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Edward Kong Seng Lam

Abstract

Seasonal influenza viruses are a substantial source of disease burden globally, causing
epidemics across all climatic regions. Through error-prone RNA replication, influenza
viruses can escape pre-existing humoral immunity and reinfect humans, resulting in recurrent
epidemics within populations. From year to year, individual epidemics differ substantially
in timing, duration and size. Despite intensive study, characterising the spatiotemporal
patterns of virus circulation and identifying the underlying sources of this variability at
global, regional and local scales remain as ongoing challenges. There is a need to reconcile
environmental, virological and host drivers of virus epidemiological dynamics across diverse
contexts. Such insights can only be generated through a holistic approach that integrates
observational, ecological, experimental and modelling studies: this would enable more
accurate and timely epidemiological forecasts and more efficient allocation of public health
resources.

In this thesis, I investigate the phylodynamical interactions between the seasonal influenza
virus, environment and human host population, integrating analyses from observational study
and theoretical modelling approaches. The current knowledge gap on the drivers of local
city-level epidemics is identified in Chapter 2 and subsequently addressed over 4 research
chapters. In Chapter 3, I review existing epidemic detection algorithms and present a novel
statistical model that I developed for use with noisy disease surveillance data and is optimised
for the context of seasonal influenza. In Chapter 4, I apply this novel algorithm and analyse a
15-year dataset of 18,250 typed, subtyped, and antigenically characterised seasonal influenza
viruses from the five most populous cities in Australia. With the necessary geographical
and virus resolution, I quantify the effects of previously hypothesised environmental and
virological factors. Most surprisingly, despite an apparent lack of marked change in virus
antigenicity, individual antigenic variants are capable of reinvading the same population
over consecutive seasons, which runs contrary to predictions made by existing mathematical
models.

In Chapters 5 and 6, I investigate how antigenic variants are capable of causing recur-
rent epidemics at local scales by building upon previous theoretical modelling studies and
developing a modelling framework to investigate the interactions between and joint effects
exerted by the topology of cross-immunity and host contact structure within a population. In
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Chapter 5, I investigate the effects of correlations between network structure and individual
susceptibility. In Chapter 6, I examine the population-level significance of age-specific
changes to an individual’s immune response. In Chapter 7, I review my findings and discuss
how these new insights into virus ecology can open new avenues for better influenza control
and future research.
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Chapter 1

Aims and Rationale

Seasonal influenza viruses are a substantial source of disease burden and result in 650,000
deaths per year269. There are currently four subtypes/lineages of influenza viruses within
the human population, which co-circulate across tropical, subtropical and temperate climatic
regions. Through error-prone RNA replication, influenza viruses are capable of escaping
pre-existing humoral immunity58 and reinfecting humans, resulting in recurrent epidemics.
From year to year, individual epidemics differ substantially in timing, duration and size63,79.
Despite intensive study over past decades, characterising the spatiotemporal patterns of virus
circulation and identifying the underlying sources of this variability at global, regional and
local scales remain as ongoing challenges. Insights into these processes would enable more
accurate and timely epidemiological forecasts86 and more efficient allocation of public health
resources203.

To date, our understanding of climatic drivers of influenza virus epidemics has been
primarily informed by the distinct patterns observed in temperate regions of the Northern and
Southern Hemispheres239. In these climes, influenza virus activity is most common in winter,
suggesting that cool and dry conditions are conducive to or potentially sufficient for driving
wintertime epidemics. In particular, fluctuations in absolute humidity have been hypothesised
to trigger epidemic activity222. Experimental studies have demonstrated that reductions in
temperature and absolute humidity enhance viral stability and aerosol transmission161,162,221,
forming a putative link between observed seasonality and underlying climatic mechanisms.
However, more recent epidemiological studies in tropical and subtropical regions have shown
that increased virus activity often coincides with the rainy season224,240, during periods
of high temperature and humidity. This apparent quandary illustrates the need to move
beyond the simplistic dichotomy of temperate vs subtropical/tropical regions, by further
characterising the spectrum of virus seasonality and roles of climatic drivers239.



2 Aims and Rationale

The accumulation of genetic mutations in the globular head of haemagglutinin protein
periodically results in the emergence of virus variants that partially escape antibodies raised
during prior influenza virus infections231. At a global level, this process of antigenic drift
and antibody-mediated selection eventually result in the domination of a single strain and
a “cactus-like” structure of the phylogenetic tree25,278, which is particularly prominent for
A/H3N2 viruses. Of course, evolution does not occur in isolation and modelling studies have
theorised how such global fitness advantages would manifest themselves at local scales and
affect the dynamics of individual epidemics. By partially escaping pre-existing immunity
induced by prior infections and vaccinations, epidemiological theory predicts that new major
antigenic variants should cause larger epidemics than previously circulated variants130,131,275.

Evidently, the phylodynamics of influenza viruses involves complex, mutual and recipro-
cal interactions between virus, host and the environment104,260. Experimental and theoretical
studies may uncover potential mechanistic drivers for influenza dynamics but quantifying the
effects of these environmental and virological drivers on virus transmission requires surveil-
lance data that has sufficient geographical resolution and virus characterisation, in order to
carefully dissect apart the overlapping local-level, subtype- and antigenic variant-specific
patterns.

Without accurate virus- and antigenic variant-specific time series data, the development
of hypotheses and mathematical models is hampered: simply put, what are the phenomena of
interest that model frameworks are attempting to recapitulate? In order to strike a fair balance
between capturing (biological) realism and mathematical/computational tractability141,199,
it is of paramount importance to carefully select the most important underlying factors to
model and how best to represent them mechanistically, both of which are challenges in their
own rights. Capturing the dynamics of multiple competing strains has been a prime focus141

but the nature of cross-immunity between strains and host immune history remains poorly
elucidated. Similarly, models incorporating population structure have been developed, yet
these are commonly plagued by a lack of empirically driven and robust parameterisation267.

In this thesis, I investigate the phylodynamical interactions between seasonal influenza
viruses, climate, and human host populations, integrating analyses from observational study
and theoretical modelling approaches. In Chapter 2, I first review the current literature and
identify a knowledge gap surrounding the drivers of local city-level epidemics. This gap is
then addressed over 4 research chapters. In Chapter 3, I review existing epidemic detection
algorithms and present a novel statistical model that I developed for use with noisy disease
surveillance data, which is optimised for the context of seasonal influenza. In Chapter 4,
I apply this novel framework and analyse a 15-year dataset of 18,250 typed, subtyped,
and antigenically characterised seasonal influenza viruses from the five most populous
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cities in Australia. With the necessary geographical and virus resolution, I critically assess
previously hypothesised environmental and virological factors and quantify their effects
on epidemiological dynamics. Most surprisingly, individual antigenic variants are capable
of reinvading the same population over consecutive seasons, without necessitating marked
phenotypic changes, which runs contrary to predictions made by existing mathematical
models.

Host population structure and partial cross-immunity shape epidemiological dynamics
but have often been evaluated by previous modelling studies in isolation. In Chapter 5
and Chapter 6, I build upon these previous theoretical studies and develop a modelling
framework to investigate the how these factors can interact and through their joint effects,
underpin the empirical observation that antigenic variants are capable of causing recurrent
epidemics. Additionally, I instil more biological detail and realism into the mechanistic
implementation of these factors, demonstrating the importance of including oft-overlooked
nuances. In Chapter 5, I investigate how epidemiological dynamics are affected by the
underlying contact and immune structure within the host population. I expand upon this
framework in Chapter 6 and examine whether previously hypothesised immune mechanisms
could have further impacts on the likelihood of reinvasion. In Chapter 7, I review my findings
and discuss how these new insights into virus phylodynamics can open new avenues for
better influenza control and future research.





Chapter 2

Introduction

In this chapter, I review the current literature on the phylodynamics of seasonal influenza
viruses, in order to identify knowledge gaps and limitations of current modelling approaches,
both of which I address over subsequent research chapters. Firstly, I examine how the
interactions between virus antigenicity and host immunity, alongside the effects of climatic
factors, have been hypothesised to drive epidemiological and evolutionary dynamics, across
scales. This evaluation identified a key knowledge gap surrounding the drivers for the
dynamics of local city-level epidemics, which I quantitatively assess in Chapter 4, using
highly resolved surveillance data from Australia.

Secondly, I evaluate existing mathematical models that have attempt to characterise and
quantify these non-linear and reciprocal interactions. In particular, I assess the challenges
posed by model complexity, tractability and parameterisation: such modelling considerations,
alongside the identification of key phylodynamical factors from the literature, guide the
methodological development of my network models in Chapters 5 and 6.

2.1 Influenza virus biology

Influenza viruses are negative-sense, single-stranded RNA viruses of the Orthomyxoviri-
dae family. Whilst there are three types of influenza viruses, the burden of seasonal virus
disease can overwhelmingly be attributed to just influenza types A and B; type C viruses
have historically been considered to be a minor respiratory pathogen, responsible for less
severe paediatric disease9,218. The current seasonal influenza A/H3N2 (A/H3) and A/H1N1
(currently A/H1pdm09; previously A/H1sea) subtypes are zoonotic in origin, having adapted
to continued circulation within the human population, after initially causing a pandemic.
In contrast, influenza B viruses do not appear to have animal reservoirs and currently con-



6 Introduction

sist of two co-circulating, antigenically distinct lineages: B/Victoria/2/87-like (B/Vic), and
B/Yamagata/16/88-like (B/Yam) viruses.

Influenza A and B viruses have similar genomes that consist of 8 RNA segments, which
encode functionally homologous proteins that are essential to its life cycle. Structurally, the
virus comprises an envelope, a layer of virus matrix protein and the encapsulated ribonucleo-
protein (RNP) complex. Within the lipid membrane of the envelope are the primary surface
glycoproteins, haemagglutinin (HA) and neuraminidase (NA), which play key roles in virus
ingress and egress. HA binds onto sialic acids on the glycan receptors of epithelial cells in
the upper respiratory tract of humans and mediates subsequent membrane fusion. However,
prior to cell entry, invading virions must first transverse the viscous mucus that is rich in
heavily sialylated mucins: the sialidase activity of NA is critical to overcoming this physical
barrier by cleaving these decoy receptors45. At the end of viral replication, sialidase activity
of NA enables the release of nascent virions from the surface of the host cell by cleaving the
very same receptors used for virus entry45. Owing to their location embedded on the surface
of the viral envelope, HA and NA are subject to neutralising antibodies; HA257, in particular
its globular HA1 head domain129,265,266, is the primary target of this humoral response.

Due to a lack of proofreading activity, the viral RNA-dependent RNA polymerase (RdRP)
complex frequently incorporates nucleotide mismatches during genome replication; it has
been shown that the RdRP of type B viruses is less error-prone than type A viruses195.
Over time, the accumulation of nucleotide mutations and amino acid substitutions within
the HA and NA glycoproteins can produce mutant viruses that are capable of escaping the
humoral immunity conferred by prior infection and vaccination. These new mutants can
eventually come to dominance, replacing the previous antigenic variant. Virus antigenicity
can be quantified using the haemagglutination inhibition (HI) assay or neuraminidase inhibi-
tion (NAI) assay and its punctuated evolution over time can be visualised using antigenic
cartography231.

This process of antigenic drift, particularly in HA, profoundly impacts vaccine effec-
tiveness necessitating the need to periodically update the strain composition of the seasonal
vaccine. In order to allow sufficient time for large-scale vaccine production, hemisphere-
specific strain selection occurs nine months prior to the upcoming winter212. Inevitably,
this task is fraught with uncertainty but the prospect that virus evolution could be some-
what predictable provides glimmers of hope. Seminal studies in the 1980s identified five
antigenic sites in HA228,265: viruses responsible for large epidemics in the 1970s, when
major antigenic change was suspected, had at least one amino acid substitution in each of
the five broadly defined sites. Following on from the original HA antigenic maps made by
Smith et al. 231 , systematic phenotypic chararcterisation of all of the amino acid substitutions
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between representative viruses of each antigenic cluster showed that in most instances, single
amino acid changes in one of seven positions around the HA receptor binding site were
sufficient to recapitulate changes in antigenicity associated with historically observed cluster
transitions129. Subsequently, it has been shown that the magnitude of immune escape from
specific neutralising antibodies was dependent on both the specific amino acid position and
substitution66.

The net effect of immune selection pressures on antigenic evolution, i.e. the continual
extinction of old and emergence of new variants, is the culmination of countless instances
of within-host selection, each of which are uniquely shaped by an individual’s infection
and vaccination history. This selection pressure is exerted by components of the innate
and adaptive immune system. Naïve individuals, by definition, have no prior exposure
to influenza virus antigens and rely on innate mechanisms: the physical mucosal barrier,
activation of the antiviral state by infected cells and recruitment of innate effector cells. These
non-specific mechanisms act independent of antigenic phenotype, and play important roles
in limiting the size of the initial virus inoculum and early containment of virus replication.
Owing to the acute timescale of infection, viruses are able to elude the adaptive immunity,
completing subsequent replication within host cells before the host is able to mount a de novo
humoral response. Viral titres and shedding typically peak at around 24-72 hours147, whilst
the generation of specific antibodies in response to primary infection takes 7-10 days, due to
the slower process of recruiting and activation of naïve B cells via antigen presentation and
clonal selection.

Primary infection primes the adaptive immune system. The mucosal barrier is augmented
by secretory immunoglobulin A (sIgA), which is highly specific towards previously encoun-
tered virus strains and can neutralise or slow down virus invasion. Secondary infection
and viral replication within epithelial cells triggers a memory B cell recall response, which
enables the rapid production of antigen-specific antibodies within 3-5 days. Even with a more
timely humoral response, the peak of viral replication still precedes the onset of the recall
response during secondary infection. It is thus, at the point of inoculation, in the presence of
these cross-reactive sIgAs, that virions are subjected to strong selection pressures that favour
variants with large antigenic effects185,200. This strong initial bottleneck and weak selection
pressures during replication limit within-host selection and may serve to limit the global rate
at which new antigenic variants emerge. However, immunocompromised hosts are unable
to clear the virus so infections can last for weeks or months176: prolonged virus replication
can now be affected by immune selection so these hosts may act as a hot bed for generating
antigenic diversity and contribute to global virus evolution185,272.
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The pattern of an individual’s serological response to virus exposure varies with their
age and is shaped by their immune history, with most responses containing a degree of
immunological backboosting. It has long been observed that titre responses are often
strongest towards antigenic variants encountered in the first decade of life57,58,59,60: the
first strain may hold a privileged position in the immune response, potentially resulting in
the phenomenon of the “original antigenic sin”83 and the detrimental suppression of novel
and more specific responses. More recent longitudinal serological studies have found that
the relative strength of backboosting may in fact be determined by a hierarchy of antigenic
seniority, where early strains take “senior” positions and subsequently encountered strains
take on progressively more “junior” ones81,140,151. Childhood exposure may therefore render
older individuals perpetually susceptible towards current and future viruses by detrimentally
biasing their immune response towards the production of non-neutralising antibodies100.

Competition for antigens is a likely mechanistic explanation antigenic seniority, where
common epitopes shared between current and historic viruses preferentially activates the
memory response. Predominantly, these immmunodominant epitopes are located within
the globular head of HA129,265,266 but over a lifetime’s worth of exposure, some older
individuals may develop broadly neutralising antibodies that target the poorly accessible and
subdominant epitopes on the HA stalk domain7,71. Due to their functional importance in
mediating membrane fusion, these stalk epitopes are highly conserved between antigenic
variants and even subtypes134,237, suggestive of low mutational tolerance. Unlike the variable
head epitopes targeted by the current seasonal vaccines, the prospect of lower plasticity in the
stalk domain have made them prime candidates for the development of universal vaccines,
which would not require periodic reformulation and could potentially offer protection against
novel pandemic subtypes3,134,136.

However, the development of universal vaccines has proven to be considerably difficult.
Unlike murine and ferret models, where stalk-reactive memory B cells can be readily enriched
through sequential infection or vaccination135,189,235, the natural frequency of these cells
and broadly neutralising antibodies are relatively low in the human population7,71. Even if
vaccination is able to elicit anti-stalk immunity, these stalk epitopes are likely to be more
plastic than previously assumed and they may exhibit antigenic drift once subjected to
immune selection. Indeed, positive selection has been observed in the HA stalk domain
of A/H1pdm09 viruses3,236. Escape mutants have also been generated experimentally,
during in vitro culturing of A/H1pdm09 viruses in the presence of stalk-specific monoclonal
antibodies37,244. Crucially, some of escape mutations did not appear to be associated with
high fitness costs; mutants retained their replicative fitness and virulence in mice3,271.
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Any discussion of influenza immunity would not be complete without acknowledging
the limitations in identifying correlates or surrogates of protection, which can meaningfully
associate immune responses with protection from disease in individuals. An individual’s
mucosal sIgA response might provide an accurate representation for their protection but
sample collection via nasal wash would often be impractical169 so most studies utilise
serum immunoglobulin G (IgG). However, IgG does not readily translocate across the lung
epithelium and is likely a poor proxy for immune activity at the location of infection200. The
ability to quantify immune protection is further hampered by the use of HI assays, which
measure the ability of sera to inhibit the virus-induced agglutination of red blood cells. These
assays are unable to characterise antibodies that recognise epitopes distant from the receptor
binding site. Other approaches, such as microneutralisation (MN) assays, may be more
sensitive than HA assays and better detect antibodies that neutralise in vitro virus growth.
These other antibodies may act through cellular cytotoxicity, phagocytosis and complement
activation, which may have important in vivo roles to control infection145,156.

Many studies show that serum HI titres are correlated with protection: individuals with
higher titres experience a reduced likelihood of subsequent infection69,82,201. However, it
is difficult to accurately determine the relationship between HI titre and protection. Whilst
a titre greater than 1:40 is widely considered a protective response115, the absolute value
for the cutoff threshold can vary substantially between adults and children26 and depend on
virus subtype/type49,169 and strain69,82,201 tested against. MN titres are even more difficult
to interpret as correlates of protection, since such titre-protection relationships have yet to be
formally established70,169.

As part of vaccine strain selection, it is important to characterise the immune selection
pressures exerted at the population level by accounting for the heterogeneity in strain-specific
immunity to influenza viruses between individuals. Indeed, a recent study found substantial
individual-to-individual variation in the antigenicity of amino acid escape mutations for
influenza HA149, which likely result from their complex exposure histories to different
influenza viruses. This important heterogeneity cannot be recapitulated in HI assays, where
the reference anti-sera are produced by infecting naïve ferrets: primary infection elicits a
relatively homogenous response towards a limited number of immunodominant epitopes
on the HA globular head. By treating population level immunity as a monolithic response,
our understanding of virus antigenic evolution may be biased towards mutations that cause
large antigenic changes129,231, overlooking important potential evolutionary trajectories that
involve subtle changes in antigenicity111,156.

The focus on the antigenic evolution of HA has overshadowed the contributions of the
non-antigenic internal gene segments towards the overall adaptive evolution of seasonal
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influenza viruses204. Consistent with strong humoral selection, internal segments tend to
have lower rates of nonsynonymous substitutions than HA205. However, the evolution of
internal segments could be compensatory and necessary to offset any potential loss in receptor
binding affinity arising from immune escape105. Indeed, the A/H3N2/California/7/2004
antigenic variant possessed substitutions in the polymerase acidic (PA) segment, which
may have accounted for its greater replicative fitness and virulence over its predecessor,
A/H3N2/Fujian/411/2002175. In vitro and in vivo experiments have shown that the observed
substitutions in the nucleoprotein (NP) gene of A/H3N2 viruses may have had similar impacts
in promoting viral RNA replication120. These results illustrate the need for whole genome
sequencing, in order to develop a more comprehensive understanding of existing phenotypic
variation, fitness constraints and trade-offs between different facets of virus fitness.

Whilst the components of the antibody-mediated protection require further elucidation, it
is evident that the mechanistic representation of cross-immunity within mathematical models
needs further development, in order to better account for the varied exposure histories of hosts
and associate it to the diverse spectrum of in vivo immune response between individuals.

2.2 Global evolutionary dynamics

Given the acute nature of infection and distinct wintertime seasonality of epidemics
in temperate regions, virus transmission must somehow be maintained between seasons,
whether it be through low-level persistence within local populations117 or externally with
reintroductions every winter2,256. If the virus population is maintained externally, there
is a need to further delineate between a strict source-sink model, where virus activity
occurs year-round in individual tropical countries80,226,256, or as a wave of epidemics that
moves sequentially through susceptible populations212. Elucidating between these putative
explanations is critical, since this not only shapes the global evolutionary dynamics by linking
the within- and between- host processes that give rise to new antigenic variants, but also has
profound implications for optimal disease control strategies at local scales43,212.

Early phylogenetic analyses demonstrated regular, cross-hemisphere viral migration
between seasons and a lack of local persistence in temperate countries between seasons190.
With improved virus surveillance coverage and the development of more sophisticated
phylogenetic models, it has become possible to infer, with increasing geographical resolution,
the patterns in migratory dynamics from the virus genealogy. Subsequent studies identified
East and Southeast Asia as an important source of viruses, where a circulation network
sustains A/H3 viruses, which moves through a series of temporally overlapping epidemics
across the region22,205,212. Indeed, the importance of E-SE Asia is unsurprising, given that
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this highly urbanised region is home to approximately a third of the world’s population.
Additionally, these populations are highly connected and mobile: internally within their
countries, regionally and globally. More recently, India has been identified as another member
of this A/H3 virus circulation network25, demonstrating the need to address historical and
ongoing surveillance biases in particular regions of the world.

In addition to geographical coverage, virus surveillance and sequencing of A/H1 and
influenza B viruses have improved substantially. Unlike A/H3 viruses, A/H1 and type B
viruses have on occasion, persisted locally between epidemics in regions outside of E-SE
Asia and India, producing co-circulating genetic lineages and even antigenic variants25.
Again, these results highlight our understanding of global evolutionary dynamics may be
limited by our incomplete and patchy sampling of global virus diversity. These subtype-
and type-specific differences in migratory rates are likely to stem from differences in the
rates of virus evolution and age distributions of infected individuals25. With the highest
rate of antigenic drift, A/H3 viruses rapidly evade population immunity, causing frequent
epidemics and infecting individuals across all age groups. Conversely, A/H1sea and influenza
B viruses evolve at a slower rate, causing less frequent epidemics that predominantly affect
children82,95,150. By infecting more adults, who account for the majority of air travellers,
A/H3 viruses have more opportunities to move internationally and initiate new chains of
transmission, whilst A/H1sea and influenza B viruses have longer durations of regional
persistence25.

A comprehensive understanding of global influenza virus evolution and migratory patterns
requires the elucidation of the processes underlying the emergence of new antigenic variants.
At local scales, circulating viruses are subjected to selection pressures from host immunity
within discrete populations. It is therefore crucial that the dynamics of city-level epidemics
are further characterised.

2.3 Local influenza virus epidemiology

Seasonal influenza viruses can only be imported from the global circulation network if
local conditions are conducive to epidemic initiation and sustained transmission; otherwise,
individual seeding events would by and large, result in dead-end transmission chains. There
is thus great impetus to further elucidate the epidemiological dynamics of influenza virus
activity and its drivers at local scales. The factors that influence and contribute to the
variability in the timing and magnitude of local epidemics are of particular interest, especially
in the context of disease control.
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Historically, hypotheses surrounding influenza seasonality have primarily been informed
by the distinct wintertime seasonality experienced by countries in temperate regions. Whilst
the exact timing and magnitude of local epidemics differ from year to year, virus activ-
ity increases rapidly and entire influenza virus epidemics last only approximately three
months33,160,255, with an absence of sustained activity over summer months. Three classes of
mechanisms have been proposed as a basis of this wintertime seasonality158,160: fluctuations
in virus survival, fluctuations in host immunity, and changes in host behaviour.

In temperate countries, it has been long-speculated that wintertime epidemic activity
might be causally linked to seasonal changes in climatic factors61,109. Experimental studies
using animal models have shown that low temperature and relative humidity (RH) con-
ditions enhance aerosol virus survival and transmission161,162,221, as well as persistence
on surfaces133,170. Since the relative contributions of each route of transmission are un-
known142,242, the sensitivity of overall in vivo transmission between humans towards cli-
matic conditions remains poorly elucidated163. Furthermore, attempts at establishing and
quantifying causal links between climatic factors and disease are confounded by the fact that
the oft-used atmospheric conditions can differ quite substantially from indoor conditions107,
where interactions between people are most likely to occur.

A small number of experimental studies have suggested that the relationship between
RH and virus survival may in fact be bimodal, with moderate survival possible at low and
high RH values216,223. A bimodal relationship, rather than a negative monotonic one, could
potentially explain the disparate observation that epidemics in the tropics and subtropics often
occur during the humid and hot rainy season224,240. Conflicting findings surrounding virus
stability at high RH values may stem from differences in the salt and protein composition of
the media solution used to create virus droplets133,180,273.

Supplementing experimental approaches, population-level observation studies have gen-
erated additional evidence for the importance of climatic factors as drivers of influenza
seasonality: a seminal study of state-level epidemiological data from the United States found
that epidemics were sometimes preceded by periods of anomalously low absolute humid-
ity222. Subsequent epidemiological studies have found similar patterns using prefecture-level
data from Japan213, city-level data from the New York Metropolitan Area62 and region-level
data from France219. In addition to providing a crucial link between enhanced virus survival,
transmission between individuals and overall epidemic activity, these studies have identi-
fied an environmental signal with predictive power that could be potentially leveraged for
short-term forecasting.

Besides affecting virus viability, seasonal variations in meterological factors could influ-
ence host susceptibility towards infection, directly at the critical immune milieu of the lungs.
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Dry atmospheric conditions can cause the all-important mucosal barrier to lose moisture and
slow down mucociliary clearance12,214. The recruitment and activity of downstream immune
effector cells are also less efficient at low temperatures, due to vasoconstriction and reduced
blood supply68. Whilst low temperature did not diminish the innate immune response and
activation of the antiviral state in guinea pigs162, the duration of peak viral shedding was
substantially prolonged.

Host behaviour and temporal variations in contact rates could also drive disease sea-
sonality. Due to inclement weather during winter and the rainy season for temperate and
tropical regions respectively, individuals spend more time in close proximity indoors101,160.
Curiously, in the arid Southern States of the United States, epidemics still exhibit wintertime
seasonality, despite people spending more time indoors in air-conditioned environments
to avoid the scorching summer sun239. Given the burden of disease bore by children and
their importance in driving community transmission183, it is plausible that school openings
may have triggered the fall wave of pandemic A/H1N138 and conversely, reductions in
transmission during seasonal epidemics may be associated with school holidays36. However,
such variations in contact rates are unlikely to be the sole or main drivers of epidemic activity:
epidemics do not occur during school term time outside winter, nor are associated with events
involving large gatherings of people.

As with our understanding of global dynamics, improvements in surveillance coverage of
the subtropics and tropics have uncovered a diverse spectrum of influenza activity: disease
patterns and strength of seasonality are highly variable between different countries64,114,240.
Some locations, such as Singapore and Hong Kong, exhibit semi-annual peaks41,42 whilst
others display irregular year-round activity that lack well-defined seasons2,144,187. Hypothe-
ses based on factors that potentially drive disease seasonality in temperate regions appear to
be highly context dependent and cannot parsimoniously explain the patterns observed in the
tropics158. It remains to be seen whether the varied patterns of disease across such diverse
climatic backgrounds can truly be reconciled by a set of shared epidemiological drivers or not,
if the primary drivers differ between local contexts240. The effect and strength of identical
seasonal drivers could differ, modulated by the underlying spatiotemporal organisation in
population density54,55: densely populated cities could potentially incubate limited chains of
transmission during the summer, partially depleting the pool of susceptibles and reducing the
size and intensity of wintertime epidemics.

The magnitude of epidemics is another key epidemiological quantity of interest. The final
size of an epidemic is intuitively positively associated with how transmissible a pathogen
is, although the exact form of this non-linear relationship mathematically depends on the
complexity of the compartmental models considered4,112,166,167,211. For seasonal viruses,
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where the potential for further intra-host adaptation is limited, it has been theorised that virus
antigenicity and availability of susceptible individuals are key determinants of transmissibility.
Different strains of the same antigenic variant are almost fully cross-reactive94. Due to
imperfect cross-immunity between successive antigenic variants58, newly arisen variants
are able to partially escape immunity induced by prior infections and vaccinations. With a
higher fraction of the population susceptible to infection, epidemiological theory predicts
that new antigenic variants should cause larger epidemics than previously-circulated ones,
resulting in stereotyped boom-and-bust cycles130,131,275. In support of this hypothesis is the
observation that heightened mortality rates from pneumonia and influenza coincide with
cluster transitions102,130,265.

Antigenic change could also influence the exact timing of epidemics during the influenza
season. With a greater proportion of the population susceptible, each individual introduction
of a virus into a population is more likely to initiate a transmission chain that is less prone to
stochastic termination. This means that new antigenic variants could potentially cause earlier
local epidemics, as was the case in Israel29. Within a country, successful transmission events
between different cities could become more frequent, resulting in greater spatio-temporally
synchrony across epidemics, which was observed in United States39,102,130, Japan213 and
Australia92.

In addition to homotypic competition between antigenic variants, interactions between
viruses of different types and subtypes have long been hypothesised76, whereby prior infec-
tion by a virus of one subtype could reduce the likelihood of subsequent infection by viruses
of complement subtypes52,73,232. However, the time scale and mechanistic basis for this
partial competitive exclusion remain poorly established. Some studies have suggested that
T cell immunity171 or non-specific infection-induced interferon responses56 may underpin
short-term heterotypic competition, which would be limited to within the duration of a single
influenza season. Indeed, this would be consistent with evidence from observational studies,
which have found that the subtype or type that initiates above baseline levels of activity first
is most likely to have the largest epidemic of that season99,277. Curiously, the ability to
interfere with competitors appeared to vary between subtypes99,275.

By its very nature, interrogating the phylodynamics of influenza is difficult and previous
attempts at quantifying the effects of environmental and virological drivers of influenza
epidemiology have been limited by three factors: 1. the reliance on influenza-like illness
(ILI) data; 2. the aggregation of ILI or virologically confirmed data over large geographical
scales (state/province/country); 3. where virologically confirmed data are available, the use
of data without subtype and antigenic variant-level resolution.
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ILI is diagnosed clinically, based on a set of symptoms and frequently includes a wide
variety of non-influenza respiratory infections217. Occasionally, there is further labora-
tory characterisation but this is insufficient to delineate clearly between influenza virus
type/subtype- and antigenic variant-specific patterns. Regardless, any potential patterns of
interest are lost since data collection by disease surveillance networks often aggregate at eco-
logical scales (state/province/country) that sum over multiple local (county/city/town-level)
epidemics), which can individually vary substantially in timing, magnitude and influenza
virus composition. All together, these sources of obfuscation make it difficult to disentangle
local-level, antigenic variant-specific patterns and critically investigate the impact of putative
drivers of epidemiological dynamics.

There is a clear need to robustly assess and quantify the impact of putative drivers on the
dynamics of local city-level epidemics, which has not been feasible due to a lack of sufficient
virus-specific and geographical resolution. Subsequently, the development of mathematical
models has been hampered; I address this knowledge gap in Chapter 4, using highly resolved
surveillance data from Australia.

2.4 Epidemiological modelling for influenza viruses

Epidemic processes are inherently difficult to study using conventional statistical analyses,
due to their sensitivity to underlying noise from demographic and environmental processes267.
Mechanistic models can partially account for and mitigate such challenges; despite the
simplicity of these models, analytical insights into transmission dynamics and stationary
states have proven invaluable in informing disease control211. Over the past three decades,
mechanistic approaches have been further refined, leveraging on their ability to intuitively
represent a system of diverse processes and capture the nonlinear effects of epidemiological
drivers. This flexibility in being able to formulate models to investigate specific questions
of public health interest can however lead to issues of mathematical and computational
tractability: robust parametrisation can be hindered by a lack of suitable empirical data and
inferential methods15,199.

For seasonal influenza, model development has focused on creating frameworks to
characterise the homosubtypic interactions between strains, in order to investigate how
population disease dynamics are shaped by individual infection histories141. One approach
to account for individual differences in immunity is to divide the host population into a
small number of compartments, members of which all are identical in their status and
susceptibility towards the disease. In the classical SIR model128, individuals are split into
three compartments, Susceptible, Infectious and Recovered, with a system of differential
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equations to define the rate at which individuals transition between compartments. Whilst this
framework could be an approximation of dynamics within a single season, the assumption that
individuals are either fully susceptible or fully immune means that the continued evolution
of the virus and the recurrent nature of epidemics cannot be recapitulated.

SIRS models attempt to better capture the process of antigenic drift, which is captured
phenomenologically by the addition of a waning immunity rate, where individuals can return
from the Recovered to the Susceptible compartment198. This however assumes that the loss
of immunity by an individual is predicated on the time since their last infection. Overall,
this produces a stereotyped pattern of gradual and continuous antigenic drift, rather than the
empirically observed punctuated evolution, where the rapid emergence of a new antigenic
variant is accompanied by the abrupt disruption of herd immunity44,131.

By explicitly incorporating distinct viruses, multiple-strain models can be used to in inves-
tigate the interactions between different “strains”. Here, the modelling term “strain” is used to
categorise viruses into groups: different strains in the biological sense based on their genetic
identities or different antigenic variants based on their broad phenotypical characteristics.
The scale at which competition occurs at is often chosen to maintain analytical tractability:
some models opt for a linear98 or a relatively limited dimensionality106 strain-space. Another
approach is to make the tacit assumption that within-antigenic cluster evolution is neutral251

and only consider the emergence of new major antigenic variants130,131.
The strength of interactions between different “strains” is dependent on their cross-

immunity, reflecting their relatedness in either the genetic or antigenic domains. In what
amounts to a serial SIR framework, multiple-strain models record the levels of susceptibility
and immunity towards each “strain”. However, capturing the effects of past exposure is
complicated by the fact that for influenza, the immune response is comprised of distinct
contributions derived from prior infection events, where each encounter may or may not
confer partial cross-immunity.

Multiple-strain models thus have two components to track: infection history (the set of
antigenic variants exposed to) and immune status (the degree of cross-immunity conferred
given exposure to a particular strain). To avoid issues with intractability, compartmental
models often fall into a dichotomy, omitting either of the two components5,35,97,98,131,207.
History-based models5,35 explicitly track the number of individuals with each possible
combination of variants exposed to. It is assumed that all hosts with a given infection history
{i1, i2, . . . , in} will possess identical levels of partial cross-immunity against variant j137. On
the other hand, status-based models record the levels of polarised immunity at the population
level towards each variant97,98,131,207. In other words, upon infection by antigenic variant i,
the host is immediately rendered immunised or not towards variant j. By avoiding explicit
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tracking of the combinations of past infections, the number of state variables for status-based
models increase linearly and not exponentially with the number of variants.

Whilst the convenience of numerical analyses is desirable, these approaches in dimension
reduction can prove to be problematic. Status-based models do not preclude co-infection
by two different antigenic variants16, which could reduce power of new “strains” to exclude
older ones. Additionally, model output could vary substantially depending on whether
cross-immunity is assumed to reduce susceptibility and/or transmission, both of which
reflect elements of the immune response141. This sensitivity towards underlying assumptions
highlights the need for a deeper understanding of the inner workings of mechanistic models16,
since one would expect biologically grounded mechanisms to produce empirically plausible
dynamics.

On the other end of the model complexity spectrum, individual-based models23,76 keep
track of each individual in the population, their infection history and immune status, with
additional opportunities to incorporate salient host attributes that affect their disease sus-
ceptibility or transmission. Rather than fractions of the population transitioning between
compartments through the law of mass action, the ability to trace the sequence of infections
within a transmission chain enables the random process of genetic mutation and the emer-
gence of new strains and eventually antigenic variants to be modelled explicitly, allowing for
a more detailed representation of cross-immunity.

Regardless of one’s choice of simplifying assumptions, cross-immunity should logically
be associated with some metric of genetic and/or antigenic relatedness between “strains”;
the method for deriving this distance is dependent on the dimensionality of strain-space
within the model179. In the abstract case of linear strain-space98, distance can be read-
ily calculated through simple subtraction. When complexity is increased by representing
genomes as a sequence of loci or epitopes, relatedness can be quantified using the Hamming
distance5,76, ie the number of loci occupied by different alleles, or the Euclidean distance230.
Genetic distance can be transformed into a value of cross-immunity through the use of
genotype-phenotype maps. Often, linear or exponential functions are used to represent how
cross-reactivity decreases monotonically as the degree of kinship decreases140. However,
direct transformations between genetic distance and cross-immunity gloss over the highly
degenerate and non-linear relationship between genetic and antigenic distance, since a small
number of genetic changes can result in large antigenic changes231 due to the importance
of a limited number of epitopes in the globular head129. This may inadvertently inflate the
strain-space accessible to influenza viruses and necessitate the addition of further mechanisms
to constrain virus diversity76.
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In addition to investigating the competitive interactions between “strains” within a closed
system, some studies have investigated the process of evolution and ad hoc emergence of
new “strains” over multiple seasons. The short duration of epidemics and clear wintertime
seasonality of influenza in temperate regions means that it is possible to assume that new
“strains” arise externally and are only introduced at the beginning of each discrete season6.
In models with low dimension strain-space, the process of introducing new “strains” into
the system can be modelled phenomenologically with a rate that is governed by a step or
hazard function that takes into account the duration and/or extent of circulation of current
viruses130,132,207. For models that represent “strains” as a sequence of loci or epitopes, the
process of genetic or antigenic mutation5,23,76,230 can occur with estimated rates, which
reflect the diversity generated over the course of virus replication within an individual or at
the population-level over time.

Many of the aforementioned models assume homogenous mixing between hosts, who
differ in their immunity but are otherwise homogenous. These approximations, derived at
the limit of large and well-mixed populations, fail to reflect the substantial heterogeneity
in an individual’s risk of infection and transmission potential139,159. Such heterogeneities
can have substantial impacts on the final size and epidemic threshold, which would differ
greatly from the values derived from average-based approaches85. The importance of host
population structure has been demonstrated widely in the context of sexually transmitted155

and livestock disease30, no doubt aided by the relative richness and availability of data
on sexual contact networks and animal movements between farms respectively. In the
context of seasonal influenza, there is substantial evidence implicating the role of schools
in facilitating transmission between children123, who are key in further dissemination in
the community183 and households255. There is thus a need to use empirical data to identify
the critical social structures underpinning disease transmission and encode them into the
modelling of epidemics, to optimise targeted control strategies, such as vaccination78 or
school closures173.

Similar to expanding the dimensionality of strain-space, social structures can be encoded
in compartmental models by further dividing hosts into subpopulations. In these multi-
group models, it is assumed that hosts mix homogenously within their subgroup; typically,
contacts between individuals of the same subgroups will occur at a higher rate than those
between different subgroups154. Depending on the scope of the research question, the
relative weighting of within- and between-subgroup contact rates can be altered, giving
contextual meaning and display social and/or geographical segregation of individuals. In
metapopulation models, the subgroups could represent spatial patches across the range of
geographical scales: patches could represent households, schools and workplaces within a
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community13,14,36, communities within a city108, municipalities within a country46,164 or
countries across the world. Subgroups could also constitute different age groups, reflecting
the highly age assortative contact patterns observed in large-scale empirical studies27,85,186.
Since these multi-type models can be expressed as a system of ordinary differential equations
and are fundamentally extensions of the basic SIR model, they remain readily amenable to
analyses14,165,166,167, using algorithmic approaches built upon classical results112.

The issues surrounding individuality and stochasticity in transmission have long been
acknowledged to be epidemiologically important209; in metapopulation models, their effects
become further amplified as the subgroups become smaller and smaller in size127. When
transmission between subgroups is relatively low, whether through weak coupling between
subgroups or the presence of pre-existing immunity, omitting individual identities and taking a
well-mixed average-based approach can lead to a substantial over-estimation of the epidemic
growth rate and spatial spread127.

Owing to the flexibility of individual-based models, structure in the host population can
be rendered as a network graph consisting of nodes and edges. Nodes in a contact network
represent individual hosts, whereas an edge between two nodes represents an interaction that
could allow for disease transmission. Heterogeneity in an individual’s contact patterns is
reflected by a node’s degree, the number of edges attached to it. The topology of the overall
network can thus be summarised by its degree distribution, which is the key determinant of
epidemiological dynamics. Both the reproduction number and final size of an epidemic are
affected by the degree distribution, with the former being particularly sensitive to the degree
variance18,127,199.

For some pathogens, arbitrary degree distributions may prove to be suitable approxi-
mations for the patterns in disease-causing contacts: survey studies have suggested that
sexual155 and more broadly speaking, social networks168,192 are highly clustered and similar
to scale-free networks, whose degree distribution follows that of the power-law. Using
the principles of bond percolation originating from statistical physics, exact solutions have
been derived for the classical results, including the distribution of epidemic sizes and the
transmissibility threshold for epidemics192,193.

The spread of epidemics is shaped by but also reshapes network geometry: highly
connected individuals and clusters of individuals are preferentially depleted leaving a residual
network that is more fragmented than the original78,194. In the case of pathogens that cause
repeated epidemics, network geometry has to not only account for contact between hosts but
also the cross-immunity that they possess. These two attributes are likely to correlated and
act to facilitate transmission229: the tendency of age groups to segregate can create clusters
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of susceptible children, who are less likely to have pre-existing immunity, amplifying and
facilitating community transmission.

The importance of the interaction between epidemics and geometry of immunity becomes
more apparent when age structure is added to networks. With this added realism, network
models predict that as a novel pandemic influenza virus sweeps through a naïve population,
the burden of disease would initially be borne by children, who typically have the highest
contact rates within the population18,19. The dramatic pruning and reshaping of underlying
network structure would result in a shift in attack rates towards the adults in subsequent
seasons. This changing hierarchy of individual risk has been found by some epidemiological
studies of past pandemics19,84,93, suggesting that seasonal vaccination strategies should be
targeted and adjusted accordingly between seasons, in order to maximise the levels of herd
immunity achieved.

In addition to changes in the structure of immunity, there is a need to further elucidate
how the underlying contact network changes over time. As a consequence of changes in
population demography or host behaviour, there is a need to rewire the network, through
the addition and removal of nodes and edges. The impact of rewiring is dependent on the
timescale it occurs over, relative to the life course of the pathogen: demographic turnover
is unlikely to have much impact on the transient epidemics caused by acute infections89,
whilst endemic sexually transmitted diseases are greatly affected by the turnover in sexual
partnerships. Unlike static networks, changes in the local topology of dynamic networks can
have dramatic effects on global network properties. As an example, school closures would
cause a global reduction in edge density, with high contact children losing their contacts
whilst concurrently increasing the relative clustering of other individuals17. Such scenarios
cannot be tackled using existing analytical frameworks, which model partnership turnover as
a process of neighbour-exchange: it is assumed that the number of concurrent partnerships
for any given node and hence global network properties both remain constant259.

Given the sensitivity of model outputs towards network representation and parameterisa-
tion, there has been a shift towards constructing more realistic, data-driven networks, rather
than relying on arbitrary degree distributions199. Owing to numerous studies employing
direct observation, contact diaries27,186 and electronic sensors215, the availability of high
resolution social contact data has increased over the past decade. Although parameterising
and validating network models, in addition to their epidemiological outputs, remain far from
trivial199, Exponential random graph models have been developed to handle egocentrically
sampled network data32,250. Within this framework, observed data is used to estimate the
likelihood of an edge between two nodes, based on their nodal attributes, as well as the
presence of other edges or structures within the network. Networks, each with the properties
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of the original observed network, can then be independently sampled from this probability
distribution.

Theoretical studies have explored the implications of explicitly modelling population
structures and have compared them against traditional compartmental models. In contrast to
well-mixed SIR models, where the critical depletion of susceptibles prevents the possibility
of subsequent reinvasion, residual networks are potentially still vulnerable: the properties
and robustness of the residual network towards subsequent reinvasion is dependent on both
the transmissibility of the pathogen194 and degree distribution of the original network78. The
topology of networks has also been shown to impose further constraints to competition dy-
namics17,125,194 between strains. In the context of pandemic influenza, it has been suggested
that network structure is critical in enabling recurrent epidemics by limiting the spread of epi-
demics and extent of population immunity124. These results could have similar implications
for the dynamics of seasonal influenza, although there has yet been any investigations into
the joint effects of realistic network structures and cross-immunity, which are intrinsically
correlated with each other.

2.5 Summary

From reviewing the existing literature, it is evident that many fundamental questions
surrounding the biology and epidemiology of seasonal influenza viruses remain unanswered.
With the substantial advances in information technology over the past decade, we have been
able to collect, process and store data sets of ever-increasing size. Alongside this, technical
development of experimental techniques have generated insights into facets of the immune
response in individuals, as well as global evolutionary patterns for the viruses. In particular,
elucidating how immune selection can bridge across these two extremes of phylodynamical
scale will require the epidemiological dynamics and its drivers at local scales within discrete
populations to be precisely characterised.

An abundance of data can itself be a hinderance to effective model development, espe-
cially if it lacks sufficient resolution, as is the case with ILI data. Only with high quality
surveillance data, with the necessary virus-specificity and local scale resolution, can we accu-
rately identify the most pertinent aspects of individual, populational immunity, host contact
structure and other drivers. This will in turn facilitate the development of new modelling
frameworks, by reducing their dimensionality and enabling their robust parameterisation.
Validating these tools is crucial in ensuring that they produce meaningful outputs: firstly,
quantifying the effect of these factors on epidemiological dynamics and secondly, generating
better epidemiological forecasts and implementing more targeted control measures.
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In the next chapter, I first evaluate existing and develop my own statistical model for
epidemic detetion, to enable me to carefully characterise the city-level dynamics of seasonal
influenza virus epidemics in Australia (Chapter 4). I then develop a modelling framework to
investigate how population cross-immunity and host contact structure can interact to facilitate
recurrent epidemics.



Chapter 3

Outbreak Detection Algorithms

This chapter details the development of a novel data-driven and statistically principled
approach for the identification of epidemics in noisy and data sparse settings. I first review
existing outbreak detection algorithms, their implementations and limitations, using examples
from empirical influenza surveillance data. Based on these findings, I developed a more
refined statistical framework, which I subsequently used in Chapter 4 to characterise and
analyse the patterns of seasonal influenza activity in Australia. Whilst outside the scope and
intent of my research, my framework is simple to implement and can handle real-time case
count data, highlighting its potential for future use in routine influenza surveillance.

Parts of this chapter, notably the description of my statistical model for epidemic detection,
have been previously published in Nature Communications (see Appendix A). The content
of this manuscript, specific to model conceptualisation, development and evaluation, was
led by myself; all authors (myself; Dylan Morris at Princeton University; Aeron Hurt at the
University of Melbourne; Ian Barr at Federation University; Colin Russell at the University
of Amsterdam) contributed to editing the final manuscript.

3.1 Introduction

The impetus behind disease surveillance is the timely detection of outbreaks so that public
health authorities can intervene with control measures and potentially reduce the extent of
morbidity and mortality. To this end, surveillance systems must be able to rapidly detect
outbreaks as they unfold in real-time, with only limited access to case notifications as they
accumulate75. This emphasis on situation awareness and the speed of detection over the
accuracy of disease diagnosis has shaped existing approaches taken towards data collection
and analysis31,261.
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Even with the advent of more sophisticated laboratory characterisation, routine syndromic
surveillance remains a mainstay, due to its speed, flexibility and need for minimal reporting
infrastructure. Indeed, the lack of specificity has its advantages in pandemic situations
or outbreaks, when the aetiology has yet to be formally identified196. In order to remain
agnostic towards the causative pathogen and mechanism of transmission, statistical methods
have been employed in the field of prospective detection247,261. These approaches have
their mathematical foundations in signal detection theory, where the challenge is to define a
threshold level that can be used to discern an information-bearing signal from a background
of noise126,261.

In the context of epidemics, the aim is to define a threshold level, which can separate
between baseline and heightened levels of disease activity. From a purely epidemic detection
standpoint, the value is chosen to reflect the transition between spontaneous dead-end
and sustained chains of transmission. For pragmatic applications, values can be chosen
as warnings or triggers for public health interventions; in such instances, the choice of
threshold level determines the sensitivity and specificity of the detection algorithm261. Other
than the rather crude fixed thresholds50,264, most frameworks attempt to infer this critical
threshold value from the time series data75,116,220. However, there is no consensus on a gold
standard241. Broadly speaking, frameworks fall into two broad categories, short-term and
long-term methods. Short-term methods only require a limited set of reference values from
within the focal season. They require little domain knowledge on the causative pathogen,
making them highly generalisable and suited for rapid deployment during outbreaks of
syndromic disease. In contrast, long-term methods aim to identify historical trends in activity
and are thus more suited for recurrent seasonal diseases that exhibit strong periodicity.

However, without modelling the underlying environmental noise and disease transmission
processes, which can only be possible if they were thoroughly elucidated, what constitutes
an outbreak is a statistical criterion, since the choice of sensitivity and threshold values can
be somewhat arbitrary75. Whilst not readily amenable to meaningful validation or sensitivity
analyses with empirical time series, what matters is the utility of the tool: a statistically
significant aberrant count is not necessarily of practical importance. The fine-tuning of
outbreak detection algorithms is thus context dependent, requiring empirical judgement and
domain knowledge65: for instance, sensitive and early detection may be beneficial from a
public health perspective but as an automated detection system, it needs to be countenanced
against false positives and the potential costs of economic disruption. For my intended
application, I required a tool that is sensitive yet sufficiently specific to correctly identify
epidemics from empirical surveillance data. Ideally, the chosen framework would rely upon



3.2 Methods 25

a minimal set of assumptions on the properties of epidemics, such that they can be readily
validated, assessing the robustness of their results to model parameterisation.

Despite the apparent successes of many existing algorithms in detecting the onset of
annual epidemics for seasonal influenza252,255, they have inadvertently been assisted by the
particular properties of influenza-like illness (ILI) syndromic surveillance data. By the very
merit of being nonspecific and capturing the upper tract infections caused by a plethora of
pathogens217, ILI data streams are voluminous and display periodicity that closely follows
the natural cycle of seasons68. This provides a distinct epidemic signal with a large amplitude
and clear periodicity. Furthermore, the effects of noise may have been artificially suppressed,
resulting in even more pronounced epidemics: an artefact of surveillance systems with
limited sampling outside of winter months. Overall, these algorithms are unlikely to perform
as well with data sets that emphasise quality over quantity.

The aim of the work described in this chapter was to develop a practical tool that can be
applied to an antigenically characterised city-level influenza virus surveillance dataset from
Australia and more robustly infer the timings for the onset and end of epidemics, which are
necessary for downstream analysis of the effects of climatic factors and antigenic change. The
smaller data set that comes with increased city-level resolution and antigenic characterisation
presents unique problems for epidemic detection; here I use examples from empirical data to
highlight the limitations of existing methods and demonstrate how my proposed method can
overcome them.

3.2 Methods

3.2.1 Australian surveillance data

Influenza viruses from Australia were collected by the WHO Collaborating Centre
(WHOCC) for Reference and Research on Influenza in Melbourne, Australia. The Melbourne
WHOCC receives a subset of influenza-positive clinical samples collected by various sentinel
surveillance systems across Australia throughout the year. The samples in this study were
typed, subtyped and antigenically characterised by haemagglutination inhibition assay to the
vaccine reference strain in use at the time of sample collection.

The dataset consists of 18,250 influenza positive cases, collected between 2000 and 2015
in the city of Brisbane, the city of Perth, the state of South Australia, the city of Sydney
and the state of Victoria. The breakdown at the subtype/lineage level is as follows: A/H3
(7,661), A/H1sea (1,410), A/H1pdm09 (3,987), B/Vic (3,021) and B/Yam (2,171). All of
these correspond specifically to individual cities except for the data from Victoria and South
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Australia. As of June 2015, 75% and 78% of the inhabitants of the states of Victoria and
South Australia resided in the cities of Melbourne and Adelaide, respectively. I therefore
treated the Victoria and South Australia data as representative of city-level patterns in those
two major cities, which is a fair assumption given the strong metropolitan bias in surveillance
coverage263.

Aggregation of cases by two-week periods was deemed necessary, to smoothen the time
series in light of the relatively low number of cases within the data set; this relatively long
timescale could however potentially obscure transient fluctuations in weather of interest in
downstream analyses. Whilst weekly time series were appreciably noisier, I found a high
degree of correspondence in estimated epidemic onset and end timings with values calculated
using the Poisson Count Detection Method from data aggregated by two-week periods.

3.2.2 Fixed threshold

The simplest yet most subjective approach is to define a fixed threshold value, which
remains constant within the season and between years241,264. Often, threshold levels are
determined rather subjectively through visual inspection of virus activity across seasons.
For instance, based on their real-world experience, the public health authorities for the
Australian state of Victoria set the threshold level at 0.25 ILI cases per 100 patients seen
by sentinel practices264. Crossing this threshold level for community activity serves as a
trigger for initiating elements of their winter preparedness strategy, since it typically heralds
a concurrent rise in influenza positive hospitalisations and the onset of an influenza epidemic.
Unfortunately, since it was not possible to find out the proportion of ILI cases that were
influenza positive and also subsequently characterised, I could not work out an equivalent
fixed threshold level that corresponded to this empirically determined 0.25 ILI cases per 100
patients; instead, I determined the level by visual inspection. Initially, I set it at a relatively
conservative value of 5 cases per fortnight across all cities.

3.2.3 Detection methods using short-term data

Segmented linear regression models

Rather than using a threshold value of counts to denote the transition between baseline
and epidemic levels of activity, the objective of segmented linear regression models is to find
the breakpoint or the timing marking an abrupt change in the growth rate in case counts39,92.
This reflects the underlying disease process as the epidemic becomes established, going from
limited dead-end chains of transmission to sustained exponential growth.
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Only a subset of the time series running from the first week of winter to the week of peak
incidence are considered; weekly ILI counts Yt are log-transformed. For each season and
location separately, a segmented linear model is fitted to identify the timing of the breakpoint
tbreakpoint , which corresponds to the onset of the epidemic (Eq. (3.1)).

Yt =

β0 +β1t + εt if t ≤ tbreakpoint

β0 +β1t +β2(t − tbreakpoint)+ εt if t > tbreakpoint

(3.1)

εt ∼ Normal(0,θ 2) (3.2)

By definition, the rate of growth after the onset of an epidemic β2 is constrained to be
positive. Model error εt is assumed to be normally distributed with a mean of zero and
variance of θ 2 (Eq. (3.2)). Identifying the breakpoint is an optimisation problem that can
be solved by maximising the likelihood function L (β0,β1,β2, tbreakpoint). This problem
is non-differentiable and can be solved iteratively using the Nelder-Mead simplex search
algorithm268, which is implemented in the segmented package in R188.

Early Abberation Detection System C1 method

In response to the potential pandemics and the threat of bioterrorism in the early 2000s,
the CDC proposed the Early Abberation Detection System (EARS): many statistical detection
methods could not be applied to such scenarios due to an absence of pre-existing historical
data for background information122. The most basic variant within this family of methods
is C1, which compares the number of case counts yt0 at time t0 against a moving sample of
the most recent n timepoints, {yt0−n, . . . ,yt0−1}. C1 is often used with daily syndromic data,
with n set at 7 days121. The C1(t0) statistic is defined in Eq. (3.3a), where yt0 and st0 are the
moving sample mean and sample standard deviation respectively Eqs. (3.3b)–(3.3c).

C1(t0) =
yt0 − yt0

st0
(3.3a)

yt0 =
1
n

t0−1

∑
i=t0−n

yi (3.3b)

s2
t0 =

1
n−1

t0−1

∑
i=t0−n

(yi − yt0)
2 (3.3c)

Under the null hypothesis of no outbreak, it is assumed that C1(t0)∼N(0,1); the threshold
is typically set at three sample standard deviations above the sample mean, ie an outbreak is
declared when C1(t0)> 3.
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Moving Epidemic Method

The Moving Epidemic Method252,253 is typically used for retrospective detection of
epidemics. Rather than using a threshold level, it aims to split individual season into three
periods: pre-epidemic, epidemic and post-epidemic. Under the premise that the baseline
activity during the pre- and post-epidemic periods is minimal compared to activity during the
epidemic period, the epidemic period (tonset to tend) can thus be expressed as the minimum
number of consecutive weeks r∗ with the maximum accumulated rates percentage (MAP).

For a time window of length r, the maximum accumulated rate MAr and MAPr for a
given season are defined as follows Eqs. (3.4)–(3.5):

MAr = max
i∈{1,...,S−r+1}

{
i+r−1

∑
t=i

yt

}
,∀r ∈ {1, . . . ,S} (3.4)

MAPr =
MAr

∑
S
t=1 yt

(3.5)

Where S is the number of weeks in the season and yt are the number of observed counts
in week t. A MAP curve can be drawn and smoothed by regressing MAPr over r. The
incremental change ∆r in the smoothed values

(

MAP r between consecutive weeks is given as
Eq. (3.6):

∆
r =

(

MAP r+1 −

(

MAP r (3.6)

The optimal epidemic period r∗ is the value at which any further increases in r results in
the inclusion of pre- or post-pandemic time points, ie a modest incremental increase in ∆r

that is lower than a predefined value δ Eq. (3.7).

r∗ = min
r∈{1,...,S−1}

{r : ∆
r < δ} (3.7)

Previous studies using ILI deemed that sensitivity and specificity are maximised at values
of δ in the range of 0.02 to 0.04208,252. Once the optimal length of the epidemic period r∗

has been identified, the onset tonset and end tend timings can be found by revisiting Eq. (3.4)
(Eq. (3.8)).

MAr∗ =
tend

∑
t=tonset

yt = max
i∈{1,...,S−r∗+1}

{
i+r∗−1

∑
t=ti

yt

}
(3.8)

By collating the epidemic periods across individual seasons, it can be possible to de-
termine a threshold level, based on the case counts observed at epidemic onsets253. This
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extension to MEM enables its use for prospective detection and has been implemented by the
European Influenza Surveillance Networks.

3.2.4 Detection methods using long-term historical data

Serfling method

The Serfling Method220 was a seminal development in time series analyses and remains
widely used in the US227,255, UK74, France48 and China262. It was designed for use with
pneumonia and influenza (P&I) mortality data: similar to ILI data, P&I captures the activity
from a multitude of respiratory pathogens. The Serfling approach assumes that seasonal
influenza activity is superimposed upon a background of baseline activity Yt , which takes the
form of r sinusoidal seasonal component(s) (Eq. (3.9)). In addtion, there is a linear time trend
across years to account for potential systematic changes in disease activity or surveillance
between seasons. Fitting the baseline requires user input to identify summertime periods,
when epidemic activity from seasonal influenza viruses is all but absent.

Yt = β0 +β1t +
r

∑
i=1

γi sin(ωit)+δi cos(ωit)+ εt (3.9)

Model error εt is assumed to be normally distributed with a mean of zero and variance of
θ 2. From the baseline, a time-varying threshold with similar sinusoidal periodicity can be
calculated by taking an upper percentile for the prediction distribution (typically 95%).

For the purposes of analysing my antigenically characterised and highly specific data set,
I assume that the sinusoidal baseline (r = 1) instead represents sporadic background activity.
Case counts in excess of the threshold would thus be attributable to true seasonal epidemic
activity.

Farrington method

Instead of imposing a specific functional form for seasonality, the Farrington Method74

uses an overdispersed Poisson generalised linear model: the count data distribution Yt can be
used to estimate the baseline counts yt0 for week t0 (Eqs. (3.10a)–(3.10b)) and compute a
threshold by taking an upper percentile for the prediction distribution (typically 95%).

E(Yt) = µt (3.10a)

Var(Yt) = φ µt , where φ ≥ 1 (3.10b)
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The count data distribution Yt is estimated from the set of reference values s is formed
from a window of 2w+ 1 weeks, taken from each of the b prior seasons (Eq. (3.11a)).
Seasonal patterns and potential trends across years are accounted for by the log-linear
predictor (Eq. (3.11b)).

s = {
⋃b

i=1

⋃w

j=−w
yt0−i·52+ j} (3.11a)

log(µt) = β0 +β1s (3.11b)

The Poisson count detection method

For each individual antigenic-variant specific time series, I used a Poisson count detection
algorithm implemented in the Surveillance package in R116 to distinguish periods of sustained
epidemic activity from a background of sporadic interseasonal activity. I assume that the
start of the calendar year falls sometime within the interseasonal period, which is justified
by the scarce number of cases observed during this time of the year and the fact that it is
summertime in Australia. Making no further assumptions on the exact duration and timing
for the interseasonal period or epidemic onset, starting at the beginning of the year, successive
fortnights yt are evaluated using the number of cases in each of the n preceding fortnights
{yt−n,yt−n+1, . . . ,yt−2,yt−1} as reference values for sporadic activity. These reference values
are used to predict a threshold value yα : if the observed number of cases yt exceeds the
threshold yα , the focal fortnight is marked as the two-week period of epidemic onset.

In the model notation that follows, “~” is a “sampling statement”; it denotes that a
random variable is distributed according to the given distribution. Poisson distributions
are parameterised as Po(mean), Gamma distributions are parametrised as Ga(shape, rate),
Poisson-Gamma distributions are parameterised as PoGa(shape, rate) and Negative Binomial
distributions are parameterised as NegBin(number of successes, probability of success).

The Poisson count model assumes that the reference values yi are identically and indepen-
dently Poisson distributed with a mean of λ (Eq. (3.12a)). λ itself has a Gamma-distribution
as a prior (Eq. (3.12b)).

yi ∼ Po(λ ), i = t −n, t −n+1, . . . , t −2, t −1 (3.12a)

λ ∼ Ga(α,β ) (3.12b)

From Eqs. (3.12a)–(3.12b), the posterior distribution for λ is given by Eq. (3.13).
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λ | yt−n,yt−n+1, . . . ,yt−2,yt−1 ∼ Ga

(
α +

t−1

∑
i=t−n

yi,β +n

)
(3.13)

From the predictive distribution (Eq. (3.14)), the posterior predictive distribution can
be expressed as a Poisson-Gamma (Eq. (3.15a)), or equivalently as a Negative Binomial
distribution (Eq. (3.15b)).

f (yt | yt−n,yt−n+1, . . . ,yt−2,yt−1) =
∫

∞

0
f (yt | λ ) f (λ | yt−n,yt−n+1, . . . ,yt−2,yt−1)dλ

(3.14)

yt | yt−n,yt−n+1, . . . ,yt−2,yt−1 ∼ PoGa

(
α +

t−1

∑
i=t−n

yi,β +n

)
(3.15a)

yt | yt−n,yt−n+1, . . . ,yt−2,yt−1 ∼ NegBin

(
α +

t−1

∑
i=t−n

yi,
β +n

β +n+1

)
(3.15b)

The threshold value yα can then be calculated using quantile parameter α , where yα is
the smallest value that satisfies (Eq. (3.16)).

p(y ≤ yal pha)≥ 1−α (3.16)

During interseasonal periods, where there were often many fortnights reporting no cases,
an isolated fortnight with sporadic activity can be misconstrued as the onset of an epidemic.
To reduce the impact of outliers in the time series and increase specificity of the detection
algorithm, I first applied the 4253H twice nonlinear data smoothing algorithm254, which is a
compound smoother consisting of multiple running medians.

I tested a variety of n and α parameter values and chose n = 3 and α = 0.12 for the
analyses presented in Chapter 4 as a good compromise between sensitivity and specificity in
the identification of all of the epidemics within the time series and their individual onset and
end timings, which was confirmed by visual inspection.
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3.3 Results

3.3.1 Determining the onset timing for stereotypical epidemics

For seasons with well-defined epidemics, all existing short-term data detection methods
perform well. The 2002 epidemic in Brisbane caused by A/H3/Moscow/10/99-like viruses
is one such example (Fig. 3.1). In such stereotyped situations with large epidemics and
limited interseasonal activity, the biases arising from an operator-selected fixed threshold
value (Fig. 3.1a) would be partially limited: for instance, selecting a higher threshold value
would mean that onset and end timings across epidemics within the same city would be
consistently detected later and earlier respectively.

Segmented regression models (Fig. 3.1b) tend to estimate later timings for epidemic
onset. By fitting and constraining the model to two secular linear trends, the breakpoint
represents the point at which an epidemic has become established and within a regime of
sustained exponential growth, in contrast to threshold based approaches that aim to identify
the earliest timepoint at which counts exceed some pre-defined background baseline.

Whilst the EARS C1 algorithm can readily differentiate large epidemics from low-level
background noise, it is severely impacted by zero-inflated data, since its threshold level
(red line in Fig. 3.1c) is based upon the sample standard deviation from a set of recent
historical values. During interseasonal periods when detected activity can be sparse, this
inherent weakness is highlighted by the algorithm aberrantly detecting isolated case counts
as epidemics (Fig. 3.1c).

When the distribution of case counts across the year exhibit substantial temporal clustering
(Fig. 3.1d), the Moving Epidemic Method can readily segregate the season into interseasonal
and epidemic periods (Fig. 3.2). With a large number of case counts and a smooth MAP
curve, identifying the duration of an epidemic is straightforward since it is clear when an
increase in window length fails to contribute to substantial increases in the number of counts
captured (Eq. (3.7) and Fig. 3.2b).

Similarly, the Poisson count detection framework performs well on the control benchmark
scenario. The initial median smoothing (blue line in Fig. 3.1e) reduces the effects of aberrant
and isolated activity during interseasonal periods. Here, I have tuned the parameters for the
Poisson model, such that the threshold level (red line in Fig. 3.1e) is sensitive enough to
detect epidemics, as soon as it exceeds background activity.
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Fig. 3.1 Determining the onset timing for the 2002 A/H3/Moscow/10/99-like epidemic in
Brisbane. The estimated fortnight of epidemic onsets are denoted by red stars and were
determined using (a) Fixed Threshold of 5 case counts per fortnight. (b) Segmented Linear
Regression Model with the red star showing the intermediate breakpoint. (c) EARS C1
Method determines the threshold level, denoted by red line, based on the distribution of case
counts in previous time points. (d) Moving Epidemic Method, which identifies the overall
epidemic period. (e) Poisson Count Detection Method with the blue and red lines denoting
the smoothed case counts and threshold level respectively.
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Fig. 3.2 Identifying the optimal window length for the Moving Epidemic Method. (a) The
MAP curve shows that the percentage of total counts captured increases with the length
of the window considered (Eqs. (3.4)–(3.5)). (b) The ∆r curve shows that as the length
of the window increases, the incremental increase in MAP reduces (Eq. (3.6)). Based on
previous studies using ILI surveillance data, by default, a value of 2.8% for ∆r is used. This
is denoted by the horizontal red line and corresponds to the optimal window length and
epidemic duration of 6 fortnights.

3.3.2 Determining the absence of epidemic activity

With virological and antigenic characterisation, it is evident that some subtypes and
antigenic variants often fail to cause epidemics. In one such instance, over the entirety of the
2012 season in Melbourne, only 9 cases of B/Brisbane/60/2008-like viruses were recorded
(Fig. 3.3); this sporadic activity cannot be attributed to a lack of surveillance since a total
of 569 influenza positive cases underwent antigenic characterisation. Whilst it is evident
from visual inspection alone that these 9 cases should not be classified as an epidemic, this
example highlights the limitations of the different detection frameworks.

Since fixed thresholds are often subjectively determined via visual inspection, it is
unsurprising that the level set mirrors our intuition: the same fixed threshold of 5 counts per
fortnight is able to successfully filter out such cases of isolated activity (Fig. 3.3a).

The Segmented Linear Regression model and Moving Epidemic Method presupposes the
existence of an epidemic in each season, resulting in low specificity since epidemic activity
is always detected (Fig. 3.3b, Fig. 3.3d); such methods would require the imposition of
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additional subjective criteria, ie each antigenic variant needs to exceed a minimum number
of counts or proportion of total counts detected within a season.

Again, zero-inflation causes the EARS C1 algorithm to detect the onset of an epidemic at
the first time point with any counts (Fig. 3.3c). To mitigate this issue, additional operator
input would be necessary to scrutinise the time series; fully resolving it would be difficult,
requiring the statistical criterion for the threshold level (Eq. (3.3a)) to be fundamentally
redefined.

The specificity of my detection framework is enhanced by the initial smoothing (blue
line in Fig. 3.3e) and modulated by subsequent parameterisation of the Poisson count model,
thus preventing accidental identification of an epidemic of spurious background activity
(Fig. 3.3e).
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Fig. 3.3 Determining the absence of epidemic activity by B/Brisbane/60/2008-like viruses
in Melbourne, 2010. Epidemic onsets are denoted by red stars and were determined using
(a) Fixed Threshold of 5 case counts. (b) Segmented Linear Regression Model with the red
star showing the intermediate breakpoint. (c) EARS C1 Method determines the threshold
level, denoted by red line, based on the distribution of case counts in previous time points.
(d) Moving Epidemic Method, which identifies the overall epidemic period. (e) Poisson
Count Detection Method with the blue and red lines denoting the smoothed case counts and
threshold level respectively.
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3.3.3 Accounting for interseasonal activity

Whilst there is no evidence from the data to suggest any systematic changes or en-
hancement in out-of-season surveillance after the 2009 A/H1N1 pandemic, it is prudent
to account for such potential variation, as well as more generally, the intrinsic variabil-
ity in virus activity between seasons. Relative to the peak number of case counts per
fortnight recorded, a rather substantial amount of interseasonal activity was recorded for
A/H3/Switzerland/9715293/2013-like viruses in Adelaide, 2015 (Fig. 3.4). Fixed thresh-
olds are by their very definition dependent on chosen values, can result in the erroneous
determination of an epidemic by early sporadic activity (Fig. 3.4a): increasing th.

Segmented linear models (Fig. 3.4b) tend to perform well, as long as incidence during
the epidemic period exceeds that of interseasonal activity. However, the pre-epidemic line
segment is particularly sensitive to the presence of stochasticity in case counts, which can
affect the inferred position of the breakpoint and epidemic onset timing. By increasing the
number of counts in fortnight 1 of the year, the estimated breakpoint was shifted earlier by
approximately a fortnight. Intuitively, more interseasonal background noise should result in
a higher threshold and consequently a later estimated onset timing.

The Moving Epidemic Method fails to identify a meaningful epidemic period (Fig. 3.4d),
as a result of its underlying approach of defining the epidemic period based on maximising
the proportion of counts captured.

Both the EARS C1 (Fig. 3.4c, Fig. 3.5c) and Poisson count (Fig. 3.4e, Fig. 3.5e) methods
account for baseline activity during interseasonal periods and define dynamic threshold levels.
Consequently, their estimate epidemic onset timings are mostly consistent with each other.
A key difference is that for the Poisson framework, a smoothing algorithm is first applied:
sudden increases in activity are dampened, with the intention of preventing the aberrant
detection of spontaneous activity during interseasonal periods (Fig. 3.5c,e). However, in
some instances, this initial smoothing step can contribute to a delay in detecting an initially
sudden but subsequently sustained increase in epidemic activity. In Fig. 3.4, the EARS C1
method (Fig. 3.4c) has determined an onset timing at fortnight 13, which is one fortnight
earlier and appears to be more accurate than the timing estimated by the Poisson count
method (Fig. 3.4e).
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Fig. 3.4 Accouting for interseasonal activity by A/H3/Switzerland/9715293/2013-like viruses
in Adelaide, 2015. Epidemic onsets are denoted by red stars and were determined using (a)
Fixed Threshold of 5 case counts. (b) Segmented Linear Regression Model with the red star
showing the intermediate breakpoint; a counterfactual example with increased number of
counts in fortnight 1 (blue column) results in an earlier breakpoint (blue star). (c) EARS C1
Method determines the threshold level, denoted by red line, based on the distribution of case
counts in previous time points. (d) Moving Epidemic Method, which identifies the overall
epidemic period. (e) Poisson Count Detection Method with the blue and red lines denoting
the smoothed case counts and threshold level respectively.
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Fig. 3.5 Accouting for interseasonal activity by A/H3/Switzerland/9715293/2013-like viruses
in Melbourne, 2015. Epidemic onsets are denoted by red stars and were determined using
(a) Fixed Threshold of 5 case counts. (b) Segmented Linear Regression Model with the red
star showing the intermediate breakpoint. (c) EARS C1 Method determines the threshold
level, denoted by red line, based on the distribution of case counts in previous time points.
(d) Moving Epidemic Method, which identifies the overall epidemic period. (e) Poisson
Count Detection Method with the blue and red lines denoting the smoothed case counts and
threshold level respectively.
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3.3.4 Limitations of using historical data to infer and predict seasonal
patterns and trends

The Serfling and Farrington methods attempt to derive time-varying threshold levels, by
inferring seasonal patterns and trends from historical data. In contrast to the pronounced
summertime troughs and wintertime peaks observed in more commonly used country-level
ILI or P&I data sets, local epidemics of individual antigenic variants and subtypes fail to
exhibit such predictable patterns and trends.

I attempted to fit the Serfling model to the A/H3 time series for Brisbane from 2000 to
2015 but the empirical data does not support a sinusoidal component for baseline activity
(Table 3.1). In essence, the Serfling model predicted a fixed threshold that could potentially
increase very modestly towards later years, resulting in performance and limitations similar
to that of the basic fixed value approach discussed above.

Coefficient Value SE p value

β0 0.51 0.39 0.19
β1 0.005 0.0021 0.02
γi -0.31 0.24 0.19
δi -0.62 0.4 0.12

Table 3.1 Results from Serfling’s seasonal regression method (Eq. (3.3a)). The model was
fitted to A/H3 case counts for Brisbane from 2000-2015. The linear trend was statistically
significant (p<0.05), although its effect β1 is very modest, representing a difference of
approximately one case per interseasonal fortnights between 2000 and 2015.

The Farrington approach is confounded by the lack of underlying periodicity in the
data and highly variable epidemic sizes: the estimation of the mean and variance of the
count data distribution Yt for fortnight t of the year is thus highly sensitive to year-to-year
variation in yt (Eqs. (3.10a)–(3.10b)). This variation negatively impacts the specificity of the
model, due to its recency bias that is inherent to using the most recent b seasons as reference
values. In Brisbane, the 2002 A/H3 epidemic happened to be preceded by two seasons with
minimal activity and was thus readily identified (Fig. 3.6). However, despite being of similar
magnitude, the subsequent 2003 season was erroneously missed.

The detrimental effect of this recency bias can be more clearly illustrated by counterfactual
scenarios (Fig. 3.7). For both (a) and (b), the training data consists of A/H3 epidemics in
Brisbane from the years of 2001, 2002 and 2005; the fitted models are then tested on the
same 2003 season. In (a), the training seasons are ordered such that there is a trend of
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increasingly early and large epidemics: consequently, the relatively late yet comparably large
2003 epidemic fails to be detected in a timely fashion. In (b), the training order is reversed
so there is a trend of increasingly late and small epidemics. In this case, the 2003 epidemic is
detected since the threshold level is smaller and peaks later within the year.
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Fig. 3.6 Determining epidemic onset timings using the Farrington Method. Windows of 7
timepoints were taken from the prior two seasons as training data (w = 3; b = 2; Eq. (3.11a)),
ie 2000 and 2001 were used to define the threshold level (red line) in 2002; fortnights with
counts exceeding the threshold are marked with red stars.
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Fig. 3.7 Limitations of the Farrington Method. Here, I select various A/H3 epidemics from
seasons in Brisbane and demonstrate how spurious trends can be inferred from empirical
data. Both examples use the same seasons within the training and testing data sets; windows
of 7 timepoints were taken from each of the three seasons within the training data set (w = 3;
b = 2; Eq. (3.11a)). The training seasons are ordered to create trends of (a) increasingly
early and large epidemics; (b) increasingly late and small epidemics. Fortnights with counts
exceeding the threshold levels (red lines) are marked with red stars.

3.4 Discussion

In Australia, influenza is a notifiable disease and there is a well-established national
surveillance network, which monitors influenza activity throughout the year using multiple
state-level systems88,241. A wide range of modalities of data are collected, ranging from
syndromic ILI cases collected by the online self-reporting FluTracking system to clinical pre-
sentations and laboratory-confirmed influenza positive cases at sentinel general practitioners
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and hospitals. A subset of these influenza positive cases undergo further typing, subtyping
and antigenic characterisation, which is carried out by the WHOCC in Melbourne. With
this systematic approach, one can be confident that the collated time series for case counts
are representative of underlying antigenic variant-specific activity occurring at the local
level; in most countries, influenza positive cases are rarely subtyped, let alone antigenically
characterised.

Initial visual inspection of the time series revealed some key features: 1. the number of
cases recorded during summer months and the magnitude of epidemics can vary substantially
between seasons; 2. the timing of epidemics vary between cities and seasons; 3. within the
same season, the timing of local epidemics differs between subtypes and individual antigenic
variants. These heterogeneous features result in an overall reduction in the signal to noise
ratio, especially since the additional resolution derived from virus characterisation comes at
the cost of sample size. A previous study of seasonal influenza in Australia limited to just 8
seasons utilised a data set of 450,000 influenza positive cases with partial virus typing; in
contrast, my Australia 15-year data set consisted of 18,250 influenza positive cases with full
antigenic characterisation.

These particular features of local epidemics of antigenic variants are often incompatible
with the underlying parametric models and their assumptions of many existing detection
frameworks. Since the exact timing and magnitude of epidemics for each subtype are
highly variable between years, the lack of clear periodicity or trends across years means that
frameworks that rely upon long-term historical data, such as the Serfling220 and Farrington74

Methods, suffer from poor specificity39,50. This heterogeneity is most likely a product of
intrinsic variation in virus activity, although systematic changes in surveillance intensity
cannot be ruled out definitively. Until the sources of this stochasticity are fully elucidated
and can be accounted for, these frameworks are wholly unsuitable for analysing highly
resolved virus surveillance data. In fact, model misspecification results in performance
that is comparatively worse (Fig. 3.6) than that of the most basic fixed threshold approach
(Fig. 3.1a).

Clearly, the analysis of city-level and antigenically characterised data requires a frame-
work that considers each season independently. Fixed thresholds, whilst easy to implement,
need to be decided on a case-by-case basis, since they are not readily generalisable across
cities263,264 or indeed subtypes. To overcome this lack of consistency, a more statistically
principled approach needs to be implemented: whilst limited in number, case counts during
tentative interseasonal periods provide some measure for the stochasticity in virus activity
for the focal season. In the context of ILI, this task is relatively trivial when data is plentiful
and the magnitude of epidemics is consistently and substantially larger than that of the
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background noise. All existing short-term methods are able to consistently detect the onset
of large epidemics (Fig. 3.1), with the exception of EARS C1, which struggles when the data
is zero-inflated and can get erroneously triggered by isolated and sporadic activity.

Retrospective detection methods, such as segmented linear models and MEM, draw upon
the case counts across the entirety of a season; intuitively, identification of epidemic onset,
through growth rates and clustering of counts respectively, would benefit from having a
larger set of interseasonal reference values. However, this becomes a liability when epidemic
activity is obscured by the presence of substantial interseasonal activity (Fig. 3.3b, Fig. 3.3d).
Furthermore, these methods assume that every season can always be divided into distinct
non-epidemic and epidemic periods, which taken to its logical extreme, results in model
misspecification in seasons where there is clearly an absence of heightened or epidemic
activity.

These limitations can be partially bypassed by limiting reference values for a focal
fortnight to only the most recent time points, which reflects virus activity and case counts are
more likely to short-term than long-term correlations. In interseasonal periods, the existing
EARS C1 algorithm can perform well, so long as there is protracted virus activity; it fails
to derive a meaningful threshold when confronted with consecutive time points with no
recorded cases.

To a certain extent, these limitations could be remedied by the addition of rules for
what constitutes an epidemic, such as establishing a minimum number of case counts, or
by disregarding all erroneous detections outside of a vaguely defined wintertime period.
Fundamentally, however, this would merely append additional layers of subjectivity, further
complicating attempts to assess the robustness of epidemic timing estimates and downstream
analyses towards model parameterisation.

My proposed Poisson count detection framework is optimised for use with highly resolved
surveillance data and overcomes the specific challenges posed by the relatively small data
set. Like EARS C1, my method need only make minimal assumptions about the exact
timing of epidemic onset, only that it is highly unlikely to occur at the beginning of the
calendar year and the height of summer in Australia. The impact of isolated activity is
reduced through the initial median smoother, whilst preserving the important trends during
sustained and increasing epidemic activity. The threshold levels are dynamically informed
by season, city and virus-specific activity. It uses a limited set of recent time points to
estimate the distribution for underlying count activity; the choice of Poisson model avoids the
zero-inflation issue. Model sensitivity is only dependent on two parameters (Eq. (3.12b)) and
does not require additional arbitrary criteria for epidemics; the robustness of timing estimates
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towards detection sensitivity and specificity can be easily evaluated in a systematic manner
(see Chapter 4).



Chapter 4

Epidemiology of seasonal influenza in
Australia

In this chapter, I analyse a 15-year city-level dataset of 18,250 laboratory-confirmed
and antigenically-characterised influenza virus infections from Australia and investigate
the effects of previously hypothesised environmental and virological drivers of influenza
epidemics. This chapter is an abridged form of the work that has been previously published
in Nature Communications (see Appendix A); the epidemic detection algorithm and its
development are described in Chapter 3. The work was undertaken in collaboration with
Dylan Morris at Princeton University, Aeron Hurt at the University of Melbourne, Ian Barr
at Federation University and my supervisor, Colin Russell at the University of Amsterdam.

Aeron Hurt and Ian Barr generated and kindly provided access to the dataset. Colin
Russell provided guidance in the overall conceptualisation of the study and interpretation of
results. I performed the data curation and statistical analysis, with assistance on the Bayesian
Modelling (see Section 4.2.7) from Dylan Morris. I wrote the first draft of the manuscript;
all authors contributed to the critical review and revision of the manuscript.

4.1 Introduction

Seasonal influenza virus epidemics are a substantial source of disease burden and result
in 650,000 deaths each year269. Although seasonal influenza viruses circulate globally,
prevention and treatment occur at the level of regions, cities, and communities. At these
scales, the timing, duration and size of local influenza virus epidemics can vary substantially
from year-to-year63,79, but the underlying causes of this variation are poorly understood.
Better understanding of the factors that govern epidemic onset and magnitude could allow
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for accurate and timely epidemiological forecasts86 and more efficient allocation of public
health resources203.

In temperate regions of the Northern and Southern Hemispheres, influenza virus activity is
most common in winter months but the mechanistic basis of this seasonality remains unclear.
Experimental studies demonstrated that reductions in temperature and absolute humidity
enhance viral stability and aerosol transmission161,162,221. However, epidemics in tropical
and subtropical regions often occur during periods of high temperature and humidity240.

Climatic fluctuations have been implicated as triggers for influenza epidemics in tem-
perate regions. A study of state-level epidemiological data from the United States found
that influenza epidemics sometimes follow two-week periods of anomalously low absolute
humidity222. Subsequent studies of epidemiological activity have found similar results using
prefecture-level data from Japan225, city-level data from the New York Metropolitan Area62

and region-level data from France219.
Influenza virus evolutionary dynamics are another theorised driver of influenza virus

epidemiology. Within each type and subtype of seasonal influenza virus, new major antigenic
variants arise every 3-8 years146,231. New variants partially escape the immunity induced by
prior infections and vaccinations, rendering a higher fraction of individuals susceptible to
infection. Epidemiological theory predicts that epidemics caused by a new antigenic variant
should therefore be larger than epidemics of previously-circulated variants130,131.

Antigenic change could also produce earlier and more spatio-temporally synchronous
epidemics. When more individuals are susceptible, fewer transmission chains go stochas-
tically extinct so each new introduction of a virus into a population has a higher chance of
causing an epidemic. Consistent with this, studies have suggested that antigenic change is
associated with earlier epidemics in Israel29 and with more synchronous epidemics among
cities in the United States39,102,256, Japan213 and Australia92.

Studies of environmental and virological drivers of influenza virus epidemiology, in-
cluding the studies referenced above, have been limited by three factors: 1. the reliance on
influenza-like illness (ILI) data; 2. the aggregation of ILI or virologically confirmed data
over large geographical scales (state/province/country); 3. where virologically confirmed
data are available, the use of data without subtype and antigenic variant-level resolution.

ILI data frequently includes a wide variety of respiratory infections217 and limited
laboratory characterisation obscure influenza virus type/subtype- and antigenic variant-
specific patterns. These patterns become superimposed upon each other due to aggregation of
ILI or virologically confirmed data to ecological scales (state/province/country) that sum over
multiple local epidemics (county/city/town), which can individually vary substantially in
timing, magnitude and influenza virus composition. All together, these sources of obfuscation
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make it difficult to disentangle local-level, antigenic variant-specific patterns and critically
investigate the impact of virus antigenic change.

Here I use a 15-year dataset of 18,250 typed, subtyped, and antigenically characterised
seasonal influenza viruses from the five most populous cities in Australia to investigate
the impact of environmental and virological factors on the timing and magnitude of city-
level influenza virus epidemics. I find that climatic fluctuations and virus antigenic change
have no consistent effects on epidemic onset timing or size while epidemic onset timing
itself and heterosubtypic competition have substantial impacts on epidemic size and virus
subtype composition. The lack of consistent effect of easily measured climatic and virus
antigenic properties and seeming dominance of noisy short-term transmission processes
likely diminishes the feasibility of meaningful long-term influenza epidemic forecasting at
local scales.

4.2 Methods

4.2.1 Australian surveillance data

The description of the surveillance dataset from Australia is covered within Chapter 3.
Pertinent to the subsequent analyses in this chapter, all epidemic activity of all subtypes for
the 2009 season was excluded from all analyses because of the 2009 A/H1N1 pandemic.
Unsurprisingly, patterns of virus circulation during the pandemic were anomalous compared
to typical seasonal influenza virus epidemics and potentially distortive of the patterns I sought
to characterise.

4.2.2 Estimation of epidemic timing

The exact timing of interseasonal periods of sporadic activity and epidemic onset for each
subtype is highly variable between years, even for individual cities, so I used my Poisson
count epidemic detection framework (see Chapter 3 for methodological development) to
determine the onset and end of each epidemic independently for each antigenic variant,
season and city.

Aggregation of cases by two-week periods was deemed necessary, to smoothen the
time series in light of the relatively low number of cases within the data set; this relatively
long timescale could however potentially obscure fluctuations in weather that occur at
shorter scales. Whilst weekly time series were appreciably noisier, I found a high degree of
correspondence in estimated epidemic onset and end timings with values calculated from
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data aggregated by two-week periods: indeed, my results were robust to aggregation by week
(see Appendix B.2 in Appendix B for sensitivity analyses).

I deemed an antigenic variant to have failed to cause an epidemic if, within a season,
the algorithm was unable to define an epidemic period; I confirmed all putative failures by
visual inspection of the raw time series. Once the epidemic period was defined, the size of an
epidemic per antigenic variant was calculated using the estimated resident population for
that particular year and city.

4.2.3 Normalisation of epidemic incidence

For each epidemic, the incidence of laboratory-confirmed cases per million people was
calculated from the number of raw counts. Given the positive skew in the distribution of
epidemic incidences, individual incidence values were log transformed. To enable compar-
isons within subtypes, I needed to account for potential differences in surveillance intensity
and normalise values between cities: I subtracted off the overall city-specific mean log
transformed incidence from each individual value. Although the apparent heterogeneity
in the effect of antigenic change and prior immunity between subtypes suggests that data
should be stratified by subtype, I repeated my analyses with data aggregated and normalised
across subtypes in order to increase statistical power. Individual log transformed values for
each epidemic were instead subtracted by the overall city- and subtype-specific mean of log
transformed values.

4.2.4 Virus antigenic characterisation by haemagglutination inhibition
assay

For my analyses, I defined an antigenic variant as in Smith et al. 231 , where an antigenic
variant is sufficiently different from preceding variants to warrant an update of the seasonal
influenza virus vaccine. To this end, my analyses only accounted for major antigenic changes
and did not account for the possibility of small or gradual antigenic changes (neither of which
are well studied for seasonal influenza viruses).

The haemagglutination inhibition (HI) assay data used in this study only compared the
test virus and the then current reference vaccine strain to assess whether or not viruses
had changed antigenically. However, this comparison to a single reference point is poten-
tially problematic given that new Southern Hemisphere’s influenza vaccine composition
recommendations are made every September. This is usually after the end of the influenza
season in Australia and may lead to misidentification during antigenic characterisation of
submitted samples during the preceding season where samples containing a novel antigenic
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variant may have been tested with sera raised against its predecessor variant. To amelio-
rate this potential source of bias, I compared the antigenic characterization data against
phylogenetic data. This comparison revealed two instances for A/H3 viruses where the
reference strain comparison by HI was misleading regarding the antigenic composition of
an epidemic. There were a substantial number of laboratory-confirmed cases attributable to
A/H3/Fujian/411/2002-like viruses in 2004 but phylogenetic analyses of sequences dated
2004 show that the Fujian/411/2002-like viruses had already been replaced by the novel
California/7/2004 variant viruses. Similarly, in 2005, a substantial number of samples ini-
tially identified as A/H3 California/7/2004-like viruses were phylogenetically in the new
A/Wisconsin/67/2005 variant group.

To account for the likelihood of misidentification due to delays in updating nomencla-
ture, I assumed that all A/H3 cases in 2004 were California/7/2004-like and in 2005 were
Wisconsin/67/2005-like antigenic variants. Additional analyses were also carried out with
the raw data set without these corrections (see Figs. B.9–B.13 and Table B.6 in Appendix B
), and lead to no significant or substantive differences to my findings.

4.2.5 Demographic data

I retrieved estimated resident populations for Adelaide, Brisbane, Melbourne, Perth and
Sydney on 30 June of each year from 2000 to 2015 from the Australian Bureau of Statistics
(http://stat.abs.gov.au/).

4.2.6 Climate data

For each of the five cities, I compiled the mean temperature (◦C) and relative humidity
(%) from TuTiempo (https://en.tutiempo.net/) and calculated the mean absolute humidity
(gm−3) for each two-week period from 1985 to 2015. For each of the 26 two-week periods
of the calendar year, I calculated 31-year mean temperature T and absolute humidity AH
values, see Eqs. (4.1)–(4.2).

T ′ = T −T (4.1)

AH ′ = AH −AH (4.2)

Following Shaman et al. 222 , I generated a synthetic distribution of wintertime climatic
values by bootstrap sampling. In order to maintain the sampling structure and control for
anomaly variability among the cities, 15 n-week continuous blocks were randomly sampled

http://stat.abs.gov.au/
https://en.tutiempo.net/
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from 01 April - 31 August, 1985-2015 for each of the five cities. These 75 samples were then
averaged to produce a mean T and AH values. This was repeated 100,000 times to produce
a bootstrapped distribution of average values. The statistical significance for the mean T
and AH values derived from the 75 empirically observed earliest-in-the-season epidemics
was then calculated non-parametrically, by determining the quantile for the observed values
within the bootstrap distributions. This bootstrap was repeated at the city level to see if there
were geographical differences with individual bootstrap distributions were created for each
city.

I also evaluated whether or not epidemic onset is associated with climatic fluctuations
that are anomalous for that particular time of the year. By definition, for any given 2-week
period of the year, the 31-year mean for T ’ and AH ′ is 0. I used a Wilcoxon one-sample
test to assess whether there were reductions in climatic values in the observed set of T ′ and
AH ′ values in each of the 2-week blocks preceding the onset of the earliest epidemic of the
season.

4.2.7 Bayesian hierarchical regression

To estimate reasonable bounds on the possible effects of climate and antigenicity on
epidemic size, I used a Bayesian hierarchical model that partially pooled effect size estimates
across subtypes, increasing the capacity to detect any potential effects without assuming a
priori that effects should be the same across different subtypes. I fit the model using Markov
Chain Monte Carlo (MCMC) with Stan233 and its R interface rstan234; Stan implements
a no-u-turn sampler (NUTS)233. All data and code needed to reproduce the analysis and
figures is provided in the project Github repository, along with directions in a README file.

In the model notation that follows, the symbol “~” is a “sampling statement”; it denotes
that a random variable is distributed according to the given distribution. Normal distributions
are parametrised as Normal(mean, standard deviation), generalised Student T distributions are
parametrised as Student-T(degrees of freedom, location, scale). Positive constrained normal
distributions (Half-Normal) are parametrised as Half-Normal(mode, standard deviation).

I predicted log incidence minus city-and-subtype-specific mean log incidence as a func-
tion of the following predictor variables:

X1: whether the epidemic was the first epidemic for an antigenic variant in the city
(binary, yes or no)

X2: cumulative prior incidence of the antigenic variant (measured as log(total prior
cases / city-and-subtype-specific mean cases per epidemic))
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X3: mean absolute humidity during the epidemic, from the start to end date of the
epidemic (measured as fortnight of the year)

X4: start date of the epidemic (measured as fortnight of the year)

X5: whether the epidemic was the earliest epidemic (of any subtype) in the city that
year (binary, yes or no)

X6: the cumulative amount of influenza activity (of any subtype) in the city that year
prior to the epidemic

X7: mean rainfall during the epidemic, from the start to end date of the epidemic
(measured as fortnight of the year)

I omitted mean epidemic temperature as a predictor as it was highly collinear with absolute
humidity. Any observed large effect of absolute humidity could therefore theoretically have
been attributable to temperature, though in practice I estimated an effect near zero for absolute
humidity.

I made a linear prediction of an epidemic’s normalised size given its values for X =

(X1, . . . ,X7). Effect sizes bi for each predictor Xi were subtype-specific, with bi j denoting the
effect of variable i for subtype j. I also estimated subtype-specific intercepts a j.

I included cumulative antigenic variant activity and prior activity in the year only for
old antigenic variants and epidemics that were not first of the year, respectively, that is, as
interaction terms with one minus the corresponding binary variables. So the predicted mean
centred log size ⟨yk⟩ of an epidemic of subtype j is given by Eq. (4.3), where Xik denotes
the value of Xi for epidemic k. Following Gelman 90 , I mean-centred and scaled continuous
predictors so that effect sizes b would be directly comparable between binary and continuous
predictors.

⟨yk⟩=a j +b1 jX1k +b2 jX2k(1−X1k)+b3 jX3k +b4 jX4k+

b5 jX5k +b6 jX6k(1−X5k)+a j +b7 jX7k

(4.3)

I assumed that observed epidemic sizes yk were normally distributed about their predicted
sizes ⟨yk⟩ with an unknown, estimated standard deviation σy (Eq. (4.4)):

yk ∼ Normal(⟨yk⟩,σy) (4.4)

I assumed subtype effect sizes bi j for each predictor i and subtype j were normally
distributed about a general mean effect size ⟨bi⟩, with an unknown, estimated predictor-
specific standard deviation σbi (Eq. (4.5)):
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bi j ∼ Normal(⟨bi⟩,σbi) (4.5)

Likewise, I assumed intercepts ai were normally distributed about a mean intercept ⟨a⟩
with an unknown, estimated standard deviation σa (Eq. (4.6)).

ai ∼ Normal(⟨a⟩,σa) (4.6)

I assumed predictor-specific effect size standard deviations σbi were half-normally dis-
tributed with mode 0 and an unknown, estimated standard deviation σb (Eq. (4.6)).

σbi ∼ Hal f −Normal(0,σb) (4.7)

I placed weakly informative91 positive-constrained half-normal priors on the intercept,
effect size, and error term standard deviations σa, σb and σy (Eqs. (4.8)–(4.10)). Weakly
informative priors rule out biologically or mathematically implausible parameter values while
allowing data rather than assumptions to inform inferences regarding plausible values.

σa ∼ Hal f −Normal(0,0.5) (4.8)

σbi ∼ Hal f −Normal(0,1) (4.9)

σy ∼ Hal f −Normal(0,1) (4.10)

I placed a weakly informative Gaussian prior on the mean intercept ⟨a⟩ (Eq. (4.11)) and a
weakly informative Student-T prior on the mean effect sizes ⟨bi⟩ (Eq. (4.12)):

⟨a⟩ ∼ Normal(0,1) (4.11)

⟨bi⟩ ∼ Student −T (3,0,2.5) (4.12)

The intercept prior was based on the degree of variation in the normed outcome variable
to cover it while ruling out intercepts much larger or smaller than the largest and smallest
observations. The effect size prior was based on a recommendation for weakly informative
regression effect size priors (for scaled predictors) from the Stan prior recommendation wiki
(https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations).

I ran four MCMC chains, each with a 1000 step sample warmup period followed by
1000 saved posterior samples, for a total of 4000 posterior draws. I verified convergence by
inspecting trace plots and confirming that all parameters had sufficiently low R̂ values (all

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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R̂ < 1.005) and sufficiently large effective sample sizes (all ne f f > 16% of total sample size).
I visualised posteriors as quantile dotplots77 to aid in visual estimation of distributions.

4.2.8 Data availability

All of the data and code for these statistical analyses and statistical models are available
at the following Github repository: https://github.com/edwardkslam/australian_seasonal_flu.

4.3 Results

4.3.1 Australia laboratory-confirmed influenza

I aggregated 18,250 laboratory-confirmed and antigenically characterised cases of sea-
sonal influenza viruses from 2000 to 2015 by two-week (14-day) periods, creating a set
of subtype- and antigenic variant-specific time series for the five most populous cities in
Australia: Sydney (~5.5 million people), Melbourne (~5.0 million), Brisbane (~2.4 million
people), Perth (~2.3 million), and Adelaide (~1.4 million) (Fig. 4.1). I excluded all virus
cases from the 2009 season from all analyses because the 2009 A/H1N1 virus pandemic
was atypical compared to seasonal epidemics and likely to be driven by different processes,
affecting both epidemic dynamics and data collection of A/H1pdm09, as well as the other
subtypes. Using a Poisson count detection method (Chapter 3), I identified periods of sus-
tained, above-baseline levels of epidemic activity for each antigenic variant in each city. To
facilitate comparisons among cities, I calculated the laboratory-confirmed incidence per 106
individuals using the annual estimated resident population values of each city10.

Epidemic magnitude and most common virus subtype varied substantially among cities
(Fig. 4.1). For example, during the 2002 season, A/H3 and B/Vic viruses were the most
common strains in both Brisbane and Sydney. Absolute A/H3 virus incidence in Brisbane
was much higher than in Sydney (186 versus 38.0 cases per 106 individuals), as was absolute
B/Vic incidence (40.3 versus 22.7 cases per 106 individuals). But B/Vic had a substantially
higher relative incidence in Sydney than in Brisbane (37% of all cases, versus only 18%). In
some seasons, a virus antigenic variant caused a major epidemic in one or more cities but
failed to produce any observable above-baseline activity in another city. For example, in
2006, the A/Wisconsin/67/2005 (H3N2) virus variant caused epidemics in Brisbane, Perth
and Melbourne, while above-baseline levels of activity were completely absent in Adelaide.

https://github.com/edwardkslam/australian_seasonal_flu
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Fig. 4.1 Number of laboratory confirmed seasonal influenza virus infections from 2000 –
2015 for the five largest cities in Australia. Cases are aggregated by two-week periods,
stratified by city and coloured by subtype/lineage.

4.3.2 Effect of climatic factors

Epidemic onset timing varied substantially within and among cities and virus subtypes
(Fig. B.1). Previously, Shaman et al. 222 showed that the two-week period preceding the
onset of state-level ILI epidemics in the United States was often marked by unusually low
temperatures (T ) or absolute humidities (AH). Fluctuations in these climatic factors from
the historic averages expected for that specific day of the year (T ′ and AH ′ respectively)
were anomalously large and negative when compared against a bootstrapped distribution of
random samples from the historical records of observed daily climatic fluctuations recorded
over wintertime (defined as 01 October - 28 February).

Following the same bootstrap sampling method (see Section 4.2) and aggregating epi-
demics across all five Australian cities, there were no statistically significant differences (all
p > 0.05, see Table B.1 in Appendix B) between the bootstrapped distribution of random
samples of typical wintertime fluctuations (01 April - 31 August for Australia) and the
observed fluctuations in anomalous temperature and absolute humidity over the two, four and
six week periods immediately prior to the onset of the earliest epidemics from 2000-2015
(excluding 2009, 15 years x 5 cities = 75 epidemics in total). Individual city-by-city analyses
(Fig. B.2 and Table B.2) showed that there was substantial local variation but no consistent
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patterns. Epidemic onset times coincided with both high and low temperature and absolute
humidity periods, and there were no statistically significant patterns in four of the five cities.

Fig. 4.2 Climatic conditions around epidemic onset. (a) Anomalous temperature T ′ and (b)
absolute humidity AH ′ prior to and after epidemic onset across all five cities. Epidemic
onset is marked by the vertical line at 0. For the earliest onset epidemic in each season and
city (15 years x 5 cities = 75 epidemics), T ′ and AH ′ for each time point are represented
by grey points: a point below the horizontal line denotes that the value is lower than the 31
year city-specific mean. Blue points show the mean T ′ and AH ′ for that two week period
for all epidemics across all cities within the study period. There were no time periods with
statistically significantly (p < 0.05; Non-parametric bootstrapping) reductions in mean T ′ or
AH ′ from the 31-year average.

Even if anomalous fluctuations in temperature and humidity do not necessarily affect
epidemic onset, climatic factors could have an impact on virus transmission221 and overall
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epidemic size: for example, influenza mortality in New York Metropolitan Area was shown
to be negatively associated temperature and humidity62. Overall epidemic incidence should
depend strongly on the initial exponential growth phase of the epidemic, where transmission
may be facilitated by favourable climatic conditions. I therefore investigated the impact
of mean temperature and mean absolute humidity during each epidemic, as well as just
the period from epidemic onset to the peak, on that epidemic’s size. For both time periods
considered, epidemic incidence was not associated with mean absolute humidity (Fig. B.3). I
found that epidemic incidence was weakly negatively associated with the mean temperature
during the epidemic and the period from start to the peak, but this relationship appears to
be primarily driven by two instances, where small epidemics occurred during the early and
warmer part of the season; on balance, the highly variable epidemic sizes observed over a
range of climatic conditions, suggests that climatic factors have limited and noisy effects
(Fig. B.3).

A recent study by Geoghegan et al. 92 estimated epidemic onset timings for influenza
A virus epidemics in Australian postcodes for the seasons from 2007 to 2016. Despite the
lack of subtype level resolution, their data set is substantially larger (450,000 entries) than
the one used here and offers an opportunity to compare findings. I repeated the anomalous
temperature and absolute humidity analyses on the Geoghegan et al. 92 dataset. As with
the original dataset, there were no consistent statistically significant relationships between
climate anomalies and epidemic onset (Appendix B.1, Tables B.3–B.4 and Figs. B.4–B.5).

Other climatic factors have been proposed as drivers of influenza dynamics, notably
relative humidity and rainfall162,240. I repeated the above analyses for relative humidity
and rainfall. There were some city-level associations but no consistent pattern and no
pattern when aggregating across cities. Epidemic onset was not associated with statistically
significant fluctuations in anomalous relative humidity and rainfall.

4.3.3 Effect of antigenic change

I next examined the effect of antigenic evolution on epidemic dynamics. Between 2000
and 2015, 7 A/H3, 3 A/H1sea, 1 A/H1pdm09, 3 B/Vic and 5 B/Yam virus antigenic variants
circulated in Australia. All A/H1pdm09 virus epidemics from 2009 to 2015 were excluded
for this set of analyses for two reasons. First, I could not accurately estimate the size of the
2009 pandemic. Second, there was no subsequent, detectable antigenic change observed for
A/H1pdm09 viruses during the study period. I normalised epidemic sizes (see Methods) to
enable comparisons between cities. Stratifying by subtype/lineage, I compared the size of
the first epidemic caused by an antigenic variant against the sizes of epidemics of the same
antigenic variant in subsequent years (Wilcoxon two-sample test; Fig. 4.3). Contrary to the
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predictions of previous theoretical studies130,131, newly emerged antigenic variants caused
epidemics both larger and smaller than city-specific mean epidemic sizes and there was no
evidence of a consistent effect of antigenic change on epidemic size.

Fig. 4.3 Effect of antigenic change on epidemic incidence. Epidemic incidence was compared
between seasons associated with and without the epidemic level circulation of a new major
antigenic variant. Within each subtype, incidence for individual epidemics were log trans-
formed and subtracted by the city-specific mean of log incidence, to allow for comparison
between cities. p values are from Wilcoxon two sample tests (n = 37, 26, 22 and 63 for
B/Vic, B/Yam, A/H1sea and A/H3 respectively). Each point corresponds to one epidemic in
a city and the box plots show the median, first and third quartile of the transformed values,
and range.

I also compared the timing of the first epidemic caused by an antigenic variant against
the timings of subsequent epidemics (Fig. B.6) to test the hypothesis that new variants cause
earlier epidemics. The range of onset timings was very broad, with epidemics starting from
very early to late into the season, and there were no statistically significant differences in
epidemic onset timing between new and extant variant epidemics.

To investigate the impact of antigenic change on the spatio-temporal synchrony of
epidemics, I examined the timing of epidemic activity across cities for years when a new
major antigenic variant circulated in all five cities. New antigenic variants often failed to
initiate epidemics across all five cities in a given year. I compared the synchrony of epidemics
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(defined as the reciprocal of the variance in epidemic onset timings) in the season in which
an antigenic variant first emerges to the synchrony in subsequent seasons. There were no
statistically significant differences in epidemic synchrony associated with antigenic novelty
(Fig. B.7).

To check the robustness of this result, I repeated these analyses using estimated onset
timings from Geoghegan et al. 92 . There was again no discernible effect of antigenic change
on the timing or synchrony of epidemics (Appendix B.1).

4.3.4 Effect of prior immunity

After an antigenic variant causes an epidemic in a city for the first time, the accumulated
population immunity to that variant should lead to smaller subsequent epidemics and eventu-
ally render further epidemics of that variant less likely. For each epidemic caused by a given
antigenic variant, I investigated the relationship between that epidemic’s size and the cumula-
tive number of cases caused by that antigenic variant in preceding seasons. To account for
differences in population size and surveillance intensity among cities, I normalised epidemic
and cumulative case counts by the city-specific mean epidemic size. Antigenic variants that
emerged prior to the start of the study period, such as A/Moscow/10/99 (A/H3) and A/New
Caledonia/20/99 (A/H1sea) and all A/H1pdm09 epidemics from 2009 to 2015 were excluded
from this analysis, since it was not possible to calculate a cumulative case counts for them.
Specific B/Yam antigenic variants rarely caused more than one epidemic in a given city but
specific antigenic variants of A/H3 and B/Vic viruses caused repeated epidemics in the same
city. For A/H3 and B/Vic viruses, epidemic size and cumulative prior incidence were not
correlated (Pearson’s correlation test; Fig. 4.4).

The accumulation of population immunity should also reduce the probability of successful
epidemic initiation, making epidemics, regardless of size, less likely to start after an antigenic
variant has already caused an epidemic in that city. For B/Vic and A/H1sea viruses, binary
logistic regression showed non-significant associations between the cumulative incidence
over prior seasons and the probability of successful epidemic initiation (all OR < 1; all
p > 0.05, Fig. B.8 and Table B.5). This partially resulted from the small number of A/H1sea
epidemics during the study period, most of which were caused by newly emerged antigenic
variants. However, B/Yam and H3 viruses showed significant negative relationships between
cumulative prior incidence and epidemic probability suggesting that prior incidence may
have a substantial impact on the probability of successful epidemic initiation.
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Fig. 4.4 Effect of prior immunity on epidemic incidence. Within each subtype, incidence
for individual epidemics were log transformed and subtracted by the city-specific mean of
log incidence, to allow for comparison between cities. Antigenic variant-specific cumulative
incidence was measured relative to the city-specific mean epidemic size, where 1 is equivalent
to the mean epidemic incidence. r and p values are from Pearson’s correlation tests (n =
37, 20, 9 and 45 for B/Vic, B/Yam, A/H1sea and A/H3 respectively). Antigenic variants of
B/Yam rarely initiated multiple epidemics during the study period and it was not possible
to calculate a correlation coefficient for A/H1sea because the one new antigenic variant to
emerge during the study period caused only a single epidemic per city.

4.3.5 Aggregating across subtypes

There may be subtype/lineage specific differences in the effect of antigenic change and
prior immunity. Notably, B/Yam antigenic variants typically cause only one epidemic per city.
I repeated these analyses with epidemics aggregated together, across all subtypes and cities
to increase statistical power (see the project Github repository for the analyses and code).
As before, there were no statistically significant differences in the magnitude of epidemics
between the first and subsequent epidemics of an antigenic variant, nor any association
between epidemic size and the cumulative incidence over prior seasons. Binary logistic
regression showed that the probability of successful epidemic initiation may be moderately
reduced by the cumulative incidence over prior seasons. The findings were robust to the
method of normalisation used to allow for comparison between cities and subtypes/lineages
(see Section 4.2).

4.3.6 Effect of competition among subtypes

Competition among virus subtypes for hosts should create a first-mover advantage for
the first subtype to sustain above-baseline epidemic activity in a city in a given season.
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Subsequent epidemics of other subtypes within that same season would be reduced in size. I
considered two measures of this kind of inter-subtypic interference: the cumulative amount
of epidemic activity prior to the onset of a subtype’s epidemic and the lag between the focal
epidemic and the season’s earliest epidemic. To allow for comparisons across cities and sub-
types, I normalised log epidemic case counts by subtracting off the city- and subtype-specific
mean log epidemic case count. There was a strongly negative and statistically significant
correlation between prior epidemic activity and epidemic size (Pearson’s correlation test,
r =−0.420; p = 8.7e−5; Fig. 4.5). An important caveat is that seasonality in the transmis-
sion rate could result in epidemics that start later in a season being smaller than those that
started earlier regardless of intersubtypic competition.

Fig. 4.5 Effect of competition among subtypes on epidemic incidence. The relationship
between the size of an epidemic and (a) the amount of prior activity of all other antigenic
variants and subtypes and (b) the delay in epidemic onset. The size of each epidemic, relative
to the earliest epidemic of that season, was log transformed: the horizontal line at 0 denotes
that the size of an epidemic is equal to that of the earliest epidemic of that season and city. In
panel (a), prior activity by other subtypes within the same season was measured relative to
the city-specific mean epidemic size. In panel (b), delay in epidemic onset was measured
relative to the onset timing of the earliest epidemic of that season. r and p values are from
Pearson’s correlation tests (n = 82).

4.3.7 Joint contributions of climatic and virological factors

Whilst the magnitude of the effects of the climatological and virological factors may be
individually subtle, it could be the case that they are only able to effect observable changes
on the magnitude and timing of epidemics when acting in concert, or that large effects in
opposing directions mask each other. I used a Bayesian multi-level regression model to
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identify which putative predictor variables affected epidemic incidence and estimate posterior
distributions for their effects on epidemic size. The model included the following variables:
antigenic change, cumulative prior cases of the antigenic variant, mean absolute humidity
during the epidemic, activity by other subtypes earlier in the season, epidemic start date,
and rainfall during the epidemic. Mean temperature during the epidemic was omitted as a
predictor, since it was highly collinear with absolute humidity; analyses were subsequently
repeated using mean temperature and omitting absolute humidity with no substantial changes
in overall results.

Fig. 4.6 Joint contributions of climatic and virological factors on epidemic incidence. The
mean estimated effects across all subtypes were estimated using the Bayesian multilevel
model. Predictors were mean-centred and scaled so effects sizes are shown on a common
scale.

The model suggested that epidemics that were the first of the season or had early start
dates should be modestly larger (Fig. 4.6). Start date had the largest estimated effect and the
clearest posterior support for a non-trivial effect size. Posterior modes for the mean effects of
antigenic change and absolute humidity across subtypes were near zero (Fig. 4.6), with tight
credible intervals ((95% cred. intervals: (-0.56, 0.27) for absolute humidity, (-0.50, 0.30) for
antigenic change. Prior cases of an old variant given no antigenic change (95% cred. int.
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(-0.26, 0.85)), prior cases of all variants for non-first epidemics (95% cred. int. (-0.84, 0.33)),
and rainfall during the epidemic (95% cred. int. (-0.68, 0.20)) also showed no strongly
discernible effects, though with less posterior certainty. The model could not explain much of
the variation in the data: the median estimated standard deviation of epidemic size about the
expected size is 0.77 (95% cred. interval (0.67, 0.90). Since exp(0.77) is approximately 2.15,
this implies that it is not unusual to see epidemics half or twice the expected incidence. The
model estimated that effects were very similar across subtypes (Fig. B.14, median estimated
SDs for the distribution of subtype-specific effect sizes about the overall mean effect size
near zero, Fig. B.15). Only the effect of whether an epidemic was first of the season showed
meaningful heterogeneity: the model estimates that it is somewhat weaker for B/Vic than for
other subtypes (Fig. B.14).

4.4 Discussion

Based on city-level analyses of a subtyped and antigenically characterised influenza virus
dataset covering the five largest cities in Australia, I find that climate and antigenic novelty
have limited effects on epidemic sizes. The results presented here suggest that, at least in
temperate areas, epidemics are governed by factors other than host immunity at local scales,
where global fitness advantages for new antigenic variants may not be realised. Conversely,
competition for hosts among influenza virus types and subtypes have strong effects on local
dynamics. The first virus subtype to establish above baseline epidemic activity in a city and
season typically dominates.

A recent study of fine-scale influenza epidemiology in Australia92 showed there was
substantial heterogeneity among Australian cities in the activity of influenza A and B viruses.
My subtyped and antigenically characterised dataset allowed us to confirm that further
heterogeneity exists at the level of antigenic variants. In particular, specific antigenic variants
often cause large epidemics in some cities while not causing detectable activity in others.

While prior studies found that the onset of epidemics in the United States and France
were preceded by a two week period of anomalously low absolute humidity219,222, I found no
evidence for climatic effects when aggregating across the five Australian cities. Anomalous
fluctuations in temperature and absolute humidity were sometimes positive, sometimes
negative but on average approximately zero. Importantly, the overall effect size reported by
Shaman et al. 222 , after aggregating across all 48 contiguous States of the USA, was very
small (with mean AH ′ being approximately −0.25kgkg−1 or −0.21gm−3, compared against
0gm−3, the mean of the null distribution of historic wintertime values). 55-60% of epidemics
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were preceded by negative AH ′ values: a moderate increase upon the null hypothesis being a
baseline of 50%.

Shaman et al. 222 also found regional differences in the associations between fluctuations
in absolute humidity and epidemic onset. Strong associations were found in the Southeastern
US but not in Western states. In Australia, there does not appear to be an aggregate effect
at the country level and there were no consistent patterns at the level of individuals cities
(Fig. B.2 and Table B.2). The small effect sizes and lack of consistency in climatic patterns
across regions and cities in the USA and Australia may reflect the fact that climatic factors
alone are unlikely to account for the differences in the patterns of influenza seasonality
between temperate and tropical regions239.

Seasonal epidemic waves in the US appear to begin in the Southern states, which have
warmer and more humid climates39,40, casting some doubt on the role of low humidity as a
trigger for influenza epidemics. Rather than acting as specific triggers, it is plausible that
climatic factors are acting on longer time scales than the anomalous fluctuations reported
by Shaman et al. 222 to more generally enhance transmission and increase incidence64.
However, in Australia, epidemic size does not appear to be strongly associated with the mean
temperature or absolute humidity over the epidemic period.

Given the interest in influenza virus as a model system for phylodynamics of a pathogen
that consist of multiple co-existing antigenic variants141, there is interest in understand-
ing how competition between these related variants, typified by cross-immunity, shapes
epidemiological dynamics. Studies have hypothesised that antigenic change should result
in larger24,130,270,274 and earlier29 local epidemics, which exhibit greater spatio-temporal
synchrony at the national level39,92,102,213,256. The sequential replacement of old antigenic
variants by new ones is indicative that antigenicity and population immunity are important
for the global level phylodynamics of influenza viruses. In contrast, at the local level, I
find for A/H3 and B/Vic viruses that neither antigenic change nor the accumulation of anti-
genic variant specific immunity are strong drivers of epidemic size, though accumulating
variant-specific immunity may moderately reduce the probability of successful epidemic
initiation.

It is striking that individual antigenic variants of A/H3 and B/Vic viruses are capable of
re-invading the same city multiple times over consecutive years, despite a lack of substantial
antigenic change. A/H1pdm09 viruses had previously been shown to cause repeat epidemics
without antigenic change20,118, but this work establishes that this occurs for multiple types
and subtypes of human influenza. One possible explanation for the lack of evidence for
the year-on-year depletion of susceptible hosts is that influenza virus infection often fails
to confer strain-specific and effective immunity. In some individuals, antigenic seniority
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and existing immunity against previously encountered antigenic variants may suppress
novel strain-specific antibody responses, leading to only modest specific protection against
reinfection140,151. Similarly, there is evidence from vaccine trials191 and infection challenge
studies100 to suggest that children, particularly those below ten years of age172, require
multiple exposures to develop protective immunity.

There may also be substantial and previously unaccounted heterogeneity in individual
susceptibility towards the same virus strain. The notion that population level strain-specific
immunity to influenza viruses is monolithic may be an artefact of the single-infection ferret
models typically used to estimate antibody-mediated protection. In humans, there is sub-
stantial individual-to-individual variation in the antigenicity of amino acid escape mutations
for influenza haemagglutinin148. Such heterogeneity between individuals stems from their
varied exposure histories to different influenza viruses. Unfortunately, the corresponding age
records for this data set were too incomplete to allow us to study age-specific heterogeneities
in demographics and attack rates between cities and whether such patterns change over
seasons.

Spatial and social connectivity structures among hosts in a city may also limit the spread
of epidemics. Heterogeneous contact patterns between hosts can have a substantial impact
on resulting epidemiological dynamics53,55. Epidemics may be inherently frail processes:
relatively minor human behavioural or environmental perturbations could prematurely termi-
nate epidemics before they exhaust the pool of susceptible hosts, preserving a substantial
number of susceptibles and permitting subsequent epidemics of the same antigenic variant.

While this dataset is substantially smaller (>450,000 vs 18,250 cases) than the one
analysed by Geoghegan et al. 92 and is thus more likely to be affected by noise in epidemic
and surveillance processes, the differences between my findings and theirs highlight the
importance of subtyping and antigenic characterisation, particularly for drawing conclusions
about the effects of antigenic change. Geoghegan et al. 92 had cautiously suggested, given
only virus type data, that the 2009, 2012 and 2014 influenza A virus epidemics in Australia
exhibited greater spatio-temporal synchrony potentially due to the emergence of the novel
A/H1pdm09 subtype in 2009 and novel A/H3 antigenic variants in 2012 and 2014. However,
with further subtype resolution and antigenic characterisation, I find that the majority of
influenza A activity in Adelaide and Melbourne in 2014 was attributable to A/H1pdm09,
rather than the (antigenically novel) A/H3; in fact, there was no above baseline A/H3
activity in Perth. The fact that different virus subtypes caused these apparently synchronous
epidemics implies that the epidemic synchrony described by Geoghegan et al. 92 was not due
to the antigenic evolution or regional spread of a single virus strain.
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Apart from competition between antigenic variants, previous epidemiological studies
have hypothesised the existence of heterosubtypic competition where prior infection by
a virus of one subtype is negatively associated with subsequent infection by a virus of
another subtype51,232. In agreement with a previous US study of national level ILI activity
augmented with limited virus subtyping99, I also find evidence for a first-mover advantage
and competition to infect hosts within a city, where the subtype or type that initiates above
baseline levels of activity first is most likely to have the largest epidemic of that season.

There are multiple caveats to this study that merit explicit consideration. The most
important ones derive from the use of passive surveillance data that might not accurately
reflect true underlying influenza virus activity. For example, surveillance intensity could
plausibly vary between cities and years. While variation in surveillance efforts is evident
among cities, there was no evidence of systematic increases or decreases in the number of
laboratory-confirmed cases or changes to surveillance practices within each city during the
study period. Despite this, the longer duration of epidemics recorded after 2009 could be
indicative of enhanced surveillance in the post-pandemic era: to mitigate this possibility, I
repeated the analyses on the effect of antigenic change on epidemic size, splitting between
pre- and post-pandemic eras and epidemic sizes normalising by their respective era-specific
means. In either era, there were no consistent effect of antigenic change on epidemic size,
with the caveat that splitting across eras reduced the number of observations in each era and
thus the statistical power (Fig. B.18).

Intensity of surveillance could also vary over the course of an epidemic. For example,
sentinel physicians could become more likely to submit samples for further testing as
an epidemic unfolds or conversely, testing could prematurely cease as facilities become
overwhelmed with samples. Despite being unable to definitively rule out the former scenario,
the latter is unlikely to affect the data. If reporting ceased after a certain number of samples
had been tested, the distribution of epidemic sizes would be truncated and each epidemic
would be unlikely to have an exponentially declining tail. No such patterns exist in the data.

The intensity of surveillance could also potentially vary across subtypes and lineages. The
mean age of infection for A/H3 is greater than influenza B25 viruses and healthcare seeking
behaviour may differ between adults, parents with children and children. Furthermore, it is
commonly thought that A/H3 virus infections result in more severe clinical presentations and
greater risk of mortality243 than influenza B viruses, potentially resulting in differences in the
likelihood of detection by a sentinel health practitioner, though this may not be the case34.

Another important caveat is that while I were able to include antigenic data in this study,
these data were all derived from HI assays. HI assays do not measure virus antigenic changes
that occur away from the receptor binding site and thus likely represent an incomplete picture
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of antigenic change. Reference viruses and sera used in the haemagglutination inhibition
assays can also impact the interpretation of the assay readout and the HI data used in this
study were therefore treated with caution (see Section 4.2).

In this study, I attempted to identify associations between population susceptibility and
epidemic incidence. Accurately quantifying the former is a complex challenge so cumulative
antigenic variant-specific epidemic incidence was used as a proxy but that itself is subject
to the limitations listed above. Besides natural infection, immunity can also be derived
from vaccination, the contribution and effectiveness of which could not be determined due
to a lack of temporally and geographically complete vaccination records over the study
period. Regardless, I hypothesise that the impact of seasonal vaccination would be limited,
particularly in the context of Australia, given the low uptake of vaccination historically21.
Crucially, the uptake by children, who are important in driving local community transmission,
has often below 10% during the study period238.

While the Bayesian multilevel model estimated negligible effects on epidemic size
stemming from climatic factors and prior cases attributed to the same antigenic variant, the
estimated credible intervals were not tight enough to rule out these effects conclusively
(Fig. 4.6). However, my results suggest that climatic and antigenic factors are unlikely
to be strong drivers of local influenza epidemiological dynamics. Indeed, the effects of
these specific factors are dwarfed in magnitude by more generic epidemiological drivers:
seasonality not directly captured by climate (measured as the fortnight in the year when
the onset of the epidemic occurs) and competition for hosts among subtypes (measured by
whether an epidemic is the first of the season) (Fig. 4.6). I also find that even with all generic
and specific factors considered, precise predictions of epidemic size remain difficult because
of substantial noise in the local epidemic process.

The Bayesian multilevel model for epidemic size avoids explicitly modelling underlying
transmission processes and may fail to fully capture the nature of the relationship (linear
vs non-linear) between transmission rates/R0 and the total cases in an epidemic. However,
based on previous virus transmissibility studies221, if climatic factors are strong drivers of
epidemiological dynamics, one would expect the climatic variabilities observed in Australia
to have a substantial impact on transmission rates and produce detectable differences in
epidemic size, but this is not the case.

Climatic drivers of seasonality and homosubtypic competition between virus antigenic
variants are thought to be strong drivers of seasonal influenza epidemiology, but seasonal
influenza virus epidemiological dynamics in major Australian cities appear to be more
substantially shaped by other factors; particularly the establishment of sustained virus
transmission activity and subsequent competition among virus types and subtypes. This
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implies that the time horizon for meaningful forecasting of epidemic subtype composition
is very short (days-to-weeks) and forecasting efforts aimed at longer term predictions will
require further insights into the dynamics of virus introduction and epidemic establishment
and into the accumulation of population immunity to seasonal influenza viruses.

These results form the impetus behind Chapters 5 and 6, where I examine how the
network structure of populations and immunity may limit the extent of epidemic spread,
providing a potential explanation for recurrent epidemics by the same antigenic variant over
consecutive seasons.





Chapter 5

The effects of host contact structure and
cross-immunity on the recurrence of
epidemics

5.1 Introduction

Previous attempts at quantifying the effects of antigenic evolution for seasonal influenza
viruses have often relied upon mean-field, SIR type mathematical models130,131 or relatively
simple metapopulation representations of population structure29,278. Once an epidemic
has concluded, the disease-free equilibrium state prevents pathogen reinvasion, due to the
critical depletion of susceptibles112,113,249. In a closed system without demography, recurrent
epidemics can only occur if this susceptible fraction is sufficiently restored, through a
combination of phenotypic changes in virus antigenicity and loss of host immunity through
waning. Of course, it is likely that epidemics fail to run to their theoretical limits and reach
critical depletion of the susceptible pool in the first place, leaving pockets of susceptible
individuals and reducing the amount of restoration required.

My analyses of the Australian data set in Chapter 4 suggests that reinvansion is occurring
in the absence of major antigenic change, as quantified using HI assays231. In lieu of
phenotypic changes in virus antigenicity, the restoration of population susceptibility could
be achieved by the loss of immunity within hosts: rather than long-lasting homotypic
protection94, the duration of protection conferred by natural infection could be shorter than
previously anticipated176.

Another potential explanation is that population structure limits epidemic spread and
consequently, the build-up of immunity at a local scale. A similar hypothesis124 has been
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proposed as the basis for the recurrent epidemics in 2010 and 2011 by A/H1pdm09, which
did not exhibit marked changes in antigenicity20,118. For seasonal influenza viruses, if human
population structure limits the build-up of immunity reinvasion could become possible
without necessitating a rapid turnover in population immunity.

More broadly speaking, the impact of host contact structure has been of great theoretical
interest: predictions made by network models differ substantially from those of classical
random mixing models67,157,177,197, since interactions are limited to a fixed set of contacts,
the number of which differ between individuals. The degree distribution of the network
shapes the patterns of disease spread53,192 and the geometry of immunity imparted upon
the residual network78. This in turn determines the vulnerability of the network towards
subsequent reinvasion19,78 and competition between related strains125,153,194.

Indeed, the patterns of influenza virus spread may be intimately associated with un-
derlying host contact structures and their age-specific heterogeneities. Children have been
implicated by many epidemiological studies to be important for community transmission, due
to the frequency and intensity of their contacts in schools. The apparent shift in age-specific
attack rates towards adults over subsequent A/H1pdm09 epidemics may have resulted from
the preferential depletion and accumulation of immunity within the highly connected chil-
dren19. These patterns highlight how population structure can be potentially leveraged for
more targeted and efficacious interventions184.

It is evident that model specification is critical since different assumptions on how indi-
viduals mix within a population can lead to drastically divergent model dynamics199,248. For
many predominantly childhood diseases, such as measles103, pertussis210 and varicella174,
social contact data can be used to successfully parameterise mathematical models and parsi-
moniously recapitulate age-related patterns of transmission and disease152. Such minimal
explanations could account for the importance of children in the community transmission of
seasonal influenza but fails to account for the substantial amount of cross-immunity that is
widely distributed across the population.

In this chapter, I investigate how the effects of population structure and its interactions
with host immunity can facilitate the recurrent epidemics of seasonal influenza. Whilst
previous studies into network models and the dynamics of pandemic influenza have provided
insight into the important implications of population structure19,124, their model frameworks
need to be adapted for the specific context of seasonal influenza. Transmission across the
network is likely to be affected by age-related correlations between host contact patterns
and individual immunity. Rather than using a configuration model approach and various
prescribed degree distributions119,124, I draw upon data from empirical contact surveys and
construct networks that better characterise the structure of real populations. Furthermore,
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I add multiple immune classes to reflect the complex exposure histories over the course of
an individual’s lifespan and account for the geometry of cross-immunity. Using this more
sophisticated model framework, I analyse the structural evolution of the network over two
sequential seasons.

5.2 Method

5.2.1 Contact network model

Within a network model, individuals and their epidemiologically-relevant contacts are
represented by nodes and edges respectively. Rather than using prescribed degree distribu-
tions to describe the number of contacts that an individual has, I used an exponential random
graph model (ERGM) to produce a more realistic caricature of population structure. ERGMs
define a distribution of networks by considering the likelihood of an edge between a given
pair of nodes, based on their individual attributes. These models can be fitted using empirical
data to reflect salient features of population structure, such as the number of edges between
individuals of the same household, by summarising egocentric social survey data, where
“egos” report the number and characteristics of their contacts with “alters”.

To construct my synthetic networks, I used the Australian census data for Sydney and
randomly sampled 1000 households, each of which could be a family unit or a group of
cohabitating adults. Individuals were randomly assigned ages and age-appropriate, extra-
household activities (day-care centre for 0 - 5 years, school for 6 - 18 years and workplaces
for >18 years of age), taking into account the attendance rates, class sizes11, employment
rates and workplace sizes. Unfortunately, I found no contact survey studies for Australia; I
derived the expected number of edges within the various social contexts used the POLYMOD
study186 data set, which contains detailed diaries of daily social contacts and their locations
for over 7000 individuals across 8 European countries.

For a disease that affects both children and adults, it is clear that households form a key
component of epidemic spread. From various survey studies27,96,186,202, it is known that
within a household, the probabilities differ between homophilous (child-child and adult-adult)
and heterophilous (child-adult) contacts. These probabilities are further dependent on the size
of the household, with network density decreasing as size increases96. Additionally, the odds
of physical contact within a household decreases with the age of its members, particularly
the contacts between father and child96,202. However, the additional attributes of household
size, gender and ages were not identifiable: there was insufficient coverage of individuals
from each possible attribute combination. Furthermore, higher-order network statistics, such
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as stars and clustering coefficients, could not be recapitulated since egocentric sampling in
the POLYMOD study186 did not exhaustively collect information for all other individuals
within the household of the respondent. Similarly, with regards to extra-household contacts,
it was not possible to take into account the effects that the sizes of day-care, schools and
workplaces can have on contact probabilities.

The model incorporating “social structure” was fitted using the ERGM package32,250 in
R, with model terms (Table C.1) accounting for the number of child-child, adult-adult and
child-adult edges observed within households, day-care, schools and workplaces. Uniform
homophily for all these attributes is assumed, whereby the propensity for within-group ties
between individuals is the same across all groups. In other words, within each and every
school, the probability that two children nodes are connected by an edge is the same. Since
it was not possible to further specify network structure beyond basic descriptive statistics,
an additional degree term was used to forcibly introduce a positive skew into the degree
distribution, so that it better recapitulates the empirical observation that a small fraction of
individuals have many contacts, which is particularly prominent for children.

To evaluate the effects of population structure and contact heterogeneity in network
models, I also generated two additional ERGMs to use as baselines for comparison (Fig. C.1).
1) A “no structure” null model that ignores all nodal attributes and has randomly distributed
edges; 2) a “household” model that has assortative mixing between individuals of the same
household and randomly distributed edges between individuals of different households. To
enable fair comparison, all three ERGMs have the same overall number of edges and network
densities.

For each realisation, a simulated network is drawn from the ERGM distribution and
assumed to remain static throughout the epidemic. This is primarily done in the interests
of computational tractability but is also justified by an inability to parameterise a dynamic
model, given the lack of suitable cross-sectional survey data across time. It is reasonable
to assume that membership of households, schools, etc. are unlikely to fluctuate drastically
over shorter timescales, although the exact contact patterns within maybe more labile. Since
I considered short timescales, demographic processes were also omitted; otherwise, the need
for the properties of temporal networks to stay invariant in response to the removal and
introduction of new nodes could have introduced complications.

5.2.2 Modelling host immunity and virus transmission

The epidemiological model is based upon the SIR framework but transmission is dictated
by the underlying network structure and can only occur between connected nodes. Hosts are
randomly assigned an immunity class. Fully naïve Snaive individuals have a susceptibility
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σnaive = 1. Individuals with prior exposure and partial immunity are classified (Si), based on
the most recent antigenic cluster of viruses to which they possess immunity towards. For
instance, hosts with immunity to the wild-type cluster and the cluster before would be in class
S0 and S1 respectively. The susceptibility for individuals, who have most recently encountered
cluster i, towards virus phenotype from cluster j is governed by the parameter σi j, which
is the strength of cross-immunity interactions between antigenic variants. σi j decreases
with antigenic distance and is defined by saturating linear (Eq. (5.1a)) and multiplicative
(Eq. (5.1b)) functions of the escape factor θ .

σi j =

θ · |i− j| if θ · |i− j| ≤ 1

1 if θ · |i− j|> 1
(5.1a)

σi j = 1− (1−θ)|i− j| (5.1b)

From first principles, the basic reproduction number R0 is the expected number of
secondary cases generated by a single infected individual during the infectious period, in a
fully susceptible population. For a fully susceptible population, consider a newly infected
node (the ego) within the network: it cannot re-infect the neighbour (the alter) who infected
it. Its excess degree, or the number of alters that are susceptible to onwards transmission,
is thus its degree k less one. The excess degree distribution qk is a function of the degree
distribution pk and its first moment ⟨pk⟩192,193 (Eq. (5.2a)). R0 is thus the product of the
probability of disease transmission along a random edge (T ) and the average excess degree
⟨qk⟩192,258,276 (Eq. (5.2b)).

qk =
(k+1)pk+1

⟨k⟩
(5.2a)

R0 = T · ⟨qk⟩ (5.2b)

Analytical solutions for the average excess degree ⟨qk⟩ have been derived for random
bipartite networks1,17, where the two types of nodes differ in their degree distributions or
susceptibility. Multiple immune classes introduce additional asymmetry into the calculation
of the effective excess degree of a node: the choice of infecting alter affects the number
of remaining alters that can be subsequently infected (Fig. 5.1a,b). The probability that
a particular alter is the originator of infection is not uniform: a naïve alter is more likely
than a partially immune one to be the originator. Onward transmission is conditional on
the ego node becoming infected, the probability of which is dependent on its immune class
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(Fig. 5.1c,d). Furthermore, the degree of a node is determined by a joint distribution over the
distributions for within- and extra-household contacts. The overall average effective excess
degree for the network is not simply the first moment of qe and needs to account for both the
degree and susceptibility of the individual nodes.
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Fig. 5.1 Diagrammatic representation of the Effective Excess Degree for a node. The colours
of a node denotes its immune class and hence its susceptibility towards infection by the
current wild-type; the larger the node, the greater the susceptibility. In each panel, the central
node (ego) is infected by one of its alters along the bolded edge. Whilst the composition of
the alters do not change between panels, the remaining alters that the ego can then infect
differ: (a) 4 naïve, 2 S0 and 2 S1; (b) 4 naïve, 2 S0 and 1 S1. In (c), the ego node is now S1
and possesses partial cross-immunity, reducing the likelihood of initially becoming infected
and thus the probability of its alters becoming infected.

Calculating the average effective excess degree of the network is necessary for parame-
terising the transmission probability and ensuring that the resultant effective reproduction
number Re and epidemiological dynamics are plausible. The dimensionality of this problem
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quickly escalates, due to the number of immune classes and types of interactions: rather than
adopting an analytical approach, I calculated the average effective excess degree through
simulation. For each combination of epidemiological parameters, I generated 1000 distinct
networks from the ERGM distributions and randomly reassigned immune classes. In order
to calculate the average effective excess degree for one such realisation, consider the ego
node a of immune class Sa with c alters {c1, . . . ,cb} of immune classes {Sb1, . . . ,Sbc}. With
respect to the current wild-type virus of cluster 0, the susceptibility of ego and alters are thus
σa,0 and {σb1,0, . . . ,σbc,0}.

Accounting for partial immunity of the alters, the effective degree (ED) and effective
excess degree (EED) for node a is as follows (Eqs. (5.3a)–(5.3b)).

EDa =
c

∑
i=1

σbi,0 (5.3a)

EEDa =
∑

c
i=1 σbi,0 · (EDa −σbi,0)

∑
c
i=1 σbi,0

(5.3b)

The overall average effective excess degree across a network of n nodes is given by
Eq. (5.4).

Average EED =
∑

n
i=1 σi,0 ·EEDi

∑
n
i=1 σi,0

(5.4)

Using the average EED values for the 1000 replicates and a given effective reproduction
number Re, the probability T that transmission occurs over the duration of the infectious
period along an edge connecting an infected ego and a susceptible alter node can be calculated
(Eq. (5.5a)). The infectious period γ−1 is assumed to be exponentially distributed. From the
overall transmission probability T and the duration of the infectious period γ−1, the daily
probability that transmission occurs along an edge β can then be calculated (Eq. (5.5b)). As
a means of validating my simulation-based approach to model parameterisation, I selected a
target Re and ran a set of simulations using my calculated β , ensuring that the Re estimated
from the early part of the epidemic trajectories matched the original target value.

Re = T ·Average EED (5.5a)

T = 1− (1−β )γ−1
(5.5b)

For reference, Table 5.1 summarises the modelling notation used above.
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Term Meaning

qk Excess degree distribution (fully susceptible population)
R0 Basic reproduction number
σi j Cross-immunity term: susceptibility towards cluster j for individuals with immu-

nity towards i
ED Excess degree for a given node
EED Effective excess degree for a given node
Re Effective reproduction number
T Probability that, over the duration of the infectious period, an infectious ego will

transmit to its susceptible alter
β Daily probability that an infectious ego will transmit to its susceptible alter
γ Daily probability of that an infectious individual recovers

Table 5.1 Notation used in network model framework

I compared two immune class distributions, which had the same overall number of
individuals in each immune class. For the “homogenous” immune class distribution, which
acts as the null model, the immune classes are distributed equally amongst the two age groups
(top row of Fig. 5.2a). This is contrasted against a distribution of immune classes that differs
between age groups (bottom row of Fig. 5.2a): children (≤18 years of age) have no exposure
towards more historic antigenic variants and are more likely than adults (>18 years of age)
to be in the Snaive class. The proportions within the immune classes reflect the upper end of
estimates for seasonal incidence, which is thought to vary between 5-20%181,245,274.
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Fig. 5.2 The distribution of (a) immune classes within the population and (b) their correspond-
ing susceptibility towards the current antigenic variant of cluster 0. In order to investigate the
interactions between network structure and the geometry of cross-immunity, I compare two
scenarios: the total number of individuals in each immune class are identical, but differ in
their distribution between children and adults. For the susceptibility profiles shown, I used a
linear model of cross-immunity with θ = 0.2 (Eq. (5.1a)).
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5.2.3 Simulating epidemics

Once β is calculated for the specific set of epidemiological parameters and target Re,
1000 independent stochastic simulations were run, each with a unique network drawn from
the ERGM distribution and unique distribution of immunity amongst the individuals. The
epidemic was seeded by random infection of five hosts and simulated with daily timesteps.

At each timestep, infections can occur along an edge connecting infected and non-infected
individuals. The outcome of such events are evaluated based on a draw from a Bernoulli
distribution with probability equal to β multiplied by the susceptibility σi,0 of the at-risk
individual (Eq. (5.6)).

p(Infection along an edge) = β ·σi,0 (5.6)

When an individual becomes infected at time t, their infectious period tI is drawn
from the exponential distribution TI ∼ Exponential(γ−1), where γ is the recovery rate,
which is assumed to be the same for both adults and children; the infected individual
will recover at the end of time t + tI . Recovered individuals have their immunity class
updated to S0 but cannot be re-infected within the same season. To explore the conditions
necessary for reinvasion, I adopt a two-step framework, which separates the shorter timescale
for epidemics from the longer timescale for changes in host susceptibility resulting from
immune waning. Two sequential epidemics (S1 and S2) are initiated on the networks
sequentially and I investigate their structural evolution and changes. This approach is similar
to that of Andreasen 6 , Jaramillo et al. 124 , whereby demographic processes and antigenic
drift act in-between seasons to alter the immunity structure of the host population. In my
framework, virological and demographic conditions are assumed to stay invariant over such
short timescales; instead, I focus on the effects of host immune waning. A proportion δ

of individuals possessing immunity towards the current wild-type (class S0) are randomly
selected and become re-susceptibilised (class Snaive), which partially restores the connectivity
of the residual network.

5.2.4 Model scenarios considered

To characterise the impacts of and interactions between network structure and cross-
immunity, I compared and contrasted a series of model scenarios (Table 5.2):
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Network Structure Immune Class Distribution

No structure
Homogenous
Age-specific Heterogeneity

Household
Homogenous
Age-specific Heterogeneity

Social structure
Homogenous
Age-specific Heterogeneity

Table 5.2 Model scenarios considered

The ERGMs representing the different levels of population structure are made comparable
by having the same overall number of edges within the network. Similarly, the number of
individuals in each immune class are identical but differ in their age distributions.

5.3 Results

5.3.1 Pre-Season 1

The underlying topology and properties of a network fundamentally dictates epidemic
spread. In particular, there is a propensity for outbreaks to affect highly connected nodes
disproportionately78,192. For a population with pre-existing partial cross-immunity, I exam-
ined the effective excess degree for the various networks, which accounts for both nodal
degree and immunity (Fig. 5.3). Compared to the “no structure” null case, the addition
of “household” structure has limited effects on the effective excess degree (the average
number of alters that are susceptible to onward transmission by any given node) of the overall
network, since the majority of edges are between individuals of different households and
remain randomly distributed. However, there is a modest difference between age groups, due
to contact between siblings occurring more frequently than those between parent and child.

The difference in effective excess degree distribution between age groups becomes more
marked upon the incorporation of “social structure”: in addition to the differences in contact
patterns within households, children make a greater number of extra-household contacts
within day-care and schools than adults at their workplaces. Intuitively, this difference is
further exacerbated upon the incorporation of age-specific heterogeneities in the distribution
of immune classes (bottom row of Fig. 5.3), since children not only have a higher degree but
now also tend to be more susceptible than adults.
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Fig. 5.3 The effect of network structure and age-specific heterogeneities in the distribution
of immune classes on the average effective excess degree. A thousand simulated networks
were independently drawn from their respective ERGM distributions, with immune classes
randomly allocated accordingly: individual coloured points on the plot represent the average
effective excess degree for each realisation. Red points denote the mean of the distributions.

5.3.2 Season 1 final size

Using my stochastic network models, I first investigated how network structure and
immune topology affects the spread of the S1 epidemic. To ensure comparability across all
scenarios, Re was kept constant at 1.2, which is typical for seasonal influenza viruses274,
by reducing the transmission probability accordingly when the underlying average effective
excess degree was greater. The addition of network structure results increases the likelihood
of premature stochastic termination and failure to initiate major epidemics. When epidemics
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do occur, the final size is reduced: the reduction in attack rate for adults is disproportionately
large when compared to that for children. This differential reduction in attack rates become
more pronounced, when adults possess greater levels of immunity than children (bottom
row of Fig. 5.4). Preferential infection of children changes the composition of epidemics
(Fig. C.2) and is in agreement with the classical results, as discussed above (Fig. 5.3), where
high connectivity nodes are particularly vulnerable.

Fig. 5.4 The effect of network structure and age-specific heterogeneities in the distribution of
immune classes on the final size of the Season 1 epidemic. Individual points represent the
overall, child- and adult-specific attack rates from one stochastic simulation; the red point
represents the median value.
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5.3.3 Season 1 changes in effective excess degree

Epidemics confer immunity, particularly to nodes predisposed to infection, and thus the
state of the residual network is critical to reinvasion. I therefore investigated how the effective
excess degree distributions changed after S1. When epidemics are successfully initiated, the
addition of social structure and heterogeneous immunity results in smaller epidemics. Despite
infecting fewer people, the removed individuals are of greater connectivity so the residual
post-S1 network has a lower effective excess degree (Fig. 5.5a), which makes reinvasion more
difficult (Fig. 5.5b). Children form a crucial conduit for transmission and consequently suffer
from the greatest reductions in connectivity after the epidemic has cascaded throughout the
network (Fig. C.3). To allow for comparisons between networks that differ in their underlying
pre-S1 connectedness, individual pre-S1 effective excess degree values were log transformed
and subtracted by the group mean. Similarly, the post-S1 values were log transformed and
subtracted by the pre-S1 mean, in order to quantify the relative change.
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Fig. 5.5 The impact of the Season 1 epidemic on network connectivity. For each network
structure and immunity combination, the left and right distributions show the original pre-S1
and residual post-S1 distributions for (a) average effective excess degree and (b) corre-
sponding Re distributions; the red point denotes the median value. To make the effective
excess degree distributions comparable, pre-S1 and post-S1 values were log-transformed and
normalised relative to the pre-S1 mean for that particular combination.
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5.3.4 Interseasonal immune waning

In the case of standard homogenously mixing, deterministic, non-spatial SIR models,
epidemics end due to the critical depletion of susceptibles; reinvasion is not possible unless
the proportion of susceptibles is restored to a level, where Re > 1. In my model framework,
restoration of network connectivity is achieved through immune waning, where a proportion
δ of individuals of the S0 immune class, irrespective of their age group, are randomly selected
and transition into Snaive. I investigated how network and immune structure would affect the
rate at which immune waning would restore network connectivity.

The amount of effective excess degree restored increases concurrently with δ (Fig. 5.6;
see Fig. C.4 for raw distributions). When there is "no structure", age-specific heterogeneities
in the immune class distributions has negligible effects (purple lines in Fig. 5.6). The addition
of "household" structure (yellow lines in Fig. 5.6) and/or heterogeneities in immune class
distribution have little further impact on the ability of immune waning to restore network
connectivity. Again, the random distribution of extra-household contacts facilitates overall
transmission through the population by mitigating the effects of limited assortative mixing
within households.

Addition of “social structure” alone (dashed blue line in Fig. 5.6) moderately hinders the
restoration of overall network connectivity. The differences in contact patterns and degree
distribution shifts the burden of disease towards children; since δ remains constant between
age groups, for any given waning rate, network connectivity is restored to a greater extent for
adults than children. By δ = 0.4, the effective excess degree in adults has been restored to
their pre-S1 levels, whilst for children, only 0.74 (95% quantile: (0.52,1.05)) of the effective
excess degree lost had been restored.

In the presence of both “social structure” and heterogeneities in immune class distribution
between age groups (solid blue line in Fig. 5.6), the ability to restore overall network
connectivity becomes further compromised; through skewing the degree distribution, these
two factors act in conjunction to heighten the differential effectiveness of resusceptibilisation
between children and adults. In this scenario, the adult effective excess degree can be fully
restored by approximately δ = 0.275, whilst over 0.6 of the effective excess degree initially
lost by children remains unaccounted for.
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Fig. 5.6 The effect of resusceptibilisation on restoring the effective excess degree of the
post-S1 network. The lines represent the mean amount of effective excess degree restored
(Eq. (5.7)) for a given proportion of S0 individuals resusceptibilised during the interseasonal
period between S1 and S2. The amount of effective excess degree restored is measured
relative to the amount lost: a value of 1, implies that EEDPreS2=EEDPreS1.

Restored Effective Excess Degree =
EEDPreS2 −EEDPostS1

EEDPreS1 −EEDPostS1
(5.7)

5.3.5 Season 2 final size

Having establishing how network and immune structures shape the spread of the S1
epidemic and modulate the effectiveness of interseasonal immune waning, I investigated
how these changes in network connectivity would then affect the dynamics observed in
S2. In the absence of immune waning, S1 epidemics can, if successfully initiated, render
the network sufficiently sparse and prevent the occurrence of major S2 epidemics (leftmost
column in Fig. 5.7a). However, inherent stochasticity can lead occasionally to the premature
termination of the S1 epidemic, which becomes more likely in the presence of network
structure or segregation of immune classes based on age groups (Fig. 5.7b): this provides an
opportunity for the occurrence of a minor or major S2 epidemic, depending on the extent of
spread by the S1 epidemic.

With increasing values of δ and restoration of network connectivity through immune
waning, the probability of successfully initiating S2 epidemics increases (OR > 1; Fig. 5.8
and Table C.2); by δ = 0.4, major epidemics that are comparable in size to those of S1 can
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be readily observed (Fig. 5.7). However, the binary logistic regression models (Fig. 5.8
and Table C.2) show that the ability of resusceptibilisation to enable S2 epidemics is reduced
by “social structure” and to a lesser extent, by age-specific heterogeneities in immune class
distribution. After all, heterogeneous immune class distribution by itself is unable to exert
any impacts, if the edges that connect individuals are randomly distributed.
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Fig. 5.7 The final size of consecutive epidemics. Immune classes are distributed (a) homoge-
nously or (b) segregated based upon age groups. Individual points denote the final size for
the S1 and S2 epidemics for a single model realisation. The proportion of S0 individuals
resusceptibilised (δ ) between S1 and S2 is shown by the top facet label, steadily increasing
from left to right. Note that at high waning rates, it is possible for S2 epidemics to be substan-
tially larger in magnitude, due to the lack of substantial S1 activity and resusceptibilisation
of existing S0 individuals.
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Fig. 5.8 Effect of immune waning on the probability of a major S2 epidemic. For each value
of immune waning, the probability of a successful S2 epidemic is given by the proportion of
realisations, with total incidence above 0.05. Binary logistic regression models were fitted for
each combination of network structure and immune class distribution. The 95% confidence
interval is denoted by the grey shaded area. See Table C.2 for OR from the binary logistic
regressions.

5.4 Discussion

It has been widely acknowledged that the structure of host populations have profound
effects on disease transmission, which cannot be readily recapitulated by models that adopt
the classical random mixing assumption or variants thereof18. In an attempt to reduce model
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complexity, existing influenza virus models have focused on characterising either the effects
of cross-immunity130,131 or population structure19,124. Some approaches have attempted to
incorporate elements of both29,278, but have failed to capture their finer aspects: crucially,
age structure, which imposes additional layers of heterogeneity by inducing correlations
between the two. I build upon the frameworks of previous studies to explicitly investigate
how interactions between the structure of host contacts and topology of immunity can
shape network connectivity and define the region of parameter space permissive to recurrent
epidemics by the same antigenic variant.

By constraining the interactions between individuals, network topology dictates pathogen
dynamics: in unipartite networks with arbitrary degree distributions, individuals differ only
in the number of contacts, so nodal degree determines their risk of infection19,78,177,192.
Aside from the inclusion of a non-trivial network structure with degree correlations, the
addition of partial cross-immunity within the network introduces further asymmetry: the
frailty of individual nodes towards infection needs to account for the susceptibility of not only
themselves but also that of their immediate neighbours. As an extension to the classical results
from unipartite networks78,192, I find that the burden of infection disproportionately falls upon
nodes that have a greater effective excess degree (Figs. 5.3 and C.2), a composite measure of
network connectivity. Within the context of my network models that are parameterised using
empirical contact survey data and plausible immune class distributions, I show that children
are particularly vulnerable to infection due to their assortative mixing within education
settings, resulting in the formation of subgroups and clusters of susceptibility.

Differential susceptibility and assortative mixing192,229 can skew the effective excess
degree distribution and can appear to enhance disease spread. However, these previous
findings stem from the fact that the transmission probability along an edge is invariant
across networks: in other words, Re is greater in networks with assortative mixing than
those without. In my framework, when Re is held constant instead, I find that segregation of
extra-household contacts through “social structure” hinders the overall spread throughout the
network. Despite the fact that more structured networks result in smaller epidemics (Fig. 5.3),
the negative impact on the connectivity of the residual network is greater (Fig. 5.5), due to the
concentration of edge density within a limited number of children, who are also preferentially
infected. These effects can be similarly achieved by partially segregating immune classes
between age groups, which yet again acts to concentrate susceptibility and the edges that are
most permissive to transmission within a limited number of children.

Residual networks are more resilient towards reinvasion since epidemics preferentially
remove highly connected individuals and their connections: this pruning leaves behind
sparser chains of susceptible individuals so subsequent S2 epidemics are more prone to
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premature stochastic truncation. Similar to the concept of herd immunity and threshold
values in classical SIR models, recurrence of major epidemics can only become viable
once susceptibility within the epidemiologically active portion of the network is sufficiently
restored through changes in virus antigenicity or host immunity. By limiting the size of S1
epidemics, network structure has been theorised to reduce the amount of immunity lost that
is necessary to enable S2 epidemics124.

This previous study124 runs contrary to my results where I find that a greater amount of
immune waning is required for networks with “socially structure” or age-specific immune
class distributions than for random networks, to restore network connectivity between
epidemics (Fig. 5.6). In fact, this apparent quandary highlights the importance of specifying
network structure, beyond that of just the degree distribution. Configuration models124 are
random graphs and lack assortative mixing that arises from clustering and degree correlations.
Compared to the assortative mixing captured by “social structure” in my more complex
network models, disassortative mixing results in high degree nodes being more broadly
distributed throughout random graph networks192. This means that these individuals, who
are crucial in driving disease dissemination, are more readily accessible: for any node within
such a network, the path to a high degree individual is shorter, involving fewer intermediary
nodes, so it is less difficult to re-establish network connectivity.

Counterintuitively, whilst network structure and segregation of immune classes between
age groups act to limit the size of the S1 epidemic, network connectivity is disproportionately
affected and is less effectively restored by interseasonal immune waning. Consequently,
for any given immune waning rate, assuming that a major epidemic was present in S1, S2
epidemics are more prone to failure in these “socially structured” networks with assortative
mixing than in random networks (Fig. 5.8). Even with large immune waning rates (δ = 0.4),
S2 epidemics still fail approximately 40% of the time. Furthermore, this level of immunity
lost between seasons appears biologically implausible, given estimates of cross-immunity8

and cross-reactivity140 of approximately 88% and 75% respectively, between strains of the
same antigenic variant over consecutive seasons.

My models provide novel insights into how the interactions between network structure and
topology of immunity can have far-reaching effects on multi-season dynamics. These factors
define the epidemiologically active contacts within a network, forming cyclical feedback
loops as the patterns of disease then induces correlations between effective excess degree
and immune status. However, these more complex caricatures of empirical populations
remain unable to recapitulate recurrent epidemics without necessitating large amounts of
immune waning. This is in itself an important result, by demonstrating the dependence of
transmission upon high degree and susceptible children nodes, which through their intrinsic
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clustering contributes to the frailty of the network. This also highlights the need to incorporate
additional factors into the model to limit the acquisition or maintenance of immunity between
seasons.

The spread of epidemics could be prematurely curtailed by a mismatch between epidemic
activity and underlying seasonal drivers. In my model, I omitted seasonal forcing, since my
previous analyses in Chapter 4 suggest that the impact of climatic factors on epidemiological
dynamics may be limited. Furthermore, each discrete epidemic is brief in duration relative to
the length of the year.

Epidemiological dynamics could also be affected by changes in the underlying contact
network over time. In the short-term, individuals could exchange contacts amongst them-
selves, within the same class or workplace could be labile: on one hand, this can enhance
transmission and cause larger epidemics246 but could also enhance the effects of immune
waning by opening up alternative pathways to reach the critical high degree nodes. In
the long-term, demographic processes could replenish population susceptibility, through
natural births and deaths. Whereas endemic sexually transmitted diseases are affected by
the turnover of sexual partnerships67,89, the acute nature of infection means that transient
influenza epidemics should be less affected by demographic processes or network rewiring.
The use of static networks can thus be justified since individuals are unlikely to change their
membership of households, schools or workplaces over the course of an epidemic and such
short-term timescales.

It is plausible that mixing between individuals of the same class or workplace is less
rigid than supposed by a static network but justifying and parameterising a more complex
dynamic model can only be possible with improved social contact data of sufficient temporal
granularity and exhaustive egocentric sampling of individual social units. Since respondents
enrolled in the POLYMOD study186 only reported the number of daily contacts made within
each social context, it is not possible to infer whether or not the identity of their alters had
changed between days. Nor was it possible to infer the wider structure of contacts within
each class or workplace, beyond the edges connecting ego to its immediate alters. More
broad changes in host behaviour, such as school closures at the end of term36, could also
have an impact on seasonal influenza activity, but this remains poorly established239

Successful reinvasion could be more likely if residual networks are less frail than expected:
there is growing evidence that infection may not necessarily confer long-lasting strain-
specific immunity. Notably, children have proven notoriously difficult to seroconvert, with
seronegative individuals requiring multiple doses of seasonal vaccine to elicit a protective
antibody response191. Given the edge density within this age group, individual children could
potentially be capable of facilitating transmission over multiple seasons, before becoming
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immunised and removed from the network. Adults could also form a persisting, albeit less
efficient, conduit of partially immune nodes and provide some level of network connectivity.
Here, older individuals could be stuck in a perpetual state of susceptibility100, due to antigenic
seniority and the reliance of broadly neutralising antibodies172, which blocks the development
of antibody responses towards newly encountered viruses.

Population immunity may also be poorly maintained between epidemics. The dura-
tion of vaccine-induced protection has long been acknowledged to be limited28 but rather
surprisingly, homologous challenge studies have suggested that protection conferred by
natural infection may be similarly transient176. Indeed, serological studies suggest that the
half-life of protection for children is shorter than for adults206. Compared to the homogenous
immune waning implemented in my framework, a greater amount of network connectivity
can be restored with differential age-specific waning rates: for the same total number of S0

individuals resusceptibilised, preferential resusceptibilisation of children will have a greater
effect overall effect on network connectivity.

In Chapter 6, I explicitly incorporate broadly neutralising immunity and immune waning
rates that differ between age groups. I assess whether these mechanisms can overcome the
effects of network structure and increase the likelihood of recurrent epidemics.





Chapter 6

Changes in host immunity and its effects
on the recurrence of epidemics

6.1 Introduction

In Chapter 5, I showed that interactions between host contact structure and partial cross-
immunity towards seasonal influenza viruses can induce substantial correlations between
nodal degree and susceptibility. These correlations increase network frailty and fragmentation,
necessitating an inordinate amount of interseasonal resusceptibilisation and immune loss
to overcome. In this chapter, I consider more explicitly how an individual’s immunity
changes with age and assess whether these additional immune mechanisms can modulate the
effectiveness of immune waning and increase the likelihood of recurrent epidemics.

Since virus reinvasion is intrinsically linked to the immunity profile of the population,
serological studies have proven invaluable in elucidating potential mechanisms for main-
taining or restoring network connectivity. Specifically, these mechanisms must ameliorate
one or both of the disruptive effects of epidemics: 1. frailty: the targeted and preferential
immunisation of highly connected individuals; 2. interference: a more generalised depletion
of susceptibles, rendering potential chains of transmission more sparse78. Resulting from
the aforementioned correlations between nodal degree and susceptibility, both effects of
epidemics disproportionately affect children so potential mechanisms are likely to draw upon
differences in the immune responses between age groups.

Children tend to produce antibodies targeting the antigenically variable head of HA; as
such, seropositivity towards currently circulating strains peaks in school-aged children138.
Seropositivity then decreases with age, reaching a minimum for middle-aged adults138. This
change could be the result of interference from antigenic seniority or reduced adaptability
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in one’s immune response with age. Over the course of one’s lifetime, sequential exposure
to divergent virus subtypes136 could result in increased recognition of conserved but sub-
dominant epitopes134,237. The effects of antigenic seniority are thus hypothesised to prevent
older adults from being able to mount an effective and specific antibody response172. Alter-
natively, similar outcomes and the shift towards anti-stalk antibodies could be attributable
to immunosenescence, which restrict somatic hypermutation and the clonal diversity of B
cells, thus resulting in reduced capacity of antibodies to target antigenically variable HA
epitopes110.

Adults could be trapped in a perpetual state of partial susceptibility100, since their immune
response becomes increasingly dominated by broadly neutralising antibodies, potentially
forming chains of partially susceptible individuals within the network that are not readily
depleted by epidemic activity. However, intuition suggests that this may only have limited
effects on overall network connectivity, given how adults are sparsely connected; compared
to children, the contribution of adults towards community transmission is limited72,182,255. If
such a resilient component comprising of adults exists, its weak impact on epidemiological
dynamics has proven difficult to detect, with circumstantial evidence only coming to light
once the highly connected children are sufficiently immunised after multiple epidemics.
Typically, heightened activity is first detected in children but after two consecutive A/H3
virus dominated seasons in the USA, peak levels of A/H3 activity were instead first detected
in middle-aged and older adults during the 2017-18 season87,100.

Reliance on different immune responses could contribute to differences in the duration of
protection conferred by infection, which is estimated to be shorter for children than adults206:
greater interseasonal loss of immunity in children could help to mitigate their particular frailty
and restore connectivity in parts of the network that are most affected. The shorter duration
of immunity within children can be ascribed to the high degree of individual variability in
post-infection HI titres, which is a correlate of the more specific anti-HA head antibody
response. In turn, this variability can be attributed to underlying heterogeneities in both the
pre-existing titres and the magnitude of the acute boost due to infection.

In this chapter, I build upon the modelling framework laid out in Chapter 5 and inves-
tigate the effects of broadly-neutralising antibodies and variable rates of immune waning,
quantifying their overall effectiveness in enabling virus reinvasion over consecutive seasons.
Whilst the biological basis suggests that these putative mechanisms are capable of lessening
the immunological imprints imparted by individual epidemics, there is a need for explicit
consideration of underlying network structure.
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6.2 Method

I utilise the same general framework that I developed in Chapter 5, with regards to
generating the underlying contact structure, distribution of immune classes and simulating
the trajectories of epidemics over consecutive seasons. I modified the model by adding
a broadly immune class of hosts and specifying age group-specific immune waning rates;
model outputs were then contrasted against those generated by the base model from Chapter 5.
For clarity, key results presented in Figs. 6.4–6.7 are for networks with “social structure”
to highlight the impact of the various immune waning scenarios on the disproportionate
frailty of children nodes; results for “no structure” and “household” networks can be found
in Appendix D (Figs. D.3–D.6).

6.2.1 Incorporating broadly immune class

An additional immune class Sbroad was incorporated to represent older adults, who
possess broadly neutralising immunity towards all antigenic variants (δ(broad) j = 0.5, for all
j). After recovering from infection, these hosts cannot become reinfected within the same
season and remain in the same Sbroad class, reflecting their inability to develop a specific
antibody response towards the current wild-type virus. I replaced the immune class S4,
which consists of individuals who encountered and were able to develop strong immunity
towards viruses from four antigenic clusters ago, with Sbroad (Fig. 6.1). This corresponds to
approximately ten to twenty years since last successfully immunised. For adults, the ability
to mount a specific response after virus exposure declines dramatically with age beyond the
late 20s138, reaching a trough at around the age of 40.
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Fig. 6.1 The distribution of (a) immune classes within the population and (b) their correspond-
ing susceptibility towards the current antigenic variant of cluster 0. For the susceptibility
profiles shown, I used a linear model of cross-immunity with θ = 0.2 (Eq. (5.1a)).

6.2.2 Varying the interseasonal loss of immunity between age groups

In the original model framework, during the interseasonal period between S1 and S2, a
proportion δ of individuals possessing immunity towards the current wild-type (class S0)
are randomly selected and become re-susceptibilised (class Snaive). Here, I further delineate
between age groups (class Schildren0 and Sadults0) and apply age group-specific immune
waning rates (δchildren and δadults). Parameter values were guided by experimental studies:
Ranjeva et al. 206 estimated the half-lives for immune protection towards A/H3 viruses to
be t 1

2 children = 3.5 years, 95% CI:(1.4,5.2) and t 1
2 adults = 4.1 years, 95% CI:(3.2,5.5). From

these half-lives, I calculated the year-on-year rates of immune waning, which I used as
parameter values for my model: δchildren = 0.18, 95% CI:(0.12,0.39) and δadults = 0.16,
95% CI:(0.12,0.19).

To characterise the extent to which network connectivity can be more effectively restored
through variable immune waning rates, I considered a series of immune waning scenarios
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(Table 6.1), which are contrasted against the null model with homogenous immune waning
as discussed in Chapter 5.

Duration of Immunity δchildren δadults

Long 0.12 0.12
Mid 0.18 0.16

Short 0.39 0.19
Mixed 0.39 0.12

Table 6.1 Immune Waning Scenarios

In order to make the varying δchildren and δadults across these scenarios comparable against
the single parameter δ of the homogenous waning null model, I calculate the number of S0

individuals resusceptibilised during the interseasonal step for each stochastic realisation. This
common metric provides a per capita measure for the effectiveness of resusceptibilisation in
restoring network connectivity and enabling S2 epidemics.

6.3 Results

6.3.1 Effects of broadly immune individuals

Interseasonal immune waning

I compared networks with and without the Sbroad immune class to evaluate the hypothesis
that adults could form a perpetually susceptible and resilient component of the network. In
the context of S1 epidemic dynamics, the two cases are identical since I ensured that the
overall immunity profile for both cases remain unchanged; furthermore, Sbroad individuals
cannot be reinfected over the course of a single season. In networks that have little to no
assortative mixing within age groups (“household” and “no structure” respectively), the
presence of Sbroad reduces the amount of effective excess degree lost post-S1: network
connectivity can be readily restored by immune waning to original pre-S1 levels (Fig. 6.2). In
what are essentially random graphs, these highly resilient Sbroad individuals are interspersed
widely and easily accessible by all nodes, boosting nodal effective excess degree for both
age groups (Fig. D.1). This effectively mitigates the effects of interference from epidemics.

In networks with “social structure”, the underlying contact patterns of adults and the
limited number of Sbroad individuals means this immune class exerts limited effects on
network connectivity: the effective excess degree distribution for adults is slightly affected
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(Fig. D.2). At low values of δ , Sbroad marginally increases the connectedness of adults
(Figs. 6.1 and D.2). Paradoxically, at high values of δ the effective excess degree of adults
is lower since the expansion of the S0 class is blocked, so there are fewer individuals to
resusceptibilise; this effect is somewhat analogous to a weaker form of interference from
epidemics. However, these changes in the network properties of adults are not manifested
within children or the overall network: individuals possessing broadly neutralising immunity
are akin to dead-ends in chains of transmission.

Fig. 6.2 The impact of the Sbroad immune class on the ability of interseasonal immune waning
in restoring network connectivity. At each value of δ , the lines give the mean amount of
effective excess degree restored, relative to the amount lost (Eq. (5.7)).

Likelihood of S2 Epidemic

The impact of broadly neutralising immunity varies between the network structures.
These differences in pre-S2 connectivity affect the likelihood of S2 epidemics (Fig. 6.3): with
the random mixing in “no structure” and limited clustering in “household” networks, the
presence of Sbroad facilitates successful S2 epidemic initiation. This effect is particularly
evident at low values of δ , where the pre-S2 network remains highly fragmented (Fig. 6.3
and Table D.1). At large values of δ , the large turnover of population immunity negates the
interference effects of epidemics so the impact of Sbroad becomes negligible.

Since the addition of Sbroad does not substantially alter the pre-S2 effective degree
distributions for networks with “social structure”, it is unsurprising that the likelihood of
S2 epidemics remains mostly unaffected; when there is substantial immune waning, the
likelihood is reduced slightly (Fig. 6.3), as a consequence of limiting the size of S0 and extent
to which resusceptibilisation can occur, as discussed above.
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Fig. 6.3 The impact of the Sbroad immune class on the probability of a major S2 epidemic.
For each value of immune waning, the probability of a successful S2 epidemic is given by
the proportion of realisations, with total incidence above 0.05. Binary logistic regression
models were fitted for each combination of network structure and immune class distribution.
The 95% confidence interval is denoted by the grey shaded area. See Table D.1 for OR from
the binary logistic regressions.

6.3.2 Effects of variable immune waning rates between age groups

Interseasonal immune waning

Consistent with the results in Chapter 5, I find that as the duration of immunity is reduced
(left to right in Fig. 6.4), the average pre-S2 effective excess degree is restored to levels
closer to pre-S1 values. When comparing the “mixed” and “short” immune waning scenarios,
it is evident that increasing δadults from its minima to maxima has little further effect on
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increasing network connectivity: after all, the confidence interval for δadults is narrow, relative
to the range for δchildren. Additionally, due to correlations in nodal degree and susceptibility,
children nodes suffer especially from frailty so the restoration of network connectivity is
most sensitive to δchildren (Fig. 6.5). Indeed, Fig. 6.5 shows that immune waning that varies
between age groups is more effective than homogenous waning at reducing network frailty:
for the same number of S0 individuals resusceptibilised, 0.58 of the initial reduction in
average effective excess degree is restored in the “mixed” waning scenario, as compared to
0.31 with homogenous waning. In other words, if the objective is to maximise the amount of
network connectivity restored whilst minimising the overall level of population immunity
turnover, resusceptibilising a child, rather than an adult, would have a greater impact.

Whilst the confidence interval for the duration of protection conferred by infection is
substantially wider for children206, even so, at the upper bound of experimentally informed
rates, the pre-S2 effective excess degree for children is still lower than original pre-S1 levels
(Fig. 6.4).
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Fig. 6.4 Changes in network connectivity across different variable immune waning scenarios.
Immune waning scenarios and the corresponding age group-specific rates are listed in
Table 6.1. The left, central and right distributions show the original pre-S1, residual post-S1
and resusceptibilised pre-S2 distributions for average effective excess degree; the red point
denotes the median value. To make the effective excess degree distributions comparable,
pre-S1, post-S1 and pre-S2 values were log-transformed and normalised relative to the pre-S1
mean for that particular combination. Results for “no structure” and “household” networks
are shown in Appendix D (Fig. D.3).
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Fig. 6.5 The effect of variable interseasonal immune waning on restoring the effective excess
degree of the post-S1 network. The various immune waning scenarios (see Table 6.1 for
corresponding waning rates) are compared against the null homogenous waning model, which
is denoted by the blue line showing the mean amount of effective excess degree restored
(Eq. (5.7)) for a given number of S0 individuals resusceptibilised. Results for “no structure”
and “household” networks are shown in Appendix D (Fig. D.4).

Season 2 Final Size

Reducing the duration of immunity (left to right in Fig. 6.6) increases the likelihood
of a major S2 epidemic, especially if a major S1 epidemic has occurred: when children
are preferentially resusceptibilised, this increase in likelihood is relatively larger than what
would otherwise have been expected from homogenous waning (Fig. 6.7). This reflects the
underlying changes in network connectivity and the importance of children in facilitating
disease transmission. However, S2 epidemics are still prone to failure, underlining the fact
that the pre-S2 effective excess degree levels are still lower than pre-S1 levels.
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Fig. 6.6 The effect of variable interseasonal immune waning on the final size of consecutive
epidemics. The corresponding immune waning rates for each scenario are listed in Table 6.1.
Individual points denote the final size for the S1 and S2 epidemics for a single model
realisation. Results for “no structure” and “household” networks are shown in Appendix D
(Fig. D.5).

Fig. 6.7 The effect of variable interseasonal immune waning on the probability of a major S2
epidemic. The various immune waning scenarios (red points) were contrasted against the
null homogenous waning model: a binary logistic regression model (blue line) was fitted
to the latter and shows the probability of successful S2 epidemics for a given number of S0
individuals resusceptibilised. The probability of a successful S2 epidemic is given by the
proportion of realisations, with total incidence above 0.05. Results for “no structure” and
“household” networks are shown in Appendix D (Fig. D.6).
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6.4 Discussion

The epidemiology of an antigenically variable pathogen is inherently linked to the nature
and distribution of host immunity. Notably, an individual’s serological response is moulded
by sequential exposures to different sets of related strains of seasonal influenza viruses, which
culminate in immune responses that differ between age groups. These resultant shifts in
individual immunity could lessen the disruption of network connectivity by epidemics, thus
making recurrent epidemics more likely. In this chapter, I assess whether recurrent epidemics
within structured populations can be facilitated by immunological mechanisms involving
broadly neutralising antibodies in adults or differences in the duration of immunity between
age groups.

It has been hypothesised that the development of broadly neutralising antibodies may
confine middle-aged adults in a perpetual state of susceptibility100 by preventing individuals
from mounting a novel and specific antibody response. Cross-sectional serological studies
have readily detected the presence of these antibodies237, with increasing prevalence with
age178,189; however, baseline titres in individuals are typically lower than what could be
considered protective levels237 and the associated plasmablasts have proven difficult to
isolate47. The significance of such immunity at the population level is thus questionable,
especially since these serological studies often have limited sample sizes.

Using my network models, I demonstrate that adults with broadly neutralising immunity
are unlikely to strengthen connectivity within networks with social structure (Figs. 6.2
and 6.3). Adults have lower edge densities than children: creating isolated clusters of
susceptibility at the periphery of the graph does little to facilitate transmission within the core
of the network, which is predominantly formed by children. Despite the fact that the exact
titre levels that correlate with protection have not been determined for broadly neutralising
antibodies237, it is likely that δ(broad) j of 0.5 is an over-estimate of the level of individual
immunity, so the in vivo significance in community transmission is expected to be further
reduced.

Serological studies have highlighted that the duration of immunity conferred by infection
may be shorter in children than adults206. Children rely upon a specific response towards
immunodominant epitopes of HA, resulting in a high degree of variability in the baseline HI
titres, post-infection titre boosts and overall levels of protection, which is further reduced
by virus antigenic drift. On the other hand, the shift in recognition towards conserved stalk
epitopes results in a less labile response by adults.

This difference in immune waning rates between age groups specifically target the
disruptive effects of epidemics, which disproportionately fall upon children. Indeed, I
show that these differences can lead to more effective restoration of network connectivity,
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achieving greater per capita effects than applying homogenous waning equally across all
age groups (Figs. 6.5–6.7). Within the range of experimentally informed parameter values
(Table 6.1), antigenic variants are readily able to reinvade the same population, even after
a major epidemic. However, the S2 epidemic is by no means guaranteed and still prone to
failure. Indeed, my analysis of seasonal influenza activity in Australia in Chapter 4 shows
that failure to initiate subsequent epidemics occurs more frequently for A/H1sea and B/Yam
than A/H3 and B/Vic viruses.

As I demonstrated in Chapter 5, neither host contact structure nor immunity can be
considered in isolation: their particular topologies can induce unexpected correlations be-
tween nodal attributes and produce joint effects that counterintuitively exacerbate network
fragmentation. Results from this chapter further reinforce this sentiment: the effectiveness of
broadly neutralising immunity is curtailed by the poor connectedness of adults. In contrast,
the effects of immune waning can be maximised by varying its rates between age groups,
capitalising on their intrinsic differences in connectedness. These results further reinforce the
importance of children in the spread of seasonal influenza viruses. Likewise, our intervention
strategies should be targeted towards children: by taking advantage of their nodal properties,
interventions would be disproportionately effective at reducing the overall population level
burden of disease and exceed the impact that could be achieved through untargeted, blanket
approaches. In order to elucidate the effects of immunity at the population level, there is a
need to clarify how individual immunity and host contact patterns evolve over time. Cross-
sectional or cohort studies are required to further characterise the patterns in the distribution
of humoral immunity and disease-causing contacts between hosts, with a particular focus on
elucidating how immunity accumulates in children.





Chapter 7

Discussion

7.1 Summary of findings

Our ability to better control seasonal influenza viruses is partially limited by our poor
grasp on how interactions between virus and host translate across scales, from infection
and immunity within an individual to virus transmission through a population and the emer-
gence of new virus strains at the global level. Although inconclusive, great strides have
been made over the past decade in characterising the spectrum of individuals’ serological
responses140,151, from which attempts have been made to infer their history of virus ex-
posure81 and the mechanisms that underlie the development of immunity140. Similarly,
our understanding of global evolutionary dynamics has been enriched by improvements in
virus surveillance22,25,205,212, albeit still confounded by historical systemic biases in regional
coverage.

Local epidemics form an important crucible in which virus fitness interacts with host
immunity in a reciprocal manner. Identifying and quantifying the drivers behind observed
epidemiological dynamics at this intermediary scale are thus crucial. For local public health
authorities, such insights could facilitate more accurate epidemiological forecasting, enabling
more timely resource allocation and targeted interventions. Globally, vaccine strain selection
can be improved through a greater understanding of how the emergence of new antigenic
variants is shaped by local immune selection pressures. However, previous studies have only
incompletely explored the interactions between virus, host and the environment, due to a lack
of highly resolved data that is geographically disaggregated and clearly delineates between
virus subtype and antigenic variants. The aim of this thesis was to address this specific
knowledge gap: I characterised the phylodynamical interactions between seasonal influenza
viruses, climate, and human host populations, integrating analyses from observational study
and theoretical modelling approaches.
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I firstly develop a statistically-principled approach to epidemic detection, which over-
comes the specific challenges posed by highly resolved surveillance data, where antigenic
characterisation comes at the expense of sample size. With this tool, I inferred the timing
of individual epidemics, with which I was then able to critically investigate the effects of
environmental and virological factors on the timing and magnitude of local epidemics for
the five most populous cities in Australia (Chapter 4). In contrast to previous studies, I
found that climatic fluctuations219,222 and virus antigenic change24,29,130,270,274 do not have
consistent effects on the epidemic timing or magnitude, highlighting the need to avoid gross
geographical aggregation, which obscures important local differences in virus activity. Most
surprisingly, I observed that viruses from the same antigenic variants are capable of reinvad-
ing the same city over consecutive seasons, which conflicts with the predictions from existing
epidemiological models130,131, where the local depletion of susceptibles is hypothesised to
prevent reinvasion.

In the absence of marked phenotypic change, it follows that population susceptibility
must somehow remain at higher than expected levels in order for recurrent epidemics to occur.
One possibility is that host contact structure limits epidemic spread124 and the build-up of
population immunity. In parallel, susceptibility levels could be restored between seasons
through immune waning176. Previous studies have considered the effects of network structure
and immunity in isolation; in the context of pandemic influenza, the contributions of the
latter were ignored since there was an expectation of negligible pre-existing population
cross-immunity124. Of course, such simplifying assumptions cannot be made for seasonal
influenza viruses. In Chapter 5, I show that the differing contact patterns and levels of immu-
nity between adults and children can result in correlations in nodal degree and susceptibility.
Whilst this interaction shifts the burden of disease disproportionately onto children and reaf-
firms the importance of children in facilitating community transmission, it also exacerbates
network frailty and fragmentation, thereby reducing the likelihood of virus reinvasion.

Since the structure of host contacts and immunity concentrates epidemiologically active
edges within children nodes, I explicitly considered whether changes to an individual’s
immune response with age could act synergistically with host immune waning and increase
the likelihood of recurrent epidemics (Chapter 6). I investigated the impact of broadly
neutralising immunity of adults100,134,172 and variable immune waning rates that differed
between age groups191,206. I found that incorporating a broadly immune class100 did little
to preserve network connectivity between seasons. Adults are poorly connected so creating
pockets of individuals with permanent partial susceptibility within the periphery of the
network has minimal impact. In contrast, when I account for the shorter duration of immunity
in children relative to adults206, network connectivity is restored more effectively: immune
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waning can be applied more judiciously to counter the specific frailty of children nodes.
These results further consolidate the importance of accurately characterising the patterns in
the distribution of humoral immunity and disease-causing contacts between hosts.

7.2 Strengths and limitations

The highly resolved virus surveillance data set enabled me to accurately analyse the
effects of climatic factors and virus antigenic change on city-level epidemics (Chapter 4).
This is in itself a key innovation but the limited size of the data set is an aspect that warrants
further improvements. Firstly, antigenically characterising a greater proportion of submitted
influenza virus positive samples would greatly reduce the uncertainty surrounding the timing
of epidemic onset and allow for aggregation of cases by shorter time periods: aggregation by
week could better capture short-term fluctuations in climatic conditions. Additionally, there
is a need for a more holistic assessment of virus antigenicity, beyond the major phenotypic
changes derived from substitutions in the immunodominant epitopes present on the globular
head of HA. Microneutralisation assays can capture subtle changes in antigenicity145,156

and enable better assessment of the impact of year-to-year variations in antigenic drift.
Furthermore, there is a need to move away from relying upon reference sera derived from
naïve ferrets, since the lack of varied immune exposure and response result in sera that fails
to reflect the heterogeneous nature of in vivo responses149. More broadly speaking, these
changes in the approach to virus characterisation represent much needed improvements to
vaccine strain selection that are achievable using current technologies.

However, I acknowledge that such a fastidious approach to virus characterisation may
prove to be highly costly and labour intensive for routine surveillance, especially since it
involves moving away from established HI assay based protocols. Increasing the geographical
resolution for virus surveillance would be another avenue for improvement that is differently
ambitious and could yield equally valuable insights into local reinvasion dynamics at the
level of individual suburbs or communities. Indeed, it would be fascinating to investigate how
influenza viruses spread amongst the individual communities that form the overall population.
This would also produce actionable information that can immediately inform public health
interventions, identifying risk factors that predispose certain communities to unusually high
burdens of disease279 or patterns55 in epidemiological dynamics.

There is a need to replicate my analyses across other cities situated in temperate regions
to validate my findings on the limited effects of climatic factors and virus antigenicity.
Despite being a notifiable disease in many countries, including the UK, many surveillance
networks fail to record data that is representative of virus activity within the wider population.



114 Discussion

Routine testing and virological confirmation are often limited to patients admitted to hospital,
resulting in the under-reporting of less severe cases, which presents more frequently in
younger age groups9,218. Surveillance intensity and the availability of testing often varies
across the year: in the UK, routine laboratory testing is only active during the influenza
season, resulting in undersampling of interseasonal periods of the year. More generally, the
quality of surveillance data needs to be improved by further virus characterisation beyond
virus positivity and typing. Only by adopting a systematic, year-around approach akin to that
of Australia, where there are networks of sentinel GP practices that routinely submit samples
from 25% of their ILI cases238 for laboratory confirmation and antigenic characterisation,
can suitable data be produced to inform future studies.

Based upon my empirical observations, I developed a network model to serve as a frame-
work to investigate the interactions between host contact structure and immunity. Here, the
structures considered are informed by contact studies and reflects social segregation, nuances
that have been overlooked by the use of arbitrary degree distributions124,229. Indeed, over the
course of the latter half of my PhD studies, there has been a growing emphasis on constructing
epidemiological models that explicitly incorporate realistic network structures55,108,164,279.
These innovations in quantifying spatial processes cannot occur in isolation, since I demon-
strate in Chapters 5 and 6 that there is a need to account for correlations between nodal
degree and susceptibility; characterising the topology of cross-immunity requires a greater
understanding into how individual immunity develops and changes over the course of one’s
lifetime.

Given the role of children in facilitating influenza virus transmission, in-depth social
contact studies are required to characterise their interactions within school/social and familial
contexts, which are important in virus dissemination across the community and introduc-
tions into households respectively. This would involve fully sampling all members within
individual school and household units, capturing information about higher-order structural
properties, such as the presence of cliques, that were deficient from the POLYMOD study186.
Pilot attempts have been made in recent years at fine-scale studies of contacts within house-
holds, showing how the probability of within-household ties27,96 and risk of infection72

vary with family types, composition and sizes. In order to generate robust data from these
preliminary insights, the size of such studies will need to be expanded upon: a representative
sample of individuals of all ages will be crucial in investigating how the patterns, nature and
frequency of disease-causing contacts change with age. Focusing again on children, it is
plausible that the number, frequency and risk of transmission is greater for direct contacts
between toddlers in day-care; with increasing social development and age, interactions could
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involve less direct contact, become less homogenous and more clustered within friendship
groups.

Alongside investigating age-specific patterns, accounting for short-term changes to
network structure would be another aspect of model development worth consideration. In
dynamic networks, the less rigid contact structures could provide alternative pathways to
facilitate virus transmission246 and reduce the frailty of the network. The data required to
parameterise such models will again necessitate longitudinal contact studies; there is also a
need to clarify the extent and frequency of fluctuations in contacts within each social context,
as well as their overall relevance, after accounting for the relatively short duration of infection
and transience of seasonal epidemics. Identifying an acceptable level of model complexity
suited to the research question will be vital, in order to maintain computational tractability
and interpretability, as well as focussing sampling efforts. Network rewiring to account
for changes in nodal degree with age may only become important in multi-season models
investigating long term evolutionary patterns and changes in host immunity.

Comprehensive household/school contact surveys would also present an excellent op-
portunity for concurrent longitudinal serological studies: in parallel, it would be possible
to associate structural properties with an individual’s risk of infection and development of
immunity. If children can indeed be routinely infected multiple times over consecutive sea-
sons, this would provide additional evidence to validate the hypothesis that rates of immune
waning are greater in children206. Furthermore, the role of children in virus dissemination
through communities can be scrutinised by analysing the frequency of infection for the
different members of a household and screening for correlations. It is plausible that for
adults, frequent contact with children predisposes the development of broadly neutralising
immunity, which could result in differences in the seroprevalence of broadly neutralising
antibodies between adults living in family and non-familial group households.

With regards to the acquisition of broad neutralising immunity, exposure rate to viruses
for parents could vary over the years, alongside corresponding changes in household contact
patterns: daily contact rates with their parents decrease as the children become older27,96,186,
which may underlie the observed reduction in secondary attack rates for other household
members72. By the time that middle-aged or elderly parents enter a state of permanent partial
susceptibility, their centrality within the network is likely to be substantially diminished;
timing-wise, this coincides with their children leaving home. This further reduces the
prospect that permanently partially susceptible adults are critical for the maintenance of
network connectivity and recurrent epidemics.

It has been suggested that epidemiological dynamics can be modulated by population
densities: cities with greater population densities experience more interseasonal activity and
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consequently smaller epidemics during the influenza season55. In addition to epidemiological
dynamics, it is highly plausible that serological profiles would also vary between countries
that differ substantially in demography and household compositions. Comparisons between
countries could also generate further insights into the importance of child-adult and household
contacts in the development of population cross-immunity.

Whilst additional studies will invariably produce increasingly rich and voluminous data,
a key aim in mathematical modelling is to identify the minimal set of drivers necessary for
a system to produce outputs that are sufficiently accurate to recapitulate some empirical
observation of interest. With respect to network models, there is not only a need to further
characterise the patterns in host contacts and immunity but also identify which aspects are
most important to the epidemiology of seasonal influenza and reinvasion: especially in the
context of producing timely and easily interpretable outputs to inform policy development,
parsimony is paramount.

7.3 Conclusion

In this thesis, I set out to characterise the phylodynamical interactions between seasonal
influenza viruses, climate, and human host populations at local scales. Through careful
analysis of empirical data, I demonstrate that climatic factors and antigenic change have
little impact on the dynamics of city-level epidemics. Additionally, I find that individual
antigenic variants are capable of reinvasion over consecutive seasons. This observation brings
into question the extent to which epidemics are capable of depleting susceptibles between
seasons. Using a stochastic network model framework, I then demonstrated how interactions
between structure in host contact patterns and cross-immunity can hinder reinvasion and
evaluated the effects of different immune mechanisms, once again demonstrating that the
effects of immunity depend on the connectedness of targeted individuals. In particular, I
show that children are drivers of influenza virus transmission within communities due to their
high degree of connectedness and levels of susceptibility. Additionally, the relatively higher
rates of immune waning for children means that any accrued immunity is lost relatively
rapidly, which further accentuates their importance in enabling virus reinvasion season after
season. These results suggest that the population level burden of disease can be alleviated
most effectively by intervention strategies that target children. Given limited public health
resources, my findings help to better define the scope of future studies by highlighting critical
aspects of network structure and immunity that need to be further characterised.
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Seasonal influenza virus epidemics are a substantial source of
disease burden and result in ~650,000 deaths each year1.
Four co-circulating subtypes/lineages of influenza viruses

currently cause disease in humans: A/H3N2 (A/H3), A/H1N1
(currently A/H1pdm09, previously A/H1seasonal (A/H1sea)), B/
Victoria/2/87-like (B/Vic) and B/Yamagata/16/88-like (B/Yam)
viruses. The timing, duration and size of local influenza virus
epidemics can vary substantially from year to year2,3, but the
underlying causes of this variation are poorly understood. Better
understanding of the factors that govern epidemic onset and
magnitude could allow for accurate and timely epidemiological
forecasts4 and more efficient allocation of public health
resources5.

In temperate regions of the Northern and Southern Hemi-
spheres, influenza virus activity is most common in winter
months, but the mechanistic basis of this seasonality remains
unclear. Experimental studies demonstrated that reductions in
temperature and absolute humidity enhance viral stability and
aerosol transmission6–8. However, epidemics in tropical and
subtropical regions often occur during periods of high tempera-
ture and humidity9.

Climatic fluctuations have been implicated as triggers for
influenza epidemics in temperate regions. A study of state-level
epidemiological data from the United States found that influenza
epidemics sometimes follow 2-week periods of anomalously low
absolute humidity10. Subsequent studies of epidemiological
activity have found similar results using prefecture-level data
from Japan11, city-level data from the New York Metropolitan
Area12 and region-level data from France13.

Influenza virus evolutionary dynamics are another theorised
driver of influenza virus epidemiology. Within each type and
subtype of seasonal influenza virus, new major antigenic variants
arise every 3–8 years14,15. New variants partially escape the
immunity induced by prior infections and vaccinations, rendering
a higher fraction of individuals susceptible to infection. Epide-
miological theory predicts that epidemics caused by a new anti-
genic variant should therefore be larger than epidemics of
previously circulated variants16,17.

Antigenic change could also produce earlier and more spatio-
temporally synchronous epidemics. When more individuals are
susceptible, fewer transmission chains go stochastically extinct, so
each new introduction of a virus into a population has a higher
chance of causing an epidemic. Consistent with this, studies have
suggested that antigenic change is associated with earlier epi-
demics in Israel18, and with more synchronous epidemics among
cities in the United States19–21, Japan22 and Australia23.

Studies of environmental and virological drivers of influenza
virus epidemiology, including the studies referenced above, have
been limited by three factors: (1) the reliance on influenza-like
illness (ILI) data, (2) the aggregation of ILI or virologically con-
firmed data over large geographical scales (state/province/coun-
try) and (3) where virologically confirmed data are available, the
use of data without subtype and antigenic variant-level resolution.

ILI data frequently include a wide variety of respiratory
infections24, and limited laboratory characterisation obscures
influenza virus type/subtype- and antigenic variant-specific pat-
terns. These patterns become superimposed upon each other due
to aggregation of ILI or virologically confirmed data to ecological
scales (state/province/country) that sum over multiple local epi-
demics (county/city/town), which can individually vary sub-
stantially in timing, magnitude and influenza virus composition.
Altogether, these sources of obfuscation make it difficult to dis-
entangle local-level, antigenic variant-specific patterns, and cri-
tically investigate the impact of virus antigenic change.

Here, we use a 15-year data set of 18,250 typed, subtyped and
antigenically characterised seasonal influenza viruses from the

five most populous cities in Australia to investigate the impact of
environmental and virological factors on the timing and magni-
tude of city-level influenza virus epidemics. We find that climatic
fluctuations and virus antigenic change have no consistent effects
on epidemic onset timing or size, while epidemic onset timing
itself and heterosubtypic competition have substantial impacts on
epidemic size and virus subtype composition. The lack of con-
sistent effect of easily measured climatic and virus antigenic
properties, and seeming dominance of noisy short-term trans-
mission processes likely diminishes the feasibility of meaningful
long-term influenza epidemic forecasting at local scales.

Results
Australia laboratory-confirmed influenza. We aggregated
18,250 laboratory-confirmed and antigenically characterised cases
of seasonal influenza viruses from 2000 to 2015 by 2-week (14-
day) periods, creating a set of subtype- and antigenic variant-
specific time series for the five most populous cities in Australia:
Sydney (~5.5 million people), Melbourne (~5.0 million), Brisbane
(~2.4 million people), Perth (~2.3 million) and Adelaide (~1.4
million) (Fig. 1). We excluded all virus cases from the 2009 season
from all analyses because the 2009 A/H1N1 virus pandemic was
atypical compared with seasonal epidemics and likely to be driven
by different processes, affecting both epidemic dynamics and data
collection of A/H1pdm09, as well as the other subtypes. Using a
Poisson count detection method (see ‘Methods’), we identified
periods of sustained, above-baseline levels of epidemic activity for
each antigenic variant in each city. To facilitate comparisons
among cities, we calculated the laboratory-confirmed incidence
per 106 individuals using the annual estimated resident popula-
tion values of each city25.

Epidemic magnitude and the most common virus subtype
varied substantially among cities (Fig. 1). For example, during the
2002 season, A/H3 and B/Vic viruses were the most common
strains in both Brisbane and Sydney. Absolute A/H3 virus
incidence in Brisbane was much higher than in Sydney (186 vs
38.0 cases per 106 individuals), as was absolute B/Vic incidence
(40.3 vs 22.7 cases per 106 individuals). But B/Vic had a
substantially higher relative incidence in Sydney than in Brisbane
(37% of all cases, vs only 18%). In some seasons, a virus antigenic
variant caused a major epidemic in one or more cities, but failed
to produce any observable above-baseline activity in another city.
For example, in 2006, the A/Wisconsin/67/2005 (H3N2) virus
variant caused epidemics in Brisbane, Perth and Melbourne,
while above-baseline levels of activity were completely absent in
Adelaide.

Effect of climatic factors. Epidemic onset timing varied sub-
stantially within and among cities and virus subtypes (Supple-
mentary Fig. 1). Previously, Shaman et al.10 showed that the 2-
week period preceding the onset of state-level ILI epidemics in the
United States was often marked by unusually low temperatures
(T) or absolute humidities (AH). Fluctuations in these climatic
factors from the historic averages expected for that specific day of
the year (T′ and AH′, respectively) were anomalously large and
negative when compared against a bootstrapped distribution of
random samples from the historical records of observed daily
climatic fluctuations recorded over wintertime (defined as 1
October–28 February). Following the same bootstrap-sampling
method (see ‘Methods’) and aggregating epidemics across all five
Australian cities, there were no statistically significant differences
(all P > 0.05, see Supplementary Table 1) between the boot-
strapped distribution of random samples of typical wintertime
fluctuations (1 April–31 August for Australia) and the observed
fluctuations in anomalous temperature and absolute humidity
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over the 2-, 4- and 6-week periods immediately prior to the onset
of the earliest epidemics from 2000 to 2015 (excluding 2009, 15
years × 5 cities= 75 epidemics in total) (Fig. 2). Individual city-
by-city analyses (Supplementary Fig. 2 and Supplementary
Table 2) showed that there was substantial local variation but no
consistent patterns. Epidemic onset times coincided with both
high and low temperature and absolute humidity periods, and
there were no statistically significant patterns in four of the five
cities.

Even if anomalous fluctuations in temperature and humidity
do not necessarily affect epidemic onset, climatic factors could
have an impact on virus transmission7 and overall epidemic size:
for example, influenza mortality in New York Metropolitan Area
was shown to be negatively associated with temperature and
humidity12. Overall, epidemic incidence should depend strongly
on the initial exponential growth phase of the epidemic, where
transmission may be facilitated by favourable climatic conditions.
We therefore investigated the impact of mean temperature and
mean absolute humidity during each epidemic, as well as just the
period from epidemic onset to the peak, on that epidemic’s size.
For both time periods considered, epidemic incidence was not
associated with mean absolute humidity (Supplementary Fig. 3).
We found that epidemic incidence was weakly negatively
associated with the mean temperature during the epidemic and
the period from start to the peak, but this relationship appears to
be primarily driven by two instances, where small epidemics
occurred during the early and warmer part of the season; on
balance, the highly variable epidemic sizes observed over a range
of climatic conditions, suggest that climatic factors have limited
and noisy effects (Supplementary Fig. 3).

A recent study by Geoghegan et al.23 estimated epidemic onset
timings for influenza A virus epidemics in Australian postcodes
for the seasons from 2007 to 2016. Despite the lack of subtype-
level resolution, their data set is substantially larger (450,000
entries) than the one used here, and offers an opportunity to
compare findings. We repeated our anomalous temperature and

absolute humidity analyses on the Geoghegan et al.23 data set. As
with our original data set, there were no consistent statistically
significant relationships between climate anomalies and epidemic
onset (Supplementary Discussion, Supplementary Tables 3, 4,
Supplementary Figs. 4 and 5).

Other climatic factors have been proposed as drivers of
influenza dynamics, notably relative humidity and rainfall6,9. We
repeated the above analyses for relative humidity and rainfall.
There were some city-level associations, but no consistent pattern
and no pattern when aggregating across cities. Epidemic onset
was not associated with statistically significant fluctuations in
anomalous relative humidity and rainfall.

Effect of antigenic change. We next examined the effect of
antigenic evolution on epidemic dynamics. Between 2000 and
2015, 7A/H3, 3A/H1sea, 1A/H1pdm09, 3 B/Vic and 5 B/Yam
virus antigenic variants circulated in Australia. All A/H1pdm09
virus epidemics from 2009 to 2015 were excluded for this set of
analyses for two reasons. First, we could not accurately estimate
the size of the 2009 pandemic. Second, there was no subsequent,
detectable antigenic change observed for A/H1pdm09 viruses
during the study period. We normalised epidemic sizes (see
‘Methods') to enable comparisons between cities. Stratifying by
subtype/lineage, we compared the size of the first epidemic caused
by an antigenic variant against the sizes of epidemics of the same
antigenic variant in subsequent years (Wilcoxon two-sample test,
Fig. 3). Contrary to the predictions of previous theoretical
studies16,17, newly emerged antigenic variants caused epidemics,
both larger and smaller than city-specific mean epidemic sizes,
and there was no evidence of a consistent effect of antigenic
change on epidemic size.

We also compared the timing of the first epidemic caused by an
antigenic variant against the timings of subsequent epidemics
(Supplementary Fig. 6) to test the hypothesis that new variants
cause earlier epidemics. The range of onset timings was very

140
120
100
80
60
40
20
0

140
120
100
80
60
40
20
0

140
120

N
o.

 o
f l

ab
-c

on
fir

m
ed

 c
as

es

100
80
60
40
20
0

140
120
100
80
60
40
20
0

140
120
100
80
60
40
20
0

2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

2008 2010

P
an

de
m

ic
P

an
de

m
ic

P
an

de
m

ic
P

an
de

m
ic

P
an

de
m

ic

A
D

E
LA

ID
E

B
R

IS
B

A
N

E
M

E
LB

O
U

R
N

E
P

E
R

T
H

S
Y

D
N

E
Y

2011 2012 2013 2014 2015 2016

Subtype
B/Vic
B/Yam
H1pdm09
H1sea
H3
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broad, with epidemics starting from very early to late into the
season, and there were no statistically significant differences in
epidemic onset timing between new and extant variant epidemics.

To investigate the impact of antigenic change on the
spatiotemporal synchrony of epidemics, we examined the timing
of epidemic activity across cities for years when a new major
antigenic variant circulated in all five cities. New antigenic
variants often failed to initiate epidemics across all five cities in a
given year. We compared the synchrony of epidemics (defined as
the reciprocal of the variance in epidemic onset timings) in the
season in which an antigenic variant first emerges to the
synchrony in subsequent seasons. There were no statistically
significant differences in epidemic synchrony associated with
antigenic novelty (Supplementary Fig. 7).

To check the robustness of this result, we repeated these
analyses using estimated-onset timings from Geoghegan et al.23.
There was again no discernible effect of antigenic change on the
timing or synchrony of epidemics (Supplementary Discussion).

Effect of prior immunity. After an antigenic variant causes an
epidemic in a city for the first time, the accumulated population
immunity to that variant should lead to smaller subsequent epi-
demics, and eventually render further epidemics of that variant
less likely. For each epidemic caused by a given antigenic variant,
we investigated the relationship between that epidemic’s size and
the cumulative number of cases caused by that antigenic variant
in preceding seasons. To account for differences in population

size and surveillance intensity among cities, we normalised epi-
demic and cumulative case counts by the city-specific mean
epidemic size. Antigenic variants that emerged prior to the start
of the study period, such as A/Moscow/10/99 (A/H3) and A/New
Caledonia/20/99 (A/H1sea) and all A/H1pdm09 epidemics from
2009 to 2015 were excluded from this analysis, since it was not
possible to calculate cumulative case counts for them. Specific B/
Yam antigenic variants rarely caused more than one epidemic in a
given city, but specific antigenic variants of A/H3 and B/Vic
viruses caused repeated epidemics in the same city. For A/H3 and
B/Vic viruses, epidemic size and cumulative prior incidence were
not correlated (Pearson’s correlation test, Fig. 4).

The accumulation of population immunity should also reduce
the probability of successful epidemic initiation, making epi-
demics, regardless of size, less likely to start after an antigenic
variant has already caused an epidemic in that city. For B/Vic and
A/H1sea viruses, binary logistic regression showed non-
significant associations between the cumulative incidence over
prior seasons and the probability of successful epidemic initiation
(all OR < 1; all P > 0.05, Supplementary Fig. 8 and Supplementary
Table 5). This partially resulted from the small number of A/
H1sea epidemics during the study period, most of which were
caused by newly emerged antigenic variants. However, B/Yam
and H3 viruses showed significant negative relationships between
cumulative prior incidence and epidemic probability, suggesting
that prior incidence may have a substantial impact on the
probability of successful epidemic initiation.
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Aggregating across subtypes. There may be subtype/lineage-
specific differences in the effect of antigenic change and prior
immunity. Notably, B/Yam antigenic variants typically cause only
one epidemic per city. We repeated these analyses with epidemics
aggregated together, across all subtypes and cities to increase
statistical power (see the project Github repository for the
analyses and code). As before, there were no statistically sig-
nificant differences in the magnitude of epidemics between the

first and subsequent epidemics of an antigenic variant, or any
association between epidemic size and the cumulative incidence
over prior seasons. Binary logistic regression showed that the
probability of successful epidemic initiation may be moderately
reduced by the cumulative incidence over prior seasons. Our
findings were robust to the method of normalisation used to allow
for comparison between cities and subtypes/lineages (see
‘Methods').
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Effect of competition among subtypes. Competition among
virus subtypes for hosts should create a first-mover advantage for
the first subtype to sustain above-baseline epidemic activity in a
city in a given season. Subsequent epidemics of other subtypes
within that same season should therefore be reduced in size. We
considered two proxies for this kind of intersubtypic interference:
the cumulative amount of epidemic activity prior to the onset of a
subtype’s epidemic and the lag between the focal epidemic and
the season’s earliest epidemic. To allow for comparisons across
cities and subtypes, we normalised log-epidemic case counts by
subtracting off the city- and subtype-specific mean log- epidemic
case count. There was a strongly negative and statistically sig-
nificant correlation between prior epidemic activity and epidemic
size (Pearson’s correlation test, r=−0.420; P= 8.7e–5, Fig. 5).
An important caveat is that seasonality in the transmission rate
could result in epidemics that start later in a season being smaller
than those that started earlier, regardless of intersubtypic
competition.

Joint contributions of climatic and virological factors. Whilst
the magnitude of the effects of the climatological and virological
factors may be individually subtle, it could be the case that they
are only able to affect observable changes on the magnitude and
timing of epidemics when acting in concert, or that large effects in
opposing directions mask each other. We used a Bayesian mul-
tilevel regression model to identify which putative predictor
variables affected epidemic incidence, and estimate posterior
distributions for their effects on epidemic size. The model
included the following variables: antigenic change, cumulative
prior cases of the antigenic variant, mean absolute humidity
during the epidemic, activity by other subtypes earlier in the
season, epidemic start date and rainfall during the epidemic.
Mean temperature during the epidemic was omitted as a pre-
dictor, since it was highly collinear with absolute humidity;
analyses were subsequently repeated using mean temperature,
and omitting absolute humidity with no substantial changes in
the overall results.

The model suggested that epidemics that were the first of the
season or had early start dates should be modestly larger (Fig. 6).
Start date had the largest estimated effect and the clearest

posterior support for a non-trivial effect size. Posterior modes for
the mean effects of antigenic change and absolute humidity across
subtypes were near zero (Fig. 6), with tight credible intervals (95%
credible intervals: (−0.56, 0.27) for absolute humidity, (−0.50,
0.30) for antigenic change). Prior cases of an old variant given no
antigenic change (95% credible intervals (−0.26, 0.85)), prior
cases of all variants for non-first epidemics (95% credible
intervals (−0.84, 0.33)) and rainfall during the epidemic (95%
credible intervals (−0.68, 0.20)) also showed no strongly
discernible effects, though with less posterior certainty. The
model could not explain much of the variation in the data: the
median-estimated standard deviation of log epidemic size about
the expected log size is 0.77 (95% credible intervals (0.67, 0.90)).
Since exp(0.77) is ~2.15, this implies that it is not unusual to see
epidemics half or twice the expected incidence. The model
estimated that the effects were very similar across subtypes
(Supplementary Fig. 14, median-estimated SDs for the distribu-
tion of subtype-specific effect sizes about the overall mean effect
size near zero, Supplementary Fig. 15). Only the effect of whether
an epidemic was the first of the season showed meaningful
heterogeneity: the model estimated that it is somewhat weaker for
B/Vic than for other subtypes (Supplementary Fig. 14).

Discussion
Based on city-level analyses of a subtyped and antigenically
characterised influenza virus data set covering the five largest
cities in Australia, we find that climate and antigenic novelty have
limited effects on epidemic sizes. The results presented here
suggest that, at least in temperate areas, epidemics are governed
by factors other than host immunity at local scales, where global
fitness advantages for new antigenic variants may not be realised.
Conversely, competition for hosts among influenza virus types
and subtypes has strong effects on local dynamics. The first virus
subtype to establish above-baseline epidemic activity in a city and
season typically dominates.

A recent study of fine-scale influenza epidemiology in Aus-
tralia23 showed that there was substantial heterogeneity among
Australian cities in the activity of influenza A and B viruses. Our
subtyped and antigenically characterised data set allowed us to
confirm that further heterogeneity exists at the level of antigenic
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variants. In particular, specific antigenic variants often cause large
epidemics in some cities while not causing detectable activity in
others.

While prior studies found that the onset of epidemics in the
United States and France was preceded by a 2-week period of
anomalously low absolute humidity10,13, we found no evidence for
climatic effects when aggregating across the five Australian cities.
Anomalous fluctuations in temperature and absolute humidity
were sometimes positive, sometimes negative, but on average
approximately zero. Importantly, the overall effect size reported by
Shaman et al.10, after aggregating across all 48 contiguous states of
the United States, was very small (with mean AH′ being ~
−0.25 kg kg−1 or −0.21 gm−3, compared against 0 g m−3, the
mean of the null distribution of historic wintertime values). About
55–60% of epidemics were preceded by negative AH′ values: a
moderate increase upon the null hypothesis being a baseline
of 50%.

Shaman et al.10 also found regional differences in the asso-
ciations between fluctuations in absolute humidity and epidemic
onset. Strong associations were found in the Southeastern United
States but not in Western states. In Australia, there does not
appear to be an aggregate effect at the country level, and there
were no consistent patterns at the level of individual cities
(Supplementary Fig. 2 and Supplementary Table 2). The small
effect sizes and lack of consistency in climatic patterns across
regions and cities in the United States and Australia may reflect
the fact that climatic factors alone are unlikely to account for the
differences in the patterns of influenza seasonality between tem-
perate and tropical regions26.

Seasonal epidemic waves in the United States appear to begin
in the Southern states, which have warmer and more humid
climates21,27, casting some doubt on the role of low humidity as a
trigger for influenza epidemics. Rather than acting as specific
triggers, it is plausible that climatic factors are acting on longer
timescales than the anomalous fluctuations reported by Shaman
et al.10 to more generally enhance transmission and increase
incidence28. However, in Australia, epidemic size does not appear
to be strongly associated with the mean temperature or absolute
humidity over the epidemic period.

Given the interest in influenza virus as a model system for
phylodynamics of a pathogen that consists of multiple co-existing

antigenic variants29, there is interest in understanding how
competition between these related variants, typified by cross-
immunity, shapes epidemiological dynamics. Studies have hypo-
thesised that antigenic change should result in larger16,30–32 and
earlier18 local epidemics, which exhibit greater spatiotemporal
synchrony at the national level19–23. The sequential replacement
of old antigenic variants by new ones is indicative that anti-
genicity and population immunity are important for the global-
level phylodynamics of influenza viruses. In contrast, at the local
level, we find for A/H3 and B/Vic viruses that neither antigenic
change nor the accumulation of antigenic variant-specific
immunity are strong drivers of epidemic size, though accumu-
lating variant-specific immunity may moderately reduce the
probability of successful epidemic initiation.

It is striking that individual antigenic variants of A/H3 and B/
Vic viruses are capable of re-invading the same city multiple
times over consecutive years, despite a lack of substantial anti-
genic change. A/H1pdm09 viruses had previously been shown to
cause repeat epidemics without antigenic change33,34, but our
study establishes that this occurs for multiple types and subtypes
of human influenza. One possible explanation for the lack of
evidence for the year-on-year depletion of susceptible hosts is that
influenza virus infection often fails to confer strain-specific and
effective immunity. In some individuals, antigenic seniority and
existing immunity against previously encountered antigenic var-
iants may suppress novel strain-specific antibody responses,
leading to only modest specific protection against reinfection35,36.
Similarly, vaccine trials suggest that multiple exposures can be
required in order for children to become seropositive sufficiently
to protect themselves37. Potentially, multiple natural infections
may also be needed to confer protective immunity38, particularly
in children39, who effectively form a non-depleting pool of
susceptibles.

There may also be substantial and previously unaccounted
heterogeneity in individual susceptibility towards the same virus
strain. The notion that population-level strain-specific immunity
to influenza viruses is monolithic may be an artefact of the single-
infection ferret models typically used to estimate antibody-
mediated protection. In humans, there is substantial individual-
to-individual variation in the antigenicity of amino acid escape
mutations for influenza haemagglutinin40. Such heterogeneity
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between individuals stems from their varied exposure histories to
different influenza viruses. Unfortunately, age records for our
data set were too incomplete to allow us to study age-specific
heterogeneities in demographics, and attack rates between cities,
and whether such patterns change over seasons.

Spatial and social connectivity structures among hosts in a city
may also limit the spread of epidemics. Heterogeneous contact
patterns between hosts can have a substantial impact on the
resulting epidemiological dynamics41,42. Epidemics may be
inherently frail processes: relatively minor human behavioural or
environmental perturbations could prematurely terminate epi-
demics before they exhaust the pool of susceptible hosts, pre-
serving a substantial number of susceptibles, and permitting
subsequent epidemics of the same antigenic variant.

While our data set is substantially smaller (>450,000 vs 18,250
cases) than the one analysed by Geoghegan et al.23, and is thus
more likely to be affected by noise in epidemic and surveillance
processes, the differences between our findings and theirs high-
light the importance of subtyping and antigenic characterisation,
particularly for drawing conclusions about the effects of antigenic
change. Geoghegan et al.23 had cautiously suggested, given only
virus-type data, that the 2009, 2012 and 2014 influenza A virus
epidemics in Australia exhibited greater spatiotemporal syn-
chrony potentially due to the emergence of the novel A/
H1pdm09 subtype in 2009 and novel A/H3 antigenic variants in
2012 and 2014. However, with further subtype resolution and
antigenic characterisation, we find that the majority of influenza
A activity in Adelaide and Melbourne in 2014 was attributable to
A/H1pdm09, rather than the (antigenically novel) A/H3; in fact,
there was no above-baseline A/H3 activity in Perth. The fact that
different virus subtypes caused these apparently synchronous
epidemics implies that the epidemic synchrony described by
Geoghegan et al.23 was not due to the antigenic evolution or
regional spread of a single virus strain.

Apart from competition between antigenic variants, previous
epidemiological studies have hypothesised the existence of het-
erosubtypic competition where prior infection by a virus of one
subtype is negatively associated with subsequent infection by a
virus of another subtype43,44. In agreement with a previous US
study of national-level ILI activity augmented with limited virus
subtyping45, we also find evidence for a first-mover advantage
and competition to infect hosts within a city, where the subtype
or type that initiates above-baseline levels of activity first is most
likely to have the largest epidemic of that season.

There are multiple caveats to our study that merit explicit
consideration. The most important ones derive from our use of
passive surveillance data that might not accurately reflect true
underlying influenza virus activity. For example, surveillance
intensity could plausibly vary between cities and years. While
variation in surveillance efforts is evident among cities, there was
no evidence of systematic increases or decreases in the number of
laboratory-confirmed cases, or changes to surveillance practices
within each city during the study period. Despite this, the longer
duration of epidemics recorded after 2009 could be indicative of
enhanced surveillance in the post-pandemic era: to mitigate this
possibility, we repeated our analyses on the effect of antigenic
change on epidemic size, splitting between pre- and post-
pandemic eras and epidemic sizes normalising by their respec-
tive era-specific means. In either era, there was no consistent
effect of antigenic change on epidemic size, with the caveat that
splitting across eras reduced the number of observations in each
era and thus our statistical power (Supplementary Fig. 18).

The intensity of surveillance could also vary over the course of
an epidemic. For example, sentinel physicians could become
more likely to submit samples for further testing as an epidemic
unfolds, or conversely, testing could prematurely cease as facilities

become overwhelmed with samples. Despite being unable to
definitively rule out the former scenario, the latter is unlikely to
affect our data. If reporting ceased after a certain number of
samples had been tested, the distribution of epidemic sizes would
be truncated, and each epidemic would be unlikely to have an
exponentially declining tail. No such patterns exist in our data.

The intensity of surveillance could also potentially vary across
subtypes and lineages. The mean age of infection for A/H3 is
greater than influenza B46 viruses, and healthcare-seeking beha-
viour may differ between adults, parents with children and chil-
dren. Furthermore, it is commonly thought that A/H3 virus
infections result in more severe clinical presentations and greater
risk of mortality47 than influenza B viruses, potentially resulting
in differences in the likelihood of detection by a sentinel health
practitioner, though this may not be the case (see ref. 48).

Another important caveat is that while we were able to include
antigenic data in this study, these data were all derived from
haemagglutination inhibition (HI) assays. HI assays do not
measure virus antigenic changes that occur away from the
receptor-binding site, and thus likely represent an incomplete
picture of antigenic change. Reference viruses and sera used in the
haemagglutination inhibition assays can also impact the inter-
pretation of the assay readout, and the HI data used in this study
were therefore treated with caution (see ‘Methods').

In this study, we attempted to identify associations between
population susceptibility and epidemic incidence. Accurately
quantifying the former is a complex challenge, so cumulative
antigenic variant-specific epidemic incidence was used as a proxy,
but that itself is subject to the limitations listed above. Besides
natural infection, immunity can also be derived from vaccination,
the contribution and effectiveness of which could not be deter-
mined due to a lack of temporally and geographically complete
vaccination records over the study period. Regardless, we hypo-
thesise that the impact of seasonal vaccination would be limited,
particularly in the context of Australia, given the low uptake
of vaccination49. Crucially, the uptake by children, who are
important in driving local community transmission, is often
below 10%50.

While our Bayesian multilevel model estimated negligible
effects on epidemic size stemming from climatic factors and prior
cases attributed to the same antigenic variant, the estimated
credible intervals were not tight enough to rule out these effects
conclusively (Fig. 6). However, our study suggests that climatic
and antigenic factors are unlikely to be strong drivers of local
influenza epidemiological dynamics. Indeed, the effects of these
specific factors are dwarfed in magnitude by more generic epi-
demiological drivers: seasonality not directly captured by climate
(measured by start date) and competition for hosts among sub-
types (measured by whether an epidemic is the first of the season)
(Fig. 6). We also find that even with all generic and specific
factors considered, precise predictions of epidemic size remain
difficult because of substantial noise in the local epidemic process.

Our Bayesian multilevel model for epidemic size avoids
explicitly modelling underlying transmission processes, and may
fail to fully capture the nature of the relationship (linear vs
nonlinear) between transmission rates/R0 and the total cases in an
epidemic. However, based on previous virus-transmissibility
studies7, if climatic factors are strong drivers of epidemiological
dynamics, we would expect the climatic variabilities observed in
Australia to have a substantial impact on transmission rates, and
produce detectable differences in epidemic size, but this is not
the case.

Climatic drivers of seasonality and homosubtypic competition
between virus antigenic variants are thought to be strong drivers
of seasonal influenza epidemiology, but seasonal influenza virus
epidemiological dynamics in major Australian cities appear to be
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more substantially shaped by other factors, particularly the
establishment of sustained virus-transmission activity, and sub-
sequent competition among virus types and subtypes. This
implies that the time horizon for meaningful forecasting of epi-
demic subtype composition is very short (days to weeks), and
forecasting efforts aimed at longer-term predictions will require
further insights into the dynamics of virus introduction and
epidemic establishment, and into the accumulation of population
immunity to seasonal influenza viruses.

Methods
Australian surveillance data. Influenza viruses from Australia were collected by
the WHO Collaborating Centre (WHOCC) for Reference and Research on Influ-
enza in Melbourne, Australia. The Melbourne WHOCC receives a subset of
influenza-positive clinical samples collected by various sentinel surveillance sys-
tems across Australia throughout the year. The samples in this study were typed,
subtyped and antigenically characterised by haemagglutination inhibition assay to
the vaccine reference vaccine strain in use at the time of sample collection.

The data set consists of 18,250 influenza-positive cases, collected between 2000
and 2015 in the city of Brisbane, the city of Perth, the state of South Australia, the
city of Sydney and the state of Victoria. The breakdown at the subtype/lineage level
is as follows: A/H3 (7661), A/H1sea (1410), A/H1pdm09 (3987), B/Vic (3021) and
B/Yam (2171). All of these correspond specifically to individual cities, except for
the data from Victoria and South Australia. As of June 2015, 75 and 78% of the
inhabitants of the states of Victoria and South Australia resided in the cities of
Melbourne and Adelaide, respectively. We therefore treated the Victoria and South
Australia data as representative of city-level patterns in those two major cities.

All epidemic activity of all subtypes for the 2009 season was excluded from all
analyses because of the 2009 A/H1N1 pandemic. Unsurprisingly, patterns of virus
circulation during the pandemic were anomalous compared with typical seasonal
influenza virus epidemics, and potentially distortive of the patterns we sought to
characterise.

Estimation of epidemic timing. The exact timing of interseasonal periods of
sporadic activity and epidemic onset for each subtype is highly variable between
years, even for individual cities, so it is necessary to determine the onset and end of
each epidemic independently for each antigenic variant, season and city.

For each individual antigenic variant-specific time series, we used a Poisson
count detection algorithm implemented in the Surveillance package in R51,52 to
distinguish periods of sustained epidemic activity from a background of sporadic
interseasonal activity. We assume that the start of the calendar year falls sometime
within the interseasonal period, which is justified by the scarce number of cases
observed during this time of the year, and the fact that it is summertime in
Australia. Making no further assumptions on the exact duration and timing for the
interseasonal period or epidemic onset, starting at the beginning of the year,
successive 2-week periods yt are evaluated using the number of cases in each of the
n-preceding 2-week periods yt�n; yt�nþ1; ¼ ; yt�2; yt�1

� �
as reference values for

sporadic activity. These reference values are used to predict a threshold value yα: if
the observed number of cases yt exceeds the threshold yα, the focal 2-week period is
marked as the 2-week period of epidemic onset.

The Poisson count model assumes that the reference values yt are identically
and independently Poisson distributed with a mean of λ (Eq. (1)). λ itself has a
Gamma distribution as a prior (Eq. (2)). From Eqs. (1) and (2), the posterior
predictive distribution is a negative binomial distribution (Eq. (3)).

yi � PoðλÞ ð1Þ

λ � Gaðα; βÞ ð2Þ

zjyt�n; yt�nþ1; ¼ ; yt�2; yt�1 � NegBin αþ
Xn

i¼1

yi;
βþ n

βþ nþ 1

 !

ð3Þ

The threshold value yα can then be calculated using quantile parameter α, where
yα is the smallest value that satisfies Eq. (4).

p y ≤ yαð Þ≥ 1� α ð4Þ
We used the same algorithm to identify the end of an epidemic. Starting at the

end of the year, successive 2-week periods, in the backward direction, are evaluated
using the number of cases in each of the n following the 2-week period as reference
values ytþ1; ytþ2; ¼ ; ytþn�1; ytþn

� �
.

During interseasonal periods, where there were often many 2-week periods
reporting no cases, an isolated 2-week period with sporadic activity can be
misconstrued as the onset of an epidemic. To reduce the impact of outliers in the
time series and increase specificity of the detection algorithm, we first applied the
4253H, twice nonlinear data-smoothing algorithm53, which is a compound
smoother consisting of multiple running medians.

We tested a variety of n- and α-parameter values, and chose n= 3 and α= 0.12
for the analyses presented in the text as a good compromise between sensitivity and

specificity in the identification of all of the epidemics within the time series and
their individual onset and end timings, which were confirmed by visual inspection.
The results of these analyses are also robust to alternative parameter values and
corresponding changes to the sensitivity and specificity of the Poisson count
detection algorithm (see Supplementary Discussion for sensitivity analyses).

Aggregation of cases by 2-week periods was deemed necessary, to smoothen the
time series in light of the relatively low number of cases within the data set; this
relatively long timescale could however potentially obscure fluctuations in weather
that occur at shorter scales. Whilst weekly time series were appreciably noisier, we
found a high degree of correspondence in the estimated epidemic onset and end
timings with values calculated from data aggregated by 2-week periods: indeed, our
results were robust to aggregation by week (see Supplementary Discussion for
sensitivity analyses).

We deemed an antigenic variant to have failed to cause an epidemic if, within a
season, the algorithm was unable to define an epidemic period; we confirmed all
putative failures by inspection of the raw time series. Once the epidemic period was
defined, the size of an epidemic per antigenic variant was calculated using the
estimated resident population for that particular year and city.

Normalisation of epidemic incidence. For each epidemic, the incidence of
laboratory-confirmed cases per million people was calculated from the number of raw
counts. Given the positive skew in the distribution of epidemic incidences, individual
incidence values were log-transformed. To enable comparisons within subtypes, we
needed to account for potential differences in surveillance intensity, and normalise
values between cities: we subtracted off the overall city-specific mean log-transformed
incidence from each individual value. Although the apparent heterogeneity in the
effect of antigenic change and prior immunity between subtypes suggests that data
should be stratified by subtype, we repeated our analyses with data aggregated and
normalised across subtypes in order to increase statistical power. Individual log-
transformed values for each epidemic were instead transformed by subtracting off the
overall city- and subtype-specific mean of the log-transformed values.

Virus antigenic characterisation by haemagglutination inhibition assay. For
our analyses, we defined an antigenic variant as in Smith et al.14, where an anti-
genic variant is sufficiently different from preceding variants to warrant an update
of the seasonal influenza virus vaccine. To this end, our analyses only accounted for
major antigenic changes, and did not account for the possibility of small or gradual
antigenic changes (neither of which are well studied for seasonal influenza viruses).

The haemagglutination inhibition (HI) assay data used in this study only
compared the test virus and the then current reference vaccine strain to assess
whether or not viruses had changed antigenically. However, this comparison to a
single reference point is potentially problematic, given that new Southern
Hemisphere’s influenza vaccine composition recommendations are made every
September. This is usually after the end of the influenza season in Australia, and
may lead to misidentification during antigenic characterisation of submitted
samples during the preceding season where samples containing a novel antigenic
variant may have been tested with sera raised against its predecessor variant. To
ameliorate this potential source of bias, we compared the antigenic characterisation
data against phylogenetic data. This comparison revealed two instances for A/H3
viruses where the reference strain comparison by HI was misleading regarding the
antigenic composition of an epidemic. There were a substantial number of
laboratory-confirmed cases attributable to A/H3/Fujian/411/2002-like viruses in
2004, but phylogenetic analyses of sequences dated 2004 show that the Fujian/411/
2002-like viruses had already been replaced by the novel California/7/2004 variant
viruses. Similarly, in 2005, a substantial number of samples initially identified as A/
H3 California/7/2004-like viruses were phylogenetically in the new A/Wisconsin/
67/2005 variant group.

To account for the likelihood of misidentification due to delays in updating
nomenclature, we assumed that all A/H3 cases in 2004 were California/7/2004-like,
and in 2005 were Wisconsin/67/2005-like antigenic variants. Additional analyses
were also carried out with the raw data set without these corrections (see
Supplementary Figs. 9–13 and Supplementary Table 6), and lead to no significant
or substantive differences to our findings.

Demographic data. We retrieved estimated resident populations for Adelaide,
Brisbane, Melbourne, Perth and Sydney on 30 June of each year from 2000 to 2015
from the Australian Bureau of Statistics (http://stat.abs.gov.au/).

Climate data. For each of the five cities, we compiled the mean temperature (°C)
and relative humidity (%) from TuTiempo (https://en.tutiempo.net/), and calcu-
lated the mean absolute humidity (g m−3) for each 2-week period from 1985 to
2015. For each of the 26 2-week periods of the calendar year, we calculated 31-year
mean temperature �T and absolute humidity AH values (see Eqs. (5) and (6) below).

Testing the statistical significance of anomalous absolute humidity and
temperature. Following the method presented by Shaman et al.10, we calculated
local anomalous T′ and absolute humidity AH′ values for each city, and 2-week
period of the year from 2000 to 2015. For each 2-week period, T′ and AH′ are
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defined as the deviation in observed temperature T and actual absolute humidity
AH from their 31-year mean values, �T and AH, respectively (Eqs. (5) and (6)).

T 0 ¼ T � �T ð5Þ

AH0 ¼ AH � AH ð6Þ
Following Shaman et al.10, we generated a synthetic distribution of wintertime

climatic values by bootstrap sampling. In order to maintain the sampling structure
and control for anomaly variability among the cities, 15 n-week continuous blocks
were randomly sampled from 1 April–31 August, 1985–2015 for each of the five cities.
These 75 samples were then averaged to produce a mean T′ and AH′ value. This was
repeated 100,000 times to produce a bootstrapped distribution of average values. The
statistical significance for the mean T′ and AH′ values derived from the 75 empirically
observed earliest-in-the-season epidemics was then calculated non-parametrically, by
determining the quantile for the observed values within the bootstrap distributions.
This bootstrap was repeated at the city level to see if there were geographical
differences with individual bootstrap distributions that were created for each city.

We also evaluated whether or not epidemic onset is associated with climatic
fluctuations that are anomalous for that particular time of the year. By definition,
for any given 2-week period of the year, the 31-year mean for T′ and AH′ is 0. We
used a Wilcoxon one-sample test to assess whether there were reductions in
climatic values in the observed set of T′ and AH′ values in each of the 2-week
blocks preceding the onset of the earliest epidemic of the season.

Bayesian hierarchical regression. To estimate reasonable bounds on the possible
effects of climate and antigenicity on epidemic size, we used a Bayesian hierarchical
model that partially pooled effect-size estimates across subtypes, increasing the
capacity to detect any potential effects without assuming a priori that effects should
be the same across different subtypes. We fit the model using Markov Chain Monte
Carlo (MCMC) with Stan54 and its R interface rstan55; Stan implements a no-u-
turn sampler (NUTS)54. All data and code needed to reproduce the analysis and
figures are provided in the project Github repository, along with directions in a
README file.

In the model notation that follows, the symbol “~” is a “sampling statement”; it
denotes that a random variable is distributed according to the given distribution.
Normal distributions are parameterised as Normal(mean, standard deviation),
generalised Student-T distributions are parameterised as Student-T(degrees of
freedom, location and scale). Positive-constrained normal distributions (Half-
Normal) are parameterised as Half-Normal(mode, standard deviation).

We predicted log incidence minus city- and subtype-specific mean log incidence
as a function of the following predictor variables:

X1: whether the epidemic was the first epidemic for an antigenic variant in the
city (binary, yes or no)
X2: cumulative prior incidence of the antigenic variant (measured as log(total
prior cases/city- and subtype-specific mean cases per epidemic))
X3: mean absolute humidity during the epidemic, from the start to end date of
the epidemic (measured as fortnight of the year)
X4: start date of the epidemic (measured as fortnight of the year)
X5: whether the epidemic was the earliest epidemic (of any subtype) in the city
that year (binary, yes or no)
X6: the cumulative amount of influenza activity (of any subtype) in the city that
year prior to the epidemic
X7: mean rainfall during the epidemic, from the start to end date of the
epidemic (measured as fortnight of the year).

We omitted mean epidemic temperature as a predictor as it was highly collinear
with absolute humidity. Any observed large effect of absolute humidity could
therefore theoretically have been attributable to temperature, though in practice we
estimated an effect near zero for absolute humidity.

We made a linear prediction of an epidemic’s normalised size given its values
for X = (X1,…,X7). Effect sizes bi for each predictor Xi were subtype-specific, with
bij denoting the effect of variable i for subtype j. We also estimated subtype-specific
intercepts aj.

We included cumulative antigenic variant activity and prior activity in the year
only for old antigenic variants and epidemics that were not first of the year,
respectively, that is, as interaction terms with one minus the corresponding binary
variables. So the predicted mean- centred log size <yk > of an epidemic of subtype j
is given by Eq. (7), where Xik denotes the value of Xi for epidemic k. Following
Gelman51, we mean-centred and scaled continuous predictors so that effect sizes b
would be directly comparable between binary and continuous predictors.

hyki ¼ aj þ b1jX1k þ b2jX2k 1� X1kð Þ þ b3jX3k þ b4jX4k þ b5jX5k

þ b6jX6k 1� X5kð Þ þ b7jX7k

ð7Þ

We assumed that observed normalized log epidemic sizes yk were normally
distributed about their predicted log sizes <yk> with an unknown, estimated
standard deviation σy (Eq. (8)):

yk � Normalðhyki; σyÞ ð8Þ

We assumed that subtype effect sizes bij for each predictor i and subtype j were
normally distributed about a general mean effect size <bi > , with an unknown,
estimated predictor-specific standard deviation σbi (Eq. (9)):

bij � Normalðhbii; σbiÞ ð9Þ
Likewise, we assumed that intercepts ai were normally distributed about a mean

intercept <a > with an unknown, estimated standard deviation σa (Eq. (10)).

ai � Normalðhai; σaÞ ð10Þ
We assumed that predictor-specific effect-size standard deviations σbi were half-

normally distributed with mode 0 and an unknown, estimated standard deviation
σb (Eq. (11)).

σbi � Half � Normalð0; σbÞ ð11Þ
We placed weakly informative56 positive-constrained half-normal priors on the

intercept, effect size and error-term standard deviations σa, σb and σy (Eqs. (12–
14)). Weakly informative priors rule out biologically or mathematically implausible
parameter values while allowing data rather than assumptions to inform inferences
regarding plausible values.

σa � Half � Normal 0; 0:5ð Þ ð12Þ

σb � Half � Normal 0; 1ð Þ ð13Þ

σy � Half � Normal 0; 1ð Þ ð14Þ
We placed a weakly informative Gaussian prior on the mean intercept <a>

(Eq. (15)) and a weakly informative Student-T prior on the mean effect sizes <bi>
(Eq. (16)):

hai � Normal 0; 1ð Þ ð15Þ

hbji � Student � T 3; 0; 2:5ð Þ ð16Þ
The intercept prior was based on the degree of variation in the normed outcome

variable to cover it while ruling out intercepts much larger or smaller than the
largest and smallest observations. The effect-size prior was based on a
recommendation for weakly informative regression effect-size priors (for scaled
predictors) from the Stan prior recommendation wiki (https://github.com/stan-
dev/stan/wiki/Prior-Choice-Recommendations).

We ran four MCMC chains, each with a 1000-step sample warmup period
followed by 1000 saved posterior samples, for a total of 4000 posterior draws.
We verified convergence by inspecting trace plots, and confirming that all
parameters had sufficiently low Rhat values (all Rhat < 1.005) and
sufficiently large effective sample sizes (all neff >16% of total sample size). We
visualised posteriors as quantile dotplots57 to aid in visual estimation of
distributions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All of the data for these statistical analyses and models are available at the following
Github repository: https://github.com/edwardkslam/australian_seasonal_flu.

Code availability
Code developed for these statistical analyses and models is available at the following
Github repository: https://github.com/edwardkslam/australian_seasonal_flu.
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Appendix B

Appendix to Chapter 4

B.1 Robustness of inferences derived from my epidemic
onset timings

Our antigenically characterised data set is relatively small: 18,250 cases. Especially in
seasons with fewer cases, it can be difficult to differentiate epidemic from baseline activity.
This limits the accuracy with which the timing of epidemic onset can be estimated. To check
the robustness of our results to errors in estimated onset, I re-ran our analysis using estimated
influenza A epidemic onset timings from a large-scale study of >450,000 Australian influenza
cases92.

Whilst the data set utilised by Geoghegan et al. 92 has many more cases than our dataset
and thus might produce more accurate timing estimates, the lack of subtype level resolution
means that the city-level epidemic activity recorded was the summation of underlying A/H3,
A/H1sea and A/H1pdm09 virus specific activity. Nevertheless, I investigated whether or not,
more generally, the onset of influenza A epidemic activity from 2007 to 2015 was preceded
by periods of anomalous climatic conditions (Tables B.3–B.4 and Figs. B.4–B.5). There were
no biologically significant effect sizes or consistent patterns in T’ or AH’ prior to epidemic
onset across the five cities, whether be it comparing against broader wintertime conditions
(Tables B.3–B.4), as in222, or against long term average conditions for that particular time of
the year (Figs. B.4–B.5).

To further assess the robustness of our analyses, towards potential inaccuracies in our
estimates of epidemic onset timings arising from our relatively small data set, I augmented
our estimated epidemic onset timings with those of Geoghegan et al. 92 and repeated our
climatic factor analyses using several different methods to impute epidemic activity within
a season to a particular virus subtype. For each city and season, 1. I assumed that our
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timing estimate for the dominant influenza A subtype was incorrect and replaced it with
the Geoghegan et al. 92 estimate; 2. I assumed that our timing estimate for the influenza
A subtype that initiates epidemic activity earliest was incorrect and replaced it with the
Geoghegan et al. 92 estimate; 3. in years in which the number of cases for the dominant
influenza A subtype were small or it was difficult to discern the period of epidemic from
background activity, I assumed that our timing estimate was incorrect and replaced it with
the Geoghegan et al. 92 estimate.

After substituting our estimates with the Geoghegan et al. 92 timings, in concordance
with the above assumptions, I proceeded to identify the subtype/lineage (A/H3, A/H1sea,
A/H1pdm09, B/Victoria, B/Yamagata) that initiated epidemic activity earliest within a season
and re-ran our climatic analyses, comparing the climatic conditions in the two week periods
preceding the earliest epidemic against average wintertime and average climatic values for
that time of year (see Section 4.2; these additional analyses can be reproduced by code
included in the project Github repository). These assumed scenarios had little impact on the
set of epidemic timings used for downstream analyses, due to the limited number of seasons
considered by Geoghegan et al. 92: 8 seasons from 2007-2015, since 2009 was omitted.
Furthermore, discrepancies between our estimates and the Geoghegan et al. 92 values are
inconsequential whenever epidemic activity is first initiated by an influenza B virus lineage
during a season.

I also repeated our analyses on the effect of antigenic change on the local timing of
epidemics and temporal synchrony of epidemics between cities. Again, I substituted a subset
of our estimated epidemic timings with timings from Geoghegan et al. 92 , based on the same
3 sets of assumptions mentioned above. Across all replicates and set of assumptions, there
was no evidence that antigenic change resulted in earlier local epidemics or more temporally
synchronous epidemic activity across cities (these additional analyses can be reproduced
by code included in the project Github repository). Overall, after adjusting for multiple
testing (Holm correction), the findings presented in the main text are robust against potential
inaccuracies in our estimates of epidemic onset timings arising from our relatively small data
set.

B.2 Sensitivity analysis of epidemic onset and end detec-
tion of algorithm

The threshold value yα , which if exceeded marks the onset of an epidemic, and thus
the sensitivity of the detection algorithm are determined by the quantile parameter α (see
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Eq. (3.16); Section 4.2). In the main text, I chose α = 0.12, since it identified epidemic
onset and end timings that corresponded well with visual inspection of the raw time series.
I repeated the estimation of onset and end timings using α = 0.05 & 0.2, which increased
and reduced threshold values respectively. Overall, these alternative timings were similar
to those originally estimated with α = 0.12. However, timing estimates were found to be
systematically earlier when utilising lower threshold values due to an increase in sensitivity.
At the same time, this also reduced the specificity of the detection algorithm: spurious
non-epidemic activity early in the calendar year were conflated as periods of above-baseline
levels of epidemic activity and recorded as small sized epidemics on multiple occasions,
(Fig. B.16).

I reran our bootstrap analyses on the effects of climatic factors with these alternative
epidemic timings. The estimated epidemic onset and end timings remained largely invariant
to changes in α so it was unsurprising that I did not identify any fluctuations in anomalous
temperature and absolute humidity in the two, four and six week periods immediately prior
to the onset of the earliest epidemics from 2000-2015.

At a lower value of α = 0.05, which increased the threshold value for detection and the
specificity of the algorithm, I similarly found no evidence of consistent effects of antigenic
change on epidemic size (Wilcoxon two-sample test) . In contrast, when α = 0.2, it appeared
that for B/Yam and A/H3, the epidemics were of greater size in seasons associated with the
emergence of a new antigenic variant (Wilcoxon two-sample test; Fig. B.17). However, this
is likely to be an artefact of the reduced specificity of the detection algorithm, which inflated
the number of seasons in which small so-called epidemics were detected.

I aggregated the data by week and by two-week periods and found that the latter produced
smoother time series: this reduced the effect of stochastic noise and made it more amenable
for use with our detection algorithm. Aggregation by two-week periods could however
obscure fluctuations in local weather, which are likely to occur at shorter timescales. Reassur-
ingly however, I found that the detection of epidemics and estimated timings corresponded
well between values calculated from data aggregated by two-week periods and by week:
239/320 instances had identical results, whilst in only 43/320 instances did timing estimates
differ by more than 14 days. These relatively minor differences in timing estimates did not
impact our results: I did not identify any fluctuations in anomalous temperature and absolute
humidity in the two, four and six week periods (two-week aggregation) or in the one, two
and three week periods (weekly aggregation) immediately prior to the onset of the earliest
epidemics from 2000-2015.

Overall, our detection algorithm and downstream results from the analyses on the effects
of climatic factors and antigenic change remain robust to choice of time period for the
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aggregation of case counts and the selection of alternative parameters, which alter the
sensitivity and specificity of the algorithm (analyses can be reproduced from code included
in the project Github repository).
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B.3 Appendix B Figures

Fig. B.1 Comparison of epidemic onset timing among subtypes and among cities.
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Fig. B.2 Climatic conditions around epidemic onset. (a) Anomalous temperature T ′ and (b)
absolute humidity AH ′ prior to and after epidemic onset for each of all five cities. Epidemic
onset is marked by the vertical line at 0. For the earliest onset epidemic in each season
and city (15 epidemics per city), T ′ and AH’ for each time point are represented by grey
points: a point below the horizontal line denotes that the value is lower than the 31 year
city-specific mean. Blue points show the mean T ′ and AH’ for that two week period for
all epidemics within the study period in a particular city. Time periods with statistically
significantly (p<0.05) reductions in mean T ′ or AH ′ from the 31-year average are shown in
orange. In the two-week period immediately prior to epidemic onset, there is a statistically
significant reduction in AH’ of 0.366gm−3 in Adelaide (p = 0.021, Wilcoxon one-sample
test), which is roughly equivalent to a 3.11% reduction in relative humidity. This result was
not statistically significant after correcting for multiple testing (Holm correction).
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Fig. B.3 Effect of climatic factors on epidemic incidence. The relationship between epidemic
incidence and (a,c) the mean temperature and (b,d) absolute humidity values over the entire
epidemic period (a,b) and the early epidemic (defined as period from the onset to the peak
of an epidemic; Panels c,d). Incidence for individual epidemics were log transformed and
subtracted by the city- and subtype-specific mean of log incidence, to allow for comparison
across cities and subtypes. The distribution of mean climatic values displays segregation
by city, reflecting underlying differences between climatic regions. Whilst there were weak
negative associations between the size of an epidemic and mean temperature over the entire
epidemic period or just the period from epidemic onset to peak, the high variability in
epidemic sizes observed over a large range of climatic conditions and lack of overall, as well
as within-city, trends suggest that climatic factors have limited and noisy effects on epidemic
size.
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Fig. B.4 Robustness of climatic factor analyses. Utilising only the timing estimates by
Geoghegan et al. 92 , I assessed if more generally, the onset of influenza A epidemic activity
in the seasons from 2007 to 2015 was preceded by periods of anomalous climatic conditions;
see Appendix B.1. (a) Anomalous temperature T ′ and (b) absolute humidity AH ′ prior to and
after epidemic onset across all five cities. Epidemic onset is marked by the vertical line at 0.
For the earliest onset epidemic in each season and city (8 years x 5 cities = 40 epidemics),
T ′ and AH’ for each time point are represented by grey points: a point below the horizontal
line denotes that the value is lower than the 31 year city-specific mean. Blue points show the
mean T ′ and AH’ for that two week period for all epidemics within the study period. Time
periods with statistically significantly (p < 0.05; Wilcoxon one-sample test) reductions in
mean T ′ or AH’ from the 31-year average are shown in orange.
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Fig. B.5 Robustness of climatic factor analyses. Utilising only the timing estimates by
Geoghegan et al. 92 , I assessed if more generally, the onset of influenza A epidemic activity
in the seasons from 2007 to 2015 was preceded by periods of anomalous climatic conditions;
see Appendix B.1. (a) Anomalous temperature T’ and (b) absolute humidity AH’ prior to
and after epidemic onset for each of all five cities. Epidemic onset is marked by the vertical
line at 0. For the earliest onset epidemic in each season and city (15 epidemics per city), T ′

and AH’ for each time point are represented by grey points: a point below the horizontal
line denotes that the value is lower than the 31 year city-specific mean. Blue points show
the mean T ′ and AH’ for that two week period for all epidemics within the study period in
a particular city. Time periods with statistically significantly (p<0.05) reductions in mean
T ′ or AH’ from the 31-year average are shown in orange. Time periods with statistically
significantly (p < 0.05) reductions in mean T ′ or AH’ from the 31-year average are shown
in orange. In the two-week period immediately prior to epidemic onset, there is a statistically
reduction in AH’ of 0.522gm−3 in Perth (p = 0.039, Wilcoxon one-sample test), which is
roughly equivalent to a 3.13% reduction in relative humidity. This result was not statistically
significant after correcting for multiple testing (Holm correction).
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Fig. B.6 Effect of antigenic change on epidemic onset timing. Epidemic onset timings were
compared between seasons associated with and without the epidemic level circulation of a
new major antigenic variant. p values are from Wilcoxon two sample tests (n = 37, 26, 22
and 63 for B/Vic, B/Yam, A/H1sea and A/H3 respectively). Box plots show the median, first
and third quartile values, as well as overall range. Each point corresponds to one epidemic in
a city and the box plots show the median, first and third quartile values, and range.
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Fig. B.7 Effect of antigenic change on the spatio-temporal synchrony of epidemics. Epidemic
synchrony was compared between seasons associated with and without the epidemic level
circulation of a new major antigenic variant. Synchrony is quantified as the reciprocal of the
variance in onset timings for seasons, where epidemic activity for an antigenic variant was
present in all five cities. p values are from Wilcoxon two sample tests (n = 18). Box plots
show the median, first and third quartile values, as well as overall range.
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Fig. B.8 Effect of prior immunity on the probability of successful epidemic initiation. For
each antigenic variant, I examined whether epidemic levels of activity were present or absent
in each of the seasons from its initial detection to its replacement by the next variant. .
Antigenic variant-specific cumulative incidence was measured relative to the city-specific
mean epidemic size, where 1 is equivalent to the mean epidemic incidence. Binary logistic
regression models were fitted for each subtype (n = 81, 65, 13 and 72 for B/Vic, B/Yam,
A/H1sea and A/H3 respectively). The 95% confidence interval is denoted by the grey shaded
area. See Table B.5 for OR from the binary logistic regressions.
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Fig. B.9 Robustness of analyses of the effect of antigenic change on epidemic incidence,
towards potential antigenic characterisation errors. Analyses as part of main text (Figure 3)
attribute all A/H3 cases in 2004 to California/7/2004 and in 2005 to A/Wisconsin/67/2005
antigenic variants, due to delays in updating vaccine strain nomenclature. Here, I make no
such assumptions. Epidemic incidence were compared between seasons associated with and
without the epidemic level circulation of a new major antigenic variant. Within each subtype,
incidence for individual epidemics were log transformed and subtracted by the city-specific
mean of log incidence, to allow for comparison between cities. p values are from Wilcoxon
two sample tests (n = 37, 26, 22 and 63 for B/Vic, B/Yam, A/H1sea and A/H3 respectively).
Each point corresponds to one epidemic in a city and the box plots show the median, first
and third quartile of the transformed values, and range.
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Fig. B.10 Robustness of analyses of the effect of antigenic change on epidemic onset timing,
towards potential antigenic characterisation errors. Analyses in Fig. B.6 attribute all A/H3
cases in 2004 to California/7/2004 and in 2005 to A/Wisconsin/67/2005 antigenic variants,
due to delays in updating vaccine strain nomenclature. Here, I make no such assumptions.
Epidemic onset timing was compared between seasons associated with and without the
epidemic level circulation of a new major antigenic variant. p values are from Wilcoxon
two sample tests (n = 37, 26, 22 and 63 for B/Vic, B/Yam, A/H1sea and A/H3 respectively).
Box plots show the median, first and third quartile values, as well as overall range. Each
point corresponds to one epidemic in a city and the box plots show the median, first and third
quartile values, and range.
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Fig. B.11 Robustness of analyses of the effect of antigenic change on the spatio-temporal
synchrony of epidemics, towards potential antigenic characterisation errors. Analyses as
part of main text (Fig. B.7) attribute all A/H3 cases in 2004 to California/7/2004 and in
2005 to A/Wisconsin/67/2005 antigenic variants, due to delays in updating vaccine strain
nomenclature. Here, I make no such assumptions. The spatio-temporal synchrony of
epidemics is compared between seasons associated with and without the epidemic level
circulation of a new major antigenic variant. Synchrony is quantified as the reciprocal of the
variance in onset timings for seasons, where epidemic activity for an antigenic variant was
present in all five cities. p values are from Wilcoxon two sample tests (n = 14). Box plots
show the median, first and third quartile values, as well as overall range.
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Fig. B.12 Robustness of analyses of the effect of antigenic variant-specific cumulative inci-
dence on subsequent epidemic incidence, towards potential antigenic characterisation errors.
Analyses as part of main text (Figure 4) attribute all A/H3 cases in 2004 to California/7/2004
and in 2005 to A/Wisconsin/67/2005 antigenic variants, due to delays in updating vaccine
strain nomenclature. Here, I make no such assumptions. Within each subtype, incidence
for individual epidemics were log transformed and subtracted by the city-specific mean of
log incidence, to allow for comparison between cities. Cumulative incidence was measured
relative to the city-specific mean epidemic size, where 1 is equivalent to the mean epidemic
incidence. r and p values are from Pearson’s correlation tests (n = 37, 20, 9 and 45 for B/Vic,
B/Yam, A/H1sea and A/H3 respectively). Note that antigenic variants of B/Yam and H1sea
rarely initiated multiple epidemics during the study period.
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Fig. B.13 Robustness of analyses of the effect of antigenic variant-specific cumulative
incidence on probability of successful epidemic initiation, towards potential antigenic char-
acterisation errors. Analyses as part of main text (Fig. B.8) attribute all A/H3 cases in 2004
to California/7/2004 and in 2005 to A/Wisconsin/67/2005 antigenic variants, due to delays
in updating vaccine strain nomenclature. Here, I make no such assumptions. For each
antigenic variant, I examined whether epidemic levels of activity were present or absent
in each of the seasons from its initial detection to its replacement by the next variant. .
Antigenic variant-specific cumulative incidence was measured relative to the city-specific
mean epidemic size, where 1 is equivalent to the mean epidemic incidence. Binary logistic
regression models were fitted for each subtype (n = 81, 65, 13 and 72 for B/Vic, B/Yam,
A/H1sea and A/H3 respectively). The 95% confidence interval is denoted by the grey shaded
area. See Table B.6 for OR from the binary logistic regressions.
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Fig. B.14 Joint contributions of climatic and virological factors on epidemic incidence for
individual subtypes. Using the Bayesian multilevel model, posterior distributions for the
effects of climate, timing, and antigenic variables on epidemic size were estimated for
individual subtypes. Both predictors and outcome variables are standardized, so effects are
shown on a common scale.
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Fig. B.15 Posterior distributions of standard deviations for subtype-specific effect sizes
about the mean across all subtypes. Model estimates place standard deviations close to zero,
suggesting that there is limited evidence from this dataset for variation among subtypes in
the effects of climate, timing, or antigenicity on epidemic size.
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Fig. B.16 Histogram of the number of lab confirmed cases for seasons with and without
above baseline levels of activity. In order to focus on the sensitivity and specificity of the
algorithm in identifying epidemics, for case-scarce seasons, only seasons with less than 100
cases were plotted.
The threshold value yα , which if exceeded marks the onset of an epidemic, and thus the
sensitivity of the detection algorithm are determined by the quantile parameter α . In the main
text, α = 0.12 was used, since it identified epidemic onset and end timings that corresponded
well with visual inspection of the raw time series. I repeated the estimation of onset and
end timings using α = 0.05 & 0.2 (plotted in separate facets), which increased and reduced
threshold values respectively. When the threshold values are lowered (α = 0.2), there is a
shift in epidemic size distribution to the left: non-epidemic activity early in the calendar year
were conflated as periods of above-baseline levels of epidemic activity.
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Fig. B.17 Robustness of analyses of the effect of antigenic change on epidemic incidence
towards lowering of epidemic detection threshold values (α = 0.2). Reducing the threshold
resulted in spurious activity being designated as epidemics, which in turn inflated the number
of small epidemics observed and the apparent association between antigenic change and
larger epidemics.
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Fig. B.18 Robustness of analyses of the effect of antigenic change on epidemic incidence
towards potential differences in surveillance intensity between the pre- and post-pandemic
eras. Within each subtype, incidence for individual epidemics were log transformed and
subtracted by the city- and era-specific mean of log incidence, to allow for comparison
between cities. p values are from Wilcoxon two sample tests. Each point corresponds to
one epidemic in a city and the box plots show the median, first and third quartile of the
transformed values, and range.
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B.4 Appendix B Tables

n-week block Observed Mean T ′ (◦C) Observed Mean AH ′ (gm−3)

1 0.0294 (0.556) -0.113 (0.304)
2 0.0158 (0.544) -0.089 (0.304)
3 -0.0183 (0.471) -0.0538 (0.356)

Table B.1 Observed mean climatic values over n-week continuous blocks prior to the first
epidemic onset of each season. Mean T ′ and AH ′ fluctuations were aggregated across all five
cities and compared against the bootstrapped distribution of random samples of observed
mean T ′ and AH ′ values to determine statistical significance. The associated p values (the
observed value’s quantile within the bootstrap distribution) are shown in parentheses.
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City Observed Mean T ′ (◦C) Observed Mean AH ′ (gm−3) n-week block

Adelaide -0.134 (0.345) -0.366 (0.021) 2
Brisbane 0.272 (0.875) 0.0967 (0.627) 2

Melbourne -0.302 (0.154) -0.179 (0.123) 2
Perth 0.211 (0.765) -0.359 (0.0708) 2

Sydney 0.101 (0.675) 0.241 (0.818) 2

Adelaide 0.00971 (0.542) -0.215 (0.0695) 4
Brisbane 0.294 (0.932) 0.18 (0.766) 4

Melbourne -0.0572 (0.407) -0.0117 (0.44) 4
Perth -0.0538 (0.425) -0.249 (0.0945) 4

Sydney -0.113 (0.29) -0.149 (0.236) 4

Adelaide 0.0322 (0.591) -0.0913 (0.267) 6
Brisbane 0.0791 (0.68) -0.0324 (0.444) 6

Melbourne 0.00498 (0.514) -0.0201 (0.405) 6
Perth -0.0745 (0.374) -0.087 (0.273) 6

Sydney -0.133 (0.217) -0.0382 (0.406) 6

Table B.2 Observed mean climatic values over n-week continuous blocks prior to the first
epidemic onset of each season. For each city, mean T ′ and AH ′ fluctuations compared against
the bootstrapped distribution of random samples of observed mean T ′ and AH ′ values in
order to determine statistical significance. The associated p values (the observed value’s
quantile within the bootstrap distribution) are shown in parentheses. Note, the result for
Adelaide (bolded) were not significant after correcting for multiple testing (Holm correction).
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n-week block Observed Mean T ′ (◦C) Observed Mean AH ′ (gm−3)

2 0.0588 (0.574) -0.219 (0.237)
4 0.0098 (0.524) -0.235 (0.169)
6 0.0759 (0.629) -0.133 (0.26)

Table B.3 Utilising only the timing estimates by Geoghegan et al. 92 , I assessed if more
generally, the onset of influenza A epidemic activity in the seasons from 2007 to 2015 was
preceded by periods of anomalous climatic conditions; see Appendix B.1. Observed mean
climatic values over n-week continuous blocks prior to the first epidemic onset of each season.
Mean T ′ and AH ′ fluctuations were aggregated across all five cities and compared against
the bootstrapped distribution of random samples of observed mean T ′ and AH ′ values, in
order to calculate the statistical significance non-parametrically: the associated p values (the
observed value’s quantile within the bootstrap distribution) are shown in parentheses.
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City Observed Mean T ′ (◦C) Observed Mean AH ′ (gm−3) n-week block

Adelaide 0.651 (0.948) -0.394 (0.054) 2
Brisbane -0.146 (0.329) -0.208 (0.323) 2

Melbourne -0.085 (0.425) -0.183 (0.195) 2
Perth -0.272 (0.267) -0.522 (0.063) 2

Sydney 0.219 (0.754) 0.19 (0.697) 2

Adelaide 0.27 (0.826) -0.367 (0.029) 4
Brisbane -0.122 (0.328) -0.31 (0.191) 4

Melbourne 0.176 (0.722) -0.062 (0.352) 4
Perth -0.328 (0.167) -0.434 (0.052) 4

Sydney 0.085 (0.643) -0.019 (0.468) 4

Adelaide 0.168 (0.756) -0.311 (0.041) 6
Brisbane 0.01 (0.522) -0.112 (0.353) 6

Melbourne 0.22 (0.8) -0.027 (0.416) 6
Perth -0.276 (0.176) -0.299 (0.098) 6

Sydney 0.268 (0.892) 0.062 (0.601) 6

Table B.4 Utilising only the timing estimates by Geoghegan et al. 92 , I assessed if more
generally, the onset of influenza A epidemic activity in the seasons from 2007 to 2015 was
preceded by periods of anomalous climatic conditions; see Appendix B.1. For each city,
mean T ′ and AH ′ fluctuations compared against the bootstrapped distribution of random
samples of observed mean T ′ and AH ′ values, in order to calculate the statistical signif-
icance non-parametrically: the associated p values (the observed value’s quantile within
the bootstrap distribution) are shown in parentheses. In Adelaide, the AH ′ of -0.367gm−3

and -0.311gm−3 in the 4- and 6- week blocks (in bold) immediately preceding epidemics
are roughly equivalent to decreases in relative humidity of 2.88% and 2.40% respectively.
Both results were not statistically significant after correcting for multiple testing (Holm
correction).
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Subtype Term OR OR adjusted SE p value

B/Vic (intercept) 0.946 0.276 0.848
B/Vic Cumulative incidence 0.913 0.134 0.534

B/Yam (intercept) 1.25 0.433 0.514
B/Yam Cumulative incidence 0.000213 0.00083 0.0303

H1sea (intercept) 3 2 0.0994
H1sea Cumulative incidence 2.41E-06 0.00661 0.996

H3 (intercept) 3.1 1.08 0.00111
H3 Cumulative incidence 0.705 0.0913 0.00692

Table B.5 Binary logistic regression assessing the effect of antigenic variant-specific cumula-
tive incidence on the probability of successful epidemic initiation for each subtype. Note:
OR < 1 implies that increased cumulative incidence results in a reduction in the probability
of successful initiation.
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Subtype Term OR OR adjusted SE p value

B/Vic (intercept) 1 0.296 0.996
B/Vic Cumulative incidence 0.79 0.136 0.171

B/Yam (intercept) 0.636 0.196 0.142
B/Yam Cumulative incidence 2.35E-06 1.49E-05 0.0415

H1sea (intercept) 2 1.22 0.258
H1sea Cumulative incidence 1.49E-06 0.00433 0.996

H3 (intercept) 1.97 0.611 0.0284
H3 Cumulative incidence 0.748 0.118 0.0663

Table B.6 Binary logistic regression assessing the effect of antigenic variant-specific cumula-
tive incidence on the probability of successful epidemic initiation for each subtype. Analyses
as part of main text (Fig. 4.6) attribute all A/H3 cases in 2004 to California/7/2004 and in
2005 to A/Wisconsin/67/2005 antigenic variants, due to delays in updating vaccine strain
nomenclature. Here, I make no such assumptions. Note: OR < 1 implies that increased
cumulative incidence results in a reduction in the probability of successful initiation.
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Appendix C

Appendix to Chapter 5

C.1 Appendix C Figures

Fig. C.1 Degree distributions for adults and children. (a) POLYMOD186; (b) "No structure";
(c) "Household"; (d) "Social structure"
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Fig. C.2 Age composition of season 1 epidemics. Individual points represent the proportion
of total infected that are children from one stochastic simulation; the red point represents the
median value. “Social structure” and age-specific distribution of immune classes contribute
to the preferential infection of children.
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Fig. C.3 The impact of the Season 1 epidemic on network connectivity. For each network
structure and immunity combination, the left and right distributions show the average effective
excess degree distributions for the original pre-S1 and residual post-S1 networks respectively;
the red point represents the median value. To make the effective excess degree distributions
comparable, for each combination and age group, pre-S1 and post-S1 values were normalised
relative to the pre-S1 mean. The reduction on effective excess degree and the frailty of
residual post-S1 networks are maximised through the combined effects of “social structure”
and immune class distributions that differ between age groups. This effect is concentrated
within the children, who begin as the better-connected age group but consequently experience
the greatest reduction in their connectivity.
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Fig. C.4 The impact of interseasonal immune waning on network connectivity. Immune class
distributions are (a) homogenous and (b) differ between age groups. Caption continues on
next page.
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Fig. C.4 (Previous page.) The proportion of S0 individuals resusceptibilised (δ ) is shown
by the top facet label, steadily increasing from left to right. For each network structure and
immunity combination, the left, middle and right distributions show the average effective
excess degree distributions for the original pre-S1, residual post-S1 and resusceptibilised
pre-S2 networks respectively; the red point represents the median value. To make the effective
excess degree distributions comparable, for each combination and age group, pre-S1, post-S1
and pre-S2 values were normalised relative to the pre-S1 mean. For both (a) and (b), the
pre-S2 effective degree increases with δ : by δ = 0.4, connectivity is restored to levels
comparable to pre-S1 values, except for the case of “social structure”. The rate at which
effective excess degree is restored is lowest in the presence of both “social structure” and
age-specific heterogeneities in immune class distributions (bottom row of (b)).
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C.2 Appendix C Tables

Network structure ERGM term Estimate Std. Error z value Pr(>|z|)

No structure Edges -5.637 0.020 -281.108 0

Household Edges -6.022 0.024 -248.481 0
Household 6.000 0.054 110.360 0

Structure Edges -9.935 0.236 -42.079 0
Household 10.915 0.233 46.816 0
Daycare 9.400 0.244 38.581 0
School 9.150 0.236 38.690 0
Work 7.916 0.234 33.791 2.65E-250
Child-Adult -0.697 0.092 -7.566 3.86E-14
Adult (Degree >7) 1.906 0.236 8.089 6.01E-16
Child (Degree >15) 1.355 0.244 5.557 2.74E-08

Table C.1 Coefficients for ERGM terms. “No structure” has no specified terms. “Household”
structure incorporates assortative mixing between individuals of same household index.
“Social structure” is parameterised based on the contact distribution from the POLYMOD
study186 with assortative mixing within households, daycare-centres, schools and workplaces.
Additional degree-based terms were added to force a positive skew.
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D.1 Appendix D Figures

Fig. D.1 The impact impact of the Sbroad immune class on the ability of interseasonal immune
waning in restoring the connectivity of networks with “no structure”. The Sbroad immune
class is absent in (a) and present in (b). The initial pre-S1 susceptibility profile of both (a)
and (b) are otherwise the same.
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Fig. D.1 (Previous page.) The proportion of S0 individuals resusceptibilised (δ ) is shown
by the top facet label, steadily increasing from left to right. For each facet plot, the left,
middle and right distributions show the average effective excess degree distributions for
the original pre-S1, residual post-S1 and resusceptibilised pre-S2 networks respectively; the
red point represents the median value. To make the effective excess degree distributions
comparable, for each combination and age group, pre-S1, post-S1 and pre-S2 values were
normalised relative to the pre-S1 mean. Due to the lack of any assortatitve mixing within age
groups, Sbroad are interspersed within the network, thus raising the post-S1 and pre-S2 levels
of effective excess degree for both age groups.
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Fig. D.2 The impact impact of the Sbroad immune class on the ability of interseasonal immune
waning in restoring the connectivity of networks with “no structure”. The Sbroad immune
class is absent in (a) and present in (b). The initial pre-S1 susceptibility profile of both (a)
and (b) are otherwise the same.
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Fig. D.2 (Previous page.) The proportion of S0 individuals resusceptibilised (δ ) is shown by
the top facet label, steadily increasing from left to right. For each facet plot, the left, middle
and right distributions show the average effective excess degree distributions for the original
pre-S1, residual post-S1 and resusceptibilised pre-S2 networks respectively; the red point
represents the median value. To make the effective excess degree distributions comparable,
for each combination and age group, pre-S1, post-S1 and pre-S2 values were normalised
relative to the pre-S1 mean. The presence of Sbroad adults has its greatest, albeit still limited,
effects on the post-S1 and pre-S2 connectedness of adults, with higher values of effective
excess degree, the distribution of which exhibits lower variance. In contrast, the post-S1
and pre-S2 effective excess degree distributions for children, as well as the overall network,
remain unchanged.
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Fig. D.3 The impact of variable interseasonal immune waning on restoring connectivity
in networks with (a) “no structure” and (b) ”emphhousehold” structure. Immune waning
scenarios and the associated age group-specific rates are listed in Table 6.1.
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Fig. D.3 (Previous page.) The left, central and right distributions show the original pre-
S1, residual post-S1 and resusceptibilised pre-S2 distributions for average effective excess
degree respectively; the red point denotes the median value. To make the effective excess
degree distributions comparable, pre-S1, post-S1 and pre-S2 values were log-transformed
and normalised relative to the pre-S1 mean for that particular combination. Whilst the
distribution of immune classes differ between age groups, the lack of strong network structure
or segregation means that children are only marginally more affected than adults by epidemics
(Figs. C.3 and C.4); otherwise, children and adults are indistinguishable so little benefit is
gained from differing immune waning rates between the age groups.
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Fig. D.4 The effect of variable interseasonal immune waning in restoring the effective excess
degree of the post-S1 network. The various immune waning scenarios (see Table 6.1 for
corresponding waning rates) are compared against the null homogenous waning model, which
is denoted by the blue line that shows the mean amount of effective excess degree restored
(Eq. (5.7)) for a given number of S0 individuals resusceptibilised. With only weak correlations
between nodal degree and susceptibility, varying the immune waning rates between age
groups does little to restore network connectivity above and beyond the homogenous waning
null models (denoted by lines).
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Fig. D.5 The effect of variable interseasonal immune waning on the final size of consecutive
epidemics. The corresponding immune waning rates for each scenario are listed in Table 6.1.
Individual points denote the final size for the S1 and S2 epidemics for a single model
realisation. As in Chapter 5, the lack of significant network structure results In networks that
are less affected by frailty, thus requiring less loss of immunity to enable S2 epidemics.
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Fig. D.6 The effect of variable interseasonal immune waning on the probability of a major
S2 epidemic. The various immune waning scenarios (red points) were contrasted against the
null homogenous waning model: a binary logistic regression model (blue line) was fitted
to the latter and shows the probability of successful S2 epidemics for a given number of
S0 individuals resusceptibilised. The probability of a successful S2 epidemic is given by
the proportion of realisations, with total incidence above 0.05. Again, varying the immune
waning rates between age groups has little additional impact, given the fact that children and
adults are basically indistinguishable, in the absence of strong correlations between nodal
degree and susceptibility.
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