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Abstract: Background: People with respiratory conditions are susceptible to health problems caused 

by exposure to indoor air pollutants. An economic framework was developed to inform a guideline 

developed by National Institute for Health and Care Excellence (NICE) to estimate the required 

level of efficacy necessary for an intervention to be cost-saving in dwellings across England. Meth-

ods: An economic modelling framework was built to estimate the incremental costs pre- and post-

implementation of interventions designed to reduce exposure to indoor air pollution within dwell-

ings of varying building-related risk factors and profiles. The intervention cost was varied simulta-

neously with the relative reduction in symptomatic cases of each health condition to estimate the 

point at which an intervention may become cost-saving. Four health conditions were considered. 

Results: People living in dwellings with either an extreme risk profile or usable floor area <90m2 

have the greatest capacity to benefit and save National Health Service (NHS) costs from interven-

tions at any given level of effectiveness and upfront cost. Conclusions: At any effectiveness level, 

the threshold for the upfront intervention cost to remain cost-saving is equivalent across the differ-

ent home characteristics. The flexible model can be used to guide decision-making under a range of 

scenarios. 
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1. Introduction 

People in Europe spend up to 90% of their lives indoors and 66% of this time is spent 

at home [1]. Indoor air quality has an impact on multiple health outcomes, including res-

piratory and cardiovascular illness, allergic symptoms, cancers and premature mortality 

[2,3]. Common pollutants include particulate matter (PM2.5 and PM10); nitrogen dioxide 

(NO2); and volatile organic compounds (VOCs) including benzene, formaldehyde and 

polycyclic aromatic hydrocarbons (PAHs). Sources of these pollutants include smoking, 

cooking, heating, unvented gas heaters and cookers, solvent use, renovations, new furni-

ture, household products and biological sources (e.g., moulds) [1,3,4]. 

Common building problems such as damp are a known risk factor for health condi-

tions. For example, a systematic review of 31 studies showed that exposure to damp was 

related to increased risk of all types of rhinitis [4]. High indoor particulate matter, NO2 

and VOC levels were typically associated with respiratory symptoms, particularly asthma 

symptoms in children [3]. A systematic review of studies from 123 countries showed that 

the relative risk (RR) for asthma associated with the use of polluting fuels and technolo-

gies was 1.23 (95% CI: 1.11–1.36), and the RR for chronic obstructive pulmonary disease 

(COPD) was 1.70 (95% CI: 1.47–1.97) [2]. Therefore, children and people with either res-

piratory, cardiovascular, or both conditions are considered most vulnerable to health 

problems caused by indoor air quality [1]. 
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While it is known that exposure to indoor pollutants affects health, there is little data 

to demonstrate the impact that alleviating these sources of pollution would have on res-

piratory and cardiovascular diseases. A global study has shown that between 2000 and 

2017, deaths and disease burden associated with household air pollution steadily reduced, 

by 36% (95% CI 29–43) and 30% (95% CI 25–36), respectively. The greatest relative reduc-

tion in disability-adjusted life years (DALYs) occurred in the European region (71%). The 

reason for this reduction in morbidity is postulated to be cleaner fuels and better cooking 

technology, although the evidence for this is not consistent [2]. 

Nurmagambetow et al. (2011) systematically reviewed economic evaluations on the 

efficiency of home-based multicomponent interventions, with a focus to improve asthma-

related morbidity outcomes. Interventions included home visits by trained personnel to 

assess and reduce adverse effects of indoor environmental pollutants, and educating 

households on how to reduce exposure to asthma triggers. The results implied that for 

every dollar spent on the intervention, the monetary value of the resulting benefits, such 

as averted medical costs or averted productivity losses, was $5.30–$14.00 (in 2007 US$) 

[5]. 

Interventions to reduce indoor air pollution need not be expensive. For example, ven-

tilation is a predictor of indoor NO2, and PAH levels are higher in smoking households 

[3]. Therefore, free interventions such as smoking cessation and opening windows could 

reduce the levels of these pollutants. 

In the UK, a National Institute for Health and Care Excellence (NICE) Public Health 

Advisory Committee (PHAC) developed guidelines to reduce exposure to pollutant 

sources and emissions within dwellings [6]. The NICE guidelines were aimed at a varied 

audience including environmental health practitioners, architects, public health profes-

sionals, planners/regulators involved with residential developments, private landlords 

and housing associations. The development of public health guidelines involves system-

atic identification and consideration of effectiveness and cost-effectiveness evidence, to 

facilitate the recommendation of interventions which are demonstrated to be effective and 

value for money [7]. The review of effectiveness evidence conducted by NICE identified 

several interventions which may reduce exposure to indoor air pollution at home [8]. The 

cost-effectiveness review identified three US-based economic evaluations, but only one 

UK-based study, which estimated the cost-effectiveness of enhancing ventilation in the 

homes of people with asthma [9]. The intervention shifted 17% of children in the interven-

tion group from “severe” to “moderate” asthma, compared with a 3% shift in the control 

group. The mean cost of these modifications was £1,718 per child treated or £12,300 per 

child shifted from “severe” to “moderate”. Healthcare costs over 12 months following 

randomisation did not differ significantly between the intervention and control groups. 

However, this study was based alongside a randomised controlled trial that did not report 

any differences in the frequency of asthma exacerbations, nor levels of indoor air pollu-

tion, as an outcome measure [9]. 

England-based economic evaluations are needed to determine the maximum likely 

amount that could be spent on interventions that would be cost-saving from a National 

Health Service (NHS) perspective. Therefore, the objective of this study was to design an 

economic framework that could be used by individual policy decision-makers within Eng-

land when considering the implementation of interventions designed to reduce indoor air 

pollution within dwellings. The framework intended to estimate the required level of ef-

ficacy necessary, and maximum cost, for a particular intervention to be cost-saving in key 

settings across certain property types/dwellings and patient groups. The framework fo-

cused upon the health conditions associated with exposure to indoor air pollution and 

was designed to estimate economic outcomes for each condition separately. The frame-

work was intended to be an interactive “calculator” to be made available to those at which 

the guidance is aimed, who are considering implementing home-based interventions to 

reduce exposure to indoor air pollution. The framework allowed the user to input values 

and generate results specific to particular dwelling characteristics on a case-by-case basis. 
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2. Materials and Methods 

For detailed information regarding the methods, inputs, modelling assumptions and 

results please refer to reference [10]. 

2.1. Economic Framework 

An economic modelling framework was built in Microsoft Excel to estimate the in-

cremental costs pre- and post-implementation of any interventions designed to reduce 

exposure to indoor air pollution within dwellings. A schematic of the framework, used to 

estimate the economic outcomes associated with a reduction in exposure to indoor air 

pollution, is outlined in Figure 1. The following model flow describes how the number of 

people with pre-specified health conditions were estimated pre- and post-intervention 

implementation, over a five-year time horizon: 

 The estimated proportion of occupancy in different types of dwellings was stratified 

based on the reported tenure of homeownership by the English Housing Survey 

(2016) [11] (Table S1). 

 The baseline prevalence of each symptomatic health condition was applied to the 

population regardless of homeownership modality (Table S2). 

 An excess risk of prevalence was applied to each condition, dependent upon physical 

building, (for example, damp homes), and non-building factors (for example the el-

derly or people with comorbidities) to estimate the overall baseline prevalence pre-

intervention. 

 The proportion of dwellings with condition-specific baseline prevalence was then es-

timated. 

 It was assumed that a set proportion of dwellings with the overall risk profile (a com-

bination of baseline risk, building characteristics and non-building characteristics) 

would implement the intervention. 

 An expected relative reduction in symptoms of each health condition was applied to 

estimate the number of people within the population, post-intervention, that had 

each condition. 

 The costs associated with each condition were then applied to the number of inhab-

itants with the condition pre- and post-intervention (Tables S2 and S3). 

 Furthermore, the upfront and annual costs of the intervention were applied to the 

dwellings in which it was implemented. 
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Figure 1. Framework structure. 

2.2. Dwelling Occupancy and Risk Factors 

It was assumed that all dwellings in England could be classified by the following 

types of tenure: owner-occupied, private rented, local authority or housing association. 

The English Housing Survey was used to determine the total number of dwellings in Eng-

land and to stratify them by tenure [11]. The average number of inhabitants per dwelling 

in the United Kingdom [2,3] was then multiplied by the number of dwellings to estimate 

the total number of inhabitants, across each tenure category, within the baseline popula-

tion [12] (Appendix A). 

The PHAC commented that the building-related risk profile of dwellings could in-

crease the likelihood of exposure to indoor air pollution. One of the following building-

related risk factors could be selected by the model user: non-decent homes, usable floor 

area <90 m2 or any damp problems [11]. Data from the English Housing Survey informed 

the number of dwellings with each building-related risk factor, allowing the number of 

inhabitants at increased risk of exposure to indoor air pollution to be estimated. A build-

ing-related risk factor multiplier (an assumption to be determined on a case-by-case basis) 

was then applied to the baseline prevalence of each symptomatic health condition associ-

ated with patients living in dwellings with the building-related risk factor. It was assumed 

that the building-related risk factors associated with dwellings were mutually exclusive 

due to a lack of data available regarding the number of dwellings with multiple factors. 

Furthermore, the baseline prevalence of symptomatic health conditions could also be 

increased by a multiplier based on the presence of an excess risk profile. This was also an 

assumption-based input which could be determined on a case-by-case basis. This addi-

tional excess risk profile was applied multiplicatively to the building-related risk profile 
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and was designed to encompass many other factors that may increase the risk of an in-

habitant being exposed to indoor air pollution. Factors that may be incorporated into this 

risk profile could include, but were not limited to: crowded homes, comorbidities, elderly 

people, socioeconomic factors, frailty and poverty. 

2.3. Risk Profile of Homes in England 

The building-related and excess risk factors were combined to allocate a risk profile 

to each dwelling within England. It was assumed that whilst the majority of dwellings 

would have a minimal excess risk profile, for some dwellings the excess risk profile would 

be very high. The risk profile of the dwelling could be used by decision-makers to deter-

mine the type of intervention that would be most applicable. For example, an intervention 

that would improve the structural properties of the home would be appropriate for a 

dwelling with a very high building-related risk factor but low excess risk. The assumed 

distribution of increased risk associated with both excess and building-related risk factors 

across dwellings in England is represented in Figure 2 (with the mid-point of each box 

used in the analysis). 

 

Figure 2. Distribution of dwellings by increased risk factor. 

2.4. Application of Intervention 

The framework could be used to estimate the economic outcomes associated with the 

wide range of interventions that are available to reduce exposure to indoor air pollution 

and were identified in the review of effectiveness data conducted by NICE (such inter-

ventions could range from fitting ventilation systems to encouraging inhabitants to open 

windows frequently) [8]. Both the costs and efficacy associated with such interventions 

vary substantially. Therefore, the definition of an intervention was flexible to allow all the 

economic outcomes of all relevant options to be compared easily. 

The upfront intervention cost was varied between £0 and £250 per dwelling within a 

threshold analysis. The efficacy of the intervention was determined by a relative reduction 

in the number of symptomatic cases of each health condition associated with the inhabit-

ants of dwellings in which the intervention was implemented. Whilst a wider range was 

initially considered, the efficacy of the intervention was varied between 0% and 10% for 
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the purposes of this study. This range was considered wide enough to present the maxi-

mum price and minimum efficacy at which an intervention is no longer cost-saving under 

each scenario. 

Inhabitants living in dwellings with a building-related risk factor were assumed to 

have been exposed to higher levels of indoor air pollution at baseline compared with those 

living in dwellings without a building-related risk factor. Due to the higher baseline risk 

of indoor air pollution, it was assumed that inhabitants living in dwellings with a build-

ing-related risk factor had an increased capacity to benefit from an intervention. There-

fore, it was assumed that fewer inhabitants in dwellings without any increased risk would 

implement an intervention to reduce exposure to indoor air pollution due to an absence 

of need. For simplicity, it was also assumed that the effectiveness of each intervention 

remained constant over the five-year time horizon of the model. 

In certain circumstances the implementation of an intervention to reduce exposure 

to indoor air pollution, for example, a ventilation system designed to remove mould and 

mildew, may be mandated by regulation. Hence, the owners of all dwellings under the 

regulation would be assumed to adhere to the intervention. However, alternative inter-

ventions which cannot be regulated, such as the recommendation for windows to be 

opened regularly, would have lower adherence rates. Therefore, the framework could be 

used to estimate the economic outcomes associated with interventions at varied rates of 

implementation. The cost and efficacy of the intervention were only applied to dwellings 

that were assumed to have implemented the intervention. 

2.5. Health Conditions 

The health conditions considered most relevant to indoor air exposure were in-

formed by clinical advice from the PHAC. Asthma, COPD and allergic rhinitis were in-

cluded in the model because they are directly impacted by indoor air pollution. The PHAC 

also expressed an interest in the effects that exposure to indoor air pollution could have 

on the mental health of inhabitants. Generalized anxiety disorder (GAD) was also in-

cluded in the model because it was considered to be an appropriate proxy that incorpo-

rated a range of aspects regarding mental health. 

The baseline prevalence of each health condition in England, before the implementa-

tion of an intervention and before consideration of both the building-related and excess 

risk factors, was sourced from published literature (Appendix A). It was assumed that 

baseline prevalence represented symptomatic cases of each health condition. 

An annual unit cost was estimated for each health condition and attributed to each 

predicted symptomatic inhabitant pre- and post-intervention. All unit costs were inflated 

to the 2017/2018 price year. Further detail regarding the estimation of the unit costs for 

asthma and COPD is provided within Appendix A. All unit costs were discounted at a 

five-year discount ratio of 0.935. This discount rate was based on a rate of 3.5% per year 

in alignment with the NICE guides to the methods of technology appraisal (7). Further 

information regarding the derivation of this discount rate is presented in Appendix A. 

3. Results 

3.1. Presentation of Results 

The results shown in Figures 3–5 are presented as sensitivity analyses due to the mul-

tiple factors that can determine the economic outcomes of interventions designed to re-

duce exposure to indoor air pollution. With such a wide range of interventions, it is was 

considered more useful for a range of inputs to be displayed. Presenting one “fixed result” 

was not considered appropriate due to difficulty generalizing the framework to all set-

tings. Hence, the results presented cover many different permutations of scenarios, set-

tings and interventions. 

Two-way sensitivity analysis is a technique used in economic evaluation to assess the 

robustness of the overall result when simultaneously varying the values of two key input 
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variables [13]. The upfront intervention cost is varied simultaneously with the potential 

relative reduction in symptomatic cases of each health condition. The tables allow the user 

to establish the point at which an intervention is expected to become cost-saving. As afore-

mentioned, these results were based on several assumptions. Therefore, the focus should 

be on the colourings reflecting cost-savings, and the distance of the parameter combina-

tion from the cost-saving threshold, rather than the particular numbers reported. 

The plausible ranges of effectiveness were set from 0% to 10% and upfront interven-

tion costs from £0 to £250. All other factors are held constant. 

3.2. Two-Way Sensitivity Analysis 

Figures 3–5 present the incremental cost pre- and post-intervention with varying lev-

els of effectiveness and intervention costs for people with asthma, living in extreme risk 

dwellings that are considered either non-decent, to have a usable floor area <90 m2 or to 

have any damp problems respectively. The results of the analyses demonstrate that at a 

given level of effectiveness, the threshold for the upfront cost of the intervention to remain 

cost-saving is equivalent across the different home characteristics. For example, an inter-

vention that costs £50 must lead to a minimum relative reduction in cases of symptomatic 

asthma of 2% in each extreme risk dwelling to be cost-saving. Out of the three building-

related risk factors, dwellings with a usable floor area <90 m2 have the greatest capacity to 

benefit, with the largest cost-saving, at any given level of effectiveness and upfront cost. 

When an intervention costs £50 and leads to a 2% relative reduction in cases of sympto-

matic asthma, cost-savings for dwellings with a useable floor area <90 m2 were £6,369,198 

compared with £2,116,955 and £443,266 for non-decent or damp homes, respectively. 

Two-way sensitivity analysis presenting the incremental cost pre- and post-interven-

tion for extreme and low risk households (assuming a 100% and 50% implementation rate, 

respectively), across all four health conditions are presented in Appendix B. For condi-

tions other than asthma, no intervention was cost-saving if it cost more than £200 per 

dwelling. As anticipated, the figures suggest that households with an extreme risk profile 

have a greater capacity to benefit from interventions designed to reduce exposure to in-

door air pollution than low risk households. The highest potential savings could all be 

made in homes with usable floor area <90 m2. If a free intervention could reduce asthma 

symptoms by 10%, with 50% implementation, this could generate £356,577,498 over five 

years in England; for GAD, the same conditions would generate £239,556,803; for allergic 

rhinitis, £222,842,005; and for COPD, £165,212,635. The relationship between the risk pro-

file and capacity to benefit follows the same trend across all four health conditions. How-

ever, due to the condition having the lowest prevalence, the effectiveness of the interven-

tion was most important when considering the cost-savings for symptomatic COPD cases. 

For example, an intervention that is 10% effective and costing £175 would be cost-saving 

when used to reduce cases of asthma, GAD and allergic rhinitis in an extreme risk dwell-

ing, but not COPD. The results show that for dwellings with a low risk profile, the stake-

holder can be reasonably certain than an intervention priced at £100 is unlikely to result 

in cost-savings if it does not reduce symptomatic cases of asthma by 10% or more. How-

ever, in an extreme risk dwelling, the stakeholder can be reasonably certain that an inter-

vention priced at £100 will result in cost-savings at a minimum reduction in symptomatic 

cases of asthma of 4%. 
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Figure 3. Incremental total cost varying the effectiveness and cost of the intervention across England over five years; extreme risk; 100% implementation rate; non-decent homes (asthma). 

 
Figure 4. Incremental total cost varying the effectiveness and cost of the intervention across England over five years; extreme risk; 100% implementation rate; usable floor area <90 m2 

(asthma). 
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Figure 5. Incremental total cost varying the effectiveness and cost of the intervention across England over five years; extreme risk; 100% implementation rate; any damp problem 

(asthma).
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4. Discussion 

As far as the authors are aware, this is the first economic model estimating the cost-

savings associated with the implementation of multiple interventions designed to reduce 

indoor air pollution in England. The model is very flexible and can be used to guide deci-

sion-making under a wide range of scenarios. The model is predicated on a high level of 

assumptions around many key variables. This notwithstanding, the results show that key 

drivers of the cost difference include the excess risk profile dwellings, upfront cost and 

the effectiveness of the intervention designed to reduce exposure to indoor air pollution. 

Across all of the clinical outcomes and dwelling types, a key finding from our work 

is that the cost of intervention can be higher as the risk profile of a dwelling is increased, 

at a given level of efficacy, before it is no longer cost-saving. However, this needs to be 

considered in line with the results from the US study, where one of the major factors af-

fecting program cost was the level of intensity of environmental remediation (minor, mod-

erate or major) [5], meaning it was more costly to improve conditions in high risk dwell-

ings. 

Similarly, and regardless of the dwelling building characteristic, the cost of an inter-

vention can be higher and still be cost-saving for a dwelling with an extreme risk profile 

compared with a low risk profile for a given level of efficacy. For example, an intervention 

with a relative reduction in cases of symptomatic cases of asthma of 5%, must cost a max-

imum of £50 per household to be considered cost-saving in a “non-decent” dwelling with 

a low risk profile (Appendix B). However, the intervention cost can cost up to £150 per 

“non-decent” dwelling with an extreme risk profile and still be cost-saving (Figure 3). This 

type of threshold analysis could help a stakeholder decide whether to implement an in-

tervention to reduce exposure to indoor air pollution. The results of this study are in align-

ment with a published cost-effectiveness analysis of enhanced ventilation within the 

homes of children with asthma. The incremental cost per unit improvement in PedsQL 

points (The Pediatric Quality of Life Inventory) was £165 and £379 for children with severe 

and moderate asthma, respectively [9]. 

It is difficult to compare the results from this model with previous studies as this is 

the only study known to provide a range of intervention costs and the likely cost-saving 

in relation to intervention effectiveness. However, when compared with the US asthma 

study, where program costs per participant per year ranged from $231 to $14,858 (in 2007 

US$), savings were estimated to be between 5.3 and 14 times the intervention [5]. For ex-

ample, the program costs of reducing asthma triggers in homes of children reported by 

Oatman was $497, but the direct medical costs averted were $2637 [14]. Cost-savings were 

higher in the 2005 study from Shelledy, where program costs for paediatric asthma disease 

management were $721 but medical cost-savings were $10,093 [15]. This would corre-

spond with the savings seen for asthma within extreme risk non-decent homes (with ap-

proximately 146,636 people in England meeting this criterion). If an intervention led to a 

relative reduction of cases by 2% and had an upfront intervention cost of £50, this would 

lead to an approximate cost-saving of £14.44 per person within this population. 

It was assumed that, because of the substantial health risks associated with indoor 

air pollution, there would be a 100% implementation rate in extreme risk dwellings. How-

ever, the implementation rate may be as low as 50% in low risk dwellings due to the lack 

of necessity. All other factors remaining equal, a lower implementation rate led to a 

smaller capacity to benefit, and a smaller reduction in overall cost savings. 

Due to a lack of data availability, the baseline prevalence of each symptomatic health 

condition was independent of the risk profile of dwellings and assumed to be equivalent 

across all risk profiles. Therefore, the cost-savings per person associated with the elimina-

tion of health symptoms are equivalent regardless of their risk profile. The study authors 

anticipated that the majority of dwellings would have a minimal excess risk profile and a 

very low number of dwellings would have a very high excess risk profile. Therefore, alt-

hough there is greater capacity for people at high risk to benefit from interventions that 
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reduce exposure to indoor air pollution within homes, greater overall cost-savings accrue 

for those at low risk due to a higher number of people benefiting from the intervention. 

The method of presenting model results using a “what-if?” sensitivity analysis was 

deemed to be the most appropriate based on the available data and the nature of the in-

terventions to be assessed. However, since the model is designed to be a framework to 

guide decision-makers (national and local) in allocating resources, the inputs in the model 

are intended as a starting point for discussion and to give a general overview of the direc-

tion of results. The use of sensitivity analyses allows the model results to be relevant to a 

wide group of stakeholders. The model is designed as an interactive “calculator” which is 

intended to be used flexibly so that it can be tailored to a particular dwelling with a spe-

cific risk profile and a specific intervention. The risk profile of a dwelling should be used 

by decision-makers to determine the type of intervention that would be most applicable 

to the particular dwelling. For example, an intervention designed to improve the struc-

tural properties of the home would be more appropriate than an intervention to improve 

heating efficacy for dwellings with a very high building-related risk factor but low excess 

risk factor (e.g., an affluent family living in a home with damp). 

Limitations 

Although not modelled explicitly, the link between indoor air quality and health has 

been captured implicitly through the relationship between the increased likelihood of ex-

posure to indoor air pollution, the risk profile of each dwelling and the health outcomes 

included in the model. 

Many inhabitants with exposure to indoor air pollution will likely have more than 

one symptomatic health condition simultaneously. It would be expected that, if a person 

had comorbidities, an intervention might impact several health conditions rather than one 

alone. Unfortunately, the model does not include the functionality to account for these 

comorbidities as it was not possible to estimate the comorbidity status of each inhabitant 

in the population. Therefore, the economic model may underestimate the true level of 

cost-savings to the NHS. 

It was also assumed that the building-related risk factors associated with dwellings 

are mutually exclusive due to the lack of data available regarding the likelihood of a 

dwelling having an additional building-related risk profile. However, it is unrealistic to 

assume a dwelling considered “non-decent” would not have “any damp problems” or a 

usable floor area greater than <90 m2. Due to the level of complexity required, the eco-

nomic model also does not estimate the cost-effectiveness of multiple interventions ap-

plied within a dwelling simultaneously. It is likely, that by separating the three building-

related risk profiles, that the number of dwellings, and subsequently inhabitants captured 

within each analysis is underestimated. Furthermore, an intervention may reduce the risk 

associated with more than one building-related risk factor. Therefore, the economic model 

may further underestimate the true level of cost-savings associated with an intervention. 

Due to the complexity of modelling that would be required, it was assumed that in-

habitants do not move dwellings throughout the five-year time horizon of the model. If 

inhabitants move out of a home that has a non-transferable intervention, for example, a 

ventilation system that would be too costly to remove, they will no longer benefit from a 

reduction in indoor air pollution and the cost savings to the NHS within the model may 

be overestimated. It was also assumed that, with the exception of the intervention, no 

other improvements would be made to the home to reduce exposure to indoor air pollu-

tion, nor any changes to building regulations made. If improvements had been made, the 

baseline prevalence of symptomatic conditions would be lower and the health improve-

ments due to the intervention overestimated in the model. 

Furthermore, the model only estimates the potential cost savings of interventions to 

reduce exposure to indoor air pollution at home from the perspective of the NHS. The 

inclusion of any non-NHS benefits from other perspectives, both financially and non-fi-

nancially, would have only improved the cost-effectiveness of interventions. 
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5. Conclusions 

The implementation of interventions designed to reduce exposure to indoor air pol-

lutants has the potential to reduce symptomatic health conditions such as asthma, COPD, 

GAD and allergic rhinitis. The capacity to benefit increases as the risk profile of a dwelling 

increases and the key drivers of savings are the excess risk profile of dwellings and the 

upfront cost and effectiveness of the specified intervention. The likelihood of an interven-

tion being cost-saving is highest when considering asthma, and lowest for COPD, reflect-

ing the high prevalence of asthma and low prevalence of COPD. The model framework 

can be used by individual policy decision-makers when considering the implementation 

of interventions designed to reduce indoor air pollution within dwellings to estimate the 

required level of efficacy necessary for a particular intervention to be cost-saving. 

Supplementary Materials: The following are available online at www.mdpi.com/1660-

4601/18/4/1679/s1, Figure S1: Incremental total cost varying the effectiveness and cost of the inter-

vention across England over five years; low risk; 50% implementation rate; non-decent homes 

(asthma), Figure S2: Incremental total cost varying the effectiveness and cost of the intervention 

across England over five years; low risk; 50% implementation rate; usable floor area <90m2 (asthma), 

Figure S3: Incremental total cost varying the effectiveness and cost of the intervention across Eng-

land over five years; low risk; 50% implementation rate; any damp problem (asthma), Figure S4: 

Incremental total cost varying the effectiveness and cost of the intervention across England over five 

years; extreme risk; 100% implementation rate; non-decent homes (COPD), Figure S5: Incremental 

total cost varying the effectiveness and cost of the intervention across England over five years; ex-

treme risk; 100% implementation rate; usable floor area <90m2 (COPD), Figure S6: Incremental total 

cost varying the effectiveness and cost of the intervention across England over five years; extreme 

risk; 100% implementation rate; any damp problem (COPD), Figure S7: Incremental total cost vary-

ing the effectiveness and cost of the intervention across England over five years; low risk; 50% im-

plementation rate; non-decent homes (COPD), Figure S8: Incremental total cost varying the effec-

tiveness and cost of the intervention across England over five years; low risk; 50% implementation 

rate; usable floor area <90m2 (COPD), Figure S9: Incremental total cost varying the effectiveness and 

cost of the intervention across England over five years; low risk; 50% implementation rate; any damp 

problem (COPD), Figure S10: Incremental total cost varying the effectiveness and cost of the inter-

vention across England over five years; extreme risk; 100% implementation rate; non-decent homes 

(allergic rhinitis), Figure S11: Incremental total cost varying the effectiveness and cost of the inter-

vention across England over five years; extreme risk; 100% implementation rate; usable floor area 

<90m2 (allergic rhinitis), Figure S12: Incremental total cost varying the effectiveness and cost of the 

intervention across England over five years; extreme risk; 100% implementation rate; any damp 

problem (allergic rhinitis), Figure S13:  Incremental total cost varying the effectiveness and cost of 

the intervention across England over five years; low risk; 50% implementation rate; non-decent 

homes (allergic rhinitis), Figure S14:  Incremental total cost varying the effectiveness and cost of 

the intervention across England over five years; low risk; 50% implementation rate; usable floor area 

<90m2 (allergic rhinitis), Figure S15: Incremental total cost varying the effectiveness and cost of the 

intervention across England over five years; low risk; 50% implementation rate; any damp problems 

(allergic rhinitis), Figure S16: Incremental total cost varying the effectiveness and cost of the inter-

vention across England over five years; extreme risk; 100% implementation rate; non-decent homes 

(GAD), Figure S17: Incremental total cost varying the effectiveness and cost of the intervention 

across England over five years; extreme risk; 100% implementation rate; usable floor area <90m2 

(GAD), Figure S18: Incremental total cost varying the effectiveness and cost of the intervention 

across England over five years; extreme risk; 100% implementation rate; any damp problem (GAD), 

Figure S19: Incremental total cost varying the effectiveness and cost of the intervention across Eng-

land over five years; low risk; 50% implementation rate; non-decent homes (GAD), Figure S20: In-

cremental total cost varying the effectiveness and cost of the intervention across England over five 

years; low risk; 50% implementation rate; usable floor area <90m2 (GAD), Figure S21: Incremental 

total cost varying the effectiveness and cost of the intervention across England over five years; low 

risk; 50% implementation rate; any damp problem (GAD), Table S1: Dwelling occupancy by tenure 

(2017), Table S2: Health condition related model inputs, Table S3: Derivation of the five-year dis-

count rate. 



Int. J. Environ. Res. Public Health 2021, 18, 1679 13 of 14 
 

 

Author Contributions: Conceptualization, A.D., S.M., H.H. and L.O.; methodology, A.D., S.M., J.M. 

and L.O.; software, A.D. and J.M.; validation, S.M.; formal analysis, A.D., S.M. and J.M.; investiga-

tion, A.D. and J.M.; writing—original draft preparation, A.D.; writing—review and editing, A.D., 

J.M., S.M. and L.O.; visualization, A.D. and S.M.; supervision, S.M. and H.H.; project administration, 

A.D. and J.M. All authors have read and agreed to the published version of the manuscript. 

Funding: No financial support has been received for the development of this manuscript. The pro-

ject was conducted for the National Institute for Health and Care Excellence and payment was re-

ceived by York Health Economics Consortium. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data sharing not applicable. 

Acknowledgements: The authors are grateful to the Public Health Appraisal Committee at NICE 

for providing feedback throughout the development of the analysis. The authors are grateful to 

Matthew Taylor at YHEC for methodological support and for reviewing the draft manuscript. 

Conflicts of Interest: The authors declare no conflict of interest.

References 

1. World Health Organization. Combined or Multiple Exposure to Health Stressors in Indoor Built Environments: An Evidence-

Based Review Prepared for the WHO Training Workshop “Multiple Environmental Exposures and Risks“. In Proceedings of 

the Multiple Environmental Exposures and Risks WHO Training Workshop, Bonn, Germany, 16–18 October 2013. 

2. Lee, K.K.; Bing, R.; Kiang, J.; Bashir, S.; Spath, N.; Stelzle, D.; Mortimer, K.; Bularga, A.; Doudesis, D.; Joshi, S.S.; et al. Adverse 

health effects associated with household air pollution: A systematic review, meta-analysis, and burden estimation study. Lancet 

Glob. Health 2020, 8, e1427–e1434. 

3. Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor exposure 

to selected air pollutants in the home environment: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 8972, 

doi:10.3390/ijerph17238972. 

4. Jaakkola, M.S.; Quansah, R.; Hugg, T.T.; Heikkinen, S.A.; Jaakkola, J.J. Association of indoor dampness and molds with rhinitis 

risk: A systematic review and meta-analysis. J. Allergy Clin. Immunol. 2013, 132, 1099–1110.e18, doi:10.1016/j.jaci.2013.07.028. 

5. Nurmagambetov, T.A.; Barnett, S.B.; Jacob, V.; Chattopadhyay, S.K.; Hopkins, D.P.; Crocker, D.D.; Dumitru, G.G.; Kinyota, S.; 

Task Force on Community Preventive Services. Economic value of home-based, multi-trigger, multicomponent interventions 

with an environmental focus for reducing asthma morbidity a community guide systematic review. Am. J. Prev. Med. 2011, 41 

(Suppl. 1), S33–S47. 

6. Indoor Air Quality at Home: Guidance. Available online: https://www.nice.org.uk/guidance/ng149/ 

chapter/Context (accessed on 15 June 2020). 

7. Developing NICE Guidelines: The Manual. Available online: https://www.nice.org.uk/process/pmg20/ 

chapter/introduction-and-overview (accessed on 15 june2020). 

8. Indoor Air Quality at Home. Evidence Reviewed for Indoor Air Quality at Home: Cost Effectiveness Outcomes. Available 

online: https://www.nice.org.uk/guidance/ng149/evidence/cost-effectiveness-outcomes-pdf-7020945183 (accessed on 15 June 

2020). 

9. Edwards, R.T.; Neal, R.D.; Linck, P.; Bruce, N.; Mullock, L.; Nelhans, N.; Pasterfield, D.; Russell, D.; Russell, I.; Woodfine, L. 

Enhancing ventilation in homes of children with asthma: Cost-effectiveness study alongside randomised controlled trial. Br. J. 

Gen. Pr. 2011, 61, e733–e741, doi:10.3399/bjgp11X606645. 

10. National Institute for Health and Care Excellence. Indoor Air Quality at Home Economic Model Report; 2019. Available online: 

https://www.nice.org.uk/guidance/ng149/documents/economic-report-2. 

11. Ministry of Housing, Communities & Local Government. English Housing Survey 2016 to 2017: Headline Report. Initial Findings 

from the English Housing Survey 2016 to 2017; 2018. Available online: 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/705821/2016-

17_EHS_Headline_Report.pdf . 

12. Office for National Statistics. Census: Population and Household Estimates for the United Kingdom: March 2011; 2013. Available 

online: 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/2011censu

spopulationestimatesfortheunitedkingdom/2012-12-17 

13. York Health Economics Consortium (YHEC). Two Way Sensitivity Analysis. York 2016. Available online: 

https://yhec.co.uk/glossary/two-way-sensitivity-analysis/ (accessed on 15 June 2020). 

  



Int. J. Environ. Res. Public Health 2021, 18, 1679 2 of 14 
 

 

14. Minnesota Department of Health. Reducing Environmental Triggers of Asthma in Homes of Minnesota Children; St. Paul, MN, USA, 

2007. Available online: https://www.leg.mn.gov/docs/2008/other/080302.pdf 

15. Shelledy, D.C.; McCormick, S.R.; LeGrand, T.S.; Cardenas, J.; Peters, J.I. The effect of a pediatric asthma management program 

provided by respiratory therapists on patient outcomes and cost. Heart Lung 2005, 34, 423-428. 

 


