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1. Introduction

1.1. Use of Hybrid Composite Material for DPFs

Diesel particulate filters (DPFs) are an essential component of die-
sel engines, particularly for road vehicles. They are often used in
conjunction with diesel oxidation catalysts (DOCs), which help to
control gaseous emissions and have been mandatory[1] on all new
diesel cars sold in Europe since 1998. DPFs, which first entered
series production[2] in 2000, are designed[3] to reduce substantially
the emission of particulate matter (PM) in the coarse (1–10 μm),
accumulation (0.1–1 μm), and nuclei (<50 nm) categories of size.
The PM is largely carbon, although trace levels of various elements
and compounds are also present.[2]

The current basic design of a DPF is a ceramic extruded cylin-
drical structure, containing a square “honeycomb” of parallel
channels in the axial (exhaust) direction. Adjacent channels
are alternately plugged at each end, forcing the exhaust gases

to flow through the porous substrate walls,
which mechanically traps the PM.[1,3] The
wall material must be highly permeable
to maintain a low exhaust back pressure
(EBP), but it must also have a high filtration
efficiency, so the PM becomes trapped.[4]

The filter captures particles via physical
impact and retains them until removal (oxi-
dation to gas) via active or passive regener-
ation. A typical specific permeability of a
current DPF material[2] is about 10�2 m2.

Most current DPFs are made by
(incomplete) sintering of coarse cordierite
or silicon carbide particles, so as to create
a highly porous structure. This work is
focused on a “hybrid” composite material

incorporating both (relatively fine) fibers and (coarse) particulate,
which has recently been proposed[5] as a candidate DPF material.
The presence of the fibers has been shown[5] to provide enhanced
thermal shock resistance and is likely to offer improved filtration
characteristics and retention capacity for PM extracted from the
exhaust. Part of the basis for such performance enhancement is
that it incorporates multiscale pore architecture, allowing easy
gas flow through large pores and fine-scale filtration of PM
via smaller channels within fiber bundles.[6]

There is, thus, interest in predicting how the relevant charac-
teristics of a filter made of such material will depend on the
proportions of fibers and particles, and on the porosity level.
While the filtration properties of structures composed entirely
of particles[7–9] and entirely of fibers[10] have been widely studied,
this has not been done previously for such hybrid composites.

1.2. The Carman–Kozeny Equation

The most commonly used equation for assessing the permeabil-
ity for fluid flow through porous media is that of Carman–
Kozeny.[11,12] It can be derived by simplifying the pore structure
into a regularly spaced set of cylindrical channels, with equivalent
surface area and porosity, applying the Hagen–Poiseuille equa-
tion for fluid flow through pipes, and then substituting the result-
ing pressure gradient into Darcy’s equation. In its simplest form,
the Carman–Kozeny equation can be written as

κ ¼ p3

λS2
(1)

where κ is the permeability (m2), p is the porosity, S is the specific
surface area (m2m�3), and λ is a dimensionless parameter
(related to the channel tortuosity), which is often assumed[12]

to have a constant value of about 5.
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An investigation is presented into modeling of gas flow through particle/fiber
hybrid composite materials designed for use as diesel particulate filters (DPFs).
The work leads to the creation of a modified version of the Carman–Kozeny
equation, specifically tailored for such structures. Details of computational fluid
dynamics (CFD) simulation of gas flow through modeled structures are provided,
leading to formulations to account for the loss of surface area associated
with sintering and a tortuosity effect dependent on the porosity level. Based on
these outcomes, a simple analytical expression is derived, and it is shown that
predicted permeability values obtained with it are in good agreement with
experimental data.
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This equation gives a good indication of the permeability in
many cases, although it was originally focused on flow through
fluidized beds composed of packed particles. In fact, there have
been numerous investigations[7–10,13,14] into how it should be
modified (mainly in terms of the value of the dimensionless con-
stant) for different geometries, including assemblies of spherical
particles with a range of sizes.[7–9] There have also been investi-
gations covering transverse flow through a set of aligned fibers[13]

and flow characteristics in other fibrous and highly anisotropic
structures.[10,11] A recurrent concern is that, in practice, the value
of the constant may be dependent on the porosity level (for a
given type of geometry), as well as on the geometry itself.

This work is aimed at identifying a form of the Carman–
Kozeny equation that is suitable for highly porous hybrid
composite material containing both fibrous and particulate con-
stituents. While porosity can easily be measured, much more
effort is required to obtain an accurate experimental value for
the specific surface area. There is, thus, considerable interest
in deriving an analytical equation with a capability for prediction
of the permeability of such a hybrid composite filter, given its
porosity, fiber/particle proportion, and the dimensions of indi-
vidual particles and fibers.

2. Modeling of Gas Flow

2.1. Domain and Mesh Generation

MATLAB was used to generate random distributions of particles
and fibers. Each particle was specified in terms of the Cartesian
coordinates of its center and a radius. Each fiber required six
parameters—three for the coordinate of one end and a further
three to specify the orientation. To minimize the number of
parameters, all particles in a model had the same radius, and
all fibers had the same length and radius. This neglects any effects
of surface roughness or fiber curvature, although the latter is not
expected to affect the permeability of a fibrous medium.[10]

For each generated structure, it is useful to identify the volume
fractions of fibers, f, and voids (i.e., the porosity), p. The remain-
ing volume is occupied by particles. Of course, these three values
must sum to 100%. A further useful parameter is b, the fiber
solid fraction, defined by

b ¼ f
ð1� pÞ (2)

such that b¼ 0 defines a porous structure containing only par-
ticles, and b¼ 1 defines a porous structure containing only fibers.
The MATLAB script used to create the structures functioned
by calculating the number of spheres and cylinders required
to make the best approximation of a specified fiber solid
fraction, b, and porosity, p, within a predetermined cubic volume
(building block).

The particles were inserted first, followed by the fibers. The
addition of each constituent was carried out using randomly
generated coordinates. Whether a particle or fiber was accepted
depended on certain criteria being met. Particles were accepted
provided they did not exceed a predetermined maximum allowed
overlap (set to be 2 μm) with other particles already present. Fibers
were added, so that a degree of overlap with existing particles or

fibers was necessary—representing a requirement for some sin-
tering to have occurred. Fiber orientation was based on three ran-
domly generated numbers, defining a direction in Cartesian space,
measured from the origin. The chosen point was required to lie
within a unit sphere centered on the origin, such that there is no
bias in fiber orientation. However, the degree of overlap was still
limited to the same maximum of 2 μm. During this procedure of
filling the volume with spheres and cylinders, periodic boundary
conditions were maintained in all three principal directions. There
was, thus, always an integral number of both fibers and particles
within the building block of the model.

Larger numbers of parameters were needed for high fiber
fractions—the small size of the fibers compared with the par-
ticles means that more of them are needed to give a certain poros-
ity level, and also, they require more parameter values than
particles. Analysis was, therefore, limited to the fiber solid frac-
tion (b) values of 0.5 or less. For selected models, the coordinates
of all the spheres and cylinders were imported into COMSOL
using the application builder feature. At this point, a typical
imported model would appear, as shown in Figure 1, containing
all fibers and particles that intersect with a central 50 μm cube
“building block.” The structure of fibers and particles has a
50 μm repeating distance in all three of the principal directions,
most clearly observed by the regular distribution of the particles,
as two intersecting simple cubic structures.

In terms of fluid flow, the region of interest is the air space
between the assembly of fibers and particles. It was, therefore,
necessary to create the inverse of this structure. A block of
the same dimensions of the cube of interest was added to the
geometry, and the spheres and cylinders were subtracted from
this volume. A mesh could then be generated automatically.
Such a mesh is shown in Figure 2, where the periodic boundary
conditions are also evident.

2.2. Permeability Evaluation

With a generated structure of this type, the permeability can be
evaluated in two ways. First, it can be obtained via a COMSOL

Figure 1. Depiction of a typical modeled structure, the repeat unit being a
50 μm cube, intersected by 30 μm diameter spheres and fibers of length
30 μm and diameter 3 μm. In this case, the porosity is 62.6%, and the fiber
volume fraction is 10%.
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simulation of fluid flow through it. By assuming laminar flow,
and assigning one face to be the inlet, the opposite face to be
the outlet, and allowing continuity over the other four faces,
the permeability can be calculated directly in COMSOL, solving
the Navier–Stokes equations to obtain the steady-state flow field.
For each volume, initial conditions were set, such that there
was a constant gas inlet velocity of 0.1 m s�1. The outlet was
set to have 0 Pa pressure, such that the average pressure on the
inlet face would be a direct measure of the back pressure across
the volume. The permeability can be measured in this way for
three orthogonal directions, normal to the faces of the cube.

The second method involves using the Carman–Kozeny equa-
tion (Equation (1)). In the created model, the values of porosity
and specific surface area are known precisely, and so, by taking λ
to have a value[12] of 5, the permeability can be obtained by substi-
tuting in the equation.

2.3. Analytical Treatment of Permeation

While the abovementioned procedure allows Carman–Kozeny to
be used to predict the permeability of the model, the precise
value of the specific surface area, S, is often unknown for a real
material (filter). Hence, there is interest in being able to obtain S
from information that can be readily obtained, such as the fiber
and particle sizes and the proportion of the two (expressed as the
fiber solid fraction, b).

In the model, if there is no overlap between any of the spheres
and cylinders, the specific surface area will be given by

S ¼ nsAs þ ncAc

VT
(3)

where VT is the total volume of the cube, ns and nc are the num-
bers of spheres and cylinders in the volume, and As and Ac are the
surface areas of a single sphere and a single cylinder. As ns and nc
are the integers for this model, the two values can be expressed in
terms of the fiber solid fraction, b, and the porosity, p

b ¼ ncV c

nsV s þ ncV c
(4)

1� p ¼ nsV s þ ncV c

VT
(5)

Rearranging to obtain expressions for ns and nc, and substitut-
ing these into Equation (4), writing the areas and volumes
of spheres and cylinders in terms of their linear dimensions
(Ds, Dc, and L for the diameter of the spheres, diameter of
the cylinders, and length of the cylinders, respectively) and ignor-
ing any overlap, leads to

S ¼ ð1� pÞ 6ð1� bÞ
Ds

þ 4b
Dc

þ 2b
L

(6)

This expression can then be substituted back into Equation (1)
to obtain a predicted relationship among permeability, porosity,
and fiber content, dependent on the size parameters of the
sphere and cylinder components (Ds, Dc, and L).

2.4. Correction Terms

As noted earlier, this expression for the specific surface area
(Equation (6)) does not account for any overlap. During the
model generation, new components were added, provided the
overlap did not exceed a prescribed level, leading to a highly
interconnected final structure as a model for sintering. Each
occurrence of an overlapped region will cause a reduction in sur-
face area. Equation (6) will, thus, always give an overestimate
for S. The significance of this effect will be greater for lower
porosities and higher fiber fractions, which are associated with
higher degrees of overlap.

A further assumption incorporated into the Carman–Kozeny
equation, as expressed by Equation (1), concerns λ, the dimension-
less tortuosity constant. While often taken to be equal to 5,
it is sometimes ascribed a different value. In fact, a value of λ
can be obtained for a model of this type, because both porosity
and surface area are known, and the permeability can be obtained
via fluid flow simulation in COMSOL. Any dependence of the
value of λ on porosity or fiber fraction can, thus, be ascertained.

Various particle and fiber sizes were studied, as shown in
Table 1. These sizes are representative of material produced
in the previous study.[5] All of these cases can be used to find

Figure 2. Finalized mesh of air volume (50 μm cube), viewed from within the assembly of particles and fibers in Figure 1. The volume has periodic
boundary conditions, and in this case, boundary layers were present.
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the most appropriate correction in one optimization step, rather
than analyzing each data set individually and attempting to find a
common solution between them. Using a statistical approach
also allows for clear visualization of whether the additional cor-
rections are justifiable, or are adding unnecessary complication
to the model.

The analysis used to evaluate the correction factors was the
Markov chain Monte Carlo (MCMC) method. For both specific
surface area and tortuosity terms, additional variables were intro-
duced, corresponding to linear dependencies in both porosity
and fiber fraction. These variables started with uniform prior val-
ues, with the distribution of their values being calculated by ran-
dom sampling in probabilistic space. In such a method, for two
sets of parameters, the best set is added to the chain of parameter
values with a certain probability, determined by howmuch better
it is—this is termed aMarkov chain. The effectiveness of a pair of
parameters was evaluated via Gaussian probabilities to obtain the
best prediction of the permeability, assuming that the permeabil-
ities calculated using COMSOL and a specific surface area were
distributed normally about planes in porosity–fiber solid fraction
(p–b) space. After iterating the process a number of times, a
steady-state distribution can be found.

With so many additional degrees of freedom added, the fit of
the model to the data can become very good. However, it became
apparent that not all the additional variables were required.
By systematically removing certain parameters, it was possible
to identify those of significance.

3. Modeling Outcomes

3.1. Permeability

The permeability (measured via fluid flow simulations in
COMSOL) of models with a range of porosity and fiber solid frac-
tions is shown in Figure 3. In all these samples, the particle diam-
eter, fiber diameter, and fiber length were kept constant at 30, 3,
and 30 μm, respectively. The permeability is observed to vary sig-
nificantly with both porosity and fiber solid fraction. The perme-
ability scale is logarithmic, and so the full range of data spans
almost two orders of magnitude.

As expected from the Carman–Kozeny equation, the perme-
ability tends to be high at high porosities. In addition, the per-
meability is significantly affected by the fiber solid fraction, b, or
expressed slightly differently, by the fiber volume fraction, f.

As b (or f, at constant p) is increased, the permeability decreases.
This is most significant as the first few fibers are added, but
remains true at higher fiber fractions. The permeability values
in all cases are comparable to values typical of commercial
DPFs (around 10�2 m2).

Substituting the expression for S with no overlap
(Equation (6)) into the basic Carman–Kozeny (Equation (1))
and rearranging to obtain a relationship among porosity, perme-
ability, and fiber solid fraction lead to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p3

λκð1� pÞ2

s
¼ b

�
4
Dc

þ 2
L
� 6
Ds

�
þ 6
Ds

(7)

This function has units of m�1. For a given size of fibers and
particles, the right hand side of this equation increases linearly
with b, as shown in Figure 4. Also plotted in Figure 4 are the
values of the function on the left hand side (LHS) of
Equation (7), using permeability values obtained in two different
ways—via COMSOL simulations and from the Carman–Kozeny
equation (using exact values of S for the models concerned and a
value of 5 for λ). These are in good agreement.

The error bars on the COMSOL data reflect the variation
obtained by measuring the permeability in the three orthogonal
directions of a single volume. In view of the difficulty of accurate
experimental measurement of S, Equation (7) offers a convenient
way of estimating the permeability using only the porosity, fiber
solid fraction, and fiber and particle sizes. However, it is shown
in Figure 4 that, while the y-intercept of this line is approximately
correct, the gradient is somewhat greater than it should be. This
is expected, because the surface area loss due to overlap is being
ignored, resulting in over-prediction of the gradient. Similar out-
comes are obtained for all combinations of particle and fiber
sizes listed in Table 1.

3.2. Reduction in Surface Area

As S can be obtained analytically for no overlap (using
Equation (6)), and the actual specific surface area of a

Table 1. Combinations used for fiber diameter and length, and particle
diameter.

Fiber diameter [μm] Fiber length [μm] Particle diameter [μm]

3 30 30

4 30 30

5 30 30

3 15 30

3 35 30

3 30 20

3 30 10

Figure 3. Contours of permeability, as a function of porosity, p, and fiber
solid fraction, b, obtained via fluid flow simulations: modeling runs were
carried out for all of the p–b combinations indicated by black markers.
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COMSOL model can be calculated, the fraction of the calculated
surface area that has been lost due to overlap can be estimated.
Figure 5 shows this effect of overlap over a range of porosity and
fiber solid fraction values. At low fiber solid fraction and high
porosity, the effect is not large and will not have a substantial
effect on the predicted permeability. However, with low porosity
and high fiber solid fraction, the reduction in surface area is sig-
nificant, reaching as much as 30%. Such overlap levels will have a
pronounced effect when predicting the permeability.

The degree to which this overlap affects the surface area will, of
course, be a function of how much overlap is allowed within the
model. In the initial model setup, the maximum allowed overlap
was 2 μm. If this overlap was to be reduced, there would be a

lower reduction in surface area and vice versa. The maximum
value of 2 μm was selected as being representative of the degree
of sintering expected to take place (when creating a highly porous
structure of this type). This dependency on the allowed overlap
means that the following analysis relates only to this specific case.
However, the approach could be applied to other cases.

3.3. Kozeny Constant

Values of λ were obtained via Equation (1), by setting the perme-
ability equal to that of simulation outcomes, and using precise
values of porosity and surface area from the COMSOL model
geometry. These values are shown as contours in p–b space in
Figure 6. It can be seen that, while the commonly used value
of 5 is not an unreasonable one, the most appropriate value
for a given case could differ significantly from this. In particular,
there is a clear tendency for smaller values to be required when
the porosity level is relatively low (<�60–65%). The optimum
value of λ in particular regimes is not easy to establish, although
studies on transverse flow through parallel arrangements of
fibers suggest that it should have a minimum value at porosities
around 0.4–0.6, but higher values for both higher and lower
porosities.[13,15,16]

As λ is often considered to be a measure of the degree of
tortuosity of the flow path, this finding suggests that the fluid
follows more tortuous paths through structures with higher
porosity. This could be associated with a greater degree of
interaction between fluid streams passing through more open
structures—an effect that would be picked up by fluid-flow sim-
ulations, but not by simple geometrical arguments based on spe-
cific surface area, etc. There appears to be little effect of the fiber
solid fraction on the optimum value of λ.

3.4. Corrections

In view of these results, corrections were made to both S and λ
terms. The Kozeny constant, λ, was taken to be linearly

Figure 5. Contours of reduction in surface area due to overlap, as a func-
tion of the porosity, p, and fiber solid fraction, b, carried out via modeling
runs for all the p–b combinations indicated by black markers.

Figure 6. Contours of the value of the parameter λ, as a function of poros-
ity, p, and fiber solid fraction, b, obtained via fluid flow simulations: such
runs were carried out for all of the p–b combinations indicated by black
markers.

Figure 4. A plot of the function on the LHS of Equation (6) against fiber
solid fraction, for the fiber and particle dimensions shown. Red circles rep-
resent permeability values obtained using flow simulations, whereas blue
triangles correspond to those from Carman–Kozeny (Equation (1)), using
exact values of porosity and surface area and a λ value of 5. The green line
is a plot of Equation (7).
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dependent on porosity, p, and two additional parameters were
introduced, representing the gradient and the intercept of this
linear relationship

λ ¼ mλpþ cλ (8)

The value of S was assumed to be linearly dependent on both p
and b, resulting in three additional parameters. These were added
to each term in the equation for S (Equation (6)), giving a total of
nine additional degrees of freedom. Both were solved simulta-
neously using the MCMC method outlined in §2.4. Once solved,
the fit of the model to the data was found to be very good.
However, this was at the expense of adding many degrees of free-
dom. By systematic removal of parameters having little effect,
it was found that only two of the nine associated with S were sig-
nificant.[17] These were both associated with the cylinder diameter
term, consisting of a constant offset term and a linear dependence
on the porosity, p. As such, the correction term for the specific
surface area (an additional term in Equation (6)) was found to
be of the following form

ð1� pÞbmp,Dc
pþ cDc

Dc
(9)

The results of the MCMC solution for the four new terms
are shown in Figure 7. These terms are the constant and
linear porosity dependence terms for λ and the constant and lin-
ear porosity dependence of the cylinder diameter term, desig-
nated cλ, mλ, cDc

, and mp,Dc
, respectively. Also, shown in

Figure 7 are standard deviation data for both S and κ (σs and
σκ, respectively). Along the diagonal, the error in the value of
any of the six parameters is normally distributed. The mean value
and the positive and negative errors are provided above the histo-
grams in each case. The scatter plots show the mutual interac-
tions between the four additional parameters and the standard
deviation of the values of S and κ. In all but two cases, the dis-
tributions are radially symmetric, with no skew. These are
encouraging results, showing that the predicted mean values
of the four new parameters correlate with the mean value of
the standard deviation of the measured κ values about predicted
planes of both S and κ. The absence of skew implies that there are
sufficient data, and that the effects of the parameters are well
captured by the data.

There are, however, two pairs of scatter plots that show signif-
icant dependency of two parameters on one another. The first
pair relates to mλ and cλ, which are, respectively, the gradient
and intercept of the dependence of λ on p. Some degeneracy
(compensation for a fall in one by a rise in the other) between
these two is unsurprising, because it is commonly observed
for an intercept and gradient of a straight line being fitted to data
with some scatter. A similar effect is observed for the two terms
associated with the cylinder diameter. If it were assumed that
there was no dependence of λ on porosity, thenmλwould be zero,
and λ would have a constant value of cλ. However, Figure 7 shows
thatmλ is actually some way from zero, making it highly unlikely
that λ has no dependence on p. The inclusion of a dependence of
λ on p is, therefore, essential. This quantifies a trend that is clear
on inspection of Figure 6.

Using the figures indicated in Figure 7, the most appropriate
expression for λ is

λ ¼ 8.1p� 1.14 (10)

This leads to the apparently nonsensical outcome of negative
values for λ when the porosity is very low (<14%). This arises
because the data set includes nothing with p values near that
range. In fact, it would not be possible to create a structure with
such a low porosity using the model being used, and such a struc-
ture is certainly of no interest for applications, such as DPFs,
so this is not a cause for any concern.

Again, referring to Figure 7, the additional cylinder diameter
correction term of S may be written

ð1� pÞb 2.35p� 2.16
Dc

(11)

3.5. Final Expression

It follows that the final expression for the permeability may be
written as

κ ¼ p3

ð8.1p� 1.14Þð1� pÞ2
h
6ð1� bÞ

Ds
þ ð1.84þ 2.35pÞb

Dc
þ 2b

L

i (12)

This equation allows prediction of the permeability, κ, based
on the porosity, particle and fiber dimensions, and proportion, b.
Part of the denominator is Equation (10), which is the λ term
(dependent only on porosity). The rest of the denominator is
the surface area term (Equation (6)), including the correction to
the cylinder diameter term (Equation (11)). This part of the equa-
tion highlights the effect of fiber content, b (or equivalently, f,
at constant p), on the permeability. The addition of fibers, there-
fore, does not appear to greatly influence the tortuosity, but sig-
nificantly increases the specific surface area.

To facilitate understanding of this equation, plots showing
the dependence of this function on p (for three b values) and
on b (for three p values) are presented in Figure 8. As p is raised,
κ increases, as expected from the Carman–Kozeny equation.
However, the dependence of κ on fiber solid fraction, for a con-
stant porosity level, is also significant, with κ decreasing by an
order of magnitude as b is raised from 0% to 50%.

4. Comparisons between Modeling and
Experimental Outcomes

In practice, there are limitations on the p–b combinations that are
possible. For example, using higher compaction pressures will
reduce p, as will prolonged sintering or use of shorter fibers.
It is in any event important to relate modeling outcomes to exper-
imental results. Recent experimental work[5] on the effect of fiber
solid fraction on porosity and permeability can be used to assess
whether the sphere/cylinder model provides a good representa-
tion of actual flow characteristics. One approach to this is to use
Equation (12) to create permeability contours in p–b space and
then superimpose the measured p–b combinations of experimen-
tal material and check whether the measured permeabilities are
in good agreement with the contours.
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Figure 9 shows such a contour plot, with five points super-
imposed that correspond to different materials, which were
manufactured and then characterized in terms of p, b, and κ
values. It can be seen that, while they cover a substantial range
of b values, and a fairly wide range of porosity levels, the
corresponding predicted (and indeed measured) values of κ
do not vary so much. This simply reflects the practical difficul-
ties of producing, say, high p–low b or low p–high b combina-
tions. Nevertheless, agreement between model and experiment
is good.

This is shown a little more clearly in Figure 10, which shows
essentially the same comparison, but this time as a plot of
permeability against b. The predicted value of permeability (solid
red line) is obtained by calculating the permeability along the
trend line of the data in Figure 9. One point worth noting about
the predictions is that (fixed) values must be used for particle
diameter, fiber diameter, and fiber length. These were measured
experimentally (with standard deviations) to be 28� 12,
3.7� 1.0, and 37� 10 μm, respectively. These deviations have
been converted to error bands on the predicted permeability

Figure 7. Probability distributions for the variables cλ, mλ, cDc
, mp,Dc

, σS, and σκ , and the correlations between them.
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values in Figure 10. Error bars on the experimental permeability
values are also shown. It is clear that there is a good level of con-
sistency and agreement between model (i.e., Equation (12)) and
experiment, both in terms of trends predicted and values
obtained.

5. Conclusions

The following conclusions can be drawn from this work, which is
aimed at creating a simple capability for prediction of the perme-
ability of a novel type of highly porous hybrid composite material
designed for use as a DPF. Permeability is a key parameter for
suchmaterials, with a practical requirement that it should not fall
significantly below a common industrial norm of about 10�2 m2.
1) A novel computational fluid dynamics (CFD) modeling tech-
nique has been developed for fiber/particle hybrid composites,
with the modeled domain containing both spheres and cylinders.
It has been shown to give reliable permeability predictions, based

on the porosity, the fiber solid fraction, and the dimensions of
fibers and particles. For the analysis of such hybrid composites,
this is an improvement over existing models, which do not allow
for combinations of both fibers and particles. 2) Where the fiber
diameter is smaller than the particle diameter, as in the cases
treated here, the surface area increases significantly as the fiber
solid fraction is raised. The surface area can be calculated from
the geometry of spheres and cylinders, allowing an empirically
fitted surface area correction factor to be used to account for over-
lap. The values obtained for the correction factor will depend on
the amount of overlap allowed. Physically, this relates to the
degree of sintering. 3) The most appropriate value of the
Carman–Kozeny tortuosity constant, λ, was found to increase
from 2 to 6.5 as porosity was raised from 0.45 to 0.7.
Statistical analysis, based on data from all particle and fiber sizes

Figure 8. Plots of predicted permeability values as a function of p and b, obtained using Equation (12), for the case of Dc¼ 3 μm, Ds¼ 30 μm, and
L¼ 30 μm.

Figure 9. Contours of permeability in p–b space, generated using
Equation (12), together with five superimposed points representing mate-
rials for which p and b, and also κ, were measured experimentally.[5] Figure 10. Predicted (Equation (12)) and measured permeabilities, as a

function of fiber solid fraction, b. The predicted curve was constructed
using experimental data for the porosity of each material and for particle
and fiber dimensions. The error band is based on the standard deviations
of these measurements.
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that were considered, led to the conclusion that including a
linear dependence of λ on porosity is appropriate. It was
found to be effectively independent of the fiber solid fraction.
4) Permeability is predicted to increase with increasing porosity
for the geometry of a fiber plus particle material, as predicted by
the Carman–Kozeny equation. In addition, for a constant poros-
ity level, the permeability is found to decrease as particles are
replaced by fibers. 5) A simple analytical expression has, thus,
been obtained, allowing the permeability to be predicted for
given levels of fiber, particulate, and porosity. It has been shown
that these predictions are in good agreement with experimental
data presented in a previous publication. 6) In terms of practical
application as DPFs, the work provides information useful for
tailoring the architecture of such hybrid material so as to avoid
the permeability falling below industrial requirements. It is con-
firmed that this can be done while incorporating relatively high
contents of fine (few μm diameter) fibers, which are thought to
bring benefits in terms of both the toughness of the material and
its filtration characteristics.
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