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Finite-element- model updating of civil engineering structures using a 

hybrid UKF-HS algorithm

Finite-element-model updating allows reducing the discrepancies between the 

numerical and the experimental dynamic behaviour of civil engineering 

structures. Among the different methods to tackle the updating problem, the 

maximum likelihood method has been widely used for practical engineering 

applications. In this method, the updating problem is transformed into an 

optimization problem where the relative differences between the numerical and 

experimental modal properties of the structure are reduced via the modification 

of the most relevant physical parameters of the model. However, this method 

often presents the drawback of requiring high simulation times in order to 

perform the updating process when dealing with complex structures. To 

overcome this limitation, in this paper a novel hybrid Unscented Kalman Filter – 

Harmony Search (UKF-HS) algorithm is proposed and its implementation details 

are discussed. In order to validate such hybrid algorithm and further illustrate its 

performance, the finite-element-model updating of a benchmark footbridge is 

performed using two different approaches (single-objective and multi-objective) 

and three different computational algorithms, namely: (i) genetic algorithms; (ii) 

harmony search; and (iii) the novel UKF-HS hybrid algorithm. The obtained 

results reveal that the proposed hybrid algorithm may be considered as an 

adequate alternative tool to efficiently perform the finite-element-model updating 

of civil engineering structures in practical engineering applications.

Keywords: finite-element-model updating; unscented Kalman filter, harmony 

search; genetic algorithm; hybrid algorithms; maximum likelihood method.

1. Introduction

Finite-element-model updating allows reducing the discrepancies between the 
predictions provided by numerical models and the real behaviour of civil engineering 
structures (Friswell and Mottershead, 1995). In this manner, the resulting finite-
element-models will closely reproduce the actual behaviour of the structure. For this 
reason, finite-element-model updating has been widely used in engineering practice to 
conduct structural assessment analyses (Fritzen et al., 1998; Fan and Qiao, 2011), in 
damage detection applications (Teughels et al., 2002; Wang et al., 2014) or for 
structural health monitoring of existing structures (Beck, et al., 2001).

Finite-element-model updating basically focuses on obtaining the values of the 
most relevant physical parameters of the structure which minimize the difference 
between the numerical and experimental behaviour of the structure (Mottershead et al., 
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2011). For this purpose, the modal properties of the structure are usually considered to 
characterize its behaviour. In this manner, the finite-element-model updating problem 
can be transformed into a parameter identification problem (Friswell and Mottershead, 
1995). In order to address this identification problem, estimators are normally 
considered (Marwala, 2010). Among the different estimators, two have been widely 
used in practical engineering applications: (i) Bayesian inference; and (i) maximum 
likelihood method.

Bayesian inference (Marwala et al., 2016) allows finding the posterior 
probability density function of the considered parameters via a statistical method based 
on Bayes’ theorem. According to this theorem, the a priori information on the 
probability density function of the parameters can be updated based on information 
provided by the observations (experimental data). The expectation of the posterior 
probability density function may be evaluated through multi-dimensional integrals. As 
these integrals do not usually have analytical solutions, numerical approximations (Beck 
and Katafygiotis, 1998) and stochastic simulation methods (Papadimitriou et al., 2018) 
have been widely employed to this end. Between these two methods, stochastic 
simulations have been extensively used due to its ease of implementation and higher 
accuracy (Cheung and Beck, 2009). Stochastic simulations are based on the generation 
of samples (sampling techniques). Among these sampling methods, the so-called 
Markov Chain Monte Carlo (MCMC) methods have been normally used to solve the 
finite-element-model updating problem (Beck and Au, 2002). Different algorithms have 
been developed to perform a MCMC simulation. Among these algorithms, some 
outstanding examples for Bayesian finite-element-model updating applications are 
(according to the best of the authors’ knowledge): (i) the Metropolis-Hastings algorithm 
(Robert and Casella, 1999); the Gibbs sampling algorithm (Ching et al., 2006); the 
transitional MCMC algorithm (Ching and Chen, 2007); and the Hamiltonian Markov 
Chain algorithm (Cheung and Beck, 2009). All these Bayesian methods present as main 
advantage that they provide the overall probabilistic distribution of the considered 
physical parameters rather than a point estimation of their expected value. Nevertheless, 
they present the drawback of the high simulation time required to perform the finite-
element-model updating when tackling complex civil engineering structures (Jiménez-
Alonso et al., 2019). In particular for the case when the number of unknown physical 
parameters to be updated is large (Astroza et al., 2019; Bartilson et al., 2019; 
Vakilzadeh et al., 2014), or when it is not possible to implement a parallelizable 
Bayesian computational approach (Astroza et al., 2019; Cheung and Beck, 2009; 
Papadimitriou et al., 2018;).

On the other hand, the maximum likelihood method focuses on estimating the 
expected value of the considered physical parameters via the maximization of the 
likelihood between the numerical and experimental modal properties of the structure. 
Under the assumption of a normal distribution of the errors, this method is equivalent to 
the ordinary least squares estimator. Thus, the maximum likelihood method allows 
formulating the finite-element-model updating problem as an optimization problem 
(Wang et al., 2011). Hence, the objective function is defined in terms of the sum of the 
squares of the relative differences between the numerical and experimental modal 
properties of the structure. A limitation of this method is that, in contrast to Bayesian 
inference, only the expected values of the physical parameters can be obtained. 
Although this fact makes Bayesian inference a more robust estimator for updating 
problems, the high simulation time required to perform the updating process of complex 
civil engineering structure has motivated a more intensive use of the maximum 
likelihood method for practical engineering applications. Although computational times 
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involved in Bayesian updating may significantly be reduced by parallelization, the ease 
of implementation of the maximum likelihood method for such practical applications 
has prompted us to tackle the updating problem using these later algorithms.

In order to solve the resulting optimization problem, either local or global 
optimization algorithms can be employed (Nocedal and Wright, 1999). As the 
relationship between the considered physical parameters and the modal properties of the 
structure is clearly nonlinear, multiple optimums are normally expected in the objective 
function of this problem. Provided that local optimization algorithms may have 
difficulties to find the global optimum under such scenario, global optimization 
algorithms are usually employed to solve the updating problem. To this end, 
computational intelligence algorithms, like genetic algorithms (GA) and artificial neural 
networks (ANN) have been widely used for practical engineering applications 
(Marwala, 2010). Both algorithms have shown their efficiency when solving nonlinear 
optimization problems (Koh and Perry, 2009; Levin and Lieven, 1998a). For instance, 
GA have been successfully employed to assess the structural behaviour of existing 
bridge structures (Jiménez-Alonso and Sáez, 2016) or to detect damage in civil 
engineering structures (Hao and Xia, 2002). ANN have as well been implemented to 
conduct the finite-element-model updating of a wide variety of structural systems (Lu 
and Tu, 2004; Hasançebi and Dumlupınar, 2013; Guo et al., 2017). Many other success 
stories are scattered in the scientific literature for finite element updating.

The main limitation of these computational algorithms is the high simulation 
time required to perform the finite-element-model updating when the complexity of the 
structure increases. Two trends have been considered to overcome this drawback (if we 
keep parallelization aside in this review): (i) the implementation and validation of more 
recent global optimization algorithms and (ii) the hybridization between local and 
global optimization algorithms.

As representative examples of the first trend, Levin and Lieven (1998b) 
performed a comparison between the performance of the GA and the simulated 
annealing (SA) to solve the finite-element-model updating problem of a flat plate wing; 
Perera et al. (2010) compared the results obtained between GA and the particle swarm 
optimization (PSO) for the finite-element-model updating of a one-story reinforced 
concrete frame.

On the other hand, two outstanding examples of the second trend can be 
remarked: (i) the work reported by Shabbir and Omenzetter (2015), who proposed a 
hybrid sequential niche-PSO algorithm to perform the finite-element-model updating of 
a footbridge, and (ii) the study provided by Astroza et al. (2016), who implemented a 
hybrid unscented Kalman filter-SA algorithm to perform the finite-element-model 
updating of a steel frame structure.

In this paper, a novel computational algorithm devised to improve the efficiency 
of finite-element-model updating of civil engineering structures is proposed, 
implemented and further validated. The design of this new algorithm employs the 
maximum likelihood approach and stems from the two trends mentioned above.

On the one hand, as basis of this new algorithm, the Harmony Search (HS) 
global optimization algorithm is adopted. The harmony search algorithm is based on the 
improvisation process in which musicians seek harmony (Geem et al., 2001). This 
algorithm has been applied efficiently in multiple practical engineering applications 
(Yang and Koziel, 2011). However, according to the best of the authors’ knowledge, it 
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has been rarely applied for the finite-element-model updating of civil engineering 
structures (Fadel et al., 2012; Kaveh et al., 2014).

On the other hand, the performance of the original HS algorithm is improved via 
its hybridization with a local optimization algorithm: the so-called Unscented Kalman 
Filter (UKF) is considered herein. This algorithm belongs to the Kalman filter family 
(Kalman, 1960) which originally focused on estimating the means and the covariance of 
the constitutive parameters of a linear system through a recursive process with two 
steps: (i) the prediction; and (ii) the correction steps. Subsequently, the original Kalman 
filter was adapted to nonlinear systems (Jazwinski, 1970) through the so-called 
Extended Kalman Filter (EKF). The basic idea of this algorithm is to linearize locally 
the nonlinear function, which represents the behaviour of the system, before applying 
the Kalman filter. Thus, one of the main drawbacks of this algorithm is that it only 
allows computing a first order approximation of the nonlinear function. In order to 
overcome this limitation, the Unscented Kalman Filter (UKF) was subsequently 
proposed by Julier and Uhlmann (1997). This algorithm defines a set of sampling points 
which allow estimating the mean and covariance of the constitutive parameters after 
their propagation through the nonlinear system. The direct estimation of these statistical 
properties allows computing a second order approximation (or even a third order 
approximation in case of a Gaussian random vector is propagated) of the nonlinear 
function (Van Der Merwe, 2004; Nguyen and Nestorović, 2015).

The resulting hybrid UKF-HS algorithm is then formulated to tackle two types 
of optimization problems: (i) single-objective and (ii) multi-objective approaches. The 
implementation details are next thoroughly presented and discussed. The performance 
of the new algorithm is validated and further compared with the results of other two 
global computational intelligence algorithms (GA and HS). To this end, the finite 
element model updating of a benchmark reconfigurable steel footbridge (Hudson and 
Reynolds, 2017) located at the laboratory of the Vibration Engineering Section of the 
University of Exeter (U.K.) is considered. The experimental modal properties of the 
structure were obtained via the signal processing of the records obtained during a forced 
vibration test (Maia and Silva, 1997).

The paper is organized as follows. First, some basics about finite-element-model 
updating under the maximum likelihood method are presented. Subsequently, the three 
considered computational intelligence algorithms (GA, HS, UKF-HS) are described in 
detail, with special emphasis on the newly proposed UKF-HS algorithm. Subsequently, 
the performance of the three mentioned algorithms is compared when they are 
implemented for the finite-element-model updating of a laboratory footbridge. Finally, 
some concluding remarks are drawn to close the paper in the fifth section.

2. Basics of Finite-element-model Updating under the Maximum Likelihood 

Method

As indicated above, the finite-element-model updating problem may be 
considered as a parameter identification problem in which the values of the most 
relevant physical parameters of the structure are to be estimated through the 
minimization of the differences between the numerical and experimental modal 
properties of the structure (Mottershead et al., 2011). Different estimators are normally 
used to solve this parameter identification problem. Among them, the maximum 
likelihood method has been widely used to perform the finite-element-model updating 
of civil engineering structures (Marwala, 2010) and it will be the approach considered 
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herein. 

In this manner, the finite-element-model updating problem is transformed into 
an optimization problem, where the updated model follows from iterative modifications 
of the most relevant physical parameters, until an optimal solution is obtained. The 
objective function of such optimization problem may be defined in terms of the square 
relative differences (residuals) between the numerical and the experimental modal 
properties of the structure (natural frequencies and vibration modes). As design 
parameters of this problem, the most relevant physical parameters of the model are 
considered. Provided that the relationship between the residuals and the design 
parameters is nonlinear, global optimization algorithms are needed to perform the 
optimization process (Nocedal and Wright, 1999). Additionally, a search domain is 
usually established to guarantee that the solution obtained retains its physical meaning. 
Two approaches can be considered to define the objective function: (i) the single-
objective approach; and (ii) the multi-objective approach.

Under the single-objective approach, the optimization problem consists in 
minimizing a single-objective function defined in terms of the weighted residuals 
between the numerical and experimental modal properties of the structure. These 
weights take into account the relative contribution of each residual. The value of these 
weights can be established either by a statistical criterion (Friswell and Mottershead, 
1995) or by a correlation criterion (Teughels et al., 2002). According to the first 
criterion, the weights are determined in terms of the uncertainty associated with the 
estimates of the experimental modal properties of the structure. According to the second 
criterion, the weights are defined by an iterative process (trial and error) which ensures 
the best agreement between the numerical and experimental modal properties of the 
structure. The second criterion will be considered herein.

Under the multi-objective approach, the optimization problem consists in 
minimizing a multi-objective function defined by several functional components. The 
overall objective function is normally defined by two functional components for 
practical engineering applications (Jin et al., 2014). One component may be defined in 
terms of the residuals associated with the natural frequencies, , whilst the other 𝑟𝑓,𝑗(𝛉)
component may be defined in terms of the residuals associated with the vibration 
modes,  (  being the considered vibration mode). In this case, no weights are 𝑟𝑚,𝑗(𝛉) 𝑗
needed to define the objective function. However, a set of possible solutions (the so-
called Pareto front) is obtained as result of the optimization process. Hence, a 
subsequent decision making problem must be addressed in order to select the best 
solution among the different elements of the Pareto front. Among the different criteria 
provided in literature (Infantes et al., 2019), the normal boundary intersection (NBI) 
method has been considered herein (Deb and Gupta, 2011).

Residuals  and  can be defined as follows:𝑟𝑓,𝑗(𝛉) 𝑟𝑚,𝑗(𝛉)

𝑟𝑓,𝑗(𝛉) =
𝑓num,𝑗(𝛉) ―  𝑓𝑒𝑥𝑝,𝑗

 𝑓exp,𝑗
          𝑗 = 1, 2, 3, …𝑛𝑓 (1)

𝑟𝑚,𝑗(𝛉)2 =
(1 ― 𝑀𝐴𝐶𝑗(𝛉))2

𝑀𝐴𝐶𝑗(𝛉)                      𝑗 = 1, 2, 3, …𝑛𝑓 (2)

where  is a vector containing the most relevant physical  parameters of the model; 𝛉 𝑛𝑓
is the total number of  vibration modes considered to conduct the updating;  and 𝑓𝑛𝑢𝑚,𝑗
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 are the numerical and experimental natural frequencies (  being the number 𝑓𝑒𝑥𝑝,𝑗 [Hz] 𝑗
of the considered vibration mode), respectively; and  denotes the Modal 𝑀𝐴𝐶𝑗
Assurance Criterion (Allemang and Brown, 1982) which assesses the correlation 
between the numerical and experimental vibration modes. The  ratio can be 𝑀𝐴𝐶𝑗
expressed as follows:

𝑀𝐴𝐶𝑗(𝛉) =
(𝜙num,𝑗(𝛉)·𝜙exp,𝑗)2

(𝜙𝑇
num,𝑗(𝛉)·𝜙num,𝑗(𝛉))·(𝜙𝑇

exp,𝑗·𝜙exp,𝑗)
(3)

with  and  being the numerical and experimental vibration modes, 𝜙𝑛𝑢𝑚,𝑗 𝜙𝑒𝑥𝑝,𝑗
respectively.

On the one hand, the formulation of the finite-element-model updating problem 
using the single-objective approach can be formulated as follows:

min 𝑓(𝛉) =
1
2[ 𝑛𝑓

∑
𝑗

𝑤𝑓,𝑗·𝑟𝑓,𝑗(𝛉)2]
1/2

+
1
2[ 𝑛𝑓

∑
𝑗

𝑤𝑚,𝑗·𝑟𝑚,𝑗(𝛉)2]
1/2

subject to{ 𝛉𝐥 ≤ 𝛉 ≤ 𝛉𝐮;
𝑛𝑓

∑
𝑗

𝑤𝑓,𝑗 + 𝑤𝑚,𝑗 = 1}
(4)

 and  being the weights associated with  the residuals of the natural frequencies 𝑤𝑓 𝑤𝑚
and vibrations modes; and  and  being the lower and upper bounds of the search 𝛉𝐥 𝛉𝐮
domain of the considered physical parameters, respectively.

On the other hand, the formulation of the finite-element-model updating 
problem using the multi-objective approach can be formulated as follows:

 where min 𝑓(𝛉) = min (𝑓1(𝛉) 𝑓2(𝛉)) { 𝑓1(𝛉) =
1
2[∑𝑛𝑓

𝑗 𝑟𝑓,𝑗(𝛉)2]1/2

𝑓2(𝛉) =
1
2[∑𝑛𝑓

𝑗 𝑟𝑚,𝑗(𝛉)2]1/2

subject to:  𝛉𝐥 ≤ 𝛉 ≤ 𝛉𝐮

(5)

In summary, a typical finite-element-model updating consists of the following 
steps (Marwala, 2010): (i) the experimental modal properties of the structure are 
identified via the signal processing (either experimental or operational modal analysis 
may be employed to this end) of the records obtained during a vibration test (either 
forced vibration test or ambient vibration test); (ii) the numerical modal properties of 
the structure are obtained via a modal analysis based on a finite-element model; (iii) the 
most relevant physical parameters of the model are modified iteratively (using a global 
optimization algorithm); (iv) the objective function is evaluated; and (v) this iterative 
process is repeated until some convergence criterion is met. As result of this process, 
either a vector of updated parameters (single-objective approach) or a Pareto front 
(multi-objective approach) is obtained. In the latter case, a subsequent decision making 
problem must be addressed in order to select the vector of updated parameters.
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3. Computational Intelligence Algorithms for the Finite-element model 

Updating of Civil Engineering Structures.

The finite-element-model updating problem using the maximum likelihood 
method is usually tackled in practical engineering applications by employing 
computational intelligence algorithms (Marwala, 2010). These algorithms present as 
main advantage that the solution obtained is a global optimum of the objective function. 
However, they have the drawback of the high simulation time required to perform the 
updating process, especially when the complexity of the model increases. In order to 
overcome this limitation, several strategies have been adopted, as summarized in the 
introduction: from parallelizing the algorithms to the development of alternative global 
optimizers or the devising of hybrid local-global algorithms. In this paper, a novel 
hybrid Unscented Kalman Filter-Harmony Search (UKF-HS) algorithm is proposed and 
validated. This hybrid algorithm takes advantage of both the acceleration scheme 
provided by the unscented Kalman filter algorithm and the global search characteristics 
of the harmony search algorithm.

The performance of this hybrid algorithm is assessed by comparing the results of 
the finite-element-model updating of a laboratory footbridge conducted using three 
different computational intelligence algorithms: (i) the classic genetic algorithms (GA); 
(ii) the harmony search algorithm (HS); and (iii) the novel hybrid UKF-HS algorithm. 
Further comparison of the performance of the new algorithm with the quite numerous 
optimizers available in the literature is out of the scope of this paper. However, it is 
relevant to point out here that previous studies (Marwala, 2010) reveal that Particle 
Swarm Optimizers (PSO) outperform other algorithms like Nelder-Mead (NM) or 
Simulated Annealing (SA). More recent studies (Jiménez-Alonso et al., 2017) show that 
the HS optimizer outperforms both GA and PSO when addressing the finite element 
model updating of civil structures. For this reason, our proposal selects HS as global 
optimizer and hybridizes it with the local UKF algorithm, in order to speed up the 
updating process.

In order to make this paper as self-contained as possible, the three mentioned 
computational algorithms considering both single-objective and multi-objective 
approaches are next described. First, a general overview of GA is included. Next, the 
HS algorithm is summarized. Subsequently, the theoretical formulation of the UKF 
algorithm is presented. Finally, the newly proposed hybrid UKF-HS algorithm is 
described in detail.

3.1. Genetic Algorithms (GA)
Genetic algorithms (GA) are nature-inspired computational algorithms based on 

the natural selection theory. Thus, the assessment of each chromosome (physical 
parameter vector) is based on the value of the objective function for each candidate. 

The GA, under the single-objective approach, can be summarized in the 
following steps (Koh and Perry, 2009): (i) an initial population of parameter vectors is 
randomly created; (ii) the objective function is evaluated for all the candidates; (iii) an 
iterative process is developed where parameter vectors are selected in order to create a 
new population; (iv) a new population is created using both mechanisms, the crossover, 
which allows obtaining a new vector from to previous ones, and the mutation, which 
consists in modifying the value of one component of the parameter vector to explore 
new areas of the search domain; (v) the objective function is evaluated for the new 
population at each iteration and the candidates with higher fitness are selected; (iv) the 
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steps (iii) to (v) are repeated iteratively until a convergence criterion is met. The 
flowchart of the GA is shown in Figure 1a.

On the other hand, the genetic algorithms, under the multi-objective approach 
(MGA), are addressed by the non-dominated sorting genetic algorithms (the so-called 
NSGA-II algorithm) proposed by Deb et al. (2002). According to this algorithm, the 
non-dominated solutions are classified using the non-dominated sorting method. In this 
manner, a new population is generated considering only the non-dominated solutions. 
Both mechanisms are controlled by an operator denominated crowded comparison 
operator. This operator is based on two attributes of each solution: (i) the rank; and (ii) 
the crowding distance. As result, a set of solutions, which constitutes the Pareto front, is 
obtained. The flowchart of the MGA algorithm is shown in Figure 1b.

Initial
Population 

Evaluate 
Selection

Crossover

Mutation

Convergence?

Solution

Yes
No

Operations

Update
Population 

Initial
Population 

Evaluate

Update
Population 

Evaluate

Is Dominated?

Update
Population 

Yes

No

Convergence?

Yes
No

Pareto Fronta) b)

Figure 1. Flowchart of the genetic algorithms: a) GA and b) MGA.

3.2. Harmony Search Algorithm (HS)
The HS algorithm was proposed by Geem et al. (2001). The algorithm is 

inspired in the musical improvisation where harmony is searched according to aesthetic 
requirements. As the GA, the HS finds the global minimum of the objective function by 
modifying iteratively the value of the considered physical parameters of the model. 
Although this algorithm has been implemented successfully for several practical 
engineering applications (Manjarres et al., 2013); however it has not been yet 
implemented for the finite-element-model updating of civil engineering structures 
according to the best of the authors’ knowledge.

The HS algorithm, under the single-objective approach, can be summarized in 
the following steps: (i) the harmony matrix, , is created (which contains the initial 𝐇
candidate solutions, parameter vector, created randomly); (ii) the objective function is 
evaluated for each solution; (iii) a new harmony is generated using three different 
mechanisms (memory consideration, pitch adjustments and randomization); (iv) the 
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objective function is evaluated for each new harmony, (v) the harmony matrix, , is 𝐇
updated with the best generated harmonies; and (vi) the steps (iii) to (v) are repeated 
until a convergence criterion is met.

When a new harmony is generated, each element of a new candidate vector can 
be defined in terms of either a previous value stored in the harmony matrix, , or 𝐇
adopting a new random value. This fact is controlled by the harmony memory 
consideration rate, . This ratio establishes the probability of selecting a previous 𝐻𝑀𝐶𝑅
component of the harmony matrix, . Additionally, when some elements adopts the 𝐇
value of a previous one, it can be mutated according to the pitch adjustment rate, . 𝑃𝐴𝑅
This ratio establishes the probability of mutating an element of the candidate vector. 
The adjustment is based on an additional parameter, the so-called bandwidth, , which 𝑏𝑤
is added or subtracted to mutate the considered candidate vector. The flowchart of the 
HS algorithm is shown in Figure 2a.

The HS algorithm, under the multi-objective approach (MHS), is an extension of 
the above mentioned algorithm which allows minimizing multi-objective functions. At 
each iteration, a set of new possible candidate solutions is created according to both the 

 and  ratios. The classification of the non-dominated solutions is performed 𝐻𝑀𝐶𝑅 𝑃𝐴𝑅
using both the non-dominated sorting method (Deb et al., 2002) and the crowding 
distance. In order to restore the initial size of the harmony matrix, , the worst solutions 𝐇
in terms of crowding distance are deleted. These steps are repeated iteratively until a 
convergence criterion is met. As result of this process, a set of possible solutions is 
obtained, the so-called Pareto front. The flowchart of the MHS algorithm is shown in 
Figure 2b.

Initialize
H

Convergence?

Solution

Yes
No

Operations

Evaluate
Selection

Improvisation

Randomization
Update

H

Initialize
H

Evaluate

Update
H

Evaluate

Is Dominated?

Update
H

Yes

No

Convergence?

Yes
No

Pareto Frontb)a)

Figure 2. Flowchart of the harmony search algorithm: a) HS and b) MHS.

3.3. Unscented Kalman Filter (UKF)
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A local minimization algorithm has been combined with the HS algorithm to 
reduce the simulation time needed to perform the updating process. The unscented 
Kalman filter (UKF) has been selected for this purpose (Julier and Uhlmann, 1997). 
This algorithm is a derivative free estimator, which involves that neither Jacobians nor 
Hessians must be computed, widely used for the state-estimation of nonlinear dynamic 
systems. Among the different transformations, the scaled unscented transformation 
proposed by Wan and Van Der Merwe (2000) has been adopted herein to define the 
UKF algorithm.

The formulation for a parameter identification problem may be represented as 
follows (Wan et al., 2000):

(6)𝛉𝑘 = 𝛉𝑘 ― 1 + 𝐰𝑘 ― 1

(7)𝐳𝑘 = ℎ(𝛉𝑘) + 𝐯𝑘

where  is the parameter vector;  is the nonlinear modelling function,  extracts the 𝛉 ℎ 𝐳
outputs of the dynamic system;  is the statistical noise of the identification process; 𝐰
and  is the statistical noise of observation process. Both type of noise are assumed to 𝐯
be uncorrelated and white Gaussian noise with zero-mean and covariance matrices  𝐐
and  respectively. It is necessary to remark that the matrix  may be computed by 𝐑 𝐑
means of two terms (Tarantola, 2005): (i) the measurement noise; and (ii) the modelling 
noise. As the same models have been employed during the simulation and estimation 
phases, the effects of modelling noise has not been considered herein (Astroza et al., 
2016).

The UKF is a straightforward extension of the unscented transformation (Julier 
and Uhlmann, 2004). The estimation is addressed by considering  (being  the 2𝑛𝑑 +1 𝑛𝑑
number of parameters) deterministic sampling points (sigma points) which can be used 
to evaluate the true mean and the covariance. The propagation of these sigma points 
through the nonlinear function  leads to compute the true posterior mean and ℎ
covariance of the estimated parameters up to the second order of the Taylor series 
expansion of the nonlinear function (third order of the Taylor series expansion for a 
Gaussian inputs). The determination of the sigma points is based on the square-root 
decomposition of the posterior covariance matrix, . For this reason, the matrix  must 𝐏 𝐏
be positive semidefinite at each step. Even though the square-root decomposition can be 
efficiently derived using the Cholesky factorization (  being 𝐀 = 𝐏 = chol(𝐏) 𝐏 = 𝐀𝐀T

), the matrix  is still updated at each iteration and numerical errors can give a non-𝐏
positive semidefinite matrix . The square-root UKF algorithm, proposed by Van Der 𝐏
Merwe and Wan (2001), overcomes this issue since it avoids factorising at each step. 
This algorithm propagates directly the matrix  and guarantees that the covariance 𝐀
matrix is positive semi-definite.

The square-root UKF algorithm has two steps: (i) the prediction step; and (ii) the 
correction (update) step. 

The prediction step is carried out considering the prior model to evaluate the 
sigma points and predict the estimates of the estimation error covariance, , and 𝐀𝜃

calculate the model outputs, . The  sigma points are computed as:𝔃𝑘|𝑘 ― 1 2𝑛𝑑 +1

(8)(𝝌𝑘 ― 1)0 = 𝛉𝑘 ― 1|𝑘 ― 1 

(9)(𝝌𝑘 ― 1)𝑖 =  𝛉𝑘 ― 1|𝑘 ― 1 + (𝑛𝑑 + 𝜆)(𝐀𝜃
𝑘 ― 1|𝑘 ― 1)𝑖      𝑖 = 1, 2, …, 𝑛𝑑

(10)(𝝌𝑘 ― 1)𝑖 + 𝑛 =  𝛉𝑘 ― 1|𝑘 ― 1 ― (𝑛𝑑 + 𝜆)(𝐀𝜃
𝑘 ― 1|𝑘 ― 1)𝑖    𝑖 = 1, 2, …, 𝑛𝑑
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where  are the posterior parameters estimated at the previous step and  is a 𝛉𝑘 ― 1|𝑘 ― 1 𝜆
scaling parameter. The sigma points are weighted under the assumption that the sum of 
all the weights must be equal to the unit. The weights are defined as:

(11)𝑊0 =
𝜆

𝑛𝑑 + 𝜆

(12)𝑊𝑖 = 𝑊𝑖 + 𝑛 =
1

2(𝑛𝑑 + 𝜆)       𝑖 = 1, 2, …, 𝑛𝑑

For parameter identification problems, the estimation error covariance can be 
calculated by applying an exponential weighting on past data,  , being 𝐀𝜃

𝑘 = 𝛾 ―1/2𝐀𝜃
𝑘 ― 1

 a scalar factor slightly less than the unit (Van Der Merwe and Wan, 2001).𝛾
The correction (update) step consists in estimating the posterior mean and 

estimation error covariance in terms of the Kalman’s gain matrix, ; the measurements, 𝐊
; and the model outputs.𝐳𝑜𝑏𝑠

The Kalman’s gain matrix is derived from the model outputs error covariance, 
, and the cross covariance between the estimation error and the model outputs error 𝐒𝑧

covariances, . In order to calculate the model outputs error covariance, , the 𝐏𝜃𝑧 𝐒𝑧

following expression (considering that  for all ) can be used (Terejanu, 𝑊𝑖 > 0 𝑖 ≥ 1
2011):

𝐒𝑧
𝑘 = ∑2𝑛𝑑

0 𝑊𝑖[(𝔃i
𝑘|𝑘 ― 1 ― 𝒛𝑘|𝑘 ― 1)·(𝔃i

𝑘|𝑘 ― 1 ― 𝒛𝑘|𝑘 ― 1)𝑇] + 𝐑 =

+[ 𝑊𝑖(𝔃i
𝑘|𝑘 ― 1 ― 𝒛𝑘|𝑘 ― 1),   𝐑]·[ 𝑊𝑖(𝔃i

𝑘|𝑘 ― 1 ― 𝒛𝑘|𝑘 ― 1)𝑇,   𝐑𝑇]𝑇
𝑊0

(13)[(𝔃0
𝑘|𝑘 ― 1 ― 𝒛𝑘|𝑘 ― 1)·(𝔃0

𝑘|𝑘 ― 1 ― 𝒛𝑘|𝑘 ― 1)𝑇]              𝑓𝑜𝑟  𝑖 = 1:2𝑛𝑑

The first term can be expressed by means of a  factorization1 as the product of 𝑞𝑟
an orthogonal matrix  and an upper triangular matrix , being 𝐆𝑘 ∈  ℝ2𝑛𝑑 + 𝑟 × 𝑟 𝐒𝑧

𝑘 ∈ ℝ𝑟 × 𝑟

 the number of measurements. The last term, can be taken into account performing a 𝑟
rank 1 update to Cholesky factorization2. Therefore, the matrix  can be calculated as 𝑺𝑧

𝑘
(Terejanu, 2011):

(14)𝐒𝑧
𝑘 = 𝑞𝑟([ 𝑊1:2𝑛𝑑·[(𝔃𝑘|𝑘 ― 1)1:2𝑛𝑑

― 𝒛𝑘|𝑘 ― 1],   𝐑 ])
(15)𝐒𝑧

𝑘 = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒(𝐒𝑧
𝑘,   (𝔃𝑘|𝑘 ― 1)0 ― 𝒛𝑘|𝑘 ― 1,   sgn(𝑊0)𝑊0 )

Once the posterior mean of the parameter estimates,  and the posterior 𝛉𝒌|𝒌
estimation error covariance, , are obtained, the algorithm follows a iterative process 𝐀𝜃

𝑘|𝑘
until the maximum number of iterations is reached.

The considered algorithm may be formulated as follows.

Initial Step:

(16)𝛉0 = 𝛉𝑝𝑟𝑖𝑜𝑟

1 The  factorization of a matrix  allows expressing the matrix as . Here,  is an -𝑞𝑟 𝐌 𝐌 = 𝐐𝐑 𝐌 𝑚

by-  matrix,  is an -by-  upper triangular matrix and  is an -by-  unitary matrix.𝑛 𝐑 𝑚 𝑛 𝐐 𝑚 𝑚
2 If , the Cholesky factor of the rank 1 update  is written as 𝐑 = 𝑐ℎ𝑜𝑙(𝐀) 𝐀 + 𝐯𝐯T 𝐒

.= 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒(𝐑,𝐯)
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(17)𝐀𝜃
0 = 𝑐ℎ𝑜𝑙(𝐏θ

0)

Main loop:  (number of iterations of the UKF)𝑓𝑜𝑟 𝑘 = 1:𝑁𝑈𝐾𝐹

Prediction step:

Calculate the  Sigma Points: (18)2𝑛𝑑 +1 (𝝌𝑘 ― 1)𝑖

(19)(𝝌𝑘|𝑘 ― 1)𝑖 = (𝝌𝑘 ― 1)𝑖

(20)𝛉𝑘|𝑘 ― 1 = ∑2𝑛𝑑

0 𝑊𝑖·(𝝌𝑘|𝑘 ― 1)𝑖

(21)𝐀𝜃
𝑘|𝑘 ― 1 = 𝛾 ―

1
2 𝐀𝜃

𝑘 ― 1

(22)(𝔃𝑘|𝑘 ― 1)𝑖 = 𝒉((𝝌𝑘|𝑘 ― 1)𝑖)

(23)𝒛𝑘|𝑘 ― 1 = ∑2𝑛𝑑

0 𝑊𝑖·(𝔃𝑘|𝑘 ― 1)𝑖

Correction (update) step:

(24)𝐒𝑧
𝑘|𝑘 ― 1 = 𝑞𝑟([ 𝑊1:2𝑛𝑑·[(𝔃𝑘|𝑘 ― 1)1:2𝑛𝑑

― 𝒛𝑘|𝑘 ― 1]   𝐑 ])
(25)𝐒𝑧

𝑘|𝑘 ― 1 = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒(𝐒𝑧
𝑘|𝑘 ― 1, (𝔃𝑘|𝑘 ― 1)0 ― 𝒛𝑘|𝑘 ― 1, 𝑠𝑔𝑛(𝑊0))

(26)𝐏𝜃𝑧
𝑘|𝑘 ― 1 = ∑2𝑛𝑑

0 (𝑊𝑖[(𝝌𝑘|𝑘 ― 1)𝑖 ― 𝛉𝑘|𝑘 ― 1]·[(𝔃𝑘|𝑘 ― 1)𝑖 ― 𝒛𝑘|𝑘 ― 1]𝑇)
(27)𝐊𝑘 = (𝐏𝜃𝑧

𝑘|𝑘 ― 1/𝐒𝑧
𝑘|𝑘 ― 1

𝑇) /𝐒𝑧
𝑘|𝑘 ― 1

(28)𝛉𝒌|𝒌 = 𝛉𝑘|𝑘 ― 1 + 𝐊𝑘(𝒛𝑜𝑏𝑠 ― 𝒛𝑘|𝑘 ― 1)

(29)𝐔 = 𝐊𝑘𝐒𝑧
𝑘|𝑘 ― 1

(30)𝐀𝜃
𝑘|𝑘 = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒(𝐀𝜃

𝑘|𝑘 ― 1, 𝐔, ― 1) 

𝑒𝑛𝑑
3.4. Hybrid UKF-HS algorithm

The local minimization procedure followed by the square root UKF is 
implemented in both the HS and the MHS algorithms to reduce the simulation time 
required to solve the finite-element-model updating problem. The proposed hybrid 
algorithm is a local-global optimization algorithm which combines the main virtues of 
the two component algorithms. In this sense, it should be emphasized that this proposed 
algorithm is derivative free; not being required the computation of the Jacobian. Besides 
it guarantees the positive semi-definiteness of the covariance matrix as the intrinsic 
properties of the square root UKF algorithm are preserved.

The general layout of this new hybrid algorithm follows the general scheme of 
the above mentioned HS algorithm. Thus, the different steps that configure both the 
single-objective approach (UKF-HS) and the multi-objective approach (UKF-MHS 
algorithm) have been included herein. First, the new hybrid UKF-HS algorithm consists 
of the following steps: (i) the HS algorithm creates the initial candidate solution 
(parameter vector); (ii) the square-root UKF algorithm computes the mean of the 
parameters vector, ; (iii) the matrix  is updated; (iv) the steps (ii) to (ii) are 𝛉𝑘|𝑘 𝐇
repeated until some convergence criterion is met; and (v) finally, the solution is 
obtained.. Thus, the flowchart of the proposed hybrid UFK-HS algorithm is shown in 
Figure 3a.
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Similarly, the new hybrid UKF-MHS algorithm consists of the following steps; 
(i) the MHS algorithm creates the initial candidate solutions (parameter vectors); (ii) the 
square-root UKF algorithm gives the mean of the parameter vector, ; (iii) the 𝛉𝑘|𝑘
objective function is evaluated for each vector ; (iv) the non-dominating sorting 𝛉𝑘|𝑘
method classifies the solutions in order to delete the dominated solutions; (v) the initial 
size of the matrix  is preserved at each iteration by means of the crowding distance; 𝐇
(vi) the steps (ii) to (v) are repeated until some convergence criterion is met; and (vii) 
finally, the Pareto front is obtained. Finally, the flowchart of the proposed hybrid UFK-
MHS algorithm is shown in Figure 3b.

Initialize H

Convergence?

Solution

Yes
No

Operations:

Evaluate Select

Improvise

Random

Update H

a)

New Solution Vector 

UFK calculates

Initialize H

Evaluate

New Solution Vectors

Evaluate

Is Dominated?

Update H

Yes

No

Convergence?

Yes

No

Pareto Frontb)

UFK calculates

Figure 3. Flowchart of the new proposed hybrid algorithm: a) UKF-HS and b) UKF-
MHS.

4. Application Example: Finite-element-model Updating of a Laboratory 

Footbridge.

In order to analyse the performance this new hybrid algorithm, when it is 
employed for the finite-element-model updating of civil engineering structures, a real 
case-study was studied. The finite-element-model updating of a real structure was 
performed for this purpose. As benchmark, a reconfigurable steel footbridge located at 
the laboratory of the Vibration Engineering Section of the University of Exeter (U.K.) 
was considered herein (Hudson and Reynolds, 2017). The updating problem was solved 
considering two approaches (single-objective and multi-objective) and three different 
computational algorithms (the conventional GA, HS and the new hybrid UKF-HS). 
Subsequently, the results obtained after the updating process are compared in order to 
assess the performance of each considered algorithm. Both the updating and comparison 
process are presented in detail in this section.

4.1. Description of the Structure and Preliminary Finite-element-model
The laboratory footbridge is a steel frame structure which consists of:  (i) two 

lateral steel beams of 15 m of length; (ii) rectangular plates of 200x12 mm separated 
longitudinally 1.25 m; (iii) composite SPS panel (SPS, 2019) connected (bolts) to the 
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lateral and transversal elements and (iv) four steel columns. The two lateral beams, 
separated transversally 2.5 m, are connected to steel columns which are pinned to the 
ground. An overall view of the structure is illustrated in Figure 4. A more detailed 
description of this structure can be found in literature (Hudson and Reynolds, 2017).

Figure 4. The reconfigurable steel footbridge located at the laboratory of the Vibration 
Engineering Section of the University of Exeter.

A preliminary finite-element-model of the structure was built in the software 
package Ansys (Ansys, 2019). A laptop computer with a 3.6 GHz processor and a RAM 
memory of 8 GB was used for all the numerical simulations. Three different types of 
elements were considered for this purpose. The two lateral steel beams, the transversal 
steel beams and the SPS panel where modelled using 3D shell elements (SHELL181). 
This element has four nodes and six degrees of freedom per node. For the SPS panel, 
the sandwich behaviour is considered via the first-order shear-deformation theory. The 
bolts that connect the SPS panel and the steel structure are modelled with 3D beam 
elements (BEAM188). These beam elements are characterised by two nodes and six 
degrees of freedom per node. Finally, each support was modelled by an equivalent 
spring element (COMBIN14) in the longitudinal and lateral direction. An equivalent 
stiffness of  N/m was considered for the longitudinal springs and an equivalent 5.5 ∙ 107

stiffness of  N/m. was taken into account for the lateral springs. Additionally, 1.0 ∙ 107

the vertical displacement of each support was constrained. The mechanical properties of 
the constitutive materials considered in this study were: (i) for the steel (Eurocode 3, 
2005), the density,  kg/m3, the Young’s modulus,  N/m2 and 𝛾𝑠 = 7850 𝐸𝑠 = 2.1 ∙ 1011

the Poisson’s ratio, ; and (ii) for the polyurethane (Clarke, 1996), the density, 𝜈𝑠 = 0.3 
 kg/m3, the Young’s modulus,  N/m2, and the Poisson’s ratio, 𝛾𝑝 = 1100 𝐸𝑝 = 7.5 ∙ 108

. The finite-element-model of the laboratory footbridge is shown in Figure 5.𝜈𝑝 = 0.5
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Figure 5. Finite-element-model, forced vibration test arrangement and considered 
physical parameters of the laboratory footbridge (Hudson and Reynolds, 2017).

A numerical modal analysis was performed to obtain the numerical natural 
frequencies and vibration modes. As result of this analysis, Table 1 shows the first 
seven numerical natural frequencies,  (being  the considered vibration mode), of 𝑓𝑛𝑢𝑚,𝑗 𝑗
the laboratory footbridge. Additionally, Figure 6 illustrates the first seven numerical 
vibration modes, , of this structure. 𝜙𝑛𝑢𝑚,𝑗

4.2. Forced Vibration Test and Experimental Modal Analysis
In order to identify experimentally the modal properties of the footbridge, a 

forced vibration test was conducted. For this purpose, a set of proof-mass actuators and 
rowing accelerometers were employed (Figure 5). A Multiple Input-Multiple-Output 
(MIMO) configuration (Maia and Silva, 1997) was considered to simultaneously drive 
the actuators with uncorrelated random signals. The Frequency Response Functions 
(FRFs) for the instrumented points are derived with a 50% overlap. Subsequently, a 
complex mode indicator function was used to identify probable mode locations in the 
FRFs fitted curves. Finally, a global polynomial curve fitting method identifies the 
experimental natural frequencies and their vibration modes from the previous probable 
locations (Maia and Silva, 1997). A more detailed description of the forced vibration 
test and the experimental modal analysis may be found in literature (Hudson and 
Reynolds, 2017).

As result of this experimental modal analysis, the first seven experimental 
natural frequencies,  (being  the considered vibration mode), are shown in Table 𝑓𝑒𝑥𝑝,𝑗 𝑗
1. The first seven experimental vibration modes, , are also illustrates in Figure 6. 𝜙𝑒𝑥𝑝,𝑗
Additionally, the agreement between the numerical and experimental modal properties 
of the footbridge has been checked. Thus, Table 1 shows the relative difference, Δ𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗
, and the  ratio for each considered vibration mode .𝑀𝐴𝐶𝑛𝑢𝑚.𝑗

𝑒𝑥𝑝,𝑗 𝑗
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Table 1. Numerical, , and experimental, , natural frequency, relative 𝑓𝑛𝑢𝑚,𝑗 𝑓𝑒𝑥𝑝,𝑗
difference, , and the  ratio of the considered vibration mode .Δ𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑛𝑢𝑚.𝑗
𝑒𝑥𝑝,𝑗 𝑗

Mode 

( )𝑗

 𝑓𝑛𝑢𝑚,𝑗

[Hz]

 𝑓𝑒𝑥𝑝,𝑗

[Hz]

 Δ𝑓𝑛𝑢𝑚,𝑗
𝑒𝑥𝑝,𝑗

[%]

 𝑀𝐴𝐶𝑛𝑢𝑚.𝑗
𝑒𝑥𝑝,𝑗

[-]

1 3.652 3.810 -4.147 0.998

2 5.317 5.144 3.363 0.994

3 8.990 8.485 5.952 0.988

4 11.433 12.366 -7.545 0.877

5 17.795 18.605 -4.354 0.986

6 19.519 20.459 -4.595 0.993

7 20.725 22.980 -9.813 0.634

As Table 1 shows there are some vibration modes in which the relative 
differences, , are greater than 5% and the  ratios are lower than 0.90 Δ𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑛𝑢𝑚.𝑗
𝑒𝑥𝑝,𝑗

(Živanović et al., 2007). Thus, this preliminary finite-element-model can be improved 
to better reflect the real behaviour of this laboratory footbridge. A finite-element-model 
updating was performed for this purpose. The updating process was implemented 
considering two approaches (single-objective and multi-objective) and the three 
mentioned computational intelligence algorithms (GA, HS and hybrid UKF-HS). This 
updating process is described in detail in next sub-sections.
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 Hz𝑓𝑛𝑢𝑚,1 = 3.652  Hz𝑓𝑒𝑥𝑝,1 = 3.810

 Hz𝑓𝑛𝑢𝑚,2 = 5.317  Hz𝑓𝑒𝑥𝑝,2 = 5.144

 Hz𝑓𝑛𝑢𝑚,3 = 8.990  Hz𝑓𝑒𝑥𝑝,3 = 8.485

 Hz𝑓𝑛𝑢𝑚,4 = 11.433  Hz𝑓𝑒𝑥𝑝,4 = 12.366

 Hz𝑓𝑛𝑢𝑚,5 = 17.795  Hz𝑓𝑒𝑥𝑝,5 = 18.605

 Hz𝑓𝑛𝑢𝑚,6 = 19.519  Hz𝑓𝑒𝑥𝑝,6 = 20.459

 Hz𝑓𝑛𝑢𝑚,7 = 20.725  Hz𝑓𝑒𝑥𝑝,7 = 22.980

Figure 6. First seven numerical, , and experimental, ,vibration modes of the 𝜙𝑛𝑢𝑚,𝑗 𝜙𝑒𝑥𝑝,𝑗
laboratory footbridge (being  the considered vibration mode).𝑗
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4.3. Parameters and Search Domain of the Finite-element-model Updating Process.
As first step of this updating process, a sensitivity analysis was performed to 

select the most relevant physical parameters of the model. For this purpose, an initial set 
of fifteen physical parameters, , have been considered for this purpose. The initial set 𝛉𝐢𝐧
of physical parameters consists of: (i) the Young’s modulus of the steel of the 
longitudinal beams in different sections,  [N/m2]; (ii) the Young’s modulus 𝜃𝑖𝑛,1 ― 𝜃𝑖𝑛,6
of the steel of the SPS panel,  [N/m2]; (iii) the Young’s modulus of the 𝜃𝑖𝑛,7
polyurethane of the SPS panel,  [N/m2]; (iv) the Young’s modulus of the steel of the 𝜃𝑖𝑛,8
bolts,  [N/m2]; (v) the Young’s modulus of the steel of the lateral beams,  𝜃𝑖𝑛,9 𝜃𝑖𝑛,10
[N/m2]; (vi) the equivalent longitudinal stiffness of each support,  [N/m]; (vii) the 𝜃𝑖𝑛,11
equivalent lateral stiffness of each support,  [N/m]; (viii) the equivalent vertical 𝜃𝑖𝑛,12
stiffness of each support,  [N/m]; (ix) the equivalent rotational stiffness (x-axis) of 𝜃𝑖𝑛,13
each support,  [N/rad]; and (x) the equivalent rotational stiffness (y-axis) of each 𝜃𝑖𝑛,14
support,  [N/rad]. The selection of this initial set of parameters assumed a 𝜃𝑖𝑛,15
symmetric behaviour of the structure.

Subsequently, as the modal strain energy associated with each physical 
parameter is an indicator of its influence on the variation of the natural frequencies (Fox 
and Kapoor, 1968), this energy has been considered as basis to establish a selection 
criterion. For this purpose, the ratio between the modal strain energy associated with 
each parameter and the overall modal strain energy of the structure has been computed. 
A sensitivity matrix, which represents the value of the modal strain energy ratio in terms 
of the considered physical parameter and vibration mode, was determined. Figure 7 
shows a bar graph of this sensitivity matrix. The analysis of this sensitivity matrix 
allows determining the most relevant physical parameters of the model (those 
parameters that present a significant model strain energy ratio).

M
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R
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  [

%
]

Figure 7. Sensitivity analysis in order to select the most relevant physical parameters of 
the model (being  the initial set of physical parameters).𝛉𝐢𝐧 = [𝜃𝑖𝑛,1,…,𝜃𝑖𝑛,15]

As result of this analysis, the most relevant physical parameters of this model 
were (Figure 5) : (i) the Young’s modulus of the 𝛉 = [𝜃1,𝜃2,𝜃3,𝜃4,𝜃5,𝜃6,𝜃7,𝜃8,𝜃9,𝜃10]
steel of the longitudinal beams in different sections (Figure 5),  [N/m2]; (ii) the 𝜃1 ― 𝜃6
Young’s modulus of the polyurethane,  [N/m2]; (iii) the Young’s modulus of the steel 𝜃7
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of the bolts,  [N/m2]; (iv) the equivalent longitudinal stiffness of each support,  𝜃8 𝜃9
[N/m]; and (v) the equivalent lateral stiffness of each support,  [N/m]. Additionally a 𝜃10
search domain was established to guarantee an adequate physical meaning of the 
updated value of the physical parameters. The lower, , and upper, , bounds of this 𝛉𝑙 𝛉𝑢
search domain were defined as follows; 𝛉𝑙 = [1.9 ∙ 1011,1.9 ∙ 1011,1.9 ∙ 1011,1.9 ∙ 1011

 and ,1.9 ∙ 1011,1.9 ∙ 1011 ,7.5 ∙ 108,2.1 ∙ 1011 ,1.4 ∙ 107,4.8 ∙ 106] 𝛉𝑢 = [2.3 ∙ 1011 ,2.3 ∙
1011 ,2.3 ∙ 1011 ,2.3 ∙ 1011 ,2.3 ∙ 1011 ,2.3 ∙ 1011 ,1.5 ∙ 109,2.1 ∙ 1012 ,1.1 ∙ 108,3.8 ∙ 107]
.

Once both the physical parameters and their corresponding search domain have 
been established, the finite-element-model updating can be performed. Herein, this 
process has been carried out considering two approaches and the three mentioned 
computational intelligence algorithms.

4.4. Finite-element-model Updating under the Single-Objective Approach.
First, the finite-element-model updating of the footbridge was performed under 

the single-objective approach and the three mentioned computational algorithms (GA, 
HS and hybrid UKF-HS). The three considered algorithms were implemented in Matlab 
(Matlab, 2019). The main design variables considered for each computational algorithm 
were: (i) for the GA, a crossover ratio of 0.8 and a mutation ratio of 0.4; (ii) for the HS, 
a  ratio of 0.9, a  ratio of 0.3 and a  equals to the 1% of the search domain 𝐻𝑀𝐶𝑅 𝑃𝐴𝑅 𝑏𝑤
of each parameter; and (iii) for the UKF-HS, the same value for the  ratio, the 𝐻𝑀𝐶𝑅

 ratio and the  variable than the HS algorithm. These design parameters balance 𝑃𝐴𝑅 𝑏𝑤
the ability of these computational algorithms to sweep the search domain and to reach 
accurately the global minimum of this search domain (Marwala, 2010; Jiménez-Alonso 
et al., 2017). Additionally for the UKF-HS algorithm, the following parameters were 
assumed: (i) the  vector is built from the experimental natural frequencies and a 7x1 𝐝𝑜𝑏𝑠
vector filled with ones (since the residue of the vibration modes is defined from the 

 ratio and the aim is to make the value of the  as close as possible to 𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑢𝑝𝑑.𝑗

𝑒𝑥𝑝,𝑗
the unit), (ii) a factor, , was considered to compute the sigma points (Astroza 𝜆 = 0.0001
et al., 2016); and (iii) a scalar factor, , was considered  to update the estimation 𝛾 = 0.99
error covariance matrix (Van Der Merwe and Wan, 2001).

For the definition of the single-objective function, the weights associated with the 
residuals must be defined. For this purpose, a sensitivity study, where the values of the 
weights were varied between 0 and 1 considering a step of 0.1 (eleven cases), was 
performed. In each case, a value was assigned to each weight and the value of the 
objective function at the end of the optimization process, , was obtained. The 𝑓𝑓
combination of weights that achieves the lower value of the objective function, , was 𝑓𝑓
selected. The HS algorithm was considered for this analysis. As result, the following 
weights were considered: (i) for the residuals associated with the natural frequencies, 

; and (ii) for the residuals associated with the vibration modes, ∑7
𝑗 𝑤𝑓,𝑗 = 0.7

.∑7
𝑗 𝑤𝑚,𝑗 = 0.3

Next, a sensitivity study was performed to analyse the influence of three hyper-
parameters on the performance of the hybrid UKF-HS algorithm. For this purpose the 
following hyper-parameters were considered: (i) the number of iterations of the UKF 
algorithm, ; (ii) the initial estimation error covariance, ; and (iii) the 𝑁𝑈𝐾𝐹 𝑷𝜽

0
measurement noise covariance matrix, .𝐑𝑖𝑖

Seven simulations were run for this purpose. For these simulations, the number 
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of iterations, , and the population size, , have been maintained 𝐼𝑡𝑒𝑟 = 2 𝑃𝑜𝑝 = 5
constant; and the three considered hyper-parameters have been modified according to 
the following values: (i) three different values for the parameter, , (1, 3 and 5); (ii) 𝑁𝑈𝐾𝐹

three different values for the parameter, , ( ,  and 𝑷𝜽
0 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)

500 )2) 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )2)

); and (iii) three different values for the parameter,  (0.1, 0.001 and 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
4000 )2) 𝐑𝑖𝑖

0.0001).

As comparison criteria, the convergence speed and the accuracy of the adjustment 
(the value of the objective function, ) have been taken into account. It must be 𝑓𝑓
remarked that the converge speed has been considered through the analysis of two 
parameters: (i) the simulation time, ; and (ii) the number of evaluations, . 𝑇𝑖𝑚𝑒 𝐸𝑣𝑎𝑙
This second parameter allows considering jointly the effect on the converge speed of 
three characteristic parameters: (i) the number of iterations of the global algorithm, 𝐼𝑡𝑒𝑟
; (ii) the population size, ; and (iii) the number of iterations of the UKF algorithm, 𝑃𝑜𝑝

.𝑁𝑈𝐾𝐹

Table 2 shows the results of this sensitivity study. For the first hyper-parameter, 
, an optimum value of  is considered since, a reduced value, , 𝑁𝑈𝐾𝐹 𝑁𝑈𝐾𝐹 = 3  𝑁𝑈𝐾𝐹 = 1

reduces the accuracy of the adjustment ( ); and an excessive value, 𝑓𝑓 = 0.0037 𝑁𝑈𝐾𝐹
, increases the simulation time (  s). For the second hyper-= 5 𝑇𝑖𝑚𝑒 = 9.44 ∙ 103

parameter, , an optimum value of  is established, since this 𝑷𝜃
0 𝑷𝜃

0 = 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )2)

value improves the accuracy of the adjustment ( ) without compromising 𝑓𝑓 = 0.0033
the simulation time (  s). Finally, for the third hyper-parameter, ,an 𝑇𝑖𝑚𝑒 = 5.71 ∙ 103 𝐑𝑖𝑖
optimum value of  is considered, since this value improves the accuracy of 𝐑𝑖𝑖 = 0.001
the adjustment ( ) without compromising the simulation time (𝑓𝑓 = 0.0033

 s).𝑇𝑖𝑚𝑒 = 5.71 ∙ 103

Table 2. Performance of the three considered algorithms to solve the updating problem 
under the single-objective approach (where  is the number of iterations of the main 𝐼𝑡𝑒𝑟
algorithm;  is the population size;  is the number of iterations of the UKF 𝑃𝑜𝑝 𝑁𝑈𝐾𝐹
algorithm;  is the initial estimation error covariance;  is the measurement noise 𝑷𝜽

0 𝐑𝑖𝑖
covariance matrix;  is the number of evaluations of the objective function;  is 𝐸𝑣𝑎𝑙 𝑇𝑖𝑚𝑒
the time [s] required until a convergence criterion is met; and  is the value of the 𝑓𝑓
objective function when the updating process has finished).

𝐼𝑡𝑒𝑟 𝑃𝑜𝑝 𝑁𝑈𝐾𝐹 𝑷𝜽
0 𝐑𝑖𝑖 𝐸𝑣𝑎𝑙  [s]𝑇𝑖𝑚𝑒  [-]𝑓𝑓

GA 50 20 --- --- --- 1020 9.79 ∙ 103 0.0036

HS 500 20 --- --- --- 520 6.64 ∙ 103 0.0033

2 5 1 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 147 2.1 ∙ 103 0.0037

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
500 )

2) 0.001 441 5.68 ∙ 103 0.0034UKF-HS

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 441 5.71 ∙ 103 0.0033
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2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
4000 )

2) 0.001 441 5.69 ∙ 103 0.0036

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.1 441 5.68 ∙ 103 0.0060

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.0001 441 5.64 ∙ 103 0.0040

2 5 5 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 735 9.44 ∙ 103 0.0033

Subsequently, the performance of the updating process under the single-
objective approach for the three considered computational algorithms was analysed. As 
hyper-parameters of the UKF-HS algorithm, the results of the above sensitivity analysis 
were taken into account. Table 2 also shows the results of this performance study. As 
Table 2 shows the hybrid UKF-HS algorithm is clearly the most efficient algorithm, 
since it presents the same accuracy than the HS algorithm ( ) but a lower 𝑓𝑓 = 0.0033
simulation time ( s for the HS against  s for the 𝑇𝑖𝑚𝑒 = 6.64 ∙ 103 𝑇𝑖𝑚𝑒 = 5.71 ∙ 103

hybrid UKF-HS) and number of iterations (  for the HS against  𝐸𝑣𝑎𝑙 = 520 𝐸𝑣𝑎𝑙 = 441
for the hybrid UKF-HS). Additionally, it is necessary to remark that the HS algorithm is 
more efficient (both convergence speed and accuracy) than the conventional GA for this 
optimization problem.

Additionally, Table 3 shows the updated value of the physical parameters of the 
model after the updating process considering the single-objective approach and the three 
considered computational algorithm. As Table 3 shows the correlation among the 
physical parameters obtained by the different algorithms is good.

Table 3. Updated value of the physical parameters of model, , after the updating 𝛉
process considering the single-objective approach and the three mentioned 
computational algorithms.

𝛉 GA HS UKF-HS
𝜃1 2.29 ∙ 1011 2.28 ∙ 1011 2.29 ∙ 1011

𝜃2 1.96 ∙ 1011 1.96 ∙ 1011 2.00 ∙ 1011

𝜃3 2.20 ∙ 1011 2.15 ∙ 1011 2.27 ∙ 1011

𝜃4 2.04 ∙ 1011 1.91 ∙ 1011 1.97 ∙ 1011

𝜃5 2.08 ∙ 1011 2.00 ∙ 1011 2.11 ∙ 1011

𝜃6 2.28 ∙ 1011 2.19 ∙ 1011 2.29 ∙ 1011

𝜃7 1.04 ∙ 109 1.28 ∙ 109 1.29 ∙ 109

𝜃8 1.16 ∙ 1012 1.53 ∙ 1012 1.50 ∙ 1012

𝜃9 7.67 ∙ 107 7.50 ∙ 107 7.50 ∙ 107

𝜃10 7.66 ∙ 106 7.72 ∙ 106 7.73 ∙ 106

Finally, Table 4 shows the updated natural frequencies, , the relative 𝑓𝑢𝑝𝑑,𝑗
differences, , and the  ratio for each considered vibration mode  after Δ𝑓𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗 𝑗

the updating process considering the single-objective approach and the three mentioned 
computational algorithms. As Table 4 shows the correlation between the experimental 
and numerical modal properties after the updating process is adequate for the three 
mentioned computational algorithms (all the relative differences, , are lower than Δ𝑓𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗
5%, and all the  ratios are greater than 0.9).𝑀𝐴𝐶𝑢𝑝𝑑.𝑗

𝑒𝑥𝑝,𝑗

Page 31 of 59

URL: http:/mc.manuscriptcentral.com/nsie

Structure and Infrastructure Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Table 4. Updated, , and experimental, , natural frequency, relative difference, 𝑓𝑢𝑝𝑑,𝑗 𝑓𝑒𝑥𝑝,𝑗
, and the  ratio for each considered vibration mode  after the updating Δ𝑓𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗 𝑗

process considering the single-objective approach and the three mentioned 
computational algorithms.

GA HS UKF-HS
Mode 

(𝑗)

𝑓𝑒𝑥𝑝,𝑗

[Hz] 𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

1 3.810 3.880 1.837 0.998 3.880 1.837 0.998 3.890 2.1 0.998

2 5.144 5.380 4.588 0.993 5.372 4.432 0.993 5.375 4.491 0.993

3 8.485 8.370 -1.355 0.988 8.400 -1.002 0.988 8.410 -0.884 0.988

4 12.366 11.930 -3.526 0.907 11.950 -3.364 0.905 12.002 -2.944 0.903

5 18.605 18.460 -0.779 0.986 18.630 0.134 0.987 18.670 0.349 0.987

6 20.459 20,160 -1.461 0.993 20.150 -1.51 0.992 20.250 -1.022 0.992

7 22.980 22,150 -3.612 0.947 22.420 -2.437 0.950 22.450 -2.306 0.950

In this manner, it has been validated that the hybrid UKF-HS algorithm is the 
most efficient algorithm among the three considered computational ones to perform the 
finite-element-model updating of civil engineering structure under the single-objective 
approach. Additionally, it has been checked that the performance of this hybrid 
algorithm depends on the adequate value of the three considered hyper-parameters (

,  and ).𝑁𝑈𝐾𝐹 𝑷𝜽
0 𝐑𝑖𝑖

4.5. Finite-element-model Updating under the Multi-Objective Approach.
Subsequently, the finite-element-model updating of the footbridge was performed 

under the multi-objective approach and the three mentioned computational algorithms 
(MGA, MHS and hybrid UKF-MHS). The main design variables considered for each 
computational algorithm were (Marwala, 2010; Jiménez-Alonso et al., 2017): (i) for the 
MGA, a crossover ratio of 0.7, and a mutation ration of 0.4; (ii) for the MHS, a  𝐻𝑀𝐶𝑅
ratio of 0.9, a  ratio of 0.7 and a  equals to the 1% of the search domain of each 𝑃𝐴𝑅 𝑏𝑤
parameters; and (iii) for the UKF-MHS, the same design variables than the HS 
algorithm (described above). The decision making problem, the selection of the best 
solution among the different element of the Pareto front, has been solved using the NBI 
method (Deb and Gupta, 2011).

As in the single-objective approach, first a sensitivity study was performed to 
analyse the influence of three hyper-parameters on the performance of the hybrid UKF-
HS algorithm. For this purpose the following hyper-parameters were considered: (i) the 
number of iterations of the UKF algorithm, ; (ii) the initial estimation error 𝑁𝑈𝐾𝐹
covariance, ; and (iii) the measurement noise covariance matrix, . For the possible 𝑷𝜽

0 𝐑𝑖𝑖
values of these hyper-parameters, the same values considered in the sensitivity analysis 
of the single-objective approach, were taken into account.

As comparison criteria, the convergence speed and the accuracy of the adjustment 
have been taken into account again. On the one hand, the converge speed has been 
assessed again via: (i) the simulation time, ; and (ii) the number of evaluations, 𝑇𝑖𝑚𝑒
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. On the other hand, the accuracy of the adjustment has been assessed in this case 𝐸𝑣𝑎𝑙
via: (i) the distance between the selected point (best solution of the Pareto front) and the 
origin, ; and (ii) the sum of the two terms of the objective function, .𝐷𝑖𝑠𝑡 𝑆𝑢𝑚

Eight simulations were run for this purpose. On the one hand, for the analysis of 
the  hyper-parameter, the number of iterations, , the population size, 𝑁𝑈𝐾𝐹 𝐼𝑡𝑒𝑟 = 3

, and the new population size, , have been fixed. On the other 𝑃𝑜𝑝 = 8 𝑁𝑒𝑤 𝑃𝑜𝑝 = 3
hand, for the analysis of both  and  hyper-parameters, the number of iterations, 𝑷𝜽

0 𝐑𝑖𝑖
, the population size, , and the new population size, , 𝐼𝑡𝑒𝑟 = 3 𝑃𝑜𝑝 = 10 𝑁𝑒𝑤 𝑃𝑜𝑝 = 3

have also been fixed. The results of this sensitivity study are also shown in Table 3.

In relation to the  hyper-parameter two relationships can be obtained: (i) a 𝑁𝑈𝐾𝐹
direct relationship between this hyper-parameter and the accuracy of the adjustment; 
and (ii) an indirect relationship between this hyper-parameter and the convergence 
speed. In relation to the  hyper-parameter, a direct relationship has been obtained. 𝑷𝜽

0
Thus, a reduction of the initial estimation error covariance involves an increase of the 
accuracy of the adjustment without compromising the simulation time. Nevertheless, 
the influence of this hyper-parameter is low (as Table 5 illustrates) and an intermediate 
value can be considered without affecting both the goodness of the adjustment and the 
simulation time. In relation to the  hyper-parameter, it has been checked that the 𝐑𝑖𝑖
intermediate value, , improves the accuracy of the adjustment without 𝐑𝑖𝑖 = 0.001
compromising the simulation time.

Finally, the following values of the hyper-parameters were recommended: (i) 

; (ii)  ; and (iii) . These values were 𝑁𝑈𝐾𝐹 = 3 𝑷𝜽
0 = 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)

2000 )2) 𝐑𝑖𝑖 = 0.001

considered for the subsequent performance analysis.

Table 5. Performance of the three considered algorithms to solve the updating problem 
under the multi-objective approach (where  is the number of iterations of the main 𝐼𝑡𝑒𝑟
algorithm;  is the population size;  is the new population size;  is the 𝑃𝑜𝑝 𝑁𝑒𝑤 𝑃𝑜𝑝 𝑁𝑈𝐾𝐹
number of iterations of the UKF algorithm;  is the initial estimation error covariance; 𝑷𝜽

0
 is the measurement noise covariance matrix;  is the number of evaluations of 𝐑𝑖𝑖 𝐸𝑣𝑎𝑙

the objective function;  is the time [s] required until a convergence criterion is 𝑇𝑖𝑚𝑒
met;  is the distance between the selected point and the origin; and  is the sum 𝐷𝑖𝑠𝑡 𝑆𝑢𝑚
of the two terms of the objective function).

𝐼𝑡𝑒𝑟
.

𝑃𝑜𝑝
.

𝑁𝑒𝑤 𝑃𝑜𝑝
.

𝑁𝑈𝐾𝐹 𝑷𝜽
𝟎 𝐑𝑖𝑖 𝐸𝑣𝑎𝑙  [s] 𝑇𝑖𝑚𝑒

𝑥105
𝐷𝑖𝑠𝑡
𝑥104

𝑆𝑢𝑚
𝑥104

25 50 --- --- --- --- 1450 0.18 50.7 68.6
45 50 --- --- --- --- 2570 0.33 50.2 66.9MGA
150 100 --- --- --- --- 16600 2.12 52.0 68.0
50 50 25 --- --- --- 1300 0.17 45.4 62.1
100 100 25 --- -- --- 2600 0.33 45.1 61.8MHS
300 200 50 --- --- --- 15200 1.98 43.7 60.6

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 1197 0.16 45.2 62.1

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
500 )

2) 0.001 1197 0.15 46.0 63.5UKF-
MHS

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
4000 )

2) 0.001 1197 0.15 44.6 61.4
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3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.1 1197 0.15 52.6 71.3

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.0001 1197 0.15 145.0 177.6

8 15 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 2457 0.32 44.3 61.1

20 40 10 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 15120 1.96 43.7 60.4

3 8 3 1 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 357 0.05 50.6 68.2

3 8 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 1071 0.14 49.1 66.5

3 8 3 5 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 1785 0.23 45.2 62.0

Subsequently, the performance of the updating process under the multi-objective 
approach for the three considered computational algorithms was analysed. Three 
simulations have been performed for each computational algorithm in which several 
design parameters of the algorithms have been modified. The modified design variables 
are: (i) the number of iterations of the main algorithm, ; (ii) the population size, 𝐼𝑡𝑒𝑟

; and (iii) the new population size, .𝑃𝑜𝑝 𝑁𝑒𝑤 𝑃𝑜𝑝
Table 5 shows the results of this performance analysis. According to these results, 

the hybrid UKF-MHS algorithm is again the most efficient algorithm, since it presents 
the same accuracy than the MHS algorithm (  and ) 𝐷𝑖𝑠𝑡 = 43.7 ∙ 104 𝑆𝑢𝑚 < 60.6 ∙ 10 ―4

but a lower simulation time (  s) and number of iterations (𝑇𝑖𝑚𝑒 = 1.96 ∙ 105

). Additionally, it must be noted that the MHS algorithm is again more 𝐸𝑣𝑎𝑙 = 151200
efficient (both convergence speed and accuracy) than the conventional MGA for this 
optimization problem.

Additionally, Table 6 shows the updated value of the physical parameters of the 
model after the updating process considering the multi-objective approach and the three 
considered computational algorithm. The cases with a higher number of evaluations 
have been shown and compared (MGA, ; MHS, ; and UKF-𝐸𝑣𝑎𝑙 = 16600 𝐸𝑣𝑎𝑙 = 15200
MHS, ). Table 6 shows the correlation among the physical parameters 𝐸𝑣𝑎𝑙 = 15120
obtained by the different algorithms is good.

Table 6. Updated value of the physical parameters of model, , after the updating 𝛉
process considering the multi-objective approach and the three mentioned 
computational algorithms.

𝛉 MGA MHS UKF-MHS
𝜃1 2.29 ∙ 1011 2.27 ∙ 1011 2.28 ∙ 1011

𝜃2 2.15 ∙ 1011 2.29 ∙ 1011 2.26 ∙ 1011

𝜃3 2.06 ∙ 1011 2.22 ∙ 1011 2.26 ∙ 1011

𝜃4 2.14 ∙ 1011 2.22 ∙ 1011 2.28 ∙ 1011

𝜃5 2.10 ∙ 1011 1.92 ∙ 1011 2.15 ∙ 1011

𝜃6 2.02 ∙ 1011 2.26 ∙ 1011 2.17 ∙ 1011

𝜃7 8.60 ∙ 108 1.30 ∙ 109 1.17 ∙ 109

𝜃8 7.48 ∙ 1011 1.57 ∙ 1012 1.31 ∙ 1012

𝜃9 6.43 ∙ 107 7.50 ∙ 107 7.50 ∙ 107

𝜃10 7.70 ∙ 106 7.61 ∙ 106 7.65 ∙ 106
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Finally, Table 7 shows the updated natural frequencies, , the relative 𝑓𝑢𝑝𝑑,𝑗
differences, , and the  ratio for each considered vibration mode  after Δ𝑓𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗 𝑗

the updating process considering the multi-objective approach and the three mentioned 
computational algorithms. As Table 7 shows the correlation between the experimental 
and numerical modal properties after the updating process is adequate for the three 
mentioned computational algorithms (all the relative differences, , are lower than Δ𝑓𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗
5%, and all the  ratios are greater than 0.9).𝑀𝐴𝐶𝑢𝑝𝑑.𝑗

𝑒𝑥𝑝,𝑗
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Table 7. Updated, , and experimental, , natural frequency, relative difference, 𝑓𝑢𝑝𝑑,𝑗 𝑓𝑒𝑥𝑝,𝑗
, and the  ratio for each considered vibration mode  after the updating Δ𝑓𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗 𝑗

process considering the multi-objective approach and the three mentioned 
computational algorithms.

MGA MHS UKF-MHS
Mode 

(𝑗)

𝑓𝑒𝑥𝑝,𝑗

[Hz] 𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

1 3.810 3.900 2.362 0.998 3.871 1.601 0.998 3.872 1.627 0.999

2 5.144 5.283 2.702 0.994 5.270 2.449 0.994 5.252 2.100 0.994

3 8.485 8.373 -1.320 0.988 8.360 -1.473 0.988 8.361 -1.461 0.989

4 12.366 12.040 -2.636 0.902 11.933 -3.502 0.902 11.862 -4.076 0.901

5 18.605 18.360 -1.317 0.985 18.630 0.134 0.987 18.479 -0.677 0.987

6 20.459 20.471 0.059 0.993 20.100 -1.755 0.993 20.003 -2.229 0.993

7 22.980 21.880 -4.787 0.951 22.420 -2.437 0.951 22.234 -3.246 0.948

Finally, for the sake of completeness, Figure 8 illustrates the first seven 
numerical vibration modes, , obtained after the model updating of the footbridge 𝜙𝑢𝑝𝑑,𝑗
performed considering the multi-objective approach and the UKF-MHS algorithm. The 
first seven experimental vibration modes, , have also been shown in Figure 8 𝜙𝑒𝑥𝑝,𝑗
(being the  considered vibration mode).𝑗

Thus, it has been validated that the hybrid UKF-MHS algorithm is the most 
efficient algorithm among the three considered computational ones to perform the 
finite-element-model updating of civil engineering structure under the multi-objective 
approach. Additionally it has been checked that the performance of the proposed 
algorithm depends clearly on the considered value of the three mentioned hyper-
parameters ( ,  and ).𝑁𝑈𝐾𝐹 𝑷𝜽

0 𝐑𝑖𝑖

.
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 Hz𝑓𝑢𝑝𝑑,1 = 3.872  Hz𝑓𝑒𝑥𝑝,1 = 3.810

 Hz𝑓𝑢𝑝𝑑,2 = 5.252  Hz𝑓𝑒𝑥𝑝,2 = 5.144

 Hz𝑓𝑢𝑝𝑑,3 = 8.361  Hz𝑓𝑒𝑥𝑝,3 = 8.485

 Hz𝑓𝑢𝑝𝑑,4 = 11.862  Hz𝑓𝑒𝑥𝑝,4 = 12.366

 Hz𝑓𝑢𝑝𝑑,5 = 18.479  Hz𝑓𝑒𝑥𝑝,5 = 18.605

 Hz𝑓𝑢𝑝𝑑,6 = 20.003  Hz𝑓𝑒𝑥𝑝,6 = 20.459

 Hz𝑓𝑢𝑝𝑑,7 = 22.234  Hz𝑓𝑒𝑥𝑝,7 = 22.980

Figure 8. First seven updated, , and experimental, ,vibration modes of the 𝜙𝑢𝑝𝑑,𝑗 𝜙𝑒𝑥𝑝,𝑗
laboratory footbridge (being  the considered vibration mode).𝑗
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5. Conclusions

FE model updating of civil engineering structures is usually performed under the 
maximum likelihood method. According to this method, the FE model updating 
problem is transformed into an optimization problem. Due to the complexity and the 
non-linear behaviour of the resulting objective function, computational intelligence 
algorithms are usually employed to solve this optimization problem. Among these 
computational algorithms, nature-inspired computational algorithms are especially 
effective to tackle this problem. Nevertheless, the use of these algorithms has a clear 
drawback, the high simulation time required to perform the updating process. In order to 
overcome this limitation, a hybrid UFK-HS optimization algorithm has been proposed, 
implemented and validated herein.

The proposed algorithm consists in combining two individual algorithms: (i) a 
local optimization algorithm, the square root unscented Kalman filter; and (ii) a global 
optimization algorithm, the harmony search algorithm.

The FE model updating of a real structure, a laboratory footbridge located at the 
University of Exeter (U.K.), has been considered herein to validate the performance of 
the new hybrid algorithm. The experimental modal properties of the structure were 
obtained by the signal processing (experimental modal analysis) of the records obtained 
during a forced vibration test. For comparison purposes, the FE model updating has 
been performed under two approaches (single-objective and multi-objective 
approaches) and considering three different computational intelligence algorithms: (i) 
genetic algorithms; (ii) harmony search; and (iii) the proposed hybrid UKF-HS 
algorithm.

Two comparison criteria have been considered herein: (i) the convergence 
speed; and (ii) the accuracy of the adjustment. The proposed hybrid UKF-HS algorithm 
has been shown as the most efficient algorithms to perform the finite-element-model 
updating of the laboratory footbridge under the two approaches (single-objective and 
multi-objective). Additionally, a sensitivity study has been performed to analysis the 
performance of the hybrid algorithm under the variation of three hyper-parameters: (i) 
the number of iterations of the UKF algorithm, ; (ii) the initial estimation error 𝑁𝑈𝐹𝐾
covariance, ; and (iii) the measurement noise covariance matrix, . As result of this 𝑷𝜽

0 𝐑𝑖𝑖
study, an adequate value of these hyper-parameters must be considered to optimize the 
performance of the proposed hybrid algorithm.

Therefore, the proposed hybrid UKF-HS algorithm is an available tool to 
perform the finite-element-model updating of civil engineering structures for practical 
engineering applications. Nevertheless, further studies are needed to validate the 
performance of the proposed hybrid algorithm for the finite-element-model updating of 
different types of civil engineering structures.
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Table 1. Numerical, , and experimental, , natural frequency, relative 𝑓𝑛𝑢𝑚,𝑗 𝑓𝑒𝑥𝑝,𝑗
difference, , and the  ratio of the considered vibration mode .Δ𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑛𝑢𝑚.𝑗
𝑒𝑥𝑝,𝑗 𝑗

Mode 

( )𝑗

 𝑓𝑛𝑢𝑚,𝑗

[Hz]

 𝑓𝑒𝑥𝑝,𝑗

[Hz]

 Δ𝑓𝑛𝑢𝑚,𝑗
𝑒𝑥𝑝,𝑗

[%]

 𝑀𝐴𝐶𝑛𝑢𝑚.𝑗
𝑒𝑥𝑝,𝑗

[-]

1 3.652 3.810 -4.147 0.998

2 5.317 5.144 3.363 0.994

3 8.990 8.485 5.952 0.988

4 11.433 12.366 -7.545 0.877

5 17.795 18.605 -4.354 0.986

6 19.519 20.459 -4.595 0.993

7 20.725 22.980 -9.813 0.634
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Table 2. Performance of the three considered algorithms to solve the updating problem 
under the single-objective approach (where  is the number of iterations of the main 𝐼𝑡𝑒𝑟
algorithm;  is the population size;  is the number of iterations of the UKF 𝑃𝑜𝑝 𝑁𝑈𝐾𝐹
algorithm;  is the initial estimation error covariance;  is the measurement noise 𝑷𝜽

0 𝐑𝑖𝑖
covariance matrix;  is the number of evaluations of the objective function;  is 𝐸𝑣𝑎𝑙 𝑇𝑖𝑚𝑒
the time [s] required until a convergence criterion is met; and  is the value of the 𝑓𝑓
objective function when the updating process has finished).

𝐼𝑡𝑒𝑟 𝑃𝑜𝑝 𝑁𝑈𝐾𝐹 𝑷𝜽
0 𝐑𝑖𝑖 𝐸𝑣𝑎𝑙  [s]𝑇𝑖𝑚𝑒  [-]𝑓𝑓

GA 50 20 --- --- --- 1020 9.79 ∙ 103 0.0036

HS 500 20 --- --- --- 520 6.64 ∙ 103 0.0033

2 5 1 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 147 2.1 ∙ 103 0.0037

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
500 )

2) 0.001 441 5.68 ∙ 103 0.0034

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 441 5.71 ∙ 103 0.0033

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
4000 )

2) 0.001 441 5.69 ∙ 103 0.0036

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.1 441 5.68 ∙ 103 0.0060

2 5 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.0001 441 5.64 ∙ 103 0.0040

UKF-HS

2 5 5 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 735 9.44 ∙ 103 0.0033
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Table 3. Updated value of the physical parameters of model, , after the updating 𝛉
process considering the single-objective approach and the three mentioned 
computational algorithms.

𝛉 GA HS UKF-HS
𝜃1 2.29 ∙ 1011 2.28 ∙ 1011 2.29 ∙ 1011

𝜃2 1.96 ∙ 1011 1.96 ∙ 1011 2.00 ∙ 1011

𝜃3 2.20 ∙ 1011 2.15 ∙ 1011 2.27 ∙ 1011

𝜃4 2.04 ∙ 1011 1.91 ∙ 1011 1.97 ∙ 1011

𝜃5 2.08 ∙ 1011 2.00 ∙ 1011 2.11 ∙ 1011

𝜃6 2.28 ∙ 1011 2.19 ∙ 1011 2.29 ∙ 1011

𝜃7 1.04 ∙ 109 1.28 ∙ 109 1.29 ∙ 109

𝜃8 1.16 ∙ 1012 1.53 ∙ 1012 1.50 ∙ 1012

𝜃9 7.67 ∙ 107 7.50 ∙ 107 7.50 ∙ 107

𝜃10 7.66 ∙ 106 7.72 ∙ 106 7.73 ∙ 106
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Table 4. Updated, , and experimental, , natural frequency, relative difference, 𝑓𝑢𝑝𝑑,𝑗 𝑓𝑒𝑥𝑝,𝑗

, and the  ratio for each considered vibration mode  after the updating Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑢𝑝𝑑.𝑗

𝑒𝑥𝑝,𝑗 𝑗
process considering the single-objective approach and the three mentioned 
computational algorithms.

GA HS UKF-HS
Mode 

(𝑗)

𝑓𝑒𝑥𝑝,𝑗

[Hz] 𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

1 3.810 3.880 1.837 0.998 3.880 1.837 0.998 3.890 2.1 0.998

2 5.144 5.380 4.588 0.993 5.372 4.432 0.993 5.375 4.491 0.993

3 8.485 8.370 -1.355 0.988 8.400 -1.002 0.988 8.410 -0.884 0.988

4 12.366 11.930 -3.526 0.907 11.950 -3.364 0.905 12.002 -2.944 0.903

5 18.605 18.460 -0.779 0.986 18.630 0.134 0.987 18.670 0.349 0.987

6 20.459 20,160 -1.461 0.993 20.150 -1.51 0.992 20.250 -1.022 0.992

7 22.980 22,150 -3.612 0.947 22.420 -2.437 0.950 22.450 -2.306 0.950
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Table 5. Performance of the three considered algorithms to solve the updating problem 
under the multi-objective approach (where  is the number of iterations of the main 𝐼𝑡𝑒𝑟
algorithm;  is the population size;  is the new population size;  is the 𝑃𝑜𝑝 𝑁𝑒𝑤 𝑃𝑜𝑝 𝑁𝑈𝐾𝐹
number of iterations of the UKF algorithm;  is the initial estimation error covariance; 𝑷𝜽

0
 is the measurement noise covariance matrix;  is the number of evaluations of 𝐑𝑖𝑖 𝐸𝑣𝑎𝑙

the objective function;  is the time [s] required until a convergence criterion is 𝑇𝑖𝑚𝑒
met;  is the distance between the selected point and the origin; and  is the sum 𝐷𝑖𝑠𝑡 𝑆𝑢𝑚
of the two terms of the objective function).

𝐼𝑡𝑒𝑟
.

𝑃𝑜𝑝
.

𝑁𝑒𝑤 𝑃𝑜𝑝
.

𝑁𝑈𝐾𝐹 𝑷𝜽
𝟎 𝐑𝑖𝑖 𝐸𝑣𝑎𝑙  [s] 𝑇𝑖𝑚𝑒

𝑥105
𝐷𝑖𝑠𝑡
𝑥104

𝑆𝑢𝑚
𝑥104

25 50 --- --- --- --- 1450 0.18 50.7 68.6
45 50 --- --- --- --- 2570 0.33 50.2 66.9MGA
150 100 --- --- --- --- 16600 2.12 52.0 68.0
50 50 25 --- --- --- 1300 0.17 45.4 62.1
100 100 25 --- -- --- 2600 0.33 45.1 61.8MHS
300 200 50 --- --- --- 15200 1.98 43.7 60.6

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 1197 0.16 45.2 62.1

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
500 )

2) 0.001 1197 0.15 46.0 63.5

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
4000 )

2) 0.001 1197 0.15 44.6 61.4

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.1 1197 0.15 52.6 71.3

3 10 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.0001 1197 0.15 145.0 177.6

8 15 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 2457 0.32 44.3 61.1

20 40 10 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 15120 1.96 43.7 60.4

3 8 3 1 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 357 0.05 50.6 68.2

3 8 3 3 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 1071 0.14 49.1 66.5

UKF-
MHS

3 8 3 5 𝑑𝑖𝑎𝑔(((𝛉𝑢 ― 𝛉𝑙)
2000 )

2) 0.001 1785 0.23 45.2 62.0
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Table 6. Updated value of the physical parameters of model, , after the updating 𝛉
process considering the multi-objective approach and the three mentioned 
computational algorithms.

𝛉 MGA MHS UKF-MHS
𝜃1 2.29 ∙ 1011 2.27 ∙ 1011 2.28 ∙ 1011

𝜃2 2.15 ∙ 1011 2.29 ∙ 1011 2.26 ∙ 1011

𝜃3 2.06 ∙ 1011 2.22 ∙ 1011 2.26 ∙ 1011

𝜃4 2.14 ∙ 1011 2.22 ∙ 1011 2.28 ∙ 1011

𝜃5 2.10 ∙ 1011 1.92 ∙ 1011 2.15 ∙ 1011

𝜃6 2.02 ∙ 1011 2.26 ∙ 1011 2.17 ∙ 1011

𝜃7 8.60 ∙ 108 1.30 ∙ 109 1.17 ∙ 109

𝜃8 7.48 ∙ 1011 1.57 ∙ 1012 1.31 ∙ 1012

𝜃9 6.43 ∙ 107 7.50 ∙ 107 7.50 ∙ 107

𝜃10 7.70 ∙ 106 7.61 ∙ 106 7.65 ∙ 106
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Table 7. Updated, , and experimental, , natural frequency, relative difference, 𝑓𝑢𝑝𝑑,𝑗 𝑓𝑒𝑥𝑝,𝑗

, and the  ratio for each considered vibration mode  after the updating Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑢𝑝𝑑.𝑗

𝑒𝑥𝑝,𝑗 𝑗
process considering the multi-objective approach and the three mentioned 
computational algorithms.

MGA MHS UKF-MHS
Mode 

(𝑗)

𝑓𝑒𝑥𝑝,𝑗

[Hz] 𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

𝑓𝑢𝑝𝑑,𝑗

[Hz]

Δ𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗

[%]

𝑀𝐴𝐶𝑢𝑝𝑑.𝑗
𝑒𝑥𝑝,𝑗

[-]

1 3.810 3.900 2.362 0.998 3.871 1.601 0.998 3.872 1.627 0.999

2 5.144 5.283 2.702 0.994 5.270 2.449 0.994 5.252 2.100 0.994

3 8.485 8.373 -1.320 0.988 8.360 -1.473 0.988 8.361 -1.461 0.989

4 12.366 12.040 -2.636 0.902 11.933 -3.502 0.902 11.862 -4.076 0.901

5 18.605 18.360 -1.317 0.985 18.630 0.134 0.987 18.479 -0.677 0.987

6 20.459 20.471 0.059 0.993 20.100 -1.755 0.993 20.003 -2.229 0.993

7 22.980 21.880 -4.787 0.951 22.420 -2.437 0.951 22.234 -3.246 0.948
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