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Abstract: This paper addresses reconstruction of linear dynamic networks from heterogeneous datasets.
Those datasets consist of measurements from linear dynamical systems in multiple experiment subjected
to different experimental conditions, e.g., changes/perturbations in parameters, disturbance or noise.
A main assumption is that the Boolean structures of the underlying networks are the same in all
experiments. The ARMAX model is adopted to parameterize the general linear dynamic network
representation “Dynamical Structure Function” (DSF), which provides the Granger Causality graph as a
special case. The network identification is performed by integrating all available datasets, which resorts
to group sparsity to assure both network sparsity and the consistency of Boolean structures over datasets.
In terms of solving the problem, a treatment by the iterative reweighted l1 method is used, together with
its implementations via proximal methods and ADMM for large-dimensional networks.
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1. INTRODUCTION

Network inference has been widely applied in different fields to
learn interaction structures or dynamic behaviors. Such fields
include systems biology, computer vision, econometrics, so-
cial network, etc. However, there is no agreement upon the
definition of “network”, and it usually refers to a larger class
of graphical models than the standard definition in the graph
theory. In particular, with increasingly easier access to time-
series data, it is expected that networks can explain dynamics or
causal interactions. For instance, biologists use causal network
inference to determine critical genes that are responsible for
diseases in pathology, e.g. Bar-Joseph et al. (2012).

In the study of causal networks, a popular model used in bi-
ology is Bayesian networks, e.g. Murphy and Mian (1999).
Although it delivers certain causality information, the Bayesian
network is defined on directed acyclic graphs. See (Pearl, 1995,
p. 127) for more information on domains of different proba-
bilistic models. However, the feedback loops in networks could
be particularly important in biological applications. Concerning
general causal networks, as the primary advance in Granger
(1969), Granger causality (GC) provides causality graphs (e.g.
Eichler (2007)) based on predictability to identify causation
between time-series variables. However, as it was realized in
Granger (1969), this approach may be problematic in deter-
ministic settings, especially in dynamic systems with weak to
moderate coupling. Inspired by GC, which is equivalent to
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the vector autoregression form under fairly weak conditions
(e.g. Eichler (2007)), an idea of adopting system theory has
been proposed to deal with causal network reconstructions. For
instance, Chiuso and Pillonetto (2012) proposed a kernel-based
system identification approach together with group LASSO to
infer GC networks.

There has been several papers proposing methods for network
inference by identifying simple dynamical models in biological
applications, e.g. Beal et al. (2005). To study the identifiability
issue in network inference, a general network representation
for linear time-invariant (LTI) systems needs to be introduced.
Similar or nearly equivalent such general representations are
introduced in Goncalves and Warnick (2008) and Weerts et al.
(2015) with different perspectives. The results on network
identifiability are firstly manifested in Goncalves and Warnick
(2008). In the sense of inference, these two representations are
not different, and the model description used in later sections
refers to either of them interchangeably.

Most biological experiments have replica. The ordinary treat-
ment is to take averages with the purpose of removing effects
of noise. However, in most biological applications, only a few
replica are available, e.g. less than 5, which implies it no longer
makes sense to work with statistical averages. Pan et al. (2015)
proposes a way to to take advantage of replica to increase
robustness or accuracy of estimation. What’s worse, the system
parameters of biological processes could be fairly different due
to the variance in individuals in experiment repetitions, as ob-
served in biological experiments He et al. (2012). The essence
is the interconnection structure, e.g. interactions between genes,
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communication between neurons, which keeps consistent over
experiment repetitions. The method proposed in the paper al-
lows the system parameters to be significantly different, as
long as the network topology keeps consistent over replica. The
whole reconstruction method is illustrated in Figure 1.

Optimization

Network Models
(DSF)

Network 
Predictor Model

ARMAX

PEM/ML

Regression Model
ARX

Sparsity of  Network

Heterogeneity
group sparsity

group sparsity

noise/
disturbance

⇢

minimize
w

ky �A(w)wk22 + �kwSk0

y = A(w)w + ⇠

Fig. 1. An overview of the network reconstruction method.

2. PROBLEM FORMULATION

Let Y , {y(t), t ∈ Z}, U , {u(t), t ∈ Z} be multivariate time
series of dimension p and m, respectively, where the elements
could be deterministic (y(t) ∈ Rp, u(t) ∈ Rm) or be real-
valued random vectors defined on probability spaces (Ω,F ,P).
We usually assume that u(t) is deterministic in practice, which
is interpreted as controlled input signals.

2.1 Linear dynamic networks

Consider the following model for LTI systems (the Dynamical
Structure Function (DSF) in Goncalves and Warnick (2008); or
a similar model in Weerts et al. (2015))

y(t) = Q(q)y(t) + P (q)u(t) +H(q)e(t), (1)
where y(t) = [y1(t), . . . , yp(t)]

T , u(t) = [u1(t), . . . , um(t)]T ,
a p-variate i.i.d. e(t) = [e1(t), . . . , ep(t)]

T with zero mean and
covariance matrix I for all t,

Q(q) = [Qij(q)]p×p, Qii(q) = 0, ∀i,
P (q) = [Pij(q)]p×m, H(q) = diag(Hii(q))

1 ,

Qij(q), Pij(q), Hii(q) are single-input-single-output (SISO)
transfer functions, and q is the forward-shift operator, i.e.
qy(t) = y(t+ 1), q−1y(t) = y(t− 1).
Definition 1. Let G = (V,E) be a digraph, where the vertex set
V = {y1, . . . , yp, u1, . . . , um} 2 , and the arc (directed edge)
set E is defined by

� (yj , yi) ∈ E ⇔ Qij(q) 6= 0,
� (uk, yi) ∈ E ⇔ Pik(q) 6= 0,
� (yi, uk) /∈ E, ∀i, k.

Let f be a map defined as
f : E → STF

(yj , yi) 7→ Qij(q) or (uk, yi) 7→ Pik(q),

where STF is a subset of single-input-single-output (SISO)
(strictly) proper real rational transfer functions. We call the
tuple N := (G, f) a (linear) dynamic network 3 , f the (linear)
dynamic capacity function of N , and G the underlying digraph
of N , which is also called (linear) Boolean dynamic network.
1 Choosing H(q) to be diagonal is due to network identifiability studied in
Goncalves and Warnick (2008). See also Hayden et al. (2016).
2 Here yi, uk are label names of the vertices, instead of signals yi(t), uk(t).
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Fig. 2. Graphical illustrations of a linear dynamic network.

2.2 Network reconstruction from multiple experiments

Now let us consider the case of multiple experiments. Let {Y [c],
U [c]}c=1,...,C denote the measurements from C experiments.
We use N ((Q,P,H)) to denote the dynamic network N (i.e.
(G, f)) determined by (Q,P,H) (i.e. (1)); and G((Q,P,H))
the corresponding Boolean dynamic network. The governing
model (1) could be different in each experiment, denoted by
(Q,P,H)[c], c = 1, . . . , C. In addition, N 0 denotes a fixed
dynamic network, and G0 a fixed Boolean dynamic network.

We say the datasets {Y [c], U [c]} are homogeneous, if N ((Q,
P,H)[c]) ≡ N 0,∀c, i.e. the measurements are from the same
dynamic network. And the datasets {Y [c], U [c]} are called het-
erogeneous, if G((Q,P,H)[c]) ≡ G0,∀c but N ((Q,P,H)[c])
are different between certain c ∈ {1, . . . , C}.
Assumption 2. The underlying systems in multiple experi-
ments, which provide {Y [c], U [c]}c=1,...,C , satisfy that G((Q,

P,H)[c]) ≡ G0 for any c = 1, . . . , C.

The problem is to find a method to infer the dynamic network
using the datasets from multiple experiments satisfying As-
sumption 2. In particular, we focus on the heterogeneous case.

3. NETWORK MODEL STRUCTURES

3.1 ARMAX model structure

Consider the network model description of (1) for system
identification

y(t) = Q(q, θ)y(t) + P (q, θ)u(t) +H(q, θ)e(t), (2)
where θ is the model parameter. Its element-wise form is

yi(t) =

p∑

j=1

Qij(q, θ)yj(t)+

m∑

k=1

Pik(q, θ)uk(t)+Hii(q, θ)ei(t).

(3)
We introduce ARMAX model for (3), which is given by

Ai(q)yi(t) =

p∑

j=1

Byij(q)yj(t)+

m∑

k=1

Buik(q)uk(t)+Cii(q)ei(t),

where
Ai(q) = 1+ai1 q

−1 + · · ·+ aina
i
q−n

a
i ,

Byij(q) = byij1 q
−1 + · · ·+ by

ijnby
ij

q−n
by
ij ,

Buij(q) = buij1 q
−1 + · · ·+ bu

ijnbu
ij

q−n
bu
ij ,

Ci(q) = 1+ ci1 q
−1 + · · ·+ cinc

i
q−n

c
i .

3 The definition is modified from the standard definition of network in the
graph theory (e.g. (Diestel, 2006, p. 141)). The term “dynamic” is referred to
that E, f are defined based on dynamical systems, and “linear” indicates (1) is
for linear dynamical systems. The concepts of source and sink are not included
due to little contribution to our study.



Hence the ARMAX model for (2) is
A(q)y(t) = By(q)y(t) +Bu(q)u(t) + C(q)e(t), (4)

where

A ,



A1

. . .
Ap


 , By ,




0 By12 · · · By1p
By21 0 . . . By2p

...
...

. . .
...

Byp1 B
y
p2 · · · 0


 ,

C ,



C1

. . .
Cp


 , Bu ,




Bu11 Bu12 · · · Bu1m
Bu21 Bu22 . . . Bu2m

...
...

. . .
...

Bum1 B
u
m2 · · · Bumm


 .

(5)

It is easy to see
Q(q, θ) = A−1By, P (q, θ) = A−1Bu, H(q, θ) = A−1C.

(6)
Remark 3. The form (4) simplifies to be an ARX model if
C(q) ≡ I; and it becomes an FIR model when A(q) ≡ I in
addition. Moreover, the polynomial orders nai , n

by
ij , n

bu
ij , n

c
i can

be set to different values. However, in practice, we could start
with setting nai ≡ na, nbyij ≡ nby , nbuij ≡ nbu, nci ≡ nc; and
tune these orders differently over i, j if necessary.

3.2 Network predictor model

Consider the network model (1) and notice that
[
I − Q(q)

]
is

invertible. We have
y(t) =

(
I −Q

)−1
Pu(t) +

(
I −Q

)−1
He(t)

, Guu(t) +Gee(t).
(7)

We refer to (Ljung, 1999, pp. 70) for the one-step-ahead pre-
diction of y is

ŷ(t|t− 1) = G−1
e Guu(t) + (I −G−1

e )y(t),

and thus the network predictor model of (2) is given by
ŷ(t|t− 1) = H−1Pu(t) + H−1

(
Q+H − I

)
y(t). (8)

The one-step-ahead predictor of the ARMAX model follows by
substituting the expressions in (6)

ŷ(t|θ) = C−1Buu(t) + (C−1By + I − C−1A)y(t), (9)
where ŷ(t|t − 1) , ŷ(t|θ) to emphasize the dependency on
model parameters θ.

3.3 Regression forms

Rewriting (9) and adding [I−C(q)]ŷ(t|θ) to both sides, it yields
ŷ(t|θ) = Bu(q)u(t) +

[
By(q)−

(
A(q)− I

)]
y(t)+(

C(q)− I
)[
y(t)− ŷ(t|θ)

]
.

(10)

To formulate a regression form, let us introduce the prediction
error ε(t|θ) := y(t)− ŷ(t|θ), and consider the prediction of the
i-th output yi(t)
ŷi(t|θ) = B̄ui (q)u(t) +

[
B̄yi (q)−

(
Āi(q)− Īi

)]
y(t)+(

Ci(q)− Īi
)[
yi(t)− ŷi(t|θ)

]
,

(11)

where Āi, B̄
y
i , B̄

u
i , Īi are the corresponding i-th rows ofA,By,

Bu and I . Provided with the notations
ϕ(t, θi) ,

[
y1(t− 1) . . . y1(t− nbyi1 ) . . .
−yi(t− 1) . . . −yi(t− nai ) . . .

yp(t− 1) . . . yp(t− nbyip )

u1(t− 1) . . . u1(t− nbui1 ) . . .
ui(t− 1) . . . ui(t− nbuii ) . . .
um(t− 1) . . . um(t− nbuim)

εi(t− 1) . . . εi(t− nci )
]T

(12)

and
θi ,

[
byi11 · · · by

i1nby
i1

· · · ai1 · · · aina
i
· · ·

byip1 · · · by
ipnby

ip

bui11 · · · bu
i1nbu

i1

· · · buii1 · · · buiinbu
ii

· · ·

buim1 · · · buimnbu
im

ci1 · · · cinc
i

]T
, (N blocks)

(13)

where N = p + m + 1, we obtain a pseudo-linear regression
form

ŷi(t|θi) = ϕT (t, θi)θi, i = 1, . . . , p. (14)
Remark 4. Note that there is an important link between the
framed parameter blocks in (13) and the network. Each directed
link in the digraph corresponds to a linear dynamic system from
an input uj or an output yj to an output yi. The parameters of
this linear system are given in the block with parameters buij·
or byij· together with ai·. We will later (in (17) and (21)) denote

these parameter blocks by w
[c]
k or wk with a numbering k (see

Figure 3 for an example).

4. HETEROGENEOUS DATASETS

4.1 Regression forms of multiple datasets

Considering the regression form for network inference, since
the p regression problems are independent, the whole network
can be inferred by formulating and solving (14) for p output
variables. Therefore, without loss of generality, it is assumed
in the later sections that we are dealing with the i-th output
variable yi. Thus, for simplicity, we introduce the following
notations

y[c] ,



yi(t1|θi)

...
yi(tM |θi)


 , A[c](w[c]) ,



ϕT (t1, θi)

...
ϕT (tM , θi)


 , (15)

where w[c] , θi
4 , and (14) is evaluated at {t1, . . . , tM}.

Furthermore, we rewrite into block matrices

y[c] = A[c](w[c])w[c] + ξ[c], c = 1, . . . , C, (16)
where

A[c] ,
[
A

[c]
:,1 A

[c]
:,2 · · · A

[c]
:,N

]
,

w[c] ,
[(
w

[c]
1

)T · · ·
(
w

[c]
i

)T · · ·
(
w

[c]
p

)T
,

(
w

[c]
p+1

)T · · ·
(
w

[c]
p+i

)T · · ·
(
w

[c]
p+m

)T
,

(
w

[c]
N

)T ]T

ξ[c] ,
[
ξ[c](t1) ξ[c](t2) · · · ξ[c](tM )

]
,

(17)

and w[c] is partitioned into N blocks as illustrated in (13), and
ξ[c] denotes the prediction error, which represents the part of the
output y[c] that cannot be predicted from past data. Note that the
blocks may have different dimensions due to the general setup
of the ARMAX model (see Remark 3).

4 Here θi represents the system parameters of the underlying model in the c-th
experiment.



Letting

wk ,



w

[1]
k
...

w
[C]
k


 , w =




w1

...
wN


 , (18)

we integrate all datasets by stacking (16) for each dataset
and rearranging blocks of matrices, yielding (19), and, for
simplicity, use y = A(w)w + ξ to denote (19b).
Remark 5. When experiments are perfectly repeated, i.e. the
homogeneous case (refer to Section 2.2), we have the ideal case
w[1] = · · · = w[C] ≡ w. A single linear regression form is
formulated for identification by concatenation:



y[1]

...
y[C]


 =



A[1](w)

...
A[C](w)


w +



ξ[1]

...
ξ[C]


 . (20)

This treatment can also be used when w[c]’s are not signifi-
cantly different, e.g. being perturbed by white noise.

4.2 Simultaneous sparsity regularization

Now we consider the two essential requirements for network
inference from heterogeneous datasets: 1) sparse networks is
acquired in the presence of noise; 2) w[c] is required to give the
same network topology for all c, i.e. the inference results (Q̂, P̂ ,

Ĥ)[c] satisfy G((Q̂, P̂ , Ĥ)[c]) ≡ G0,∀c (see Section 2.2). The
example in Figure 3 helps to understand.

26666666666666666666666666666666666666666666666666666666666666666664

1
0

1.8
0
1
1
0
2
0

3.2
0
0
0
0

37777777777777777777777777777777777777777777777777777777777777777775

experiment 1

experiment 2

w
[1]
1

w
[2]
1

w
[2]
2

w
[1]
2

w
[1]
3

w
[2]
3

w
[2]
4

w
[1]
4

}
}

}
}

}
}
}
}

}
}

}
}

}
}
}
}

w

A2
A2

}

}
}

Q21 , 0

Q23 , 0

Q24 = 0

By
21

By
23

By
24

By
21

By
23

By
24

, 0

, 0

, 0

, 0

= 0

= 0

y1

y2

y3

y4

q�1

2q�2

y1

y2

y3

y4

1.8q�1

3.2q�2

Fig. 3. An example of w in the setup of multiple experiments.

Let us introduce a term of group sparsity based on w,

wS := [‖w1‖2, · · · , ‖wN‖2]
T
, (21)

in which wS ∈ RN , ‖·‖2 the l2-norm of vectors,N the number
of large groups (see (13)). The dimensions of each block w

[c]
k

and wk in (18) are saved in two vectors ρE , ρS , respectively

ρ ,
[
nbyi1 , . . . , n

a
i , . . . , n

by
ip , n

bu
i1 , . . . , n

bu
ip , n

c
i

]T
,

ρE := ρ⊗ 1C , ρS := Cρ,
(22)

where the elements of ρ are defined in (13), 1C is a C-
dimensional column vector of 1’s, and the index i in ρ indicates
that we are dealing with i-th output yi(t).

Group sparsity is needed such that the sparsity of networks is
guaranteed and the network topology is consistent over replica
(i.e. the interconnection structure determined by the w[c]’s are
identical). The sparsity is imposed on each large group wk, k =

1, . . . , N , and the penalty term is λ‖wS‖0, where λ ∈ R+. The
mechanism on how the group sparsity functions is described as
follows.

Recall that the setup (19) allows the system parameters to
be different in values for different c’s. Note that each small
block w

[c]
k corresponds to an arc in the underlying digraph of

the dynamical system in the c-th experiment (see an example
Figure 3). The ‖wk‖2 chosen to be zero yields that all w[c]

k , c =
1, . . . , C equals zero. It implies that the arc corresponding to
w

[c]
k does not exist in dynamic networks for any c. In addition,

thanks to the effect of noise, it is nearly guaranteed that w[c]
k

is not identical to zero for almost all c if ‖wk‖2 6= 0. This
is how the group sparsity (defined via wS) guarantees that the
resultant networks of different datasets share the same topology.
Moreover, when a classical least squares objective is augmented
with a penalty term of λ‖wS‖0, the optimal solution favors
zeros of wk, k = 1, . . . , N , which guarantees the sparsity of
network structures.

In summary, to perform dynamic network reconstruction from
noisy heterogeneous datasets, we can solve the following opti-
mization problem

minimize
w

‖y −A(w)w‖22 + λ‖wS‖0. (23)

5. A TREATMENT BY CLASSICAL L1/L2-METHODS

The section considers how to solve the problem (23) under
different parametrization models. Due to the page limitation,
we present treatments to the ARX models. See Yue et al.
(2016) for a complementary discussion on ARMAX models
and another treatment by Sparse Bayesian Learning in the
Bayesian perspective on statistical estimation.

5.1 A fundamental case: ARX models

As addressed in Section 3.3, choosing ARX forms for network
parametric models results in a linear regression form, in which
A does not depend on w in (19). The treatment of classical
group LASSO yields

minimize
w

‖y −Aw‖22 + λ‖wS‖1, (24)

where

λ‖wS‖1 = λ

N∑

i=1

√
ρSi ‖wi‖2. (25)

This is a convex optimization and has been soundly studied in
Yuan and Lin (2006).

To achieve a better approximation of the l0-norm, alternatively
one may use Iterative Reweighted l1/l2 Methods (e.g. see
Candes et al. (2008); Chartrand and Yin (2008)). When being
applied to group sparsity, both methods turn to be a similar
scheme (differing in the usage of ‖ · ‖2 or ‖ · ‖22 for blocks
of w in (26) and (27)). Here we present the solution using the
l1 method.

w(k+1) ← arg min
w
‖y−Aw‖22+λ

N∑

i=1

ν
(k)
i

√
ρSi ‖wi‖2, (26)

where
ν
(k)
i ←

[
‖w(k)

i ‖2 + ε(k)
]−1

, (27)

where k is the index of iterations. In regard to the selection of ε,
{ε(k)} should be a sequence converging to zero, as addressed in





y[1]

...
y[C]


 =




A
[1]
:,1(w[1]) . . . A

[1]
:,N (w[1])

. . .
A

[C]
:,1 (w[C]) . . . A

[C]
:,N (w[C])




︸ ︷︷ ︸
C Blocks



w[1]

...
w[C]


+



ξ[1]

...
ξ[C]


 (19a)

=




A
[1]
:,1(w[1]) A

[1]
:,N (w[1])

. . . · · · . . .
A

[C]
:,1 (w[C]) A

[C]
:,N (w[C])




︸ ︷︷ ︸
N Blocks




w1

...
wN


+



ξ[1]

...
ξ[C]


 (19b)

Chartrand and Yin (2008) based on the Unique Representation
Property. It suggests in Chartrand and Yin (2008) a fairly
simple update rule of ε, i.e. ε(k) ∈ (0, 1) is reduced by a factor
of 10 until reaching a minimum of 10−8 (the factor and lower
bound could be tuned to fit specific problems). One may also
adopt the adaptive rule of ε given in Candes et al. (2008).

5.2 Fast implementations via Proximal Methods and ADMM

To solve the convex optimization in Section 5.1, for example,
CVX for MATLAB could be an easy solution. However, the
performance is not promising for large-dimension problems.
This section presents algorithms using Proximal Methods and
ADMM (Parikh and Boyd (2013)) to handle large-dimension
network reconstruction problems.

Let us first consider (24), which is rewritten as
minimize

w
f(w) + g(w), (28)

where f(w) , (1/2)‖y−Aw‖22, g(w) , λ‖wS‖1, λ is twice
larger than the value in (25). Given ∇f(w) = AT (Aw − y),
the Proximal Gradient Method is to update w by wk+1 =
proxγg(w

k − γ∇f(wk)), γ ∈ R+, where k denotes the
iteration index. It is easy to see that g(w) =

∑N
i=1 gi(wi),

where gi(wi) := λ
√
ρSi ‖wi‖2. Firstly we partition the variable

v of proxγg(v) in the same way as w in terms of wi, i =

1, . . . , N , i.e. v = [vT1 , . . . ,v
T
N ]T . Then we calculate the

proximal operator proxγgi(vi), which equals

proxγgi(vi) =
(

1− γλ
√
ρSi /‖vi‖2

)
+
vi, (29)

where (·)+ replaces each negative elements with 0. It follows
that

proxγg(v) =
[(
proxγg1(v1)

)T · · ·
(
proxγgN (vN )

)T ]T
.

(30)
The value of γ needs to be selected appropriately so as to
guarantee the convergence. One simple solution is using line
search methods, e.g. see Section 4.2 in Parikh and Boyd (2013).

Provided with the above calculations, it is straightforward to
implement the (Accelerated) Proximal Gradient Method (see
Yue et al. (2016) for details). To implement ADMM, the proxi-
mal operator of f(w) needs to be calculated,

proxγf (v) = (I + γATA)−1(γATy + v). (31)

Given proxγg(v) as (29) and (30), the ADMM method is
presented in Algorithm 1.

To use this algorithm for the iterative reweighted l1 method
(26), we only need to modify (29), which now should be

Algorithm 1 ADMM method

1: Precompute ATA and ATy
2: given an initial value w0, z0,u0, γ0 = 1, and β = 1/2
3: repeat
4: γ ← γk

5: repeat
6: ŵ← proxγf (zk − uk) using (31)
7: break if f(ŵ) ≤ f(wk) +∇f(wk)T (ŵ −wk) +

(1/2γ)‖ŵ −wk‖22
8: γ ← βγ
9: until ;

10: wk+1 ← ŵ, γk+1 ← γ
11: Compute proxγgi(w

k+1
i +uki ) by (29) for i = 1, ..., N

12: zk+1 ← proxγg(w
k+1 + uk) using (30)

13: uk+1 ← uk + wk+1 − zk+1

14: until any standard stopping criteria

proxγgi(vi) =
(

1− γλνi
√
ρSi /‖vi‖2

)
+
vi. (32)

In each “outer” loop indicated by (26), we update νi by (27)
and implement ADMM as Algorithm 1 to solve (26).

6. NUMERICAL EXAMPLES

We consider a Monte Carlo study of 50 runs where random
stable sparse networks of 40 nodes are simulated and inferred
using the proposed methods. In regard to the adjective words
for networks, here are further explanations:

• random: the DSF model in each run are randomly chosen
(both network topology and model parameters);

• stable: each DSF model is stable, i.e. all transfer-function
elements in (Q,P,H) are stable;

• sparse: the number of edges of the network is much less
than that of its complete digraph.

See Yue et al. (2016) for details on the setup of random network
models with random network topology. Our setup of systems
(networks) makes network inference particularly challenging.
In these networks, there exist many feedback loops, whose sizes
are quite random. Moreover, the networks cannot be decoupled
into smaller unconnected components.

The following performance indices are used to benchmark our
algorithms. As analogous to concepts in statistics, Type-I error
is asserting arcs that is absent (a false hit) and Type-II error is
failing to assert arcs that are present (a miss), which are defined
as follows

Type-I error =
FP

TP + FP
, Type-II error =

FN
TP + FN

.



Here TP (true-positive), FP (false-positive) and FN (false-
negative) are the standard concepts in the Precision-Recall
curve (e.g. see Sahiner et al. (2017)).

As known in biological data analysis, the time series are usually
of low sampling frequencies and limited numbers of samples.
To address the importance of these factors, we run network
inference methods (the ARX case) on a range of their values,
shown in Figure 4. The sampling frequency is critical for
applying discrete-time approaches for network inference, since
the network topology from discrete-time systems will more
and more different from the ground truth that is defined by
the underlying continuous-time systems, with the decrease of
sampling frequencies. The rule of thumb is choosing the sample
frequency that is at least 10 time faster than the critical sampling
frequency of system aliasing 5 (e.g. fs/4 in Figure 4 is this
suggested value). The sparsity is to handle the effect of noise.
The simulation tells us that the value that is at least four times
larger than the number of unknown parameters in estimation is
a fair choice for the number of samples in network inference.

Another comment is for the “trade-off” between type-I and
type-II errors when selecting regularization parameters λ. In
theory, there could be an optimal value of λ that gives small
values of both type-I and type-II errors. However, in practice,
type-I error is more critical in the sense that it has to be small
enough to keep results useful. Otherwise, even if type-II error is
small, the result will predicate too many wrong arcs to be useful
in applications. As a rule implied from Figure 4, in biological
practice, we may choose an aggressive value of λ to make sure
that we could have most predictions of arcs correctly; then, if
more links need to be explored, we could decrease λ to get more
connections covered.
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Fig. 4. Performance of the proposed method on 50 random
networks. See Yue et al. (2016) for further details.

7. CONCLUSIONS

Large-dimensional linear dynamic network reconstruction from
heterogeneous datasets in the framework of Dynamical Struc-
ture Function (or P. Van den Hof’s network representation) has
been discussed. It has been addressed that the linear dynamic

5 This is only theoretically useful since we have not yet known how to access
the critical frequency of system aliasing without the ground truth.

network reconstruction can be formulated as identification of
DSF with sparse structures. To take advantage of heterogeneous
datasets from multiple experiments, the proposed method inte-
grates all datasets in one regression form and resorts to group
sparsity to guarantee network topology to be consistent over
replica. To solve the cardinality optimization problem, the treat-
ment of classical l1/l2 heuristic methods has been introduced.
In the numerical examples, we have shown the performance of
methods and pointed out several factors that should be consid-
ered in network reconstruction applications.
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