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ABSTRACT

Granite genesis and crustal evolution are closely associated with partial melting in the lower 

or middle crust and extraction of granite magmas to upper levels. This is generally thought to 

be the leading mechanism by which the upper continental crust became enriched in 

incompatible components such as the heat-producing elements U and Th through time. 

However, field evidence from anatectic terrains, the source rocks of granite magmas, raises 

doubt about the efficiency of this process. Leucosomes and associated leucogranites, 

representative of melts in such terrains, are often depleted in U, Th and REE compared to 

their source and therefore unable to enrich the upper crust in these elements. This paper 

demonstrates using anatectic turbidites exposed on Kangaroo Island that accessory minerals, 

the main host of U, Th and REE, become preferentially concentrated in the melanosomes, 

effectively removing these elements from the melt. Whole rock geochemistry and detailed 

petrography suggests that (a) peraluminous melts dissolve only small fractions of monazite 

and xenotime, because efficient apatite dissolution saturates melt early in phosphorous; and 

(b) local melt–host reaction emerging from melt migration may cause substantial melt to 

crystallize in the magma extraction channelways in or close to the magma source region. 

Crystallization causes oversaturation of the magma triggering the crystallization and capture 

of accessory minerals in the growing biotite-rich selvedge rather than in the melt channel 

itself. Crystallization of accessory minerals away from the leucosomes explains the apparent 

under-saturation of elements hosted by these accessory minerals in the leucosome. While 

intense reworking of thick piles of turbidites, common in accretionary orogens, reflect 

important processes of crustal formation, the fate of accessory phases and the key elements 

they control, such as the heat producing elements U and Th, is strongly dependent on the 

interaction between melt and surrounding solids during segregation and extraction.

Keywords: REE, accessory minerals, migmatite, granite, anatexis, 
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INTRODUCTION

Thick turbidite sequences form vast volumes of material that are added to the margin 

of accretionary orogens where they are strongly reworked and ultimately become part of 

crystalline continents (Cawood et al., 2009; Weinberg et al., 2018). The latter takes place via 

their partial melting under amphibolite to granulite facies conditions (e.g. Johnson et al., 

2008), followed by extraction of granite magmas. This process is interpreted to be a leading 

mechanism by which the continental crust differentiates into an upper crust enriched in 

incompatible elements, and a residual, depleted lower crust (Brown and Rushmer, 2006; 

Sawyer et al., 2011).

This model has shortcomings revealed when the sources of granitic magmas, the 

exposed anatectic sections of the middle to lower crust, are directly investigated (Aranovich 

et al., 2014). Preserved leucosomes and associated leucogranites within migmatite terranes 

commonly differ in their major and trace elements from average composition of upper crustal 

granites or melt inclusions (Bartoli et al., 2016; Clemens and Stevens, 2012). Provided little 

incorporation of restitic minerals into the melt, small-scale leucosomes as well as many 

granitic bodies (Sawyer, 1991; Watt et al., 1996; Wolfram et al., 2018) tend to be 

impoverished in the important heat producing elements such as U and Th and trace elements 

such as Y, Zr and REE (except Eu), compared to their direct source. This raises questions 

about the role of anatexis alone as an effective mechanism to transfer these elements from 

deep crustal sources to the upper crust (Alessio et al., 2018; Yakymchuk and Brown, 2019). 

While this might be expected during low temperature melting because of the general low 

solubility of the accessory minerals in the melt, which host the majority of U, Th and REE 

(Bea, 1996b; Montel, 1993; Watson and Harrison, 1983), the same phenomena is observed 
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across a range of crustal temperatures and melting reactions (Bea et al., 2007; Watt et al., 

1996; Wolfram et al., 2018). Explanations for this behaviour generally agree that it relates to 

processes occurring during melt generation and early melt migration stages within the source 

terrain. They include low solubility of accessory minerals in certain magma compositions 

(Bea et al., 1992; Spear and Pyle, 2002; Wolf and London, 1994), accessory mineral–melt 

disequilibrium by melt extraction outpacing equilibrium between melt and solids (Bea, 

1996a; Clemens and Stevens, 2016; Sawyer, 1991; Watt et al., 1996), or the inclusion of 

accessory minerals in stable major minerals, impeding their dissolution (Watson et al., 1989). 

Besides, the general perception that the lower crust has lower concentrations of heat 

producing elements (HPE) is still under debate. Roots of volcanic arcs, comprising mafic 

igneous rocks may indeed be considerably poorer in HPE than the felsic upper crust. 

However, it has been demonstrated by Alessio et al. (2018), that metapelitic residual 

granulite-facies lithologies have not been depleted in HPE by partial melting and melt loss. In 

such environments, there are other processes that could potentially enrich the magma leaving 

the lower crust, such as the breakdown of residual rocks into the magma or melting of 

protolith rich in radiogenic elements, such as the ones that produced the granites of Central 

Iberia (Bea, 2012).

The in source processes described are also required to explain a common feature of 

migmatites: the existence of tonalitic leucosomes derived from K-rich sources. Traditionally, 

these have been interpreted as felsic cumulates, formed by in source crystallization of 

plagioclase and quartz during melt extraction at declining temperatures (Kriegsman and 

Hensen, 1998; Sawyer, 1987, 2008). Alternative interpretations emphasize diffusional 

interaction between melt and source, that evolve with temperature and pressure changes 

(White and Powell, 2010) or simply as a result of melt migration, even before metamorphic 

peak temperatures are reached (Nicoli et al., 2017; Taylor et al., 2014). Notably, equilibration 
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via diffusion of mobile components, such as H2O, K2O and Na2O, have been proposed to be 

most effective in modifying the proportion of quartz, plagioclase and K-feldspar in 

leucosomes (Acosta-Vigil et al., 2012; White and Powell, 2010). However, the impact of 

melt–host interaction and the crystallization of these rock-forming minerals on accessory 

minerals has not yet been considered.

During anatexis, melt tends to segregate away from the solids forming the typical structure of 

migmatites: melt segregations form leucosomes, leaving behind a residual rock characterized 

by the partial or total loss of the melt fraction. Melanosomes are dark-coloured parts of the 

residuum and are enriched in mafic minerals, typically biotite but may contain also peritectic 

phases such as cordierite or garnet (Sawyer, 2008). They often border leucosome lenses and 

layers and form as a result of either significant melt removal, in which case they are residual, 

or as a result of reaction between melt and surrounding (selvedge, White and Powell, 2010)

Complex melting and crystallisation processes may be particularly well-developed in 

anatectic terrains characterized by low-temperature melting in the presence of a 

heterogeneously distributed aqueous fluid phase. Under these conditions melting occurs close 

to the local solidus, whose exact position is not only controlled by pressure and temperature, 

but also by H2O activity (Johannes and Holtz, 1996) and variations in bulk composition of the 

rock mass. Marginal variations in the equilibrium of the system may dictate: (a) when melt 

crystallizes in a leucosome, (b) the diffusion of elements between solids and melt in a 

leucosome, and (c) the saturation and growth of accessory minerals in the melt and 

immediate surroundings, with direct consequences for the ability of magmas to transport 

HPE, Zr, Y and REE. 

In this contribution, we investigate anatectic metaturbidites from Kangaroo Island to 

understand how local melt–host interaction evolved as a result of melt migration and its 
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impact on the composition of leucosomes and the fate of accessory minerals. The paper starts 

with a description of the main lithological types and their relationships, the background for 

this study. Following that, the work is divided into two connected parts. The first part 

describes the fractionation of magma within the source, occurring in a two to five metre long 

network, where it is possible to track the melt evolution from its extraction to the final 

intrusive tips, where migration stalls. The second part details the distribution of accessory 

minerals, which crystallize in response to the evolving nature of the melt as it crystallizes. 

Both processes, crystallization of the melt and the distribution of accessory minerals, are 

related to local disequilibrium between magma and surrounding rock in an environment of 

high diffusivity. We use the term HPE to refer only to U and Th, excluding K. This is 

because the U-Th budget in crustal rocks is dominated by accessory minerals, while K is 

controlled by the stability of K-feldspar and micas and evolves independently of the 

accessory minerals.

GEOLOGICAL SETTING AND LITHOLOGY

Geological Setting

The outcrops of interest are located on the south coast of Kangaroo Island, which is 

part of the Adelaide Fold Belt part in the ~500 Ma Delamerian Orogeny (Fig. 1, Foden et al., 

2006; Foden et al., 2002; Weinberg et al., 2013). The area is dominated by a thick, turbidite 

sequence known as the Kanmantoo Group (Jago et al., 2003). This sequence is both the 

source and the host of a number of granite intrusion and migmatites (Foden et al., 2002). The 

intrusive granites range from transitional S/I-type granites to pure crustal S-type granites 

(Foden et al. 2002), which intrude and mingle with migmatites, indicating a contemporaneous 

evolution (Schwindinger and Weinberg, 2017). These migmatites were interpreted to have 
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formed by a combination of muscovite-dehydration and water-fluxed melting with up to 1 

wt.% excess H2O (Schwindinger and Weinberg, 2017; Schwindinger et al., 2018) at 

temperatures < 700°C and pressures below 5 kbar (Mancktelow, 1990). The small amount of 

excess H2O increased fertility, resulting in melt fraction in excess of 20 vol.% and formation 

of diatexites. The map in the Electronic Electronic Appendix 1 shows the location of the 

outcrops between Stun’Stail Boom River and Vivonne Bay and the position of all samples 

used here. 

Lithologies

The main migmatitic and magmatic rock types exposed on the south coast of 

Kangaroo Island are briefly described here. Following the classification of Sawyer (2008) 

migmatites are divided into diatexite and metatexite, based on whether or not the rock 

maintained coherence and preserved pre-anatectic structures.

Metatexite

Metatexite preserves layering between grey feldspathic psammites and dark, biotite-

rich pelitic beds in the turbidite (Fig. 2a). Leucosomes in the metatexite are usually less than 

2 cm wide. Structurally, leucosomes occur in different orientations. Most of them follow 

bedding, but some follow orientations defined by shear-bands, axial planes of folds, or form 

isolated pockets of melt. This diversity in orientations and styles give rise to patch, stromatic 

and net-structured metatexite (Sawyer, 2008). Leucosomes have a wide compositional 

variation, reflected by variable proportions of K-feldspar, ranging from common tonalitic 

leucosomes to rarer granitic ones, and scarce alkali feldspar-granite leucosomes. Variation 

occurs on many scales, and even single outcrops and single leucosomes show along-strike 

variation in their assemblage modal proportions (Section 3). In addition, some leucosomes 

have mafic selvedges surrounding them, comprising coarse biotite, plagioclase and minor 
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muscovite, and rich in accessory minerals (Fig. 3b). Domains in metatexite that are 

dominated by residual minerals, such as biotite are referred below as residual layers, while 

leucocratic rocks with small melt patches, such as biotite-poor psammites are here referred to 

as anatectic psammites.

Diatexite

Diatexite is characterized by irregular remnants of disaggregated metasedimentary 

rock in a magmatic matrix (Fig. 2b), and are indicative of a large former melt fraction. The 

remnants of the source comprise centimetre- to metre-sized schollen, schlieren and biotite 

clots down to single grains, giving the rock a strongly heterogeneous appearance. Diatexites 

that developed in sources dominated by biotite-poor psammite, are chemically controlled by 

their unmelted precursor, and therefore described as psammite-rich diatexites. In general, 

diatexites are exposed on up to 3 km-long strips of coast, typically associated with and 

intruded by granites (see map in Electronic Appendix 1).

Intrusive granites

These are medium- to coarse-grained biotite-granites with rounded, hexagonal or 

rectangular K-feldspar megacrysts, reaching 5–10 cm across (Fig. 2c). Compared to the 

diatexites, the intrusive granites have coarser grain size and lack direct evidence for in situ 

disaggregation of source lithologies. However, the presence of rectangular to rounded 

xenoliths of typical Kanmantoo Group rocks, also suggests strong contributions of the 

Kanmantoo Group in their generation. They also have preserved blocks of older phases of a 

similar granite with only small textural differences. These granites crop out as several 

headlands and coastal sections of up to 1.5 km in length.

Leucogranites
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Leucogranites are spatially associated with migmatites and comprise centimetre- to 

several metre-wide dikes and sills, which are locally in petrographic continuity with 

leucosomes in country rock. They typically contain muscovite, garnet or tourmaline and the 

largest leucogranite body mapped was a 300 m long coastal section and resulted from the 

merging of multiple sheets, each 20–50 cm wide, that vary in grain size and mineralogy (Fig. 

1d). In contrast to megacrystic granites, the leucogranites lack K-feldspar megacrysts biotite 

is absent, except for a small number of biotite-bearing leucogranite sills in metatexite in the 

far west of the mapped area (Schwindinger and Weinberg, 2017).

Tonalite dikes 

Two ~1 m-wide dark grey tonalite dikes that are interlayered with leucogranite (Fig. 

1d) are mineralogically similar to diatexites, but have a more homogenous texture, lacking 

schollen and biotite clots. In thin section they have a touching framework of plagioclase 

grains with interstitial quartz and rare K-feldspar. Biotite is homogeneously distributed and 

has numerous accessory mineral inclusions (monazite, xenotime, zircon). Contacts between 

the tonalites and surrounding leucogranite have lobate geometries with diffuse margins and 

disaggregated and stretched pillows of one in the other near the contact, indicative of co-

magmatic relationships (Fig. 1d). 

FRACTIONATION OF LEUCOSOMES WITHIN THE SOURCE

Here, we describe a connected leucosome-dyke network (Fig. 4) in the metatexites of 

Vivonne Bay that evolves in shape and mineralogy over a few metres indicating a transition 

from an extraction network to an intrusive network. The exposure of a single connected 

system is rare, however it is common to find different parts of these system exposed in the 

same outcrop (Weinberg et al., 2013). They are particularly common in the metatexites of 
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Vivonne Bay area, but less common in the diatexite-dominated regions to the west (see map 

in the Electronic Appendix 1).

The connected leucogranite network is preserved in a folded sequence of psammo-

pelite and psammite layers (Fig. 4d). At one end, the root, the network is characterized by 

dendritic leucosomes rooted in the rock matrix of the psammo-pelitic layer into which they 

disappear. In the other direction, away from their roots, the dendrites link to form planar 

dikes at the contact between the psammo-pelite and the psammite. This in turn becomes a set 

of angular quartz veins that ends in branches with sharp tips against the country rock. All of 

this occurs within 3-5 metres and is accompanied by a gradual change in leucosome 

composition. In the root zone, small isolated patches of former melt, comprising plagioclase 

and quartz, merge into a continuous stromatic tonalitic leucosome with diffuse boundaries 

with the surrounding metasedimentary rock (Fig. 4a and Fig. 5a,b). Plagioclase grains in this 

tonalitic leucosome form cumulate texture with a network of subhedral touching grains with 

interstitial quartz (Fig. 5b). Further in the network the leucosomes have more defined 

boundaries and narrow biotite-rich selvedges. The presence of K-feldspar is first documented 

in the zone of merging leucosomes that form a 5 cm wide granite (Fig. 4b and Fig. 5c). The 

dike is coarse-grained and cuts through the contact at a high angle with sharp contacts with 

the surrounding psammite beds (Fig. 4b and Fig. 5d). The granite can be followed for a few 

metres, after which it splits into several, irregular quartz veins (Fig. 4c).

This network indicates that magma crystallized and fractionated over a few metres. Magma 

crystallization impacts on the saturation of accessory minerals, thus controlling the behaviour 

of U, Th, Y, Zr and REE. Whole rock geochemistry will be investigated in the next section 

with the aim of understanding the fate of these elements and their related accessory minerals.

 ACCESSORY MINERAL DISTRIBUTION AND CHEMISTRY
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In order to determine the behaviour of accessory minerals and the fate of U, Th (heat 

producing elements), Y, Zr and REE, the distribution of accessory minerals in thin section 

was analysed in three different samples and the composition of these minerals was 

determined with focus on these elements. This mineral chemistry information is integrated 

with migmatite whole rock geochemistry.

Methods

Three analytical methods were used here: mapping the distribution of accessory 

minerals in thin section using backscattered electron microscopy (BSE), analysis of their 

trace elements using LA-ICP-MS, and determination of whole rock geochemistry using XRF 

and ICP-MS. Three thin sections representative of different migmatite rock types were 

selected for investigation of accessory minerals and to allow for later comparisons with 

whole rock geochemistry. Two of these samples are metatexites, each composed of three 

domains: leucosome, biotite-rich selvedge and mesosome (6ML1_1 and 6ML1_6; Figs. 2a-

c). These samples record processes that are related to partial melting and melt segregation. 

The third thin section is from a diatexite, reflecting magmas that are strongly contaminated 

with residual material (6ML21_1, Fig. 3d). 

Backscattered electron maps of the thin sections were carried out at the Monash 

Centre of Electron Microscopy (MCEM) on a JEOL7001F FEG scanning electron 

microscope equipped with an Oxford Instruments X-Maz 80 EDS detector. The bright 

accessory minerals in BSE images were automatically selected by setting a greyscale 

threshold during acquisition. For each detected accessory mineral grain the geometric 

properties were measured (e.g. diameter, area) and a qualitative composition was determined 

using a 1s EDS spot analyses in the centre of the selection in order to positively identify the 

mineral (the different stages of data acquisition are shown in Fig. 6).
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The accuracy of this method depends on the resolution of the mapping, which varied 

between samples. The final resolution used was 2 pixels/µm, allowing confident detection of 

all grains larger than 3 µm in diameter. The fact that smaller grains have not been detected, is 

inferred to have only minor effects to this study, because: (a) most grains range between 10 

and 40 µm with less than 10% of the cumulative grain area in grains below 10 µm (Fig. 7), 

and (b) following from a) the contribution of the smallest grains to the bulk concentration of 

trace elements in the rock is only marginal. We focus only on the most common accessory 

minerals: apatite, monazite, xenotime and zircon, because the modal proportion of other 

detected accessory minerals (e.g. very rare uraninite in leucogranite) is negligible. Further 

errors arise from low contrasts in BSE images between different accessory minerals or 

between rock-forming minerals and their accessory inclusions, causing grains not to be 

detected as separate ones or incorrectly classified. Apatite, because of its lower contrast 

against rock-forming minerals, was particularly problematic and had to be digitized manually 

in samples 6ML1_6 and 6ML21_1, using ImageJ on the high resolution BSE map. In 

addition, single grains are occasionally split by the program into separate ones if grains were 

cracked or not homogeneously polished, causing the greyscale pixels in the BSE image to 

locally fall below the threshold. This can bias the grain size distribution towards smaller 

sizes. For this reason, the cumulative area of grains was used instead of absolute grain sizes. 

An exception is Fig. 7 where grain size in different domains of the migmatite sample are 

compared. We estimate the vast majority of accessory grains exposed at the surface of the 

studied thin section have been detected. Later in the text we will see that using the modal 

proportion of accessory phases we were able to closely predict bulk rock composition in the 

elements controlled by these phases, giving us confidence that selected samples are 

representative of the different rock types in the outcrop.
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Trace element compositional analysis of accessory minerals was conducted at the 

Monash Isotopia Laboratory using an ASI RESOlution SE 193 nm ArF excimer laser 

equipped with a Laurin Technic S155 ablation cell coupled to a Thermo Fisher Scientific 

iCapTQ. The general small grain size of the accessory minerals in the thin sections restricted 

the analyses to apatite, zircon and monazite. Xenotime typically had a diameter below 20 µm, 

impeding LA-ICP-MS analyses. Apatite and monazite have been measured using an energy 

of 6 mJ and a spot size of 15 µm, whereas zircon has been measured using 4 mJ and 25 µm. 

NIST610 was used as calibration standard (Si for zircon, Ca for apatite, P for monazite), and 

NIST612 was used as a quality control sample. The overall accuracy is 5 % deviation from 

reference values for NIST612. Phosphorous required for the internal standardization of 

monazite, was not measured in sufficient quantities during the runs, which led to inaccurate 

results for monazite. Therefore, for both monazite and xenotime, the mean concentration of 

EDS measurements during the scans were combined with several additional, more accurate, 

single spot EDS measurements to obtain an average composition of these minerals in their 

respective major elements. Their trace element concentration was not measured. 

For whole rock geochemistry, fresh samples were crushed and milled using a tungsten-

carbide mill. Major element analyses were conducted at the Centre of Excellence in Ore 

Deposits (CODES), University of Tasmania, Australia, on a Panalytical Axios Advanced 4.0 

kW X-ray Fluorescence (XRF) Spectrometer. Trace element analyses of all samples were 

conducted at Monash University Isotopia facility, using sample solutions on a Thermo 

Finnigan X series II, quadrupole Inductively Coupled Plasma Mass Spectrometer (ICP-MS). 

Details of analytical procedures are provided in Electronic Appendix 2.

Results

Bulk Rock Geochemistry 

http://www.petrology.oupjournals.org/

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/advance-article-abstract/doi/10.1093/petrology/egaa031/5740578 by U

niversity of St Andrew
s Library user on 30 M

arch 2020



Whole rock major and trace element composition was acquired for 31 samples (Table 

1). The results were combined with existing datasets of magmatic rocks (Foden et al., 2002; 

Tassone, 2008) and lower grade Kanmantoo Group metasedimentary rocks (24 samples, 

Haines et al., 2009; Turner et al., 1993). Leucosomes and leucogranites are grouped together 

as felsic granitoids, and are different from granitoids which have a higher proportion of 

biotite (>5% modal), such as diatexites, granites and tonalite dikes.

Major and REE geochemistry

All samples are peraluminous with an aluminium saturation index (ASI) > 1.1 (Table 

1, Fig. 8a) and silica contents of 65–80 wt.%. The residual biotite-rich layers, have the lowest 

SiO2 values, whereas psammites have the highest values. MgO+FeOT is negatively correlated 

with SiO2 with two trends identified (Fig. 8b): (i) a linear trend linking residual layers with 

the most silica-rich samples, interpreted to represent different degrees of melt-residuum 

separation (Foden et al., 2002); and (ii) a weakly-curved trend defined by felsic granitoids 

(orange symbols in Fig. 8b) at ~74 % SiO2 involving decreasing values of MgO+FeOT 

(Foden et al., 2002). This second trend is more pronounced in the MgO+FeOT vs. K2O plot in 

Fig. 8c, where leucosomes and leucogranites spread from 3 to 7 wt.% K2O at the bottom of 

the diagram. This trend corresponds to the fractionation described in Section 3, from 

cumulate tonalite at one end of the trend to potassic granites at the other end. Leucosome 

sample SSBR22 plots in the centre of this trend at 4.5 wt.% K2O, and is considered the best 

representative of an anatectic melt. This is because it lacks cumulate textures, has few 

obviously residual minerals, and lacks an Europium anomaly (Eu/Eu* ~1). 

Figure 8c shows a second subhorizontal trend defined by anatectic, plagioclase-rich 

psammitic diatexites (grey symbols). These are silica-rich (~80 wt.%) rocks rich in psammite 

blocks with small but variable quantities of muscovite, biotite and little K-feldspar. Diatexites 
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and granites define a third trend that evolves diagonally away from the centre of Kanmantoo 

Group field towards the leucosome sample SSBR22, at higher K2O and lower MgO+FeOT. 

This reflects the partial removal of residual solids from the flowing magma and possibly 

mixing between anatectic magmas and intrusive granite as suggested in Foden et al. (2002) 

and Schwindinger and Weinberg (2017). Residual layers are characterized by the loss of 

granitic melts and plot towards the biotite corner of Fig. 8c. For comparison, Fig. 8d plots the 

composition of migmatites and granites generated by melting of the turbidites form the Sierra 

de Quilmes in NW Argentina. These were produced by biotite-dehydration melting reactions 

at 800-850°C (Büttner et al., 2005; Finch et al., 2017; Wolfram et al., 2018). Despite their 

higher temperatures and different melting reaction, they show similar trends to Kangaroo 

Island migmatites, in particular the horizontal fractionation trend at the base of the diagram 

(Wolfram et al., 2018). One difference is that the residual migmatites in Sierra de Quilmes 

trend towards the garnet and cordierite side of the diagram, which is absent from Kangaroo 

Island where these minerals are lacking.

Diatexites, granites and residual layers have similar total REE concentration, plotting 

over the field of unmelted Kanmantoo Group (Fig. 9a). Psammite-rich diatexites have slightly 

lower total REE. Felsic granitoids are depleted in LREE compared to the Kanmantoo Group 

with a subtle positive HREE, including HREE enrichment of a few leucosomes above the 

source (Fig. 9b). The tonalite dikes have LREE comparable to the Kanmantoo Group, but are 

strongly enriched in HREE. The europium anomaly of all these granitoids is either positive or 

negative, depending on the total REE concentration, but not far removed from those of the 

source rocks. 

Other Trace Elements
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Accessory minerals, such as zircon, monazite, apatite and xenotime, are the main 

hosts of REE, Zr, Y, Th and U in psammitic and pelitic metasedimentary rocks (Bea, 1996). 

The behaviour of these minerals during partial melting therefore strongly controls their 

concentration in the resulting granite magmas. Here, these elements are plotted against 

MgO+FeOT (Fig. 10) to determine their behaviour relative to melt and residuum. The data in 

the plots can be roughly divided into two sections: above and below MgO+FeOT ~2.7 wt.%, 

which corresponds to the boundary between felsic granitoids and other rock types. Rocks 

above this value are typically diatexite or granites, and their trace elements define a plateau 

that mostly coincides with the values of the Kanmantoo Group. Below this value, felsic 

granitoids are poorer in ΣLREE, Th and Zr with decreasing MgO+FeOT (Fig. 10a-c). 

Felsic granitoids plot close to the 650°C Zr-saturation line for peraluminous melts or 

below, suggesting an undersaturation of the initial higher temperature magma in Zr (Fig. 

10a). An exception is the leucosome representative of anatectic melt, SSBR22, which plots 

closer to the 700°C saturation. The behaviour of Th and ΣLREE are similar to that of Zr (Fig. 

10b,c). Granites, diatexites and residual rocks plot at an elevated plateau of ΣLREE, close to 

150 ppm, inside or slightly above the Kanmantoo Group field. With a decrease in 

MgO+FeOT, reflecting a decrease in biotite mode, the ΣLREE values also decrease. The 

maximum value for leucosomes is recorded by sample SSBR22 at 70 ppm and corresponds to 

a ΣLREE saturation temperature of ~670°C.This behaviour is also found in rocks of the 

higher temperature anatectic turbidites of the Sierra de Quilmes (Fig. 10d, Wolfram et al., 

2018).

Uranium lacks a clear trend when plotted against MgO+FeOT (Fig. 10e). The same is 

true for (Fig. 10e) ΣHREE or Y versus MgO+FeOT (not shown, values provided in Table 1). 

These elements generally have similar values to those of the Kanmantoo Group, which 

probably relates to the complex behaviour of multiple U- and ΣHREE-bearing minerals (Bea, 
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1996). The most enriched samples are the tonalite dikes and even some leucosomes have 

values slightly higher than most other rocks. In addition, the strong correlation of these three 

elements, in particular Y with ΣHREE, suggests that they may be controlled by xenotime 

(Fig. 10f).

Accessory mineral imaging 

Using high-resolution BSE maps, a precise determination of the textural location, 

grain size and qualitative composition of all accessory minerals in the three thin sections was 

carried out. Figure 5 details the results for sample 6ML1_1 (maps of other samples are 

provided in Electronic Appendix 3). Accessory minerals are not distributed homogeneously 

but show a strong variation in their modal proportions between the different domains (Fig. 

6c) with the leucosome having only a fraction of the accessory minerals of both the selvedge 

and the mesosome surrounding it.

Quantification of the distribution of accessory minerals in each domain (Table 2) 

shows that the leucosome is indeed impoverished in accessory minerals and has the lowest 

modal proportions of accessory minerals (Fig. 6d). By contrast, the selvedge, which only 

covers ~12 % of the total scanned area, has 15 times the accessory mode of the leucosome. 

The largest and most abundant accessory mineral across all domain in sample 6ML1_1 is 

apatite, representing ~80 % of the area of all accessory mineral with a modal abundance of 

0.15 %, followed by zircon (12 % of grains), monazite (7 %) and a small fraction of xenotime 

(<1 %, Fig. 6d), consistent with the general abundance in the other scanned sections (Table 

2). The majority of grains range between 10 and 40µm in diameter, independent of their 

location. Large grains between up to 100 µm have a tendency to be located in the selvedge 

and to a lesser extent in the mesosome, but are rare in the leucosome (see Fig. 7 for zircon 

grain size distribution in 6ML1_1).
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Each grain in the thin sections was classified based on its textural location (Table 2, 

Fig. 11). Six different categories were defined: inclusions in each of the main rock-forming 

minerals (biotite, quartz, plagioclase, muscovite, K-feldspar) and grains that are on biotite 

grain boundaries in contact with either quartz or plagioclase. Accessory grains located on 

grain boundaries between the same two minerals, e.g. in between two plagioclase grains, 

were treated as plagioclase inclusions. As expected, most grains are associated with biotite, 

either as inclusions or at biotite grain boundaries (Fig. 11b). Even in the biotite-poor 

leucosomes, ~70 % of all accessory grains are in contact with this mineral. The selvedge is 

composed almost entirely of biotite with only minor plagioclase, quartz and feldspar, hence 

~70 % of all grains are biotite inclusions and another 20 % are found at the edge of biotite 

grains. The distribution of accessory minerals in the mesosome is similar to that in the 

leucosome, but with a more equal distribution between the major minerals, including ~18 % 

both in quartz and plagioclase. The textural location of accessory minerals in the second 

metatexite sample 6ML1_6 is comparable to 6ML1_1, but has coarser grained plagioclase in 

the leucosome hosting a greater total volume of accessory minerals. The diatexite sample 

6ML21_1 is similar to the mesosome in Fig. 11b, but contains K-feldspar that hosts ~3 % of 

all accessory minerals (Electronic Appendix 4).

Mass balance 

The cumulative area covered by each accessory mineral is combined with their 

composition (Tables 2 and 3) to calculate their contribution to the whole rock trace element 

concentration which can then be compared to measured values. LA-ICP-MS trace element 

data was collected for zircon and apatite as they comprise over 90% of the total accessory 

minerals. The data show no systematic relationship between the domain location of these 

minerals (leucosome, selvedge or mesosome) or between samples and their trace element 

concentration. This is shown for U/Th and ΣREE in Fig. 12a, but is also true for other 
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elements such as Y, or Zr. Therefore, the average composition was used for further 

calculations (Table 3). Monazite and xenotime were analysed using EDS, which only yielded 

information on elements with concentrations above 0.5 wt.%. The detected elements include 

Y, La, Ce, Nd, Th, U for monazite, and Y, Yb, Th, U for xenotime. We used the average 

value for these elements in monazite and xenotime for each sample based on more than 100 

analyses each (Table 3). The distribution of key elements in the accessory minerals in sample 

6ML1_1 in Fig. 12b shows that Zr is effectively entirely hosted by zircon, whereas monazite 

hosts >90 % of LREE and Th. Unlike the other elements, U resides in different minerals and 

apatite contains 90 % of all P2O5, as a result of its high modal content in the rock. Xenotime, 

the least abundant mineral, is the main host of Y. In addition, the good correlation between Y 

and HREE (Fig. 10f) further suggests that xenotime is an important host of HREE, which is 

supported by the study of Hammerli et al. (2016) from another section of the Adelaide Fold 

Belt. 

Combining the measured area of each accessory mineral in Table 2 and their trace 

element concentration, we calculated the composition of each domain via mass balance. The 

results for sample 6ML1_1 (Table 4; comprehensive results in Electronic Appendix 5) show 

that the leucosome has the lowest concentration of LREE, Zr, U, Th and Y, while the mafic 

selvedge has the highest, in good agreement with the ranges found in whole rock 

geochemical analyses of different groups of rocks in the area (Fig. 13). The difference 

between domains in Sample 6ML1_6 is less well-defined because the domains themselves 

are more diffuse. Nevertheless, results follow the general pattern of having REE- and HPE-

poor leucosomes and HPE-rich residual layers (Table 4).

DISCUSSION
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Migmatites in vast turbidite sequences accretionary orogens typically contain a variety of 

leucosome types even within single outcrops (Finch et al., 2017; Sawyer, 2008; Watson, 

1988; Watson and Harrison, 1984). Further to that, leucosomes are commonly impoverished 

in elements such as U, Th, Y and REE, compared to their sources, most typical for melting 

below T<850°C, but also described in terrains undergoing biotite dehydration melting at 

temperatures >850°C (Bea, 2012; Sawyer, 1991; Villaseca et al., 2007; Watt et al., 1996; 

Wolfram et al., 2018). However, in some such terranes the behaviour of these elements is 

inconsistent and can vary locally (e.g. in the Wuluma hills or the Ashuanipi terrane, Clarke et 

al., 2007; Guernina and Sawyer, 2003) and the Kangaroo Island migmatites are no exception. 

Below we demonstrate that both these features result from a common process. We will first 

discuss the bulk rock evolution of the Kangaroo Island migmatites and then explore in source 

fractionation and crystallization of melt as evidenced by Fig. 4 and how they control the 

behaviour of accessory minerals during magma evolution within the source.

Bulk rock evolution

The compositional variation of granites has traditionally been described as the 

superposition of several processes, which are roughly divided into those that modify an initial 

melt by hybridization, either with other magmas or with solids, and those that are related to 

the chemical differentiation of the magma. The magmatic rocks of the Kangaroo Island 

indicate that both types of processes contributed to their evolution.

The diatexites have variable contents of residual minerals derived from the 

disaggregation of the source (Fig. 3) and consequently have compositions between the field 

of the Kanmantoo Group protoliths and samples representative of melt (such as SSBR22, Fig. 

8b,c). Variable melt–residuum separation leads to typically linear geochemical trends in 

diatexites between protolith and melt (Foden et al., 2002; Milord et al., 2001; Solar and 
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Brown, 2001; Wolfram et al., 2018). Intrusive granites plot along the same trend but stretch 

to higher K2O and lower MgO+FeOT, reflecting more efficient melt–residuum separation, 

and possibly some mixing with more pure anatectic melts (Foden et al., 2002). Both granites 

and diatexites have REE concentration that coincide with the range of values of the 

Kanmantoo Group in Fig. 9, further supporting the kinship to this source.

The compositions and geochemical trends defined by the leucocratic granitoids 

contrasts with those of diatexites. The leucocratic suite varies in composition from tonalites 

to granites and define the curved trend to lower MgO+FeOT with increasing silica, branching 

off from the main trend in Fig. 8b. They additionally define the subhorizontal spread in the 

MgO+FeOT vs. K2O plot (Fig. 8c) and vary in REE contents, with a tendency of K2O-poor 

tonalite dike samples to be enriched in HREE, while the potassic endmembers are generally 

impoverished in REE (Fig. 9b). The geochemical trends of these leucocratic magmatic rocks 

are reflected in small scale by the documented modal changes along the connected leucosome 

networks in metatexites depicted in Fig. 4. 

Fractionation of leucosomes within the source

Section 3 and Fig. 4 showed that the continuous leucosome networks display a 

compositional range from plagioclase-rich leucosomes, interpreted as early crystallized felsic 

cumulates, to K-feldspar-rich leucosomes and quartz veins, interpreted as crystallized from 

the fractionated melt (Kriegsman and Hensen, 1998; Sawyer, 1987). Given the rooted nature 

of the network within the source rock, and given the short distance in which this occurs, we 

interpret this network to record a simultaneous process of melt extraction from the source and 

its crystallization and fractionation during extraction in a hot environment. If this is the case, 

declining temperatures alone do not explain crystallization. So how did the magma 

crystallize? 

http://www.petrology.oupjournals.org/

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/advance-article-abstract/doi/10.1093/petrology/egaa031/5740578 by U

niversity of St Andrew
s Library user on 30 M

arch 2020



White and Powell (2010) pointed out that the preserved leucosome mineralogy not 

only depends on pressure, temperature and protolith compositions, but also on diffusion of 

mobile elements, especially with the host rocks along chemical gradients that arise from 

changing P–T. The authors thus explained the origin of anhydrous leucosomes with biotite-

rich selvedges. We use the concept of White and Powell (2010) to explain in source 

crystallization of magma, and extend to chemical gradients that arise from changes associated 

with melt flow through different lithologies, including variations in H2O activity and 

chemical potential throughout the rock mass. 

The volume of rock and melt in equilibrium with each other or attempting to 

equilibrate in a complex anatectic system is generally unknown (Guevara and Caddick, 2016; 

White and Powell, 2002, 2010) and depends on rates of diffusion of different species, the 

physical distribution of melt in the host rock, and the rates of melt migration and extraction, 

all of which vary in space and time. A small melt batch might be in equilibrium with its 

reactants at the grain scale, but might define a local environment slightly different from the 

next small batch, particularly with regards to communication and equilibration with 

heterogeneously distributed accessory minerals. Melt migration brings these small batches 

together in the roots of leucosomes, where they partly homogenize. As migration continues 

they encounter compositional domains within the suprasolidus source different from those in 

which the melt originated, such as migration from a pelite host rock to psammite (Fig. 5d), 

and/or variable H2O activity (aH2O), related to heterogeneous distribution of H2O content, 

either from variable availability of a free aqueous fluid or silicate melts with different 

concentrations of dissolved H2O in the interstices of the rock. Here is where chemical 

gradients between melt and rock emerge and diffusional exchange is required to balance 

these, similar to gradients that arise through P-T changes of the system (Guevara and 

Caddick, 2016; Nicoli et al., 2017; White and Powell, 2010). Diffusion of the mobile species 
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K2O, Na2O and H2O happens relatively quickly within a melt-bearing system and are likely 

to show the largest effects (Acosta-Vigil et al., 2006; Acosta-Vigil et al., 2005; Morgan et al., 

2008). These imbalances may be particularly pronounced and cause significant crystallization 

if they are triggered by local and wide variations in aH2O. In a long-lived system of varying 

P-T-aH2O, in which magmas migrate across a layered package, the moving magmas will be 

constantly in the process of equilibration with the surroundings, crystallizing and 

fractionating when the conditions require. 

For the leucosome network in Fig. 4, changes associated with the transition from the K2O-

rich psammo-pelite to the Na2O-rich psammite, combined with possible differences in aH2O, 

caused chemical gradients to emerge. Ensuing equilibration may have triggered 

crystallization and fractionation as the magma flowed. The absence of K-feldspar in the 

tonalitic leucosomes of the psammo-pelite part of the network can be interpreted as caused by 

diffusion of K2O and H2O to the host, causing biotite to grow in the selvedge, while the 

leucosome crystallized plagioclase and quartz (White and Powell, 2010). We postulate that 

the melt that managed to leave the psammo-pelite host, entered an environment with a 

marginally higher solidus temperature and lower aH2O in the psammite. This favoured loss of 

H2O to the surroundings, which initiated crystallization of the coarse-grained granite. 

Because of the less aluminous and less ferro-magnesian nature of the psammite host, melt did 

not lose K2O through diffusion to grow new biotite, and instead crystallized K-feldspar. The 

angular quartz veins at the final tips of this system precipitated from silica-rich liquids that 

segregated after all granite melt crystallized.

An alternative and perhaps more standard interpretation would be that the 

crystallization of the leucosome network in Fig. 4 records the cooling of the migmatites 

across the solidus (Sawyer, 1987). This is possible but we note that this would imply that the 

network records the cooling history of the migmatites, from early cooling and tonalite 
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crystallization to quartz veins formation at some 200oC cooler conditions. The further 

implication is that the network crystallized diachronously, potentially over a few million 

years of cooling history.

Fate of accessory minerals 

Section 4 showed that the Kangaroo Island anatectic leucogranites have lower 

contents of Zr, U, Th, Y and LREE relative to their likely source rocks, suggesting that partial 

melting or fractionation of magmas were unable to enrich the peraluminous rocks in these 

elements. As we have seen in Fig. 12, monazite, zircon and xenotime control the distribution 

of U, Th, REE, Y and Zr (Bea, 1996b), and the distribution of these elements and of 

accessory minerals are related to the biotite content in the rock (Fig. 10)

The dissolution of accessory minerals during anatexis and their precipitation from a 

melt depends on multiple related factors, such as the composition of the melt (Bea et al., 

1992; Spear and Pyle, 2002; Wolf and London, 1994), P-T conditions (Montel, 1993), water 

content of the melt (Boehnke et al., 2013; Montel, 1993), reaction kinetics (Rapp and 

Watson, 1986), or disequilibrium caused by rapid melt extraction (e.g., Clemens and Stevens, 

2016). As shown by White and Powell (2010) local disequilibrium and diffusion along 

chemical gradients within a system have also the potential to affect when and where 

accessory minerals are dissolved and when they precipitate.

The Kanmantoo Group contains Zr and LREE contents in excess of the saturation 

concentration in peraluminous melts at peak temperatures of 700°C (Fig. 10). This would 

allow melts to become saturated in these elements before all zircon, apatite and monazite 

(hosting LREE) in the source became dissolved (Yakymchuk and Brown, 2014). 
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Nonetheless, the felsic granitoids in Fig. 10 plot below the calculated saturation concentration 

for Zr and LREE, and have low Th values, whereas diatexites, granites and tonalite dikes, all 

richer in biotite, plot at higher values broadly coincident with those of the Kanmantoo Group 

field (Fig. 10). The sample that is the closest representative of an anatectic melt (SSBR22) 

has Zr and LREE concentrations corresponding to saturation at 700°C (Boehnke et al., 2013) 

and 675°C (Stepanov et al., 2012), respectively, consistent with the estimated peak 

metamorphic temperatures in the area. We have previously described the two distinct trends 

in Fig. 10, a scattered horizontal one above 2.7% MgO+FeOT, and a positive trend defined by 

felsic granitoids below this. In order to detail the trend in Fig. 10 we plotted the trace 

elements against each other in Fig. 14.

With the exception of the felsic granitoids, Fig. 14a shows a broad sympathetic increase in Zr 

with LREE indicating zircon and monazite become enriched together in the more residual 

rocks enriched in MgO+FeOT, most likely because of their direct physical link with biotite 

(see Fig. 11). It also shows that the calculated compositions based on the accessory mineral 

concentrations of the three domains in 6ML1_1 (leucosome, mesosome, selvedge in Fig. 13) 

closely match the main trend of whole rock composition. By contrast, the calculated values 

for diatexite sample 6ML21_1 and metatexite sample 6ML1_6 deviate from the trend in Fig. 

14a with lower values of ΣLREE, but match whole rock Th and U in Fig. 14b. The 

underestimation in ΣLREE and Zr for the diatexite is likely caused by the limited area 

investigated in a single thin section, failing to reflect the complete heterogeneity of diatexites, 

while the ΣLREE underestimation for sample 6ML1_6 is unclear, but possibly relates to the 

exclusion of xenotime in the calculations, which is more abundant in this sample (0.004% 

modal percent compared to 0.002% in 6ML1_1, Electronic Appendix 4).

The felsic granitoids are all poor in Zr, Th and LREE and tend to define slightly 

different trends in Fig. 14 (particularly in Fig. 14c) reflecting their different behaviour in Fig. 
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10. This can be because: (a) melt was undersaturated initially, (b) these elements diffused 

from the melt when accessory phases grew in surrounding solids, or both. An initial 

undersaturation in LREE and Th in the melts can be explained by the much higher solubility 

of apatite compared to monazite and xenotime in peraluminous melt, causing melt to saturate 

in P with respect to monazite and xenotime (Rapp and Watson, 1986; Wolf and London, 

1994; Wolf and London, 1995), therefore stabilizing the main repositories of Th, LREE 

(monazite) and U, Y (xenotime) in the source. This has been used to explain anatectic 

magmas similarly impoverished in LREE and Th (Fig. 10d, Wolfram et al., 2018). However, 

this mechanism cannot explain the undersaturation in Zr. Watson et al. (1989) suggested the 

possibility that accessorises may be physically isolated from the melt because of their 

inclusion in stable major rock-forming minerals, such as biotite, but as Fig. 11 shows, a third 

of all accessory minerals in the mesosome are located at the grain boundary of biotite, which 

would allow melt to dissolve sufficient quantities of these to reach saturation. Therefore 

option (b) is a more plausible explanation for low Zr concentration and could exacerbate 

impoverishment of Th and LREE in the felsic granitoids. Further to that, this process would 

explain why the selvedge is so enriched in accessory minerals compared to mesosome.

As a magma crystallizes in part due to chemical interaction with its host within the source 

region (Fig. 5d), it becomes saturated with respect to Zr, Th and LREE leading to 

crystallization of the host minerals of these elements — the accessory minerals. Their 

enrichment in biotite-rich selvedges (Fig. 11), suggest that they crystallize preferentially on 

biotite, as also found by earlier studies describing heterogeneous nucleation of accessory 

minerals (Bacon, 1989; Bea, 1996b; Wolf and London, 1994). This process explains the 

apparent undersaturation of the leucosomes (Figs. 9 and 14): as melt crystallizes, either from 

reaction with its host rock or decreasing temperature to form evolved granitic rocks, it tracks 

the saturation curve of LREE, Th, Zr and Y and depletes the final magmatic rock in these 
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elements because the accessory minerals crystallize in the biotite selvedge outside the 

leucosome. Thus, the spatial arrangement of the melt network in the anatectic zone and the 

residence time of melt in this region will influence the content of LREE, Th, Zr and Y in the 

melt and crystallizing leucosomes. This process would be most efficient in small magma 

volumes with short diffusional distances to the country rock.

The behaviour of phosphates can be further investigated in plots of Th and Y against 

P2O5 (Fig. 14c,d), which show three different trends. The green, diagonal arrow in Fig. 14c 

defines a trend towards magmas with increasingly higher proportions of residual components 

including their accessory minerals. Felsic granitoids define a horizontal trend towards high 

P2O5 at the bottom of the diagram (red arrow in Fig. 14c). Low Th and Y along this trend 

indicate these samples have few monazite or xenotime grains, which we argue is due to the 

crystallization of these minerals in the selvedges. The trend to higher P2O5 suggests that 

apatite, the main host of P2O5, is not removed by this process, and agrees with the high 

solubility of apatite in peraluminous magmas (Bea et al., 1992). A third, subvertical trend in 

Fig. 14c,d (blue arrow) is defined by the tonalite dikes, plus a single diatexite sample and a 

leucosome with tonalitic composition. This trend combines high Th and Y at low P2O5, and 

indicates that these rocks have higher proportions of monazite and xenotime. This is also 

reflected in the high HREE of the tonalite dikes in Fig. 9. These rocks possibly record a 

different type of behaviour of the magmatic system: one in which monazite and xenotime are 

not lost to the melanosome, perhaps due to fast extraction, but accumulate in these magmatic 

rocks. An explanation for this behaviour could be the relatively rapid accumulation of magma 

batches that are large enough to be isolated from the country rock. Here, they are unable to 

lose significant amounts of the HREE via accessory mineral crystallisation in the hosting 

selvedges, and so form these minerals in the early crystallized cumulates. The rare 
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preservation of such rocks in the area, with only two narrow tonalitic dikes observed, 

however indicate that this behaviour is not very common.

In summary, the geochemical investigation of the Kangaroo Island magmatic rocks 

indicate that felsic granitoids with little residual source material are poor in HPEs (U, Th), Zr, 

Y and REE. This could have been caused by two parallel processes: (a) melt may have been 

initially depleted as a result of the low solubilities of REE-Y phosphates because of 

preferential dissolution of apatite and saturation of P in the melt (Wolfram et al., 2018); and 

(b) crystallization of accessory minerals in the selvedges, effectively removing the key trace 

elements from the melt by diffusion, due to emerging chemical gradients between magma and 

surroundings. 

The most obvious way to increase the concentration of trace elements in the magmatic 

rocks is to add residuum, shown by diatexites and granites loaded with solids from the 

disaggregated source. In this case the concentration of trace elements in question is capped by 

the maximum value of the Kanmantoo Group source, unless there are processes that 

concentrate residual or newly crystallized accessory minerals. This is observed in the tonalite 

dikes enriched in U, Th, Y and HREE, which suggest the possibility that if larger magma 

batches are accumulated and experienced little interaction with the host rocks, the trace 

elements that form accessory minerals are not lost and can subsequently be enriched in 

crystal-rich magmas. 

Implication for crustal differentiation

Turbidites such as those forming the Kanmantoo Group, form vast volumes of material that 

are added to the accretionary orogens where they are strongly reworked at high-T/low-P 

conditions and ultimately become part of the crystalline continents (Cawood et al., 2009; 

Weinberg et al., 2018). While partial melting and magma extraction to higher levels are 
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generally considered the main differentiation process of the crust (Brown, 2013; Brown and 

Rushmer, 2006; Sawyer et al., 2011; Taylor and McLennan, 1995), we argue that because of 

the nature of the anatectic process recorded by turbidites in such orogens, intracrustal 

differentiation is unlikely to contribute significantly to the redistribution of  U, Th, Zr, Y 

(Yakymchuk and Brown, 2019).

The processes documented by the anatectic metaturbidites of Kangaroo Island, echoes 

those occurring at higher temperature in other regions where melting was a result of biotite-

dehydration reactions at 800– 850°C (e.g. the Puncoviscana Formation in NW Argentina 

shown in Fig. 10d, Büttner et al., 2005; Wolfram et al., 2018). Despite the temperature 

differences, in both cases the majority of granitic magmatic rocks produced had either similar 

or lower contents of U, Th, Zr, Y and REE, compared to their sources (Figs. 10 and 14). 

Close contact between narrow segregation channels and solids lead to accessory 

growth in melanosome. If melanosome and magmas become ultimately separated, rather than 

mobilized together, the processes documented here will cause undersaturation of the magma 

in elements typical for these minerals with significant impacts on granite composition and 

implications for transfer of the two most important HPE: Th and U. This finding is consistent 

with those of Alessio et al. (2018) and later by Yakymchuk and Brown (2019) who showed 

that heat production rates in metapelites that underwent considerable melt loss were either the 

same or higher than those in equivalent subsolidus metapelites. This implies that U and Th 

have not been preferentially extracted with the melt, and might even have been enriched in 

the source. Consequently, the source regions of these crustal magmas remain hot for extended 

periods, unable to cool and thermally stabilize the lower crust (Sandiford and McLaren, 

2002). This coincides with geochronological studies of migmatites that indicate protracted 

periods above the solidus (Finch et al., 2017; Montero et al., 2004; Rubatto et al., 2001; 

Weinberg et al., 2013; Williams et al., 1996) making lower crustal sections susceptible to 
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repeated episodes of melting and tectonically responsive (Alessio et al., 2018). This is 

however a simplified view, since large time-spans of crustal melting cannot be attributed to 

radiogenic heating alone (see discussion for the Famatinian Orogen in Wolfram et al., 2018). 

Moreover, increased heating may lead to extensional collapse (Vanderhaeghe, 2009)  

reinforcing granite production and the general higher susceptibility of radiogenic crust to 

high-temperature / low-pressure melting (Goffé et al., 2003).

Although anatexis of metasedimentary piles in the back-arcs of accretionary orogens 

can contribute to the redistribution of mass in the crust, the process is inefficient in 

differentiating the crust in the HPE U and Th, typically hosted by accessory minerals. The 

redistribution of these elements appears to require either a source that is already strongly 

enriched (Alessio et al., 2018; Bea, 2012), voluminous arc magmatism with significant 

contribution of mantle magmas and generation of new crust (Kemp and Hawkesworth, 2003) 

or post-orogenic A-type granites, such as the voluminous granites that intruded in the late 

phases of the Delamerian Orogen (Foden et al., 2002). The latter are considerably hotter than 

S-type magmas, and able to dissolve and transfer effectively the above elements. 

CONCLUSIONS

A combination of field relationships, whole rock geochemistry and investigation of the 

distribution of accessory minerals from Kangaroo Island migmatitic turbidites shows that 

fractionation of melt in leucosomes and partitioning of Zr, Y, REE and the heat producing 

elements U and Th between melt and source are affected by in source melt crystallization due 

to chemical disequilibrium between migrating magma and country rock. As melt crystallizes 

in the source and fractionates to form a range of granitic rocks, it tracks the saturation curve 

of accessory minerals and becomes depleted in the trace elements that form these minerals. 
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Because accessory minerals crystallize preferentially in association with biotite, the biotite-

rich selvedges become enriched in newly grown accessory minerals, gaining in the trace 

elements that form them that are lost from the melt by diffusion. This is a process that can 

explain multiple examples of granites that are poor in U, Th, Zr, Y and LREE, and migmatite 

terranes that retain or are enriched in these elements (Alessio et al., 2018). The preferential 

growth of monazite and zircon in the selvedge, makes the melanosomes the best place for 

dating. If, however melanosomes are remobilized through erosion by flowing magmas or by 

bulk source remobilization to form diatexites, then magmas will become enriched in these 

elements. We argue that the intense reworking and melting of the massive metasedimentary 

piles of many accretionary orogens does not necessarily lead to an upper crust rich in the heat 

producing elements U and Th (Alessio et al., 2018). This has been recorded extensively along 

the Paleozoic margin of Gondwana from SE Australia to NW Argentina. Instead, the 

enrichment of the upper crust in these elements takes place most effectively in other tectonic 

environments, such as magmatic arcs.
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List of Table Headers:

Table 1: Whole rock major and trace elements of Kangaroo Island rocks

Table 2: Distribution of accessory minerals expressed by their area. The first number is the fraction of 

each accessory mineral across different domains (e.g. 8.36 % of the total apatite measured is located 

in the leucosome) and the number in brackets is the modal percentage of the mineral in each domain. 

The raw data for these calculations is provided in Electronic Appendix 6. The row labelled 

“percentage of total” lists their proportion among all recorded minerals and is used in Fig. 6d and Fig. 

11.

Table 3: LA-ICP-MS trace element analyses. Concentrations in ppm

Table 4: Modelled trace element composition of different thin section domains. The composition was 

calculated using the modal content from Table 2 and multiplied by the average trace element 

concentration of each accessory mineral in Table 3. The data is compared to the ranges of whole rock 

compositions in Fig. 13. A more detailed table, including the contributions of single minerals is 

provided in Electronic Appendix 5.
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List of Figure Captions:

Figure 1

Location of Kangaroo Island within the Adelaide fold belt, highlighting the position of the migmatites 

in the field area (black rectangle) and the position of Delamerian granite intrusions (modified after 

Schwindinger & Weinberg, 2017).

Figure 2

Common lithologies at the south coast of Kangaroo Island. (a) Metatexite migmatite showing 

interlayered psammites and pelites. Lower part of the photograph shows two leucosomes along the 

same plane with poorly developed mafic selvedges and communicating with one another, linked by 

discontinuous small in situ leucosome patches (white arrows). Pelite layers have more leucosomes 

than psammite suggesting they were more fertile during anatexis. The top of the photograph shows a 

folded leucosome with narrow melanosome (black arrow). The white boxes mark locations of samples 

6ML1_1 and 6ML1_6 used for the thin sections and BSE maps used in Figures 2 and 5. (b) Diatexite 

migmatite characterized by a heterogeneous magmatic matrix with leucocratic (white arrow) and 

mesocratic (black arrow) domains. Psammite schollen of different sizes, schlieren and biotite-clots 

illustrate variable degrees of metatexite disaggregation. White box indicates the position of sample 

6ML21_1 used for the thin section shown in Fig. 3d. (c) Intrusive granite (top) in irregular, curved 

contact with heterogeneous diatexite (bottom). Note coarse grain size, presence of K-feldspar 

megacrysts and a more leucocratic nature of the granite. (d) Dark grey, biotite-bearing tonalitic dike 

concordantly intruding a 300m wide leucogranite body, assembled by multiple single sheets. Lobate, 

diffuse contacts between both and the presence of irregular leucogranite pillows in the dike (arrows) 

indicate both are co-magmatic and mingled. 

Figure 3 
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Photomicrographs of leucosome types in metatexite and diatexite. (a) Ptygmatically folded leucosome 

in sample 6ML1_1 (see Fig. 2a for location), contrasts with the surrounding mesosome by coarser 

average grain size, leucocratic appearance and strongly developed mafic selvedge that is partly 

enclosed in between fold hinges and entrained into leucosome. The leucosome has tonalitic 

composition, comprised of quartz, plagioclase and minor biotite. (b) Detail of (a) showing coarse 

biotite in selvedge with abundant inclusions of accessory mineral (apatite, monazite, xenotime, 

zircon), indicated by pleochroic halos (arrows). (c) Metatexite sample 6ML1_6 comprising a pelitic 

layer (PL) and a psammite layer (PS) with several leucosomes (L). In contrast to sample 6ML1_1, a 

selvedge is only weakly developed and domains are less clearly defined. (d) Diatexite sample 

6ML21_1 rich in biotite (see Fig. 2b for location). Some of the biotite is likely inherited from the 

source, suggested by in situ disaggregation of metatexite in the formation of diatexite magma (Fig. 

2b). 

Figure 4

Evolution of a granitic transport and fractionation system from source to sink in the scale of meters. 

Photographs a-c show different aspects of a single connected networks and (d) shows a sketch of a 

granite network where the host rock changes from psammo-pelite to psammite and the composition 

within the granite changes from tonalite to granite to quartz segregations. (a) In the root zone, 

centimetric tonalitic leucosome in a psammo-pellitic layer merge to form continuous, stromatic 

leucosomes. (b) Individual leucosomes merge into coarser grained granite veins crosscutting the host 

rock at high angles to its foliation. (c) At the end of this continuous vein network, the coarse-grained 

granite veins are directly linked to thin quartz veinlets. (d) Schematic representation the studied melt 

transport and fractionation system where leucosomes represent the pathways of melts extracted from 

the root zone. These traverse a lithological contact between a migmatitic pelite and intrudes into 

psammite as a sharp planar dyke that dies out as quartz veins.
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Figure 5 

Photomicrographs recording the fractionation across the different sections of the network in Fig. 4. (a) 

Root zone: leucosome in the centre of the image consists of plagioclase and quartz with several 

enclosed biotite grains and diffuse margins to the surrounding finer-grained psammo-pelite. (b) Detail 

of the continuous stromatic leucosomes in Fig. 4a, showing the network of touching plagioclase 

grains and interstitial quartz. (c) Zone of merging leucosomes into veins of coarse-grained granite 

(Fig. 4b) and first appearance of K-feldspar (microcline). (d) Planar dike in psammite: coarse-grained 

granite in the centre with sharp general contact with psammite, serrated at grain scale.

Figure 6 

BSE map of folded leucosome sample 6ML1_1 (see Fig. 2 for location) showing all detected 

accessory minerals. (a) BSE map of entire thin section compiled of >200 single frames. (b) 

Magnification of marked area in (a) showing apatite in red, monazite in blue, zircon in purple and 

xenotime in green. Except apatite, most accessory minerals in this thin section, are <100 µm and 

either included in or located at the grain boundaries of biotite. (c) BSE map showing location of all 

detected accessory minerals. Dots correspond to position of different minerals and do not represent 

grain size. Coloured background shows division into leucosome, selvedge and mesosome. Note the 

sparse accessory mineral abundance in leucosome. (d) Bar plot on left shows the modal proportion of 

accessory minerals in each domain (area covered by accessory minerals divided by total area of 

domain). The modal abundance of accessories minerals in the selvedge (0.129) is nearly 20x that in 

leucosome (0.006) or 4x that in mesosome (0.031). Apatite is excluded, because its large modal 

proportion does not allow to show all accessory minerals in a single bar plot, but the same distribution 

relationships across the domains is maintained (see Electronic Appendix 4). The column on the right 

shows distribution of accessory minerals and their modal proportion in the entire thin section. Apatite 

comprises 80 % of the total accessories measured by area, which is 0.15 modal % of sample 6ML1_1. 

Percentage values below x-axis indicate the total area of each domain in this thin section. 
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Figure 7 

Size distribution for zircon grains across different domains. The majority of grains across all domains 

have grain sizes <30µm. Larger grains between 80-100µm are in the mafic selvedge and to a smaller 

extent in the mesosomes. 

Figure 8 

Bivariate major element plots for magmatic and metasedimentary rocks: (a) ASI (molar Al2O3/(CaO + 

Na2O + K2O) vs. SiO2 ; (b) MgO+FeOT vs. SiO2 ; and (c) MgO+FeOT vs. K2O. Grey background 

defines the field occupied by low-grade, unmelted Kanmantoo Group rocks, the likely source for the 

magmatic rocks (data from Haines et al., 2009; Turner et al., 1993). The two samples of protolith 

analysed here are indicated by crosses. In (b) the main trend bifurcates at 74 % SiO2 indicating two 

different magmatic processes in the petrogenesis of the granitoids (adapted after Foden et al., 2002). 

(c) Plot of melt incompatible (MgO + FeOT) vs. compatible elements (K2O) with vectors pointing 

towards residual garnet, cordierite, muscovite, plagioclase and biotite (after Milord et al., 2001). At 

the base of the plot, felsic granitoids define a subhorizontal fractionation trend with tonalitic 

compositions at low K2O, and K-feldspar-rich leucogranites at high K2O. Diatexites and intrusive 

granites follow a negative diagonal trend from the centre of the Kanmantoo Group, reflecting different 

degrees of separation of melt from source material (melt-residuum separation), and mixing between 

anatectic and intrusive magmas (described in Schwindinger and Weinberg, 2017 and Foden et al., 

2002). Biotite-rich schlieren and residual layers plot parallel to the biotite vector, indicating their 

residual nature. Smaller and transparent symbols represent samples from Foden et al. (2002) and 

Tassone (2008).

Figure 9 
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Chondrite-normalized REE plots (McDonough and Sun, 1995). Grey background marks the field 

defined by two samples of Kanmantoo Group protolith analysed in this study. (a) Diatexite, residual 

layers and intrusive granites match the REE composition of the source, while psammite-rich diatexites 

are slightly poorer. (b) Strong REE variation among the felsic granitoids and tonalite dikes. 

Leucosomes and leucogranites are depleted in LREE, but have a weakly positive HREE trend, 

causing some samples to have concentrations above the Kanmantoo Group. Tonalite dikes are 

strongly enriched in HREE. The small coloured squares on the right indicate K2O content and show 

that tonalite samples, with lowest K2O contents, are most enriched in REE.

Figure 10 

Bivariate trace element plots: (a) Zr, (b) Th, (c,d) ∑LREE, (e) U vs. MgO+FeOT and (f) Y vs. 

∑HREE. MgO+FeOT on the x-axes of the plots is strongly associated with the modal proportion of 

biotite in the rocks, since biotite in the only major mineral that contain FeO + MgO. (a-c) Light blue 

horizontal line shows average concentrations of the upper continental crust (UCC, Rudnick and Gao, 

2014). The vertical dashed line divides the diagram into two: for higher values of MgO+FeOT 

diatexite and granite samples define a plateau close to or slightly above the field for the Kanmantoo 

group. For lower values all three diagrams show that felsic granitoids are impoverished in the trace 

element, with values below saturation calculated for different temperatures (red dashed lines). Zircon 

saturation values were calculated after Boehnke et al. (2013) at M-value = 1.2 (average of the 

magmatic rocks, Table 1), and LREE-equilibrium concentration were calculated using the equation of 

Stepanov et al. (2012) with 5 wt.% H2O. (d) For comparison with (c), higher temperature anatectic 

turbidites from the Puncoviscana Formation, Sierra de Quilmes and Sierra de Molinos in NW 

Argentina define similar trends as in (c) with a sharp drop in ΣLREE for the felsic granitoids (from 

Wolfram et al., 2018). (e) U has no clear correlation with MgO+FeOT and has similar values to the 

Kanmantoo Group, except for the tonalite dikes that are enriched in U. (f) Strong correlation between 

Y vs. ∑HREE (R2= 0.992), suggest that they are both hosted by the same mineral, most likely 
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xenotime. Inset shows magnified ternary plot of U, Y and ∑HREE. Except for leucogranites, which 

are offset to higher U possibly by the existence of another U-hosting minerals, all rocks have the same 

ratio confirming the control of xenotime on these elements. See Figure 7 for legend.

Figure 11 

Location of accessory minerals in sample 6ML1_1. Apatite has large grainsizes, is usually located at 

grain boundaries and therefore excluded from the plot (a) BSE image of a small section of sample 

6ML1_1 indicating inclusions of accessory minerals in or at the edge of biotite, quartz, plagioclase, 

muscovite. (b) Bar plot summarizing the location of all accessory minerals in leucosome, selvedge or 

mesosome. The total number of counted grains increases from leucosome to mesosome, with the bulk 

of accessory minerals being included or located at the edge of biotite. The biotite-rich selvedge has 

the highest proportion of accessory mineral inclusion in biotite, and ~40 % of accessory minerals in 

the mesosome are located either inside plagioclase or quartz. Colours match the grain type and 

position marked in (a).

Figure 12 

Results of LA-ICP-MS and EDS elemental analyses. (a) U/Th vs ΣREE for zircon and apatite grains 

across different domains suggests no systematic correlation between position of minerals and their 

composition. Apatite plots at a higher U/Th ratio than zircon, because of its very low Th contents (see 

Table 3). (b) Distribution of trace elements in different accessory minerals in sample 6ML1_1. Zircon 

is the only host of zirconium. Monazite controls distribution of LREE. U is distributed over multiple 

minerals with monazite having the largest fraction. HREE have been excluded due to insufficient 

analyses.
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Figure 13 

Calculated composition of the three domains in 6ML1_1 using data in Tables 2 and 3 for mineral 

composition and modal content, compared to the ranges of whole rock geochemistry of natural 

samples (data in Table 4). Even though the data is based on only a 2 x 3 cm thin section, there is good 

agreement for most elements. For Zr, ΣLREE and Th, the leucosome (L) plots at the low end of the 

felsic granitoid range, the mesosome (M) plots within psammitic diatexite range and the selvedge (S) 

plots at the higher end or above the range defined by residual lithologies and magmas rich in source 

rafts and schlieren. Y and ΣHREE tend to be underestimated most likely because of the neglect of 

xenotime (Fig. 10f).

Figure 14:

Bivariate trace element plots of bulk rock samples analysed as well as compositions derived from 

mass balance calculations for different domains in migmatite samples 6ML1_1, 6ML1_6 and diatexite 

sample 6ML21_1 shown by the coloured circles connected by a dashed line. (a) Positive correlation 

between Zr and ΣLREE (hosted by zircon and monazite, respectively) in bulk rock composition is 

matched by calculated domain compositions for sample 6ML1_1, while domains in 6ML1_6 or the 

diatexite sample 6ML21_1 have lower ΣLREE. For 6ML1_1, leucosomes coincide with the most 

depleted felsic granitoids, the mesosomes with anatectic psammites, and the selvedge plots outside the 

figure limits at Zr = 355ppm, but within typical ΣLREE of granites and residual rocks at 188 ppm. (b) 

Calculated values of all samples agree well with natural samples for Th vs. U. Leucogranites have 

higher U when compared to the trend defined by the calculated values for the three domains, which 

possibly relates to the presence of other U-minerals (e.g. uraninite). (c, d) Th vs. P2O5 where (d) 

shows Y as a third variable indicated by the colour of the points. They show three different trends 

starting from a point that would reflect a slightly impoverished initial melt. The red arrow includes the 

fractionated felsic granitoids and show enrichment in P2O5 without gaining either Th or Y indicative 

of Apatite enrichment. A subvertical trend at low P2O5 towards high Th and Y (blue arrow) and 
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defined by one tonalitic leucosome, a diatexite and the tonalite dikes, indicate higher modes of 

xenotime (Y) and monazite (Th), possibly representing remobilized cumulates. A diagonal trend 

(green arrow) including rocks rich in residual material represents different degrees of source 

contamination, containing accessory minerals in quantities dictated by the Kanmantoo Group protolith 

and the efficiency of filtering.
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Table 1. Whole rock major and trace elements of Kangaroo Island rocks
Lithology Protolith Leucosome Anatectic psammite Residual layers Psammite-rich Diatexite Diatexite
Sample HR1 PS 1 6ML9_2 SSBR 22 VB26-3 VB6_2 VB26-2 6ML1a_1 6ML1a_2 VB26_9 SSBR 24 SSBR 5 VB30_1 SSBR 12 6ML-21-1 VB27-1
comment Pl-rich Kfs-rich Kfs-rich Bt-rich Bt-rich Bt-rich Qtz-rich Qtz-rich Qtz-rich Qtz-rich Bt-rich Bt-rich
Major elements [wt. %]
SiO2 68.93 62.95 76.39 74.77 74.97 74.48 79.55 66.17 56.21 55.38 78.44 78.73 78.57 79.02 69.75 69.30
TiO2 0.63 0.75 0.18 0.14 0.12 0.09 0.22 0.73 0.82 1.27 0.16 0.30 0.23 0.22 0.49 0.55
Al2O3 13.30 16.30 12.92 13.60 13.09 13.19 10.55 14.52 19.33 15.30 11.19 10.42 10.68 10.26 14.02 14.14
FeOT 5.44 6.08 1.26 0.97 0.84 0.80 1.72 5.51 7.28 11.43 1.06 1.87 1.54 1.44 3.69 3.99
MnO 0.07 0.10 0.02 0.01 BLD 0.08 0.13 0.14 0.01 0.03 0.01 0.02 0.06 0.07
MgO 2.43 3.44 0.74 0.57 0.38 0.23 0.71 3.04 4.38 5.06 0.52 0.83 0.71 0.70 2.08 2.18
CaO 1.94 2.27 1.91 1.49 0.38 0.31 0.58 1.83 0.83 0.28 1.04 1.33 0.41 0.89 1.79 1.94
Na2O 2.31 1.99 2.53 2.78 2.35 2.92 3.15 2.13 1.04 1.23 2.21 2.40 2.89 1.69 2.36 2.58
K2O 2.93 3.76 2.81 4.55 6.51 6.26 2.41 3.72 6.22 6.45 4.37 2.68 3.33 4.03 3.34 3.29
P2O5 0.11 0.15 0.05 0.09 0.09 0.25 0.09 0.17 0.15 0.09 0.04 0.10 0.14 0.11 0.14 0.06
BaO 0.06 0.08 0.07 0.12 0.19 0.15 0.07 0.08 0.19 0.15 0.12 0.07 0.07 0.08 0.07 0.05
LOI 0.88 1.64 0.74 0.82 0.57 0.78 0.55 1.09 2.38 1.57 0.64 0.77 0.86 1.13 1.28 0.77
Total 99.63 100.19 99.75 100.02 99.59 99.55 99.79 99.70 99.76 99.63 99.92 99.74 99.61 99.76 99.49 99.36
ASIa 1.27 1.42 1.21 1.11 1.13 1.09 1.19 1.34 1.94 1.61 1.09 1.12 1.17 1.17 1.30 1.25
Trace elements [ppm]
V 76.54 74.67 18.23 14.12 9.85 12.14 27.36 90.11 131.60 133.99 15.69 22.44 23.25 16.55 44.50 76.70
Zn 82.58 28.18 27.58 14.75 10.00 8.20 15.15 89.87 114.66 126.29 12.58 23.94 14.62 20.82 56.88 61.18
Rb 142.73 175.15 93.94 118.33 152.07 149.03 78.40 224.93 289.62 484.91 119.00 70.52 105.54 137.24 123.81 191.50
Sr 194.40 98.94 215.30 244.09 163.24 157.61 153.55 148.00 140.90 78.05 224.72 158.52 147.00 133.89 163.45 146.84
Y 21.69 41.66 58.85 40.94 53.65 13.56 14.75 22.00 27.03 42.84 9.68 16.19 15.47 31.90 26.94 48.00
Zr 111.58 210.65 66.14 88.93 51.20 47.71 84.54 198.53 128.74 160.85 102.12 92.26 135.67 105.37 120.44 188.79
Nb 13.07 16.90 4.13 3.77 2.98 1.40 3.87 16.32 18.21 31.83 3.29 4.20 1.90 5.11 8.94 16.79
Cs 6.43 3.17 2.75 3.43 3.16 1.36 1.22 14.10 14.57 16.64 3.25 2.49 1.60 6.45 11.66 12.70
Ba 587.33 702.88 697.18 1073.27 1643.77 1407.26 651.91 753.43 1746.52 1493.26 1134.68 603.46 699.02 753.78 611.14 479.89
Hf 3.07 5.15 2.66 2.60 1.77 1.49 2.31 5.46 3.57 4.33 2.19 2.60 3.65 3.25 3.55 5.56
La 26.56 45.62 14.97 16.99 15.60 10.05 25.44 44.09 46.22 55.60 14.36 28.30 25.87 22.90 30.63 44.66
Ce 54.15 92.08 30.05 35.65 32.52 22.00 51.04 89.19 92.31 112.90 27.90 57.99 54.91 46.46 64.37 92.71
Pr 6.33 10.40 3.65 4.01 3.82 2.32 5.62 10.46 10.87 12.13 3.15 6.53 5.94 5.27 7.19 10.74
Nd 23.11 37.58 13.24 14.40 14.11 8.42 20.05 37.75 38.95 43.21 11.08 23.66 20.98 19.01 26.02 38.85
Sm 4.43 7.54 3.21 3.41 3.70 1.83 3.80 6.89 7.24 7.82 2.17 4.44 4.03 4.07 5.26 8.59
Eu 1.09 1.13 1.55 1.06 0.89 0.79 0.86 1.38 1.45 1.61 0.88 0.95 0.96 0.99 1.15 1.25
Gd 4.42 7.32 4.37 3.71 4.23 1.75 3.18 6.33 6.85 7.99 1.85 3.87 3.22 4.02 4.52 7.31
Tb 0.68 1.14 1.01 0.77 0.99 0.31 0.48 0.89 1.00 1.22 0.28 0.56 0.49 0.71 0.75 1.23
Dy 3.83 6.63 7.59 5.46 7.38 2.01 2.65 4.52 5.23 6.91 1.58 2.99 2.77 4.56 4.51 7.43
Ho 0.79 1.34 1.93 1.28 1.84 0.46 0.54 0.83 1.00 1.46 0.31 0.56 0.58 1.00 0.99 1.64
Er 2.08 3.82 6.08 4.16 5.87 1.32 1.41 1.99 2.52 3.89 0.91 1.53 1.54 3.06 2.79 4.64
Tm 0.28 0.55 0.99 0.66 0.99 0.20 0.19 0.26 0.33 0.53 0.15 0.22 0.21 0.48 0.41 0.72
Yb 1.80 3.43 7.23 4.39 7.42 1.36 1.19 1.60 2.09 3.44 1.06 1.35 1.43 3.15 2.83 5.07
Lu 0.27 0.50 1.12 0.65 1.15 0.21 0.18 0.24 0.31 0.51 0.16 0.20 0.22 0.46 0.43 0.78
Th 9.76 23.71 10.24 11.29 11.49 3.47 7.48 18.81 20.41 15.91 5.75 10.52 9.11 11.34 12.24 21.00
U 1.72 4.76 5.33 2.95 3.56 1.19 1.52 3.50 3.97 3.88 1.07 1.61 1.66 2.11 3.75 6.54
Eu/Eu* 0.75 0.46 1.26 0.91 0.69 1.35 0.75 0.64 0.63 0.62 1.34 0.70 0.81 0.75 0.72 0.48
Zr-saturation (Boehnke et al. 2013)
TZr [°C] 728 798 684 697 650 639 710 790 771 770 715 711 754 731 741 780
M 1.19 1.16 1.13 1.27 1.24 1.30 1.10 1.18 0.95 1.15 1.22 1.17 1.13 1.11 1.14 1.21

a) ASI: mol. Al2O3 / (CaO+Na2O+K2O)
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Table 1 (continued)
Lithology Leucogranites  Granite Tonalite
Sample 6ML-22-9 VB2-1 VB28-1 VB9-1 VB10-1 VB10-2 SSBR 23 6ML-22-7 6ML27_2 SSBR 10 VB20-3 VB23-1 6ML22_16 6ML22_6 VB10_14 VB10-4
comment     Grt Grt Bt-LG            
Major elements [wt. %]
SiO2 75.55 73.76 74.18 76.35 74.51 74.29 73.31 73.96 69.36 72.23 72.17 72.15 71.89 71.64 76.21 77.83
TiO2 0.07 0.09 0.01 0.02 0.04 0.04 0.27 0.34 0.40 0.58 0.55 0.54 0.46 0.57 0.29 0.33
Al2O3 13.37 13.92 14.25 13.00 14.25 13.94 13.32 12.47 15.15 13.03 12.70 12.82 13.23 13.00 12.57 10.96
FeOT 0.49 0.80 0.25 0.13 0.18 0.78 1.71 2.21 3.14 3.47 3.10 3.15 3.05 3.69 2.03 2.26
MnO 0.05 0.02 0.03 0.06 0.06 0.05 0.04 0.05 0.06 0.03 0.04
MgO 0.29 0.27 0.18 0.12 0.10 0.15 0.81 1.04 1.75 1.35 1.32 1.43 1.38 1.55 0.99 0.95
CaO 0.79 0.27 0.55 0.97 0.80 0.47 1.11 1.38 2.02 1.89 1.71 1.59 1.40 1.61 2.15 1.11
Na2O 2.03 3.05 1.88 2.60 3.97 3.69 2.21 2.37 2.78 2.59 2.55 2.58 2.45 2.49 3.31 2.42
K2O 6.29 6.37 6.98 5.27 4.55 4.65 5.55 4.12 3.62 3.65 3.81 3.80 4.51 3.86 1.25 2.66
P2O5 0.06 0.23 0.17 0.11 0.25 0.30 0.18 0.14 0.08 0.19 0.19 0.25 0.15 0.19 0.06 0.06
BaO 0.11 0.06 0.07 0.09 0.02 0.10 0.07 0.08 0.05 0.06 0.05 0.06 0.06 0.01 0.06
LOI 0.70 0.66 0.69 0.48 0.93 0.60 0.81 0.92 0.86 0.85 0.67 0.75 0.84 0.72 0.71 0.71
Total 99.81 99.58 99.23 99.17 99.61 99.05 99.59 99.32 99.65 100.34 99.22 99.49 99.80 99.85 99.83 99.64
ASIa 1.15 1.12 1.22 1.11 1.10 1.17 1.14 1.15 1.25 1.12 1.11 1.14 1.15 1.16 1.18 1.23
Trace elements [ppm]
V 7.50 1.18 0.49 0.71 BD 0.87 19.97 36.88 48.99 62.13 53.17 52.27 56.10 36.88 32.30 33.54
Zn 9.51 12.98 3.92 2.69 1.17 6.99 28.79 33.41 52.42 47.53 47.86 45.51 44.53 33.41 32.37 35.39
Rb 175.44 211.58 205.86 146.45 181.07 266.40 170.57 180.64 190.01 180.30 200.42 218.06 184.99 180.64 83.65 163.27
Sr 176.33 125.52 130.16 167.72 21.38 16.16 197.25 162.94 172.70 142.72 160.65 139.33 139.21 162.94 143.70 115.04
Y 19.04 18.50 26.13 8.52 3.38 8.91 19.83 25.23 32.79 26.46 34.35 28.73 33.89 25.23 231.03 99.16
Zr 22.33 42.66 29.36 24.66 24.46 15.58 188.92 168.21 109.16 241.36 221.58 155.40 212.32 168.21 174.97 155.26
Nb 2.42 7.57 1.66 0.61 1.28 7.28 6.83 5.83 12.02 11.35 15.32 18.30 12.37 5.83 1.76 9.35
Cs 3.59 9.30 8.11 4.49 3.49 6.63 5.55 5.48 10.44 9.93 8.39 8.37 10.36 5.48 3.74 6.24
Ba 968.57 507.52 599.95 833.33 108.39 20.97 933.77 673.16 746.08 512.15 571.28 510.62 514.30 673.16 93.18 529.10
Hf 1.28 1.73 1.30 1.12 1.15 1.03 4.27 4.90 3.40 6.46 6.14 4.63 5.92 4.90 6.05 4.78
La 7.18 5.41 10.85 3.26 1.71 2.71 38.45 32.76 30.30 35.95 47.57 41.25 35.51 32.76 41.11 34.47
Ce 12.92 11.67 22.79 5.85 1.37 5.84 79.49 69.35 60.73 74.55 99.06 86.40 75.55 69.35 86.31 72.69
Pr 1.53 1.32 2.65 0.62 0.45 0.69 8.93 7.94 7.19 8.30 11.47 9.58 8.62 7.94 10.38 8.56
Nd 5.58 4.35 9.60 2.14 1.59 2.46 31.59 28.89 25.70 29.76 41.12 34.43 31.47 28.89 40.05 31.52
Sm 1.43 1.38 2.40 0.56 0.45 0.81 6.87 6.32 5.06 6.15 8.41 7.09 6.53 6.32 11.87 7.78
Eu 1.23 0.66 1.09 1.30 0.12 0.08 1.40 1.21 1.38 1.16 1.26 1.07 1.04 1.21 1.32 1.04
Gd 1.61 1.48 2.44 0.68 0.39 0.84 5.82 5.19 5.03 5.15 7.18 6.04 5.60 5.19 15.42 8.42
Tb 0.36 0.38 0.53 0.16 0.09 0.21 0.80 0.85 0.86 0.87 1.09 0.96 0.93 0.85 3.77 1.78
Dy 2.63 2.71 3.75 1.14 0.64 1.42 3.79 4.67 5.25 4.95 5.97 5.30 5.66 4.67 28.88 12.93
Ho 0.63 0.60 0.88 0.28 0.13 0.29 0.65 0.95 1.14 1.00 1.24 1.05 1.23 0.95 7.78 3.30
Er 1.95 1.74 2.70 0.85 0.37 0.83 1.72 2.45 3.29 2.55 3.23 2.72 3.41 2.45 24.75 10.32
Tm 0.33 0.27 0.45 0.14 0.06 0.14 0.25 0.35 0.52 0.37 0.44 0.36 0.51 0.35 3.98 1.59
Yb 2.47 1.91 3.33 1.04 0.48 1.01 1.64 2.45 3.81 2.59 2.82 2.25 3.58 2.45 28.37 11.19
Lu 0.39 0.27 0.51 0.16 0.07 0.14 0.25 0.37 0.59 0.37 0.41 0.33 0.54 0.37 4.36 1.68
Th 2.21 3.11 4.49 1.04 0.66 1.21 18.81 16.50 15.70 15.33 23.55 18.54 15.94 16.50 30.57 25.21
U 5.03 5.52 4.26 1.53 1.09 4.00 3.86 2.41 4.11 1.63 2.32 3.17 2.48 2.41 16.33 7.47
Eu/Eu* 2.47 1.41 1.37 6.42 0.87 0.30 0.67 0.64 0.83 0.63 0.49 0.50 0.63 0.52 0.30 0.39
Zr-saturation (Boehnke et al. 2013)
TZr [°C] 589 632 614 593 588 562 775 766 722 796 786 752 732 787 776 775
M 1.21 1.28 1.15 1.24 1.29 1.22 1.25  1.22 1.21 1.30 1.30 1.27 1.26 1.26  1.17 1.08

a) ASI: mol. Al2O3 / (CaO+Na2O+K2O
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Table 2: Distribution of accessory minerals expressed by their area. The first number is the fraction of each accessory mineral across 
different domains (e.g. 8.36 % of the total apatite measured is located in the leucosome) and the number in brackets is the modal 
percentage of the mineral in each domain. The raw data for these calculations is provided in Electronic Appendix 6. The row labelled 
“percentage of total” lists their proportion among all recorded minerals and is used in Fig. 6d and Fig. 11.

Mineral mode across domains [area %] location (without apatite)
Domain Apatite Monazite Xenotime Zircon

Total modal 
content Bt Bt-edge Pl Qtz Ms Kfs

6ML1_6 (total area 592.38 mm2) 6ML1_6 
Leucosome (97.95 mm2) 8.36 (0.057) 13.96 (0.019) 15.31 (0.003) 9.71 (0.012) 15 13 121 34 - -
Selvedge (88.69 mm2) 12.27 (0.092) 16.89 (0.025) 19.34 (0.005) 19.42 (0.027) 108 28 59 10 - -
Mesosome (405.74 mm2) 79.37 (0.260) 69.15 (0.046) 65.35 (0.007) 70.87 (0.043) 259 154 258 112 - -
Total modal proportions 0.115 0.023 0.004 0.021 0.163 - - - - - -

Percentage of total 70.55 14.11 2.45 12.88

6ML1_1 (total area 680.94 mm2) 6ML1_1 (n = 1012)
Leucosome (331.91 mm2) 15.97 (0.053) 12.78 (0.003) 12.79 (0.0004) 8.38 (0.003) 42 41 26 3 4 -
Selvedge (83.01 mm2) 46.18 (0.608) 37.75 (0.035) 51.14 (0.006) 38.75 (0.088) 257 81 7 22 7 -
Mesosome (266.02 mm2) 37.85 (0.156) 49.47 (0.014) 36.07 (0.001) 38.75 (0.02) 142 186 93 96 5 -
Total modal proportions 0.147 0.012 0.002 0.021 0.182 441 308 126 121 16 -
Percentage of total accessory 
minerals

80.77 6.59 1.10 11.54

6ML21_1 (total area: 500.07 mm2) 6ML21_1 (n = 548) 
Diatexite 76.27 (0.138) 9.64 (0.017) 1.27 (0.002) 12.82 (0.023) 229 154 91 52 22 17
* Accessory mineral location was investigated along three representative areas of the thin section 
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Table 3: LA-ICP-MS trace element analyses. Concentrations in ppm
Mineral Apatite Apatite Apatite Apatite Apatite Apatite Apatite Apatite Apatite Apatite Apatite Apatite Mean
Sample 6ML1_1 6ML1_1 6ML1_1 6ML1_1 6ML1_1 6ML1_1 6ML1_6 6ML1_6 6ML1_6 6ML1_6 6ML21_1 6ML21_1
Domain S L L S MS MS L S L MS D D  
Y 1340 1241 1255 1097 1151 1929 1216 698 1268 1017 1250 1145 1217.3
Zr 
La 121.5 94.8 99.5 96.4 98.6 188.3 101.8 50.5 97.3 90.4 110.5 97.4
Ce 406.5 331.2 339.7 332 343 612 348 191.6 348.1 312.3 373 332.8
Pr 68.1 59.5 60.6 57.1 59.9 105 59.1 36 63 53.5 63 58.1
Nd 392 347 345.1 327 358 598 346.2 221.4 362 312 360.6 337.3
Sm 172.8 154.6 155.8 149 157.1 269 150.9 104.5 165.2 139.2 157.8 153.6

∑LREE 1041.4

Eu 11.89 10.7 10.98 10.5 11.67 20.74 10.27 9.03 9.39 9.07 11.37 11.94
Gd 236.4 217.6 222.7 204.7 219.9 360 223.2 153.7 226 196.5 217.7 210.6
Tb 47.31 42.6 44.4 40.7 43.4 71.5 43.47 29.74 44.7 38.7 43.5 41.21
Dy 295.5 268.3 275.6 249.6 267.1 448 272.4 176.8 284.1 238.8 270.6 258.4
Ho 55.6 51.4 52.5 45.8 48.4 82.4 51.4 30.2 53.3 44 50.7 45.8
Er 135.7 126.8 127.4 107.2 116.7 198.1 122.6 67.2 128.2 104.5 127.8 112.5
Tm 18.22 16.49 16.43 14.01 14.79 25.92 15.87 8.5 16.57 13.07 17.71 15.55
Yb 112.5 101.5 106.4 89.5 93 163.2 95.3 50 99.8 78.2 118.1 99.3
Lu 14.23 12.85 13.03 11.08 11.63 19.62 11.82 6.28 12.5 10.06 15.24 12.39

∑HREE 846.9

Th 1.67 0.63 1.17 0.66 1.66 17.5 1.37 0.46 1.46 0.78 0.65 0.78 2.4
U 83.5 57.4 71.9 54.4 75.6 262 36.7 13.9 49.4 37.7 76.1 46.9 72.1

Mineral Zircon Zircon Zircon Zircon Zircon Zircon Zircon Zircon Mean Monazite* Monazite* Monazite* Xenotime* Xenotime* Xenotime*
Sample 6ML1_1 6ML1_1 6ML1_1 6ML1_1 6ML1_1 6ML1_1 6ML1_6 6ML21_1 6ML1_6 6ML1_1 6ML21_1 6ML1_6 6ML1_1 6ML21_1
Domain S S S S MS S MS D   all all D    
Y 750 633 659 704 331 2520 1050 657 913.0 3.74 3.74 3.74 31.33 (84) 39.99 (51) 44.28 (37)
Zr (%) 41.0 40.4 40.0 40.5 41.1 40.3 33.8 41 39.8 - - - -
La 0.66 4 0.037 1.35 1.28 13.7 11.1 NA 10.35 (898) 14.29 (434) 15.17 (190) - - -
Ce 19.4 42.5 19.78 17.2 37.8 91 46 17.1 20.17 (999) 27.04 (442) 27.85 (220) - - -
Pr 0.62 3.19 0.123 1.4 1.76 14.5 8.2 0.043 - - -
Nd 4.8 20.2 1.93 11.8 14.7 98 54 0.92 8.75 (598) 10.19 (414) 12.43 (112) - - -
Sm 5.1 11.9 3.47 11.6 9 57 28.2 2.29

∑LREE 
86.5

- - - - - -
Eu 1.36 2.32 0.74 3.95 3.4 15.3 9 0.21 - - - - - -
Gd 19.3 27.5 16.4 25.7 22.8 115 57 12.8 - - - - - -
Tb 5.8 7.8 5.15 7.4 4.8 30.9 14.8 4.62 - - - - - -
Dy 65 72 57.6 74.4 45 289 123 56.9 - - - 4.41 (11) 4.41 (11) 4.41 (11)
Ho 24 22.3 21.6 24.8 11.9 88.5 33.6 21.8 - - - - - -
Er 107 85.9 96.3 125.3 44 347 113 98.4 - - - - - -
Tm 22.8 16.7 20.3 35.2 8.7 69.2 23.6 20.3 - - - - - -
Yb 212 144 188 428 78 600 210 184 - - - 4.94 (11) 4.94 (11) 4.94 (11)
Lu 45 27.4 38 102.4 14.9 113.8 41.4 36.5

∑HREE 
638.3

- - - - - -
Th 153 207 187 87.8 200 221 155 74.6 160.7 4.59 (59) 5.78 (39) 7.89 (8) 1.39 (15) 1.39 (15) 1.39 (15)
U 143 438 343.3 663 215 579 1270 102.4 469.2  1.46 (4) 1.46 (4) 1.46 (4) 2.14 (15) 2.14 (15) 2.14 (15)
L = Leucosome; S= Selvedge; MS= Mesosome; D = Diatexite. *Monazite and xenotime data are average concentration in weight % derived from EDS analyses. Number of measurements in brackets
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Table 4: Modelled trace element composition of different thin section domains. The composition was calculated using the modal 
content from Table 2 and multiplied by the average trace element concentration of each accessory mineral in Table 3. The data is 
compared to the ranges of whole rock compositions in Fig. 13. A more detailed table, including the contributions of single minerals 
is provided in Electronic Appendix 5.

 Zr [ppm] ∑LREE [ppm] ∑HREE [ppm] Th [ppm] U [ppm] Y [ppm]
6ML1_1 
Leucosome 14.10 15.96 0.47 1.80 0.54 1.73
Selvedge 355.51 188.24 5.71 21.50 6.93 27.42
Mesosome 81.37 76.13 1.45 8.61 2.51 6.30
Bulk sample 82.04 60.49 1.49 6.86 2.09 6.65

6ML1_6 
Leucosome 49.09 17.26 0.56 9.23 3.54 10.99
Selvedge 108.44 23.24 0.95 12.38 4.82 15.38
Mesosome 86.51 21.26 1.24 10.97 4.15 11.53
Bulk sample 83.61 20.90 1.08 10.89 4.15 12.02

6ML21_1 
Diatexite 94.18 23.03 1.32 14.09 3.15 10.35
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