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Summary 

A zebrafish model to study 

the schistosome egg granuloma 

Kevin Katsumi Takaki 

Schistosomiasis is a disease caused by parasitic flatworms which reside within the venules of 

their human host. The disease pathology is caused by the eggs which they produce, and is 

primarily characterized by the granulomas which form around them. While the granulomas have 

pathological consequences to the host, they are thought to be essential to facilitate egg expulsion 

and completion of the parasite life cycle. Here, I have developed a larval zebrafish model to 

study the formation of the schistosome egg granuloma in detail within an optically transparent 

animal. I have developed the tools and techniques for implantation of individual Schistosoma 

mansoni eggs into zebrafish, followed by intravital microscopy to observe the formation of the 

schistosome egg granuloma. Within the zebrafish, eggs induce the formation of epithelioid 

granulomas, as in mammalian models. I find that while mature schistosome eggs induced 

granuloma formation, immature eggs do not, and this is due to their eggshell functioning as an 

immunologically inert barrier between the parasite and host. Complemented by the finding that 

only mature eggs are shed in both mice and humans, these findings indicate that immature 

parasite eggs avoid foreign body granuloma formation to prevent premature expulsion during 

their host-dependent development. Then, after completing development, the mature egg secretes 

antigens through its eggshell to promote granuloma formation and expulsion to complete its life 

cycle. I investigate the host and parasite factors involved in granuloma formation, and 

demonstrate that TNF receptor 1 signaling is not required for either initial macrophage 

recruitment or granuloma formation, but does contribute to granuloma enlargement. In contrast, 

the major egg antigen, omega-1, utilizes its RNase activity to induce initial macrophage 

recruitment.  
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Chapter 1. Introduction 

1.1. Introduction to Schistosomiasis  

1.1.1. Schistosomiasis: The disease, its species, and prevalence  

Schistosomiasis is a parasitic disease caused by flatworms of the genus Schistosoma (McManus 

et al., 2018). The disease has ancient origins (Barakat, 2013), having been diagnosed in 5,000 

year old Egyptian mummies based on the presence of parasite eggs, DNA, and antigens which 

were preserved within their tissues (Matheson et al., 2014; Miller et al., 1992; Ruffer, 1910). 

During the same time period, symptoms of the disease, the hematuria (blood in urine) caused by 

the S. haematobium species endemic to Egypt, were described in The Kahun Gynaecological 

Papyrus; an ancient Egyptian medical text written in hieroglyphics and dating back nearly 4,000 

years (Shokeir and Hussein, 1999). In modern times, schistosomiasis is still endemic to Egypt, as 

well as various tropical and subtropical regions of the world, where it affects more than 200 

million people (Hotez et al., 2014; McManus et al., 2018), making it the world’s second most 

devastating parasitic disease, after malaria (King, 2015).  

There are six known species which cause schistosomiasis in humans, with the majority of 

infections caused by three species; S. haematobium, S. japonicum, and S. mansoni (McManus et 

al., 2018).  

S. haematobium is thought to be the most prevalent cause of the disease (McManus et al., 

2018), and is found throughout Africa and the Middle East where it causes the urogenital form of 

schistosomiasis (causing the hematuria described by the ancient Egyptians)(McManus et al., 

2018). It causes bladder cancer and is classified as a definitive biological carcinogen by the 

World Health Organization (Colley and Secor, 2014; Humans, 2012; Ishida and Hsieh, 2018; van 

der Werf et al., 2003; WHO, 2002 ). It is a cofactor which increases the risk of HIV acquisition 

three-fold in women, due to the genital lesions it causes which are prone to contact-induced 

bleeding (Wall et al., 2018). Accumulation of eggs along their transit route can lead to 

obstructive fibrosis and calcification of the urinary tract, leading to hydronephrosis and chronic 

interstitial nephritis. This in turn can lead to the renal failure which is the major cause of death 

with S. haematobium (Barsoum, 2003, 2013; WHO, 2002 ). Despite its prevalence and 

significant morbidity, S. haematobium is insufficiently studied due to the lack of adequate animal 

models (Fu et al., 2012).  
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S. japonicum is found in East- and Southeast Asia where it causes intestinal schistosomiasis 

(McManus et al., 2018). Unlike the other major species, S. japonicum is considered a true 

zoonotic parasite with considerable animal reservoirs of infection, largely associated with 

agriculture due to the close working conditions of humans and the water buffalo used in the 

cultivation of rice (Kajihara and Hirayama, 2011; Tanaka and Tsuji, 1997). S. japonicum causes 

intestinal schistosomiasis, as with S. mansoni (Burke et al., 2009; McManus et al., 2018).  

And lastly, S. mansoni is the most researched and the most widespread geographically, being 

found in Africa and the Middle East, and following its spread during the slave trade is now also 

found in Brazil, the Caribbean islands, Puerto Rico, Suriname and Venezuela (Crellen et al., 

2016; McManus et al., 2018). S. mansoni causes intestinal schistosomiasis (McManus et al., 

2018) and will be the focus of this research project.  

It should be noted that while there are avian-infecting species of schistosomes which are 

much wider-spread geographically, being found also in North America and England, they do not 

cause stable infection in humans but instead die shortly after penetration of the skin, resulting in 

raised papules known as cercarial dermatitis and more commonly referred to as “swimmer’s 

itch” (Horak et al., 2015).  

 

1.1.2. Treatment and prevention of schistosomiasis  

The only recommended treatment for schistosomiasis is the anti-helminth drug, praziquantel, 

which has been in use since its development in the 1970s (Andrews, 1985; Gonnert and 

Andrews, 1977; WHO, 2002 ). Although Praziquantel is efficacious against all species of 

Schistosoma, and can be administered in a single dose, it does have its disadvantages. 

Praziquantel is ineffective against the juvenile infecting stage, affording the parasite an 

untreatable window of time; treatment only affords a partial cure rate of 60-90%, necessitating 

re-evaluation and re-treatment; and re-infection rates in endemic regions are high, often times 

necessitating re-treatment (Andrews, 1985; Cioli et al., 2014). Before the advent of praziquantel, 

elimination of schistosomiasis in Japan was achieved following approximately 70 years of 

multifaceted eradication efforts initiated in the early 1900s (Kajihara and Hirayama, 2011; 

Stothard et al., 2017; Tanaka and Tsuji, 1997). While complete elimination of schistosomiasis in 

other areas of the world have yet to be achieved, efforts have reduced the prevalence and burden 

of the disease (McManus et al., 2018). Some resistance against reinfection develops during 
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chronic long-term infection (>10 years), thought to occur as an IgE-mediated cross recognition 

of antigens on adult worms which had died naturally, which are also present on early infecting 

schistosomula (McManus et al., 2018; Pearce and MacDonald, 2002). Despite the promise this 

holds for immunity-based protection, there is still no vaccine to prevent schistosomiasis (Cioli et 

al., 2014; Tebeje et al., 2016).  

 

1.1.3. Lifecycle of the Schistosoma parasite 

The Schistosoma parasite has a complex lifecycle requiring the parasitism of two hosts; an 

aquatic snail which it utilizes as its intermediate host for asexual replication, and a human which 

it utilizes as its definitive host for sexually reproduction (Figure 1.1). Beginning at the egg stage, 

the egg hatches within freshwater where it releases its miracidium; a ciliated larva which infects 

its specific species of aquatic snail (Biomphalaria spp, Bulinus spp, and Oncomelania spp in the 

case of S. mansoni, haematobium, and japonicum, respectively)(2018 Primer). Within its 

intermediate snail host the parasite will reproduce asexually, forming sporocysts, and after 3-12 

weeks depending on the species, shedding of the cercarial stage of the parasite will begin (Lewis, 

2001).  

Cercariae are free-swimming using their forked tail, and have evolved to detect lipids 

released from human skin, which they utilize to locate their human host (Shiff et al., 1993). 

Following contact with their human host, cercariae digest and penetrate through the skin using a 

combination of proteases released from specialized (acetabular) penetration glands (Ligasova et 

al., 2011) and mechanical effort (Inobaya et al., 2014; McKerrow and Salter, 2002; McManus et 

al., 2018). During entry they shed their forked tail and their glycocalyx coat; a carbohydrate rich 

envelope which protects cercariae from osmotic stress during the free-swimming stage of their 

lifecycle, but is highly antigenic and so requires shedding to avoid immune attack following 

entry into their human host (Da'dara and Krautz-Peterson, 2014; Dunne, 1990).  

The parasites, now referred to as a schistosomula, will migrate deeper into the skin where 

they locate and enter into a blood vessel, and from within the circulation they passively travel to 

the lungs (McManus et al., 2018) where they will undergo further development, including the 

masking of surface epitopes and the acquisition of host antigens, which render them 

insusceptible to both cell- and humoral-mediated immunity (Gobert et al., 2007; McLaren and 

Terry, 1982). From the lungs, schistosomula will then migrate to the heart and then liver, where 
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they mature into adults. Adult male and female worms, now referred to as schistosomes, will 

form mating pairs and migrate to the mesenteric venules (or bladder venules in the case of S. 

haematobium) where they will reside in copula. The adult parasites are uniquely adapted to 

evade host immune responses (Keating et al., 2006; Sepulveda et al., 2010; Skelly and Alan 

Wilson, 2006) affording them long-term survival typically lasting for 5-10 years, and with case 

reports of infections persisting for decades (Colley and Secor, 2014; Pearce and MacDonald, 

2002; Warren et al., 1974). During this time, adult worms sexually reproduce, releasing up to 

300 eggs per day (3,000 for S. japonicum) into circulation (Cheever et al., 1994; IARC, 1994; 

Moore and Sandground, 1956). These eggs, and not the worms themselves, are responsible for 

disease pathology and morbidity (Burke et al., 2009; Colley and Secor, 2014). Each egg carries a 

living miracidium and secretes highly inflammatory antigens which co-opt the host immune 

system to facilitate its passage from circulation into the intestine (or bladder in the case of S. 

haematobium), where they are released back into the environment in feces (or urine) (Amiri et 

al., 1992; Costain et al., 2018; Doenhoff et al., 1978; Dunne et al., 1983; Karanja et al., 1997; 

McManus et al., 2018; Pearce and MacDonald, 2002; Schwartz and Fallon, 2018). 

Approximately half of the eggs do not reach their intended location, but instead become lodged 

in other tissues, the liver in particular, where they induce the formation of the core pathological 

structure of schistosomiasis, the granuloma (Colley and Secor, 2014; Hutchison, 1928; Moore 

and Sandground, 1956; Warren, 1978).  
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Figure 1. 1. Parasitic life cycle of the three major human-infecting species of Schistosoma 

(1) The three species of parasite eggs are distinguished morphologically by their lateral and 

terminal spines in S. mansoni and S. haematobium, which is absent in the more ovoid S. 

japonicum. Eggs in water hatch to release (2) miracidia which infect their (3) intermediate snail 

host. (4) Within their intermediate snail host, the parasite replicates asexually to form self-

regenerative sporocysts, and (5) cercaria which emerge from the snail to penetrate their (6) 

definitive human host. (7) Cercaria shed their tail and become schistosomulae which (8) migrate 

via circulation and (9) mature into adult worms in the liver. (10) Adult worms reside in copula 

within the venules of the mesentery (for S. mansoni and S. japonicum) or bladder (for S. 

haematobium). There they produce eggs which (11a) transit to the intestines (S. mansoni and S. 

japonicum) or bladder (S. haematobium) to be released into the environment in feces or urine, 

respectively. (11b) Aberrant eggs become lodged in other tissues, where they are terminal for the 

parasite, and pathological for the host. Illustration modified from the life cycle of the 

Schistosoma species, CDC Division of Parasitic Diseases.  
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1.2. Granulomas and their roles 

1.2.1. Introduction to granulomas  

Granulomas are organized aggregates of immune cells which have evolved to recognize and 

encase a diverse range of foreign materials, or chronically infecting inflammatory agents which 

the immune system is unable to eliminate (Pagan and Ramakrishnan, 2018). These include 

infectious agents such as bacteria, fungi, protozoa, helminthes, insects, and viruses; non-living 

foreign bodies such as beryllium, silica, and tattoo pigments; and those of unknown etiology 

thought to arise from chronic inflammatory or autoimmune responses as in the case of Crohn’s 

and Sarcoidosis (Pagan and Ramakrishnan, 2014, 2018).  

Granulomas are always composed of macrophages, which play a prominent role in shaping 

the immune response. They express chemokines which define the cellular composition through 

recruitment of specific cell types, they express cytokines which shape the immune response, and 

they can perform a structural function through specialized forms of differentiation to more 

effectively wall-off the inciting agent (Pagan and Ramakrishnan, 2018).  

One such form of specialized differentiation is macrophage epithelioid transformation, in 

which they interdigitate their cell membranes together resulting in a tight 

multicellular macrophage aggregate with enhanced phagocytic, bactericidal, and degradative 

abilities (Adams, 1976; Cronan et al., 2016; Pagan and Ramakrishnan, 2018). This process is 

observed in various types of granulomas (including the tuberculous and schistosome egg 

granulomas), and although the signaling pathways leading to its formation are not fully 

understood, they are thought to involve cytokines IL-4 and IL-13, transcription factor STAT6, 

and possibly chronic activation of the metabolic sensor, mTORC1 (Pagan and Ramakrishnan, 

2018). In some cases, cell-to-cell fusion of macrophages leads to cytoplasmic fusion to produce 

multinucleated giant cells (Helming and Gordon, 2007; Pagan and Ramakrishnan, 2018).    

In addition to macrophages, and depending on the inciting agent and subsequently activated 

signaling pathways, the granuloma will have a specific cellular composition containing other 

cells of the immune system of both innate and adaptive origin; cells such as neutrophils, 

eosinophils, T-cells, and B-cells, whose roles will vary within the context of the inciting agent 

and who will together that shape the immune response and outcome of infection (Adams, 1976; 

Boros, 2003; Pagan and Ramakrishnan, 2018).   
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1.2.2. Cellular structure and cytokine milieu of the schistosome egg granuloma 

The granulomas which form around the Schistosoma mansoni eggs are composed predominantly 

of macrophages (and their epithelioid and multinucleated counterparts), eosinophils, fibroblasts, 

and T cells and B cells, aggregated together within a Th2-dominant cytokine milieu 

characterized by high levels of IL-4, IL-13, and IL-5, but with significant contribution from the 

Th1 cytokine, TNF (Figure 1.2) (Pagan and Ramakrishnan, 2018; Reiman et al., 2006; 

Weinstock and Boros, 1983b).  

 

 

Figure 1. 2. Cellular structure and composition of the Schistosoma mansoni granuloma  

(A) Illustration of the composition of the S. mansoni granuloma. (B,C) Quantification of the 

cellular composition of (B) hepatic and (C) intestinal S. mansoni granulomas. (A) Modified from 

2018 Pagán with permission of author and publisher. (B,C) Graphs produced using data from 

Reiman et al., 2006 and Weinstock and Boros, 1983, respectively. Fibroblasts were not included 

in the quantification in (C).  

 

 

As with other granulomatous diseases, macrophages are a key player in schistosomiasis. 

During the course of infection, liver-entrapped eggs induce the accumulation of macrophages 

through both the local recruitment of resident macrophages (also known as Kupffer cells), and 

from the CCR2-dependent recruitment of circulating inflammatory monocytes (also known as 

Ly6Chi monocytes)  (Girgis et al., 2014; Nascimento et al., 2014). Antigens released from eggs 

induce the expression of IL-4 and IL-13 (Grzych et al., 1991; Pearce et al., 1991; Pearce and 
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MacDonald, 2002), which bind IL-4 receptor complexes (containing the IL-4rα) on macrophages 

resulting in their alternative activation to adopt a distinct macrophage phenotype associated with 

parasitic infections, wound-healing responses, and allergies (Gordon, 2003), and which can also 

induce their differentiation into epithelioid macrophages and multinucleated giant cells (Pagan 

and Ramakrishnan, 2018)(Figure 1.2A). Within the context of liver-entrapped eggs, these 

alternatively activated macrophages protect the hepatocytes from egg-induced damage by 

organizing the cellular encasement of eggs (Herbert et al., 2004). While macrophages are 

essential for host survival during schistosomiasis (Nascimento et al., 2014), it is specifically 

these alternatively activated macrophages which are essential, as loss of the signaling pathway 

for their development; IL-4, IL-4rα, and the macrophage-specific IL-4rα, all result in the same 

acute lethal disease (Fallon et al., 2000; Herbert et al., 2004; Nascimento et al., 2014). In 

addition to their role in physical encapsulation of the schistosome egg, macrophages can also 

contribute to cytokine production through antigen-induced expression of TNF and IL-33 (Hams 

et al., 2016; Nascimento et al., 2014).  

As with other helminth infections, eosinophils are a prominent component of the immune 

response to schistosome eggs; egg-induced expression of IL-5/13 is required for eosinophilia and 

recruitment to the granuloma, where they are the major cellular component making up 

approximately 50% of cells of the hepatic granuloma (Figure 1.2B) (Brunet et al., 1999; Hams et 

al., 2013; Moore et al., 1977; Sher et al., 1990; Swartz et al., 2006), and 21% of the cells of the 

intestinal granuloma (Weinstock and Boros, 1983b)(Figure 1.2B). However, despite their 

prominence in the granuloma, ablation of eosinophils has no effect on granuloma development, 

size, fibrosis, or its ability to protect hepatocytes from damage, indicating that either they are 

bystander cells and their function is dispensable, or that their function is rescued by 

compensatory increases of other cell types, chiefly macrophages (Brunet et al., 1999; Sher et al., 

1990; Swartz et al., 2006). Although eosinophils may not alter granuloma formation, they may 

function to directly induce damage to the schistosome egg, a function which possibly explains 

their higher proportion in hepatic granulomas (de Brito et al., 1984; Hsu et al., 1980; Kazura et 

al., 1985; Schwartz and Fallon, 2018).   

After macrophages and eosinophils, fibroblasts are the third most prominent cell type, making 

up 15% of the cellular composition of the mansoni hepatic granuloma (Reiman et al., 2006). 

There, they contribute to egg-induced, IL-13 (and IL-5)-mediated pathology through excessive 
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formation of connective tissue, resulting in fibrosis (Chiaramonte et al., 2001; Fallon et al., 2000; 

Hams et al., 2013; Herbert et al., 2004; Pagan and Ramakrishnan, 2018).   

Whereas neutrophils are a major component of Schistosoma japonicum granulomas, they are 

rarely found in S. mansoni granulomas (Moore et al., 1977; Swartz et al., 2006; Von Lichtenberg 

et al., 1973)(Figure 1.2). This is possibly due to the absence of neutrophil-recruiting antigens in 

S. mansoni eggs which are present in S. japonicum eggs (Wu et al., 2014), the presence of IL-8 

neutralizing antigens secreted from the mansoni egg (Smith et al., 2005), or the relative absence 

of necrosis which is prominent in both the S. japonicum and tuberculous granulomas, and which 

is known to recruit neutrophils (Yang et al., 2012). The lack of neutrophils in the Schistosoma 

mansoni granuloma might be an evolutionary mechanism of the parasite to enhance its survival, 

as in vitro experiments have shown that neutrophils are deleterious to S. mansoni egg survival, 

reducing respiration rate, viability, and granuloma formation, and directly inducing eggshell 

fragmentation leading to destruction of the miracidium (de Brito et al., 1984; Kazura et al., 

1985). 

Although few basophils are found in the Schistosoma granuloma, they are stimulated by egg 

antigens to release IL-4 and IL-13, contributing to the characteristic cytokine profile of the 

granuloma (Knuhr et al., 2018).  

Together, the cells of the innate immune system are sufficient to form granulomas, as 

evidenced by granulomas forming in the sole context of innate immunity in infected SCID mice 

in response to tissue-entrapped schistosome eggs (Amiri et al., 1992; Cheever et al., 1999), and 

in non-sensitized WT mice in response to injected eggs (Chensue et al., 1995a) or beads coated 

with schistosome soluble egg antigens (SEA) within 3 days post-injection, before adaptive 

immunity develops (Chiu et al., 2004).  

The adaptive immune response as mediated by T cells plays an important role, 

complementary to this process. T cells (CD4 helper T cells) are stimulated by egg antigens to 

express both Th1 and Th2 cytokines; TNF, and IL-4, IL-13, and IL-5 (Amiri et al., 1992; 

Cheever et al., 1999; Chensue et al., 1994; Everts et al., 2012; Grzych et al., 1991; Pagan and 

Ramakrishnan, 2018; Pearce et al., 1991; Sher et al., 1990). These T cells and the cytokines they 

produce have been found to enhance the formation of the granuloma, with their loss in both nude 

and SCID mice resulting in smaller granulomas, increased hepatic disease and mortality, and 

decreased egg expulsion (Amiri et al., 1992; Cheever et al., 1993; Cheever et al., 1999; Fallon 
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and Dunne, 1999). In humans, some studies have found that diminished CD4 T cell levels in 

HIV co-infected schistosomiasis patients correlated with reduced rates egg expulsion, supporting 

the role of T cells in this process (Colombe et al., 2018; Karanja et al., 1997). While the T cell-

mediated enhancement of granuloma formation is clear, it is not always clear through which 

cytokines and pathways they function (Amiri et al., 1992; Cheever et al., 1999). In one study, the 

deficient granuloma formation and egg excretion in SCID mice were both rescued with 

supplemental TNF as well as activated T cell medium, but not with T cell medium pre-absorbed 

with anti-TNF antibody, indicating that their T cells were mediating granuloma formation and 

egg excretion through expression of TNF (Amiri et al., 1992). However, in a following 

publication in which they directly assessed the role of TNF in knockout mice, they found no 

defect in granuloma formation (Davies et al., 2004). Yet mice lacking the two receptors for TNF 

signaling, TNFR1 and TNFR2, had a reduction in granuloma formation, which was proposed to 

be due to diminished signaling through the TNF receptors via another ligand, such as 

lymphotoxin alpha (2004 Davies). Consistent with the TNF knockout mice, another group found 

that the defective granuloma formation in their SCID mice were not rescued with supplemental 

TNF (Cheever et al., 1999). Subsequently, they found that the diminished granuloma formation 

in their SCID mice was not due to TNF deficiency as this cytokine was at near normal levels, but 

was instead attributed to deficiency in IL-4, IL-5, IL-13, and gamma interferon (Cheever et al., 

1999). The role of IL-4 and IL-13 was confirmed in other studies in which combined IL-4 and 

IL-13 deficiency in mice resulted in smaller granulomas with an associated increase in 

hepatocyte damage and mortality, and an accumulation of eggs in the intestinal wall as they 

failed to translocate into the lumen of the intestines (Fallon et al., 2000).  

In contrast to the role of T cells in the adaptive immune response to egg, B cells function to 

produce antibodies which directly neutralize cytotoxic egg antigens, limiting their tissue-

damaging effects, and limiting granuloma formation (Dunne et al., 1991; Dunne et al., 1981; 

Hams et al., 2013; Jankovic et al., 1998; Pearce and MacDonald, 2002).  

 

1.2.3. Dual roles of granulomas in schistosomiasis 

While the granuloma has evolved as a protective mechanism, some pathogens usurp it for 

their own benefit, in which case the granuloma itself may contribute to pathology, taking on a 

complex, dually protective and pathogenic role. The best example of this is with perhaps the 
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oldest and longest-studied of the granulomatous diseases, tuberculosis (Cambier et al., 2014a; 

Davis and Ramakrishnan, 2009; Pagan et al., 2015; Ramakrishnan, 2012). This disease as caused 

by the bacterium, Mycobacterium tuberculosis, primarily affects the lungs where it establishes 

chronic infection leading to the formation of its hallmark structure, the TB granuloma. Its dually 

protective and pathogenic role is such that while the tuberculous granuloma can successfully 

isolate and eradicate their entrapped bacteria, it may also become a site for dissemination of 

infection to newly recruited, uninfected macrophages, thus increasing the intracellular niche for 

bacterial growth while also spreading the infection to other parts of the body following 

emigration of infected macrophages (Davis and Ramakrishnan, 2009; Pagan and Ramakrishnan, 

2018; Ramakrishnan, 2012). Furthermore, whereas the immune response relies on granulomas to 

clear bacteria, the bacteria rely on the granuloma for dissemination to a new host. Granulomas 

within the lung may undergo cell death and necrosis, rupturing and releasing bacteria into the 

alveolar space of the lungs which are then transmitted to others through coughing (Doenhoff, 

1998; Pagan and Ramakrishnan, 2018). While TB was used as an example, the complex nature in 

which granulomas may be protective and pathogenic is a feature in many granulomatous 

diseases, and so too has parallels in schistosomiasis.  

During the course of schistosomiasis also, the granulomas play roles in both protection and 

pathogenesis (Hams et al., 2013). Granulomas which form in response to liver-entrapped eggs 

protect the host by sequestering harmful egg secretions which would otherwise damage the 

hepatocytes (Hams et al., 2013). As a result, despite an abundance of accumulated eggs, the liver 

parenchyma is healthy (Hams et al., 2013). In contrast, the disruption of granuloma formation in 

immunocompromised animals leads to the development of liver pathology (Abdulla et al., 2011; 

Amiri et al., 1992; Dunne et al., 1981; Fallon et al., 2000; Hams et al., 2013; Herbert et al., 2004; 

Meleney et al., 1953; Symmers, 1904). In the intestines, granulomas are thought to protect the 

host by preventing translocation of intestinal bacteria back into the host during egg expulsion 

(Schwartz and Fallon, 2018). 

However, as aberrant eggs accumulate along the portal tract of the liver, the granulomas form 

through a period of expansion and then resolution (Chensue et al., 1995a; Chiu et al., 2004), 

eventually leaving behind a remnant eggshell within a fibrotic plaque (Symmers, 1904). As these 

fibrotic plaques accumulate over 5-15 years during chronic schistosomiasis, they produce 

periportal fibrosis (Burke et al., 2009; Colley and Secor, 2014; Symmers, 1904). This periportal 
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fibrosis acts as an obstructive bottleneck, causing portal hypertension and the development of 

esophageal varices which can rupture and lead to the major cause of death with schistosomiasis, 

internal hemorrhage (Cheever and Andrade, 1967; Weinstock, 1992; WHO, 2002 ; Wilson et al., 

2011). Additionally, obstructive fibrosis can also result in portosystemic shunting of eggs 

through alternative vascular pathways, bypassing the liver and lodging the eggs in other tissues 

such as the lungs, brain, and spinal cord, often with much more severe and immediate 

consequences (Carod-Artal, 2008; Papamatheakis et al., 2014; Schwartz, 2002; Weinstock, 

1992). For example, eggs accumulated in the arteries of the lungs induce granulomas, leading to 

pulmonary fibrosis and pulmonary hypertension, which in turn places excessive pressure on the 

right ventricle of the heart leading to heart failure and death, in a condition known as cor 

pulmonale (Schwartz, 2002). Other complications such as paralysis from aberrant egg deposition 

and granuloma formation around the spinal cord, although statistically rare, are well-recognized 

in endemic regions due to high prevalence of the disease (Nascimento-Carvalho and Moreno-

Carvalho, 2004).  

Lastly, whereas the schistosome egg granuloma can be both protective and pathogenic for the 

host, from the perspective of the parasite, granulomas are thought to be essential for the 

completion of its lifecycle cycle by facilitating the translocation of its eggs from the vasculature 

to the intestines where they are released back into the environment (Amiri et al., 1992; Cheever 

et al., 1993; Costain et al., 2018; Dunne et al., 1983; Hams et al., 2013; Karanja et al., 1997; 

McManus et al., 2018; Pearce and MacDonald, 2002; Schwartz and Fallon, 2018). The evidence 

for this granuloma-mediated translocation of eggs comes from tissue histopathology, in which 

eggs were directly observed to be in various stages of transit through the intestinal wall, and 

extravasating into the lumen of the intestines, within granulomas (Costain et al., 2018; Domingo 

and Warren, 1969; Fallon and Dunne, 1999; Fallon et al., 2000; Schwartz and Fallon, 2018). 

That the granuloma is an active participant in this translocation was best illustrated in a 

comparison of WT and immunocompromised (athymic, Cytoxan-treated, egg-tolerized) mice. 

Whereas the eggs in immunocompromised mice in were found primarily in the submucosa with 

little or no granulomatous response, the eggs in WT mice were found encased within 

granulomas, and at various stages of translocation throughout  the submucosa, lamina propria, 

and along the villi, and extravasating into the lumen of the intestines (1999 Dunne).  
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In support of this finding is that various immunocompromised animal models, including 

hydrocortisone-treated (Dunne et al., 1983), athymic (Doenhoff, 1998; Dunne et al., 1983), egg-

tolerized (Fallon and Dunne, 1999), IL-4/13-deficient (Fallon et al., 2000), and TNF-deficient 

SCID mice (Amiri et al., 1992) were all defective not only in granuloma formation, but also in 

egg excretion, further linking the granulomatous immune response with the translocation of eggs 

(Costain et al., 2018; Schwartz and Fallon, 2018).  

There is also evidence for immune-mediated translocation of eggs in humans. Although this 

observation was not uniform in all studies (Kallestrup et al., 2005), some studies found that 

Schistosoma co-infection in HIV-positive patients with acquired immunodeficiency had reduced 

egg expulsion which correlated with reduced CD4 T cell levels (Colombe et al., 2018; Karanja et 

al., 1997; Muok et al., 2013). Taken together, these results suggest that the mature egg secretes 

antigens so as to induce the formation of granulomas which facilitate its translocation through 

the tissues in order to complete its lifecycle.  

 

1.3. The parasite egg and its antigens  

1.3.1. Development of the parasite egg into a mature, antigen-secreting egg 

As the male and female adult schistosomes mate within the venules, the ovum is fertilized within 

the oviduct of the schistosome female, followed by the formation of the eggshell which encases 

the zygote along with 30-40 vitaline cells (Dewalick et al., 2011). Tyrosinases within the ootype 

catalyze its formation through the cross-linking of localized proteins which form its rigid, yet 

porous, protease-resistance matrix of proteins (deWalick et al., 2012; Fitzpatrick et al., 2007). 

The most abundant protein, which comprises 70% of the eggshell, is the eggshell-specific 

protein, p14 (Dewalick et al., 2011). This protein is highly expressed in the female worm, and 

only during ovulation (Ojopi et al., 2007). The remaining 30% of the eggshell is composed of an 

assortment of non-eggshell-specific, common cellular proteins (Dewalick et al., 2011). The 

eggshell once formed is unaltered chemically during, or following egg maturation (Dewalick et 

al., 2011; deWalick et al., 2012). After encapsulation within the eggshell is complete, the egg is 

then laid into the vasculature in its zygotic form (Jurberg et al., 2009).  

The newly laid immature egg absorbs nutrients from its host through 30 nm pores in its 

eggshell, which it utilizes for development (Ashton et al., 2001), until reaching maturity within 

approximately 7 days (Ashton et al., 2001; Jurberg et al., 2009; Mann et al., 2011; Michaels and 
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Prata, 1968). During the developmental process, a subshell syncytium forms, referred to as the 

inner envelope or Von Lichtenberg’s envelope, and it is this structure, present in the mature egg 

and absent in the immature egg which synthesizes antigens (Ashton et al., 2001; Jurberg et al., 

2009; Neill et al., 1988; Schramm et al., 2006). This fully formed mature egg is granuloma-

inducing (Jurberg et al., 2009), a property that is attributed to the appearance of these 

immunogenic antigens which are secreted through the eggshell of the mature egg into the 

surrounding environment (Ashton et al., 2001; Fitzsimmons et al., 2005; Mathieson and Wilson, 

2010; Schramm et al., 2006).  

 

1.3.2. Antigen-mediated granuloma formation 

Several decades of experiments suggest that antigens secreted by the mature parasite through its 

eggshell induce granuloma formation. Early observations of eggs in tissues found that minimal 

immune reactions were most commonly associated with immature eggs which had not reached 

developmental maturity, as well as those which were heat-killed and injected into mice and 

rabbits (Lichtenberg, 1964; Sorour, 1929). This lack of granuloma formation around immature 

and dead eggs was associated with the relative absence of immunostainable antigenic secretions, 

which in contrast were found in maximal secretory capacity in viable mature eggs, and 

corresponded with maximal granuloma development (Jurberg et al., 2009; Lichtenberg, 1964; 

Sorour, 1929; Von Lichtenberg et al., 1973). Based on these observations, a link was suggested 

between the presence of these egg secretions and the degree of granulomatous immune response.  

That these antigens were responsible for granuloma formation was directly validated in a body 

of work by Stephen Chensue in which the transfer of egg antigens to agarose beads made the 

beads highly granulomatous when injected into mice, demonstrating that the antigens were 

inducing the granulomas which formed around them (Chensue, 2013; Chensue et al., 1994; 

Chensue et al., 1995a; Chensue et al., 1995b; Chiu and Chensue, 2002; Chiu et al., 2004). 

Further, the antigen-mediated formation of granulomas around the beads was attributed to their 

ability to induce a variety of inflammatory cytokines and chemokines, consistent with those 

induced by eggs (Chensue, 2013; Chensue et al., 1994; Chensue et al., 1995a; Chensue et al., 

1995b; Chiu and Chensue, 2002; Chiu et al., 2004).  

More recently, the role of egg antigens in granuloma formation was further validated using 

genetic knockouts targeting the major egg antigens, omega-1, alpha-1, and kappa-5, which 
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diminished granuloma formation, thus providing additional evidence that the antigens produced 

by the eggs are mediating the formation of granulomas around them (Hagen et al., 2014; 

Ittiprasert et al., 2019).  

 

1.3.3. Antigens secreted by the mature egg   

Early immunohistochemistry experiments utilizing sera from infected mice identified the 

presence of immune-reactive secretions around the tissue-entrapped eggs, the abundance of 

which corresponded with granuloma intensity (Lichtenberg, 1964). Identification of these 

secreted egg antigens followed the fractionation of egg homogenates which revealed cationic 

fractions containing proteins which reacted strongly with serum from chronically infected mice 

(Dunne et al., 1981). These proteins were deemed omega, alpha, and kappa (Dunne et al., 1981). 

Later, the schistosome egg secretome was characterized as producing a simple 6-band pattern by 

SDS-PAGE (Ashton et al., 2001), followed by a more sensitive proteomics approach which 

identified a larger array of 188 secreted proteins (Cass et al., 2007). In addition to the protein 

secretome, more recently, the schistosome egg lipodome has been characterized as containing 

various secreted lipids, including prostaglandins, which are enriched in the egg stage of the 

parasite life cycle (Giera et al., 2018). Despite the array of various proteins and lipids found in 

the schistosome egg secretome, the vast majority of immunogenic activity and granuloma 

induction is still attributed to the proteins initially identified within the cationic fractions, omega-

1, alpha-1, and kappa-5 (Abdulla et al., 2011; Dunne et al., 1981; Everts et al., 2012; Everts et 

al., 2009; Hagen et al., 2014; Ittiprasert et al., 2019; Steinfelder et al., 2009).  

 

1.3.4. Omega-1, its properties and role in granuloma formation 

During its initial discovery, omega-1 was found to be the major target of the humoral immune 

response against eggs, with anti-omega-1 antibody being the most abundant antibody detected, 

and detectable in all chronically infected mice (Dunne et al., 1981). Furthermore, it was found 

that injection of serum containing this antibody protected against egg-induced hepatotoxicity in 

immunocompromised animals (Dunne et al., 1981), indicating that omega-1 is hepatotoxic, and 

indicating that the granuloma might form as a protective response to prevent hepatotoxicity 

(Dunne et al., 1981). Further testing in hepatocyte tissue cultures verified that omega-1 is 

responsible for the majority of egg-induced hepatotoxicity (Abdulla et al., 2011; Dunne et al., 
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1991; Dunne et al., 1981). Experiments testing the immunological properties of omega-1 found it 

to induce IL-4/13 expression in vitro in DC and T cell co-cultures, and in vivo following 

injection into the footpads of mice (Everts et al., 2012; Everts et al., 2009; Steinfelder et al., 

2009). Additionally, injection of omega-1 into the intraperitoneal cavity of mice induced cell 

death and IL-33 expression in macrophages and DCs (Hams et al., 2016). IL-33 is known to 

function as a DAMP/alarmin to alert the immune system to tissue damage or stress, and is a 

strong inducer of Th2 cytokines from both innate immune cells and Th2 cells (Gajardo Carrasco 

et al., 2015; Oboki et al., 2011).  

Recent advancements in gene knockdown approaches in eggs have found omega-1 to be the 

major component responsible for granuloma formation around them (Hagen et al., 2014; 

Ittiprasert et al., 2019). In 2014, a lentivirus-based transduction system was developed to deliver 

microRNA adapted short hairpin RNAs (shRNAmirs) into the parasite eggs to silence the 

expression of omega-1. Injection of these omega-1-silenced eggs into the tail vein of mice 

resulted in reduction in macrophage, DC, and T cell recruitment to the lungs, and a reduction in 

the size of the pulmonary granulomas which formed around the eggs (Hagen et al., 2014). In 

2019, a new approach was developed in which lentiviral transduction of a CRISPR/Cas9 

construct into the parasite eggs was performed to knockout the expression of omega-1 (Ittiprasert 

et al., 2019). This methodology was approximately 80% efficient, with both the omega-1 

transcript and the omega-1 RNase activity reduced to about 20% of normal levels (Ittiprasert et 

al., 2019). Antigens harvested from these eggs were likewise reduced in their ability to induce 

Th2 polarization in macrophage/T cell co-cultures, with a reduction in IL-4, IL-5, and TNF 

induction, and a trend of reduced IL-13 induction (Ittiprasert et al., 2019). When these eggs were 

injected into the tail vein of mice, their ability to induce pulmonary granulomas formation was 

greatly diminished (Ittiprasert et al., 2019).  

At the molecular level, omega-1 is a glycosylated (Dunne et al., 1991; Meevissen et al., 2010) 

ribonuclease (Everts et al., 2012; Fitzsimmons et al., 2005; Steinfelder et al., 2009) which gains 

entry into dendritic cells through recognition of its glycosylation by cell surface mannose 

receptors, and once internalized, co-localizes with and degrades host mRNA and rRNA resulting 

in inhibition of protein synthesis (Everts et al., 2012). Additionally, testing of omega-1 in cell 

cultures found that it alters DC cytoskeletal organization resulting in a rounder, less spread-out 

morphology with reduced adhesion to glass (Steinfelder et al., 2009). Similarly, omega-1 
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treatment also reduced their conjugation affinity with T cells, and this was proposed as a possible 

mechanism for Th2 polarization (Steinfelder et al., 2009). However, it is unclear if reduced 

conjugation affinity is causative of Th2 polarization, or an effect stemming from inhibition of 

protein synthesis. Despite the various known functions of omega-1, exactly how it induces 

granuloma formation is currently not known.  

 

1.3.5. Alpha-1 and Kappa-5 

The second major egg antigen is alpha-1, which contributes to the formation of granulomas 

around tissue-entrapped eggs (Hagen et al., 2014). Alpha-1 is the most abundant egg secretion, 

making up 83% of secreted egg antigens (Mathieson and Wilson, 2010) and found secreted in 

abundance around tissue-entrapped eggs (Schramm et al., 2003). Like omega-1, alpha-1 is a 

major hepatotoxic egg antigen (Abdulla et al., 2011), and likewise, might contribute to 

granuloma formation through the induction of a protective immune response to sequester this 

antigen (Abdulla et al., 2011). Alpha-1, also known as the interleukin-4 inducing principle of 

Schistosoma mansoni eggs (ISPE), may also contribute to the induction of granuloma formation 

based on its ability to induce IL-4 and IL-13 release from basophils (Knuhr et al., 2018; 

Schramm et al., 2003; Schramm et al., 2007). ISPE binds to all antibody isotypes, with the 

highest affinity for IgE (Meyer et al., 2015), and its induction of IL-4/13 release requires the 

presence of IgE (bound to the FcεRI) on basophils (Haisch et al., 2001). Alpha-1/ISPE is 

glycosylated (Wuhrer et al., 2006), and also contains a C-terminal nuclear localization sequence 

(NLS); however, neither internalization nor nuclear localization are required for induction of IL-

4/13 release from basophils (Kaur et al., 2011; Schramm et al., 2003). A mutant of alpha-1, 

named the Schistosoma mansoni chemokine-binding protein (smCKBP), binds to CXCL8 and 

inhibits neutrophil recruitment (Smith et al., 2005), which may contribute to shaping the cellular 

composition of the immune response to eggs. This smCKBP variant does not induce IL-4 release 

from basophils (Smith et al., 2005).  

The potential role of the third major egg antigen, kappa-5, is not clear. It is unique among the 

major egg antigens in that it is present both in the egg and in the miracidium (Everts et al., 2009). 

It contains structurally distinct LDN- glycan motifs, rather than the LeX glycan motifs of omega-

1 and alpha-1 (Meevissen et al., 2011; Wilbers et al., 2017), which were shown to be sufficient to 

induce granuloma formation when bound to beads (Van de Vijver et al., 2006). Knockdown of 
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kappa-5 expression in eggs results in a minor reduction in granuloma size, indicating that any 

contribution it has is minor relative to that of omega-1 and alpha-1 (Hagen et al., 2014). 

However, its potential role in granuloma formation is unclear, as while kappa-5 accumulates 

within the subshell envelop, it does not diffuse through the eggshell, and subsequently is not 

found among the secreted egg antigens, nor is it found secreted around tissue-entrapped eggs 

(Mathieson and Wilson, 2010; Schramm et al., 2009). 

 

1.4. Human and animal models for schistosomiasis 

1.4.1. Initial schistosomiasis etiology and life-cycle discoveries gleaned from humans and 

animals 

While the disease symptoms of schistosomiasis and its waterborne transmission were 

documented over 2,000 years ago, separately in both ancient Egypt and China (Mao and Shao, 

1982; Shokeir and Hussein, 1999), its parasitic origin and pathology was not discovered until the 

application of science in the 1800s. The history of schistosomiasis research began with Theodor 

Bilharz, a German physician and pioneer in the field of parasitology who discovered and 

characterized the schistosome worms and eggs of S. haematobium in a human cadaver while 

performing an autopsy in Egypt in 1851, and hypothesized a link between the parasite and the 

disease (Di Bella et al., 2018; Tan and Ahana, 2007). Subsequent pathology of the disease within 

the definitive human host, was likewise obtained primarily in the clinical setting and from 

autopsies; Symmers in 1904 characterized the periovular liver pathology as “pipe-stem fibrosis” 

based on the similar appearance to the clay pipes used for smoking at the time (Symmers, 1904).  

Patrick Manson was the first to propose that there were separate species of parasite based on 

the distinct location of worms in cadavers, their route of egg transmission (bladder or intestines), 

and the distinct morphology (terminal or lateral spines) of the eggs found within each anatomical 

site. Thus, distinguishing a separate species from S. haematobium which was later to be named S. 

mansoni in his honor. Based on the collection of eggs from patients, their hatching and the 

swimming behavior of miracidia, he also predicted the requirement of an intermediate host for 

the parasite, and proposed it might be a mollusk (Di Bella et al., 2018; Manson, 1902; Manson, 

1905).  
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Meanwhile, in isolation from western research, in 1887 a Japanese physician found eggs in 

the feces of patients who were ill with their regional variety of schistosomiasis; a perplexing 

waterborne disease of unknown etiology which had been documented in Japan at least as far 

back as the 1500s (Kajihara and Hirayama, 2011; Tanaka and Tsuji, 1997). In 1898, parasite 

eggs were found in the liver of an autopsy patient who had died from the disease, and then in 

1904, the schistosome worm was found during autopsy of a farmer from the Katayama district, 

an endemic region for the disease (Kajihara and Hirayama, 2011; Tanaka and Tsuji, 1997), thus 

linking together the disease with the parasite and its eggs. Following these human autopsies, a 

series of experiments were performed using animal models as a surrogate for the human host 

(Kajihara and Hirayama, 2011; Tanaka and Tsuji, 1997). By submerging bovines, dogs, cats, 

rabbits, and mice into infected water, followed by autopsies and the study of thousands of 

histological sections, they uncovered the lifecycle stages within the definitive host, from 

percutaneous infection, development and maturation to adult worms, and then sexual 

reproduction and the transmission of eggs (Kajihara and Hirayama, 2011; Tanaka and Tsuji, 

1997). Then, by 1913 they had identified the intermediate host, an aquatic snail abundant within 

infected waters, within which they detailed the parasite stages; from percutaneous infection of 

the snail by miracidia, formation of sporocysts, asexual reproduction, and the emergence of 

cercaria and their transmission back into animals, thus completing their understanding of the 

lifecycle of Schistosoma (Kajihara and Hirayama, 2011; Stothard et al., 2017; Tanaka and Tsuji, 

1997).  

 

1.4.2. Animal models of schistosomiasis 

While much of the basic pathology had been determined in the clinical setting from patients and 

cadavers, and from the basic use of animals (bovines, dogs, cats, rabbits, and mice) in research 

during the early 1900s, more advanced animal models were required to gain a deeper 

understanding of the disease at the molecular and immunobiological level. There are many 

potential animal models for schistosomiasis, as human-infecting schistosomes are also found 

naturally in variety of other mammals, including; non-human primates such as chimpanzees, 

gorillas, monkeys, and baboons; domesticated animals such as water buffalo, horses, pigs, dogs, 

and cats; wild rodents and procyonids (Standley et al., 2012). While non-human primates such as 

chimpanzees and monkeys have been used as experimental animal models in the study of 
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schistosomiasis due to their genetic and physiological similarity with humans (Cheever et al., 

2002; Farah et al., 2001; Von Lichtenberg and Sadun, 1968), their use has long been unviable 

due to high costs and ethical concerns. To circumvent this, a variety of smaller and more 

affordable rodent models have been used, including guinea pigs, hamsters, rats, and mice 

(Cheever et al., 2002; Farah et al., 2001; Hsu et al., 1973; Von Lichtenberg et al., 1973). Among 

these, most of what we have learned about the immunology of schistosomiasis came from the 

mouse model of infection due to the availability of genetic tools and mutants, and their 

susceptibility to natural infection (Farah et al., 2001). Mice can be infected naturally by 

percutaneous exposure to cercaria, after which the parasites will mature to adulthood, 

establishing natural infection and egg-laying (Farah et al., 2001). The eggs will translocate 

through the intestinal wall into the lumen of the intestines to be shed in feces, or in the liver the 

eggs will induce the formation of hepatic granulomas and fibrosis (Dunne et al., 1983; Fallon 

and Dunne, 1999; Fallon et al., 2000). Whereas natural infection produces asynchronous 

granulomas as the eggs are laid continuously and at different time points (Moore and 

Sandground, 1956; Schwartz and Fallon, 2018), synchronous granulomas can be produced 

following the injection of eggs or beads into the tail vein to establish pulmonary granulomas, or 

into the portal vein to establish hepatic granulomas (Cheever et al., 2002; Chensue et al., 1995b; 

Eltoum et al., 1995). Despite their advantages, experiments performed with rodents are typically 

limited to fixed timepoint analyses of euthanized animals following removal of tissue samples, 

organs, and cells (Chensue et al., 1995b; Pearce et al., 1996), making the earliest response 

difficult to determine, with analysis only reliable after days following infection (Lichtenberg, 

1962). In essence, there is no perfect animal model, with the best solution being the usage of 

various animal models to complement each other to build a bigger picture.  

 

1.4.3. Zebrafish as an animal model 

Zebrafish (Danio rerio) are small freshwater fish native to the rivers and paddy fields in India 

(Arunachalam et al., 2013). Initially brought to the west as an aquarium pet, zebrafish were 

introduced as a vertebrate animal model for laboratory research in the 1960s, and then later 

popularized by the work of George Streisinger in the 1980s for their use in genetics and 

developmental biology (Varga, 2018). As a vertebrate organism, they share the same major 

organs and tissues as humans, including epithelial, blood, bone, muscle, heart, kidney, intestines, 
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and eyes (Santoriello and Zon, 2012; Takaki et al., 2018).  At the genetic level, 70% of human 

genes, and 84% of disease-associated genes have an orthologue in zebrafish (Cambier et al., 

2014b; Clay et al., 2008; Howe et al., 2013; Oehlers et al., 2017; Tobin et al., 2010; Yang et al., 

2012). Zebrafish are teleosts, and as such, have both innate and adaptive immune systems similar 

to those in humans (Renshaw and Trede, 2012). While experiments in the context of adaptive 

immunity can be performed on juveniles and adults following the development of their adaptive 

immune system after 4-6 weeks post-fertilization, experiments in larvae allow for the analysis of 

immune responses in the sole context of innate immunity (Lam et al., 2004; Novoa and Figueras, 

2012; Traver et al., 2003; Trede et al., 2004).  

In addition to their genetic, physiological, and immunological similarities with humans, 

zebrafish possess many additional traits that make them highly useful as a vertebrate animal 

model in the study of human disease. They are highly fecund and develop rapidly, with a single 

mating between an adult pair producing hundreds of fertilized eggs, enough for several 

experiments (Lieschke and Currie, 2007). Additionally, each of these embryos develop rapidly, 

allowing experiments to be performed as early as 1 day post-fertilization at which time they have 

already developed into larvae with their heart and most organ systems formed, including a 

functioning innate immune system composed of monocytes, resident macrophages, and 

neutrophils (Meyers, 2018; Takaki et al., 2013; Traver et al., 2003).  

Most importantly, zebrafish are small and optically transparent during their first few weeks of 

life, allowing for high resolution, multi-timepoint intravital microscopy to track and visualize 

immunological processes in individual living animals, as they occur. To facilitate this, several 

fluorescently labeled transgenic fish lines were developed in which cell-specific expression of 

fluorescent proteins allows for the color-based visualization of distinct cell types such as 

macrophages and neutrophils (Hall et al., 2007; Pagan et al., 2015). Complementing this are a 

variety of injectable and immersible dyes commercially available for identifying cellular subsets 

(Berg et al., 2016; Davis and Ramakrishnan, 2009).  

Advantageous in the study of the genetic component of disease, zebrafish are genetically 

tractable with a variety of tools to easily manipulate gene expression de novo, both transiently 

and permanently. Embryos can be injected at the 1-cell stage with the newly adapted 

CRISPR/Cas9 system to mutagenize a target gene (Wu et al., 2018). The resulting crispant larvae 

can be used the next day for experiments (McManus et al., 2018; Wu et al., 2018), or they can be 
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raised and bred to propagate the mutation in a stable fish line (Wu et al., 2018). The full genome 

has been sequenced and annotated relative to the human genome (Howe et al., 2013), and is 

complemented by additional genetic tools which include the Zebrafish Mutation Project (ZMP); 

a large library of zebrafish mutants generated by ENU-mutagenesis during a forward genetics 

approach at the Wellcome Sanger Institute (WSI) (Kettleborough et al., 2013). It is due to these 

various traits that the use of zebrafish as an animal model has expanded to encompass a variety 

of infectious diseases.  

 

1.4.4. Zebrafish as a model to understand the formation and function of the tuberculosis 

granuloma  

The use of zebrafish as a model organism expanded further to encompass infectious diseases 

with its development as an animal model for tuberculosis pathogenesis by L. Ramakrishnan since 

2000 (Ramakrishnan, 2020). This led to new understanding of tuberculosis pathogenesis as well 

as a deeper insight into granuloma biology (Davis and Ramakrishnan, 2009; Pagan and 

Ramakrishnan, 2018; Ramakrishnan, 2020; Takaki et al., 2018; Volkman et al., 2010).   

Within the zebrafish it was found that at the onset of infection, mycobacteria were controlling 

the cellular response that formed to them. Whereas the first responders to the initial infection are 

resident macrophages, it was found that through the coordinated usage of two virulence-

associated lipids, PDIM and PGL, that the bacteria selectively control cellular recruitment 

(Cambier et al., 2017; Cambier et al., 2014b). In the former case, PDIM functions to mask 

bacterial pattern-associated molecular patterns (PAMPs) from TLR/MyD88-dependent 

recruitment of microbicidal macrophages, while the other lipid, PGL, activates the STING 

pathway, leading to the expression of CCL2 to selectively recruit the more infection-permissive 

monocytes (Cambier et al., 2017; Cambier et al., 2014b). While initially discovered in the 

zebrafish, these finding were complemented using the mouse aerosol model of tuberculosis 

infection, and cultured human alveolar macrophages (Cambier et al., 2017; Cambier et al., 

2014b), and taken together, were used to explain the observation in human tuberculosis as to 

why infections initiate deep in the lower respiratory tract of the lungs, away from the inhaled 

microflora and the microbicidal macrophages which respond to them. Additional detailing of the 

early recruitment steps found that whereas macrophages and then monocytes are recruited during 

the early stages of infection, neutrophils are not (Yang et al., 2012). That only later when the 
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infection progresses to cellular necrosis that neutrophils are recruited, not by the bacterium, but 

by signals produced by dead and dying macrophages (Yang et al., 2012).  

Within the zebrafish it was also found that the tuberculous granuloma, long thought to 

function solely as a host-protective immune response, could also be a structure exploited by the 

bacteria to serve as a niche for bacterial growth and dissemination to newly recruited, uninfected 

macrophages (Davis and Ramakrishnan, 2009). Moreover, it was found that mycobacteria 

actively induce the formation of this immune structure through expression of a virulence locus, 

ESX-1 (Volkman et al., 2004; Volkman et al., 2010). The ESX-1 locus encodes a type VII 

secretion system, and confers the mycobacteria with the ability to induce contact-dependent lysis 

of host cells (Conrad et al., 2017), and through induction of MMP9 expression in epithelial cells 

and macrophages, induces the formation of the granuloma (Volkman et al., 2010).  

Using the zebrafish model, other host factors influencing the infection outcome were 

discovered, such as the finding that infection induces localized hypoxia and the subsequent 

expression of the angiogenic factor, Vegfa, which causes vascularization of the tuberculous 

granuloma (Oehlers et al., 2015). This pathogen-induced host response was found to benefit the 

bacteria, with pharmacological inhibition of angiogenesis limiting bacterial burden and 

dissemination of infection (Oehlers et al., 2015).  

During analysis of granuloma formation, it was found that the specialized differentiation of 

macrophages into epithelioid macrophages observed in human tuberculosis granulomas, also 

occurred in the fish (Cronan et al., 2016). Further, that this was yet another mechanism exploited 

by the bacteria, in which the epithelialization of the granuloma limited macrophage access 

resulting in poor control of bacterial growth and worse disease outcome (Cronan et al., 2016).  

During a forward genetics screen to identify host determinants for resistance and 

susceptibility to infection, it was discovered that balanced expression of leukotriene A4 

hydrolase (LTA4H), an enzyme which catalyzes the synthesis of the pro-inflammatory lipoxin, 

LTB4, was essential for host defense against infection – a finding which translated to human 

cohorts in which homozygotes with a single functional allele for LTA4H had the greatest level of 

resistance to infection (Tobin et al., 2010). It was later found that this heterozygous advantage  

functioned through optimal expression of TNF levels, with both TNF deficiency and TNF excess 

resulting in worse disease outcome (Roca and Ramakrishnan, 2013; Tobin et al., 2012). TNF 

deficiency led to poor microbicidal control of infection and uncontrolled extracellular bacterial 
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growth, and TNF excess resulted in induction of programmed cell death resulting in the same  

uncontrolled extracellular bacterial growth as TNF deficiency (Clay et al., 2008; Roca and 

Ramakrishnan, 2013; Tobin et al., 2012).  

Following the development of the zebrafish as an animal model for tuberculosis pathogenesis, 

their use has expanded to encompass a variety of other infectious diseases, including various 

bacterial, viral, fungal, and parasitic infections (Brannon et al., 2009; Gratacap and Wheeler, 

2014; Rosowski et al., 2018; Sullivan et al., 2017; Takaki et al., 2018; Varela et al., 2017).  

In this thesis, I report the development of the zebrafish as an animal model for studying the 

schistosome granuloma, which I use to gain new insight into host and parasite factors required 

for the modulation of the timing of granuloma formation by the Schistosoma mansoni egg so as 

to promote its transmission.  

 

 

 



25 

 

 

Chapter 2. Materials and Methods   

2.1. Experimental animal model details  

2.1.1. Ethics statement  

All animal experiments were conducted in compliance with guidelines from the UK Home 

Office and approved by the Wellcome Sanger Institute (WSI) Animal Welfare and Ethical 

Review Body (AWERB). 

 

2.1.2. Husbandry of zebrafish 

All zebrafish lines were maintained on a recirculating aquaculture system with a 14 hour light - 

10 hour dark cycle. Fish were fed dry food and brine shrimp twice a day. Zebrafish embryos 

were housed in fish water (reverse osmosis water containing 0.18 g/l Instant Ocean) at 28.5°C. 

Embryos were maintained in 0.25 μg/ml methylene blue from collection to 1 day post-

fertilization (dpf). At 24 hours post-fertilization 0.003% PTU (1-phenyl-2-thiourea, Sigma) was 

added to prevent pigmentation.   

 

2.1.3. Zebrafish lines  

Experiments requiring larvae with red-fluorescent macrophages were performed using 

Tg(mpeg1:Brainbow)w201 (Pagan et al., 2015). For experiments requiring analysis of neutrophils, 

Tg(lyz:EGFP)nz117 (Hall et al., 2007) were crossed with Tg(mpeg1:Brainbow)w201 (Pagan et al., 

2015) to produce larvae with green neutrophils and red macrophages. Experiments assessing 

early macrophage recruitment in response to beads or ruptured immature eggs utilized 

Tg(mfap4:nlsVenus-2A-tdTomato-CAAX)(A. Pagán, unpublished). All zebrafish lines were 

produced in an AB background, with the exception of Tg(mfap4:nlsVenus-2A-tdTomato-

CAAX) which utilized a mixed AB/TLF background.     

 

2.1.4. Generation of the TNFR1 mutant and its usage  

The zebrafish TNFR1 mutant (tnfrsf1arr19) was generated using CRISPR Cas9 technology, 

targeting the sequence TGGTGGAAACAAGACTATGAA of the third exon of the gene 

(ENSG00000067182) using a T7 promoter-generated guide RNA. Sequencing verified the 

mutation as a 25 bp deletion (ATGAAGGGAAATTGTCTTGAAAATG) and 6 bp insertion 
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(TGGTGG), resulting in a frame shift and introduction of a premature stop codon soon after the 

start codon. HRM genotyping was performed using the TNFR1-HRM1- forward and reverse 

primer set (5’-GTTCCCCACAGGTTCTAACCAG-3’ and 5’-

CTTGATGGCATTTATCACAGCAGA-3’, respectively). TNFR1 heterozygotes in the 

macrophage reporter background, Tg(mpeg1:YFP)w200 (Roca and Ramakrishnan, 2013), were 

incrossed, genotyped, and sorted as fluorescence-positive, homozygous TNFR1 mutants or WT 

siblings. Homozygous TNFR1 mutants or WT siblings were then incrossed to generate larvae for 

experiments.  

 

2.2. Preparation of eggs, egg antigens, and recombinant omega-1  

2.2.1. Isolation and manipulation of schistosome eggs 

The complete life cycle of Schistosoma mansoni NMRI (Puerto Rican) strain is maintained at the 

WSI by breeding and infecting susceptible Biomphalaria glabrata snails, and mice. Schistosome 

eggs were harvested as previously described (Mann et al., 2010). Briefly, anesthetized Balb/c 

female mice were infected by tail submersion in water containing 250 S. mansoni cercariae 

collected from experimentally-infected snails, and 6 weeks later euthanized by an overdose of 

Euthasol (sodium pentobarbital and sodium phenytoin, 40 mg per mouse) delivered by 

intraperitoneal injection. Mixed-sex adult worms were collected by portal perfusion, washed and 

maintained in culture for in vitro laid eggs (IVLE) collection (below). The mouse livers were 

removed after the portal perfusion, minced with a sterile razor blade in 1X PBS containing 200 

U/ml penicillin, 200 μg/ml streptomycin and 500 ng/ml amphotericin B (i.e. 2% antibiotic-

antimycotic - ThermoFisher Scientific), and incubated with 5% clostridial collagenase (Sigma) in 

1X PBS with 2% antibiotic-antimycotic at 37°C with shaking for 16 hours. The digested liver 

tissue mixed with the Schistosoma eggs was washed three times with 1X PBS with 2% 

antibiotic-antimycotic by centrifugation at 400 g for 5 min at room temperature and serially 

filtered through a sterile 250 μm and 150 μm sieve. The eggs were then separated from the liver 

tissue by a sucrose-based Percoll gradient and washed three times as above. The eggs were kept 

at 37°C, 5% CO2 in DMEM supplemented with 10% FBS and 2% antibiotic-antimycotic. All the 

procedures were performed in sterile conditions inside a biological safety cabinet. For 

experiments comparing eggs from liver and intestinal tissue, and small and large intestinal 

luminal content (feces), liver and intestinal tissue eggs were isolated as above, but with serial 
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passage through 300 μm and 200 μm filters (pluriSelect, 43-50300-01 and 43-50200-01). For 

isolation of eggs from the lumen of the small and large intestines, the luminal content was gently 

extracted by squeezing the intestines, which contained both intestinal feces and translocated 

eggs. S. mansoni IVLE were harvested as previously described (Mann et al., 2010; Rinaldi et al., 

2012). Briefly, schistosome mixed-sex worms collected by portal perfusion were washed with 

sterile 1X PBS and 2% antibiotic-antimycotic, placed in 6-well plates and cultured in modified 

Basch’s medium (Mann et al., 2010) at 37°C, 5% CO2. Two days later, the eggs laid in vitro by 

the cultured worm pairs were collected from the bottom of the well. For experiments using 

immature IVLE, eggs were implanted into zebrafish larvae soon after collection, and for 

experiments using mature IVLE, eggs were cultured in modified Basch’s medium at 37°C, 5% 

CO2 for 6 days before being implanted into zebrafish larvae. For experiments using heat-killed 

eggs, the eggs were killed at 90°C for 15 minutes and incubated in 1 mL of modified Basch’s 

medium for 3 days to wash away residual egg antigens. Old dead eggs were created by stored at 

4°C for >12 months and were verified as unviable based on lack of miracidial movement and 

hatching. For experiments using ruptured immature eggs, the CAIN was used to apply 

downwards pressure in combination with a sideways motion over the glass slide.  

 

2.2.2. Soluble Egg Antigens (SEA) 

SEA was prepared by Gabriele Schramm as previously described (Schramm et al., 2018). 

Briefly, isolated eggs were homogenized in PBS, pH 7.5, using a sterile glass homogenizer. The 

homogenate was then centrifuged at 21 krcf for 20 minutes. Supernatants were pooled and then 

dialyzed overnight in PBS using a 3.5 kDa molecular weight cutoff dialyzer. Sample was then 

centrifuged at 21 krcf for 20 minutes, and supernatant (SEA) was aliquoted and stored at -80°C. 

SEA was quantified for protein concentration using the Micro-BCA assay (Pierce, 23225), and 

quality controlled by SDS-PAGE and western blotting against the S. mansoni antigens, omega-1, 

alpha-1, and kappa-5. Quality control for low LPS content was performed using the Chromo-

LAL assay (Associate of Cape Cod, Inc., C0031-5). SEA from WT and omega-1 knockout eggs 

were prepared by Wannaporn Ittiprasert as previously described (Ittiprasert et al., 2019).  
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2.2.3. Recombinant omega-1  

Recombinant plant-expressed omega-1 engineered to contain native-like LeX glycans were 

prepared by Ruud Wilbers as previously described (Wilbers et al., 2017). WT and RNase mutant 

omega-1 were prepared by Gabriel Schramm as previously described ((Everts et al., 2012). SEA 

from WT and corresponding omega-1 knockout eggs were injected at 1 ng per hindbrain 

ventricle. For comparison of SEA and plant-expressed omega-1, SEA was injected at 2 ng per 

hindbrain ventricle (1.5 nL injection of 1.4 mg/mL SEA), and plant-expressed omega-1 with 

LeX glycans (Wilbers et al., 2017) was injected at 0.02 ng per hindbrain ventricle, the relative 

concentration of omega-1 present in SEA (G. Schramm, personal communication). For DEPC 

inactivation of plant-expressed omega-1, 1 μL of 0.07 M DEPC (1/100 dilution of Sigma, 

D5758) was added to 5 μL of 1.5 mg/mL omega-1 (12 mM final concentration of DEPC), and 

then incubated for 1 hour at 37°C. Because the small volume of protein did not allow for 

ultrafiltration and requantification of protein, the sample was simply diluted 1/100 in PBS and 

then 0.02 ng of protein injected into the hindbrain ventricle. For comparison, control sample was 

incubated at 37°C (without DEPC-treatment) and then diluted 1/100 in PBS. Because the HEK-

expressed WT and RNase mutant omega-1 (H58F) lack the native-like LeX glycans in plant-

expressed and natural omega-1 (Everts et al., 2012; Everts et al., 2009), they were injected at a 5-

fold higher concentration of 0.1 ng per hindbrain ventricle. All hindbrain injections of antigens 

were assayed at 6 hours post-injection.  

 

2.3. Preparation of bacteria 

2.3.1. Preparation of Mycobacterium marinum 

The culture and preparation of Mycobacterium marinum was previously described in detail 

(Takaki et al., 2013). Briefly, Mycobacterium marinum M strain (ATCC #BAA-535) 

constitutively expressing EBFP2 (strain KT30)(Takaki et al., 2013) was cultured in 7H9OADC, 

syringed to disrupt clumps, and then passaged through a 5 μm filter to generate a single-cell 

suspension of bacteria. The filtrate was concentrated to 100 CFU/nL by centrifugation and then 

prepared as single-use 5 μL aliquots and stored at -80°C. Before use, each aliquot was thawed, 

and zebrafish larvae were infected with 20 CFU (Figure 3.1 and 3.2) or 75 CFU (Figure 4.1) of 

Mycobacterium marinum via injection into the hindbrain ventricle. 
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2.3.2. Preparation of Pseudomonas aeruginosa 

Pseudomonas aeruginosa (strain MPAO1, courtesy of Professor Gordon Dougan) was grown 

overnight in LB medium at 37°C with shaking, and then prepared as 5 μL aliquots containing 

400 CFU/nL and stored at -80°C. Before use, each aliquot was thawed, and zebrafish larvae were 

infected with 200 CFU of Pseudomonas aeruginosa via injection into the hindbrain ventricle.  

 

2.4. Implantation of schistosome eggs and beads 

2.4.1. Implantation of schistosome eggs  

Capillary-Assisted Implantation Needles (CAIN) were created by pulling borosilicate thin wall 

with filament capillaries (GC100TF-10, Harvard Instruments) using a micropipette puller (Sutter 

Instruments, P-2000) with the following settings: Heat = 350, FIL = 4, VEL = 50, DEL = 225, 

PUL = 150. The tips of pulled needles were opened with jeweler’s forceps and then double-

beveled using a MicroForge-Grinding Center (MFG-5, Harvard Instruments). Micromanipulation 

was achieved using a 3-axis micromanipulator (Narishige, M-152) with pressure control using a 

FemtoJet Express microinjection unit (Eppendorf). The VAMP (Vacuum-Assisted MicroProbe) 

was previously described (Takaki et al., 2013). Larval zebrafish were anesthetized and implanted 

at 30 hpf in 0.252 g/L tricaine (Sigma, A5040) in a modified Schistosomula Wash medium (500 

ml DMEM, 5 ml 1M HEPES and 2% antibiotic-antimycotic) to prevent egg hatching during 

implantation. Anesthetized larvae were grasped using the VAMP and an incision was made in 

the forebrain region using the CAIN. After making an incision, a single schistosome egg was 

picked up using the capillary action of the CAIN, and passed through the incision and deposited 

into the hindbrain ventricle (Movie 2).  

 

2.4.2. Implantation of beads 

Zebrafish larvae were implanted with Sepharose (Sigma, C9142), polyethylene (Cospheric, 

CPMS-0.96 63-75um and CPMS-0.96 27-32um), and polystyrene (Generon, 07314-5) 

microspheres in fish water containing 0.252 g/L tricaine (Sigma, A5040) using the same 

technique as with schistosome egg implantations.  

 

 

https://www.dropbox.com/s/l2i9rmsjmasv5pz/Movie%20S1.%20Implantation.wmv?dl=0
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2.5. Hindbrain ventricle microinjection 

Hindbrain ventricle injection of bacteria and soluble reagents were performed under anesthesia 

with 0.252 g/L tricaine (Sigma, A5040) using a microinjection needle supplied to a FemtoJet 

Express microinjection unit (Eppendorf), with larval manipulation performed using the VAMP 

(Takaki et al., 2013) (Movie 1).  

 

2.6. Confocal microscopy 

Zebrafish were anesthetized in fish water containing tricaine and then and mounted onto optical 

bottom plates (MatTek Corporation, P06G-1.5-20-F) in 1% low melting point agarose 

(Invitrogen, 16520-100)  as previously described (Takaki et al., 2013). Microscopy was 

performed using a Nikon A1 confocal laser scanning confocal microscopy with a 20x Plan Apo 

0.75 NA objective and a Galvano scanner, acquiring 30-80 μm z-stacks with 2-3 μm z-step 

intervals. Timelapse microscopy was performed at physiological temperature using a heat 

chamber set to 28°C (Okolab) with an acquisition interval of 2.5-3 minutes. For multi-day 

timelapse imaging, zebrafish larvae were carefully removed using jeweler's forceps and returned 

to their standard housing (see husbandry) for imaging at later timepoints.  

 

2.7. Immunofluorescence staining 

Immunofluorescence was performed as previously described (Cronan et al., 2016). Briefly, 

zebrafish larvae were fixed in Dent’s fixative overnight at 4°C, rehydrated in PBS containing 

0.5% tween 20, and then blocked for 1 hour in PBDTxGs (PBS containing 1% BSA, 1% DMSO, 

0.1% Triton X-100,  2% goat serum). Mouse anti-E-cadherin antibody, clone 36 (BD, 610181) 

was added at a 1/500 dilution followed by incubation overnight at 4°C. Larvae were washed in 

PBDTxGs and then Alexa Fluor 647 Goat Anti-Mouse IgG (H+L) antibody (ThermoFisher, A-

21236) added at a 1/500 dilution followed by incubation overnight. Larvae were washed 5 times 

in PBDTxGs before analysis.  

 

 

https://youtu.be/f3vQOYZFAYg
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2.8. Analysis of eggs from liver, intestinal tissue, and feces  

All eggs were analyzed by microscopy and scored as immature or mature based morphological 

differences in size and shape as characterized by Jurberg (2009 Jurberg). Eggs from the liver and 

intestinal tissue were analyzed in 1x PBS. Eggs from the luminal content of the small intestine 

were imaged in a petri plate using a glass coverslip to create a thin section of sample to image 

through. Eggs from the large intestines were diluted in 2% methyl cellulose and spread thinly 

across a petri plate to dilute the fecal matter and create a thin section of sample for analysis. 

Mature and immature eggs were imaged by brightfield microscopy, and then their lengths and 

widths were determined using the measurement function within the ImageJ analysis software. 

Volumes were calculated from dimensions using the formula for the volume of a prolate 

spheroid (v=4/3πab2).  

 

2.9. Quantification and statistical analysis   

2.9.1. Phagocyte recruitment  

For quantification of phagocyte recruitment, fluorescence confocal microscopy was performed, 

capturing z-stack images at the designated timepoint following implantation of eggs or beads, or 

the injection of soluble antigens or bacteria. Experimental groups were then blinded, and 3D 

rendering of confocal images were used to count the number of phagocytes in contact with the 

schistosome egg or bead, or the number of phagocytes within the hindbrain ventricle following 

injection of soluble antigens or bacteria.  

 

2.9.2. Determination of egg and bead volumes 

Schistosome eggs were stained with Coomassie InstantBlue dye (Sigma, ISB1L) and imaged by 

confocal microscopy with the 641 nm laser and CY5 HYQ filter, 590-650 nm excitation and 

663-738 nm emission. Using Imaris X64 (Bitplane) 3D surface rendering of the eggs were then 

generated and used to calculate the egg volumes. Bead volumes calculated using the median 

radius (1/2 diameter) and formula for the volume of a sphere (v=4/3πr3).  

 

2.9.3. Quantification of infection burden  

Bacterial infections and quantification of infection burden was performed as previously 

described (Takaki et al., 2013). Briefly, 75 CFU Mycobacterium marinum was microinjected into 
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the caudal vein of zebrafish larvae at 36 hours post-fertilization. At 4 days post-infection larvae 

were imaged by inverted fluorescence microscopy and bacterial fluorescence quantified from 

images.  

2.9.4. Granuloma measurement 

Confocal images were used for quantifying the number of macrophages in contact with the egg, 

and subsequent classification of the immune response. Granuloma size was quantified by 

fluorescence analysis of confocal z-stacks which were flattened, and then fluorescent 

macrophages comprising the granuloma area was measured by fluorescent pixel counts (FPC) 

(Takaki et al., 2013).  

 

2.9.5. Statistical analysis  

Statistical analyses were performed using Prism 5.01 (GraphPad Software), with each statistical 

test used specified in the corresponding figure legend. Post-test p-values are as follows: ns, not 

significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Where the n value is given 

and not represented graphically in the figure, n represents the number of zebrafish used for each 

experimental group. 
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Chapter 3. Schistosoma mansoni eggs modulate the timing 

of granuloma formation to promote transmission   

3.1. Background and significance  

Human schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, affects more 

than 200 million people worldwide (WHO, 2019). Adult schistosomes live in the mesenteric 

venules of their definitive hosts, humans, where they produce eggs that are shed into the 

environment through feces or urine, depending on the schistosome species (Colley and Secor, 

2014). Upon reaching fresh water, the eggs hatch releasing free swimming larvae, miracidia, that 

can then infect their intermediate snail hosts (Colley and Secor, 2014). In the snails, they 

reproduce asexually and mature to produce cercarial larvae, which are released into the water, 

and infect humans by penetrating the skin (Colley and Secor, 2014). In the case of Schistosoma 

mansoni, the most studied and geographically widespread species, the egg-laying adult pair 

resides in the mesenteric venous plexus where they produce eggs (Nation et al., 2020). The eggs 

are shed by translocation through the venule and then the intestinal wall into the feces; however, 

many become lodged in the intestinal wall or the liver (Hams et al., 2013; McManus et al., 2018; 

Nation et al., 2020; Schwartz and Fallon, 2018).  

As the egg matures, it secretes antigens that provoke the formation of the granuloma which 

encases it (Ashton et al., 2001; Boros and Warren, 1970; Chiu and Chensue, 2002; Jurberg et al., 

2009). For the host, the granuloma may play a dual function - both protective and pathogenic 

(Hams et al., 2013). On the one hand, it may protect the host by sequestering toxic egg antigens, 

and by preventing translocation of bacteria from the intestinal lumen into the tissues as the egg 

breaches the intestinal wall to exit the host (Costain et al., 2018; Hams et al., 2013; Pagan and 

Ramakrishnan, 2018; Schwartz and Fallon, 2018). On the other hand, the chronic granulomas 

around tissue-trapped eggs, particularly those in the liver, are the principal drivers of disease 

pathogenesis and morbidity (Hams et al., 2013; Pagan and Ramakrishnan, 2018). The chronic 

Schistosoma granuloma has a complex cellular composition with an abundance of myeloid cells, 

lymphocytes, eosinophils, and fibroblasts that act in concert to cause tissue pathology (Hams et 

al., 2013; Pagan and Ramakrishnan, 2018). The fibrogenic granulomatous response to the liver-

entrapped eggs causes periportal fibrosis leading to portal hypertension and the development of 
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esophageal varices which can rupture leading to internal bleeding and death (Colley and Secor, 

2014; Pagan and Ramakrishnan, 2018).  

While the granuloma has mainly been studied from a host centric view, it has also been 

hypothesized that the early granuloma is critical for the parasite by facilitating the translocation 

of its eggs from the vasculature to the intestines where they are released into the environment in 

feces for continuation of its life cycle (Dunne et al., 1983; Hams et al., 2013; Schwartz and 

Fallon, 2018). Because insights into the Schistosoma granuloma have been derived from single 

time point  histologic studies of human clinical samples and animal models - hamsters, mice and 

monkeys (Cheever et al., 2002; Hutchison, 1928), its role in translocation is understudied. The 

optical transparency of the zebrafish larva has enabled detailing of the early events of 

tuberculous granuloma formation in real-time using non-invasive, high resolution, serial 

intravital microscopy (Pagan and Ramakrishnan, 2018; Ramakrishnan, 2020; Takaki et al., 

2013). Here, I have used the zebrafish larva to detail the events of early granuloma formation to 

S. mansoni eggs. I find that macrophage-dense epithelioid granulomas form rapidly around 

mature eggs. In striking contrast, I find that immature eggs are immunologically silent, failing to 

provoke even minimal macrophage recruitment. Given that inert beads induce epithelioid 

granulomas, this finding provides insight into how the egg might actively manipulate the timing 

of granuloma formation so as to prevent immune destruction or premature extrusion from the 

host. This idea is supported by my findings that S. mansoni-infected mice have both mature and 

immature eggs in their liver and intestinal wall but shed only mature eggs into the intestinal 

lumen.  

 

3.2. Results  

3.2.1. S. mansoni eggs induce epithelioid granuloma formation in the context of innate 

immunity 

To study Schistosoma granulomas I used the zebrafish hindbrain ventricle (HBV), an 

epithelium-lined cavity to which phagocytes are recruited in response to chemokines and bacteria 

(Cambier et al., 2017; Cambier et al., 2014b; Takaki et al., 2013; Yang et al., 2012)(Figure 

3.1A). It has previously been shown that beads coated with S. mansoni soluble egg antigens 

(SEA) injected intravenously into mice get deposited in the lung where they induce macrophage 

recruitment and aggregation around them (Boros and Warren, 1971; Chiu et al., 2004). Using 
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transgenic zebrafish with red fluorescent macrophages, I found that injection of SEA into the 

HBV induced macrophage recruitment within six hours (Figure 3.1B)(Movie 1). Next, I 

implanted S. mansoni eggs into the HBV. Because the mature egg is relatively large (>50 μm 

diameter), I used a large bore borosilicate needle which allowed me to make an incision, grasp 

the egg and implant it into the HBV cavity in rapid succession (Appendix 1, Movie 2 and 

Methods, Figure 3.1C). Implantation of the eggs had no deleterious effect on larval survival; 

larvae implanted with either one or two eggs had a survival rate of 98%-100% at 5 days post-

implantation (dpi), identical to the mock-implanted control group (n=50 per group). Implantation 

also did not change larval swimming behaviors or responses to tactile stimuli.  

I examined macrophage responses to the egg at 5 dpi. Eight independent experiments showed 

a consistent pattern of varying levels of macrophage recruitment: some eggs (32%, range 17 to 

44%) had minimal macrophage recruitment with 0-6 macrophages found in contact with the egg 

(Figure 3.1D and 3.1E and Appendix 2). The majority (69%, range 56 to 83%) elicited robust 

macrophage recruitment with 41% (range 11 to 67%) having several isolated macrophages or 

small clusters of macrophages in contact with them and 28% (0 to 45%) eliciting organized 

granulomas that had either partially or fully enveloped them (Figure 3.1D and 3.1E and 

Appendix 2).  

To determine the macrophage recruitment events leading to granuloma formation, I imaged 

nine implanted eggs sequentially over seven days, and then analyzed retrospectively the 

progression of recruitment in the three that had formed granulomas (Figure 3.2A and Appendix 

3). For the egg shown in Figure 3.2A, by 1 dpi, macrophages had arrived in response to the egg 

and were in contact with it (Figure 3.2A; Movie 3). By 3 dpi, macrophages had formed loose 

aggregates on one part of the egg (Figure 3.2A), an intermediate stage that is likely to represent a 

transition to granuloma formation as it was not seen in the 5 dpi single timepoint analyses. By 5 

dpi, an organized granuloma partially covering the egg was apparent, which had expanded to 

encapsulate the entire egg by 7 dpi (Figure 3.2A; Movie 3). In the remaining two eggs that 

elicited granulomas, one had a similar sequence of events except that the granuloma which 

formed by 5 dpi had still not enveloped the egg completely at 7 dpi (Appendix 3A). The other 

egg had already formed a small partial granuloma by 3 dpi but could not be monitored further 

owing to failure to recover the animal following imaging on this day (Appendix 3B). Thus, the 

sequence of events leading to granuloma formation seemed consistent in all cases. 

https://youtu.be/f3vQOYZFAYg
https://www.dropbox.com/s/l2i9rmsjmasv5pz/Movie%20S1.%20Implantation.wmv?dl=0
https://www.dropbox.com/s/8giixi6045iq1ui/Movie%20S2.%20Granuloma%20formation.wmv?dl=0
https://www.dropbox.com/s/8giixi6045iq1ui/Movie%20S2.%20Granuloma%20formation.wmv?dl=0
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Likewise, in all three cases, even the partial granulomas had macrophages which appeared 

confluent with indistinct intercellular boundaries, suggesting they had already undergone the 

characteristic epithelioid transformation associated with mature Schistosoma granulomas (Moore 

et al., 1977; Von Lichtenberg et al., 1973)(Figure 3.2A and Appendix 3). To confirm this, I 

identified 8 eggs that had elicited partial or complete granulomas and assessed these for 

epithelioid transformation using immunofluorescence staining for E-cadherin, the expression of 

which is its cardinal feature (Cronan et al., 2016). All 8 eggs had E-cadherin staining, confirming 

that they had undergone epithelioid transformation as exemplified by Figure 3.2B and Movie 3.  

In mammals, S. mansoni eggs invoke macrophage-rich granulomas with very few neutrophils 

in contrast to S. japonicum eggs, which recruit both macrophages and neutrophils (Chensue et 

al., 1995b; Moore et al., 1977; Swartz et al., 2006; Von Lichtenberg et al., 1973). Likewise, I 

found that in the zebrafish, granulomas forming to S. mansoni eggs contained very few 

neutrophils (Figure 3.2C and D). In contrast, similarly-sized Mycobacterium marinum 

granulomas all contained neutrophils as expected (Figure 3.2C and D) (Yang et al., 2012). This 

pattern was established at the onset of egg implantation with the recruitment of macrophages but 

not neutrophils at 6 hours post-implantation (hpi), whereas the Gram-negative bacterium 

Pseudomonas aeruginosa recruited both types of cells, as expected (Figure 3.2.E)(Yang et al., 

2012). The lack of neutrophil recruitment has been attributed to the egg-secreted, interleukin-8 

neutralizing S. mansoni chemokine binding protein (smCKBP), more commonly known as 

alpha-1 (Smith et al., 2005). Accordingly, the injection of SEA recruited macrophages but not 

neutrophils, in contrast to P. aeruginosa which recruited both (Figure 3.2F and 3.2G).  

Next, I asked if the miracidium could survive within an epithelioid granuloma. I imaged 

individual eggs containing mature miracidia within organized granulomas at 5 dpi, and found 

they were still alive; the miracidium could be seen moving within the eggshell (Appendix 4A; 

Movie 4). E-cadherin staining immediately after imaging confirmed that the granuloma 

macrophages had indeed undergone epithelioid transformation (Appendix 4B). I also saw that in 

those cases where the eggshell had ruptured either during or after implantation, macrophages had 

entered into the eggshell and destroyed the miracidium (Appendix 4C; Movie 4). These findings 

were consistent with those in mammals showing that the intact eggshell protects the miracidium 

against destruction by host macrophages (Bunnag et al., 1986; Hutchison, 1928; Von 

https://www.dropbox.com/s/8giixi6045iq1ui/Movie%20S2.%20Granuloma%20formation.wmv?dl=0
https://www.dropbox.com/s/arrr3fs67comwcd/Movie%20S3%20-%20Alive%20in%20Granuloma%2C%20dead%20if%20ruptured%20copy.wmv?dl=0
https://www.dropbox.com/s/arrr3fs67comwcd/Movie%20S3%20-%20Alive%20in%20Granuloma%2C%20dead%20if%20ruptured%20copy.wmv?dl=0
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Lichtenberg et al., 1973). Further confirming this, miracidia implanted after removal from the 

egg rapidly recruited macrophages that destroyed them (Appendix 4D).  

In sum, I found that the key features of early mammalian responses to S. mansoni eggs are 

replicated in the zebrafish: selective macrophage recruitment to form bona fide epithelioid 

granulomas within days, which formed in the sole context of innate immunity. These findings 

highlight that the miracidium tolerates granuloma formation as long as the eggshell is intact, a 

critical aspect of the Schistosoma life cycle that depends on granulomas to enhance egg extrusion 

from the host. These granulomas most closely resemble intestinal granulomas in mice, which 

comprise mostly macrophages with fewer lymphocytes and eosinophils (Weinstock and Boros, 

1983a). 

 
Figure 3. 1. Macrophage responses to SEA and S. mansoni eggs  

(A) Zebrafish larvae at 30 hpf with hindbrain ventricle (HBV) outlined. Scale bar, 300 μm. (B) 

Mean macrophage recruitment to HBV 3 hours post-injection with PBS, SEA or Mm; ANOVA 

with Dunnet’s post-test. (C) S. mansoni egg in HBV immediately after implantation. Scale bar, 

75 μm. (D) Representative images of macrophage responses to S. mansoni eggs observed 5 dpi; 

Minimal recruitment, few if any macrophages recruited with ≤6 in contact with the egg 

(arrowheads); Macrophages recruited, several macrophages recruited with >6 in contact with the 

egg (arrowheads) but without aggregation; Granuloma; macrophage aggregation in which 

individual macrophages cannot be distinguished as separate, either partially (arrowhead) or 

completely encasing the egg. Scale bar, 75 μm. (E) Prevalence of macrophage responses to 

implanted eggs as defined in D, representing 8 experiments, each constituting a separate batch of 

eggs and a separate clutch of zebrafish larvae, as detailed in Appendix 2. Dotted line divides the 

proportion of partial (23%) and complete (5%) granulomas. Also see Appendix 1, Appendix 2 

and Movie 2. 

https://www.dropbox.com/s/l2i9rmsjmasv5pz/Movie%20S1.%20Implantation.wmv?dl=0
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Figure 3. 2. S. mansoni eggs induce epithelioid granulomas in larval zebrafish  

(A) Timelapse microscopy of egg monitored at 2 day intervals from 1-7 dpi showing in the four 

panels, respectively, sequential macrophage recruitment, aggregation (blue arrowhead), 

formation of the partial granuloma (white arrowhead), and its expansion to encase the egg. Scale 

bar, 25 μm. (B) Epithelioid granuloma immunostained using E-cadherin antibody. Scale bar, 50 

μm. (C) Confocal images of granulomas in representative transgenic zebrafish larvae with red-

fluorescent macrophages (MΦ) and green-fluorescent neutrophils (Ne) at 5 dpi with S. mansoni 

eggs (Sm) (left), or 5 days post-infection with M. marinum (Mm) (right); Scale bar, 50 μm. (D) 

Quantification of neutrophils recruited to Sm and Mm granulomas. (E) Quantification of 

phagocytes recruited to Sm and P. aeruginosa (Pa) 6 hours post-injection. (F) Confocal images 

of HBV of representative larvae showing phagocyte recruitment at 6 hours post-injection with 

phosphate buffered saline (PBS) (left), S. mansoni soluble egg antigens (SEA) or P. aeruginosa. 

Scale bar, 100 μm. (G) Quantification of phagocytes recruited to Sm and P. aeruginosa (Pa) at 6 

hours post-injection. Horizontal lines in (D,E,G) depict mean values. Student’s t-test (D) or one-

way ANOVA with Bonferroni's post-test (E,G). Experiments in (A-B,E) were done once each, 

those in (C-D,F-G) are representative of two experiments. See also Appendix 3 and Movie 3.  

 

https://www.dropbox.com/s/8giixi6045iq1ui/Movie%20S2.%20Granuloma%20formation.wmv?dl=0
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3.2.2. Immature S. mansoni eggs do not induce macrophage recruitment or granuloma 

formation 

The egg matures six days after it is fertilized at which point it begins to secrete antigens (Ashton 

et al., 2001; Jurberg et al., 2009; Mann et al., 2011; Michaels and Prata, 1968). Accordingly, 

only viable mature eggs are found to induce granulomas (Jurberg et al., 2009; Von Lichtenberg 

et al., 1973). I sorted immature and mature eggs based on their size and appearance (Appendix 

5A)(Jurberg et al., 2009). None of the immature eggs had reached maturity by 5 dpi and 

importantly all invoked only minimal macrophage recruitment (Figure 3.3A and 3.3B). To 

corroborate this result, I implanted in vitro laid eggs (IVLE) at 2 and 6 days post-fertilization in 

which the developmental stages were synchronized so that the two day eggs were immature and 

the six day eggs mature (Appendix 5B). Again, the majority of the six day old mature eggs 

induced macrophage recruitment, including granuloma formation, whereas the two-day eggs 

elicited only minimal macrophage recruitment (Figure 3.3C). These results were consistent with 

antigens secreted from the mature egg being the trigger for granuloma formation (Ashton et al., 

2001; Boros and Warren, 1970; Chiu and Chensue, 2002). To test this, I asked if dead eggs 

elicited a macrophage response. Freshly heat-killed eggs produced fewer granulomas than live 

eggs (Figure 3.3D). This finding is consistent with prior observations that some egg antigens are 

heat stable and that heat-killed eggs retain a thin layer of antigens which can induce granulomas, 

albeit less than living eggs (Freedman and Ottesen, 1988; Klaver et al., 2015; Lichtenberg, 

1964). Accordingly, I found that eggs that had been killed by storage at 4°C for 12 months (old 

dead eggs) so as to potentially inactivate all their antigens did not induce granulomas, and only a 

minority (10%) recruited any macrophages at all (Figure 3.3E).  

I next asked if immature and dead eggs, although failing to form granulomas, could still 

induce early transient macrophage recruitment. At 6 hours post-implantation, immature, heat-

killed, and old dead eggs all recruited fewer macrophages than live mature eggs (Figure 3.3F-I).  

These findings suggested that mature egg antigens enhance macrophage recruitment from the 

earliest stages, and subsequently activate the recruited macrophages to form the granuloma.  

Finally, I found that if I ruptured immature eggs prior to implantation, they rapidly recruited 

macrophages (Figure 3.3J and 3.3K). Similar to the case with ruptured mature eggs, these 

macrophages entered the ruptured immature egg and killed the embryo (Figure 3.3J and data not 
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shown). Together these results suggest that while the exposed embryo and fully-mature 

miracidium elicit macrophage recruitment similarly, the intact egg at the two stages is 

fundamentally different in its ability to recruit macrophages, the initial step that is required for 

granuloma formation.  

To ask if egg antigen secretion was also required for the subsequent steps of macrophage 

aggregation into granulomas, I implanted an immature egg together with a mature egg in each 

animal. If mature egg antigens were required only to recruit macrophages to the egg, then the 

presence of the mature egg should recruit macrophages to the vicinity of the immature egg, 

allowing granulomas to form. In both instances, macrophages were recruited to and settled on the 

mature egg, with hardly any on the adjacent immature egg (Figure 3.3L). Thus, macrophage 

recruitment in response to the presence of egg antigens in the vicinity of the immature egg is not 

sufficient to induce macrophage adherence and granuloma formation. Rather, egg-intrinsic 

antigen is required for both macrophage recruitment and adherence to the egg with subsequent 

granuloma formation.  

 
Figure 3. 3. Immature eggs do not induce macrophage recruitment or granuloma 

formation  

(A-E) Granuloma formation and macrophage recruitment at 5 dpi comparing mature eggs with 

(A,B) immature eggs, (C) immature IVLE, (D) heat-killed eggs, or (E) old-dead eggs. 

Representative images in (A), scale bar 100 μm. (B-E) Percent of animals with different levels of 

macrophage recruitment to the egg. (F-I) Macrophages recruited to mature eggs at 3 hpi 

compared to (F and G) immature eggs, (H) heat-killed eggs, and (I) old-dead eggs. 
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Representative images in (F), scale bar, 100 μm. (G-I) Quantification of macrophages recruited. 

(J) Confocal images showing macrophage recruitment to intact and mechanically ruptured 

immature eggs 6 hpi. Scale bar, 25 μm. (K) Quantification of macrophage recruitment to intact 

and ruptured immature eggs 6 hpi. (L) Confocal images of macrophage recruitment 5 dpi to co-

implanted mature and immature eggs into the same hindbrain ventricle of two different larvae. 

Enumeration of recruited macrophages showed 19 and 2 macrophages recruited respectively to 

the mature and immature egg (left panel), and 23 and 6 macrophages recruited respectively to the 

mature and immature egg (right panel). Scale bar, 50 μm. (G-I) Horizontal bars, mean values. 

Statistics, (B-E) Fisher’s exact test comparing the proportion of eggs which induced granuloma 

formation (black bars), or granuloma formation with macrophage recruitment (black and gray 

bars combined, in parentheses); (G-I, K) Student’s t-test. (B-E) n, number of animals. All 

experiments performed once, except for F,G,J, and K which are representative of two 

experiments. Also see Appendix 5.  

 

 

3.2.3. The immature Schistosoma egg evades foreign body granuloma formation 

These findings were consistent with macrophage recruitment occurring only in response to 

antigens secreted from the mature egg rather than to the eggshell itself. Granulomas form in 

response to inert foreign bodies (Pagan and Ramakrishnan, 2018), so why would the eggshell not 

induce a foreign body granuloma? I considered three possibilities. First, that it was too small to 

invoke a foreign body response; this seemed unlikely as very small inert particles, e.g. a tiny 

thorn, can provoke a robust foreign body response (Pagan and Ramakrishnan, 2018). Second, 

that the mechanisms to form foreign body granulomas were not yet operant in the developing 

zebrafish larvae; this too seemed unlikely given that the foreign body granuloma response is 

evolutionarily ancient, and epithelioid granulomas form in response to foreign bodies in 

invertebrates (Pagan and Ramakrishnan, 2018). Third, that the immature schistosome egg has 

specific mechanisms to evade foreign body granuloma formation. To distinguish between these 

possibilities, I implanted beads of three different chemically inert materials of the same size as 

the schistosome egg (Appendix 6). I chose sepharose, which is hydrophilic, and polystyrene and 

polyethylene, which are hydrophobic. All recruited macrophages within six hours (Figure 3.4A 

and 3.4B). By five days, epithelioid granulomas had formed on most of the sepharose and 

polystyrene beads (Figure 3.4C-E). The polyethylene beads were less granuloma inciting, with 

only 11% inducing bona fide granulomas, and most of the remaining beads failing to retain 

recruited macrophages (Figure 3.4C and 3.4D). However, even this weaker response was more 

robust than that of the immature eggs, which did not even transiently recruit macrophages. I 

confirmed these findings with a head-on comparison of macrophage recruitment and granuloma 
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formation in response to immature eggs or similarly sized polystyrene beads in the same 

experiment (Appendix 6). Again, the polystyrene beads recruited macrophages by six hours and 

formed granulomas by five days, whereas the immature eggs did neither (Figure 3.4F and G). 

This result suggested that the immature egg specifically avoids being recognized as a foreign 

body. This could be because the immature egg secretes a specific product to inhibit macrophage 

recruitment, or that the eggshell is immunologically inert. To distinguish between these 

possibilities, I implanted an immature egg and a polystyrene bead adjacent to each other in the 

same animal. In every case, at six hours, macrophages were recruited only to the bead and not to 

the egg (Figure 3.4H and 3.4I). By five days post-implantation, granulomas had formed around 

the beads but none of the immature eggs (Figure 3.4J). These results support the idea that the 

eggshell evolved to be immunologically inert so as to evade the ubiquitous foreign body 

granulomatous response. 
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Figure 3. 4. Chemically inert beads induce epithelioid granulomas     

(A) Representative confocal images of macrophages recruited 6 hpi of sepharose, polystyrene or 

polyethylene microspheres into the HBV of transgenic zebrafish larvae carrying red-fluorescent 

macrophages with green nuclei. (B) Enumeration of macrophages recruited to these 

microspheres in multiple animals. (C) Representative confocal images of granulomas formed 

around the three types of microspheres 5dpi into the HBV of transgenic larvae carrying the 

transgene for red-fluorescent macrophages (without green nuclei). (D) Stages of macrophage 

recruitment to microspheres 5 dpi into HBV of multiple larvae. (E) Brightfield (panels 1,3) and 

fluorescence confocal (panels 2,4) microscopy of sepharose and polystyrene bead granulomas 

following immunofluorescence staining with the E-cadherin antibody. (F and G) Macrophage 

recruitment to immature eggs or microspheres implanted into the HBV at 6 hpi (F) and 5 dpi 
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(G). (H-J) Macrophage recruitment following co-implantation of an immature egg and a 

polystyrene microsphere into the HBV of larvae transgenic for red-fluorescent macrophages with 

green nuclei. (H) Representative confocal image of an immature egg next to a microsphere. (I,J) 

Quantification of macrophage recruitment at 6 hpi (I), and at 5 dpi (J). Scale bars, 25 μm. (B,F,I) 

Horizontal bars, means. (D,G,J) n, number of animals. Statistics, one-way ANOVA (B), 

unpaired (F) and paired (I) Student’s t-test and Fisher’s exact test comparing granulomas (black 

bars) or granuloma formation with macrophage recruitment (black and gray bars, in parentheses) 

(G-J). Experiments in E and F-J were performed once. A-D are representative of three 

experiments. Also see Appendix 6.  

 

 

3.2.4. Only mature eggs translocate into the intestinal lumen of S. mansoni-infected mice 

and humans 

The observation that immature eggs, unlike mature eggs, are immunologically silent, led us to 

hypothesize, as P.D. Ashton et al. did before (Ashton et al., 2001), that timing granuloma 

formation to egg maturation prevents the expulsion of immature eggs while they are still 

dependent on the absorption of nutrients from the host for development. Moreover, only a mature 

miracidium can survive in the aquatic environment and invade its snail host. If this hypothesis 

were true, I would expect to find in S. mansoni-infected mice, an enrichment of mature eggs in 

the intestinal lumen as compared to intestinal wall and liver. To test this prediction, mice were 

naturally infected with S. mansoni by cutaneous exposure to cercaria, and at 6 weeks post-

infection, eggs were analyzed from liver, intestinal tissue, and small and large intestinal luminal 

content (feces). I quantified and categorized eggs as mature or immature by size and morphology 

(Jurberg et al., 2009)(Appendix 5 and Appendix 7). As a test of my scoring accuracy, I then 

measured the size of the eggs and confirmed that my visual inspection had correctly separated 

the immature and mature eggs (Appendix 7). I next assessed the distribution of mature and 

immature eggs for each collection site in each mouse. I found that while the liver and the 

intestinal tissue contained roughly equal proportions of both immature and mature eggs (Figure 

3.5A-D), hardly any immature eggs were found in the small intestinal lumen (6% average for all 

six animals; Figure 3.5E). Moreover, only 2 out of 11 immature eggs were at the very early stage 

of development, with the remaining ones nearing maturity (2009 Jurberg)(Figure 3.5E-G). All 

eggs scored from the lumen of the large intestines (feces) were morphologically mature and 

contained fully mature miracidia (Figure 3.5H and 3.5I). Statistical analysis of the pooled data 

from four mice confirmed an enrichment of mature eggs in the lumen of the small and large 
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intestines (Figure 3.5J). These results confirmed that virtually all eggs shed by infected mice are 

mature.  

Do humans also shed only mature eggs? I was unable to find a direct answer to this question 

in the literature. However, a paper was published which had assessed the length and width of 30 

eggs shed in the feces of S. mansoni-infected humans (Martinez., 1916). Because I found that 

immature and mature eggs differ in size with immature eggs being much smaller (Appendix 5 

and Appendix 7)(Ashton et al., 2001), I was in a position to determine if the eggs shed by 

humans were mature or immature. I plotted the sizes of the eggs shed in human feces alongside 

the eggs from the mouse intestinal wall and lumen and found that all of the eggs from human 

feces were in the mature egg size range (Figure 3.5K). Thus, humans also shed only mature eggs. 

These results support the hypothesis that the timing of granuloma formation and subsequent 

egg expulsion is modulated so as to prevent premature expulsion of immature eggs, which would 

be terminal for the parasite were it to occur. 
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Figure 3. 5. Mature eggs translocate into the lumen of the intestines  

(A-I) Quantification (A,C,E,H) and representative brightfield images (B,D,F,G,I) of mature and 

immature eggs found in the liver (A,B), small and large intestinal wall tissue and vasculature 

(C,D), small intestinal luminal content (E-G) and large intestinal luminal content (H,I) for six 

individual S. mansoni-infected mice. (B,D) Representative images with image (left panel) 

showing immature (yellow arrow) and mature (white arrowhead) magnified from yellow square 

in wide-field image (right panel). (F,G) Images of eggs from the lumen of the small intestine, 

showing two mature eggs in contact with one immature egg (F), and a wide-field image showing 
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three mature eggs (G). (I) Representative image of an egg recovered from feces at low resolution 

(left) and higher resolution with developed miracidia visible (right). (J) Pooled data for mice 

2,3,4, and 6 from panels (A,C,E,H). SI, small intestine; LI, large intestine. (K) Dimensions of 

eggs from this experiment which were classified as immature or mature (open or closed circles, 

respectively) plotted with eggs shed in the feces of S. mansoni-infected humans (Martinez., 

1916). All scale bars 100 μm except for (G) and the right panels of (B,D) which are 300 μm. ND, 

not determined. Statistics, Fisher’s exact test. Also see Appendix 7.  

 

 

 

3.3. Discussion  

Research on S. mansoni granulomas has focused mainly on the organ-damaging fibrosis that 

ensues from granulomas forming around tissue-lodged eggs (Colley and Secor, 2014). Yet most 

S. mansoni-infected individuals are either asymptomatic or only mildly symptomatic (Hams et 

al., 2013), possibly because their  granulomatous response is more tempered.  These individuals 

shed parasite eggs, highlighting that disease per se does not benefit the parasite’s evolutionary 

survival. Rather, as in the case with many infectious diseases, human disease represents 

collateral damage stemming from the host-pathogen interaction, harming the host with little 

benefit to the pathogen (Relman et al., 2020). On the other hand, early granuloma formation in 

appropriate anatomical locations is thought to benefit both host and parasite for the same reason, 

expelling the parasite egg from the human host so as to enable it to continue its life cycle in its 

intermediate snail host (Dunne et al., 1983; Hams et al., 2013). While this idea is appreciated, it 

has been difficult to study extensively because of experimental limitations. Early or 

asymptomatic human infection seldom presents itself for study, and existing animal models are 

less suitable for the study of early granuloma-associated pathology.  

This work explores the earliest steps of Schistosoma granuloma formation that have not been 

captured in existing animal models. I show that as is the case with mycobacterial granulomas, 

bona fide epithelioid granulomas form in response to the Schistosoma egg in the sole context of 

innate immunity (Cronan et al., 2016; Davis et al., 2002). This should not be surprising given 

that epithelioid granulomas form in multiple invertebrate species in response to retained foreign 

bodies or even their own dead eggs (Pagan and Ramakrishnan, 2018). Yet, there has been at best 

a limited appreciation that adaptive immunity is not required for the formation of such an 

organized structure in the context of infectious granulomas, and indeed, the emphasis of 

schistosomiasis research on the late-stage granuloma has caused the focus to be on how the 
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granuloma is modulated by adaptive immunity to become pathogenic (Hams et al., 2013; Pagan 

and Ramakrishnan, 2018). Given that Schistosoma eggs begin to be shed into the feces within 

days following maturation (deWalick et al., 2012), egg shedding must occur even in the absence 

of adaptive immunity and is likely promoted by these innate epithelioid granulomas. The rapid 

epithelioid transformation of the granuloma also has relevance for granuloma-induced 

transmission later in infection when adaptive immunity is operant. Moreover, intestinal 

granulomas, the ones that extrude the eggs, are smaller than those in the liver, with a paucity of 

the lymphocytes and eosinophils that characterize liver granulomas (Weinstock and Boros, 

1983a). The rapid epithelioid transformation of the Schistosoma granuloma may help it to more 

efficiently extrude the eggs and hence propagate the parasite.  

These experiments have also led to an increased understanding of the mechanics of early 

granuloma formation. Broadly speaking, granuloma formation in response to the mature egg 

proceeds in two discrete steps. In the first step, macrophages are attracted to secreted parasite 

antigens, and upon contact with the egg, appear to gain a chemotactic activity that outstrips that 

of the egg. This results in the subsequent macrophages being recruited to the existing 

macrophages forming a tight, aggregate that then pulls itself together to encapsulate the egg. It is 

noteworthy that epithelioid transformation precedes the complete covering of the egg, 

highlighting that this specialized macrophage transformation (Pagan and Ramakrishnan, 2018) 

constitutes an early response. 

While these new details on how granulomas form around mature eggs are thought-provoking, 

more striking is the lack of even minimal macrophage recruitment by the immature egg. Given 

that like-sized beads recruit macrophages robustly and induce epithelioid granulomas, this 

finding reveals further nuance to the exploitation of the granuloma by the parasite. Not only must 

the parasite induce granuloma formation through secretion of antigens, but it must also prevent 

the granuloma from forming too soon. Premature granuloma formation may be detrimental for  

two reasons. The egg is laid into the blood stream, and needs to reach the wall of the blood 

vessel from which it extravasates and then penetrates the gut wall to be shed (deWalick et al., 

2012). Perhaps, premature granuloma formation might encumber its passage to the intestinal 

wall. Second, premature extrusion would remove the egg from the human tissue environment 

that is conducive to its maturation (Ashton et al., 2001). 
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Prior work has noted that the granuloma-inducing schistosome egg antigens are secreted from 

the egg, rather than being incorporated into the eggshell, and that secretion occurs only after egg 

maturation (Ashton et al., 2001; Schwartz and Fallon, 2018). This work adds the key insight that 

the immunologically inert nature of the eggshell is a requisite counterpart of the Schistosoma 

transmission strategy. The ability to directly compare granuloma formation around eggs and 

beads has been key to this insight. It will be interesting to determine how the eggshell remains 

immunologically inert in the context of adaptive immunity, particularly because eggshell 

proteins induce antibodies in humans (Dewalick et al., 2011; deWalick et al., 2012). Foreign 

body granuloma formation is a major complication of implanted devices (Pagan and 

Ramakrishnan, 2018). Identifying the chemical basis of the granuloma-silencing mechanism of 

the eggshell may have therapeutic implications in the design of inert materials for medical 

implants that alleviate this problem. 
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3.4. Summary 

Schistosome eggs provoke the formation of granulomas, organized immune aggregates, around 

them. For the host, the granulomatous response can be both protective and pathological. 

Granulomas are also postulated to facilitate egg extrusion through the gut lumen, a necessary 

step for parasite transmission. I used zebrafish larvae to visualize the granulomatous response to 

Schistosoma mansoni eggs and inert egg-sized beads. Mature eggs rapidly recruit macrophages, 

which form granulomas within days. Beads also induce granulomas rapidly, through a foreign 

body response. Strikingly, immature eggs do not recruit macrophages, revealing that the eggshell 

is immunologically inert. These findings suggest that the eggshell inhibits foreign body 

granuloma formation long enough for the miracidium to mature. Then, parasite antigens secreted 

through the eggshell trigger granulomas which facilitate egg extrusion into the environment. In 

support of this model, I find that only mature S. mansoni eggs are shed into the feces of mice and 

humans. 
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Chapter 4. Tumor Necrosis Factor and Schistosoma 

mansoni egg antigen Omega-1 shape distinct aspects of 

the early egg-induced granulomatous response 

4.1 Background and significance  

Schistosomiasis is a major granulomatous disease, caused by parasitic flatworms of the genus 

Schistosoma with Schistosoma mansoni being the most widespread agent of the disease 

(McManus et al., 2018). The events of Schistosoma egg-induced granulomas have been deduced 

mainly from histological assessments of human clinical samples and the use of experimental 

mammalian models (Cheever et al., 2002; Hutchison, 1928). In the previous chapter I have 

shown the use of the optically transparent and genetically tractable zebrafish larva as a model to 

study early macrophage recruitment and granuloma formation in response to S. mansoni eggs. 

Because the zebrafish larva lacks adaptive immunity during their first few weeks of 

development, this model can be used to dissect mechanisms in the sole context of innate 

immunity (Davis et al., 2002; Takaki et al., 2013). I found that while epithelioid granulomas 

form rapidly around mature eggs, immature eggs fail to provoke granulomas, consistent with the 

mature stage-specific secretion of antigens and their function to induce granuloma formation in 

mammalian models (Ashton et al., 2001; Boros and Warren, 1970; Chiu and Chensue, 2002; 

Jurberg et al., 2009; Lichtenberg, 1964; Schramm et al., 2006).  

In the zebrafish, I can additionally examine macrophage recruitment within hours of 

implantation, and I find that whereas injections of schistosome soluble egg antigen (SEA) 

obtained from mature eggs induce early macrophage recruitment, implantation of immature eggs 

do not. Together these findings both validate the zebrafish model to study S. mansoni egg-

induced granuloma formation and reveal new insights into the underlying molecular 

mechanisms.   

In mice, the cytokine Tumor Necrosis Factor (TNF) and the S. mansoni secreted antigen 

omega-1 have been identified as host and parasite factors, respectively, that promote granuloma 

formation around the egg (Amiri et al., 1992; Chensue et al., 1994; Chensue et al., 1995b; Hagen 

et al., 2014; Ittiprasert et al., 2019). However, the role of TNF remains controversial and the 
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mechanism by which omega-1 exerts its role is unresolved. In this work, I use the zebrafish 

model to explore their roles in macrophage recruitment and innate granuloma formation.  

 

4.2. Results  

4.2.1. TNF signaling through TNF Receptor 1 promotes macrophage recruitment to 

nascent S. mansoni egg-induced granulomas but is dispensable for initial macrophage 

recruitment to the eggs 

The role of TNF in S. mansoni egg-induced granulomas remains unresolved after two 

decades of studies in the murine model of schistosomiasis. Early findings showed that S. 

mansoni-infected SCID mice were deficient in both granuloma formation and egg extrusion, 

phenotypes which was rescued by recombinant TNF and activated T cell medium, but not by 

TNF-depleted T cell medium (Amiri et al., 1992). These findings suggested a role for TNF in 

granuloma formation and egg excretion (Amiri et al., 1992). However, subsequent work from 

this group found that TNF knockout mice did not have a defect in granuloma formation (Davies 

et al., 2004). Mice lacking both receptors through which TNF signals did exhibit a mild 

granuloma deficit, leading the authors to propose that it might be due to a defect in signaling of 

lymphotoxin (Davies et al., 2004). However, this would not explain their earlier findings that 

exogenous TNF rescued granuloma formation in SCID mice (Amiri et al., 1992). Meanwhile, a 

different group reported that TNF did not rescue granuloma formation in SCID mice (Cheever et 

al., 1999). Additionally, S. mansoni-infected SCID mice displayed normal levels of TNF 

expression, suggesting that other cells may be the major source of TNF during the infection 

(Cheever et al., 1999). It has been suggested that Ly6Chi monocytes, which are known to express 

TNF in response to the schistosome egg, might be the innate source of TNF (Nascimento et al., 

2014).   

To delineate the role of TNF in macrophage recruitment and granuloma formation around S. 

mansoni eggs, I used a TNFR1 zebrafish mutant created by CRISPR-Cas technology (see 

Methods). I first confirmed that the lack of TNFR1 signaling rendered zebrafish larvae 

susceptible to Mycobacterium marinum infection, consistent with previous findings using 

TNFR1 morpholino (Clay et al., 2008)(Figure 4.1).  
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Figure 4. 1. TNFR1 mutant zebrafish larvae have increased infection burden 

WT and TNFR1 mutant zebrafish larvae were systemically infected at 36 hours post-fertilization 

via caudal vein injection with 75 CFU Mycobacterium marinum, and then imaged at 4 days post-

infection for bacterial burden. (A) The two animals closest to the mean. Scale bar, 300 μm. (B) 

Quantification of bacterial burden, with the two red data points corresponding to the animals in 

(A). Horizontal bar, means. Statistics, Student’s t test. FPC: fluorescent pixel counts.  

 

 

Next, I implanted the Hindbrain Ventricle (HBV) of wildtype and TNFR1 mutant larvae with 

S. mansoni eggs and evaluated granuloma formation after five days (Figure 4.2A-D). In the 

previous chapter I categorized early macrophage recruitment and granuloma formation based on 

the number and characteristics of macrophages in contact with the egg: Minimal recruitment, 0-6 

macrophages; Macrophages recruited, >6 macrophages; Granulomas, confluent epithelioid 

macrophage aggregates. At 5 days post-implantation of the eggs, the TNFR1 mutants had similar 

macrophage responses to wildtype animals with ~50% of the animals forming epithelioid 

granulomas in each group (Figure 4.2B). However, I found that the TNFR1 deficient granulomas 

were significantly smaller than wildtype granulomas, with the mean granuloma size being 62% 

smaller than in wildtype (Figure 4.2C and D). Also notable is that the TNFR1 mutant 

granulomas, though smaller, showed a characteristic epithelioid morphology with confluent 

macrophages and loss of intercellular boundaries. This finding suggests that epithelioid 

transformation occurs independent of TNFR1 signaling (Chapter 3.2.1)(Figure 4.2D). Because 

the S. mansoni granuloma is comprised solely of macrophages at this early stage (Chapter 3.2.1), 

this finding implies that TNFR1 signaling promotes macrophage recruitment to the nascent 

granuloma around the egg. As shown in chapter 3.2.2, the initiation of macrophage recruitment 

to S. mansoni eggs in zebrafish can be observed within hours of implantation. However, I found 

that TNFR1 signaling is not required for initiation of macrophage recruitment (Figure 4.2E).  
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Together, these results show that TNF signaling through TNFR1 is required specifically for 

macrophage recruitment after the initial macrophages reach the egg through other signal(s). 

Thereby, TNF mediates granuloma enlargement rather than granuloma initiation. Furthermore, 

TNF is not required for epithelioid transformation. Finally, TNF plays a role in the 

granulomatous response in the sole context of innate immunity. 

 

 
 

Figure 4. 2. TNF affects late-stage granuloma formation  

Comparison of macrophage recruitment and granuloma formation in WT and TNFR1 mutant 

zebrafish larvae following implantation with a single schistosome egg into their hindbrain 
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ventricle. (A) Zebrafish larva at 36 hours post-fertilization with the hindbrain ventricle (HBV) 

site of injection and implantation outlined. Scale bar, 300 μm. (B-D) Granuloma formation at 5 

days post-implantation. (B) Percent of animals with; granuloma formation (confluent epithelioid 

macrophage aggregates), macrophages recruited (>6 macrophages in contact with the egg), or 

minimal recruitment (0-6 macrophages in contact with egg) (Chapter 3.2.1). (C) Granuloma size 

and (D) images, with each image from top to bottom corresponding with each red data point, top 

to bottom, respectively. Scale bar, 50 μm. Horizontal bars in (C), means. Statistics, Student’s t-

test. (E) Mean macrophage recruitment kinetics during the first 6 hours post-implantation. Error 

bars, SEM. Sample size, n=5 animals per group.  

 

4.2.2. S. mansoni omega-1 promotes initial macrophage recruitment to the egg through its 

RNase activity 

Next, I sought to probe the parasite determinants that induce granuloma formation. In the 

previous chapter, it was shown that immature S. mansoni eggs invoked neither granuloma 

formation nor even initial macrophage recruitment, indicating that mature egg antigens were 

required for the first macrophages to be recruited to the egg. Mature eggs express a variety of 

antigens (Ashton et al., 2001; Cass et al., 2007; Dunne et al., 1981), of which omega-1 is known 

to be the major contributor to granuloma formation, as knockdown of its expression leads to 

greatly diminished granuloma formation around eggs (Hagen et al., 2014; Ittiprasert et al., 2019). 

Omega-1 is an RNase which effects DCs in several ways, by inhibiting protein synthesis, altering 

morphology, inducing IL-33 expression, and reducing their conjugation affinity with T cells 

(Everts et al., 2012; Everts et al., 2009; Fitzsimmons et al., 2005; Steinfelder et al., 2009). If and 

how this leads to granuloma formation is not known. However, it is well-established that its 

RNase activity is essential for inducing the Th2 polarization of granulomas (Everts et al., 2012; 

Everts et al., 2009; Fitzsimmons et al., 2005; Steinfelder et al., 2009). This in turn induces 

expression of IL-4 and IL-13, known egg-induced host factors that can mediate granuloma 

formation (Cheever et al., 1999; Fallon et al., 2000; Jankovic et al., 1999). Additionally, omega-1 

is a major hepatotoxin (Abdulla et al., 2011; Dunne et al., 1991; Dunne et al., 1981), and it has 

been proposed that the granuloma forms as a protective immune response to prevent the 

cytotoxic effects of this egg antigen on the host liver.  

My attempts to test the role of omega-1 by implanting omega-1 knockout (KO) eggs 

(Ittiprasert et al., 2019) into the larvae failed, as the genetically modified eggs did not survive 

shipment. As an alternative approach, I tested if the SEA obtained from omega-1 KO eggs could 

recruit macrophages. I examined macrophage recruitment at 6 hours post-injection with SEA 
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into the hindbrain ventricle (Figure 4.3A). Omega-1-deficient SEA recruited macrophages 

similar to wildtype SEA (Figure 4.3A). Omega-1-deficient SEA retains ~20% of the omega-1 

RNase activity (not shown), suggesting that even though reduced compared to wildtype eggs, it 

is may still be sufficient for macrophage recruitment (Ittiprasert et al., 2019). Alternatively, the 

omega-1 activity may be redundant with other SEA components (Kaisar et al., 2018). To 

investigate these hypotheses, I used a recombinant omega-1 that contain the native-like LeX 

glycosylation, which is important for its uptake by dendritic cells and subsequent Th2-

polarization (Everts et al., 2012; Wilbers et al., 2017). Injection of 0.02 ng of omega-1, the 

approximate amount of omega-1 in the corresponding SEA injections (Chapter 3.2.1, G. 

Schramm, personal communication), induced macrophage recruitment, although less than SEA, 

consistent with other components inducing macrophage recruitment (Figure 4.3B and C).  

Next, I asked if omega-1-associated recruitment of macrophages is dependent on its RNase 

activity. The inhibition of RNase activity in the recombinant omega-1 with diethyl pyrocarbonate 

(DEPC) (Steinfelder et al., 2009), led to loss of macrophage-recruiting activity (Figure 4.3D). 

Because DEPC inhibits RNase function through covalent binding to the essential histidine in the 

catalytic domains of RNase, one caveat is that it can create off-target modifications to the protein 

structure and function through binding to other histidine residues, as well as to a lesser extent, 

tyrosine, lysine, and cysteine (Wolf et al., 1970). To validate these findings, I used recombinant 

omega-1 mutant lacking RNase activity due to a phenylalanine substitution of the essential 

histidine of the catalytic domain (Everts et al., 2012; Irie and Ohgi, 2001). As expected, the 

omega-1 mutant failed to recruit macrophages (Figure 4.3E). These findings confirmed that the 

omega-1 macrophage chemotactic activity is mediated through its RNase activity. 

 

  
Figure 4. 3. Omega-1 recruits macrophages via its RNase activity 

Macrophage recruitment at 6 hours post-injection (hpi) with egg antigens. (A) Macrophages 

recruited to SEA from WT or omega-1 knockout eggs (Δω1). (B) Macrophages recruited to SEA 

or omega-1. (C) Mean macrophage recruitment to omega-1 for each of four experiments. 
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Individual experiments represented with unique symbols; triangles and squares represent means 

of panels B and D. (D) Macrophages recruited to omega-1 or DEPC-treated omega-1. (E) 

Macrophages recruited to WT or omega-1 mutant. All omega-1 injections were performed using 

0.02 ng of plant-expressed omega-1, with the exception of (E) which used HEK-expressed WT 

or mutant omega-1 injected at a 5-fold higher concentration of 0.1 ng to compensate for lack of 

LeX glycosylation in plant-expressed and natural omega-1. Statistics, ANOVA with Dunnett’s 

post-test comparing all samples to PBS (B) or WT omega-1 (A,E); (D) non-parametric ANOVA 

with Dunn’s post-test comparing all samples to omega-1; (C) paired t-test. All horizontal bars, 

means.  

 

 

4.3. Discussion   

This study reinforces the use of the zebrafish model to study molecular pathways involved in S. 

mansoni-egg-induced granuloma formation. Particularly, it provides new insights on host and 

parasite factors modulating this critical process that drives the pathology associated with 

schistosomiasis.  

I have demonstrated that TNF signaling is required for granuloma enlargement but not 

initiation, in agreement with previous observations in the mouse (Amiri et al., 1992; Chensue et 

al., 1994; Chensue et al., 1995b; Ehlers and Schaible, 2012). Further, I show that TNF is 

dispensable for the first wave of macrophage recruitment to the egg. These findings are 

consistent with TNF not being a direct chemotactic agent, but mediating cell recruitment through 

interactions with other cells that, in turn, synthesize macrophage chemokines (Kalliolias and 

Ivashkiv, 2016; Mukaida et al., 2011). SEA is known to induce the expression of TNF (Chensue 

et al., 1994; Chiu et al., 2004; Nascimento et al., 2014), therefore, it might be only after 

granuloma initiation, at which point significant numbers of macrophages are in contact with the 

egg, that TNF is produced above the threshold to induce these chemokines. In addition, the close 

cell-to-cell contacts following the initiation of granuloma formation and epithelioid 

transformation may be vital; if TNF is acting in both an autocrine and paracrine manner, then the 

cell-to-cell interaction would allow for maximal signal exchange between cells, the optimal 

amplification of this signal and subsequent expression of chemokines (Blasi et al., 1994; 

Caldwell et al., 2014). Epithelioid transformation is primarily associated with Th2-polarized 

immune responses involving IL-4/IL-13, expression of which can occur in the context of innate 

immunity alone (Bottiglione et al., 2020; Chiu et al., 2004; Mitre et al., 2004; Pagan and 

Ramakrishnan, 2018). Therefore, it is not surprising to observe epithelioid transformation in the 
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absence of TNF. Chronic mTORC1 signaling, which does not require adaptive immunity, can 

also induce epithelioid transformation (Linke et al., 2017).  

As shown in the previous chapter, S. mansoni eggs, upon reaching maturity, induce 

granuloma formation that benefits the parasite by extruding the egg into the environment. This 

would be achieved by mature egg stage-dependent secretion of antigens such as omega-1 

(Ashton et al., 2001; Schramm et al., 2006). Here, I show that recombinant omega-1 recruited 

macrophages rapidly, similar to SEA. This finding supports the hypothesis that omega-1 is 

sufficient yet dispensable for early macrophage recruitment. This may have parallels in 

observations regarding its role in granuloma formation; omega-1 knockdown eggs form 

granulomas in the mouse, albeit smaller ones, suggesting other egg antigens such as IPSE could 

contribute to this process (Hagen et al., 2014; Ittiprasert et al., 2019).  

In addition, I have demonstrated that the omega-1 RNase activity is required for macrophage 

recruitment. Prior work has shown that its RNase activity mediates Th2 polarization through 

inhibition of protein synthesis in dendritic cells (Everts et al., 2012; Everts et al., 2009; 

Steinfelder et al., 2009). In the context of the 6-hour recruitment assay performed herein, I 

speculate that the protein is taken up by epithelial cells that line the hindbrain ventricle cavity, 

perturbing cellular homeostasis by an RNase-induced inhibition of protein synthesis and in turn, 

inducing cell stress signals which trigger macrophage recruitment.   

As with tuberculous granulomas (Pagan and Ramakrishnan, 2018; Ramakrishnan, 2012), I  

expect that the development of the zebrafish model for studying the schistosome egg granuloma 

will stimulate its use to dissect the mechanisms underlying the genesis of schistosome egg-

induced granulomas, the main driver of schistosomiasis pathogenesis and transmission.  
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4.4. Summary    

Infections by schistosomes result in granulomatous lesions around parasite eggs entrapped within 

the host tissues. The host and parasite determinants of the Schistosoma mansoni egg-induced 

granulomatous response are areas of active investigation. Some studies in mice implicate TNF 

produced in response to the infection whereas others fail to find a role for it. In addition, in the 

mouse model, the S. mansoni secreted egg antigen omega-1 is found to induce granulomas, but 

the underlying mechanism remains unknown. Following the development of the zebrafish larva 

as a model to study macrophage recruitment and granuloma formation in response to 

Schistosoma mansoni eggs, I have investigated the mechanisms by which TNF and omega-1 

shape the early granulomatous response. I find that TNF, specifically signaling through TNF 

receptor 1, is not required for macrophage recruitment to the egg and granuloma initiation but 

does mediate granuloma enlargement. In contrast, omega-1 mediates initial macrophage 

recruitment, with this chemotactic activity being dependent on its RNase activity. These findings 

further the understanding of the role of these host- and parasite-derived factors and show that 

they impact distinct facets of the granulomatous response to the schistosome egg. 

 

 

 



60 

 

Chapter 5. Discussion and future directions 

In this work, I have developed the zebrafish larva as a model to examine the early stages of 

granuloma formation in response to S. mansoni eggs. This work has provided insights into the 

dynamics of granuloma formation and the host and pathogen factors that mediate this. My 

finding that immature eggs avoid eliciting granulomas has led to insights about how S. mansoni 

manipulates the formation of these structures to promote the exit of the egg from the host to 

continue its life cycle.  I have tested this hypothesis by showing that S. mansoni-infected mice 

shed only mature eggs in their feces and have analyzed old human data to show the same is the 

case for humans. Below, I discuss the broader implications of my findings and future 

experiments suggested by them. 

 

5.1. Stages of granuloma formation   

The formation of the granuloma was dependent on egg maturation, and was observed to occur in 

distinct stages, summarized in Figure 5.1. Immature eggs elicited neither macrophage 

recruitment nor granuloma formation, due to the absence of secreted antigens and the eggshell 

acting as an immunologically silent barrier (Figure 5.1, stage 0). After development, the mature 

egg induced the recruitment of macrophages, but not neutrophils (Figure 5.1, stage I); an 

observation consistent with the known cellularity of the schistosome egg granuloma in 

mammalian models, and consistent with its mature stage-specific antigens being the recruiting 

factor. While I found this macrophage-specific recruitment to be driven by both the mature egg 

and injection of egg antigens, it remains to be determined if some of the antigens were acting 

directly as chemoattractants, or only indirectly by triggering the action of host chemokines and 

chemoattractants. These possibilities can be distinguished using in vitro chemotaxis assays to 

assess macrophage recruitment in the absence of other cells or tissues in which the antigen might 

react.  
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Figure 5. 1. Model of the stages of granuloma formation  

Model for the progression of egg maturation and granuloma formation compiled from 

observations and inferences.  

 

 

Whether or not the egg antigens act directly as chemoattractants, it is known that egg antigens 

recruit macrophages indirectly through the induction of host inflammatory responses and 

chemokine expression. In the zebrafish too, there was evidence for this in some eggs which I 

monitored closely, although not in all. Following the initial seeding of the first macrophages to 

arrive to the egg, I observed a preference of secondary macrophages to migrate directly towards 

these initial macrophages, rather than to the egg itself (Figure 5.1, stage II). This observation 

coincided with the first arriving macrophages adopting a flattened morphology against the egg, 

which resembled frustrated phagocytosis (Herant et al., 2006). Perhaps this flattened morphology 

enhanced the ability of these macrophages to produce their own chemoattractants, either by 

maximizing contact with the egg and its antigens therefore maximizing antigenic stimulation, or 

perhaps the adoption of the frustrated phagocytosis morphology might itself be a stimulating 

factor. Although these macrophages showed a preference for aggregation during this early stage 

of granuloma formation, the aggregates were transient in nature for the first day or so. 

It was not until later, typically between 3-5 days post-implantation that the macrophages were 

no longer transiently aggregated, but instead had undergone epithelioid transformation to form 

the confluent aggregate comprising the nascent epithelioid granuloma (Stage III). The timing of 

which was consistent with epithelioid transformation in the tuberculous granuloma (Cronan et 

al., 2016). That epithelioid transformation occurred between 3-5 days, and never before then, 

may have biological relevance. Perhaps the delayed timing of epithelioid transformation has 

evolved to occur only when absolutely necessary, in response to chronic inflammatory agents 
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that the immune system cannot eradicate. For comparison, in the case of implanted miracidia, 

despite their large size and the robust macrophage response they elicited, epithelioid granulomas 

did not form. Instead, macrophages rapidly recruited and surrounded the miracidium, and within 

3 days the miracidium was completely degraded followed by macrophage dispersal and 

resolution of the immune response. In this scenario, had these macrophages undergone 

epithelioid transformation, they would have lost their agility and been unable to quickly disperse 

to address other potential threats. So perhaps the delayed timing is an evolutionary mechanism to 

ensure that epithelioid transformation does not occur too quickly, and only when absolutely 

necessary during chronic infection with an inciting agent that is recalcitrant to degradation.  

The delayed timing of epithelioid transformation also raises the question about the mechanism 

through which the timing of epithelioid transformation is controlled. Understanding the temporal 

control of epithelioid transformation will be an interesting aspect to uncover. The more 

immediate aspect is to dissect the signaling pathways through which epithelioid transformation 

occurs, which mechanistically, has been proposed to occur either through IL-4/STAT6, or 

through chronic mTORC1 signaling (Pagan and Ramakrishnan, 2018). In preliminary 

experiments I tested a zebrafish STAT6 mutant from the Sanger Zebrafish Mutation Project, and 

found that the epithelioid granuloma still formed. This mutant was verified as being homozygous 

for the mutation, however, there was not sufficient time perform additional quality controls to 

confirm the phenotype by immunofluorescence against E-cadherin, and to verify the STAT6 

mutation with other known phenotypes. The independence of STAT-6 in epithelioid 

transformation will be confirmed in future experiments, after which the potential role of 

mTORC1 in epithelioid transformation can be explored using a currently available mTORC1 

mutant. If epithelioid transformation in response to the Schistosoma egg does occur independent 

of STAT-6, it raises the question of whether epithelioid transformation in the context of innate 

immunity is generally STAT-6 independent and this has been missed by studying the 

phenomenon in later stages. I observed rapid epithelioid transformation to inert beads as well, 

raising the question of whether that is also STAT-6 independent. If mTOR is ruled out as the 

mediator of epithelioid transformation, a single cell RNA-seq approach may help identify the 

determinants involved. I propose collecting granuloma macrophages by FACS sorting just before 

they undergo epithelioid transformation and again after epithelioid transformation in the same 

cohort of animals. Comparison of either bulk RNA-seq or single cell RNA-seq analysis of the 



63 

 

 

isolated macrophages should reveal candidate genes that can then be tested by mutational 

analysis for their impact on epithelioid transformation. Any identified genes can then be tested 

for their impact on epithelioid transformation that occurs in response to inert beads. 

Following epithelioid transformation and formation of the nascent epithelioid granuloma, I 

found that encapsulation of the egg occurred through a process of expansion of the initial focus 

or occasionally two foci that then coalesced (Figure 5.1, stage IV). In attempts to visualize this 

expansion process in greater detail, I used high temporal resolution timelapse microscopy to 

directly observe macrophage recruitment to the epithelioid granuloma, but I observed few if any 

macrophages recruited within the 3-6 hour observation windows. So it is unclear if the focal 

expansion occurred through macrophage recruitment and adhesion to the nascent granuloma, or 

if the macrophages of the nascent granuloma were undergoing proliferation. Both possibilities 

are logical as the schistosome egg granuloma is characterized as inducing a mixed Th1/Th2 

cytokine response; whereas Th1 responses are associated with inflammation and recruitment, the 

hallmark of Th2 responses is not macrophage recruitment, but proliferation (Jenkins et al., 2011). 

Because the rate of epithelioid granuloma expansion may be slower than the initial recruitment, 

future experiments will require longer periods of observation to directly observe if macrophages 

are recruited to the epithelioid granuloma. Alternatively, staining with the synthetic nucleoside, 

BrdU, will be performed to determine if the macrophages of the epithelioid granuloma are 

proliferating.  

 

5.2. The temporal control of granuloma formation to promote transmission 

The granulomas which formed were specific to mature, viable eggs. In contrast, granuloma 

formation was diminished in non-viable mature eggs, consistent with previous findings in 

mammalian models in which killed eggs were less granulomatous, only retaining a thin layer of 

antigens which did not regenerate (Lichtenberg, 1964; Sorour, 1929). In contrast to the mature 

egg, immature eggs were immunologically silent, not only failing to form granulomas, but failing 

to recruit macrophages at all. While it has been long known that antigen secretion is specific to 

the mature egg, a finding which was proposed as a mechanism to prevent premature expulsion 

while the immature egg is still reliant on the host for nutrients for development (Ashton et al., 

2001), what has been overlooked is that the immature egg, parasite-derived and itself a parasite, 
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is remarkably immunologically silent. This became evident in the comparison of immature eggs 

with all other implanted materials, which induced rapid and robust immune responses.   

I found that this immunological silence of the immature egg was mediated by the eggshell 

acting as an immunologically inert barrier, masking the parasite antigens within. How the 

eggshell does this is not currently known. The eggshell is primarily composed of the eggshell-

specific protein, p14, in combination with a smaller proportion of assorted, glycine-rich cellular 

proteins (deWalick et al., 2012). The structure of p14 has been proposed to consist of short anti-

parallel beta strands forming a glycine rich backbone and with tyrosine and cysteine located at 

the bends, available for cross-linking during eggshell synthesis (Rodrigues et al., 1989). Given 

that glycine is the simplest amino acid, the eggshell may achieve its immunological silence 

through its simple structure and lack of activating motifs. I found only one research team that 

published on the purification of p14, which they found difficult to express and to purify, and they 

did not have any available material. As an alternative approach to using p14, I tried coating 

beads with purified polyglycine to mimic the glycine-rich composition of the eggshell proteins. 

However, the beads still recruited macrophages. This result is inconclusive as it cannot 

determined whether it is not the polyglycine on the eggshell that is responsible for its 

immunological silence or whether I was unsuccessful in fully masking the bead surface. 

Regretfully, I had to drop this line of experiments. 

The finding that the immature egg was immunologically silent indicated that the parasite 

utilizes a two-step strategy to tightly regulate the timing of granuloma formation. Initially, the 

immature egg uses its eggshell to achieve a minimal baseline of detection to avoid eliciting an 

immune response while it is still reliant on absorption of nutrients from its host, and then after 

developing to maturity, secretion of antigens through the eggshell of the mature egg induces the 

formation of the granulomas which facilitate its translocation through the tissues into the lumen 

of the intestines, so that it can be expelled into the environment to complete its life cycle (Figure 

5.2). To test this, I analyzed the eggs from the feces of mice, and found that whereas a mixture of 

mature and immature eggs was found in the intestinal wall, only mature eggs were found in the 

lumen of the intestines. Having demarcated the sizes of mature versus immature eggs, I was able 

to use the published sizes of S. mansoni eggs in human feces from a 1916 publication (Martinez., 

1916), to show that they corresponded with those of mature eggs. My work has led to the insight 

that both in humans and in mice, it is specifically the mature eggs which are shed.  
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Figure 5. 2. Developmental stage-specific induction of granulomas 

 

 

5.3. Role of omega-1 in granuloma formation  

Granuloma formation around the eggs are driven by their secreted antigens which are strong 

inducers of Th2 responses, IL-4 and IL-13, with the two major egg antigens, omega-1 and alpha-

1, contributing to this process. While it is known that omega-1 is internalized into DCs where it 

degrades host RNA leading to inhibition of protein synthesis, a clear connection to how this 

activity induces Th2 polarization and granuloma formation has not been established (Everts et 

al., 2012; Everts et al., 2009; Steinfelder et al., 2009).  

In the zebrafish I found that injected omega-1 elicited RNase-dependent macrophage 

recruitment. This finding indicates that omega-1 does not act directly as a chemoattractant, and 

that recruitment must be mediated through downstream effects stemming from its RNase 

activity. Further, this indicates that at least some of its contribution to granuloma formation is 

through inducing macrophage recruitment. 

Omega-1 alters DC morphology and reduces their conjugation affinity with T cells 

(Steinfelder et al., 2009). However, this may not be the cause of Th2 polarization, but a side-

effect stemming from inhibition of protein synthesis. Omega-1 is hepatotoxic, and it has been 

suggested that the granuloma might form as a protective response to sequester it. There is an 

overlap in the involvement of Th2 responses to helminth infections and to wound-healing (Gause 

et al., 2013), raising the possibility that macrophage recruitment, Th2 polarization, and 
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granuloma formation are all induced by the cytotoxicity of egg antigens, and subsequent 

activation of a wound-healing response. Clues as to how omega-1 could induce such responses 

and subsequent granuloma formation come from a 2016 paper investigating the use of omega-1 

to induce weight loss and improve glucose homeostasis in obese mice (Hams et al., 2016). These 

authors found that injection of omega-1 into the intraperitoneal cavity of mice induces RNase-

dependent cell damage, and the expression of the IL-33 in DCs and macrophages within 3 hours 

post-injection (Hams et al., 2016), a timeframe consistent with my observations of omega-1-

induced macrophage recruitment. IL-33 is known to function as a DAMP/alarmin to alert the 

immune system to tissue damage or stress, and is a strong inducer of Th2 cytokine production 

from both innate immune cells and Th2 cells (Miller, 2011; Oboki et al., 2011). Taken together, 

this may bridge the gap between omega-1 activity and induction of Th2 responses, and to 

provide a molecular explanation to complement the initial hypothesis that the granuloma forms 

as a response to minimize the cytotoxic activity of the eggs. In preliminary experiments to detect 

cell damage during granuloma formation, I found some evidence for this in epithelial cells, but 

not in macrophages. Using the Sytox stain for cell permeability, I did not find cell damage in the 

macrophages of the S. mansoni granuloma. This is in contrast to substantial cell death seen in 

mycobacterial granulomas at the same time point (Davis and Ramakrishnan, 2009). It might be 

that the cell damage or stress is below the threshold of permeabilization of their cell membranes, 

or that macrophages are resistant to damage by omega-1. In contrast, at earlier timepoints 

preceding granuloma formation, I observed Sytox staining in the epithelial cells adjacent to the 

egg. Possibly this indicates that at the initiation of macrophage recruitment omega-1 is initially 

internalized by epithelial cells resulting in expression of chemokines or DAMPs, which would be 

analogous to the initial interaction of egg antigens with hepatocytes, preceding granuloma 

formation. Future experiments will require assessment of IL-33, IL-4/5/13 expression in the 

zebrafish before and after granuloma formation in response to schistosome eggs, and in 

comparison to SEA beads and Mycobacterium marinum. Initially this will be done by qPCR, and 

then ideally using a fluorescent reporter line to determine in which cells these are expressed, and 

when.  
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5.4. Studying S. japonicum and inert granulomagenic materials in the zebrafish larva 

Following the analysis of the S. mansoni granuloma, the obvious next use of this zebrafish model 

would be to assess granuloma formation in response to another schistosome species, Schistosoma 

japonicum. In the case of Schistosoma mansoni, I found that neither its egg nor its egg antigens 

recruited neutrophils, resulting in granulomas composed of macrophages but few neutrophils, 

consistent with mammalian models. Whereas neutrophils are rarely seen in these S. mansoni 

granulomas, they are a common cellular component of the S. japonicum granulomas, where they 

are thought to cause its characteristic tissue damage (Chuah et al., 2013; Hsu et al., 1973). 

Following their recruitment via the japonicum-specific secreted egg antigen, Sje16.7 (Wu et al., 

2014), as well as egg-induced IL-8 expression (Chuah et al., 2014), the neutrophils are 

stimulated by the japonicum egg to release NETs in the granuloma (Chuah et al., 2013) and to 

induce the expression of MMP9 (Chuah et al., 2014), a host factor which was found to enhance 

the formation of the tuberculous granuloma in zebrafish (Volkman et al., 2010).  

Future experiments to contrast the mansoni and japonicum granulomas in the zebrafish may 

provide insight into the granulomas of both species. Further, japonicum-specific pathology could 

be investigated by utilization of the neutrophil-defective WHIM mutant zebrafish (Yang et al., 

2012), allowing us to determine what proportion of necrosis and pathology is mediated by 

neutrophils, and which proportion is induced directly by the egg. Such results would be 

complimented by serial intravital timelapse microscopy to visualize the formation of the 

japonicum granuloma over time, with clues potentially gleaned from the timing of events. For 

example, if neutrophil recruitment precedes necrosis, that would be consistent with egg-mediated 

direct neutrophil recruitment, and would also be expected if neutrophils were the cause of 

necrosis.  

During the course of this project I developed the tools and techniques for implantation of 

schistosome eggs and beads into zebrafish larvae to visualize the formation of their granulomas 

in a living animal. In future experiments I would like to expand on the usage of these tools and 

techniques to access the granuloma which form in response to other foreign materials known to 

induce epithelioid foreign body granulomas, such as pine pollen and beryllium (Pagan and 

Ramakrishnan, 2018). In the former case it will be interesting to compare the formation of 

epithelioid granulomas around pine pollen with those of the schistosome egg. Whereas in the 

latter case, beryllium is thought to require T cells for granuloma formation, and so assessment in 
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the sole context of innate immunity will be revealing. Other possibilities include the injection of 

lipids and alum to visualize the formation of lipid and alum granulomas, respectively.  

While this project has focused on the formation of granulomas in response to large, 

extracellular objects (eggs and beads), our laboratory focus is on the tuberculous granuloma as it 

forms in response to intracellular infection. In this case, the tuberculous bacteria reside within the 

endosome of the macrophage and induces the inflammatory response which induces granuloma 

formation. This is in contrast to the schistosome egg which is too large to be phagocytosed by the 

macrophages, which instead undergo frustrated phagocytosis, spreading out and flattening over 

the surface of the egg. By juxtaposition of these two inciting agents, the question which arises is 

that of size; does the size of the inciting agent (large vs small) and its cellular localization 

(intracellular vs extracellular) have specific consequences? Or is size irrelevant given that the 

inciting agent induces a persistent inflammatory response? One possible way to address this 

question is by implanting objects of the same material, but of differing sizes, and then assessing 

if granuloma formation is altered. This could be done using sepharose, polystyrene, and 

polyethylene beads, as the large versions were found to induce granulomas on their own. 

However, to assess the contribution of specific antigens to this process will require finding a 

material to which proteins or lipids can be bound, yet does not induce granuloma formation on 

its own. Alternately, I have previously generated and implanted bacteria-entrapped microspheres 

using Pseudomonas aeruginosa. In contrast to injection of the bacteria alone which results in 

their phagocytosis and clearance, their encagement within the microsphere protects them from 

phagocytosis, allowing them to persist chronically and to induce granuloma formation. A similar 

approach could be used to compare the granulomas of intracellular tuberculous bacteria or 

extracellular tuberculous bacteria encaged with microspheres.  
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List of Movies 
 

Movie 1. Microinjection into the hindbrain ventricle  

Hindbrain ventricle microinjections for the introduction of egg antigens or bacterial infection, 

using the standard microinjection needle and VAMP (2013 Takaki). Linked to Figure 3.1 and 3.2 

and Methods 2.5.   

 

Movie 2. Schistosome egg implantation 

Implantation of the schistosome egg into the hindbrain ventricle using the CAIN and VAMP. 

Linked to Figure 3.1 and Appendix 1.  

 

Movie 3. Formation of the schistosome egg granuloma 

Timelapse 3D microscopy from 1-7 days post-implantation showing macrophage recruitment to 

the egg and granuloma formation around the egg. The last series of images shows E-cadherin 

staining around the same egg, done at the end of the time-lapse imaging. Linked to Figure 3.2.  

 

Movie 4. The parasite can withstand granuloma formation if the eggshell is intact 

The first series of images show a moving miracidium within an intact egg surrounded by an 

epithelioid granuloma five days post-implantation. The second series of images shows a ruptured 

egg which has been infiltrated by macrophages that are seen moving within the egg. Linked to 

Appendix 4.  
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Appendices  
 

 
Appendix 1. Implantation of Schistosoma mansoni eggs into zebrafish larvae 

(A-C) Capillary-Assisted Implantation Needle (CAIN). (A) Side and front profile of CAIN 

showing double-beveled point. Scale bar 50 μm. (B) CAIN attached to micromanipulator for 

X,Y, and Z control, as used by left hand of operator. Arrows indicated upward flow of fluid 

during grasping of egg. (C) Function of CAIN demonstrated by grasping S. mansoni egg. Scale 

bar, 50 μm. (D-F) Vacuum-Assisted MicroProbe (VAMP). (D) Occlusion of thumb hole re-

routes aspiration pressure to tip (E), allowing for grasping of the larvae (F). Scale bar, 1000 μm. 

VAMP as previously described (Takaki et al., 2013).  Linked to Figure 3.1. 
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Appendix 2. Prevalence of granuloma formation 

The number and rounded percentages of implanted eggs in each category of immune response as 

defined in Figure 3.1D, for each of 8 experiments. Each experiment constitutes a separate batch 

of eggs and a separate clutch of zebrafish larvae. Mean percent is the mean of the percent of eggs 

in each category for each individual experiment. Sample size, n, the total number of assessed 

eggs per experiment. Linked to Figure 3.1D and E. 

 

 

 

 

 

 
Appendix 3. Formation of the epithelioid granuloma 

Timelapse microscopy following the formation of the epithelioid granuloma (white arrowhead) 

from 1-7 dpi, imaged at 2 day intervals. Two examples shown, (A) and (B). Animal in (B) was 

not recovered after the 3 day time point. Scale bar, 100 μm. Linked to Figure 3.2A.  

 

 

Exp 
Minimal 

Recruitment (%) 
MΦs 

Recruited (%)  
Granuloma 
(partial)(%) 

Granuloma 
(complete)(%) 

Granuloma 
(%) 

n 

1 7 (44%) 5 (31%) 3 (19%) 1 (6%) 4 (25%) 16 

2 1 (20%) 2 (40%) 2 (40%) 0 (0%) 2 (40%) 5 

3 8 (44%) 2 (11%) 7 (39%) 1 (6%) 8 (44%) 18 

4 5 (25%) 6 (30%) 6 (30%) 3 (15%) 9 (45%) 20 

5 15 (38%) 11 (28%) 10 (25%) 4 (10%) 14 (35%) 40 

6 2 (25%) 5 (63%) 1 (13%) 0 (0%) 1 (13%) 8 

7 2 (17%) 8 (67%) 2 (17%) 0 (0%) 2 (17%) 12 

8 3 (43%) 4 (57%) 0 (0%) 0 (0%) 0 (0%) 7 

Total 43 43 19% 6% 40 126 

Mean % 32% 41% 23% 5% 28% --- 
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Appendix 4. The eggshell protects the miracidium from being killed by host macrophages 

(A and B) The parasite is alive within an epithelioid granuloma at 5 dpi. (A) Fluorescence and 

brightfield intravital microscopy. (B) Immunofluorescence staining with E-cadherin antibody. 

The outer-most stained structure is the epithelial lining of the hindbrain ventricle (arrowhead), 

and is not in contact with the epithelioid granuloma (arrow). (C) Fluorescence and brightfield 

microscopy of ruptured egg showing macrophage infiltration and the absence of an intact 

parasite. Arrow, rupture point of eggshell. (D) Representative brightfield and fluorescence 

timelapse microscopy of a miracidium following implantation into the HBV. (A-C) 

Representative of routinely observed miracidia alive within intact eggs within granulomas, and 

of occasionally ruptured eggs. (D) Representative of two experiments, each with a sample size of 

10 animals. Scale bars, 50 μm. See also Movie 4.  

 

https://www.dropbox.com/s/arrr3fs67comwcd/Movie%20S3%20-%20Alive%20in%20Granuloma%2C%20dead%20if%20ruptured%20copy.wmv?dl=0
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Appendix 5. Morphology and volume of mature and immature eggs  

(A) S. mansoni eggs isolated from mouse livers. Immature and mature eggs, arrowheads and 

arrows, respectively. Scale bar, 300 μm. (B) Immature IVLE at 2 days post-fertilization (dpf), 

and mature IVLE at 6 days post-incubation in nutrient medium at 37°C. Scale bar, 100 μm. (C) 

3D rendering of Coomassie-stained eggs following confocal microscopy, and (D) volumetric 

analysis of three immature and mature eggs using 3D renderings shown in (C). Scale bar, 50 μm. 

Statistics, Student’s t-test. Linked to Figure 3.3. 

 

 

 
 
 

 

 

 

Appendix 6. Sizes of implanted materials 

 

 

Implanted Material Diameter 
(median, μm) 

Volume 

(median, μm3) 

Mature Schistosome egg --- 200,000 

Immature Schistosome egg --- 60,000 

Sepharose Agarose beads 65 146,346 

Polystyrene beads 45 47,713 

Polyethylene beads (large) 70 175,909 
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Appendix 7. Dimensions and volume of mature and immature eggs   

(A) Measurements of S. mansoni eggs isolated from mouse livers that were imaged and 

classified as immature (open circles) or mature (closed circles) based on visual estimate of size 

and morphology. (B) Egg volumes calculated from egg dimensions in (A). Linked to Figure 3.5.   
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