/3

 (5.16) 

The film thickness in the turbulent region (TZ) is given by.  

 
ℎf

𝑑j
=

0.0209

𝑅𝑒j
1/4

(
𝑟

𝑑j
)

5/4

+ (0.296 − 0.001356𝑅𝑒j
1/2

) (
𝑑j

𝑟
) (5.17) 

with 

 𝑀 =
𝜌

64
63 (

𝑄
2𝜋)𝑈0

𝑟 [
0.167

𝑅𝑒j
0.25 (

𝑟
𝑑j

)
9/4

+ (2.37 − 0.0108𝑅𝑒j
1/2

)]

 (5.18) 

and 

 𝜏𝑤 =
0.0478𝜌

𝑅𝑒j
1/4

[
 
 
 
 

𝑈0

0.167
𝑅𝑒j

0.25 (
𝑟
𝑑j

)
9/4

+ (2.37 − 0.0108𝑅𝑒j
1/2

)
]
 
 
 
 
2

(
𝑟

𝑑j
)

1/4

 (5.19) 
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Bhagat and Wilson compared the results from this model with published experimental data. 

Good agreement was obtained without the use of fitting parameters, indicating that the model 

was acceptable for predicting the average behaviour of the film generated by a coherent 

turbulent liquid jet impinging on a vertical surface. They did not consider wave formation. 

The petroleum jelly used in this study is the same as that in section 5.2.1, and the methods of 

preparation and topography measurement (CTS) are also the same. The experimental data were 

taken from Fernandes et al. [68].  
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Fig. 5.12. Schematics of (a) flow pattern formed by a jet impinging normally on a wall, and 

(b) flow at a cleaned radius. (c) Photograph of a crater formed after impinging a 

petroleum jelly layer, adjusted from Fernandes et al. [68]. Grey area in (b) shows the 

soil layer. r is the radial position, dj is the jet diameter, hf is the water film thickness, 

a is the cleaned radius, 𝜒 is the slope angle and 𝛿0 is the initial soil layer thickness. 

BLFZ, LZ and TZ are the boundary layer formation zone, laminar film zone and 

turbulent zone, respectively. 

 

5.4.1 Model formulation  

In this work, the interactions between the jet flow and the petroleum jelly in the laminar flow 

zone (LZ on Fig. 5.12(a)) are studied and analyzed. The impinging jet system described above 

has been simplified for the simulation of deformation of a soft soil layer, which will be 

discussed later. In order to compare with experiments, a 3-dimensional, transient impinging jet 
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model with gravity was constructed with stagnant air at ambient temperature and pressure as 

one fluid and the other, moving, fluid the water jet (isothermal, laminar regime with 

incompressible, Newtonian fluid). The model will not simulate the formation of the hydraulic 

jump, since the hydraulic jump at this condition involves in turbulent flow.  

A petroleum jelly layer of set uniform thickness lay above the rigid substrate. A 2-dimensional 

asymmetrical schematic of the geometry and dimensions is shown in Fig. 5.13. The radial 

position r will be presented by x below, since the model was created using the Cartesian 

coordinate system. Note that formation of the initial crater is not considered. The initial impact 

of the jet, where it clears out the jelly in the footprint area, was not modelled. At a flow rate of 

2 L/min with a jet diameter of 2 mm at 20 °C, the jet Reynolds number is about 19000, and the 

transition from laminar to turbulent flow in the film calculated from Equation (5.16) was 

around 15.5 mm. This study focuses on the deformation in the BLFZ and LZ. The governing 

equations did not include the terms for turbulence, so that the diameter of the geometry was 

shortened to 30 mm to reduce the calculation time. Also, a dynamic mesh algorithm was 

employed to refine the mesh around the water interface, which will be discussed in detail later. 

During computation, modelling the formation of water splashes generated by interfacial 

instabilities would cause a dramatic increase in the refined mesh requirement, increasing the 

solution time. The domain above the soft layer was thus truncated for splash prevention, and 

the height of the geometry became 1 mm. 
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Fig. 5.13. Geometry of coupled deformation of petroleum jelly layer and impinging jet 

simulation at t = 0. All dimensions in mm. BC = 7.5 dj. Colour: light cyan – water; 

grey – petroleum jelly. g denotes the direction of gravity. 

 

5.4.1.1 Governing equations 

The OpenFOAM solver multiphaseInterDyMFoam was employed for this three-phase (air, 

water and petroleum jelly) system, based on the volume of fluid (VOF) approach. In the 

algorithm, the entire domain is calculated by a momentum conservation equation using average 

density and viscosity. In each grid cell, the local volume fraction for each species (species i) is 

represented asi, with 0 ≤ i ≤ 1. The sum of all fractions is 1. 

 ∑𝛼𝑖 = 1

𝑖

 (5.20) 

The average density and viscosity in each cell are described by simple laws of mixtures.  

 𝜌 = ∑𝜌𝑖𝛼𝑖

𝑖

 (5.21) 

 

 𝜇 = ∑𝜇𝑖𝛼𝑖

𝑖

 (5.22) 
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The transport equation is  

, and the velocity in each cell is solved by the momentum equation: 

 𝜌 (
𝜕𝐯

𝜕𝑡
+ 𝐯 ∙ ∇𝐯) = −∇𝑝 + 𝜇∇2𝐯 + 𝜌𝐠 (5.24) 

The fluid properties are summarised in Table 5.3. The properties of water and air were taken 

from [98] and [181], respectively. The rheology of the petroleum jelly is described by 

Bingham-Papanastasiou model with parameters obtained by fitting experimental data, 

discussed in section 3.2.4.  

 

 
𝜕𝛼𝑖

𝜕𝑡
+ 𝛻 ∙ (𝐯𝛼𝑖) = 0 (5.23) 
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5.4.1.2 Boundary conditions 

The boundary conditions for the boundaries labelled in Fig. 5.13 are listed in Table 4.2. In Fig. 

5.13, water is ejected via AE in plug flow with velocity, vjet. BC is the rigid substrate, and the 

petroleum jelly was assumed not slip at this boundary. In OpenFOAM, the interaction between 

the fluid and the wall is described by the wall adhesion model proposed by Brackbill et al. 

[182], where the surface normal of the fluid in the grid cell close to the wall is adjusted based 

on the given contact angle, w. The surface normal, �̂�, in this dynamic boundary condition is 

given by 

 �̂� = �̂�𝑤𝑐𝑜𝑠𝜃𝑤 + �̂�𝑤𝑠𝑖𝑛𝜃𝑤 (5.25) 

Table 5.3. Fluid properties (subscripts: air – air, water – water, PJ – petroleum jelly) at 20 

°C [98, 181] 

Parameter Value 

air 0.0148 mPa s 

air 1.0 kg/m3 

air-water
a 0.07 N/m 

  

water 1.123 mPa s 

water 997.3 kg/s 

water-PJ 0.07 N/m 

  

PJ 12.4 + 249/�̇�[1 – exp(–8869�̇�)] Pa s 

PJ 812 kg/m3 

PJ-air 0.07 N/m 

a is the surface tension [140]. 
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Here �̂�𝑤 is the unit vector normal to the wall and �̂�𝑤 is the unit vector tangential to the wall. 

Contact angles for each two materials have been tested in this case, and the effect is negligible 

so it was not included in this model. In addition, the micro-scale interaction between the layer 

material and surface was not considered in the simulation. Cleaning of layers means there is no 

residual layer on the surface. CD and DE are air and specified as open (p = 0). 

 

Table 5.4 Boundary conditions in the CFD model (vz is the axial velocity) 

Boundary Description Boundary condition 

of momentum 

Boundary condition for 

Species 

AE Inlet vz = vjet
a air = 0, PJ = 0, water = 1 

BC Wall v = 0 ∇α = 0 

CD, DE Open boundary p = 0 air = 1, PJ = 0, water = 0 

 

 

A 3-dimensional geometry was created initially with about 390,000 uniform 128 m-structured 

mesh elements using the commercial CFD software, ANSYS version 18.0. The mesh file was 

exported from workbench to OpenFOAM for modelling using the ‘fluent3DMeshToFoam’ 

function. The dynamic mesh module ‘multiphaseInterDyMFoam’ was employed in 

OpenFOAM to decrease the total number of mesh elements used for calculation. In this 

algorithm, the maximum number of mesh points can be specified, and the mesh is refined and 

rearranged during calculation, based on the location of the interface between water and other 

species to increase the resolution of the interface. The minimum mesh size was set at 64 m, 

and the convergence criteria were those employed for the millimanipulation model (Section 

3.2.5). Calculations were performed on a cluster consisting of 20 Supermicro® servers with 

each server including twin 8-core Intel® Xeon processors clocked at 2.7 GHz. This cluster was 

constructed and maintained by Dr. Bart Hallmark. The computational time required for the 

simulation to reach t = 0.5 s is about 30 days.    

 



 

190 

 

5.4.2 Comparison with literature 

Fernandes et al. [68] reported that the shape of the rims created by the water film depended on 

the ratio between the water film thickness and initial layer thickness, hf/0. When hf/0 ≤ 0.4 

(with 0 = 0.86 mm), the angle of inclination of the front layer to the substrate surface, (see 

Fig. 5.12(b)) was around 45°. By contrast, with a thinner layer (hf/0 > 0.4 and 0 = 0.097 mm), 

measured values lay in the range 10° to 30°. In order to understand the effect of layer 

thickness and compare with the results reported by Fernandes et al., three cases for a water jet 

impinging on a vertical wall were considered as follows. Gravity was specified in the –y-axis 

direction.  

i. Q = 2 L/min, 20 °C, with no a petroleum jelly layer  

ii. Q = 2 L/min, 20 °C, with a petroleum jelly layer of initial thickness 0 = 1 mm 

iii. Q = 1 L/min, 20 °C, with a thin layer (0 = 0.05 mm) 

The layer thicknesses were selected for comparison with experimental results for 0 = 0.86 mm 

and 0 = 0.097 mm. The initial mesh size in the simulations was 128 m and the resolution of 

the mesh was not sufficient to describe the thinner layer. A finer initial mesh could not be 

created because the software could not support this. The computational time required for the 

case with a petroleum jelly layer of thickness 1 mm to reach 0.5 s real time is about 30 days. A 

shorter end time could be used for the clean substrate. For the case at 0 = 0.097 mm (0 = 0.05 

mm for modelling), the duration of the cleaning experiment reported by Fernandes et al was 

497 s. The region coated with the layer in the model was thus specified at the same as the 

experiment to save the computation time.  

The predicted water film thickness, momentum flux and wall shear stress for case (i) without 

petroleum jelly at the steady-state condition (t = 0.1 s) are compared to the Bhagat and Wilson 

model in Fig. 5.14. Reasonable agreement was obtained for hf and M in the BLFZ and LZ, 

whereas the predicted w value increased with r at r < 4 mm, followed by declining. This could 

be attribute to the velocity redistribution. These indicate that the simulation can be used to 

describe the water film with some confidence. The simulation result fluctuates owing to the 

dynamic mesh function. Peak values often occurred around the mesh-refined region. Fig. 

5.14(a) also shows that the liquid film thickness is 0.1-0.2 mm i.e. smaller than the layer 

thickness in case (ii) and larger than the layer thickness in case (iii). 
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Fig. 5.14. Comparison of (a) liquid film thickness, (b) momentum flux and (c) wall shear 

stress predicted by the simulation with the Bhagat and Wilson [66] model. Test 

conditions: Q = 2 L/min, dj = 2 mm. Colour: red – Bhagat and Wilson model (BLFZ, 

Eq. (5.10); LZ, Eq. (5.13); TZ, Eq. (5.17)); black – CFD. 

 

The predicted velocity distributions of petroleum jelly with time for case (ii) at 0 = 1 mm are 

presented in Fig. 5.15. The plots show the velocity distributions as well as the liquid/air and 
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liquid/soil interfaces. In Fig. 5.15(a), the water film flow (dashed line area) has dislodged the 

front layer out of the crater. The cleaning radius, a, is defined as the front edge of the petroleum 

jelly layer. There was no soil left on the substrate in the cleaned region. Fig. 5.15 (b) and (c) 

show a very unstable soil-liquid boundary which settled down to a curved wedge. The 

following figures show a similar trend. In addition, the results do not show the evolution of the 

shape of the berm of dislodged material because the domain was set to feature z ≤ 1 mm. 

Fig. 5.16(a) compares the evolution of the experimental and predicted cleaning radius for case 

(ii) with time, showing good agreement with the measured values. The radius increased rapidly 

at the beginning, reaching an asymptotic value of about 9.4 mm. The labels in Fig. 5.16(a) refer 

to the subfigures in Fig. 5.15. 

The simple cleaning model proposed by Wilson et al. [64] predicted that a grows proportionally 

to t0.2, following 

 a5 – a0
5 = K5(t – t0) = K5t (5.26) 

where a0, t0 and t are the radius, time and total time when cleaning front is first seen in 

experiments, respectively. K is the cleaning rate parameter. Fig. 5.16(b) shows that the 

simulation data fit the simple model with R2 = 0.98795. The predicted K value is 10.25 mm/s0.2, 

slightly lower than the experimental value (11.67 mm/s0.2). However, both experimental and 

simulation results show better fits with a non-zero intercept, indicating that the simple cleaning 

model is not suitable for this case. 

The simulation results are plotted in the form of the Wilson et al. model [64], 
𝑑𝑎

𝑑𝑡
 versus M in 

Fig. 5.16(c). The predicted values show a good fit to a linear relationship with R2 = 0.916. 

Similarly, the experimental 
𝑑𝑎

𝑑𝑡
 value shows a linear relationship to the simulation M (R2 = 

0.674). The fitted MY values for the simulation and experimental data are 13.4 and 2.0 kg/s2, 

respectively.  
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(c) t = 0.2 s (d) t = 0.3 s 
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(e) t = 0.4 s (f) t = 0.5 s 
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Fig. 5.15. Distributions of predicted average petroleum jelly velocity, �̅�, at t = (a) 0.01 s, (b) 

0.1 s, (c) 0.2 s, (d) 0.3, (e) 0.4 s and (f) 0.5 s. Symbols: black solid line – petroleum 

jelly interface; grey dashed line – water interface. Red arrow denotes the direction of 

water flow. 
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Fig. 5.16. Summary of case (ii) cleaning behavior. (a) Evolution of cleaned region radius, 

(b) (a5 – a0
5)0.2 versus Δt0.2, and (c) 

𝑑𝑎

𝑑𝑡
 versus M. Experiments were conducted by 

Fernandes et al. [68]. Test conditions: Q = 2 L/min, dj = 2 mm, 𝛿0 = 0.86 mm for 

experiment, 𝛿0 = 1 mm for simulation. Colour: red – experiment; black – simulation. 

Labels (A), (B), (C), (D), (E) and (F) in (a) are related to Fig. 5.15(a), (b), (c), (d), (e) 

and (f), respectively. Solid loci in (b) show fit of data to Eq. (5.26). Solid lines denote 

fitting.  

 

Fig. 5.17(a) and (b) compare the topographies of craters created by the impinging water jet 

reported by Fernandes et al. [68] at different operation times, t, alongside the simulation 

profiles. In this case (hf/0 ≤ 0.4), the simulation results show good agreement with the 

experimental data. The cleaning front is in the form of a wedge, as assumed by Glover et al. 

[65], with predicted and experimental angles both nearly 45°, indicating that the momentum 

flow rate causes internal yielding of the petroleum jelly layer [68].  
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Fig. 5.17. Cross-sections through the soil layer obtained from (a) CTS measurements and 

simulations at t = 0.38 s and (b) CTS and simulations at t = 0.5 s. Test conditions: Q 

= 2 L/min, dj = 2 mm, CTS with 𝛿0 = 0.86 mm, and simulations with 𝛿0 = 1 mm. The 

CTS results ae reproduced from Fernandes et al. [68]. 𝜃 = 0° and 𝜃 = 180° denote 

the topography measured along east and west directions, respectively (see inset in 

(a)). Inset in (a) shows coordinates used to describe the shape of the rim. Blue dashed 

line denotes 45°. 

 

In Fig. 5.15, the maximum velocities were found near the interface between water and 

petroleum jelly. The VOF method requires both materials to have the same velocity on their 

interface. The velocities then decayed along the interface due to the kinetic energy consumed 

in making petroleum jelly deform. This phenomenon can be illustrated by the viscous 

dissipation occurring around the interface, which will be discussed below. The local velocities 

decrease with time, from around 0.2 m/s at t = 0.01 and 0.1 s to about 0.035 m/s at t = 0.5 s.   

At t = 0.2 and 0.3 s, there was a cavity on the petroleum jelly layer, which resulted from the 

water splashes. This phenomenon was not observed in the experiments and is attributed to the 
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boundary around the layer (at z = 1 mm). Even though the boundary condition was specified 

as open boundary, it still caused some influences on the results during computation. 

PhD student Rubens Rosario Fernandes and Professor Ian Wilson [183] reported that the rate 

of cleaning could be linked directly to the rate of viscous dissipation in the soil layer generated 

by the water film flow. The distributions of viscous dissipation rate, , for the cases in Fig. 

5.17 are plotted in Fig. 5.18. The maximum viscous dissipation rate is around 8×108 W/m3 for 

both cases and occurred at the water-petroleum jelly interface. This agrees with the assumption 

reported by Fernandes and Wilson. In addition, the high values only occurred in the interface 

region because the VOF method couples the velocity at the interface. 
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Fig. 5.18. Distributions of rate of viscous dissipation in the soil, 𝛷, for the cases (a) and (b) 

in Fig. 5.17(a) and (b), respectively. Symbols: black solid line – petroleum jelly 

interface; grey dashed line – water interface. 

 

Fig. 5.19 shows distributions of von Mises stress, v. It is obvious that as the higher v values 

occurred at the water/soil interface. These results illustrate that the water film flow caused the 

deformation of the soil layer. 
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(a) t = 0.38 s (b) t = 0.5 s 
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Fig. 5.19. Distributions of von Mises stress, 𝜎v, for cases (a) and (b) in Fig. 5.17(a) and (b), 

respectively. Symbols: black solid line – petroleum jelly interface; grey dashed line 

– water interface. Red arrow denotes the direction of water flow. 

 

The topography of the front layer is focused in this study.  In the case (iii) (hf/0 > 0.4), a shorter 

time (t = 0.1 s) case predicted from the simulation was chosen in order to save the computation 

time. Fig. 5.20 shows reasonable agreement between the simulation results and CTS profiles. 

The slope angle predicted from the simulation is between 10° and 30°, which agrees with the 

CTS measurements. It is consistent with the behaviour observed by Fernandes et al. [68]: the 

hf/0 ratio had a significant impact on the shape of layers while being cleaned. Although the 

resolution of the initial mesh size was not sufficient to describe the real layer thickness, the 

effect of hf/0 could be captured by the simulations. 
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Fig. 5.20. Topography of the layer obtained from CTS (t = 467 s) and simulations (t = 0.1 

s). Test conditions: Q = 1 L/min, dj = 2 mm, CTS with 𝛿0 = 0.097 mm and simulations 

with 𝛿0 = 0.05 mm. The CTS results were adjusted from Fernandes et al. [68]. 𝜃 = 

0° and 𝜃 = 180° denote the topography measured along east and west dictations, 

respectively. Blue dashed line denotes 45°. 

 

5.4.3 Conclusions 

The CFD simulation was extended to three-phases to simulate the cleaning of a petroleum jelly 

layer using an impinging water jet. The simulation hydrodynamics were compared with the 

analytical solutions, and reasonable agreement for the water film thickness and momentum flux 

was obtained, but the simulated wall shear stress did not agree with the theoretical values. This 

is owing to the redistribution of velocity. Comparing the predicted growth of cleaning radius 

with the experimental data, good agreement was observed. The predicted da/dt versus M 

showed a good linear fit (R2 = 0.91551) with an intercept MY = 13.4 kg/s2, indicating that the 

Wilson et al. model can be employed for predicting the cleaning rate with some confidence.  

Comparing the simulation results with a petroleum jelly at 0 = 1 mm with the experimental 

results, the predicted topographies of front layer agreed with the CTS measurements. Similarly, 

at small 0, reasonable agreement was obtained. The simulation results confirmed that the slope 

angle mainly depended on hf/0.  

This work is a preliminary of impinging investigation. Further computation work is required, 

such as different hf/0 ratios and flow rates. Many of the parameters in the experiments for 

validating and comparing with the simulations cannot be measured directly. Fortunately, FDG 
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and millimanipulation allow some of the parameters to be estimated from small scale, low flow 

rate (see Fig. 5.21). Experiments on the FDG and millimanipulation devices are also needed.   

Moreover, the model of cleaning a viscoplastic layer by an impinging water jet allows an 

industrial user to design a cleaning process for a layer in silico. Operating parameters, such as 

cleaning time, nozzle diameter and flow rate, can be estimated by the CFD simulation if 

information about the material’s rheology is available. This can decrease the number of 

cleaning experiments required, which usually comsume a large amount of water, chemicals 

and energy, and generate equivalent volumes of waste. This approach is particularly valuable 

when the foulant layer contains hazardous species, e.g. nuclear fuel processing plant, chemical 

warfare agents, virus contaminated material, when even laboratory scale testing can generate 

hazards. Another application is with complex geometries: although analytical solutions of 

cleaning by impinging jets have been reported, these are usually for a simple geometry (e.g. a 

flat surface) and industrial equipment often features regions where the geometry is not simple. 

Numerical simulation is then required. 
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Fig. 5.21. Schematic of accessible fouling characteristics from the work. M and F denote the 

parameters which can be obtained from the measurement of millimanipulation and 

FDG, respectively. 

 

5.5 Other Application of Multi-phase CFD Modelling 

The results discussed above have demonstrated that the multi-phase CFD simulation can be 

employed to predict the interactions between two and three phases as well as their flow patterns 

in cleaning applications. The CFD code was also applied to a further two-liquid phase problem, 
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namely the motion of a silicon oil and saline (NaCl solution) in a sphere experiencing torsional 

oscillations. The liquids are immiscible, with the denser saline occupying the base of the 

sphere. The injection of silicon oil is often used to manage complicated retinal re-attachment 

surgery [184]; however, silicon oil is associated with emulsification during the saccadic 

rotation of the eyeball, resulting in serious complications such as cataracts and keratopathy 

[185, 186]. One of the hypotheses in this field is that droplets are generated by the shear stresses 

at the oil-saline interface induced by the saccadic motion of the eyeball [187]. An experimental 

study was investigated by PhD student Ru Wang using a 20 mm diameter glass sphere filled 

with a mixture solution of silicon oil and saline, rotated by a stepper motor. A CFD simulation 

of the experiment was constructed and is presented in Appendix B. Good agreement was 

obtained between experimental and CFD results at different conditions, indicating that the 

simulation can be used to predict the flow patterns and distribution of shear stress of silicone 

oil. The model could also be employed to estimate the likelihood of occurrence of oil droplets. 
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Chapter 6 Conclusions and Recommendations for 

Future Work 

6.1 Millimanipulation  

In this work, the millimanipulation device reported by Magens et al. [9] was employed to study 

the development of layers of petroleum jelly, soft white paraffin and toothpaste in situ. CFD 

simulations employing the regularized Bingham model (RBM) and the bi-viscosity model 

(BVM) (Section 3.2.5) were constructed to estimate the deformation and flow patterns of PJ 

and SWP while being scraped.  

The range of information that can be obtained from millimanipulation testing was extended. In 

the visualisation studies, wall slip was observed for PJ and SWP under some conditions. Given 

this information and measurements of the force acting on the blade, the adhesive strength of 

these layers could be estimated. The characteristic time for stress relaxation could be 

determined by interrupted testing, and the material’s bulk (cohesive) yield stress could be 

estimated from the interruption data and simple metal cutting theory.  

The numerical results for PJ using the RBM showed better agreement with the experimental 

data, while for SWP the BVM gave better agreement with the measurements. This is mainly 

attributed to the description of the rheology in the yielding transition. The estimated velocity 

distributions were also similar to those calculated from the particle tracing method 

(visualisation). A sensitivity analysis for the rheological parameters in both viscosity models 

demonstrated that the yield stress dominated in each case. For the BVM, the creeping viscosity 

was also important.  
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Modelling of viscoelastic fluids 

The standard OpenFOAM solver cannot support modelling of the visco-elastic behaviour of 

fluids. Elasticity plays an important role in the initial deformation of the viscoplastic fluids 

studied in this work. In order to understand the removal behaviour of such viscoplastic soils 

fully, development of an algorithm for the elastic behaviour is required.  

 

Implementation of time-dependent viscosity model 

In addition to the elasticity of soft solid materials, the results for the effect of scraping speed 

have shown that the simulations using both the RBM and BVM could not capture the creep 

behaviour at low scraping velocities. Further work in OpenFOAM, implementing a suitable 

time-dependent viscosity model, such as simple rate-controlled model [188], is required. 

 

Modelling of slip 

The current CFD model could not simulate wall slip due to the fact that slip is associated with 

the interaction between the soil material and substrate surface at the molecular scale. Molecular 

dynamics simulations [189] (or meso-scale) are one alternative approach to study the adhesive 

and cohesive failure in the millimanipulation tests.  

 

Estimation of the rheological parameters using CFD simulation and visualisation 

The sensitivity tests of the rheological parameters in the simulation have showed the feasibility 

of using the CFD simulation to estimate the material’s rheological parameters. However, the 

resolution and accuracy of the current visualisation system were not good enough to support 

this. Improved hardware could be used to achieve this. 
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6.2 SiDG 

In this dissertation, the SiDG device was conceived, designed, constructed and commissioned. 

Swelling of gelatin, PVAc and CMS layers were monitored at different pH and temperatures. 

The results showed that all materials underwent rapid initial hydration. After the hydration 

stage, the swelling profile of gelatin was controlled by Fickian diffusion. A similar trend was 

observed with PVAc at pH < 11, whilst at pH ≥ 11, relaxation (due to the hydrolysis and 

ionisation) controlled.  

Cracks on the surface of the CMS layers caused uncertainty of the measurements using SiDG. 

A 3D CFD model with cracks beneath the nozzle rim was created, showing 8% and 3% 

measurement errors for ejection and suction modes due to the presence of cracks, respectively.   

 

pH & temperature-controlled SiDG (batch reactor) 

The experiments reported here were conducted at ambient temperature (20 °C).  Changes in 

temperature are known to have significant effects on the swelling behavior of soft solid layers 

[109]. A SiDG integrated with temperature and pH controls would extend the capability of the 

device for studying the cleaning behavior of soil layers. In addition, cleaning generally involves 

chemical reactions as well as physical interactions. Installing a dosing system to adjust the pH 

or introduce reagents, to make the SiDG chamber become a batch reactor would be a logical 

next development [109].   

 

6.3 iFDG 

The iFDG device was conceived, designed, constructed, commissioned and demonstrated. 

Mild steel, 316 SS and pure copper substrates were tested, and the results showed that the slope 

of the pk-pk voltage against the clearance increased with substrate conductivity. Moreover, 

non-metallic layers (e.g. PVC tape and glass slides) did not affect this slope, indicating that the 

iFDG concept could be used to study layer growth and removal. Operation was demonstrated 

with a range of liquids: deionised water, UHT milk (opaque), and more viscous washing-up 
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liquid and non-Newtonian 1% and 3% CMC solutions. CFD simulations gave good agreement 

with the experimental data. An ice growth test using the iFDG device was conducted, 

demonstrating the viability of iFDG measurement.  

 

Temperature drift-calibrated iFDG 

Temperature drift can affect the inductive proximity sensor action significantly. In the current 

iFDG system, the thermocouple was mounted close to the nozzle, not on the coil, which 

resulted in some inaccuracy in coil temperature measurement. In addition, the magnetic field 

generated by the coil was affected by the thermocouple. To overcome these, the thermocouple 

needs to be installed close to the coil (embedded in the nozzle head) and a relay added to switch 

the thermocouple off while the proximity sensor works.  

 

6.4 Coupled Deformation of a Viscoplastic Layer and ZFDG Flows 

The experimental results showed that in ejection mode, deformation of the layer occurred 

within 1 s, and did not change thereafter. In suction mode, petroleum jelly was drawn into the 

nozzle and then stopped after some finite time. As withdrawing was interrupted by breakage 

due to inhomogeneity of petroleum jelly (Section 5.2), the layer surface became hill-shaped.  

The VOF approach was employed in the CFD simulations to predict the change of topography 

of a petroleum jelly layer subject to ZFDG testing at different clearances. Acceptable 

agreement for the layer topographies between the CTS measurements and simulation results 

was obtained. The deviation of predicted topographies is attributed to the roughness and 

homogeneity of the layer, and the resolution of the nozzle positioner. The timescale of 

predicted pressure drop did not agree with the experiments mainly due to the ballooning effect, 

which could not be simulated.  
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Continuous FDG 

The experiments of ZFDG showed that in suction mode, petroleum jelly was drawn into the 

nozzle. After the test, removing soil from the nozzle was required, indicating that suction mode 

was not suitable for measuring the thickness of such viscoplastic materials. However, the 

current syringe pump cannot support continuous infusion due to the fixed volume of syringe. 

A dual pump plumbing kit is therefore needed, which is a dual check valve for two syringes. 

Liquid is withdrawn from a reservoir, and infused out through another line.  

 

Further study for FDG flows 

The coupled deformation of the viscoplastic layer subject to ZFDG testing was difficult to 

study due to its fast deformation (taking less than 1 s). There are two other things that could be 

done: (i) capture the deformation using particle image velocimetry (PIV). PIV is an optical 

technique, in which fluid is seeded with tracer particles and then illuminated by a laser to track 

their flow trajectories. The PIV method could be employed with a transparent FDG nozzle tube 

for tracking the flow field around the nozzle head. (ii) image the layer from beneath the 

substrate, using an inverted or other confocal microscope. 

 

6.5 Modelling of Cleaning a Viscoplastic Soil Layer Using an 

Impinging Water Jet 

The multi-phase CFD model was also used to simulate a water jet impinging on a vertical plane 

coated with a petroleum jelly layer. Comparing the predicted shape of the crater to the 

experimental data, good agreement was obtained, indicating that the modelling could be 

employed to estimate the deformation of layers in cleaning processes. The results also 

confirmed that the ratio of the film to layer thickness, hf/0, had a significant influence on the 

shape of the cleaning front. Moreover, the rate of growth of the cleaned radius agreed with the 

measured values well and both showed good fits to the Wilson et al. model [64].  
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Modelling of cleaning using an impinging jet including diffusion and reactions 

There are a series of studies which could be done, including exploring the effect of hf/0, film 

physical properties, layer rheology etc. for comparison with the recent work by Fernandes and 

Wilson [183]. In addition, this work focused on the peeling mechanism, while the cleaning 

mechanisms, including diffusive dissolution, cohesive separation, viscous shifting and 

adhesive detachment, often do not occur alone. Further CFD simulations involving in mass 

transfer and reactions for different soft solid materials should be conducted. 

 

6.6 Achievements 

This dissertation has provided several new tools for studying the cleaning behaviour of soil 

layers on solid substrates and generated insights into the cleaning mechanisms involved with 

some soils.  

The millimanipulation device reported by Magens et al. [9] has been developed to measure the 

adhesive and cohesive strengths of stiff soft solid layers as well as estimate their yield stresses 

in situ. The device could be employed to estimate the rheological behaviour of soft solid soils 

which cannot be loaded into a rheometer. A CFD model of millimanipulation has been 

constructed which describes the deformation of the layers while being scraped. This has been 

reported in Tsai et al. J. Food Eng (2020) 110086. 

The ability of the SiDG device to measure the early stage and long term behaviour of swelling 

of soil layers immersed in a liquid environment has been demonstrated, reported in Tsai et al. 

AlChE J, 65 (2019) e16664.The iFDG concept, which integrates an inductive proximity sensor 

for locating the substrate into the gauging head, has been demonstrated for various substrates 

and gauging liquids. A CFD simulation of iFDG for high-viscosity and non-Newtonian fluids 

was also created, which enables one to quantify shear stress distribution generated by the 

gauging action (Tsai et al., Ind Eng Chem Res, 58 (2019) 23124-23134).  

A two-phase CFD model has been developed which captures the interaction between a 

viscoplastic soil layer and ZFDG flows. It has been extended to the case of a water jet 

impinging on a viscoplastic layer and captures several of the salient features. 
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These techniques provide quantitative information about cleaning mechanisms for soft solid 

layers and related fouling deposits which will allow currently empirical methods to be replaced, 

deterministic models constructed, and cleaning performance predicted.
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Appendix A Life Cycle Assessment (LCA) of 

Cleaning-in-Place Operations in the Production of 

Powdered Egg Yolk 

A.1 Introduction  

Generally, the food and biotech sectors consume large amounts of fresh water and energy for 

cleaning. Large volumes of wastewater will be produced and need to be treated, which is also 

a serious problem in other manufacturing sectors. In order to improve the sustainability of the 

food, the demands on water and power resources need to be reduced.  

The impact of cleaning on the sustainability of a food processing operation is presented here 

as essential context for the scientific investigation of this PhD. The work was performed by the 

author during a 2 month placement with Professor Jen-Yi Huang at the Department of Food 

Sciences at Purdue University in autumn 2019. This original work has been submitted for 

publication in the Journal of Cleaner Production.  

Estimation of the efficiency for cleaning mainly employs two methods, namely production-

based metrics and life cycle assessment (LCA). Köhler et al. [190] reported the use of  

production-based metrics for cleaning of Xanthan gum soil layers using impinging water jets. 

The cleaning efficiency was assessed based on cleaning performance indicators calculated from 

time, fluid consumption, energy and cost. The effect of different operating parameters (e.g. 

nozzle diameter and pressure) on the performance indicators was evaluated. LCA is an 

accounting and management method for assessing the environmental impacts of a product, in 

which all resource uses and releases to the environment are considered (see Fig. A.1).  

 



 

224 

 

Materials

Energy

Water Emissions to air

Emissions to Water

Emissions to land

INPUTS

(SInputs)
OUTPUTS

(SOutputs)

PROCESSES

System boundary

Extraction of raw materials/ 

Power generation/

Water supply 

Manufacturing

Distribution/

use and maintenance

Recyle/ 

Waste management

 

Fig. A.1. Schematic of how LCA works, adjusted from [191].  

 

The dairy industry has attracted wide attention in the sustainability literature due to its large 

production volumes (approximately 2.3 million tonnes milk produced per day in 2018 [85]), 

and a series of LCA studies have been reported [3, 192-197]. About 2 litres of water is used 

for processing 1 litre milk [196]. In a dairy, milk collected from the farm typically undergoes 

three major processing steps, namely pasteurisation, homogenisation and separation. In order 

to avoid the growth of microorganisms, CIP processes are widely used for cleaning process 

equipment. Around one-third of the environmental impacts of a dairy has been linked to 

cleaning process steps [196]. Compared to other operation, the CIP operation after the 

pasteurisation process contributed the largest amount of wastewater [194]. Also, milk residuals 

in equipment and the chemical agents used for cleaning often cause serious eutrophication. 

More environmentally-friendly CIP methods such as the use of enzyme-based cleaners has, 

however, proved to be more expensive [195].  

In this section, a simple LCA for a CIP process in an egg yolk powder factory is employed to 

demonstrate the impact of cleaning on the environmental footprint and economics. Egg yolk 

powder was selected as the demand for this dried product has increased significantly owing to 

benefits in transportation, storage life and control of bacteria growth. Around 80 Mte eggs were 

produced worldwide in 2017 and this has more than doubled since 1990 [198]. Global egg 

production has been forecasted to exceed 100 Mte. The growth in demand for egg powder is 
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partly due to its functional properties [199] and storage advantages [200]. Egg yolk powder is 

more popular than dried whole egg and egg white [85]. However, the spray dryers used can 

encounter severe deposition on the equipment surface [201]. LCA studies for manufacturing 

(and cleaning) milk powder [3, 202, 203] indicated that both the drying and pasteurisation 

processes were the major contributors to the environmental impacts [194, 202]. A life cycle 

analysis for the production of egg yolk powder has not been reported.  

The production lines for egg yolk and milk powders are similar and involve proteinaceous 

fouling deposits; however, the cleaning operations are different [112, 204]. This section aims 

to demonstrate the impacts of different production and cleaning scenarios on the environment. 

The relationship between the environmental impact and process productivity is also 

investigated.  

 

A.2 Methods 

A.2.1 Goal and scope 

The LCA task is to analyse the environmental impacts of an egg yolk powder plant located in 

Indiana, USA, and to compare a conventional continuous-flow CIP process with an alternative 

CIP method using pulsed flows for cleaning the spray dryer. The environmental impacts of 

different cleaning operations are compared and the optimal method is identified. 

In LCA, the functional unit (FU) needs to be defined. FU is a quantified performance for the 

studied system and provides a reference to link both the inputs and outputs. In this case, the FU 

is 1 kg dried egg yolk product manufactured in a plant in Indiana, USA.  

 

A.2.2 Life cycle inventory (LCI) 

A common production line for dried egg yolk product consists of the four major stages shown 

in Fig. A.2: breaking of fresh eggs, refrigeration (storage), pasteurization, and powdering [85]. 

The inputs and outputs for each sub-process are summarised in Table A.1. Most of the 
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inventory data in the model are taken from the ecoinvent database v3.0 reported by Wernet et 

al. [205].  

The present work aims to evaluate the impacts of the CIP processes, so only the major 

production stages and cleaning operations are considered. Breaking, storage and pasteurisation 

(BSP), CIP for cleaning the pasteurisation heat exchangers (CIP1), drying and CIP for cleaning 

the spray dryer (CIP2) are selected and studied. A gate-to-gate analysis is performed – only 

several steps in the entire production life cycle is considered and valued. This means that the 

steps before breaking, including farming, harvesting and transportation, and packaging after 

processing, are excluded. Fresh eggs transported from the farm are selected as the initial input 

[206].  

The process flow is depicted in Fig. A.2. All resources and emissions for the BSP stage, 

including leakage of coolants, are taken from the literature [206]. A plate heat exchanger with 

a 7.6 m long holding tube is employed for pasteurisation [207]. After the pasteurisation 

operation has run for 8 h, the system is shut down and cleaned using CIP process 1 (CIP1).  

The pasteurised egg yolk is conveyed to a spray dryer for drying, and the energy consumption 

and conversion ratio from egg yolk to powder are modelled based on a real industrial case [85]. 

The operation time of the spray dryer (cycle time) depends on the fouling thickness (criteria to 

clean: 0.273 kg fouling per m2) on the dryer surface. For instance, the longest continuous 

production time for a spray dryer with a 5 m diameter, D, is about 10.3 h. After production, the 

unit is cleaned using CIP process 2 (CIP2). 

The CIP1 operation includes 3 steps, namely (i) pre-rinsing to flush residual products out, (ii) 

caustic cleaning for removing deposits, and (iii) final-rinsing for washing out residual caustic. 

Both rinsing operations last 10 minutes. The alkaline solution can promote the solubility of 

lipid and enhance cleaning efficiency. The duration of caustic cleaning is selected based on the 

flow channel studies reported by Helbig et al. [208]. Wastewater collected from the cleaning 

stage is treated using a conventional chemical coagulation technique, in which ferric chloride 

and an anionic polymer are dosed to trap particles. Using this technique, more than 80% 

chemical oxygen demand (COD), biochemical oxygen demand (BOD), total suspended solids, 

phosphorus, organic nitrogen and oil, can be removed [209]. The treated water is alkaline due 

to the use of caustic, so its pH is adjusted by adding nitric acid, before being discharged to 

drain. The solid waste collected from the coagulation process is sent for incineration.  
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CIP2 is similar to CIP1 with three steps: (i) 1.5 minute pre-rinsing, (ii) caustic cleaning, and 

(iii) 1.5 minute final-rinsing. The caustic cleaning time is estimated using the pilot-scale data 

reported by Yang et al. [210]. In that study, a rotary spray head was employed for cleaning egg 

yolk deposits. Cleaning using continuous (Scenario 1C) and pulsed (Scenario 1P) flows (see 

Fig. A.3) were tested for different temperatures, T (20-55 °C), and concentrations of sodium 

hydroxide, CNaOH (0-15 kg/m3). Pulsed-flow cleaning featured 1 min caustic solution flow, 

followed by 1 min delay in a repeating cycle. CIP2 wastewater is treated the same as CIP1.  
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Fig. A.2. Process flow diagram of egg yolk powder manufacture.  
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Table A.1. Life cycle inventory (per functional unit) of egg yolk powder production for 

different scenarios 

Input Unit Scenario 1C 

(continuous-

flow CIP2) 

Scenario 1P 

(pulsed-flow 

CIP2) 

Scenario 2  

Electricity 

Scenario 3   

Solar energy 

Scenario 4 

UFO-MBR 

Breaking, storage and pasteurization (BSP) 

Input      

Transported eggs kg 8.11 8.11 8.11 8.11 

Water  m3 2.44×10-2 2.44×10-2 2.44×10-2 2.44×10-2 

Electricity  kWh 0.78 0.78 0.78 0.78 

Natural gas kWh 0.49 0.49 0.49 0.49 

Diesel  kWh 2.05×10-3 2.05×10-3 2.05×10-3 2.05×10-3 

Gasoline  kWh 4.51×10-6 4.51×10-6 4.51×10-6 4.51×10-6 

Glycol kg 4.38×10-3 4.38×10-3 4.38×10-3 4.38×10-3 

Anhydrous ammonia kg 0.10 0.10 0.10 0.10 

R-22 kg 7.90×10-2 7.90×10-2 7.90×10-2 7.90×10-2 

Output       

Liquid egg white kg 4.43 4.43 4.43 4.43 

Liquid egg yolk kg 2.18 2.18 2.18 2.18 

Discarded eggs kg 0.57 0.57 0.57 0.57 

Egg shells kg 0.90 0.90 0.90 0.90 

       

CIP1 (pasteurizing heat exchanger) 

Input       

Water m3 5.69×10-4 5.69×10-4 5.69×10-4 5.69×10-4 

Electricity kWh 1.73×10-4 2.07×10-2  1.73×10-4 

Natural gas kWh 2.05×10-2   2.05×10-2 

Solar energy kWh 5.51×10-4  2.07×10-2  

NaOH  kg 8.68×10-4 5.51×10-4 5.51×10-4 5.51×10-4 

HNO3 kg 5.53×10-3 8.68×10-4 8.68×10-4 8.68×10-4 

FeCl3  kg 2.39×10-5 5.53×10-3 5.53×10-3 5.53×10-3 

Anionic polymer kg 4.12×10-3 2.39×10-5 2.39×10-5 2.39×10-5 

Incinerated waste kg 5.69×10-4 4.12×10-3 4.12×10-3 4.12×10-3 

Emissions to water        

COD kg 4.15×10-4 4.15×10-4 4.15×10-4 4.15×10-4 

BOD kg 2.11×10-4 2.11×10-4 2.11×10-4 2.11×10-4 

Phosphorus kg 2.28×10-6 2.28×10-6 2.28×10-6 2.28×10-6 

Organic nitrogen kg 1.42×10-5 1.42×10-5 1.42×10-5 1.42×10-5 

Oil and grease  kg 1.13×10-6 1.13×10-6 1.13×10-6 1.13×10-6 
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Drying        

Input       

Liquid egg yolk  kg 4.15×10-4 2.18 2.18 2.18 

Electricity  kWh 2.11×10-4 3.84×10-4 3.84×10-4 3.84×10-4 

Natural gas kWh 2.28×10-6 2.31 2.31 2.31 

Output        

Egg yolk powder  kg 1.0 1.0 1.0 1.0 

Emissions to air        

Waste heat kWh 0.68 0.68 0.68 0.68 

Evaporated water   kg 1.19 1.19 1.19 1.19 

       

CIP2 (spray dryer)       

Input       

Water m3 2.39×10-3 1.03×10-3 2.39×10-3 2.39×10-3 7.85×10-4 

Electricity kWh 3.32×10-4 1.43×10-4 8.61×10-2  6.99×10-3 

Natural gas kWh 8.58×10-2 3.69×10-2   8.58×10-2 

Solar energy     8.61×10-2  

NaOH  kg 1.10×10-2 4.70×10-3 1.10×10-2 1.10×10-2 1.10×10-2 

HNO3 kg 1.73×10-2 7.46×10-3 1.73×10-2 1.73×10-2 1.73×10-2 

FeCl3  kg 5.52×10-3 2.38×10-3 5.52×10-3 5.52×10-3 5.52×10-3 

Anionic polymer kg 2.39×10-5 1.03×10-5 2.39×10-5 2.39×10-5 2.39×10-5 

Incinerated waste kg 4.12×10-3 1.78×10-3 4.12×10-3 4.12×10-3 4.12×10-3 

NaCl kg     2.58×10-3 

NaHOCl kg     2.39×10-7 

PVDF (membrane) kg     9.91×10-9 

Polyamide 

(membrane) 

kg     2.76×10-7 

Polypropylene 

(spacer) 

kg     6.59×10-7 

Coated steel 

(housing) 

kg     3.47×10-6 

Emissions to water        

COD kg 1.73×10-3 1.73×10-3 1.73×10-3 1.73×10-3 1.73×10-3 

BOD kg 8.81×10-4 8.81×10-4 8.81×10-4 8.81×10-4 8.81×10-4 

Phosphorus kg 9.53×10-6 9.53×10-6 9.53×10-6 9.53×10-6 9.53×10-6 

Organic nitrogen kg 5.59×10-5 5.59×10-5 5.59×10-5 5.59×10-5 5.59×10-5 

Oil and grease  kg 4.76×10-6 4.76×10-6 4.76×10-6 4.76×10-6 4.76×10-6 
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Fig. A.3. Schedule of cleaning operations in CIP2 [210].  

 

A.2.3 Impact assessment 

The midpoint environmental impacts resulted from egg yolk powder processing were simulated 

and analysed using the ReCiPe 2016 Midpoint (E) v1.02 method, which is to transform life 

cycle inventory results to 18 midpoint indicate scores [211]. Midpoint indicators focus on 

single environmental problems. In this study, 8 impact categories (IC) were considered, 

including global warming (GW, kg CO2 eq), ionisation radiation (IR, kBq Co60 eq), terrestrial 

ecotoxicity (TE, kg 1,4-DCB), marine ecotoxicity (ME, kg 1,4-DCB), human carcinogenic 

toxicity (HCT, kg 1,4-DCB), human non-carcinogenic toxicity (HNCT, kg 1,4-DCB), fossil 

resource scarcity (FRS, kg oil eq) and water consumption (WC, m3). Calculations were 

performed using the commercial LCA software, SimaPro version 8.0. 

 

A.2.4 Scenario analysis 

A scenario analysis is performed in terms of the processes consuming large amounts of energy 

and water in the model. Three different scenarios are investigated. The first scenario is to 

replace the original heating resource (natural gas) for heating the cleaning solutions by 

electricity, labelled Scenario 2 electricity. The second is to source all power, including heating 

and pumping, from solar sources, labelled Scenario 3 solar energy. A solar tank is assumed to 

produce hot water for cleaning. The pumps in the CIP units are powered by electricity generated 

from solar panels. The third scenario is to reuse about two-thirds of the CIP2 wastewater using 

a hybrid technique, UFO-MBR,  reported by Holloway et al. [212] (Scenario 4 UFO-MBR). 

In this, a membrane bioreactor is employed for pre-treating the wastewater, and the treated 

water is filtered by forward osmosis and reverse osmosis to produce potable water for cleaning. 

The effluent from the membrane bioreactor is treated using ultrafiltration and then sent to drain. 
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A life time of 5 years is chosen for the membranes. The materials required to produce the 

membranes but not to construct the system are accounted for [213], and are summarised in 

Table A.1. 

 

A.3 Results and discussion 

A.3.1 Inventory analysis 

Table A.1 lists LCI data for production of egg yolk powder for four different cases. The major 

inputs are eggs, water, electricity and natural gas. Around 8.11 kg transported fresh eggs can 

produce one FU of dried egg yolk product, which is close to the conversion ratio (9.21 kg eggs 

for 1 kg egg yolk powder) reported by Berggren [214]. The difference is owing to different 

moisture contents of the product. Berggren showed that about 0.0156 m3 water, 0.61 kWh 

electricity, 0.22 kg fuel oil, 0.01 kg sodium hydroxide and 0.0042 kg sulfuric acid were utilised 

to manufacture 1 kg yolk powder. The dosage of NaOH in this case (0.011 kg) is similar, but 

electricity and water consumptions (0.783 kWh and 0.0284 m3, respectively) are higher than 

Berggren’s values. This is because a large volume of water is used in the process to wash the 

fresh eggs in the breaker facilities. This breaking, storage and pasteurisation (BSP) process 

makes up 89.2% of total water consumption (0.0244 m3). 

The stages of BSP and powdering can be considered as hotspots for energy consumption, with 

1.27 kWh (34.4% of total) and 2.31 kWh (62.7%), respectively. In BSP, this is due to 

refrigeration before pasteurisation and heating liquid egg yolk to 67 °C in the pasteurisation 

stage. Refrigeration is an energy-intensive process. Energy is utilised to heat air to 180 °C for 

drying egg yolk [85].  
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A.3.2 Impact assessment 

A.3.2.1 Environmental profile (Continuous-flow CIP2) 

Fig. A.4 compares the relative contribution of each sub-process in terms of different impact 

categories. The environmental scores for different ICs are listed in Table A.2. In Fig. A.4, apart 

from TE and FRS, all environmental impacts for the BSP stage are significantly higher than 

other processes, followed by the powder step. The high ME, HCT and HNCT impacts are 

mainly contributed from the electrical consumption for refrigeration in the BSP stage (0.782 

kWh). Many US power plants burn fossil fuel (coal and petroleum) to produce electricity, and 

the combustion emits pollutants such as NOx, SO2, Hg, etc [215], increasing the HCT and 

HNCT potentials. The total ME and HNCT impacts (133.6 and 110.18 kg 1,4-DCB, 

respectively) are higher than other categories, indicating that the production of dried egg yolk 

product will result in serious marine ecotoxicity and human non-carcinogenic toxicity 

potentials. In contrast, the contribution from CIP1 is negligible. For GW, the stages of 

pasteurisation, drying, CIP2 and CIP1 contribute approximately 54%, 38%, 7% and less than 

1 %, respectively. 

One of the major contributors of TE is heavy metals. Natural gas includes heavy metals, 

resulting in their emission during combustion [205]. The CIP2 process (42.2% of total) has 

higher impacts on TE than powdering. This is because heavy metals come not only from natural 

gas, but also from the addition of coagulants (FeCl3). Furthermore, the nitric acid used for 

adjusting pH is decomposed by light or heat to produce nitric oxide, which is also the major 

contributor of TE and can be considered as a hotspot. Moreover, the ferric chloride used for 

coagulation and the metallic species in natural gas cause serious IR impacts, and around 57%, 

19% and 18% are from BSP, CIP2 and powdering, respectively. 

The processes of BSP and drying contribute most impacts on FRS, at around 32% and 60% of 

the total, respectively. This is owing to large natural gas consumption. Compared with the 

cleaning processes (CIP1 and CIP2), production of pasteurised liquid egg yolk and drying need 

more water (WC). This is attributed to not only washing fresh eggs, but also electricity 

generation and fossil fuel extraction (about 0.263 m3 and 0.0523 m3 water per 1 kWh of natural 

gas and electricity, respectively [205]).  
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These results are now compared with the LCA for the skimmed milk powder production 

reported by Krokida et al. [202]. The powder step is one of energy-intensive processes in the 

dairy plant. The total GW for CIP2 using continuous flows (1.71 kg CO2 eq) is close to the 

value for drying milk without using reverse osmosis to concentrate milk (1.42 kg CO2 eq). By 

contrast, the WC for processing egg yolk powder (0.627 m3) is lower than that for skimmed 

milk powder (1.19 m3). This is because more processing units are employed in the diary sector. 

A standard milk powder production line includes separation, standardisation, pasteurisation, 

evaporation, spray drying, fluidised bed dryer and air clean-up by cyclones. An evaporator is 

not used in egg yolk powder manufacturing owing to the high york viscosity upstream of the 

dryer.   
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Fig. A.4. Environmental impact profiles of egg yolk powder manufacture with different 

methods for spray dryer cleaning; solid colour – continuous flow (C); light colour – 

pulsed flow (P). Impacts: GW – global warming; IR – ionizing radiation; TE – 

terrestrial ecotoxicity; ME – marine ecotoxicity; HCT – human carcinogenic toxicity; 

HNCT – human carcinogenic non-toxicity; FRS – fossil resource scarcity; WC – 

water consumption.  
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Table A.2. Environmental impacts of different stages in egg yolk powder manufacturing 

Stage GW IR TE ME HCT HNCT FRS WC 

 (kg CO2 eq) (kBq Co60 eq) (kg 1,4-DCB) (kg 1,4-DCB) (kg 1,4-DCB) (kg 1,4-DCB) (kg oil eq) (m3) 

BSP 0.92 3.78×10-2 0.38 82.4 1.04 67.8 0.13 0.437 

CIP1 2.04×10-2 3.66×10-3 8.61×10-2 6.0 3.97×10-2 5.0 5.19×10-3 2.25×10-3 

Drying 0.644 1.23×10-2 6.34×10-2 19.7 0.256 16.3 0.246 0.121 

CIP2 continuous/pulsed 0.122 / 0.058 12.8×10-3 / 6.3×10-3 0.39 / 0.20 25.5 / 13.7 0.148 / 0.082 21.1 / 11.3 2.98×10-2 / 1.43×10-2 3.2×10-2 / 1.4×10-2 

Total continuous CIP2/pulse CIP2 1.71/1.64 6.66×10-2/6.00×10-2 0.92/0.73 134/122 1.48/1.42 110/100 0.411/0.395 0.592/0.574 

% change in total for pulsing -3.7% -9.8% -21% -8.8% -4.4% -8.9% -3.8% -3.0% 
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A.3.2.2 Pulsed-flow CIP 

Yang et al. [210] reported that applying the cleaning solution intermittently improved the water 

consumption of cleaning cooked egg yolk soil on the tank surface. Intermittent cleaning gave 

a better cleaning rate than continuous flows. The case for cooked deposits is similar to the 

deposit formed in a spray dryer. The period between each burst provides more time for alkali 

solution to diffuse into the soil matrix and enhance its dissolution. More deposit could then be 

cleaned with a given volume of cleaning solution [216]. How this affects the overall 

environmental performance of egg yolk powder manufacturing is assessed by comparing 

pulsed-flow cleaning of the dryer (CIP2) with Scenario 1C (i.e. continuous-flow CIP2). Fig. 

A.4 compares the environmental performances between continuous-flow (Scenario 1C) and 

pulsed-flow CIP2 (Scenario 1P). The pulsed-flow CIP2 improves the impacts of the 

continuous-flow case by more than 50%. The major difference is attributed to its shorter 

effective cleaning time (e.g. 15 min for pulsed flows compared to 34.8 min for continuous 

flows), meaning that less energy, water and NaOH are consumed.  

 

A.3.2.3 Optimisation of pulsed CIP2 

The temperature and NaOH concentration of cleaning solution are key factors determining the 

cleaning efficiency [217]. The effect on cleaning egg yolk soil of a range of temperatures, T 

(25-55 °C) and NaOH concentration, CNaOH (1-5 kg/m3) was studied by Yang et al. [35]. To 

highlight the influence of both temperature and alkali concentration, the contributions to GW, 

TE, ME and WC are shown in Fig. A.5. These results are normalised to the reference case: 

Scenario 1P (CNaOH = 5 kg/m3, T = 55 °C). Fig. A.5(a) to (d) show a similar trend. The alkaline 

solution at low concentration and high temperature gave the lowest impacts on the 

environment. This is due to the fact that cleaning using a low concentration alkaline solution 

with high temperature is more efficient. High temperature enhances dissolution and swelling 

of fouling soils, and increases the cleaning efficiency [218]. Although cleaning with a high 

temperature solution consumes more energy and causes more environmental impacts, the 

cleaning time is reduced, resulting in decrease of the total environmental scores. In contrast, at 

higher NaOH concentrations, the structure of deposits changes, increasing the difficulty of 

removal [219]. The effect of alkali concentration depends on the protein type, so experiments 
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are required to find the optimal concentration for cleaning [218, 220, 221]. In Fig. A.5(d), using 

low temperature water (without any NaOH dosage) results in less WC than cleaning with 

alkaline solution; however, Helbig et al. [208] reported that cleaning using low alkali 

concentration solution was the most efficient. The reason is that NaOH production also 

consumes water, which contributes to the total WC score. The lowest WC is thus the case of 

cleaning using hot water.  
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Fig. A.5. Effects of NaOH concentration and temperature on normalised (a) GW, (b) TE, (c) 

ME and (d) WC for pulsed-flow CIP2. Values normalised by Scenario 1P (CNaOH = 5 

kg/m3, 55 °C). 

 

A.3.3 Effect of production and cleaning times 

In the food and biotech sectors, regular cleaning is necessary for mitigating hygiene issues; 

however, frequent cleaning can reduce the productivity and increase the operation cost. 

Excessive cleaning can also result in more energy, water and chemical consumptions, as well 

as more wastewater produced. To assess the effects of productivity and cleaning on the 

environment, a series of cases are simulated by fixing an 8 h cycle time, including production 

and shutdown for cleaning. Fig. A.6 compares the normalised environmental impacts in terms 
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of the ratio of cleaning time to production time, cp. The case of pulsed-flow CIP2 (Scenario 

1P) with an 8 h operating period is selected as the reference case, including 33 min for cleaning 

(cp = 0.074). The relative productivity, RP, is given by 

 𝑅𝑃 =
1.074

(1 + 𝜏𝑐𝑝)
 (A.1) 

A range of cp values (0.039-0.24) was evaluated, and the RP values change from 1.03 to 0.86. 

All four impact categories show a nearly linear relationship with cp, which is consistent with 

the previous discussion, namely longer cleaning times resulting in higher environmental 

impacts. TE is the most sensitive due to the natural gas and HNO3 consumptions for cleaning 

and wastewater treatment, respectively. This indicates that the environmental footprint could 

be reduced effectively by decreasing the cleaning time; however, ME, GW and WC show small 

changes with the cleaning time.  

Even though the results show that a shorter cleaning period (i.e. smaller cp) can alleviate the 

environmental impacts and boost the productivity, the choice of cpis constrained: insufficient 

cleaning can have serious consequences. For example, in the dairy sector, if the equipment is 

not cleaned completely, residual milk or fouling may enhance bacterial growth [17]. Moreover, 

a longer production time causes deposit ageing, increasing the difficulty of removing [222]. In 

order to find the optimal CIP cycle, hygiene, productivity and sustainability all need to be 

considered.  
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Fig. A.6. Effect of normalised cleaning time on normalised environmental impacts and 

productivity.  

 

A.3.4 Scenario analysis 

A.3.4.1 Impact of production scale 

The spray dryer is the major unit in a powder manufacturing plant, and the production rate is 

determined by the dryer diameter, D, which was collected from a manufacturer [85]. The 

environmental footprints per FU for dryers with different diameters were evaluated. A 5.0-m 

diameter dryer was selected as the reference case, with a productivity of 5360 kg of egg yolk 

powder per batch. Another 3 spray dryers with different diameters were simulated and 

compared, including 5.5 m (6430 kg/batch), 4.5 m (4300 kg/batch), and 2.5 m (1300 kg/batch). 

Scenario cleaning 1P was considered. The flow rate of the rotating nozzle, �̇�, for the reference 

5.0-m dryer is 20300 kg/h. The flow rates for other dryers were calculated using the wetting 

rate, which is the flow rate per unit width of falling film, given by �̇�/D (0.36 kg/m-sec) [210]. 

The effects of dryer diameter on ICs are plotted in Fig. A.7. The results for the 4.5-m and 5-m 

dryers are similar, but the smallest system shows significantly higher IR, TE, HCT and HNCT. 

Among these categories, the environmental footprints decrease with diameter, due to the fact 

that a larger spray dryer can create more egg yolk powder. The scores per FU are thus lower, 

even though more energy and materials are consumed. This indicates that from the production 

point of view, larger production equipment is more efficient. 
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Fig. A.7. Effect of production scale on total environmental impacts of the process. Data 

normalised against results for 5-m diameter spray dryer.  

 

A.3.4.2 Process improvement 

Three potential improvements with some sustainable benefits are tested: 

a) Scenario 2 – using electricity for warming cleaning solutions 

b) Scenario 3 – using solar energy for heating and pumping cleaning solutions 

c) Scenario 4 – using a UFO-MBR technique for recycling and reusing wastewater 

These are normalised by the baseline case, Scenario 1P and the results are summarised in Fig. 

A.8. Only small changes in GW, IT, FRS and WC can be observed for Scenarios 2-4. While 

replacing natural gas by electricity for heating cleaning solutions (Scenario 2) decreases TE by 

approximately 11%, ME, HCT and HNCT are increased significantly due to coal burning. The 

impacts of ME, HCT and HNCT are able to be alleviated by alternative sources such as heat 

pumps, although the 180 °C air inlet temperature for powdering is beyond the current limit of 

heat pumps [223]. Replacing the original source by solar energy (Scenario 3) can lower the TE 

score by around 10% and decrease HCT slightly, but WC increases. This is because some 

materials as well as water are used for manufacturing solar panels. This is owing to chemicals 

such as silicon and cadmium telluride [224] and water are used for manufacturing solar panels.  
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Recycling and reusing wastewater using the UFO-MBR system (Scenario 4) can save around 

two thirds of the total water used in the factory, but the total WC remained the same. This is 

due to the fact that additional water is used for manufacturing the membranes and the chemicals 

utilised in the UFO-MBR process. This is an example where an alternative method can reduce 

the local environmental impact, but not globally.  

The results indicate that there is no single alternative technique which can provide noticeable 

improvements for all impact categories apart from renewable energy for electricity. This LCA 

study provides valuable insights into the trade-offs between the local improvements and 

environmental impacts.  
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Fig. A.8. Effects of alternative processing scenarios on the environmental impacts of egg 

yolk powder manufacturing.  

 

A.4 Conclusions  

The LCA method has been employed to assess the environmental footprints for an egg yolk 

powder production process. The inventory analysis highlights both BSP and drying processes 

as the main energy consumers in the production. The BSP stage is a hotspot for all impact 

categories apart from FRS due to refrigeration. Pollutants emitted from coal combustion in 
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power plants cause human and ecological toxicity impacts. Compared to other sub-processes, 

the BSP process also consumes the most water. This is attributed to fresh egg washing before 

breaking. By contrast, the CIP2 process contributes more terrestrial ecotoxicity impacts than 

powdering due to the wastewater treatment (dosages of FeCl3 and HNO3).  

The results demonstrate that compared to conventional continuous-flow cleaning, intermittent 

cleaning is more efficient and improves the environmental footprints for all impact categories 

by about 50%. Cleaning with high temperature and low NaOH concentration is more 

environmentally-friendly. Cleaning using water alone causes less WC than using low alkali 

concentration solution, because NaOH production also needs water. The sensitivity analysis 

for the cleaning to production ratio shows that over-cleaning not only decreases productivity, 

but also increases the environmental impact scores.   

The investigation of production scale indicates that larger-scale equipment is more sustainable 

due to its larger production rate and less environmental impacts. Three potential improvements 

for egg yolk powder processing have been assessed. Replacing natural gas heating by 

electricity can reduce TE impacts significantly, but the other ICs increases. Although using 

solar energy can improve TE noticeable and reduce GW, HCT and FRS slightly, WC increases. 

This is owing to water use for manufacturing solar panels. In addition, recycling and reusing 

wastewater (UFO-MBR) does not provide significant improvements for all ICs.  Among these 

scenarios, no one case can reduce impacts for all categories effectively, indicating that finding 

an acceptable trade-off between ICs is needed.  

The study demonstrates how managing cleaning can improve the environmental sustainability 

of the food industry. The work of Yang et al. [210] is an example where cleaning performance 

was improved by understanding the mechanisms involved in cleaning. Cleaning mechanisms 

vary for different fouling layers, as deposits behave differently (e.g. egg and milk protein in 

alkali). Moreover, quantitative information about soils is needed for designing cleaning 

strategies. This dissertation aims to develop in situ measurement methods for soft solid layers 

in applications such as cleaning, and quantitative models for understanding these 

measurements. This will allow engineering approaches to be used to identify and enhance 

cleaning mechanisms and thereby improve the sustainability of food (and related) 

manufacturing operations
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Appendix B Modelling of Two Immiscible Liquids in 

A Model Eye Subject to Saccadic Motion 

B.1 Introduction 

The vitreous humour is a gel-like substrate and fills the region between the lens and the retina 

of the humans’ eyeball. The replacement of the vitreous humour by a viscous silicon oil is often 

used to manage complicated retinal detachment surgery [184]. One problem encountered with 

these silicone oil tamponades is emulsification of the oil in the aqueous solution generated by 

the eye as a result of the eye’s saccadic movement [225]. This can cause cataracts, glaucoma 

and keratopathy [185, 186, 226]. Oil droplet formation is believed by some workers to be 

driven by the shear stress induced by saccadic motion at the interface between the phases [187]. 

Quantification of the shear stresses is needed to confirm this hypothesis, which in turn requires 

knowledge of the fluid motion. 

In addition to experimental studies, some simulations of the flow pattern generated by the 

saccadic rotation of a single phase have been reported. Repetto et al. [227] presented an 

analytical solution of the flow in a spherical chamber subject to torsional oscillations, 

mimicking the saccadic motion of the eyeball. Steady streaming flows were observed in both 

theoretical and experimental results, with good quantitative agreement. Abouali et al. [228] 

employed 3-dimensional CFD simulations with an eye-shaped geometry to predict the flow of 

vitreous humour (see Fig. B.1) during saccadic motion. The numerical results showed that in 

the vitreous cavity (vitreous humour occupies in human eye), the streaming flow along the 

rotational axis was high. Boushehrian et al. [229] reported a CFD study of the effects of 

saccadic motion on the flow field and movement of pigment particles in the anterior chamber, 

which is in front of the lens (see Fig. B.1). They employed Lagrangian particle trajectory 

analysis to simulate the particle paths. They showed that natural convection caused by the 
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temperature difference between the cornea and iris surfaces enhanced the movement of the 

pigment. The deposition of pigment particles on the cornea was mainly due to the saccadic 

movement. This explained Krukenberg’s spindle, where pigmented iris cells deposit on the 

inner surface of the cornea. 

 

 
 

Fig. B.1. Anatomy of eye, reproduced from Abouali et al. [228]. 

 

The CFD tools generated in this dissertation were used to study the motion of tamponade and 

related fluids in the vitreous chamber of the eye during saccadic movement. A model system 

based on laboratory round bottom flasks, shown in Fig. B.2(a), was constructed and tests 

conducted by PhD student Ru Wang. The flask internal radius is 20 mm. The sphere is rotated 

around its vertical axis by a stepper motor. An example of a motion cycle is shown in Fig. 

B.2(b). The sphere rotates at a fixed angular velocity,  (here, 600 °/s) for a set oscillation 

amplitude, A, followed by a rest period of the same duration (for this case). The sphere then 

rotates back to the original position at – for –A, followed by another rest to complete the 

cycle. Silicon oil, saline solutions and a two-phase mixture solution of saline and oil (9:91 

vol:vol) (see inset in Fig. B.2(a)) were tested at different amplitudes. Particle image 

velocimetry (PIV), conducted by Ru Wang, was used to capture the distribution of velocities 
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once steady state had been established (at least 20 cycles). A 3-dimensional CFD model was 

created by the author, and the data are compared with the PIV results.  
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Fig. B.2. (a) Schematic of apparatus for mimicking saccadic motion. Inset shows a 

photograph of an oil-water (more dense) interface at rest. Labels: C – camera; M – 

stepper motor; S – spherical chamber. (b) Angular velocity cycle. Conditions: 𝜔 = 

600 °/s, A = 18°. 
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B.2 Model Formulation 

The saccadic motion in the spherical chamber was simulated using the volume of fluid (VOF) 

approach to determine the distributions of fluid velocities. A 3-dimensional transient model 

was built using an open source software, OpenFOAM version 4.0 running on a SuperServer 

1027R-WRF4+ server with 12 cores (Intel® Xeon® E5-2630V2 Processor 2.60 GHz). In VOF, 

the momentum equation for the calculated domain is described by 

where v is the velocity vector and p is the pressure.  and  are the average density and average 

viscosity, respectively. g is the gravity vector and was oriented in the –z direction. In each 

computed grid cell, the volume fraction of the saline phase is  and the volume fraction of 

silicone oil is (1 − ), with 0 ≤ ≤ 1. Both the average density and average viscosity in each 

cell are computed by the following linear laws of mixtures: 

 salineoil(1 −  (B.2) 

The mass continuity equation is written in terms of : 

 
𝜕𝛼

𝜕𝑡
+ ∇ ∙ (𝐯𝛼) = 0 (B.4) 

The properties of both fluids are summarised in Table B.1. 

 𝜌 (
𝜕𝐯

𝜕𝑡
+ 𝐯 ∙ ∇𝐯) = −∇𝑝 + 𝜇∇2𝐯 + 𝜌𝐠 (B.1) 

 salineoil(1 −  (B.3) 
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A 2-D schematic of the model geometry is presented in Fig. B.3. Surfaces AB, BC and CD are 

the glass walls, and the coloured area denotes the fluids. All walls were set at the rotational 

wall velocity in OpenFOAM, and can be written as v = r, where r is the radial distance from 

the axis of rotation (𝑟 = √𝑥2 + 𝑦2). OpenFOAM employs Cartesian co-oridinates: the origin 

(0, 0, 0) was set to be the centre of the vessel and the z-axis was specified as the rotational axis. 

In OpenFOAM, the interaction between the fluid and the wall is described by the wall adhesion 

model proposed by Brackbill et al. [182], where the surface normal of the fluid in the grid cell 

close to the wall is adjusted based on the given contact angle, w. The surface normal, �̂�, in this 

dynamic boundary condition is given by 

 �̂� = �̂�𝑤𝑐𝑜𝑠𝜃𝑤 + �̂�𝑤𝑠𝑖𝑛𝜃𝑤 (B.5) 

Here �̂�𝑤 is the unit vector normal to the wall and �̂�𝑤 is the unit vector tangential to the wall. A 

fixed contact angle of 17° was specified for all wall boundary conditions. This is the static 

value measured by Ru Wang. AD was set as an open boundary (p = 0). 

Table B.1. Fluid properties at 20 °C, provided by PhD student Ru Wang 

Parameter Value 

oil 920 mPa s 

oil 973 kg/m3 

oil-saline 
a 0.0044 N/m 

  

saline 1.2 mPa s 

saline 1007 kg/m3 

a  is the interfacial tension. 
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Fig. B.3. Geometry for saccadic motion simulation. Colours: yellow – oil; cyan – saline. All 

dimensions in mm. O denotes the origin of the Cartesian co-ordinates (0, 0, 0). g 

shows the direction of gravity. 

 

A 3D geometry with a structured hexahedral mesh (153542 elements) was constructed using 

the commercial CFD software, ANSYS version 18.0. The mesh file was exported from 

workbench into OpenFOAM for the modelling using the ‘fluent3DMeshToFoam’ function. 

The OpenFOAM solver for incompressible two-phase case, interFoam, was employed. The 

model was run as a transient, with the secondary flow approaching a pseudo-steady state after 

several cycles. All cases were computed for at least 20 cycles. Fig. B.4 shows the evolution of 

the maximum Vz for pure oil and pure saline on the vertical plane. At t > 0.5 s (4 cycles), the 

maximum Vz in saline approaches an asymptote. By contrast, the maximum Vz for oil 

fluctuates, with a maximum value around 0.05 m/s and a value in the rest period about 0.0003 

m/s. 

The computational time depended on the cases. Simulations with saline alone were the most 

time-consuming, taking approximately 12 h for each cycle. 
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Fig. B.4. Evolution of the maximum Vz on the vertical plane through the axis of rotation. 

Test conditions: 𝜔 = 600 °/s, A = 18°, liquids: 91/9 vol/vol silicon oil (orange)/saline 

(blue). 

 

B.3 Results and Discussion 

Fig. B.5(a) shows the oil velocity distributions obtained from PIV on the plane containing the 

rotational axis, i.e. the plane in Fig. B.3. All velocities are average values because only 4 images 

can be taken by the PIV camera, but the duration of each cycle under the test conditions is 0.12 

s and is shorter than the PIV frame duration (0.25 s, the maximum frame rate: 4). Good 

agreement with the simulation results (see Fig. B.5(b,i) and (b,ii)) is obtained in terms of the 

velocity distributions. However, the simulations slightly overestimate the magnitude of the 

velocities. The predicted �̅�𝑥 distribution is presented in Fig. B.5(b,iii), but this quantity cannot 

be measured by the PIV system used due to its direction being normal to the measured plane, 

which is a restriction of the PIV setup. The predicted values are nearly zero due to periodic 

oscillation which averages to zero. 

Fig. B.5(iv) compares the measured and predicted secondary flows. Both show that the flow in 

the vertical plane consists of four circulation cells. The simulation agrees with the experimental 

data well and indicates that the CFD model can be used to estimate the flow pattern induced 

by the saccadic movement with some confidence. The predicted shear stress is plotted in Fig. 

B.5(b,v). The maximum shear stress (about 10 Pa) occurs at the wall. The shear stress decays 
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with decreasing radius, and the minimum value is about 2 Pa at the centre, but it is not a linear 

function (see black line in Fig. B.5(b,v)).  
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Fig. B.5. Comparison of (i) average y-axis velocity, (ii) average z-axis velocity, (iii) average 

x-axis velocity, (iv) flow pattern and (v) predicted shear stress obtained from (a) PIV 

and (b) simulation for oil on the x-plane (Fig. B.3). Test conditions: 𝜔 = 600 °/s, A = 

18°. In (iv), �̅� is the average velocity of �̅�𝑦 and �̅�𝑧, and arrows denote the flow 

direction. Black line in (v) shows the profile of predicted shear stress along y.  
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The distribution of �̅�𝑦 (radial velocity with respect to the point O in Fig. B.3) in the PIV results 

for pure saline differs from the simulations (see Fig. B.6(i)). This is due to the fact that the 

measured plane was not at the centre. This is evident in Fig. B.6(a,iv), where the arrows are all 

in the same direction. The velocity distribution is expected to be asymmetric or symmetric due 

to the asymmetric setup and oscillation. Fig. B.6(ii) shows good agreement between the PIV 

and simulation results. In both cases there are some noisy values around the wall, which results 

from small vortices there. The �̅�𝑥 values are also very small for saline (Fig. B.6(b,iii)). The 

predicted flow pattern (see Fig. B.6(b,iv)) shows that only two circulations happened, which is 

different from the oil case. Comparing �̅� for the oil with �̅� for the saline, the maximum value 

(streaming intensity) for the oil is smaller. These are attributed to the differences in viscosity. 

Repetto et al. [230] reported that the �̅� value depended strongly on the Womersley number, 

Wo = √𝑅2𝜔/𝜈, where R is the radius and  is the kinematic viscosity of the fluid. Compared 

to the oil case, the maximum shear stress for saline also occurs at the wall but is noticeably 

smaller (around 0.01 Pa), and it decays faster with distance from the wall, reaching zero at y = 

19 mm.  
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Fig. B.6. Comparison of (i) average y-axis velocity, (ii) average z-axis velocity, (iii) average 

x-axis velocity, (iv) flow pattern and (v) predicted shear stress obtained from (a) PIV 

and (b) simulation for saline on x-axis orbital plane. Test conditions: 𝜔 = 600 °/s, A 

= 18°. In (iv), �̅� is the average velocity of �̅�𝑦 and �̅�𝑧, and arrows denote the flow 

direction. 

 

Fig. B.7(a,i) shows the predicted Vx values for oil on the equatorial plane. The values at all four 

points are very small, and at times 1 and 3 they are nearly zero. Vz for oil (Fig. B.7(a,iii)) shows 
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a similar trend to Vx. By contrast, for saline in Fig. B.7(b,i), the Vx values are high at all four 

times with the maximum of about 0.005 m/s. The saline Vz values are also much higher than 

the oil velocities. This is because Vx and Vz involve the secondary flow. In the saline case, after 

the secondary flow was induced, the flow would not be affected by the periodic oscillations 

due to its lower viscosity, and vice versa. This phenomenon can be observed in Fig. B.7(ii). At 

points 2 and 4, Vy for both fluids shows absolute maximum at the wall, which is the same as 

the rotational velocity due to no-slip, and it declines with decreasing x. However, the Vy values 

for saline decrease much faster than for oil. This is attributed to the viscosity difference: 

momentum can transfer to a longer distance in a higher viscosity fluid, so in the oil momentum 

can be transferred to the centre of the chamber. The Vy values for a smaller time step are 

presented in Fig. B.7(iv). In saline, the momentum only can be transferred as far as x = 19 mm 

by the end of the rotation.  

The absolute maximum yx for oil in the cycle is about 20 Pa and occurs at the wall, which is 

twice the shear stress shown in Fig. B.5(b,v). This is because the latter value is the average of 

four data. However, the predicted maximum yx for saline is more than 270 Pa. This 

unexpectedly high value is attributed to the mesh elements at the wall being too coarse for this 

case.  
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Fig. B.7. Profiles of predicted (i) Vx, (ii) Vy, (iii) Vz, (iv) momentum transfer and (v) shear 

stress for (a) oil and (b) saline on the equatorial (x-y) plane at different times (see Fig. 

B.2(b)). Test conditions: 𝜔 = 600 °/s, A = 18°. 

 

Fig. B.8 compares the predicted shapes of the interface between the silicone oil and saline with 

the experimental results for two values of A. With the smaller ampltitude, A = 5.4°, the solution 
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momentum is small and the interface does not differ much from the static case (determined by 

surface tension). The simulation gives a similar shape.  The larger amplitude, 36°, gives a wavy 

interface (see Fig. B.8(b,i)) which is also predicted by the simulation. The largest absolute 

velocities occur around the interface. The reasonable agreement in shapes indicate that the 

model can be predict the effect of saccadic motion for the two-phase case. The induced shear 

stresses are shown in Fig. B.8(iii). With A = 5.4°, the maximum shear stress (about 10 Pa) 

occurred at the wall. By contrast, at A = 36°, the maximum yx value (around 10 Pa) occurred 

not only at the wall, but also around the interface: the larger amplitude let the momentum 

transfer to the interface. This indicates that for this case, the location of the maximum shear 

stress depends on the applied amplitude.  
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Fig. B.8. Comparison of (i) images, (ii) predicted z-axis velocity and (iii) predicted shear 

stress for A = (a) 5.4° and (b) 36°. On the vertical plane through the axis of rotation. 

Test conditions: 91% oil: 9% saline, 𝜔 = 600 °/s, at point 4 (refer to Fig. B.2(b)). 

Black dashed line indicates the interface between oil and saline.  

 

B.4 Conclusions 

The VOF modelling approach developed in the dissertation was successfully applied to a 

further case, the motion of viscous and less viscous liquids in a model eyeball. The simulation 

results for pure oil and pure saline were compared with the PIV results, and good agreement 
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between velocity distributions was obtained. The simulation of a two-phase case gave a good 

prediction of the interface shape. The predicted shear stresses showed that the large amplitude 

caused the maximum shear stress to occur around the interface. This numerical study allows 

regions of high shear stress to be identified. It was proven that the multi-phase CFD model can 

be extended to other cases with some confidence.  

 


