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Abstract
Objectives (1) To assess the methodological quality of radiomics studies investigating histological subtypes, therapy response,
and survival in patients with renal cell carcinoma (RCC) and (2) to determine the risk of bias in these radiomics studies.
Methods In this systematic review, literature published since 2000 on radiomics in RCC was included and assessed for meth-
odological quality using the Radiomics Quality Score. The risk of bias was assessed using the Quality Assessment of Diagnostic
Accuracy Studies tool and a meta-analysis of radiomics studies focusing on differentiating between angiomyolipoma without
visible fat and RCC was performed.
Results Fifty-seven studies investigating the use of radiomics in renal cancer were identified, including 4590 patients in total. The
average Radiomics Quality Score was 3.41 (9.4% of total) with good inter-rater agreement (ICC 0.96, 95% CI 0.93–0.98). Three
studies validated results with an independent dataset, one used a publically available validation dataset. None of the studies
shared the code, images, or regions of interest. Themeta-analysis showedmoderate heterogeneity among the included studies and
an odds ratio of 6.24 (95% CI 4.27–9.12; p < 0.001) for the differentiation of angiomyolipoma without visible fat from RCC.
Conclusions Radiomics algorithms show promise for answering clinical questions where subjective interpretation is challenging
or not established. However, the generalizability of findings to prospective cohorts needs to be demonstrated in future trials for
progression towards clinical translation. Improved sharing of methods including code and images could facilitate independent
validation of radiomics signatures.
Key Points
• Studies achieved an average Radiomics Quality Score of 10.8%. Common reasons for low Radiomics Quality Scores were
unvalidated results, retrospective study design, absence of open science, and insufficient control for multiple comparisons.

• A previous training phase allowed reaching almost perfect inter-rater agreement in the application of the Radiomics Quality Score.
•Meta-analysis of radiomics studies distinguishing angiomyolipoma without visible fat from renal cell carcinoma show moder-
ate diagnostic odds ratios of 6.24 and moderate methodological diversity.
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Abbreviations
AMLwvf Angiomyolipoma without visible fat
ICC Inter-rater correlation coefficient
ML Machine learning
QUADAS Quality Assessment of Diagnostic Accuracy

Studies
RCC Renal cell carcinoma
RQS Radiomics Quality Score

Introduction

Radiological practice relies largely on the subjective interpre-
tation of imaging data by an expert radiologist. Reports will
therefore be dependent on reader experience. Quantitative,
reader independent imaging markers may supplement expert
opinion and increase diagnostic, predictive, and prognostic
accuracy [1]. Radiomics includes a number of strategies
aimed at converting medical images to quantitative, minable,
high-dimensional data. These include histogram, texture, and
shape analysis that extract information from imaging data
which may not be visible to the human eye [2, 3]. In recent
years, increased interest in the use of radiomics in oncological
imaging has led to its application as a tool to derive diagnostic,
predictive, and prognostic information from routine clinical
imaging [4]. Despite extensive use in research and reports
linking CTandMR texture to lesion characterization, survival,
and perioperative outcome in a number of malignancies, trans-
lation into clinical practice has not yet occurred [5].

Renal cell carcinoma (RCC) is newly diagnosed in 338,000
patients annually worldwide and incidence varies widely with
the highest incidence in Northern America, Europe, Australia,
and New Zealand [6]. Most countries have seen a rise in inci-
dence over the past decades, which has been attributed to the
increasing use of cross-sectional imaging and subsequent in-
cidental diagnosis [7]. Increasing diagnosis of small renal
masses carries the risk of overtreatment resulting in benign
histology in 10–30% of all resected tumors [8, 9]. While CT
is the mainstay of diagnostic imaging in RCC, MRI has be-
come a valuable problem-solving tool. Owing to its improved
soft-tissue-contrast, MRI outperforms CT in the evaluation of
indeterminate cystic masses (Bosniak 2F and 3, malignancy in
10% and 50% respectively) [10], local invasion, and intra-
vascular extension [11]. Still, the differentiation of benign
renal lesions, especially oncocytoma and angiomyolipoma
without visible fat (AMLwvf), from RCC can be challenging
by subjective radiological image interpretation [12].
Quantitative image analysis may reveal radiomic signatures
diagnostic of renal tumor subtype and aggressiveness or pre-
dictive of response to targeted treatment, therefore, aiding
treatment stratification. However, for imaging markers includ-
ing texture-based metrics to cross the translational gap be-
tween an exploratory research tool and a clinically applicable

diagnostic algorithm, technical validity, biological validity,
qualification, and cost-effectiveness need to be established
(Fig. 1) [13].

This systematic review aims to establish whether the meth-
odological quality of prospective and retrospective studies
published on radiomics in cross-sectional imaging of renal
tumors for diagnostic, predictive, and prognostic purposes
poses barriers to effective clinical translation. A meta-
analysis of the use of texture-based models for the discrimi-
nation of AMLwvf and RCC shall assess the ability of pro-
posed models to answer this clinically relevant question.

Methods

This systematic review was conducted according to the
PRISMA-DTA (Preferred Reporting Items for Systematic
Reviews and Meta-analysis for Diagnostic Test Accuracy)
statement [14]. The review protocol is available through
PROSPERO (CRD 42018115263). The electronic databases
PubMed, EMBASE, and Web of Science were searched for
primary publications in English assessing texture analysis in
RCC in CTorMRI published after 01/01/2000. The databases
were last searched on the 30/10/2018. The search term
consisted of (textural OR radiomics OR texture OR histo-
gram) AND (kidney OR renal) AND (“computed tomogra-
phy” OR CT or “magnetic resonance” OR MRI OR MR).

A single researcher with 2 years of post-graduate experi-
ence in medical image analysis (S.U.) screened titles and ab-
stracts to determine eligibility. Articles in which texture anal-
ysis was employed for diagnostic, predictive, or prognostic
purposes on CT or MR images of RCC were obtained in full
for further evaluation. Contact with the authors was sought if
the full-text version was not accessible otherwise. Studies
were excluded if they were case reports, conference abstracts,
or short communications because they do not provide suffi-
cient information to assess the methodological quality. The
reference lists of included studies were screened for addition-
al, potentially eligible articles. Uncertainties were resolved in
consensus between SU, LB, and AB.

The Radiomics Quality Score (RQS) and the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2)
were used to assess the methodological quality of the included
studies and the risk of bias on the study level, respectively [15,
16]. The RQS is a recently proposed tool to measure the meth-
odological rigor of radiomics studies. It interrogates image
acquisition, radiomics features extraction, data modeling,
model validation, and data sharing. Each of the 16 dimensions
(Table 1) of the score is rated resulting in a sum of points
ranging from − 8 to 36 with − 8 to 0 defined as 0% and 36
defined as 100% [15]. The QUADAS-2 tool assesses the pres-
ence of bias in the domains of “patient selection,” “index test,”
“reference standard,” and “flow and timing.” The tool can be
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tailored to the specific research question through signaling
questions for risks of bias which are specific to the individual
research question [16].

During a training phase, the three reviewers (doctoral stu-
dent with 2 years of post-graduate experience in medical image
analysis (S.U.), a radiologist in the 4th year of training (L.B.),
and a board-certified radiologist with 8 years of experience
(A.B.)) independently extracted study data from two randomly
chosen articles into a structured data collection instrument gen-
erated based on RQS and QUADAS-2. Disagreements were
discussed in order to achieve a shared understanding of each
parameter. Subsequently, at least two raters assessed and rated
each study independently and recorded these on the data col-
lection instrument. The data collection instrument can be found
in supplementary Table S1.

Statistical analysis was conducted using R language for
statistical computing [17]. Analyses were performed using
the metafor, irr, and raters packages [18]. Unless otherwise
specified, the average rating of all raters is reported. Inter-
rater agreement for single items of the RQS was calculated

using a modified Fleiss kappa statistic for ordinal variables
[19]. A 95% confidence interval was derived from a Monte
Carlo test and bootstrap procedure over 1000 iterations.
P values for the null hypothesis that agreement resulted from
chance alone were calculated. The interclass correlation coef-
ficient (ICC) was determined to describe inter-rater agreement
for the summed RQS using a single source, two-way random
effects model determining absolute agreement between raters.

As pre-defined in the review protocol, studies would be
included in a meta-analysis of a large enough subset of the
included studies if a similar clinical question was assessed
repeatedly. Upon review of the study population, the differen-
tiation of lesions defined as either fat poor AML, AMLwvf, or
AML without macroscopic fat from malignant renal tumors
was addressed repeatedly. These studies were included in the
meta-analysis. Two-by-two contingency tables were extracted
or reconstructed and odds ratios were calculated as effect size.
A random effects model was used to calculate the summary
effect size. If multiple texture models were reported in a study,
only the one with the highest area under the receiver operating

Fig. 1 Pathway for the development of radiomics algorithms and
challenges in clinical translation. In addition to image acquisition and
image registration, non-quantitative MRI sequences may undergo inten-
sity normalization to reduce intra- and inter-patient heterogeneity.
Subsequently, either classical machine learning algorithms or deep learn-
ing are employed to define diagnostic, prognostic, or predictive models.

These models require external validation, ensuring transferability of re-
sults between sites and MR scanners before prospective validation and
demonstration of cost-effectiveness can enable these diagnostic support
systems to enter clinical practice. Continuous monitoring is required to
detect deteriorating model performance to trigger re-training and model
update as image acquisition evolves. ANN: artificial neural network
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curve or the highest Youden’s J statistic, if no AUCwas reported,
was included. If data augmentation, the generation of new data
through random transformation of existing cases, was performed,
the augmented cases were not included in the meta-analysis. A
funnel plot was constructed to visually assess the risk of publi-
cation bias and the trim and fill method was used to estimate the
number of missing studies. Q and I2 were calculated to estimate
the heterogeneity among the studies included in the meta-analy-
sis. A more detailed description of the statistical methods can be
found in the supplementary materials.

Results

The initial search yielded 776 articles of which 263 were du-
plicates. Of the remaining 513, 454 were rejected based on
title and abstract. Of the 59 full-text manuscripts retrieved, 57
were included in the systematic review (Fig. 2). The articles
employed radiomics-based diagnosticmodels to assess similar
clinical questions repeatedly. The differentiation of benign and
malignant lesions was investigated by 39% (22/57) of the
articles while 27% (15/57) explored subtype differentiation
and 21% (12/57) interrogated treatment response/outcome
prediction. Tables S2 and S3 summarize study aims and char-
acteristics, respectively.

The 57 studies reached a mean ± standard deviation RQS
of 3.41 ± 4.43, median 4.5, interquartile range 6.17, and range
− 4.0–16.6. The average percentage RQS was 9.4% with a
maximum of 46%. The average rating for each dimension is
summarized in Table 1, and the RQS for individual studies
and individual ratings for each study are presented in
Tables S2 and S4 respectively. Most studies applied discrim-
ination statistics, included biological correlates, and addressed

their potential clinical utility. Conversely, none of the studies
included in this systematic review employed phantoms or
assessed the cost-effectiveness of radiomics-based decision
support systems. No study shared either segmentations or
code publicly and only few assessed the repeatability of
radiomics analysis at multiple time points, employed calibra-
tion statistics or a validation cohort. Only 39% (22/57) of the
studies segmented the entire 3D tumor volume for texture
analysis, and 91% (52/57) used manual segmentation. Inter-
reader agreement was assessed in 32% (18/57) of the studies
and found to be moderate to excellent for single features or
radiomics signatures. Only a single study investigated the re-
peatability of radiomics measurements and found poor to
good repeatability of histogram parameters of the transfer con-
stant of dynamic contrast-enhanced MRI [20].

Studies included in this review extracted between four and
18,720 features (median 24) from two to 249 patients (median
61). The ratio between features and patients ranged from 25
times more patients than features to 240 times more features
than patients (median of 2.2 times more patients than fea-
tures). Feature reduction or adjustment for multiple testing
was used in 51% of studies (29/57) and while 14% (8/57)
relied on prospectively acquired data, none included plans
for radiomics analysis in its prospective study protocol.
Validation of radiomics signatures on independent validation
datasets was performed in 5% (3/57) of the studies, only one
of which employed an external dataset.

Assessment of the studies with the QUADAS-2 tool revealed
methodological aspects increasing the risk of bias. As
QUADAS-2 is not intended as a quantitative score, concern of
bias from the reviewers was aggregated qualitatively for the dif-
ferent dimensions addressed by the tool (Table S5). Risk factors
for bias which were repeatedly identified are summarized in

Table 1 Elements of the RQS as described by Lambin et al [15] and average rating achieved by the studies included in this systematic review

RQS scoring item Interpretation Average

Image Protocol + 1 for well documented protocols, + 1 for publicly available protocols 0.48
Multiple Segmentations + 1 if segmented multiple times (different physicians, algorithms, or perturbation of regions of interest) 0.38
Phantom Study + 1 if texture phantoms were used for feature robustness assessment 0.00
Multiple Time Points + 1 multiple time points for feature robustness assessment 0.01
Feature Reduction − 3 if nothing, + 3 if either feature reduction or correction for multiple testing 0.23
Non Radiomics + 1 if multivariable analysis with non-radiomics features 0.15
Biological Correlates + 1 if present 0.98
Cut-off + 1 if cutoff either pre-defined or at median or continuous risk variable reported 0.11
Discrimination and Resampling + 1 for discrimination statistic and statistical significance, + 1 if resampling applied 0.92
Calibration + 1 for calibration statistic and statistical significance, +1 if resampling applied 0.04
Prospective + 7 for prospective validation within a registered study 0.98
Validation − 5 if no validation/+ 2 for internal validation/+ 3 for external validation/+ 4 two external validation

datasets or validation of previously published signature/+ 5 validation on ≥ 3 datasets from > 1 institute
−4.61

Gold Standard + 2 for comparison to gold standard 1.73
Clinical Utility + 2 for reporting potential clinical utility 1.91
Cost-effectiveness + 1 for cost-effectiveness analysis 0.00
Open Science + 1 for open-source scans, + 1 for open-source segmentations, + 1 for open-source code, + 1 open-source

representative segmentations and features
0.02

RQS: Radiomics Quality Score
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Fig. 3. Risk factors relating to patient selection and timing of
index and reference tests were particularly frequently observed.
Reporting the temporal delay between the index and reference
test may be critical when determining tumor nuclear grade
which influences progression and less critical when compar-
ing RCC histological subtypes. The heavy reliance of litera-
ture on radiomics in RCC on retrospective surgical cohorts

scanned withmultiple scanners risks sampling technically var-
iable data. Most studies explained texture feature extraction in
detail; however, machine learning–based models were
employed in many papers without sufficient description of
the model parameters to allow replication.

The reproducibility of the RQS and QUADAS-2 was also
assessed. During the training phase, particular variability in

Fig. 2 Study selection flowchart

Fig. 3 Risk factors for bias
colored according the four
dimensions of the QUADAS tool.
The length of the bars is
equivalent to the frequency with
which this risk factor was
identified among the included
studies
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the rating of the detection and discussion of biological corre-
lates was identified. The reviewers agreed to rate the item
more liberally in agreement with previous publications [21].
The ICC for the RQS was 0.96 (95% CI 0.93–0.98). The ICC
for studies rated by all three reviewers (11/57) was 0.92 (95%
CI 0.80–0.98). Substantial or almost perfect agreement was
achieved for most individual elements of the RQS. Only mod-
erate agreement was reached in the assessment of the imaging
protocol (Table 2). Absolute agreement concerning risk of
bias and applicability of the seven indicator questions of the
QUADAS tool was generally above 75% for most dimen-
sions. Absolute agreement was 58% in the assessment of the
risk of selection bias.

Publication bias is a concern in radiomics studies in partic-
ular. Indeed, only 4/57 (7%) publications included in this re-
view report non-significant outcomes, all analyzing the differ-
entiation of AML and RCC. In the absence of prospective
investigations with pre-defined study protocols, selective
reporting of positive outcomes is a risk.

Thirteen of the 57 studies (23%) discussed the use of
radiomics for the differentiation of AMLwvf and malignant
renal tumors. Of these, 77% (10/13) provided information to
reconstruct a contingency table and calculate the effect size
and were included in the meta-analysis. The summary effect
size under the random effects model across the studies indi-
cated a diagnostic odds ratio of 5.89 (95% CI 4.02–8.23
p < 0.001) for radiomics models differentiatingAMLwvf from
RCC (Fig. 4). Cochran’s Q of 13.41, p = 0.15 with 9 degrees
of freedom and I2 = 33.5% suggested the presence of moder-
ate study-to-study dispersion. The funnel plot relating effect
size to its standard error is shown in Fig. 5. Trim and fill

analysis estimated that one study on the left side was missing.
Following the addition of this study, the estimated overall
effect size is OR = 5.55 (95% CI 3.77–8.16, p < 0.001).
Considerable diversity existed among the radiomics features
calculated and only mean in the unenhanced, entropy in the
unenhanced and nephrographic phase CT were found to dif-
ferentiate AMLwvf and RCC in two studies. Two studies
assessing the ability of low attenuation voxel percentage to
differentiate AMLwvf and RCC found significant differences
in opposing directions [22, 23].

Discussion

Radiomics may provide new quantitative imaging markers
without the need to invest in new acquisition equipment or
tracers. Multiple studies have shown promise in answering
clinical questions that conventional, qualitative radiological
diagnosis cannot answer. However, none of the multifactorial
radiomics algorithms has achieved clinical translation or been
independently validated. This systematic review has identified
several common characteristics among the included studies
that hinder rapid adoption of proposed algorithms into the
clinic. Replication and independent validation of research
findings relies on sharing of imaging data, segmentations,
and code. None of the studies included in this review have
provided open access to the code employed for data prepara-
tion, feature extraction, and model construction. This is par-
ticularly crucial where image pre-processing and artificial
intelligence–based modeling were applied. Guidelines
recommending reporting standards for machine learning
(ML) models have been published; however, making the code
used for data analysis publically available would be preferable
[24]. Overall, 34/57 studies used ML models. There was a
trend for these studies to be more recent than those not using
anyMLmodels. Furthermore, studies incorporating ML algo-
rithms achieved significantly higher RQS ratings than studies
without (5.16 ± 3.66 vs. 0.83 ± 4.27, p < 0.001). This was due,
in particular, to less frequent validation of results, inclusion of
non-radiomics parameters, and use of feature reduction and
correction for multiple comparisons in non-ML studies.

Where patient numbers are limited and countless radiomics
features can be quantified, it is critical to reduce the feature
space, e.g., through removal of poorly reproducible features to
reduce the risk of overfitting. This could be achieved with
texture phantoms that were not employed by any of the studies
in this review. Furthermore, appropriate statistical correction
for multiple comparisons and independent validation, which
has only been applied very rarely among the included studies,
will reduce the risk of false positive and overly optimistic
results. Meanwhile, prospective trials, where hypotheses are
defined in advance, reduce the risk of reporting bias. Most
trials included in this review only assessed surgical patients.

Table 2 Inter-rater agreement in the assessment of the RQS

RQS scoring item S* [95% CI]

Image Protocol 0.45 [0.20–0.67]

Multiple Segmentations 0.93 [0.82–1.00]

Phantom Study 1.00 [1.00–1.00]

Multiple Time Points 0.93 [0.82–1.00]

Feature Reduction 0.93 [0.82–1.00]

Non Radiomics 0.67 [0.49–0.85]

Biological Correlates 0.93 [0.82–1.00]

Cut-off 0.93 [0.82–1.00]

Discrimination and Resampling 0.82 [0.71–0.92]

Calibration 0.96 [0.89–1.00]

Prospective 1.00 [1.00–1.00]

Validation 1.00 [1.00–1.00]

Gold Standard 0.76 [0.63–0.88]

Clinical Utility 0.60 [0.38–0.82]

Cost-effectiveness 1.00 [1.00–1.00]

Open Science 1.00 [1.00–1.00]

CI: confidence interval, RQS: Radiomics Quality Score
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However, surgical cohorts may be enriched in malignant le-
sions and larger tumor sizes, leading to selection bias. Small
renal masses, which can be difficult to classify, may be
assigned to active surveillance and are, therefore, underrepre-
sented in surgical cohorts.

The RQS has been proposed to assess the methodological
quality of radiomics studies, which is important to critically
appraise the large number of publications and to prioritize
validation of high-quality results. Because varying inter-rater
agreement was observed in the first application of the RQS
[21], two articles were used to train researchers. As a result,
high agreement for the overall rating (ICC = 0.96) and most

elements of the score (S* > 0.75) was achieved. Compared to
the first application of the RQS, the average RQS rating was
lower (10.8% vs 21.9%) as was the rating for the best
performing study (48% vs 55.5%). Another, recently pub-
lished review employing the RQS did not report inter-rater
agreement [25].Only few systematic reviews in radiomics lit-
erature have been published and even fewer assessed method-
ological quality systematically and quantitatively. As a result,
the RQS has not yet found widespread application.

The dependency of multiple radiomics features on image
acquisition parameters has been demonstrated repeatedly
[26–28]. However, only half of the studies included in this
review documented the most important parameters. The selec-
tion of the scanner manufacturer and model, acquisition, and
reconstruction parameters cause heterogeneity of imaging da-
ta. If the aim is to achieve broadly applicable radiomics
models, standardization will be required wherever possible.
Elsewhere, feature selection could consider robustness to var-
iations in acquisition parameters and adjustments could be
applied to the input data or the extracted features. The non-
quantitative nature of T1- and T2-weighted MR sequences
introduces additional heterogeneity even when acquisition pa-
rameters are kept constant. As a result, MR-based radiomics
models frequently employed parametric maps, which do not
require initial signal intensity normalization, were used most
commonly. Out of 17 studies using MR, nine included the
advanced diffusion coefficient based on diffusion-weighted
imaging and two the transfer constant kTrans from dynamic
contrast-enhanced MRI in their analysis. Two studies
employed ADC histogram parameters to differentiate tumor
subtypes observing similar trends but differential statistical
significance due to low numbers of cases.

Fig. 4 Forrest plot of the effect
size calculated as log odds ratio
for 10 of 13 studies investigating
the diagnostic accuracy of
radiomics in the differentiation of
AMLwvf from RCC. TP: number
of AMLwvf patients correctly
diagnosed, FN: number of
AMLwvf patients diagnosed as
having RCC, FP: number of RCC
patients diagnosed as having
AML, TN: number of RCC
patients correctly diagnosed. X-
axis: log-transformed odds ratios,
RE: random effects

Fig. 5 Funnel plot of studies included in the meta-analysis (black) and
missing studies identified by trim and fill analysis (white dot). The funnel
plot was asymmetric with more studies than expected reporting higher
odds ratios for the ability of radiomics to differentiate between malignant
renal tumors and benign AMLwvf; this can indicate the presence of
publication bias
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Most studies segmented only part of the tumor. In light of
recent findings highlighting the intratumoral heterogeneity in
RCC on a genetic and metabolic level, texture analysis in a
single 2D slice risks underestimating intratumoral heterogene-
ity [29–31]. However, studies segmenting single 2D slices of
the tumor achieved equal RQS ratings and no trend over time
favoring one segmentation strategy was apparent. The few
publications comparing 2D and 3D texture analysis reached
varying conclusions regarding their ability to correctly mea-
sure heterogeneity in tumors. However, it seems premature to
suggest that segmentation of single slices was equivalent in
diagnostic value to segmentation of an entire lesion. Only a
small subset of the studies (5/57) placed small regions of in-
terest within the tumor. These were either very early studies or
studies where multiregional tissue sampling to match the re-
gions of interest was carried out. Additionally, there is scope
for further integration of radiomics data with clinical, genetic,
and metabolic data to achieve a more complete understanding
of renal cancer and harness the complementary value of each
modality in cancer diagnostics, prognosis, treatment response
prediction, and monitoring.

This review has some inherent limitations. First, the arti-
cles included in the meta-analysis differed slightly in their
inclusion criteria. The control group was composed of
ccRCC only in four studies while six included RCC of mul-
tiple subtypes. The methodology will always differ between
radiomics studies as different centers use different equip-
ment and the choice of image reconstruction, filtration, fea-
ture extraction, and calculation of radiomics models offer
countless combinations. Still, a meta-analysis of the existing
evidence provides important information as to the consisten-
cy of results and the magnitude of the effect size that can be
anticipated and helps to estimate publication bias. Notably,
the clinically more relevant question of differentiating
oncocytoma from RCC was less frequently assessed. A
number of studies included in this review were published
before the introduction of the RQS. However, there was no
trend for improvement over time; therefore, this was not
thought to be a significant risk of bias. The RQS as well
as QUADAS-2 have limitations. While the former is a quan-
titative metric and a debate about the appropriate weighting
of different components is justified, the latter is a qualitative
score and therefore less easily interpretable. Still, both scores
are timely tools for the assessment of methodological quality
of this highly specialized area of research.

In conclusion, radiomics models show promise for aug-
menting radiological diagnosis in renal cancer. The differenti-
ation of AMLwvf and RCC has been investigated repeatedly
and a meta-analysis showed moderate ability of radiomics to
facilitate this distinction. However, well-designed and appro-
priately powered prospective radiomics trials are needed for
these novel imaging markers to demonstrate their validity and
progress towards clinical translation.
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