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Abstract

The Kuramoto model of coupled phase oscillators is often used to describe synchronization phenomena in nature. Some applications,
e.g., quantum synchronization and rigid-body attitude synchronization, involve high-dimensional Kuramoto models where each oscillator
lives on the n-sphere, SO(n), or U(n). These manifolds are all special cases of the compact, real Stiefel manifold St(p, n). Using tools
from optimization and control theory, we prove that the generalized Kuramoto model on St(p, n) converges to a synchronized state for
any connected graph and from almost all initial conditions provided (p, n) satisfies p ≤ 2

3 n− 1 and all oscillator frequencies are equal.
This result could not have been predicted based on knowledge of the Kuramoto model in complex networks over the circle. In that case,
almost global synchronization is graph dependent; it applies if the network is acyclic or sufficiently dense. This paper hence identifies a
property that distinguishes many high-dimensional generalizations of the Kuramoto models from the original model.
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1 Introduction

The Kuramoto model and its many variations are canoni-
cal models of systems of coupled phase oscillators [Hop-
pensteadt and Izhikevich, 2012]. As such, they are abstract
models that capture the essential properties observed in a
wide range of synchronization phenomena. However, many
properties of a particular system are lost through the use of
these models. In this paper we study the convergence of a
multi-agent system on the Stiefel manifold that includes the
Kuramoto model as a special case. For a system of N cou-
pled agents that are subject to various constraints, a high-
dimensional Stiefel manifold may provide a more faithful
approximation of reality than a phase oscillator model. The
orientation of an agent in a swarm can e.g., be modeled as
an element of the circle, the sphere, or the rotation group—
all of which are Stiefel manifolds. For a high-dimensional
model to be preferable it must retain some property of the
original system which is lost to phase oscillator models. That
is indeed the case; we prove that if the complex network of
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interactions is connected, if all frequencies are equal, and a
condition on the parameters of the manifold is satisfied, then
the system converges to the set of synchronized states from
almost all initial conditions. The same cannot be said about
the Kuramoto model in complex networks on the circle S1 in
the case of oscillators with homogeneous frequencies [Ro-
drigues et al., 2016]. Under that model, guaranteed almost
global synchronization requires that the complex network
can be represented by a graph that is acyclic or sufficiently
dense [Dörfler and Bullo, 2014]. To characterize all such
graphs is an open problem.

Since the Stiefel manifold includes the n-sphere and the spe-
cial orthogonal group as special cases, there is a consider-
able literature of synchronization on particular instances of
the Stiefel manifold. Previous works that address synchro-
nization on all Stiefel manifolds is limited to Thunberg et
al. [2018] which relies on the so-called dynamic consensus
approach (see Scardovi et al. [2007]; Sarlette and Sepul-
chre [2009]). 1 The dynamic consensus approach is used to
stabilize the consensus manifold on St(p, n) almost glob-
ally for any quasi-strongly connected digraph. However, dy-
namic consensus requires the introduction of auxiliary vari-
ables that are communicated in a second, undirected graph.

1 Some preliminary results of this paper appear in Markdahl et
al. [2018b].
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The gradient descent flow studied in this paper is preferable
to Thunberg et al. [2018] in the case of p ≤ 2

3n − 1 since
it provides the same convergence guarantees but uses less
communication and computation. If p > 2

3n−1, then Thun-
berg et al. [2018] is preferable. Note that for modeling syn-
chronization in nature the gradient descent flow is arguably
always preferable since the auxiliary variables in Thunberg
et al. [2018] do not have a physical interpretation.

The problem of almost global synchronization of multi-
agent systems on nonlinear spaces has received some atten-
tion in the literature, see the survey Sepulchre [2011]. Until
recently, there have been three main approaches: potential
shaping which is based on gradient descent flows [Tron et
al., 2012], probabilistic gossip algorithms [Mazzarella et al.,
2014], and the dynamic consensus algorithms. Markdahl et
al. [2018a] shows that a fourth approach based on gradient
descent flows that can be interpreted as high-dimensional
Kuramoto models yields almost global synchronization on
the n-sphere for all n ≥ 2. It requires less communication
and computation, but is limited to undirected graphs and
certain manifolds. This paper establishes that it also works
on St(p, n) when p ≤ 2

3n− 1.

The Kuramoto model on the n-sphere is known as the Lohe
model [Lohe, 2010]. Just as for the original Kuramoto
model, many works concern the complete graph case
[Olfati-Saber, 2006; Lohe, 2010; Li and Spong, 2014; Lohe,
2018]. Almost global stability of the consensus manifold in
the case of a complete graph and homogeneous frequencies
has been shown for the Kuramoto model [Watanabe and
Strogatz, 1994], Lohe model [Olfati-Saber, 2006], and on
rather general manifolds [Sarlette and Sepulchre, 2009].
The Kuramoto model on networks is less well-behaved
[Canale and Monzón, 2015]. Most results for the Lohe
model on networks show convergence from a hemisphere
[Zhu, 2013; Thunberg et al., 2018; Zhang et al., 2018].
Many papers address the case of heterogeneous frequencies
[Chi et al., 2014; Chandra et al., 2019; Ha et al., 2018].
Some concern the thermodynamic limit N → ∞, where
N denotes the number of agents [Chi et al., 2014; Tanaka,
2014; Ha et al., 2018; Frouvelle and Liu, 2019]. There is
also a discrete-time model [Li, 2015].

Applications for synchronization on S2 include synchroniza-
tion of interacting tops [Ritort, 1998], modeling of collective
motion in flocks [Al-Abri et al., 2018], autonomous reduced
attitude synchronization and balancing [Song et al., 2017],
synchronization in planetary scale sensor networks [D.A.
Paley, 2009], and consensus in opinion dynamics [Aydogdu
et al., 2017]. Applications on S3 include synchronization of
quantum bits [Lohe, 2010] and models of learning [Crnkić
and Jaćimović, 2018] . The Kuramoto model on SO(3) is
of interest in rigid-body attitude synchronization [Sarlette
and Sepulchre, 2009]. For engineers and physicists working
with such applications it is important to know that the global
behaviour of the Kuramoto model on the Stiefel manifold
is qualitatively different from that of the original Kuramoto
model. For control applications, almost global synchroniza-

tion is desirable since the probability of convergence does
not decrease as N increases. For modeling, it means that a
careful choice of model should take the global behaviour of
the system into account.

2 Problem Formulation

2.1 Preliminaries

The Euclidean (or Frobenius) inner product of X,Y ∈
R
n×p is g(X,Y) = 〈X,Y〉 = tr X>Y. The norm of X is

given by ‖X‖ = 〈X,X〉
1
2 . The gradient on a smooth man-

ifoldM⊂ Rn×p (in terms of g) of a function V :M→ R
is given by ∇V = Π∇V , where V is any smooth extension
of V on Rn×p, and ∇ denotes the gradient in the ambient
Euclidean space. The state of the system we consider is an
N -tuple of matrices. The gradient of a scalar with respect
to the state is thus also an N -tuple of matrices.

A graph G is a pair (V, E) where V = {1, . . . , N} and E is
a set of 2-element subsets of V . Throughout this paper, if an
expression depends on an edge e ∈ E and two nodes i, j ∈ V ,
then it is implicitly understood that e = e(i, j) = {i, j}.
Moreover, the graph is assumed to be connected, i.e., it
contains a tree subgraph (V,F) with |F| = n − 1. Each
element i ∈ V corresponds to an agent. Items associated with
agent i carry the subindex i; we let Si ∈ St(p, n) denote the
state of an agent, Πi the projection onto the tangent space,
Ni = {j ∈ V | {i, j} ∈ E} the neighbor set of i, ∇iV the
gradient of V with respect to Si ∈ St(p, n), etc.

The compact, real Stiefel manifold St(p, n) is the set of p-
frames in n-dimensional Euclidean space Rn [Edelman et
al., 1998]. It can be embedded inRn×p as an analytic matrix
manifold given by

St(p, n) = {S ∈ Rn×p |S>S = Ip}.

The dimension of St(p, n) is np − 1
2p(p + 1) due to the

constraints. Important instances of Stiefel manifolds include
the n-sphere Sn = St(1, n + 1), the special orthogonal
group SO(n) ' St(n − 1, n), and the orthogonal group
O(n) = St(n, n). Since ‖S‖2 = p for all S ∈ St(p, n),
St(p, n) is a subset of the sphere of radius p

1
2 in the space

of n × p matrices. The Stiefel manifold is used to model
systems whose states are constant in norm and subject to
orthogonality constraints.

Define the projections skew : Rn×n → so(n) : X 7→
1
2 (X−X>) and sym : Rn×n → so(n)⊥ : X 7→ 1

2 (X+X>).
The tangent space of St(p, n) at S is given by

TSSt(p, n) = {∆ ∈ Rn×p | sym S>∆ = 0}.

Denote the tangent bundle of St(p, n) by

TSt(p, n) = {(S,T) ∈ St(p, n)× TSSt(p, n)}.
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The projection onto the tangent space, Π : St(p, n) ×
R
n×p → TSSt(p, n), is given by

Π(S,X) = S skew S>X + (In − SS>)X. (1)

2.2 Synchronization on the Stiefel manifold

The synchronization set, or consensus manifold, C of the
N -fold product of a Stiefel manifold is defined as

C = {(Si)
N
i=1 ∈ St(p, n)N |Si = Sj ,∀ {i, j} ∈ E}, (2)

where (Si)
N
i=1 denotes an N -tuple. The synchronization set

is a (sub)manifold; it is diffeomorphic to St(p, n) by the
map (Si)

N
i=1 7→ S1. Let dij = ‖Si − Sj‖ be the chordal

distance between agent i and j. Given a graph (V, E), define
the potential function V : St(p, n)N → R by

V =
∑
e∈E

aijd
2
ij =

∑
e∈E

aij‖Si − Sj‖
2

= 2
∑
e∈E

aij(p− 〈Si,Sj〉), (3)

where aij ∈ (0,∞) satisfies aij = aji for all e ∈ E . Note
that V is a real-analytic function, V ≥ 0, and V |C = 0.

Denote S = (Si)
N
i=1. Let V : (Rn×p)N → [0,∞) be a (any)

smooth extension of V obtained by relaxing the requirement
S ∈ St(p, n)N to S ∈ (Rn×p)N . We only need V to define
the gradient of V in the embedding space (Rn×p)N when
restricted to St(p, n)N . All smooth extensions hence give
the same gradient [Tu, 2010]. The system we study is the
gradient descent flow on St(p, n)N given by

Ṡ = (Ṡi)
N
i=1 = −∇V = (−∇iV )Ni=1,

Ṡi = −∇iV = −Πi∇iV = Πi

∑
j∈Ni

aijSj (4)

= Si skew
(
S>i
∑
j∈Ni

aijSj
)

+ (In − SiS
>
i )
∑
j∈Ni

aijSj ,

where Si(0) ∈ St(p, n). Note that any equilibrium of (4) is
a critical point of V and vice versa.

Since the system (4) is an analytic gradient descent, it will
converge to an equilibrium point from any initial condition
[Lageman, 2007]. This property allows us to adopt a strong
definition of what it means for (4) to reach consensus:

Definition 1 The agents are said to synchronize, or to reach
consensus, if limt→∞ S(t) ∈ C, where is S is the state vari-
able of the gradient descent flow (4) and C is the consensus
manifold defined by (2).

2.3 Problem statement

The aim of this paper is classify each instance of St(p, n)
in terms of the following requirement: the gradient descent
flow (4) with interaction topology given by any connected
graph converges to the consensus manifold C from almost
all initial conditions. The main result of our paper states it
to be true for all pairs (p, n) that satisfy p ≤ 2

3n − 1. This
inequality is sharp with respect to known results: it does not
hold for the Kuramoto model since S1 = St(1, 2); it holds on
the n-sphere for n ≥ 2 since Sn = St(1, n+ 1) [Markdahl
et al., 2018a]; it does not hold on the the special orthogonal
group since SO(n) = {S ∈ St(n, n) | det S = 1} [DeVille,
2018]. As a minor technicality, note that the Kuramoto model
on St(n − 1, n) ' SO(n) is not identical to the Kuramoto
model on SO(n) = {S ∈ St(n, n) | det S = 1}.

2.4 High-dimensional Kuramoto model

We chose to define the high-dimensional Kuramoto model
in complex networks over the Stiefel manifold St(p, n) as

Ẋi = ΩiXi + XiΞi −∇iV, ∀ i ∈ V, (5)

where Xi ∈ St(p, n), Ωi ∈ so(n), and Ξi ∈ so(p). Note
that (5) is a first-order model where the RHS is the sum of
a drift-term and a gradient descent flow, just like the Ku-
ramoto model. The variables Ωi and Ξi are generalizations
of the frequency term in the Kuramoto model. The drift term
ΩiXi + XiΞi is not the standard form of an element of
TXi

St(p, n), but it does span the tangent space. The defini-
tion of (5) is motivated by two reasons as we detail next.

The model (5) encompasses the Kuramoto model. Better
still, the following models are special cases of (5):

Ṙi = ΩiRi +
∑
j∈Ni

aijRi skew R>i Rj , Ri ∈ SO(n), (6)

ẋi = Ωixi + (In+1 − xix
>
j )
∑
j∈Ni

aijxj , xi ∈ Sn, (7)

ϑ̇i = ωi +
∑
j∈Ni

aij sin(ϑj − ϑi), ϑi ∈ R, (8)

where Ωi ∈ so(n), and ωi ∈ R, and each system consists
of N equations; one for each i ∈ V .

To get (6) from (5) , let p = n and set Ri = Xi,
Ξi = 0. Note that Πi : Rn×n → TiO(n) is given by
ΠiY = Xi skew X>i Y since XiX

>
i = In. The restric-

tion of Ri(0) ∈ SO(n) implies that Ri(t) ∈ SO(n) for
all t ∈ [0,∞). To get (7) from (5), let p = 1 and set
xi = Xi. Note that Πi : Rn+1×1 → TiSn is given by
Πiy = (In+1 − xi ⊗ xi)yi. To get (8) from (7) (and hence
also from (5) via (7)), let n = 2, xi = [cosϑ sinϑ]>,
ωi = 〈e2,Ωie1〉 and solve for ϑ̇i.
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The cases of homogeneous frequencies and zero frequencies
are equivalent; i.e., (5) is equivalent to (4) in the case of
Ωi = Ω, Ξi = Ξ. To see this, introduce the variables
R = exp(−tΩ) ∈ SO(n), Q = exp(−tΞ) ∈ SO(n)(p),
form a rotating coordinate frame Si = RXiQ ∈ St(p, n),
and change variables

Ṡi = −RΩXiQ + RẊiQ −RXiΞQ
= −R∇iV (Xi)

N
i=1Q

= RXiQQ> skew
(
X>i R>R

∑
j∈Ni

aijXj

)
Q+

R(In −XiQQ>X>i )R>R
∑
j∈Ni

aijXjQ

= Si skew
(
S>i
∑
j∈Ni

aijSj
)

+ (In − SiS
>
i )
∑
j∈Ni

aijSj .

From here on, all results of this paper concern the model (4).

2.5 Local stability and global attractiveness

The results of this paper concern the global stability prop-
erties of (4). The local stability properties of the system are
summarized in Proposition 2. This result states some rather
generic properties of analytic gradient descent flows. We do
not give a proof, but refer the interested reader to Lageman
[2007]; Helmke and Moore [2012].

Proposition 2 The gradient descent flow (4) converges to a
critical point of V . The sublevel sets

L(h) = {S ∈ St(p, n)N |V (S) ≤ h}

are forward invariant.

Note that all global minimizers of V belong to C since V ≥ 0
with equality only if S ∈ C. Moreover, C is asymptotically
stable. Let Q denote all critical points of V that are disjoint
from C. By Proposition 2, the region of attraction of C con-
tains the largest sublevel set L(h) which is disjoint from Q.

Definition 3 An equilibrium set Q ⊂ St(p, n)N of system
(4) is referred to as almost globally asymptotically stable
(AGAS) if it is stable and attractive from all initial conditions
S(0) ∈ St(p, n)N\N , where N ⊂ St(p, n)N has Haar
measure zero on St(p, n)N .

It is not possible to globally stabilize an equilibrium set on
a compact manifold by means of continuous, time-invariant
feedback [S.P. Bhat and D.S. Bernstein, 2000]. This obstruc-
tion, which is due to topological reasons, does not exclude
the possibility of a set being AGAS.

3 Main Result

Theorem 4 Let the pair (p, n) satisfy p ≤ 2
3n − 1 and G

be connected. The consensus manifold C given by (2) is an
AGAS equilibrium set of the dynamics (4) on St(p, n)N .

The calculations involved in the proof of Theorem 4 are
extensive. We give a brief proof sketch that covers the main
ideas. All the details are provided in Appendix A.1 to A.5.

PROOF. If the linearization of (4) around an equilibrium
S = (Si)

N
i=1 ∈ St(p, n) has an eigenvalue with strictly pos-

itive real part, then that equilibrium is exponentially unsta-
ble by the indirect method of Lyapunov. Equivalently, we
can think of equilibria as critical points of V , i.e., points
where the gradient is the zero vector. The nature of a critical
point can often be determined by studying the Riemannian
Hessian H(S) of V , i.e., the first non-zero term in the Tay-
lor expansion of V . Note that the Hessian matrix equals the
linearization matrix, albeit multiplied by minus one.

Any set of exponentially unstable equilibria of a pointwise
convergent system have a measure zero region of attrac-
tion [R.A. Freeman, 2013]. Pointwise convergence means,
roughly speaking, that the system does not admit any limit
cycles. Gradient descent flows of analytic functions on com-
pact analytic manifolds are pointswise convergent as a con-
sequence of the Łojasiewicz gradient inequality [Lageman,
2007]. The consensus manifold C is stable by Lyapunov’s
theorem since V̇ = 〈∇V, Ṡ〉 = −‖∇V ‖2. It follows that C
is AGAS if H(S) evaluated at any equilibrium S < C has an
eigenvalue with strictly negative real part.

Let q : TSt(p, n)N → R denote the quadratic form obtained
from the Riemannian H(S) evaluated at a critical point S ∈
St(p, n)N . The Hessian at S ∈ St(p, n)N is a symmetric
linear operator H : TSSt(p, n)N → TSSt(p, n)N in the
sense that

〈(Xi)
N
i=1,H(S)(Yi)

N
i=1〉 = 〈H(S)(Xi)

N
i=1, (Yi)

N
i=1〉

[Absil et al., 2009]. As such, its eigenvalues are real. The
quadratic form q therefore bounds the smallest eigenvalue of
the linear operator H(S) from above. Our goal is to establish
exponential instability of all equilibria S < C by finding a
tangent vector (∆i)

N
i=1 ∈ TSSt(p, n)N such that

q((Si)
N
i=1, (∆i)

N
i=1)) = 〈(∆i)

N
i=1,H(S)(∆i)

N
i=1〉 < 0.

We want to use a tangent vector (∆i)
N
i=1 whose represen-

tation in the eigenvector basis of TSSt(p, n)N is dominated
by the eigenvector of H(S) with the smallest eigenvalue.
The quadratic form q will then approximate this eigenvalue.

Consider tangent vectors pointing towards C, i.e., ∆i =
Πi∆ for some ∆ ∈ Rn×p. The intuition for this choice is
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that a small perturbation of the system where every agent is
moved in the same direction should not result in an increase
of V (if the perturbations are similar they cancel each other
for each pair (i, j) ∈ St(p, n)). Moreover, it is possible
that there is a net increase in cohesion which would yield a
decrease in V . We do not need to find an expression for the
desired tangent vector, it suffices to prove that it exists.

We show that q can assume negative values by solving an
optimization problem to minimize an upper bound of q over
TSt(p, n)N . The upper bound is obtained by relaxing the
complex network of relations between agents at an equi-
librium and only consider the effect of pairwise interac-
tions. For any equilibrium S < C and pair (p, n) such that
p ≤ 2n

3 − 1, we find that there is a tangent vector towards
C which results in the upper bound on q being strictly neg-
ative. Any equilibrium S < C is hence exponentially unsta-
ble. Throughout these steps, we do not utilize any particular
property of the graph topology except connectedness. �

Remark 5 The requirement that p ≤ 2
3n − 1 is sufficient

for C to be AGAS. In a more general setting of Kuramoto
models on closed Riemannian manifolds, we find that a
manifold being multiply connected precludes C being AGAS
[Markdahl, 2019]. A multiply connected manifold is, roughly
speaking, a manifold with a hole, for example a torus. In
particular, the only multiply connected Stiefel manifolds are
S(n− 1, n) ' SO(n) and St(n, n) = O(n) [James, 1976].
The question if C is AGAS for all connected graphs on the
remaining manifolds St(p, n) where 2

3n − 1 < p ≤ n − 2
remains open. Using Monto Carlo experiments, we see that
C appears to be AGAS on some such Stiefel manifolds for
networks over which St(n− 1, n) is multistable.

4 Numerical Examples

We provide numerical examples to illustrate the evolution of
system (4) on St(1, 2) = S1, St(1, 3) = S2, and St(2, 3) '
SO(3) when aij = 1. Let HN denote the cyclic graph over
N nodes, i.e.,

HN = ({1, . . . , N}, {{i, j} ⊂ V | j = i+ 1}), (9)

where we set N + 1 = 1. The equilibrium set

Q1,n = {(xi)
N
i=1 ∈ (Sn)N | ∃R ∈ SO(n),

‖ 1√
2 Log R‖ = 2π

N , xi+1 = Rxi, ∀ i ∈ V},

is asymptotically stable for the system (4) if n = 1 and
N ≥ 5, but unstable if n ≥ 2. This is illustrated in Fig. 1–2.

To understand this difference, note that the complement of
the circle is two open hemispheres. The consensus manifold
C is asymptotically stable on any open hemisphere [Mark-
dahl et al., 2018a]. As such, we may move each agent an
arbitrarily distance from Q1,3, perturbing them into an open
hemisphere, whereby they will reach consensus.

Fig. 1. Two sets of trajectories for five agents on S1 that are
connected by the graphH5. The agents evolve from random initial
conditions towards the sets C (left) and Q1,2 (right). The positive
direction of time is from left to right in both figures.

Fig. 2. The trajectories of five agents with on S2 that are connected
by the graph H5. The agents evolve from a point close to Q1,3
(i.e., close to the equator) towards C near the north pole.

Each element of St(2, 3) is a pair of orthogonal unit vectors
(Sie1,Sie2) ∈ S2 ×S2. They can be visualized as pairs of
points on a single sphere. Consider the equilibrium set

Q2,3 = {(Si)
N
i=1 ∈ (St(p, n))N |Si+1e1 = Sie1,

∃R ∈ SO(3), 1√
2‖Log R‖ = 2π

N ,

Si+1 = RSi, ∀ i ∈ V}

on St(2, 3) ' SO(3). InQ2,3, the first unit vector Sie1 of all
agents are aligned while the second vector Sie2 are spread
out over a great circle. If the states are slightly perturbed to
leave Q2,3, then they will often stay close to Q2,3 for all
future times, see Fig. 3.

Fig. 3. The trajectories of five agents on St(2, 3) that are connected
by the graph H5. Each agent state is represented as an orthogonal
pair of vectors on S2. The agents are initially perturbed away from
the equilibrium set Q2,3 but ultimately end up close to it.

Note the difference in behavior of system (4) on S2 and
SO(3). Why does the high-dimensional system on S2 reach
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consensus while the system on SO(3) does not? Roughly
speaking, the first unit vectors Sie1 all remain close to each
other and this constrains the second unit vectors Sie2 to a
tubular neighborhood of the great circle they started out on.
The diameter of this tubular neighborhood shrinks as the
first unit vector move closer to each other. The dynamics
on the tubular neighborhood are sufficiently similar to the
Kuramoto model on the circle that the second unit vectors
ultimately converge to a configuration close to the initial
one.

5 Conclusions and Future Work

The aim of this paper is to introduce a Kuramoto model
on the Stiefel manifold and study its global behaviour. The
Stiefel manifold includes both instances on which synchro-
nization is multistable, i.e., the Kuramoto model on the circle
and the Lohe model on the special orthogonal group SO(n)
[DeVille, 2018], and instances on which synchronization is
almost globally stable, i.e., the n-sphere for n ∈ N [Mark-
dahl et al., 2018a]. As such, studying its global behaviour
can give us further insight into the global behaviour of con-
sensus seeking systems on more general manifolds. The con-
sensus manifold on St(p, n) is AGAS if the pair (p, n) satis-
fies p ≤ 2

3n− 1. We believe that this condition is conserva-
tive due to the inequalities involved in calculating an upper
bound on the smallest eigenvalue of the Riemannian Hes-
sian, see Section A.4 and A.5. Rather, we conjecture that
a sharp inequality is given by p ≤ n − 2, corresponding
to all the simply connected Stiefel manifolds. This topic is
explored further in Markdahl [2019].
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A Appendix

A.1 Equilibria are critical points

We start by characterizing the equilibria of system (4), (4).
At an equilibrium,

Si skew
(
S>i
∑
j∈Ni

aijSj
)

+ (In − SiS
>
i )
∑
j∈Ni

aijSj = 0.

Since the two terms in this expression are orthogonal, we get

skew
(
S>i
∑
j∈Ni

aijSj
)

= 0,

(In − SiS
>
i )
∑
j∈Ni

aijSj = 0.
(A.1)

Assume (A.1) holds. Define Σi =
∑
j∈Ni

aijSj . Since

Σi = SiS
>
i Σi, it follows that Σi ∈ Im Si. Hence Σi =

SiΓi for some Γi ∈ R
p×p. Moreover, since skew S>i Σi =

skew Γi = 0, we find that Γi is symmetric. The matrix Γi
is closely related to the Lagrange multipliers for the con-
straints Si ∈ St(p, n). Note that equilibria of the system and
critical points of the potential function coincide for gradi-
ent descent flows [Helmke and Moore, 2012], so we do not
need to formulate the Lagrangian.

A.2 The Hessian on St(p, n)N

The first step in the proof sketch of Theorem 4 is to determine
the Hessian H = [∇k(∇iV )st]. Let Fi,st = (Πi∇iV )st :
R
N×n×p → R be a (any) smooth extension of Fi,st =

(∇iV )st = 〈es,∇iV et〉 : St(p, n)N → R obtained by
relaxing the constraint Si ∈ St(p, n) to Si ∈ R

n×p. Take a
k ∈ V and calculate

∇kFi,st = ∇k(Πi∇iV )st = ∇k〈es,Πi∇iV et〉

= ∇k
〈
es,
(
−Si skew

(
S>i
∑
j∈Ni

aijSj
)
−

(In − SiS
>
i )
∑
j∈Ni

aijSj
)
et
〉

= −∇k
〈
es,Si skew

(
S>i
∑
j∈Ni

aijSj
)
et
〉
−

∇k
〈
es,

∑
j∈Ni

aijSjet
〉

+

∇k
〈
es,SiS

>
i

∑
j∈Ni

aijSjet
〉
.

Using the rules governing derivatives of inner products with
respect to matrices, introducing Est = ese

>
t = es⊗et, after
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a few calculations, we obtain

∇kFi,st =



−aikΠiEst if k ∈ Ni,
Est skew

(
S>i
∑
j∈Ni

aijSj
)

+∑
j∈Ni

aijSj sym(S>i Est)+
Est

∑
j∈Ni

aijS
>
j Si if k = i,

0 otherwise.

Evaluate at an equilibrium, where
∑
j∈Ni

aijSj = SiΓi and
Γi ∈ R

p×p is symmetric by Section A.1, to find

∇kFi,st =


−aikΠiEst if k ∈ Ni,
SiΓi sym(S>i Est) + EstΓi if k = i,

0 otherwise.

The Hessian on St(p, n)N is a (N×n×p)2-tensor consisting
of N2np blocks Hki,st ∈ R

n×p formed by projecting the
Hesssian in (Rn×p)N on the tangent space of Sk

Hki,st = ∇k(∇iV )st = Πk∇kFi,st
= Πk∇k(Πi∇iV )st.

A.3 The quadratic form

Consider the quadratic form q : TSt(p, n)N → R ob-
tained from the Hessian evaluated at an equilibrium for a
tangent vector (∆)Ni=1, where ∆ ∈ Rn×p, in the direc-
tion of the consensus manifold projected on TSSt(p, n), i.e.,
(∆i)

N
i=1 = (Πi∆)Ni=1,

q =
N∑
i=1

N∑
k=1
〈∆i, [〈∆k,∇k(∇iV )st〉]〉

=
N∑
i=1

N∑
k=1
〈Πi∆, [〈Πk∆,Πk∇kFi,st〉]〉.

The quadratic form q determines the nature of a critical
point in the sense of the necessary second-order optimality
conditions. The remainder of this section is rather technical,
and the reader may wish to skip ahead to Section A.5.

Note that 〈ΠkX,ΠkY〉 = 〈ΠkX,Y〉. The quadratic form
is hence

q =
N∑
i=1

N∑
k=1
〈Πi∆, [〈Πk∆,∇kFi,st〉]〉.

Denote Pki,st = 〈Πk∆,∇kFi,st〉. Then

Pki,st =


〈Πk∆,−aikΠiEst〉
〈Πi∆,SiΓi sym(S>i Est) + EstΓi〉
0

for the cases of k ∈ Ni, k = i, and k < Ni∪{i} respectively.
Denote Pki = [Pki,st] and calculate

Pki =


−aikΠiΠk∆ if k ∈ Ni,
Si sym V>i Πi∆ + Πi(∆)Γi if k = i,

0 otherwise.

To see this, consider each case separately. For k ∈ Ni,

Pki,st = 〈(In −Πi + Πi)Πk∆,−aikΠiEst〉
= − aik〈ΠiΠk∆,Est〉 = −aik(ΠiΠk∆)st,

whereby Pki = −aikΠiΠk∆. For the case of k = i,

Pii,st = 〈Πi∆,SiΓi sym(S>i Est) + EstΓi〉
= tr(Πi∆)>( 1

2Σi(S
>
i Est + E>stSi) + EstΓi)

= 1
2 tr((Πi∆)>ΣiS

>
i Est + Si(Πi∆)>ΣiE

>
st)+

tr Γi(Πi∆)>Est

= 1
2 (SiV

>
i Πi∆)st + 1

2 (Si(Πi∆)>Σi)st+
(Πi(∆)Γi)st,

whereby Pii = Si sym V>i Πi∆ + Πi(∆)Γi.

This gives us the quadratic form

q =
N∑
i=1

N∑
k=1
〈Πi∆, [Pki,st]〉 =

N∑
i=1

N∑
k=1
〈Πi∆,Pki〉

=
∑
e∈E
〈Πi∆,Pki〉+ 〈Πk∆,Pki〉+

∑
i∈V
〈Πi∆,Pii〉.

For ease of notation, let q = 2
∑
e∈E qik +

∑
i∈V qi, where

qik = 〈Πi∆,Pki〉 = −aik〈Πi∆,Πk∆〉 = qki,

qi = 〈Πi∆,Pii〉.

Calculate

qik = − aik〈Πi∆,Πk∆〉
= aik(−〈∆,∆〉+ 1

2 〈Si(S
>
i ∆ + ∆>Si),∆〉+

1
2 〈∆,Sk(S>k∆ + ∆>Sk)〉−
1
4 〈Si(S

>
i ∆ + ∆>Si),Sk(S>k∆ + ∆>Sk)〉)

= aik tr(−∆>∆ + 1
2∆>SiS

>
i ∆ + 1

2S>i ∆S>i ∆+
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1
2∆>SkS

>
k∆ + 1

2∆>Sk∆
>Sk−

1
4∆>SiS

>
i SkS

>
k∆ − 1

4∆>SiS
>
i Sk∆

>Sk−
1
4S>i ∆S>i SkS

>
k∆ − 1

4S>i ∆S>i Sk∆
>Sk).

Use the identity tr ABCD = 〈vec A>, (D> ⊗ B) vec C〉
[Graham, 1981] and the notation d1 = vec ∆, d2 = vec ∆>
to write

qik = aik(−‖d1‖
2 + 1

2 〈d1, (Ip ⊗ SiS
>
i )d1〉+

1
2 〈d2, (Si ⊗ S>i )d1〉+ 1

2 〈d1, (Ip ⊗ SkS
>
k)d1〉+

1
2 〈d1, (S

>
k ⊗ Sk)d2〉 − 1

4 〈d1, (Ip ⊗ SiS
>
i SkS

>
k)d1〉−

1
4 〈d1, (S

>
k ⊗ SiS

>
i Sk)d2〉−

1
4 〈d2, (Si ⊗ S>i SkS

>
k)d1〉 − 1

4 〈d2(SiS
>
k ⊗ S>i Sk)d2〉)

= 〈d,Qikd〉,

where Qik is given in Table A.1 and d = [d>1 d>2 ]>.

Furthermore,

qi = 〈Πi∆,Si sym V>i Πi∆ + Πi(∆)Γi〉
= 〈Πi∆,Si sym V>i Πi∆〉+ 〈Πi∆,Πi(∆)Γi〉.

Since 〈S>i Πi∆, sym V>i Πi∆〉 = 0 by the orthogonality of
symmetric and skew-symmetric matrices, we get

qi = 〈Πi∆,Πi(∆)Γi〉
= 〈∆ − Si sym S>i ∆, (∆ − Si sym S>i ∆)Γi〉
= tr(∆>∆ − 2 sym(S>i ∆)S>i ∆ + (sym S>i ∆)2)Γi
= tr(∆>∆ − (S>i ∆ + ∆>Si)S

>
i ∆+

1
4 (S>i ∆ + ∆>Si)(S

>
i ∆ + ∆>Si))Γi

= tr(∆>∆ − S>i ∆S>i ∆ −∆>SiS
>
i ∆+

1
4 (S>i ∆S>i ∆ + S>i ∆∆>Si+

∆>SiS
>
i ∆ + ∆>Si∆

>Si))Γi
= tr(∆>∆ − 1

2S>i ∆S>i ∆ − 3
4∆>SiS

>
i ∆+

1
4S>i ∆∆>Si)Γi

= tr(∆>∆Γi − 1
2∆S>i ∆ΓiS

>
i −

3
4∆>SiS

>
i ∆Γi + 1

4∆∆>SiΓiS
>
i )

= d>1 (Γi ⊗ In)d1 − 1
2d>2 (SiΓi ⊗ S>i )d1−

3
4d>1 (Γi ⊗ SiS

>
i )d1 + 1

4d>2 (SiΓiS
>
i ⊗ Ip)d2

= 〈d,Qid〉,

where

Qi =
[
Γi ⊗ In − 3

4Γi ⊗ SiS
>
i 0

− 1
2SiΓi ⊗ S>i 1

4SiΓiS
>
i ⊗ Ip

]
.

There is a constant permutation matrix K ∈ O(np) such that
vec ∆> = K vec ∆ for all vec ∆ ∈ Rnp Graham [1981].
Hence

d =
[

vec ∆
vec ∆>

]
=
[
Inp
K

]
vec ∆ =

[
Inp
K

]
d1.

The quadratic form q satisfies

q =
∑
i∈V
〈d,Qid〉+ 2

∑
e∈E
〈d,Qikd〉

=
〈
d,
(∑
i∈V

Qi +
∑
k∈Ni

Qik

)
d
〉

=
〈[

Inp
K

]
d1,
(∑
i∈V

Qi +
∑
k∈Ni

Qik

)[Inp
K

]
d1

〉

=
〈
d1,
[
InpK

>
] (∑

i∈V
Qi +

∑
k∈Ni

Qik

)[Inp
K

]
d1

〉
= 〈d1,Md1〉,

where

M = sym
[
InpK

>
]
Q
[
Inp
K

]
, Q =

∑
i∈V

Qi +
∑
k∈Ni

Qik.

A.4 Upper bound of the smallest eigenvalue

We wish to show that q assumes negative values for some
∆ ∈ Rn×p at all equilibria S < C. This excludes any such
equilibria from being a local minimizer of the potential func-
tion V given by (3). If tr M is negative, then M has at least
one negative eigenvalue. Calculate

tr M = tr sym
[
InpK

>
]
Q
[
Inp
K

]
= tr Q

[
Inp K>

K Inp

]

= tr
([

A B
B> C

][
Inp K>

K Inp

])
= tr(A + BK + B>K> + C)
= tr A + 2 tr BK + tr C,

where A, B, and C denote the three blocks of sym Q.
Let us calculate each of the three terms in tr M separately,
starting with A and C,

tr A =
∑
i∈V

tr(Γi ⊗ In − 3
4Γi ⊗ SiS

>
i )+∑

k∈Ni

aik tr(−Inp + 1
2Ip ⊗ (SiS

>
i + SkS

>
k)−
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Qik = aik

[
−Inp + 1

2 Ip ⊗ (SiS
>
i + SkS>

k)− 1
4 Ip ⊗ SiS

>
i SkS>

k
1
2 S>

k ⊗ Sk − 1
4 S>

k ⊗ SiS
>
i Sk

1
2 Si ⊗ S>

i − 1
4 Si ⊗ S>

i SkS>
k − 1

4 SiS
>
k ⊗ S>

i Sk

]

Table A.1
The matrix Qik.

1
4Ip ⊗ SiS

>
i SkS

>
k)

=
∑
i∈V

n tr Γi − 3p
4 tr Γi+∑

k∈Ni

aik(−np+ p2 − p
4‖S
>
kSi‖

2),

where we utilize that

tr X ⊗Y = tr X tr Y,

tr SS> = tr S>S = tr Ip = p,

tr ZZ>WW> = tr(Z>W)>(Z>W) = ‖Z>W‖2,

for any X,Y ∈ Rn×n, S ∈ St(p, n), and Z ∈ Rn×p,W ∈
R
n×q . Continuing,

tr A =
∑
i∈V

(
n− 3p

4
)

tr Γi −
∑
k∈Ni

aik((n− p)p+ p
4‖S
>
kSi‖

2)

=
∑
i∈V

∑
k∈Ni

(
n− 3p

4
)
〈aikSk,Si〉−

aik((n− p)p− p
4‖S
>
kSi‖

2)
= 2

∑
e∈E

aik
((
n− 3p

4
)
〈Sk,Si〉−

(n− p)p− p
4‖S
>
kSi‖

2),
tr C =

∑
i∈V

1
4 tr(SiΓiS

>
i ⊗ Ip)−

∑
k∈Ni

aik

4 tr(SiS
>
k ⊗ S>i Sk)

=
∑
i∈V

p
4 tr(Γi)−

∑
k∈Ni

aik

4 tr(S>kSi)
2

=
∑
i∈V

∑
k∈Ni

p
4 〈aikSk,Si〉 −

aik

4 〈Sk,Si〉
2

= 2
∑
e∈E

aik
(
p
4 〈Sk,Si〉 −

1
4 〈Sk,Si〉

2).
Note that

B =
∑
i∈V
− 1

4ΓiS
>
i ⊗ Si+∑

k∈Ni

aik( 1
4S>k ⊗ Sk − 1

8S>k ⊗ SiS
>
i Sk+

1
4S>i ⊗ Si − 1

8S>i ⊗ SkS
>
kSi).

To calculate tr BK, we utilize that K =
∑n
a=1

∑p
b=1 Eab⊗

Eba, where the elemental matrix Eab ∈ R
n×p is given by

Eab = ea ⊗ eb for all a ∈ {1, . . . , n}, b ∈ {1, . . . , p}
[Graham, 1981]:

tr BK =
∑
i∈V
− 1

4 tr(ΓiS
>
i ⊗ Si)K+∑

k∈Ni

aik tr( 1
4S>k ⊗ Sk − 1

8S>k ⊗ SiS
>
i Sk)K+

∑
k∈Ni

aik tr( 1
4S>i ⊗ Si − 1

8Si ⊗ SkS
>
kSi)K

=
∑
i∈V

∑
a,b

− 1
4 tr(ΓiS

>
i Eab ⊗ SiEba)+∑

k∈Ni

aik
∑
a,b

tr
( 1

4S>kEab ⊗ SkEba−

1
8S>kEab ⊗ S>i S>i SkEba

)
+∑

k∈Ni

aik
∑
a,b

tr
( 1

4S>i Eab ⊗ SiEba−

1
8S>i Eab ⊗ SkS

>
kSiEba

)
,

where we use the mixed-product property of Kronecker
products, (X⊗Y)(Z⊗W) = (XZ)⊗(YW), which holds
for any matrices X,Y,Z,W such that XZ and YW are
well-defined. Continuing,

tr BK =
∑
i∈V

∑
a,b

− 1
4 tr(ΓiS

>
i Eab) tr(SiEba)+∑

k∈Ni

aik
∑
a,b

1
4 tr(S>kEab) tr(SkEba)−

1
8 tr(S>kEab) tr(SiS

>
i SkEba)+∑

k∈Ni

aik
∑
a,b

1
4 tr(S>i Eab) tr(SiEba)−

1
8 tr(S>i Eab) tr(SkS

>
kSiEba)

=
∑
i∈V

∑
a,b

− 1
4 tr
(∑
k∈Ni

aikS
>
kEab

)
tr(SiEba)+

∑
k∈Ni

aik
∑
a,b

1
4 (Sk)ab(Sk)ab−

1
8 (Sk)ab(SiS

>
i Sk)ab+∑

k∈Ni

aik
∑
a,b

1
4 (Si)ab(Si)ab−

1
8 (Si)ab(SkS

>
kSi)ab

=
∑
i∈V

∑
a,b

∑
k∈Ni

−aik

4 tr(SkEba) tr(SiEba)+
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∑
k∈Ni

aik
( 1

4‖Sk‖
2 − 1

8 〈Sk,SiS
>
i Sk〉

)
+

∑
k∈Ni

aik
( 1

4‖Si‖
2 − 1

8 〈Si,SkS
>
kSi〉

)
,

where we utilize that∑
a,b

(Xab)
2 = ‖X‖2,

∑
a,b

XabYab = 〈X,Y〉

for all X,Y ∈ Rn×m. Finally,

tr BK =
∑
i∈V

∑
k∈Ni

−aik

4 〈Sk,Si〉+ aik
(
p
2 −

1
4‖S
>
i Sk‖

2)
= 2

∑
e∈E

aik
(
− 1

4 〈Sk,Si〉+ p
2 −

1
4‖S
>
i Sk‖

2).

Adding up all four terms gives

1
2 tr M = 1

2 tr A + tr BK + 1
2 tr C

=
∑
e∈E

aik
((
n− 3p

4
)
〈Sk,Si〉 − (n− p)p

− p
4‖S
>
kSi‖

2 − 1
2 〈Sk,Si〉+ p−

1
2‖S
>
i Sk‖

2 + p
4 〈Sk,Si〉 −

1
4 〈Sk,Si〉

2)
=
∑
e∈E

aik
((
n− p+1

2
)
〈Sk,Si〉 − p+2

4 ‖S
>
kSi‖

2−

1
4 〈Sk,Si〉

2 + (1− n+ p)p
)
. (A.2)

Equation (A.2) is the desired expression for tr M. In the
next section we will study how it varies over St(p, n)N .
To verify that no miscalculations were made, note that at a
consensus, where S>kSi = Ip, we get

1
2 tr M|C =

∑
e∈E

aik
(
n− p+1

2 −
p+2+p

4 + 1− n+ p
)
p = 0

This is expected since C is invariant under any tangent vector
that belongs to its tangent space, ∆i|C = (Π1∆)Ni=1 ∈
TCSt(p, n)N , and V is constant over C. Also note that (A.2)
is consistent with the corresponding expression in Markdahl
et al. [2018a] for the special case of Sn = St(1, n+ 1).

A.5 Nonlinear programming problem

It remains to show that tr M given by (A.2) is strictly neg-
ative for each equilibrium configuration S < C. To that end,
we could consider the problem of maximizing tr M over
all configurations S < C which satisfy the equations (A.1)
that characterize an equilibrium set. However, that problem

seems difficult to solve. Instead, we make use of the follow-
ing inequality

1
2 tr M ≤ |E|max

e∈E
aik max

X,Y
f(X,Y),

f(X,Y) =
(
n− p+1

2
)
〈X,Y〉 − p+2

4 ‖X
>Y‖2−

1
4 〈X,Y〉2 + (1− n+ p)p,

(A.3)

where f : St(p, n) × St(p, n) → R. If we can show that
the upper bound on tr M is negative for all X , Y, then
we are done. Note that the inequality is sharp in the case of
two agents and that f(X,X) = 0 since this corresponds to
consensus in a system of two agents.

Consider a relaxation of (A.3) where X,Y ∈ Rn×p. Let
f : Rp×p → R denote the extension of f given by

f(Z) = (n− p+1
2 ) tr Z − p+2

4 ‖Z‖
2 − 1

4 (tr Z)2

+ (1− n+ p)p.

To further simplify this expression, first observe that

‖Z‖2 = tr Z>Z =
p∑
i=1

σ2
i ≥

p∑
i=1
|λi|

2 = ‖[λi]‖
2

≥ 1
p‖[λi]‖

2
1 = 1

p

( p∑
i=1
|λi|
)2
≥ 1

p

( p∑
i=1
|Reλi|

)2

≥ 1
p

( p∑
i=1

Reλi
)2

= 1
p (tr Z)2,

where Schur’s inequality relates the singular values
σ1, . . . σp of Z to its eigenvalues λ1, . . . , λp [R.A. Horn
and C.R. Johnson, 2012]. Use the above inequality to write

f(Z) ≤ (n− p+1
2 ) tr Z − p+1

2p (tr Z)2 + (1− n+ p)p.

Note that this upper bound on f̄(Z) is quadratic in tr Z. The
maximum of the quadratic is located at

tr Z = (2n−p−1)p
2(p+1) .

We restrict consideration to tr Z ∈ [−p, p] since

| tr Z| ≤
∣∣∣ p∑
i=1

λi

∣∣∣ ≤ p‖Z‖2 ≤ p‖X‖2‖Y‖2 = p.

Assume that the maximum of the parabola is larger than
p, i.e., tr Z ≥ p. Simplifying this inequality we find that
p ≤ 2

3n − 1. Since the bound is a concave quadratic, its
maximum value on [−p, p] is obtained at the feasible point
that is closest to the optimal point, i.e., at tr Z = pwhere the
bound equals 0. The value tr Z = p can only be achieved
when Y = X.
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