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Abstract

Abasi et al. (2014) introduced the following two problems. In the r-Simple k-Path problem, given
a digraph G on n vertices and positive integers r, k, decide whether G has an r-simple k-path, which
is a walk where every vertex occurs at most r times and the total number of vertex occurrences is
k. In the (r, k)-Monomial Detection problem, given an arithmetic circuit that succinctly encodes
some polynomial P on n variables and positive integers k, r, decide whether P has a monomial of total
degree k where the degree of each variable is at most r. Abasi et al. obtained randomized algorithms
of running time 4(k/r) log r · nO(1) for both problems. Gabizon et al. (2015) designed deterministic
2O((k/r) log r) ·nO(1)-time algorithms for both problems (however, for the (r, k)-Monomial Detection
problem the input circuit is restricted to be non-canceling). Gabizon et al. also studied the following
problem. In the p-Set (r, q)-Packing problem, given a universe V , positive integers p, q, r, and a
collection H of sets of size p whose elements belong to V , decide whether there exists a subcollection
H′ of H of size q where each element occurs in at most r sets of H′. Gabizon et al. obtained a
deterministic 2O((pq/r) log r) · nO(1)-time algorithm for p-Set (r, q)-Packing.

The above results prove that the three problems are single-exponentially fixed-parameter tractable
(FPT) parameterized by the product of two parameters, that is, k/r and log r, where k = pq for p-Set
(r, q)-Packing. Abasi et al. and Gabizon et al. asked whether the log r factor in the exponent can
be avoided. Bonamy et al. (2017) answered the question for (r, k)-Monomial Detection by proving
that unless the Exponential Time Hypothesis (ETH) fails there is no 2o((k/r) log r) · (n + log k)O(1)-
time algorithm for (r, k)-Monomial Detection, i.e., (r, k)-Monomial Detection is unlikely to be
single-exponentially FPT when parameterized by k/r alone. The question remains open for r-Simple
k-Path and p-Set (r, q)-Packing.

We consider the question from a wider perspective: are the above problems FPT when parame-
terized by k/r only, i.e., whether there exists a computable function f such that the problems admit
a f(k/r)(n + log k)O(1)-time algorithm? Since r can be substantially larger than the input size, the
algorithms of Abasi et al. and Gabizon et al. do not even show that any of these three problems is in
XP parameterized by k/r alone. We resolve the wider question by (a) obtaining a 2O((k/r)2 log(k/r)) ·
(n + log k)O(1)-time algorithm for r-Simple k-Path on digraphs and a 2O(k/r) · (n + log k)O(1)-time
algorithm for r-Simple k-Path on undirected graphs (i.e., for undirected graphs we answer the orig-
inal question in affirmative), (b) showing that p-Set (r, q)-Packing is FPT (in contrast, we prove
that p-Multiset (r, q)-Packing is W[1]-hard), and (c) proving that (r, k)-Monomial Detection is
para-NP-hard even if only two distinct variables are in polynomial P and the circuit is non-canceling.
For the special case of (r, k)-Monomial Detection where k is polynomially bounded by the input
size (which is in XP), we show W[1]-hardness. Along the way to solve p-Set (r, q)-Packing, we obtain
a polynomial kernel for any fixed p, which resolves a question posed by Gabizon et al. regarding the
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existence of polynomial kernels for problems with relaxed disjointness constraints. All our algorithms
are deterministic.

1 Introduction

Abasi et al. [1] introduced the following extension of the Directed k-Path problem:

Directed r-Simple k-Path
Input: An n-vertex digraph G and positive integers k, r.
Question/Objective: Does G have an r-simple k-path, that is, a walk where every vertex occurs
at most r times and the total number of vertex occurrences is k?

Note that in Directed r-Simple k-Path k, r can be substantially larger than n.

At first glance, one may think that the time complexity of any algorithm for solving Directed r-
Simple k-Path is an increasing function in r. However, Abasi et al. showed that this is not the case by
designing a randomized algorithm of running time 4(k/r) log r · nO(1). Their algorithm was obtained by a
simple reduction to the following problem:

(r, k)-Monomial Detection
Input: An arithmetic circuit that succinctly encodes some n-variable polynomial P , and positive
integers k, r.
Question/Objective: Does P have a monomial of total degree k, where the degree of each variable
is at most r?

Abasi et al. proved that (r, k)-Monomial Detection can be solved by a randomized algorithm with
time complexity 4(k/r) log r · nO(1). Gabizon et al. [27] derandomized these two randomized algorithms,
though at the expense of increasing the constant factor in the exponent and restricting the input of the
(r, k)-Monomial Detection problem to non-canceling circuits.1 Both algorithms of Gabizon et al. run
in time 2O((k/r) log r) · nO(1).

Gabizon et al. [27] also studied the following problem:

p-Set (r, q)-Packing
Input: An n-element universe V , positive integers p, q, r, and a collection H of sets of size p whose
elements belong to V .
Question/Objective: Does there exist a subcollection H′ of H of size q where each element occurs
in at most r sets of H′? (We will call H′ an r-relaxed parking.)

Gabizon et al. designed an algorithm for p-Set (r, q)-Packing of running time 2O((k/r) log r) · nO(1),
where k = pq. In other words, the above results show that the three problems are single-exponentially
fixed-parameter tractable (FPT) when parameterized by the product of two parameters, k/r and log r.

The motivation behind the relaxation of disjointness constraints is to enable finding substantially better
(larger) solutions at the expense of allowing elements to be used multiple (but bounded by r) times. For
example, for any choice of k, r, Abasi et al. [1] presented digraphs that have at least one r-simple k-path
but do not have even a single (simple) path on 4 logr k vertices. Thus, even if we allow each vertex to
be visited at most twice rather than once, already we can gain an exponential increase in the size of the
output solution. The same result holds also for undirected graphs.2 In addition, Abasi et al. [1] showed
that the relaxation does not make the problem easy: both Undirected r-Simple k-Path and Directed
r-Simple k-Path are shown to be NP-hard with k = (2r − 1)p + 2 and n = 2p vertices. From this, we
observe that NP-hardness holds for a wide variety of choices of r, ranging for r being any fixed constant
to r being super-exponential in n (e.g., r = 2n

c
for any fixed constant c ≥ 1). In addition, NP-hardness

1Non-defined terms can be found in the next section.
2Undirected r-Simple k-Path can be viewed as the special case of Directed r-Simple k-Path where every pair of

vertices has either no arc or arcs in both directions.
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holds when k/r = k as well as when k/r = O(log1/c k) for any fixed constant c ≥ 1.
As an open problem, both Abasi et al. and Gabizon et al. asked whether it is possible to avoid an

exponential dependency on log r. In other words, they asked whether the above problems are single-
exponentially FPT when parameterized by k/r alone.3 To answer this question for (r, k)-Monomial
Detection, Bonamy et al. [15] proved that the running time of the algorithms of Abasi et al. [1] and of
Gabizon et al. [27] for (r, k)-Monomial Detection are optimal under the Exponential Time Hypothesis
(ETH) in the following sense. Unless ETH fails there is no 2o((k/r) log r) · (n + log k)O(1)-time algorithm
for (r, k)-Monomial Detection even if r = Θ(kσ) for any σ ∈ [0, 1). The question remains open for
Directed r-Simple k-Path and p-Set (r, q)-Packing.

We consider the question from a wider perspective of parameterized complexity: are the above prob-
lems FPT when parameterized by k/r only, i.e., whether there exists a computable function f such that
the problems admit a f(k/r)(n+ log k)O(1)-time algorithm?

Note that for p-Set (r, q)-Packing, r ≤ m and thus the above algorithm by Gabizon et al. shows that
the problem is in XP. However, for Directed r-Simple k-Path the above algorithms by Abasi et al. and
Gabizon et al. are not even XP-algorithms in the parameter k/r because r (encoded in binary) can be
much larger than the size of the problem instance under consideration. In particular, even when k/r = 1,
these algorithms can run in time exponential in the input size. In addition, note that all three problems
are easily seen to be FPT when parameterized by k/r and r simultaneously, since algorithms that run in
time 2O(k)nO(1) immediately follow by simple modifications of known algorithms for the corresponding
non-relaxed versions. When r is large enough, the running times of 2O((k/r) log r) · nO(1) of the algorithms
by Abasi et al. and Gabizon et al. are superior. Here, the log r factor in the exponent naturally arises, and
seems to be perhaps unavoidable. To see this, first consider the very special case where the input contains
only O(k/r) distinct elements. Then, we can store counters that keep track of how many times each
element is used. Our array of counters would have 2O((k/r) log r) possible configurations, hence a running
time of 2O((k/r) log r) · nO(1) is trivial. However, counters are completely prohibited when dependence on
r is forbidden, which already renders this extreme special case non-obvious. In fact, a running time of
f(k/r) · (n+ log k)O(1) not only disallows using such an array of counters, but it forbids the usage of even
a single counter. Thus, in advance, it might seem more natural to vote for W[1]-hardness over FPT for
all three problems with respect to k/r.

Our Contribution. We resolve the parameterized complexity of all three problems, namely Directed
r-Simple k-Path, p-Set (r, q)-Packing and (r, k)-Monomial Detection, with respect to the parame-
ter k/r. Our main contribution consists of a 2O((k/r)2 log(k/r)) ·(n+log k)O(1)-time algorithm for Directed
r-Simple k-Path and a 2O(k/r) · (n+ log k)O(1)-time algorithm for Undirected r-Simple k-Path.4 For
Undirected r-Simple k-Path, this answers the question posed by Abasi et al. [1] and Gabizon et al. [27],
and reiterated by Bonamy et al. [15] and Socala [44]. (As also noted in previous works, it is easily seen
that even when k is polynomial in n, none of the three problems can be solved in time 2o(k/r) ·nO(1) unless
the ETH fails.) In addition, we show that p-Set (r, q)-Packing is FPT based on the representative sets
method in parameterized algorithmics. Along the way to design this algorithm, we obtain a polynomial
kernel for any fixed p, which resolves another question posed by Gabizon et al. regarding the existence of
polynomial kernels for problems with relaxed disjointness constraints whose sizes are decreasing functions
of r. We remark that all of our algorithms are deterministic, and are based on ideas completely different
from those of Abasi et al. [1] and of Gabizon et al. [27].

Next, we introduce the following extension of p-Set (r, q)-Packing to multisets:

3The interpretation of k/r is a tight lower bound on the number of distinct elements any solution must use.
4Recall that n is the number of vertices in the input (di)graph.
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p-Multiset (r, q)-Packing
Input: An n-element universe V , positive integers p, q, r, and a collection H of mutisets of size p
whose elements belong to V .
Question/Objective: Does there exist a subcollection H′ of H of size q where no element of V has
more than r occurrences in total (i.e., if a multiset H in H′ contains t copies of element v ∈ V , all
other multisets of H′ can have at most r − t occurrences of v in total)? (We will call H′ an r-relaxed
parking.)

We prove that p-Multiset (r, q)-Packing parameterized by k/r is W[1]-hard. Using this result, we also
prove that (r, k)-Monomial Detection parameterized by k/r is W[1]-hard even if (i) k is polynomially
bounded in the input length, (ii) the number of distinct variables is k/r, and (iii) the circuit is non-
canceling. Moreover, we show that (r, k)-Monomial Detection is para-NP-hard even if the input
polynomial has only two variables and the circuit is non-canceling.

The most technical parts of the paper deal with the Directed r-Simple k-Path and Undirected r-
Simple k-Path problems. We prove that Directed r-Simple k-Path can be solved in time 2O((k/r)2 log(k/r))·
(n+ log k)O(1) and polynomial space using a chain of reductions from Directed r-Simple k-Path that
includes three auxiliary problems. The first of these problems is the Directed r-Simple Long (s, t)-
Path problem, where we are given a strongly connected digraph G, positive integers k, r, and vertices
s, t ∈ V (G). The objective is to either (i) determine that G has an r-simple k-path between any pair of
vertices or (ii) output the largest integer i ≤ k such that G has an r-simple (s, t)-path of size i. It is not
hard to see that we may assume that G has neither a path of size at least 2k/r nor a cycle of length at least
k/r. The key result on Directed r-Simple Long (s, t)-Path is that under the assumption above, there
is always, as a solution, an r-simple path with fewer than 30(k/r)2 distinct arcs.5 For reductions using the
other two problems we apply several parameterized algorithms approaches (including color coding and
integer linear programming parameterized by the number of variables) and new structural insights. Here,
we often alternate between the view of the solution as an r-simple k-path and the view of the solution as
an Eulerian digraph with degree constraints.

Our proof that Undirected r-Simple k-Path can be solved in time 2O( k
r )(n + log k)O(1), initially

uses an approach similar to that applied for Directed r-Simple k-Path. Using the fact that the input
graph is undirected, we are able to show that the 30(k/r)2 bound above can be improved to 30(k/r).

However, this result in itself is only sufficient to show the existence of an 2O( k
r
log( k

r
))(n+ log k)O(1)-time

algorithm for Undirected r-Simple k-Path using the reductions applied for Directed r-Simple k-
Path. Thus, we have to take a different route based on a deeper understanding of the structure of the
solution. Our approach is partially inspired by an idea from the recent work of Berger et al. [9] and involves
a special decomposition of the multigraph induced by a solution for Undirected r-Simple k-Path into
two multigraphs. In our case, one of the multigraphs, H, has treewidth at most 2, and all vertices of H
are of even degree and different color (in a special coloring), i.e., H is colorful. The second multigraph
corresponds to an r-simple path W which visits each component of H (which ensures the connectivity
of the generated solution), and vertices of the same color are visited by W in total a prescribed number
of times. The existence of the decomposition above is verified by a two-level dynamic programming
algorithm. This algorithm is followed by a way to bound r. Here, we identify that when r is large enough
compared to k, then the vertex cover number of the graph can be bounded. The decomposition is modified
accordingly to enable the use of a flow network to handle its second multigraph.

Related Work. Agrawal et al. [2] showed the power of relaxed disjointness conditions in the context of
a problem that otherwise admits no polynomial kernel. Specifically, Agrawal et al. studied the Disjoint
Cycle Packing problem: given a graph G and integer k, decide whether G has k vertex-disjoint cycles.
It is known that this problem does not admit a polynomial kernel unless NP ⊆ coNP/poly [14]. The
main result by Agrawal et al. concerns a relaxation of Disjoint Cycle Packing where every vertex can

5In addition, we show that this bound is essentially tight.
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belong to at most r cycles (rather than at most one cycle). Agrawal et al. showed that this relaxation
reveals a spectrum of upper and lower bounds. In particular, they obtained a (non-polynomial) kernel of
size O(2(k/r)

2
k7+(k/r) log3 k) when (k/r) = o(

√
k). Note that the size of the kernel depends on k.

Prior to the work by Gabizon et al. [27], packing problems with relaxed disjointness conditions have
already been considered from the viewpoint of parameterized complexity (see, e.g., [36, 21, 42, 41]).
Roughly speaking, these papers do not exhibit behaviors where relaxed disjointness conditions substan-
tially (or at all) simplify the problem at hand, but rather provide parameterized algorithms and kernels
with respect to k. Here, the work most relevant to us is that by Fernau et al. [21], who studied the p-Set
(r, q)-Packing problem. In particular, for any r ≥ 1, Fernau et al. proved that several very restricted
versions of p-Set (r, q)-Packing with p = 3 are already NP-hard. Moreover, they obtained a kernel with
O((p+ 1)pkp) vertices.

In addition, we note that Gabizon et al. [27] also studied the Degree-Bounded Spanning Tree
problem: given a graph G and an integer d, decide whether G has a spanning tree of maximum degree at
most d. This problem demonstrates a limitation of the derandomization of Gabizon et al. as the arithmetic
circuit required is not non-canceling. Thus, only a randomized 2O((n/d) log d)-time algorithm was obtained
and designing a deterministic algorithm of such a running time remains an open problem.

Finally, let us remark that k-Path (on both directed and undirected graph) and p-Set q-Packing
are both among the most extensively studied problems in Parameterized Complexity. In particular, after
a long sequence of works during the past three decades, the current best known parameterized algorithms
for k-Path have running times 1.657knO(1) (randomized, undirected only) [11, 10] (extended in [12]),
2knO(1) (randomized) [46] and 2.597knO(1) (deterministic) [47, 23, 43]. In addition, k-Path is known not
to admit any polynomial kernel unless NP ⊆ coNP/poly [13].

This paper is organized as follows. The next section contains preliminaries. Section 3 describes
reductions leading to our main result for Directed r-Simple k-Path. Our proof of the main result for
Undirected r-Simple k-Path is given in Section 4. We show that p-Set (r, q)-Packing parameterized
by (k/r) is FPT in Section 5. In Section 6, we prove that (r, k)-Monomial Detection is para-NP-hard.
Our W[1]-hardness results for p-Multiset (r, q)-Packing and (r, k)-Monomial Detection are shown
in Section 7. The last section of the paper discusses some open problems.

2 Preliminaries

Given a multiset M and an element e ∈ M , [i]e stands for i copies of e. The size of a multiset M =
{[i1]e1, . . . , [ip]ep} is

∑p
j=1 ij .

Graph Terminology and Notation. For a directed or undirected graph G, the vertex set of G is
denoted by V (G). If G is undirected, its edge set is denoted by E(G), and if G is directed, its arc set is
denoted by A(G). Given a subset U ⊆ V (G), the subgraph of G induced by U is denoted by G[U ], and
the subgraph of G obtained by deleting the vertices in U and the edges/arcs incident to them is denoted
by G−U . Given a subset of edges/arcs U in G, the subgraph of G obtained by deleting the edges/arcs in
U is denoted by G−U . For a directed multigraph G and a vertex v ∈ V (G), the out-degree and in-degree
of v in G are denoted by d+(v) and d−(v), respectively.

A digraph G is strongly connected if for any pair u, v of distinct vertices, G has a path from u to v.
The underlying undirected graph of a directed graph G is an undirected graph U(G) with the same vertex
set and uv ∈ E(U(G)) if and only if either uv ∈ A(G) or vu ∈ A(G) (or both). A digraph G is weakly
connected if U(G) is connected. The weakly connected components of a digraph G are subgraphs of G
induced by the vertex sets of connected components of U(G). A directed acyclic graph (DAG) is a digraph
with no directed cycle. For any positive integer ℓ ∈ N, an ℓ-colored (di)graph is a vertex-colored (di)graph
where each vertex is colored by exactly one color from {1, 2, . . . , ℓ}.

For an undirected graph G, a vertex cover of G is a subset of vertices U ⊆ V (G) such that every

5



edge in E(G) is incident to at least one vertex in U , and a matching in G is a subset of edges U ⊆ E(G)
such that no two edges in U have a common endpoint. A matching U is maximal if there does not exist
e ∈ E(G) \ U such that U ∪ {e} is a matching. The vertex cover number of G is the minimum size of
a vertex cover of G. A cactus is a connected graph in which any two cycles have at most one vertex in
common. For an undirected multigraph G and a vertex v ∈ V (G), the degree d(v) of v is the number of
edges incident to v. The underlying simple graph G of an undirected multigraph H is obtained from G by
deleting all but one edge among every set of multiple edges.

Paths, Walks and Trails. For an undirected multigraph G, a walk W is an alternating sequence
v1e1v2 . . . eℓ−1vℓ such that ei is an edge between vi and vi+1 for all i ∈ {1, 2, . . . , ℓ − 1}. For a directed
multigraph G, the definition of a walk is the same, but we require that ei is an arc from vi to vi+1. When
G is a graph, i.e., has no multiple edges/arcs, then W will be denoted by v1 − v2 − v3 − . . .− vℓ. For any
i ∈ {1, 2, . . . , ℓ}, vi is called a vertex occurrence or a vertex visit, and for any i ∈ {1, 2, . . . , ℓ−1}, {vi−1, vi}
(resp. (vi−1, vi)) is called an edge occurrence (arc occurrence) or an edge visit (arc visit), respectively. The
length of a walk is the number of edges/arcs visits on the walk, that is, ℓ − 1, and the size of a walk is
the number of vertex visits on the walk, that is, ℓ. If the first and last vertex visits of a walk are equal,
then the walk is said to be closed. For a walk P , the multisets of vertex visits and edge (arc) visits are
denoted by V (P ) and E(P ) (A(P )), respectively.

An r-simple path is a walk where every vertex occurs at most r times. Moreover, an r-simple k-path is
an r-simple path of size k. Note that a 1-simple path is just a path. A cycle is a closed walk where every
vertex occurs once, except for the last and first vertex which occurs twice. Note that by this definition,
the first and last vertex of a cycle are well defined. Given vertices s, t ∈ V (G), an (s, t)-path is a path
that starts at s and ends at t. Similarly, an (s, t)-cycle is a cycle that starts at s and ends at t, in which
case s = t. To avoid writing some explanations twice, we refer to an (s, s)-cycle also as an (s, s)-path.
More generally, an r-simple (s, t)-path is an r-simple k-path that starts at s and ends at t.

Given a directed or undirected multigraph G and vertices s, t ∈ V (G), a walk W in G is called an Euler
(s, t)-trail if W visits every edge/arc in G exactly once, and starts at s and ends at t. A directed multigraph
G is balanced if d+(v) = d−(v) for every vertex v of G. Let s, t be distinct vertices of a directed multigraph
G. Then G is (s, t)-almost balanced if d+(v) = d−(v) for every vertex v ∈ V (G) \ {s, t}, d+(s) = d−(s) + 1
and d+(t) = d−(t) − 1. An undirected multigraph G is called even if for every v ∈ V (G), d(v) is even.

Perfect Hash Families. The construction of a perfect hash family is a basic tool to derandomize
parameterized algorithms. Formally, perfect hash families are defined as follows.

Definition 1. Let n, k ∈ N, n ≥ k. An (n, k)-perfect hash family F is a family of functions f :
{1, 2, . . . , n} → {1, 2, . . . , k} such that for any subset I ⊆ {1, 2, . . . , n} of size k, there exists a function in
F that is injective on I.

The following proposition asserts that small perfect hash families can be constructed efficiently.

Theorem 1 ([5, 29]). Let n, k ∈ N. An (n, k)-perfect hash family of size ek+o(k) logn can be constructed
in ek+o(k)n log n time. Moreover, the functions in the family can be enumerated with polynomial space
and polynomial delay in n.

Treewidth. Tree decompositions and treewidth are defined as follows.

Definition 2. A tree decomposition of a graph G is a pair (T, β), where T is a rooted tree and β :
V (T ) → 2V (G) is a mapping that satisfies the following conditions.

1. For each vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ β(x)} induces a nonempty (connected) subtree
of T .
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2. For each edge {u, v} ∈ E(G), there exists x ∈ V (T ) such that {u, v} ⊆ β(x).

The width of (T, β) is maxv∈V (T ){|β(v)|} − 1. The treewidth of G is the minimum width over all tree
decompositions of G.

The vertices of T are called nodes. A set β(x) for x ∈ V (T ) is called the bag at x.
A nice tree decomposition is a tree decomposition of a form that simplifies the design of dynamic

programming (DP) algorithms.

Definition 3. A tree decomposition (T, β) of a graph G is nice if each node x ∈ V (T ) is of one of the
following types.

• Leaf: x is a leaf in T and β(x) = ∅.

• Forget: x has exactly one child y, and there exists a vertex v ∈ β(y) such that β(x) = β(y) \ {v}.

• Introduce: x has exactly one child y, and there exists a vertex v ∈ β(x) such that β(x)\{v} = β(y).

• Join: x has exactly two children, y and z, and β(x) = β(y) = β(z).

It is well-known that a graph G of treewidth tw admits a nice tree decomposition of width tw (see,
e.g., [32, 16]).

Theorem 2 ([32]). Let G be a graph of treewidth tw. Then, G admits a nice tree decomposition of width
tw.

Integer Linear Programming (ILP) The Feasibility Linear Programming problem (Feasibil-
ity LP) is given by a set X of variables and a system of linear equations and inequalities with real-valued
coefficients and variables from X, and the aim is to decide whether all the linear equations and inequalities
(called linear constraints) can be satisfied by an assignment α of non-negative reals to variables in X.
If only integral values are allowed in α, then the problem is called the Feasibility integer Linear
Programming problem (Feasibility ILP). The Linear Programming problem (LP) is given by a
set X of variables, a system of linear constraints with real-valued coefficients and variables from X and a
linear function z with real-valued coefficients and variables from X, and the aim is to find an assignment
α of non-negative reals to variables in X that satisfies all linear constraints and minimizes/maximizes z
over all such (feasible) assignments. If only integral values are allowed in α, then the problem is called
the Integer Linear Programming problem (ILP). The cost vector c is the vector of coefficients of the
variables in X in the function z.

The following well-known result (cf. Section 6.2 in [16]) will be used in this paper.

Theorem 3 ([35, 30, 26]). ILP (Feasibility ILP, resp.) of size L with p variables can be solved using

O(p2.5p+o(p) · (L+ logMx) · log(MxMc)) (O(p2.5p+o(p)L))

arithmetic operations and space polynomial in L+logMx (in L), respectively. Here Mx is an upper bound
on the absolute value a variable can take in a solution, and Mc is the largest absolute value of a coefficient
in the cost vector c.

Flow Networks. A flow network is a digraph N = (V,A) with two special vertices s and t called a
source and sink, respectively, and two functions u : A → R≥0 and c : A → R≥0. For an arc a ∈ A,
u(a) and c(a) are the upper capacity and cost of a. A flow in N is a function f : A → R≥0 such that
f(a) ≤ u(a) for every a ∈ A and

∑
xv∈A f(xv) =

∑
vy∈A f(vy) for every v ∈ V \ {s, t}. The value of f is∑

sy∈A f(sy) and the cost of f is
∑

a∈A c(a)f(a). It is well-known that
∑

sy∈A f(sy) = −
∑

xt∈A f(xt) [7].
A flow f is integral if f(a) is an integer for every a ∈ A.

7



Arithmetic Circuits. Let M be a monomial in a polynomial P . The degree of M is the sum of degrees
of the variables of M . An arithmetic circuit C over the field F and the set X of variables is a DAG D as
follows. Every vertex in D with in-degree zero is called an input gate and is labeled by either a variable
x ∈ X or a field element in F. Every other gate is labeled by either + or × and called a sum gate and a
product gate, respectively. The size of C is the number of gates in C, and the depth of C is the length of
the longest directed path in C. A circuit C computes a polynomial P in the following natural way. An
input gate computes the polynomial it is labeled by. A sum (product) gate v computes the sum (product),
respectively, of the polynomials computed by its in-neighbors in D. A circuit is called non-cancelling, if
its input gates are labelled only by variables (no labelling by field elements).

Parameterized Complexity. A parameterized problem Π can be considered as a set of pairs (I, k)
where I is the problem instance and k (usually a nonnegative integer) is the parameter. Π is called
fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided by an algorithm of runtime
O(f(k)|I|c), where |I| is the size of I, f(k) is a computable function of the parameter k only, and c is
a constant independent from k and I. Such an algorithm is called an FPT algorithm. Let Π and Π′ be
parameterized problems with parameters k and k′, respectively. An FPT-reduction R from Π to Π′ is a
many-to-one transformation from Π to Π′, mapping each instance (I, k) to an output (I ′, k′) such that
(i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π′, (ii) k′ ≤ g(k) for a fixed computable function g, and (iii) R is of
complexity O(f(k)|I|c).

When the decision time is replaced by the much more powerful |I|O(f(k)), we obtain the class XP, where
each problem is polynomial-time solvable for any fixed value of k. There is a number of parameterized
complexity classes between FPT and XP (for each integer t ≥ 1, there is a class W[t]) and they form the
following tower:

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆ XP.

For the definition of classes W[t], see, e.g., [19, 16]. Due to a number of results obtained, it is widely
believed that FPT ̸=W[1], i.e., no W[1]-hard problem admits an FPT algorithm [19, 16].

A parameterized problem Π is in para-NP if membership of (I, k) in Π can be decided in nondeter-
ministic time O(f(k)|I|c), where |I| is the size of I, f(k) is a computable function of the parameter k
only, and c is a constant independent from k and I. Here, nondeterministic time means that we can use
nondeterministic Turing machine. A parameterized problem Π′ is para-NP-hard, if for any parameterized
problem Π in para-NP there is an FPT-reduction from Π to Π′.

For a parameterized problem Π, a generalized kernelization from Π to Π′ is a polynomial-time algorithm
A that maps an instance (I, k) to an instance (I ′, k′) (the generalized kernel) such that (i) (I, k) ∈ Π if
and only if (I ′, k′) ∈ Π′, (ii) k′ ≤ g(k) for some computable function g, and (iii) |I ′| ≤ g(k). The function
g(k) is called the size of the generalized kernel. If Π = Π′, A is a kernelization and (I ′, k′) is a kernel [25].

3 Directed r-Simple k-Path: FPT

In this section, we focus on the proof of the following theorem.

Theorem 4. Directed r-Simple k-Path is FPT parameterized by k/r. In particular, Directed r-

Simple k-Path is solvable in time 2O(( k
r
)2 log( k

r
))(n+ log k)O(1) and polynomial space.

We remark that by polynomial space, we mean polynomial in n+ log k.

3.1 Reduction to a Simpler Problem

In order to prove Theorem 4, we begin with two simple claims that reduce the Directed r-Simple
k-Path problem to a special case of a related problem that is defined as follows.
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Directed r-Simple Long (s, t)-Path
Input: A digraph G, positive integers k, r, and vertices s, t ∈ V (G).
Question/Objective: Either (i) determine that G has an r-simple k-path or (ii) output the largest
integer i ≤ k such that G has an r-simple (s, t)-path of size i.

We first observe that Directed r-Simple k-Path can be reduced to the special case of Directed
r-Simple Long (s, t)-Path where the input digraph is strongly connected.

Lemma 1. Suppose that Directed r-Simple Long (s, t)-Path on strongly connected digraphs can be
solved in time f(k/r) · (n+ log k)O(1) and polynomial space. Then, Directed r-Simple k-Path can be
solved in time f(k/r) · (n+ log k)O(1) and polynomial space.

Proof. Let A be an algorithm that solves Directed r-Simple Long (s, t)-Path on strongly connected
digraphs in time f(k/r) · (n + log k)O(1) and polynomial space. In what follows, we describe how to
solve Directed r-Simple k-Path. To this end, let (G, k, r) be an instance of Directed r-Simple
k-Path. Let C be the set of strongly connected components of G. For every component C ∈ C, and
vertices s, t ∈ V (C), we perform the following computation. We call A with (C, k, r, s, t) as input. If A
concludes that C has an r-simple k-path, then we correctly conclude that (G, k, r) is a Yes-instance. Else,
we denote by kst the integer that A outputs. Then, kst ≤ k is the largest integer p such that C has an
r-simple (s, t)-path of size p. So far, the time spent is at most f(k/r) · (n+ log k)O(1) and the space used
is polynomial.

Let C1, C2, . . . , C|C| be an ordering of the components in C with the property that for all i < j,
u ∈ Cj and v ∈ Ci, it holds that (u, v) /∈ A(G). Now, we solve Directed r-Simple k-Path by dynamic
programming (DP) as follows.

Let M be a DP vector with an entry M[v] for every v ∈ V (G). This entry will store the largest integer
p such that G has an r-simple p-path that ends at v. At Step 1, we set M[v] = maxu∈V (C1) kuv for every
v ∈ V (C1). At Step i, where i = 2, 3, . . . , |C|, we set

M[v] = max

 max
(u,w)∈A(G)

s.t. u/∈V (Ci),w∈V (Ci)

(M[u] + kwv) , max
u∈V (Ci)

kuv


for every v ∈ V (Ci).

It is straightforward to verify that the DP computation is correct and can be executed using polynomial
time and space. After this computation is terminated, we correctly conclude that (G, k, r) is a Yes-instance
if and only if there exists v ∈ V (G) such that M[v] ≥ k. This completes the proof.

From now on, we focus on the Directed r-Simple Long (s, t)-Path problem on strongly connected
digraphs. Our second claim shows that the existence of a “long” path or a “long” cycle in the input
digraph G implies that it has an r-simple k-path.

Lemma 2. Let G be a strongly connected digraph. If any of the following two conditions is satisfied, then
G has an r-simple k-path.

• The graph G has a cycle of length at least k/r.

• The graph G has a path with at least 2k/r vertices.

Proof. First, suppose that G has a cycle C of length at least k/r. Then, C is a sequence of distinct
vertices, besides the first and last vertex, of the form v1 − v2 − · · · − vℓ for some integer ℓ ≥ k/r + 1. In
this case, (v1 − v2 · · · − vℓ−1) − (v1 − v2 · · · − vℓ−1) − · · · − (v1 − v2 · · · − vℓ−1) where v1 − v2 · · · − vℓ−1 is
duplicated exactly r times, is an r-simple k′-path for k′ = r(ℓ− 1) ≥ k. Thus, G has an r-simple k-path.

Second, suppose that G has a path P with at least 2k/r vertices. Then, P is a sequence of ℓ distinct
vertices for some integer ℓ ≥ 2k/r. Since G is strongly connected, it has at least one path from the last
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vertex of P to the first vertex of P . Let Q = u1 − u2 − . . .− uq denote any such path. Moreover, let Q′

denote the subsequence of Q where the first and last vertex visits are omitted. If r mod 2 = 0, denote
W = (P −Q′) − (P −Q′) − · · · − (P −Q′), where P −Q′ is duplicated exactly r/2 times, and otherwise
denote W = (P −Q′)− (P −Q′)− · · · − (P −Q′)−P where P −Q′ is duplicated exactly (r− 1)/2 times.
Since every vertex occurs at most twice in P − Q′, we have that every vertex occurs at most r times in
W . Moreover, if r mod 2 = 0, then the size of W is r(ℓ+ q − 2)/2 ≥ rℓ/2 ≥ k, and otherwise the size of
W is (r − 1)(ℓ+ q − 2)/2 + ℓ ≥ (r − 1)ℓ/2 + ℓ ≥ k. Therefore, W is an r-simple k′-path for some integer
k′ ≥ k, which means that G has an r-simple k-path.

The following known proposition asserts that we can efficiently determine whether the input digraph
has a long path or a long cycle.

Theorem 5 ([24, 48]). There exists a deterministic algorithm that given a digraph G, vertices s, t ∈ V (G),
and k ∈ N, determines in time 2O(k) · nO(1) and polynomial space whether G has a path from s to t on at
least k vertices.

Thus, from now on, we may assume not only that the input digraph is strongly connected, but that
it also has neither a path of size at least 2k/r nor a cycle of length at least k/r. Accordingly, we say that
an instance (G, k, r, s, t) of Directed r-Simple Long (s, t)-Path is nice if G is strongly connected and
it has neither a path with at least 2k/r vertices nor a cycle of length at least k/r. Moreover, we say that
(G, k, r, s, t) is positive if G has an r-simple k-path, and otherwise we say that it is negative.

3.2 Bounding the Number of Distinct Arcs

Having established the two simple claims above, the second part of our proof concerns the establishment
of an upper bound on the number of distinct arcs in at least one r-simple k-path (if at least one such
walk exists) or at least one r-simple (s, t)-path of maximum size. The main definition in this part of the
proof is the following one.

Definition 4. Let (G, k, r, s, t) be an instance of Directed r-Simple Long (s, t)-Path. Let P be an
r-simple path in G.

• Let Psimple be the (directed) subgraph of G that consists of the vertices and arcs in G that are visited
at least once by P , and let Pmulti be the directed multigraph obtained from Psimple by replacing each
arc a by its ca copies, where ca is the number of times a is visited by P.

• Let V (P, r) be the set that contains s, t and every vertex that occurs r times in P , and P−r
simple =

Psimple − V (P, r).

• For any two (not necessarily distinct) vertices u, v ∈ V (P ), denote P u,v,−rsimple = Psimple − (V (P, r) \
{u, v}). (In case u, v /∈ V (P, r), it holds that P u,v,−rsimple = Psimple − V (P, r).)

Before we begin our analysis, we relate our problem to the notion of an Euler trail by a well-known
proposition, to which we will repeatedly refer later.

Theorem 6 ([7, 18]). Let G be a weakly connected directed multigraph. Let s, t ∈ V (G).

• If s ̸= t, then there exists an Euler (s, t)-trail in G if and only if G is (s, t)-almost balanced.

• If s = t, then there exists an Euler (s, t)-trail in G if and only if G is balanced.

Our argument will modify a given walk in a manner that might increase its length to keep certain
conditions satisfied. To ensure that we never need to handle a walk that is too long, we utilize the
following lemma.
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Lemma 3. Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path. Let P be an
r-simple k′-path in G for some integer k′ ≥ 2k. Then, G has an r-simple k′′-path Q, for some integer
k′′ ≥ k, such that Qsimple is a subgraph of Psimple that is not equal to Psimple.

Proof. First, observe that since G has no path of size at least 2k/r, it holds that Psimple contains at least
one cycle. We choose such a cycle C arbitrarily. In what follows, we use the cycle C to modify the walk
P in order to obtain a walk Q that has the desired property. To this end, let ∆ be the minimum number
of times an arc of C occurs in P . Let H be the directed multigraph obtained from Pmulti by removing
first ∆ copies of every arc in C and then isolated vertices, if any. In addition, let Q be the set of weakly
connected components of H. Let u and v denote the first and last (not necessarily distinct) vertices visited
by P . We consider two subcases depending on |Q|.

x

u y v
(a) Psimple

x

u y v
(b) Pmulti

u y v
(c) H

Figure 1: Illustrations for a 3-simple path P = uyxuyxuyv; C = uyxu.

x

u y v

z

(a) Pmulti

x

u y v

z

(b) Q

x

u y v
(c) H⋆

Figure 2: Illustrations for a 3-simple path P = uyxzxuyxuyv; C = uyxu.
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1. First, suppose that |Q| = 1 (e.g. see Fig. 1). Then, H is weakly connected. Since Pmulti has a
(u, v)-path that visits every arc (that is the path P ), by Theorem 6, Pmulti is balanced if u = v
and (u, v)-almost balanced, otherwise. By the definition of H, every vertex in V (G) has either both
its out-degree and in-degree in H equal to those in Pmulti or both its out-degree and in-degree in
H smaller by ∆ compared to those in Pmulti. Hence, H is balanced if u = v and (u, v)-almost
balanced, otherwise. Thus, by Theorem 6, H has an Euler trail Q. Moreover, since (G, k, r, s, t)
is nice, |A(C)| < k/r and therefore |A(Q)| > |A(P )| − ∆(k/r) ≥ k. Lastly, since the out- and
in-degrees of at least one vertex of C was reduced from ∆ in Pmulti to 0 in H, it holds that
|V (Psimple)| > |V (Qsimple)|. Thus, Q is an r-simple k′′-path, for some integer k′′ ≥ k, such that
Qsimple is a subgraph of Psimple that is not equal to Psimple.

2. Now, suppose that |Q| ≥ 2 (e.g. see Fig. 2). Let Qmin be a component in Q that has minimum
number of arcs. Then, |A(Qmin)| < |A(P )|/2. Let H⋆ be the directed multigraph obtained from
Pmulti by first removing all the arcs in Qmin and then isolated vertices, if any. Since Pmulti has a
(u, v)-path that visits every arc (that is the path P ), by Theorem 6, Pmulti is balanced if u = v and
(u, v)-almost balanced, otherwise. As in the previous case, every vertex in V (G) has either both its
out-degree and in-degree in H equal to those in Pmulti or both its out-degree and in-degree in H
smaller by ∆ compared to those in Pmulti. If u ̸= v, this means that either both u, v ∈ V (H⋆) or both
u, v /∈ V (H⋆). Indeed, as in any directed multigraph, in Qmin, the sum of in-degrees of all vertices
equals the sum of out-degrees of all vertices. Thus, if u ∈ V (Qmin)\V (H⋆) then v ∈ V (Qmin)\V (H⋆)
as well. However, this means that H⋆ is balanced if u = v and (u, v)-almost balanced, otherwise.
Moreover, H⋆ is weakly connected (because H⋆ consists of a collection of components in Q together
with the arcs in C that connect their underlying undirected graphs). Thus, by Theorem 6, H⋆ has
an Euler trail Q. Moreover, |A(Q)| > 1

2 |A(P )| ≥ k. In addition, |A(Psimple)| > |A(Qsimple)| since by
definition of Q, Qmin has arcs and none of them can be in Q. Thus, Q is an r-simple k′′-path, for
some integer k′′ ≥ k, such that Qsimple is a subgraph of Psimple that is not equal to Psimple.

In both cases, we constructed a walk Q with the desired property, hence the proof is complete.

A repeated application of Lemma 3 brings us the following corollary.

Corollary 1. Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path. Let P be
an r-simple k′-path in G for some integer k′ ≥ 2k. Then, G has an r-simple k′′-path Q, for some integer
k′′ ∈ {k, k + 1, . . . , 2k}, such that Qsimple is a subgraph of Psimple that is not equal to Psimple.

In fact, k′′ ∈ {k, k + 1, . . . , 2k} above can be clearly replaced by k′′ ∈ {k, k + 1, . . . , 2k − 1}, but for
simplicity in what follows we will use the former rather than the latter.

We now prove that if (G, k, r, s, t) is a positive instance of Directed r-Simple Long (s, t)-Path,
then G has an r-simple k′-path for some k′ ∈ {k, k+ 1, . . . , 2k} such that V (P, r) and P−r

simple satisfy three
properties regarding their structure. In addition, we prove that if (G, k, r, s, t) is a negative instance of
Directed r-Simple Long (s, t)-Path, then at least one r-simple (s, t)-path P in G of maximum size
satisfies these three properties as well.

Lemma 4. Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path. If (G, k, r, s, t)
is a positive instance, then G has an r-simple k′-path P for some k′ ∈ {k, k+ 1, . . . , 2k} that satisfies the
following three properties.

1. P−r
simple is an acyclic digraph.

2. For any (not necessarily distinct) u, v ∈ V (P ), P u,v,−rsimple has at most one (u, v)-path.6

3. |V (P, r)| ≤ 2k/r + 2.

6Recall that if u = v, by a (u, v)-path we mean a (u, u)-cycle.
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Otherwise (if (G, k, r, s, t) is a negative instance), G has an r-simple (s, t)-path P of maximum size
that satisfies these three properties.

Proof. We define a collection of walks P as follows: if (G, k, r, s, t) is a positive instance, then P is the
set of all r-simple k′-paths in G where k′ ∈ {k, k + 1, . . . , 2k}; otherwise, P is the set of all r-simple
(s, t)-paths in G of maximum size. In both cases, P ̸= ∅. For any ℓ ∈ N and r-simple path P of size ℓ,
V (P, r) \ {s, t} can contain at most ⌊ℓ/r⌋ vertices. Therefore, in the first case, since k′ ≤ 2k, every walk
in P satisfies Property 3. In the second case, every walk P ∈ P contains less than k vertices (since the
instance is negative), therefore P satisfies Property 3. Thus, it suffices to show that there exists a walk
in P that satisfies Properties 1 and 2.

Let P ′ be the set of walks P ∈ P with minimum number of arcs in Psimple. Moreover, let P ′′ be the
set of walks P ∈ P ′ that maximize |V (P, r)|.

We claim that every walk in P ′′ satisfies Properties 1 and 2. For this purpose, we consider an arbitrary
walk P ∈ P ′′. Let u and v denote the first and last (not necessarily distinct) vertices visited by P . (If
(G, k, r, s, t) is a negative instance, then u = s and v = t.) Suppose, by way of contradiction, that P
does not satisfy Property 1. Then, P−r

simple has a directed cycle C. Let ∆ be the maximum out-degree in
Pmulti of a vertex in C. Note that ∆ < r because V (C) ∩ V (P, r) = ∅. Let H be the directed multigraph
obtained from Pmulti by adding r − ∆ copies of every arc in C. Since Pmulti has a (u, v)-path that visits
every arc (that is the path P ), by Theorem 6, Pmulti is balanced if u = v and (u, v)-almost balanced,
otherwise. By our construction of H, it has the same property. Indeed, every vertex in V (G) has either
both its out-degree and in-degree in H equal to those in Pmulti or both its out-degree and in-degree in H
larger by r−∆ compared to those in Pmulti. Thus, by Theorem 6, H has an Euler trail P ′ with the same
endpoints as P . Let us consider two cases, depending on the size of P ′.

1. First, suppose that P ′ is of size at most 2k. Then, P ′ ∈ P, and since P ′
simple = Psimple, it further

holds that P ′ ∈ P ′. However, |V (P ′, r)| > |V (P, r)| because at least one vertex of C belongs to
V (P ′, r) but not to V (P, r) and clearly V (P, r) ⊆ V (P ′, r). Thus, we have a contradiction to the
inclusion P ∈ P ′′.

2. Second, suppose that P ′ is of size larger than 2k. We stress that in this case, (G, k, r, s, t) is positive.
By Corollary 1, G has an r-simple k′′-path Q, for some integer k′′ ∈ {k, k + 1, . . . , 2k}, such that
Qsimple is a subgraph of P ′

simple that is not equal to P ′
simple. Then, Q ∈ P because in this case,

to be included in P, a walk does not need to have the same start and end vertices as P . Since
P ′
simple = Psimple, we have that |A(Qsimple)| < |A(P ′

simple)| = |A(Psimple)|, which is a contradiction to
the inclusion P ∈ P ′′.

It remains to argue that P satisfies Property 2. Suppose, by way of contradiction, that this claim
is false. Then, for some vertices x, y ∈ V (P ), it holds that P x,y,−rsimple has at least two pairwise internally

vertex disjoint (x, y)-paths. Denote two such different vertex disjoint paths (chosen arbitrarily) by P x→y
1

and P x→y
2 such that |A(P x→y

1 )| ≥ |A(P x→y
2 )|. Note that V (P x→y

1 ) \ {x, y} = V (P x→y
1 ) \ V (P x→y

2 ) ̸= ∅
and A(P x→y

2 ) ∩ A(P x→y
1 ) = ∅. (Note that V (P x→y

2 ) \ V (P x→y
1 ) can be empty since P x→y

2 can consist
of a single arc). Let ∆1 denote the maximum out-degree in Pmulti of a vertex in V (P x→y

1 ) \ {x, y}. In
addition, let ∆2 denote the minimum number of times an arc of A(P x→y

2 ) occurs in P . Now, denote
∆ = min{r − ∆1,∆2}. Let H be the directed multigraph obtained from Pmulti by adding ∆ copies of
every arc of P x→y

1 , and removing ∆ copies of every arc of P x→y
2 as well as isolated vertices. In addition,

let Q be the set of weakly connected components of H. We consider two subcases depending on the size
of |Q|.

1. First, suppose that |Q| = 1. Then, H is weakly connected. Since Pmulti has a (u, v)-path that visits
every arc (that is the path P ), by Theorem 6, Pmulti is balanced if u = v and (u, v)-almost balanced,
otherwise. By the definition of H, every vertex in V (G) has (i) both its out-degree and in-degree in
H equal to those in Pmulti, or (ii) both its out-degree and in-degree in H larger by ∆ compared to
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those in Pmulti, or (iii) both its out-degree and in-degree in H smaller by ∆ compared to those in
Pmulti. Thus, H is balanced if u = v and (u, v)-almost balanced, otherwise. Thus, by Theorem 6, H
has an Euler trail P ′. Moreover, since |A(P x→y

1 )| ≥ |A(P x→y
2 )|, we have that |A(P ′)| ≥ |A(P )| ≥ k.

In addition, P ′
simple is a subgraph of Psimple. We consider three subcases depending on ∆ and the

size of P ′.

(a) Suppose that ∆ = r − ∆1 > ∆2 and the size of P ′ is at most 2k. Then, P ′ ∈ P ′ and at least
one vertex in V (P x→y

1 ) \ V (P x→y
2 ) has out-degree r in P ′

multi but not in Pmulti, while clearly
V (P, r) ⊆ V (P ′, r). However, this is a contradiction to the inclusion P ∈ P ′′.

(b) Suppose that ∆ = ∆2 and the size of P ′ is at most 2k. Then, P ′ ∈ P ′ but P ′
simple is not equal

to Psimple (at least one arc of P x→y
2 is present in Psimple but not in P ′

simple). However, this is a
contradiction to the inclusion P ∈ P ′.

(c) Suppose that the size of P ′ is larger than 2k. Then, by Corollary 1, G has an r-simple k′′-
path Q, for some integer k′′ ∈ {k, k+ 1, . . . , 2k}, such that Qsimple is a subgraph of P ′

simple that
is not equal to Psimple. However, this is a contradiction to the inclusion P ∈ P ′.

2. Now, suppose that |Q| ≥ 2. Then, exactly like in Case 2 in the proof of Lemma 3, we derive that
G has an r-simple k′′-path P ′, for some integer k′′ ≥ k, such that P ′

simple is a subgraph of Psimple

that is not equal to Psimple. By Corollary 1, this means that G has an r-simple k̂-path Q, for some

integer k̂ ∈ {k, k+ 1, . . . , 2k}, such that Qsimple is a subgraph of P ′
simple that is not equal to P ′

simple.
However, this is a contradiction to the inclusion P ∈ P ′.

Since both cases led to a contradiction, the proof is complete.

Having Lemma 4 at hand, we can already bound the number of distinct arcs. In Section 3.3, we
present additional arguments on top of Lemma 4 to make the bound tight.

Lemma 5. Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path. If (G, k, r, s, t)
is positive, then G has an r-simple k-path with fewer than 10(k/r)3 distinct arcs. Otherwise, G has an
r-simple (s, t)-path of maximum size with fewer than 20(k/r)3 distinct arcs.

Proof. Let P be a walk with the properties guaranteed by Lemma 4. Let W be the multiset that contains
every subwalk of P on at least two vertices, with both endpoints in V (P, r) and with no internal vertex
from V (P, r). (The walks in W can be closed walks.) Let ℓ = |V (P, r)|.

By Property 1, every walk in W has no vertex that occurs more than once except for its endpoints
which may be equal, and hence all walks in W are paths and cycles. Moreover, Property 2 implies that
the number of distinct walks in W is at most ℓ2. By Property 3, ℓ ≤ 2k/r + 2. Therefore, the number
of distinct walks in W is at most (2k/r + 2)2. Since the instance (G, k, r, s, t) is nice, G has neither a
path with at least 2k/r vertices nor a cycle of length at least k/r. This means that every walk in W
has at most 2k/r − 1 arc visits. Thus, we conclude that the number of distinct arcs in P is at most
(2k/r + 2)2 · (2k/r − 1) < 20(k/r)3. In case P is of size larger than k (then, (G, k, r, s, t) is positive),
we can choose any subwalk of P of size k to obtain an r-simple k-path with fewer than 20(k/r)3 distinct
arcs.

3.3 Tightening the Bound on the Number of Distinct Arcs

We proceed to prove that the upper bound 20(k/r)3 in Lemma 5 can be reduced to a bound whose
dependence on (k/r) is quadratic rather than cubic. Afterwards, we show that this upper bound is tight.
To obtain the improved upper bound, we need the following definition.
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Definition 5. Let P be an r-simple k-path in a digraph G, and let X ⊆ V (P ). The projection of P
onto X is a directed multigraph HX = (X,AX) defined as follows. Traverse P in order, from its first to
last vertex, and add one arc (u, v) to AX for every subwalk of P between distinct vertices u, v ∈ X whose
internal vertices (if any) are not in X.

We show that for some X ⊇ V (P, r) of size at most |V (P, r)| + 2, we may assume that HX contains
at most 3|X| distinct arcs (that is, omitting arc copies). To facilitate the proof, let us make another
definition.

Definition 6. Let G be a digraph and S ⊆ V (G) a set of vertices. The split of G on S is the digraph
defined by replacing every vertex v ∈ S by two vertices: vh, retaining all in-arcs incident with v, and vt,
retaining all out-arcs incident with v.

We now show the result.

Lemma 6. Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path. There is an
r-simple path P such that the following hold. If (G, k, r, s, t) is a positive instance, then P is a k′-path P
for some k′ ∈ {k, k + 1, . . . , 2k}, otherwise P is an (s, t)-path of maximum size. Furthermore, P satisfies
the three properties in Lemma 4, and for some set X with V (P, r) ⊆ X ⊆ V (G), with |X| ≤ |V (P, r)|+ 2,
the projection HX of P onto X contains a set of fewer than 3|X| distinct arcs whose corresponding walks
cover all distinct arcs used by P .

Proof. Recall that in the proof of Lemma 4, we define a collection of walks P as follows: if (G, k, r, s, t) is
a positive instance, then P is the set of all r-simple k′-paths in G where k′ ∈ {k, k+ 1, . . . , 2k}; otherwise,
P is the set of all r-simple (s, t)-paths in G of maximum size. Moreover, P ′ is the set of walks P ∈ P
with minimum number of arcs in Psimple, and P ′′ is the set of walks P ∈ P ′ that maximize |V (P, r)|. We
have shown that there exists a path P ∈ P ′′ which satisfies the three properties in Lemma 4. Consider
such a path P , and let s′ and t′ denote the start and end vertices of P . (In case (G, k, r, s, t) is a negative
instance, s′ = s and t′ = t.)

Let X = V (P, r) ∪ {s′, t′}. Let HX be the projection of P onto X, and let F be the set of arcs of
HX without multiplicity. Let F ′ ⊆ F be a minimal set of arcs whose corresponding walks cover all arcs
of P . We will show that if |F ′| ≥ 3|X|, then there exists a different solution P ′ which meets all the
above conditions and is preferable to P by our criteria, thereby deriving a contradiction. Thus, assume
|F ′| ≥ 3|X|, and decompose F ′ = F1∪F2 where F1 is a spanning tree for the underlying undirected graph
of HX and F2 = F ′ \ F1.

Let G0 be the split of HX − F1 on X, where we remove all copies of arcs in F1. This is a directed
multigraph with 2|X| vertices and |F2| > 2|X| arcs, each of which represents a walk in G. Next, consider
“unrolling” each of the arcs in F2 in some arbitrary order, replacing each arc by all the arcs and vertices
of the corresponding walk. This adds, for each expanded arc, some ℓ ≥ 1 additional arc copies (while
removing the represented arc) and at most ℓ− 1 additional vertices (fewer if several arcs represent walks
on a shared vertex set). Furthermore, let ℓ′ ≤ ℓ be the number of arcs thus created for which there did
not exist a copy already. Then a new vertex can be created only if ℓ′ > 1 and the number of created
vertices is at most ℓ′ − 1. Note that by the minimality of F ′ we have ℓ′ > 0 for every arc we unroll. Let
G′ be the resulting directed multigraph. We show that the underlying undirected graph of G′ contains a
cycle. Clearly this holds for G0, since |E(G0)| > |V (G0)|; we claim that this invariant holds throughout
the process of unrolling. Indeed, every time an arc of F2 is unrolled, the number of new distinct arcs
created (minus that removed) is at least as large as the number of new vertices created. Thus G′ has at
least as many distinct arcs as vertices and its underlying undirected graph contains a cycle. Let C be the
arc set of such a cycle and let H = Pmulti.

We now derive a modification of H from C. Define a sign for every arc in C by traversing C in an
arbitrary direction and labelling every arc traversed in the forward direction as positive and every arc
traversed in the backwards direction as negative. Let d = 1 if C contains at least as many positive as
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negative arcs, and otherwise d = −1. We claim that modifying the multiplicity in H of every positive
arc of C by +d and the multiplicity of every negative arc by −d, yields a directed multigraph with an
Euler (s′, t′)-trail and where every vertex has out- and in-degree at most r. For this, we first note that for
every v ∈ X that occurs on C, the modifications of in-arcs and the modifications of out-arcs both sum to
zero (since the traversal was derived over a cycle in G′, where v was split). Every other vertex either has
its out- and in-degrees unmodified, like v, or has in- and out-degrees both modified by the same amount
(either +1 or −1). Thus, the modification keeps the balances between in- and out-degrees unchanged,
and produces a graph where every vertex has in- and out-degree at most r. Second, we show that all
arcs of the modified graph are in one connected component. Assume the contrary, i.e., that due to some
arcs having their multiplicities reduced to 0, the resulting graph has at least two connected components
containing at least one arc. However, since all arcs represented in F1 are untouched, the resulting graph
has a large connected component that visits all vertices of X, thus any further component containing at
least one arc must be entirely contained in P−r

simple. However, all vertices except for possibly s′ and t′ have
in-degree equal to out-degree, and since s′, t′ ∈ X it would have to follow that such a “lost component”
contains a directed cycle outside of X. But by Property 1, P−r

simple is acyclic. We conclude that all arcs of
the modified graph are contained in one connected component. Hence, this component has an (s′, t′)-Euler
trail, which forms an r-simple (s′, t′)-path P ′. Note furthermore, by the choice of d, that P ′ is at least as
long as P . Thus we finally conclude that the modified graph has no isolated vertices and no arc whose
multiplicity is reduced to 0, since this would contradict the choice of P .

Moreover, the size of P ′ cannot exceed 2k, since then by Corollary 1 we derive a solution Q (that is,
Q ∈ P) such that |A(Qsimple)| < |A(Psimple)|, which contradicts the inclusion P ∈ P ′.

Now consider performing this modification several times in the same direction d. There are only two
bounding events for this: Either the multiplicity of some arc reduces to 0, or some vertex not in X reaches
out-degree r. However, both events would contradict our priorities in choosing P (that is, the inclusion
P ∈ P ′ in the first event, and the inclusion P ∈ P ′′ in the second event). This is a contradiction, showing
that the cycle C cannot exist, and we conclude that |F2| < 2|X|, hence |F ′| < 3|X| and F ′ is the required
set.

Let us now conclude our improved bound.

Lemma 7. Let (G, k, r, s, t) be a nice instance of Directed r-Simple Long (s, t)-Path. If (G, k, r, s, t)
is positive, then G has an r-simple k-path with fewer than 30(k/r)2 distinct arcs. Otherwise, G has an
r-simple (s, t)-path of maximum size with fewer than 30(k/r)2 distinct arcs.

Proof. Let P and X be a walk and a set with the properties guaranteed by Lemma 6. Let W be the
multiset that contains every subwalk of P on at least two vertices, with both endpoints in X and with no
internal vertex from X. (The walks in W can be closed walks.) By Lemma 6, for the purpose of counting
distinct arcs used in P , it suffices to consider a set of at most 3|X| walks of W with distinct endpoints, and
by Properties 1 and 2 in Lemma 4, there do not exist two distinct walks W that have the same start and
end vertices. Moreover, by Properties 2 and 3 in Lemma 4, W has at most |X| walks with equal endpoints.
Thus, the number of distinct walks we need to consider is ℓ ≤ 4|X| ≤ 4(|V (P, r)| + 2) ≤ 4(2k/r + 4).

By Property 1, every walk in W has no vertex that occurs more than once except for its endpoints
which may be equal. Since the instance (G, k, r, s, t) is nice, G has neither a path with at least 2k/r vertices
nor a cycle of length at least k/r. This means that every walk in W has at most 2k/r−1 arc visits. Thus,
we conclude that the number of distinct arcs in P is upper bounded by 4(2k/r+4) · (2k/r−1) < 30(k/r)2

(where 30 is simply a conveniently chosen sufficiently large constant). In case P is of size larger than k
(then, (G, k, r, s, t) is positive), we can choose any subwalk of P of size k to obtain an r-simple k-path
with fewer than 30(k/r)2 distinct arcs.

The Tightness of the Bound. We show that without devising new reduction rules in addition to those
given in Section 3.1, the bound on the number of distinct arcs in a solution must depend quadratically
on (k/r). More precisely, we prove the following result.
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Lemma 8. For any integer r ∈ N≥2, there exists a nice positive instance (G, k, r, s, t) of Directed
r-Simple Long (s, t)-Path with k/r = Θ(r) such that every r-simple k-path in G has Ω((k/r)2) distinct
arcs.

Proof. Let r ∈ N≥2. Consider a digraph G with a vertex u and r cycles Ci = uvi1 . . . v
i
ru (i = 1, 2, . . . , r)

sharing pairwise only vertex u. For every i = 1, 2, . . . , r add to G a 2-cycle wivi1w
i, where w1, . . . , wr are

new vertices in G. Let P be an r-simple path of G of maximum size. Observe that P cannot traverse any
Ci twice (i.e., it cannot visit vertices of any Ci twice apart from vi1) along with visiting wi r − 1 times
since P will have more vertex visits if it traverses two cycles Ci and Cj instead along with visiting wi and
wj r−1 times each. Thus, P visits r times u and each vi1. It visits r−1 times each wi and only once every
vertex of Ci apart from u and vi1 for all i = 1, 2, . . . , r. Hence, k = r(r + 1) + r(r − 1) + r(r − 1) = Θ(r2)
and k/r = 3r− 1 = Θ(r). Note that P is an open walk which visits every arc of G but one. Thus, P has
|A(G)| − 1 = r(r+ 1) + 2r = Θ((k/r)2) distinct arcs. Finally, G is nice since it is strongly connected, the
longest cycle has r + 1 < k/r vertices, and the longest path (which starts at some wi and ends at some
vjr , i ̸= j) has 2r + 2 < 2k/r vertices.

3.4 Color Coding

Knowing that it suffices for us to deal only with walks having a small number of distinct arcs (in light of
Lemma 7) and hence a small number of distinct vertices, we utilize the method of color coding by Alon et
al. [5]. Concretely, by Lemma 7 it suffices to consider solutions with fewer than 30(k/r)2 vertices, hence at
most 30(k/r)2 arcs. For the sake of brevity, we define the following problem. Here, b(k/r) = 30(k/r)2 + 1
and a walk is called colorful if every two distinct vertices visited by the walk have distinct colors.

Directed Colorful r-Simple Long (s, t)-Path
Input: Integers k, r ∈ N, a b(k/r)-colored digraph G, and distinct vertices s, t ∈ V (G).
Question/Objective: Output an integer i such that (i) G has an r-simple (s, t)-path of size i, and
(ii) for any j > i, G does not have a colorful r-simple (s, t)-path of size j.

Before we proceed to handle this variant, let us make an important remark. At first glance, it
might seem that the objective in the problem definition above could be replaced by the following simpler
condition: output the largest integer i such that G has a colorful r-simple (s, t)-path of size i. However,
we are not able to resolve this problem, and given the approach of guessing topologies that we define
later, having the stronger condition will entail the resolution of a problem as hard as Multicolored
Clique (defined in Section 7) and hence lead to a dead-end.

Now, we show that we can focus on our colored variant Directed Colorful r-Simple Long (s, t)-
Path.

Lemma 9. Suppose that Directed Colorful r-Simple Long (s, t)-Path can be solved in time f(k/r)·
(n+log k)O(1) and polynomial space. Then, Directed r-Simple Long (s, t)-Path on strongly connected

digraphs can be solved in time 2O(( k
r
)2) · f(k/r) · (n+ log k)O(1) and polynomial space.

Proof. Let A be an algorithm that solves Directed Colorful r-Simple Long (s, t)-Path in time
f(k/r) · (n + log k)O(1) and polynomial space. In what follows, we describe how to solve Directed r-
Simple Long (s, t)-Path. To this end, let (G, k, r, s, t) be an instance of Directed r-Simple Long
(s, t)-Path. By Lemma 2 and Theorem 5, we may assume that (G, k, r, s, t) is nice, which can be verified
in time 2O(k/r)nO(1). Without loss of generality, denote V (G) = {1, 2, . . . , n}. To handle the case that
a solution in G starts and ends at the same vertex, create a new graph G′ from G by adding, for each
vertex v ∈ V (G), a new vertex v′ and the arc (v, v′). For each pair of (not necessarily distinct) vertices
u, v ∈ V (G), initialize kuv := 0. By Theorem 1, we can enumerate the functions of some (n, b(k/r) − 1)-
perfect hash family F of size eb(k/r)+o(b(k/r)) log n with polynomial delay. For each function f ∈ F and
for every pair of (not necessarily distinct) vertices u, v ∈ V (G), call A with (G′, k + 1, r, u, v′) as input
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where the color of w is f(w) for any w ∈ V (G) and b(k/r) for any w ∈ V (G′) \V (G). Let t be the output
of this call. If it is larger than kuv + 1, then update kuv := t− 1. After all calls were performed, compute
k⋆ = maxu,v∈V (G) kuv. If k⋆ ≥ k, then we determine that G has an r-simple k-path; otherwise, we output
kst.

Clearly, the algorithm runs in time 2O(( k
r
)2) ·f(k/r)·(n+log k)O(1) and uses polynomial space. Next, we

prove that the algorithm is correct, that is, that it indeed solves Directed r-Simple Long (s, t)-Path.
On the one hand, we have the two cases as follows.

• First, suppose that (G, k, r, s, t) is positive. By Lemma 7, G has an r-simple k-path P with fewer
than b(k/r) − 1 distinct arcs. By Definition 1, there exists f ∈ F that is injective on the set of
distinct vertices of P . Let u and v be the start and end vertices of P , respectively. Then, in the
iteration where f is considered with u and v, A must output an integer t ≥ k + 1. Hence, k⋆ ≥ k.

• Second, suppose that (G, k, r, s, t) is negative. By Lemma 7, G has an r-simple (s, t)-path P of
maximum size with fewer than b(k/r) − 1 distinct arcs. By Definition 1, there exists f ∈ F that
is injective on the set of distinct vertices of P . Then, in the iteration where f is considered with s
and t, A must output an integer t that is at least as large as the size of P plus 1.

On the other hand, it is immediate that for any u, v ∈ V (G), the final value kuv is at most the maximum
size of an r-simple (u, v)-path in G. Thus, by the specification of the algorithm, we conclude that it is
correct.

3.5 Guessing the Topology of a Solution

We proceed to define the notion of a topology, which we need in order to sufficiently restrict our search
space. Note that in the definition, the multiplicity of every arc is at most 1, but we can have mutually-
opposite arcs, i.e., arcs of the type (x, y) and (y, x).

Definition 7. Let ℓ ∈ N. Then, an ℓ-topology is an ℓ-colored digraph with at most ℓ arcs such that each
of its vertices has a distinct color, and whose underlying undirected graph is connected. Let Tℓ denote the
set of all ℓ-topologies.

We first argue that there are not many topologies.

Lemma 10. Let ℓ ∈ N. Then, |Tℓ| = 2O(ℓ log ℓ).

Proof. A digraph D on n vertices is called labelled if the vertices of D are {1, 2, . . . , n} (called labels).
Two labelled digraphs D and H are considered equal if they have the same number n of vertices and for
every i ̸= j ∈ {1, 2, . . . , n}, we have (i, j) ∈ A(D) if and only if (i, j) ∈ A(H). Otherwise, D and H are
not equal.

To prove this lemma we relax the requirement for an ℓ-topology to have a connected underlying
undirected graph, but keep the requirement that its vertices have distinct colors. The number of (not
equal) labelled digraphs on n vertices and m arcs is clearly

(
n(n−1)
m

)
. Thus, the number of p-topologies

with p vertices and at most ℓ arcs is
(p(p−1)

≤ℓ
)

= 2O(ℓ log p). The claim of the lemma follows from this bound

and the fact that the number of choices for p colors is
(
ℓ
p

)
< 2ℓ.

Now, we argue that there exists a walk of the form that we seek that “complies” with at least one of
our topologies. We formalize this claim in the following definition and observation.

Definition 8. Let G be an ℓ-colored digraph, and let P be a colorful r-simple path in G. Let T be an
ℓ-topology. We say that P complies with T if Psimple and T are isomorphic under color preservation, i.e.,
there exists an isomorphism ψ between Psimple and T such that for all v ∈ V (Psimple), the colors of v and
ψ(v) are equal. The function ψ is called a witness.
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Observation 1. Let (G, k, r, s, t) be an instance of Directed Colorful r-Simple Long (s, t)-Path.
Then, for any colorful r-simple (s, t)-path P , there exists a unique topology T ∈ Tb(k/r) with which P
complies.

Enriching the topology via ILP In light of Observation 1, a natural approach to solve Directed
Colorful r-Simple Long (s, t)-Path would be to guess a topology, test whether the input digraph has a
subgraph isomorphic to it, and then try to answer the question of whether this topology can be extended
into an r-simple (s, t)-path. However, the second step of this approach already has a major flaw—for
example, if the topology is a clique, then it captures the Multicolored Clique problem (defined in
Section 7). Instead, we will first try to extend the topology into an enriched topology (defined below),
effectively corresponding to computing a candidate isomorphism class of Pmulti instead of just Psimple.
This step is performed independently of the input graph. Then, having chosen an enriched topology, we
can look for a “relaxed embedding” of it into the input graph G, intuitively allowing different “visits” to
a vertex v in the topology to be implemented by different vertices in G, as long as every such vertex has
the same color as v.

To achieve our desired running time, it is crucial that we only need to compute one candidate enriched
topology for every topology. This part will be done via integer linear programming (ILP). Notice that
we cannot even explicitly write an r-simple (s, t)-path that the enriched topology encodes, since the size
of it is already O(k) (while the input size is only O(n+ log k)), hence checking whether the guess can be
realized (i.e., looking for the relaxed embedding) is slightly tricky. However, we deal with this task later.
For now, let us first explain how an enrichment of a topology is defined.

Definition 9. Let ℓ, r ∈ N. In addition, let i, j ∈ {1, 2, . . . , ℓ}, i ̸= j. Then, an r-enriched ℓ-topology
with endpoints i, j is a pair (T, φ) of an ℓ-topology T and a function φ : A(T ) → {1, 2, . . . , r} such that
T with arc multiplicities φ admits an Euler trail with endpoints of colors i and j. Explicitly, we require
the following properties:

1. There exist vertices s = s(T, φ) ∈ V (T ) and t = t(T, φ) ∈ V (T ) colored i and j, respectively.

2. For every vertex v ∈ V (T ) \ {s, t}, it holds that
∑

u:(u,v)∈A(T )

φ(u, v) =
∑

u:(v,u)∈A(T )

φ(v, u) ≤ r.

3.
∑

u:(u,s)∈A(T )

φ(u, s) + 1 =
∑

u:(s,u)∈A(T )

φ(s, u) ≤ r.

4.
∑

u:(u,t)∈A(T )

φ(u, t) =
∑

u:(t,u)∈A(T )

φ(t, u) + 1 ≤ r.

Now, we show how to enrich a topology (if it is possible). For this purpose, we utilize Theorem 3.
Note that the quantity

∑
e φ(e) corresponds to the length of the solution.

Lemma 11. There exists an algorithm that given ℓ, r ∈ N, i, j ∈ {1, 2, . . . , ℓ}, i ̸= j, and an ℓ-topology
T , determines in time ℓO(ℓ) · (log r)O(1) and polynomial space whether there exists a function φ : A(T ) →
{1, 2, . . . , r} such that (T, φ) is an r-enriched ℓ-topology with endpoints i, j. In case the answer is positive,
the algorithm outputs such a function φ that maximizes

∑
e∈A(T ) φ(e).

Proof. If there do not exist vertices s and t in V (T ) colored i and j, respectively, then there does not
exist a function φ such that (T, φ) is an r-enriched ℓ-topology with endpoints i, j, and hence we are done.
Therefore, we next suppose that there exist such vertices, and since they are uniquely defined (since T is
an ℓ-topology), we can denote them by s and t accordingly. We formulate our task by using ILP. Here,
we have a variable xe for every arc e ∈ A(T ) that encodes the value assigned by φ to e. The objective
function is max

∑
e∈A(T ) xe. Now, the constraints are defined as follows.
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• For every vertex v ∈ V (T ) \ {s, t}, we have two constraints:∑
u:(u,v)∈A(T )

x(u,v) =
∑

u:(v,u)∈A(T )

x(v,u);∑
u:(u,v)∈A(T )

x(u,v) ≤ r.

• In addition, we have the following four constraints:∑
u:(u,s)∈A(T )

x(u,s) + 1 =
∑

u:(s,u)∈A(T )

x(s,u);∑
u:(u,s)∈A(T )

x(u,s) + 1 ≤ r;∑
u:(u,t)∈A(T )

x(u,t) =
∑

u:(t,u)∈A(T )

x(t,u) + 1;∑
u:(u,t)∈A(T )

x(u,t) ≤ r.

• For every arc e ∈ A(T ), we have the constraint xe ∈ N≥1.

This completes the description of the ILP formulation.
The size of the ILP instance is L = O(|V (T )|(|A(T )| + log r)) = O(ℓ2 + ℓ log r), it consists of p =

|A(T )| ≤ ℓ variables, Mx = r is the largest absolute value a variable can take in a solution, and Mc = 1 is
the largest absolute value of a coefficient in the cost vector. Thus, by Theorem 3, this ILP instance can
be solved using polynomial space and in time

p2.5p+o(p) · (L+ logMx) · log(MxMc) = ℓO(ℓ) · (log r)O(1).

The ILP formulation immediately implies that if the ILP instance does not have a solution, then
there does not exist a function φ : A(T ) → {1, 2, . . . , r} such that (T, φ) is an r-enriched ℓ-topology with
endpoints i, j. If the ILP instance has a solution, then such a function φ that maximizes

∑
e∈A(T ) φ(e) is

defined as follows: for any e ∈ A(T ), define φ(e) as the value assigned to xe by the solution.

Next, we define what does it mean for a solution to “comply” with an enriched topology.

Definition 10. Let ℓ, r ∈ N, G be an ℓ-colored digraph, and let P be a colorful r-simple (s, t)-path in G.
Let i be the color of s, j be the color of t, and (T, φ) be an r-enriched ℓ-topology with endpoints i, j. We
say that P complies with (T, φ) if P complies with T , and for the function ψ that witnesses this, for every
arc (u, v) ∈ Psimple, the number of copies (u, v) has in Pmulti is exactly φ(ψ(u, v)).

Let us now argue that the choice of how to enrich a topology is immaterial as long as at least one
enrichment exists (in which case, we also need to compute such an enrichment).

Lemma 12. Let G be an ℓ-colored graph, and let P be a colorful r-simple (s, t)-path in G with s ̸= t. Let
i be the color of s, and j be the color of t. Then, the following conditions hold.

1. There exists an r-enriched ℓ-topology with endpoints i, j with which P complies.

2. Let T be an ℓ-topology with which P complies. Then, for any r-enriched ℓ-topology with endpoints
i, j, say (T, φ), there exists an r-simple (s, t)-path in G that complies with (T, φ).
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Proof. For the first condition, define T as Psimple with loops removed. Moreover, define φ : A(T ) → N as
follows. For all e ∈ A(T ), let φ(e) be the number of copies of e in Pmulti. Since P is an Euler (s, t)-trail in
Pmulti, by Theorem 6, the out-degree and in-degree of every vertex in Pmulti are equal, except for s and t
which satisfy d+(s) = d−(s) + 1 and d−(t) = d+(t) + 1. Thus, it is immediate that (T, φ) is an r-enriched
ℓ-topology with endpoints i, j with which P complies.

For the second condition, let T be an ℓ-topology with which P complies, and consider some function
φ : A(T ) → N such that (T, φ) is an r-enriched ℓ-topology with endpoints i, j. Let T ′ be the directed
multigraph obtained from T by duplicating every arc e ∈ A(T ) to have exactly φ(e) copies. Let s′ and t′

be the (unique) vertices colored i and j in T ′, respectively. Since (T, φ) is an r-enriched ℓ-topology with
endpoints i, j, it holds that the out-degree and in-degree of every vertex in T ′ are equal, except for s′ and
t′ which satisfy d+(s′) = d−(s′) + 1 and d−(t′) = d+(t′) + 1. By Theorem 6, this means that there exists
an Euler (s′, t′)-trail P ′ in T ′. Let ψ : V (P ′) → V (G) be the function that maps each vertex in V (P ′) to
the (unique) vertex of the same color in P . Then, for any arc (u, v) ∈ A(T ′), the pair (ψ(u), ψ(v)) is an
arc that is visited at least once by P , and hence (ψ(u), ψ(v)) ∈ A(G). This implies that ψ maps P ′ to an
r-simple (s, t)-path P̂ in G. By construction, it holds that P̂ complies with (T, φ).

This lemma motivates a problem definition where the input includes an r-enriched ℓ-topology with
endpoints i, j, and we seek an r-simple (s, t)-path in G that complies with it. However, like before, such a
problem encompasses Multicolored Clique. Instead, we need a relaxed notion of compliance, which
we define as follows. This corresponds to the notion of a relaxed embedding mentioned previously.

Definition 11. Let ℓ, r ∈ N. Let (T, φ) be an r-enriched ℓ-topology (T, φ) with endpoints i, j. Let P be
an r-simple (s, t)-path in an ℓ-colored digraph G, where i is the color of s and j is the color of t. Then,
P weakly complies with (T, φ) if the following conditions hold.

• Every color that occurs in P also occurs in T and vice versa. That is, there exists a unique, surjective
(but not necessarily injective) function ψ : V (Psimple) → V (T ) where for all v ∈ V (Psimple), the colors
of v and ψ(v) are equal.

• For every two colors a, b that occur in T , the number of times arcs directed from a vertex colored
a to a vertex colored b occur in P is precisely φ(u, v) where u and v are the (unique) vertices in T
colored a and b, respectively.

Note that if a walk P complies with (T, φ), then it also weakly complies with (T, φ), but the opposite
is not true. In particular, a walk where some distinct vertices have the same color can weakly comply
with (T, φ), but it necessarily does not comply with (T, φ).

(ℓ, r)-Enriched Topology
Input: A tuple (G, ℓ, r, s, t, (T, φ)) where ℓ, r ∈ N, G is an ℓ-colored digraph, s, t ∈ V (G) are distinct
vertices, and (T, φ) is an enriched ℓ-topology with endpoints i, j where i is the color of s and j is the
color of t.
Question/Objective: Return Yes or No as follows: (i) If G has an r-simple (s, t)-path that complies
with (T, φ), then return Yes; (ii) If G has no r-simple (s, t)-path that weakly complies with (T, φ),
then return No; (iii) If none of the two conditions above holds, we can return either Yes or No.

The (ℓ, r)-Enriched Topology problem allows us to determine whether there exists an r-simple
(s, t)-path in G that weakly complies with (T, φ).

Lemma 13. Suppose that (ℓ, r)-Enriched Topology can be solved in time f(ℓ) · (n + log r)O(1) and
polynomial space. Then, Directed Colorful r-Simple Long (s, t)-Path can be solved in time
2O(b(k/r) log(b(k/r))) · f(b(k/r)) · (n + log k)O(1) and polynomial space. Here, b(k/r) is the function de-
fined at the start of Section 3.4.
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Proof. Let A be an algorithm that solves (ℓ, r)-Enriched Topology in time f(k/r) · (n + log k)O(1)

and polynomial space. In what follows, we describe how to solve Directed Colorful r-Simple Long
(s, t)-Path. To this end, let (G, k, r, s, t) be an instance of Directed Colorful r-Simple Long
(s, t)-Path. Let i be the color of s and j be the color of t. Initialize k⋆ := 0. For every topology
T ∈ Tb(k/r), we execute the following computation. First, call the algorithm in Lemma 11 to check in

time 2O(b(k/r) log(b(k/r))) · (log r)O(1) and polynomial space whether there exists a function φ : A(T ) →
{1, 2, . . . , r} such that (T, φ) is an r-enriched ℓ-topology with endpoints i, j. If the answer is positive, the
algorithm outputs such a function φ that maximizes

∑
e∈A(T ) φ(e). In this case, we proceed as follows. We

call the algorithm A with (G, b(k/r), r, s, t, (T, φ)). If the answer of A is positive and
∑

e∈A(T ) φ(e) ≥ k⋆,
then update k⋆ := 1 +

∑
e∈A(T ) φ(e). In the case that no such φ exists for T , proceed with the next

topology. After all topologies in Tb(k/r) were examined, we return k⋆.

By Observation 10, |Tb(k/r)| = 2O(b(k/r) log(b(k/r))). Thus, it is clear that the algorithm runs in time

2O(b(k/r) log(b(k/r))) ·f(b(k/r))·(n+log k)O(1) and uses polynomial space. Next, we show that the algorithm
is correct, that is, that it solves Directed Colorful r-Simple Long (s, t)-Path.

In one direction, let P be a colorful r-simple (s, t)-path in G, and let q denote its size. We need
to show k⋆ ≥ q. By Observation 1, there exists a unique topology T ∈ Tb(k/r) with which P complies.
Further, Property 1 in Lemma 12 states that there exists an r-enriched b(k/r)-topology (T, φ′) with which
P complies. Thus, when T is examined, the algorithm in Lemma 11 returns a function φ such that (T, φ)
is an r-enriched ℓ-topology with endpoints i, j, and

∑
e∈A(T ) φ(e) ≥

∑
e∈A(T ) φ

′(e). By Property 2 in
Lemma 12, there exists an r-simple (s, t)-path in G that complies with (T, φ). Thus, A must return a
positive answer. Since

∑
e∈A(T ) φ

′(e) = q − 1, we have that k⋆ ≥ q.
In the other direction, we need to show that G has an r-simple (s, t)-path of size at least k⋆. Consider

the topology T ∈ Tb(k/r) in whose examination k⋆ was updated to its final value. Then, there exists a
function φ : A(T ) → {1, 2, . . . , r} such that (T, φ) is an r-enriched ℓ-topology with endpoints i, j, and
1 +

∑
e∈A(T ) φ(e) = k⋆. Moreover, by the correctness of A, there exists an r-simple (s, t)-path P in

G that weakly complies with (T, φ). By the definition of weak compliance, the length of P is exactly∑
e∈A(T ) φ(e), and hence its size is k⋆.

3.6 Verifying Whether a Guess is Realizable

It remains to solve the (ℓ, r)-Enriched Topology problem. Let us first remark that if we allowed a
linear dependency on k in the running time, then this task would have been easier than our actual task,
since we could have used the following approach: first, we would have computed some walk P ⋆ = vi1 . . . vid
that uses every arc e in the input enriched topology exactly φ(e) times—note that the size d of such a
P ⋆ can be Ω(ℓr) (that is, Ω(k) if we trace the source of ℓ); then, we could have used a simple dynamic
programming (DP) computation to check whether the input digraph G contains such a colored walk
(where vertices having the same color in P ⋆ are allowed to be mapped to distinct vertices in G as long
as these vertices have the same color). This could be done by a simple table T [v, j] that stores, for
every j ∈ [d] and every vertex v ∈ V of the same color as vij , whether there is a colored walk in G
“implementing” the prefix vi1 . . . vij of P ⋆, ending at the vertex v. Note how the use of vertex colors
guarantees that the result is an r-simple path, even if it only weakly complies with the enriched topology.

To solve (ℓ, r)-Enriched Topology while attaining a logarithmic dependency on k, instead of search-
ing for a walk one step a time, we decompose the enriched topology into cycles. Let (T, φ) be an enriched
topology, and let C be a cycle in T . Let M be the smallest value of φ(e) for arcs e in C. Then we
can search for (T, φ) as follows: find a copy of C in G; remove M copies of every arc of C from (T, φ),
deleting arcs whose multiplicity reaches 0; then recursively, via DP, find a copy in G of every connected
component of the resulting enriched topology. If we ensure that colors are preserved in all steps, and that
the resulting subgraph H of G is connected, then H will admit a walk that forms an r-simple path which
weakly complies with (T, φ).

We now present the recursive algorithm that (combined with DP) solves (ℓ, r)-Enriched Topol-
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ogy. Due to the nature of the recursion, we need to consider an annotated version of (ℓ, r)-Enriched
Topology, defined as follows.

Rooted (ℓ, r)-Enriched Topology
Input: Integers ℓ, r ∈ N, an ℓ-colored digraph G, distinct vertices s, t ∈ V (G), an r-enriched ℓ-
topology (T, φ) with endcolors i, j where i is the color of s and j is the color of t, and a vertex
vr ∈ V (G) called the root vertex.
Question/Objective: Return Yes or No as follows. (i) If G has an r-simple (s, t)-path that complies
with (T, φ) and visits the root vertex at least once, then return Yes. In this case, the input is called
a Yes-instance. (ii) If G has no r-simple (s, t)-path that weakly complies with (T, φ) and visits the
root vertex at least once, then return No. In this case, the input is called a No-instance. (iii) If none
of the two conditions above holds, we can return either Yes or No. In this case, the input is called an
irrelevant instance.

To describe the recursion, let us first make a simple observation about the structure of strong compo-
nents of an r-enriched ℓ-topology (T, φ).

Lemma 14. Let (T, φ) be an r-enriched ℓ-topology with endcolors i, j, and let its endpoints be s, t. Let
Q be the set of strong components of T , say |Q| = d. Then we can arrange the strong components as
Q = {Q1, . . . , Qd} such that for every c ∈ [d − 1] there is a single arc e from Qc to Qc+1 with φ(e) = 1,
and T contains no other arcs between distinct strong components in T . Furthermore, let s1 = s, td = t,
and for each c ∈ [d−1] let the arc from Qc to Qc+1 be tcsc+1. Then for every c ∈ [d], the graph Qc admits
an (sc, tc)-walk that visits each arc e ∈ A(Qc) precisely φ(e) times.

Proof. By Definition 9 and Theorem 6, there is a directed walk from s to t in T that uses every arc e
precisely φ(e) times. Clearly, this is only possible under the conditions described.

We define the basis of our recursion as the case where the topology is a DAG. Then, we make use of
the following lemma.

Lemma 15. There exists an algorithm that, given an instance I = (G, ℓ, r, s, t, (T, φ), vr) of Rooted
(ℓ, r)-Enriched Topology where T is a DAG, solves I in polynomial time and space.

Proof. Let (G, ℓ, r, s, t, (T, φ), vr) be an instance of Rooted (ℓ, r)-Enriched Topology where T is a
DAG. By Lemma 14, this means that T is a (simple directed) path and that for every arc e ∈ A(T ), it
holds that φ(e) = 1. If no vertex in T has the same color as vr, then it is clear that there is no r-simple
(s, t)-path in G that complies with (T, φ) and which visits vr at least once. Thus, we next suppose that
this is not the case. Let G′ be the digraph obtained by removing from G all vertices whose color does
not occur in T as well as every vertex v ̸= vr that has the same color as vr. Then, (G, ℓ, r, s, t, (T, φ), vr)
is a Yes-instance if and only if G′ has an (s, t)-walk P that is isomorphic to T under color preservation,
i.e., the isomorphism must map each vertex in P to a vertex of the same color in T (then, the walk is
necessarily a path that uses vr). However, this task can be easily checked by removing from G′ all arcs
from a vertex colored i to a vertex colored j for all colors i, j such that T has no arc from a vertex colored
i to a vertex colored j, and then checking (e.g., by using BFS) whether t is reachable from s.

In each step, we decompose the current topology further, in two ways. The first type of decomposition
applies when T contains multiple strong components. For technical reasons, we need to introduce rooted
topologies.

Definition 12. A rooted r-enriched ℓ-topology is a triple (T, φ, u) where (T, φ) is an r-enriched ℓ-
topology and u ∈ V (T ) a vertex referred to as the root vertex of the topology. For a rooted r-enriched
ℓ-topology (T, φ, u), the strong component decomposition of (T, ℓ, u) is the sequence (Qc, sc, tc)

d
c=1 where

Q = {Q1, . . . , Qd} and sc, tc ∈ V (Qc) are as in Lemma 14. If d > 1, then for each c ∈ [d] the cth

(rooted enriched) subtopology of the decomposition is a rooted r-enriched ℓ-topology (Q′
c, φc, uc) defined

as follows.
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1. If c < d, then Q′
c = T [V (Qc) ∪ {sc+1}], φc is φ restricted to V (Q′

c), and uc = tc.

2. If c = d, then Q′
c = T [V (Qc) ∪ {tc−1}], φc is φ restricted to V (Q′

c), and uc = sc.

We say that (T, φ, u) is decomposable if d > 1 and u ∈ {sc, tc : c ∈ [d]}.

For topologies with a non-trivial decomposition into strong components, we define a collection of
subinstances Ic,u,v where c ∈ [d], u, v ∈ V (G) as follows.

Definition 13. Let I = (G, ℓ, r, s, t, (T, φ), vr) be an instance of Rooted (ℓ, r)-Enriched Topology
and let ur ∈ V (T ) be the vertex with the same color as vr. We say that I is decomposable if (T, φ, ur)
is decomposable. Assume that I is decomposable, and let (Qc, sc, tc)

d
c=1 be the strong component decom-

position of (T, φ, ur). For c ∈ [d] and u, v ∈ V (G), the triple (c, u, v) is valid if the following conditions
apply.

1. If c = 1, then u = s; otherwise u is a vertex with the same color as sc.

2. If c = d, then v = t; otherwise v is a vertex with the same color as tc.

3. If c < d, then v has an out-neighbor with the same color as sc+1, otherwise u has an in-neighbour
with the same color as tc−1.

4. If the color of vr matches that of u (v, respectively), then u = vr (v = vr, respectively).

For any valid triple (c, u, v), the subinstance Ic,u,v is the instance of Rooted (ℓ, r)-Enriched Topology
defined as follows. Let (Q′

c, φc, uc) be the c:th subtopology of the decomposition. Then

Ic,u,v = (G, ℓ, r, s′, t′, (Q′
c, φc), vc),

where s′ = u if c < d, and otherwise s′ is some in-neighbor of u of the same color as tc−1; t
′ = t if c = d,

and otherwise t′ is some out-neighbor of v of the same color as sc+1; and vc = v if c < d, and otherwise
vc = u.

Finally, a sequence (uc, vc)
d
c=1 of pairs of vertices of G is good ( excellent, respectively) with respect

to the strong component decomposition if the following conditions hold:

1. For each c ∈ [d− 1], the arc (vc, uc+1) exists in G.

2. For each c ∈ [d], the triple (c, uc, vc) is valid and the subinstance Ic,uc,vc is not a No-instance (a
Yes-instance, respectively).

Let us show the correctness condition for this decomposition.

Lemma 16. Let I = (G, ℓ, r, s, t, (T, φ), vr) be a decomposable instance of Rooted (ℓ, r)-Enriched
Topology and let (Qc, sc, tc)

d
c=1 be the strong component decomposition of (T, φ, vr). Then the following

hold.

• If I is a Yes-instance, then there exists a color-preserving map ψ : {sc, tc : c ∈ [d]} → V (G) such
that the sequence (ψ(sc), ψ(tc))

d
c=1 is excellent with respect to (Qc, sc, tc)

d
c=1.

• If I is a No-instance, then there does not exist a color-preserving map ψ : {sc, tc : c ∈ [d]} → V (G)
such that the sequence (ψ(sc), ψ(tc))

d
c=1 is good with respect to (Qc, sc, tc)

d
c=1.

Proof. First assume that I is a Yes-instance, i.e., G has an r-simple (s, t)-path P that complies with
(T, φ) and visits the root vertex at least once. Since P complies with (T, φ) there exists a color-preserving
isomorphism between Psimple and T ; let ψ : V (T ) → V (P ) be the mapping implied by this. It is easy to
check that (ψ(sc), ψ(tc))

d
c=1 is excellent with respect to (Qc, sc, tc)

d
c=1. Indeed, since Psimple is isomorphic
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to T the decomposition (Qc, sc, tc)
d
c=1 is also structurally consistent with Psimple, i.e., ψ is also a color-

preserving isomorphism between (Qc)
d
c=1 and the strong components of Psimple, and every (s, t)-walk

in Psimple must consist of an alternating sequence of (ψ(sc), ψ(tc))-walks in the image ψ(Qc) of Qc for
c ∈ [d], and single uses of arcs (ψ(tc), ψ(sc+1)). Furthermore s = ψ(s1) and t = ψ(td), and if the color
of vr matches that of sc or tc for some c ∈ [d], then ψ maps that vertex to vr. Thus for every c ∈ [d]
the triple (c, ψ(sc), ψ(tc)) is valid, and by extending the (ψ(sc), ψ(tc))-walk by a first visit to s′ or a last
visit to t′ as needed, we get an (s′, t′)-walk in G that complies with the c:th enriched subtopology of the
decomposition. Furthermore, since P visits both vr, ψ(sc) and ψ(tc), this part of the walk must visit vc.
Thus Ic,ψ(sc),ψ(tc) is a Yes-instance and (ψ(sc), ψ(tc))

d
c=1 is excellent with respect to (Qc, sc, tc)

d
c=1.

On the other hand, let ψ be a color-preserving mapping such that (ψ(sc), ψ(tc))
d
c=1 is good with respect

to (Qc, sc, tc)
d
c=1. That is, G contains an arc (ψ(tc), ψ(sc+1))) for every c ∈ [d − 1], and for every c ∈ [d]

the triple (c, ψ(sc), ψ(tc) is valid and Ic,ψ(sc),ψ(tc) is not a No-instance. By construction, due to the choice
of endpoints s′, t′ and root vertex vc in Ic,ψ(sc),ψ(tc), this implies that for every c ∈ [d] there is an r-simple
(sc, tc)-path that weakly complies with (Qc, φ

′
c), where φ′

c is φ restricted to A(Qc). Furthermore ψ(s1) = s
and ψ(td) = t. Thus the solutions to the subinstances can be concatenated into a single (s, t)-walk P .
Furthermore, since the components Qc have pairwise disjoint sets of vertex colors, and by the definition
of weak compliance, these solutions are pairwise vertex-disjoint and P is an r-simple (s, t)-path. We show
that P weakly complies with (T, φ) and visits vr at least once. By Definition 11, the former requires that
P and T use the same sets of colors and that for every arc e ∈ A(T ) from some color i to some color j, P
uses precisely φ(e) arcs from a vertex of color i to a vertex of color j. For the first requirement, the colors
used in T are partitioned by the strong components Qc, and for each c ∈ [d], the solution to Ic,ψ(sc),ψ(tc)
uses the same set of colors as Qc. Hence this part follows. For the second requirement, let e ∈ A(T ). If e
goes between distinct components, then φ(e) = 1 and P uses precisely one arc with colors matching the
endpoints of e. Otherwise, e ∈ A(Qc) for some c ∈ [d], and P contains arcs matching the colors of e only
within the solution to Ic,ψ(sc),ψ(tc), where it contains precisely φ(e) such arcs by the definition of weak
compliance. Finally, since I is decomposable and each triple (c, ψ(sc), ψ(tc)) is valid, there is some c ∈ [d]
such that vr ∈ {ψ(sc), ψ(tc)}, thus P visits vr at least once. We conclude that G is not a No-instance.

We need a further decomposition step to decompose strong components. In each such step, we process
a (directed simple) cycle from the current topology so that at least one of its arcs is eliminated. Here,
in order to eventually derive a logarithmic dependency on k, it is crucial that we completely eliminate
an arc and not only decrease the value that φ assigns to it. For this purpose, we utilize the following
definition and lemma.

Definition 14. For a rooted r-enriched ℓ-topology (T, φ, u), a tuple B = (C,M,E,Q, fT ) is relevant if
C is a simple, directed cycle C in T with u ∈ V (C), M = mine∈A(C) φ(e), E = {e ∈ A(C) : φ(e) = M},
Q is the set of weakly connected components of T −E and fT is the function that assigns to each Q ∈ Q
a vertex of V (C) ∩ V (Q) as follows. If |Q| = 1, then fT (Q) = u; otherwise fT (Q) is the last vertex in
V (C) ∩ V (Q) of C, counting from u, such that the subsequent vertex along C does not lie in Q.

For Q ∈ Q, the subtopology at Q (of (T, φ, u), with respect to B) is the rooted r-enriched ℓ-topology
(TQ, φQ, fT (Q)) defined as follows.

1. Let the endpoints of (T, φ) be s′, t′. If Q contains s′ and t′, then TQ = Q, and φQ is φ restricted to
A(Q) where the value φQ(e) has been decreased by M for every arc e ∈ A(C).

2. Otherwise, let v be the successor of fT (Q) in C, and define TQ from Q by adding a new vertex tQ
colored by the same color as v, and add the arc (fT (Q), tQ)). Let φQ be defined as in the previous
case, extended with φQ((fT (Q), tQ)) = 1.

Let (G, ℓ, r, s, t, (T, φ), vr) be an instance of Rooted (ℓ, r)-Enriched Topology where T is not a
DAG and let u ∈ V (T ) have the same color as vr. Let (C,M,E,Q, fT ) be a relevant tuple for (T, φ, u).
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A cycle C ′ in G is good (excellent, respectively) with respect to (C,M,E,Q, fT ) if (i) there exists a color-
preserving isomorphism ψ between C ′ and C, and (ii) for every Q ∈ Q, the instance JQ defined as follows
is not a No-instance (a Yes-instance, respectively). Let (TQ, φQ, uQ) be the subtopology at Q.

1. If the endpoints of (T, φ) are contained in Q, then JQ = (G, ℓ, r, s, t, (TQ, φQ), ψ(fT (Q))).

2. Otherwise, let v be the successor of fT (Q) in C, and let JQ = (G, ℓ, r, s′, t′, (TQ, φQ), ψ(fT (Q)))
where s′ = ψ(fT (Q)) and t′ = ψ(v).

Lemma 17. Let (T, φ, u) be a rooted r-enriched ℓ-topology and let C be a simple cycle of T that contains
u. Then there is precisely one relevant tuple (C,M,E,Q, fT ).

Proof. All of M , E, Q and fT are uniquely defined by (T, φ, u) and C, and all are well-defined.

Lemma 18. Let I = (G, ℓ, r, s, t, (T, φ), vr) be an instance of Rooted (ℓ, r)-Enriched Topology
where T is not a DAG. Let (C,M,E,Q, fT ) be any relevant tuple. Then, the following conditions hold.

• If I is a Yes-instance, then G has a cycle that is excellent w.r.t. (C,M,E,Q, fT ).

• If I is a No-instance, then G has no cycle that is good w.r.t. (C,M,E,Q, fT ).

Proof. First, suppose that I is a Yes-instance. That is, G has an r-simple (s, t)-path P that complies with
(T, φ) and visits vr at least once. Then, Psimple has a unique cycle C ′ with an isomorphism ψ between C ′

and C that preserves colors. Define H = Psimple−{e : φ(e) ∈ E}, and let Hmulti be the directed multigraph
obtained by removing M copies of every arc in C ′ from Pmulti. Now, consider some component Q ∈ Q.
Then, there exists a unique component R in H that is isomorphic to Q under color preservation. Note
that either both s, t ∈ V (R) or both s, t /∈ V (R). (In the later case, no vertex in Q has the same color as
s or t.) Let Rmulti be the digraph obtained by duplicating each arc in R to have the number of copies it
has in Hmulti. Note that every vertex in V (R) \ {s, t} has in-degree equal to its out-degree (in Rmulti); in
addition, if s, t ∈ V (Q), then d+(s) = d−(s) + 1 and d−(t) = d+(t) + 1 (in Rmulti). By Theorem 6, the
following conditions are satisfied.

• If s, t ∈ V (R), then there exists an Euler (s, t)-trail in Rmulti. Necessarily, this trail is an r-simple
(s, t)-path that complies with (Q,φQ) and visits ψ(fT (Q)) at least once. Thus, JQ is a Yes-instance.

• If s, t /∈ V (R), then there exists an Euler (ψ(fT (Q)), ψ(fT (Q)))-trail in Rmulti. Adding the arc
(ψ(fT (Q)), t′) creates an r-simple (s′, t′)-path that complies with (Q,φQ) and visits ψ(fT (Q)) at
least once. Thus, JQ is a Yes-instance.

Thus, C ′ is excellent w.r.t. (C,M,E,Q, fT ).
Second, suppose that G has a cycle C ′ that is good w.r.t. (C,M,E,Q, fT ). Let ψ be a color-preserving

isomorphism between C ′ and C. Then, for every component Q ∈ Q, JQ is not a No-instance, and hence
the following conditions are satisfied.

• If Q has vertices with the same colors as s and t, then G has an r-simple (s, t)-path PQ that weakly
complies with (Q,φQ) and visits ψ(fT (Q)) at least once.

• If Q does not have vertices with the same colors as s and t, then G has an r-simple
(ψ(fT (Q)), ψ(fT (Q)))-path PQ that weakly complies with (Q,φQ) (ignoring the final arc into t′)
and visits ψ(fT (Q)) at least once.

Let C ′′ be the directed multigraph obtained from C ′ by duplicating each arc M times. Consider the
directed multigraph H on vertex-set V (H) = V (C ′′) ∪ (

∪
Q∈Q V (PQ)) and arc-multiset A(H) = A(C ′′) ∪

(
∪
Q∈QA(PQ)). (That is, every arc occurs in H the number of times it occurs in C ′′ plus the sum over

all Q ∈ Q of the number of times it occurs in PQmulti.) Then, in H, we have that d+(s) = d−(s) + 1 and
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d−(t) = d+(t)+1, and the out-degree and in-degree of any other vertex are equal. Moreover, the underlying
undirected graph of H is connected since the underlying undirected graph of each PQmulti is connected, and

for any two distinct Q,Q′ ∈ Q, C ′′ has subpath from ψ(fT (Q)) ∈ V (PQmulti) to ψ(fT (Q′)) ∈ V (PQ
′

multi). By
Theorem 6, this means that there exists an Euler (s, t)-trail in H. Necessarily, this trail is an r-simple
(s, t)-path P that weakly complies with (T, φ) and visits vr at least once.

We proceed to utilize the above lemmas in order to describe our recursive algorithm and prove its
correctness.

Lemma 19. (ℓ, r)-Enriched Topology can be solved in polynomial time, i.e., (ℓ+ n+ log r)O(1).

Proof. Let I = (G, ℓ, r, s, t, (T, φ)) be an instance of (ℓ, r)-Enriched Topology. If T is a DAG, then
we solve I using Lemma 15. Otherwise, we decompose (T, φ) into a hierarchy H of rooted r-enriched
ℓ-topologies, where the base cases of the hierarchy correspond to DAGs. We then proceed with bottom-up
dynamic programming over H to solve I. To this end, define a tree H as follows. Let s′, t′ be the endpoints
of (T, φ) and initialize H as a tree with a single node x whose label is (T, φ, s′). Then recursively, for every
leaf x′ of H with a label (T ′, φ′, u) where T ′ is not a DAG we decompose (T ′, φ′, u) further, as follows.

1. If possible, let C be a simple directed cycle in T ′ passing through u.7 Let B = (C,M,E,Q, fT ) be
a relevant tuple. Then for every Q ∈ Q we create a child xQ of x′, and label xQ by the subtopology
at Q with respect to B. We refer to x′ as a cycle node (processing B).

2. If the previous case does not apply but u is an endpoint of (T ′, φ′), then create a single child x′′ of
x′ by selecting an arbitrary new root u′ ∈ V (T ′) that is not an endpoint and giving x′′ the label
(T ′, φ′, u′). We refer to x′ as a re-rooting node (away from u).

3. If no previous case applies, note that (T ′, φ′, u) is decomposable and let B = (Qc, sc, tc)
d
c=1 be the

strong component decomposition of (T ′, φ′, u). Create one child xc of x′ for each c ∈ [d] and label
xc by the c:th subtopology of B. We refer to x′ as a path node (processing B).

Let us first prove that H is a tree of size polynomial in ℓ. Say that a node x′ of H is a DAG node
if the topology T ′ that x′ is labelled by is a DAG. For any node x′ of H, labelled by (T ′, φ′, u′), let
Ac(x

′) ⊆ A(T ′) be those arcs that occur in a cycle in T ′. We argue the following property of sets Ac(x
′)

in H. Let x′ be a node of H, and let S be the set of children of x′. Then (i) for any x′′ ∈ S, we have
Ac(x

′′) ⊆ Ac(x
′), and (ii) if a ∈ Ac(x

′′) for some x′′ ∈ S, then the arc a does not occur in any other child
of x′.

We verify the property inductively by node type. For any DAG node, the property holds vacuously,
and for a re-rooting node the property is trivial. Assume next that x′ is a cycle node with some label
(T ′, φ′, u′), processing some tuple B = (C,M,E,Q, fT ). Then for every arc a of A(T ′), either a ∈ E or a
occurs in precisely one child of x′. Hence (i) and (ii) are both clear.

Finally, assume that x′ is a path node. Then, since every cycle in T ′ occurs in a strong component,
the arcs of Ac(x

′) are precisely partitioned by the non-DAG nodes of S. Thus the property holds.
We can now bound the size of H. Let X be the set of nodes x′ of H such that x′ is not a DAG node,

but every child of x′ in H is a DAG node. Then by definition Ac(x
′) ̸= ∅ for every x′ ∈ X. Furthermore,

the above properties imply that (i) Ac(x
′) ⊆ Ac(x), and (ii) the sets Ac(x

′) for x′ ∈ X are disjoint (since
no node in X is a descendant of another). It follows that |X| ≤ |Ac(x)|. Every node in X has at most
|V (T )| leaves. Furthermore, the height of H is bounded by O(|V (T )| + |Ac|), since at every step either
|AC | decreases (in the case of a cycle node) or |V (T ′)| decreases (in the case of a path node), and neither
can increase. In particular, we only process path nodes if the root u lies in a trivial strongly connected
component, hence |V (T ′)| decreases in this case. Hence H has polynomial size in ℓ.

7We can decide whether a digraph D has a directed cycle through a vertex u by adding a copy u′ of u to D and checking
whether there is a directed path from from u to u′.
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We now solve the problem via bottom-up dynamic programming over H, for each node tabulating
possible choices in G for the endpoints and root vertex of the topology. Concretely, let x be a node of
H and let (T ′, φ′, u) be the label of x. Let s′, t′ be the endpoints of (T ′, φ′). Then for sx, tx, vx ∈ V (G),
define

Ix(sx, tx, vx) = (G, ℓ, r, sx, tx, (T
′, φ′), vx)

as the instance corresponding to node x where we have fixed a partial map ψ(s′) = sx, ψ(t′) = tx and
ψ(u) = vx. We show that using H, we can tabulate for every node x whether Ix(sx, tx, vx) is a No-instance
or not. For simplicity, let us proceed bottom-up and accumulate a relation Rx ⊆ V (G)×V (G)×V (G) for
every node x, where Rx(sx, tx, vx) holds if and only if Ix(sx, tx, vx) was not detected to be a No-instance.
Let us consider the node types of H in turn. Let x be a node of H with label (T ′, φ′, u).

Case: x is a leaf node. In this case, T ′ is a DAG and we can solve every instance Ix using Lemma 15.
Thus we can assume that Rx has been tabulated for every leaf of H.

Case: x is a re-rooting node. In this case, by assumption u is an endpoint of (T ′, φ′). Let s′, t′ be the
endpoints of (T ′, φ′) and assume first that u = s′. Let x′ be the child of x and let (T ′, φ′, u′) be its label.
Then (sx, tx, vx) ∈ Rx if and only if vx = sx and (sx, tx, v

′
x) ∈ Rx′ for some v′x ∈ V (G), which can clearly

be checked in polynomial time. The case that u = t′ is symmetric.
Case: x is a cycle node. Let x be a cycle node processing a tuple B = (C,M,E,Q, fT ). Assume that

we are deciding an instance Ix(sx, tx, vx), and immediately reject the instance unless sx, tx, vx share the
colors of the endpoints (T ′, φ′) and the root u, respectively. Otherwise, by Lemma 18 we need to decide
whether G contains a cycle that is good with respect to B. By Definition 14 we need to check for the
existence of a cycle C ′ in G such that (i) there is a color-preserving isomorphism ψ between C and C ′,
and (ii) for every Q ∈ Q the instance JQ defined from Q and ψ is not a No-instance. For the latter, we
note that the instance JQ is identical to one of the instances IxQ(s′x, t

′
X , v

′
x) already tabulated in RxQ .

Indeed, first assume that Q contains the endpoints of (T ′, φ′). In this case, we simply have

JQ = IxQ(sx, tx, ψ(fT (Q))),

where sx, tx are the vertices we are currently processing. Thus every such instance JQ has been tabulated.
Next, assume that Q does not contain the endpoints of (T ′, φ′) and let v be the successor of fT (Q) in

C. Then
JQ = IxQ(ψ(fT (Q)), ψ(v), ψ(fT (Q))),

hence again every such instance JQ has been tabulated.
Now, let u = u1, . . . , ud be the vertices of C in T , reading in the forward direction starting from the

root. We decide whether Ix(sx, tx, vx) is a No-instance via an auxiliary d-partite graph H as follows. Let
V1 = {vx} and for i = 2, . . . , d let Vi ⊆ V (G) be the set of vertices of G having the same color as ui.
Then the vertex set of H is partitioned as V (H) = V1 ∪ . . . ∪ Vd, and the arcs of H are the candidate
targets for arcs of C, i.e., for v, v′ ∈ V (H) where v ∈ Vi, we have (v, v′) ∈ A(H) if and only if (i) v′ ∈ Vj ,
where j = i+ 1 for i < d and j = 1 otherwise; and (ii) if ui = fT (Q) for some Q ∈ Q, then the instance
JQ defined by ψ(ui) = v and ψ(uj) = v′ is not a No-instance. Note that by the above, the latter can be
checked using only the identities of v and v′ and the DP table RxQ . It now follows that Ix(sx, tx, vx) is
not a No-instance if and only if H contains a simple cycle, i.e., H is not a DAG, which is easily checked
[7]. Thus Rx can be tabulated.

Case: x is a path node. Finally, let x be a path node processing the decomposition B = (Qc, sc, tc)
d
c=1

of (T ′, φ′, u). Assume that we are deciding an instance Ix(sx, tx, vx), and that the vertex colors of sx, tx, vx
are consistent with the endpoints of (T ′, φ′) respectively u, otherwise the instance is negative. Also note
that a path node is only created if u ∈ {sc, tc : c ∈ [d]}. By Lemma 16, we need to decide whether there
exists a color-preserving map ψ : {sc, tc : c ∈ [d]} → V (G) such that the sequence (ψ(sc), ψ(tc))

d
c=1 is good

with respect to B, i.e., by Definition 13, whether (i) (ψ(tc), ψ(sc+1)) ∈ A(G) for every c ∈ [d − 1], (ii)
the triple (c, ψ(sc), ψ(tc)) is valid, for every c ∈ [d], and (iii) for every c ∈ [d], the subinstance Ic,ψ(sc),ψ(tc)
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is not a No-instance. Furthermore, assuming condition (i) has been verified, the triple (c, ψ(sc), ψ(tc)) is
valid for every c ∈ [d] on the conditions that ψ(s1) = sx, ψ(td) = tx and ψ(u) = vx.

As in the previous case, we create an auxiliary graph H to aid the search for ψ. Define sets Uc, Vc
for each c ∈ [d] where Uc is the set of vertices of V (G) sharing a color with sc, and Vc is a set of copies
of the set of vertices of V (G) sharing a color with tc. (That is, if sc = tc then the same vertices would
be represented in sets Uc and Vc but treated distinctly in H.) Furthermore, delete vertices in H so that
U1 = {sx}, Vd = {tx}, and such that any set corresponding to the root u only contains the single vertex
vx, and for every c ∈ [d − 1] create an arc (v, v′) ∈ Vc × Uc+1 if and only if the corresponding arc exists
in G.

We are now ready to identify the subinstances Ic,ψ(sc),ψ(tc) among the previously tabulated instances
Ix′ . Let c ∈ [d] and (v, v′) ∈ Uc×Vc, such that furthermore if sc = tc then v = v′. Assume that (c, v, v′) is
a valid triple (otherwise, no arc (v, v′) will be added to H). First let c < d. Then v′ has an out-neighbor
v′′ in H since (c, v, v′) is valid. Let xc be the child of x corresponding to the c:th subtopology. Then (up
to the choice of v′′) we have

Ic,v,v′ = Ixc(v, v
′′, v′).

For c = d, since (c, v, v′) is a valid triple there is an in-neighbor v′′ of v in H. We now necessarily have
v′ = tx, and again up to the choice of v′′ we have

Ic,v,v′ = Ixc(v
′′, v′, v).

Finally, regarding the choice of v′′ it is easy to see from the construction that all choices create equivalent
instances, thus we may select v′′ arbitrarily. We add an arc (v, v′) to H if and only if the corresponding
subinstance created this way is not a No-instance according to Rxc .

It now follows that Ix(sx, tx, vx) is not a No-instance if and only if the graph H has a directed path
from sx to tx, thus Rx can be tabulated.

Wrapping up. Finally, let x be the root node of H and assume that Rx has been tabulated as above.
To finish the computation, we simply check whether Rx(s, t, s) holds, which by the above is equivalent
to I not being a No-instance. The total running time of the procedure consists of at most O(n3) simple
checks for every node of H, thus it takes polynomial time in total.

3.7 Putting It All Together

Finally, we are ready to conclude the correctness of Theorem 4.

Proof of Theorem 4. By Lemma 19, (ℓ, r)-Enriched Topology can be solved in time and space (ℓ+n+
log r)O(1). Thus, by Lemma 13, Directed Colorful r-Simple Long (s, t)-Path can be solved in time
2O(b(k/r) log(b(k/r))) · (n+ log k)O(1) and polynomial space. Substituting b(k/r), this running time is upper
bounded by 2O((k/r)2 log(k/r)) · (n + log k)O(1). In turn, by Lemma 9, we have that Directed r-Simple
Long (s, t)-Path on strongly connected digraphs can be solved in time 2O((k/r)2 log(k/r)) · (n+ log k)O(1)

and polynomial space. Finally, by Lemma 1, we conclude that Directed r-Simple k-Path can be solved
in time 2O((k/r)2 log(k/r)) · (n+ log k)O(1) and polynomial space.

4 Undirected r-Simple k-Path: Single-Exponential Time

In this section, we focus on the proof of the following theorem. As discussed in the introduction, for
varied relations between k and r, the running time in this theorem is optimal under the ETH.

Theorem 7. Undirected r-Simple k-Path is solvable in time 2O( k
r
)(n+ log k)O(1).

We will first show (in Sections 4.1–4.6) how to prove the following result (which is the main part of
our proof).

29



Lemma 20. Undirected r-Simple k-Path is solvable in time 2O( k
r
)(r + n+ log k)O(1).

Afterwards we will explain how to bound r. More precisely, let us refer to the special case of Undi-
rected r-Simple k-Path where r >

√
k as the Special Undirected r-Simple k-Path problem.

Special Undirected r-Simple k-Path

Input: An n-vertex undirected graph G and positive integers k, r such that r >
√
k.

Question/Objective: Does G have an r-simple k-path?

Then, we focus (in Section 4.7) on the following result.

Lemma 21. Special Undirected r-Simple k-Path is solvable in time 2O( k
r
)(n+ log k)O(1).

Note that if r ≤
√
k, then k/r = Ω(

√
k), in which case r ≤

√
k ≤ 2O(k/r). Thus, Lemmas 20 and 21

together imply Theorem 7. In this section, we require the following theorem instead of Theorem 6.

Theorem 8 ([18]). Let G be a connected multigraph and let s, t ∈ V (G).

• If s ̸= t, then G has an Euler (s, t)-trail if and only if d(s) and d(t) are odd, and the degree of any
other vertex in G is even.

• If s = t, then G has an Euler (s, t)-trail if and only if the degree of every vertex in G is even.

4.1 Bounding the Number of Distinct Edges

This subsection is essentially a significantly simpler version of Sections 3.1, 3.2 and 3.3. For the sake of
completeness, we give the sequence of adapted statements required to derive the bound on the number of
distinct (i.e., non-parallel) edges stated at the end of this subsection.

Here, we say that an instance (G, k, r) of Undirected r-Simple k-Path is nice if G has no path of
length at least k/r. Observe that if an instance (G, k, r) of Undirected r-Simple k-Path is not nice,
then it is necessarily a Yes-instance, since by traversing a path of length at least k/r back and forth r
times, we obtain an r-simple k-path. Recall that by Theorem 5, we can test the existence of a path of
length at least ℓ from a vertex s to a vertex t in a digraph in time 2O(ℓ)nO(1). Clearly, we can utilize
this algorithm to test the existence of a path of length at least k/r in an undirected graph G: given an
undirected graph G, let G⃗ be the graph obtain from G by creating two opposing directed arcs from each
edge, and run the algorithm with every choice of s, t ∈ V (G). Thus, we have the following observation.

Observation 2. Given an instance (G, k, r) of Undirected r-Simple k-Path, it can be determined in
time 2O(k/r) · nO(1) and polynomial space whether (G, k, r) is not nice, in which case it is a Yes-instance.

Let us adapt Definition 4 to undirected graphs.

Definition 15. Let P be an r-simple path in an undirected graph G.

• Psimple is the subgraph of G on the vertices and edges visited at least once by P , and Pmulti is the
multigraph obtained from Psimple by duplicating each edge to occur the same number of times in
Pmulti and in P .

• V (P, r) = {v ∈ V (G) : v occurs r times in P}, and P−r
simple = Psimple − V (P, r).

Recall that Corollary 1 states that, for a digraph G⃗ with an r-simple k′-path P⃗ for some integer
k′ ≥ 2k, it holds that G⃗ has an r-simple k′′-path Q⃗, for some integer k′′ ∈ {k, k + 1, . . . , 2k}, such that
Q⃗simple is a subgraph of P⃗simple that is not equal to P⃗simple. This directly extends to undirected graphs.
Thus, we have the following result.
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Lemma 22. Let (G, k, r) be a nice instance of Undirected r-Simple k-Path. Let P be an r-simple
k′-path in G for some integer k′ ≥ 2k. Then, G has an r-simple k′′-path Q, for some integer k′′ ∈
{k, k + 1, . . . , 2k}, such that Qsimple is a subgraph of Psimple that is not equal to Psimple.

Similarly, Lemma 4 is adaptable to undirected graphs. Having Lemma 22 at hand, the arguments
used to prove Lemma 4 directly extend to prove the adaptation below as well, where one only has to view
edges {u, v} in Psimple as cycles u− v − u.

Lemma 23. Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then, G has an
r-simple k′-path P , for some k′ ∈ {k, k + 1, . . . , 2k}, that satisfies the following two properties.

1. P−r
simple is edgeless.

2. Every two distinct vertices in V (P, r) have at most one common neighbor in Psimple that does not
belong to V (P, r).

We now finish the proof of the bound on the number of distinct edges. Since the structure of undirected
(r-simple) paths is significantly easier than directed (r-simple) paths, we are able to do this in a single
step, rather than the more complex proof used for the directed case.

Lemma 24. Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then, G has an
r-simple k-path with fewer than 30(k/r) distinct edges.

Proof. We provide a proof sketch, since the details are similar to Lemma 6 but somewhat simpler. Let P
be an r-simple path chosen by the same conditions as in Lemma 6, i.e., chosen to minimize the number
of distinct edges used, to maximize |V (P, r)|, and which satisfies the properties in Lemma 23. Let s′ and
t′ be its endpoints, and let X = V (P, r) ∪ {s′, t′}. Let F = E(Psimple), partitioned as F = F1 ∪ F2 where
F1 is the edge set of a tree that spans X. Then |F1| < 2|X| by Property 1 in Lemma 23. Let H be the
graph with edge set F2.

Let C be a cycle in H that is either of even length or contains at least one vertex v /∈ X (or both),
if such a cycle exists. We assign either the sign −1 or the sign +1 to each edge of C, so that for every
vertex v ∈ X ∩V (C), the edges incident with v in C have opposite signs. Note that this is possible due to
the conditions on C. As in Lemma 6, modifying the multiplicity in Pmulti of every edge in C by t ∈ {±1}
times the sign of the edge creates a new graph with an Euler (s′, t′)-trail that forms an r-simple path (in
particular, the maximum degree in Pmulti is up to 2r, and the degree of any vertex v ∈ V (C) \ X is at
most 2r − 2 before the modification). As in Lemma 6, the existence of such a modification contradicts
our choice of P . Thus we assume that every cycle in H is of odd length and lies entirely within X.

We can now bound |F2|. Consider first the multigraph H ′ formed by deleting all edges in H[X]. Then
H ′ is a simple forest (since H has no cycle that contains at least one vertex v /∈ X), for which X is a
vertex cover due to Property 1 in Lemma 23; hence it contains fewer than 2|X| edges. Furthermore, H[X]
itself is a cactus graph, hence contains fewer than (3/2)|X| edges (this is folklore). Thus

|F | = |F1| + |F2| < 2|X| + 2|X| + (3/2)|X| = 5.5|X|.

Hence the total number of distinct edges is less than

5.5|X| ≤ 5.5(|V (P, r)| + 2) ≤ 5.5(2k/r + 2) < 30k/r

as required. (We chose 30 simply because is it a sufficiently large constant that is easier to work with
than 5.5(2k/r + 2).)
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4.2 Partition into a Sparse Eulerian Multigraph and a Treewidth 2 Graph

Having Lemma 24 at hand, we could have continued our analysis with simplified arguments of those
presented for the directed case and thus obtain an algorithm that solves Undirected r-Simple k-Path

in time 2O( k
r
log( k

r
))(n+ log k)O(1) and polynomial space. However, in order to obtain a single-exponential

running time bound of 2O( k
r
)(n+ log k)O(1), we now take a very different route.

In this subsection, we gain a deeper understanding of the structure of a solution. The starting point
for this understanding is the following lemma.

Lemma 25. Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then, G has an
r-simple k-path P with fewer than 30(k/r) distinct edges, such that the edge multiset of Pmulti can be
partitioned into two multisets, M1 and M2, with the following properties:

• Pmulti restricted to M1 is a (simple) spanning tree of Pmulti, and

• Pmulti restricted to M2 has no even cycle of length at least 4.

Proof. Let e1, e2, . . . , em be some ordering of the edges in E(G). For any walk W , define (xW1 , x
W
2 , . . . , x

W
m )

be the vector where xi is equal to the number of times ei occurs in W for all i ∈ {1, 2, . . . ,m}. By Lemma
24, G has an r-simple k-path with fewer than 30(k/r) distinct edges. Among all such r-simple k-paths,
let P be one where (xP1 , x

P
2 , . . . , x

P
m) is lexicographically smallest. Let T be an arbitrary spanning tree of

Pmulti, and denote M1 = E(T ). In addition, denote M2 = E(Pmulti) \M1. (Note that M2 is a multiset: if
an edge e has x copies in Pmulti, then it has either x or x− 1 copies in M2.) Let H denote the restriction
of Pmulti to M2.

We claim that H has no even cycle of length at least 4. To prove this, suppose by way of contradiction
that H does have some even cycle C of length at least 4. Let C = v1 − v2 − v3 − · · · − vq − v1 such that
e = {v1, v2} is the leftmost edge among the edges in E(C) according to our predefined ordering of E(G).
Note that q ≥ 4 is even. In addition, denote U = {{vi, vi+1} : i ∈ {1, 2, . . . , q − 1}, i is odd}. Now, define
H ′ as the graph obtained from H by removing one copy of each edge in U and adding one copy of each
edge in E(C) \U . Then, every vertex has the same degree in H ′ and in H. Let Ĥ denote the multigraph
obtained by adding one copy of each edge in M1 into H ′. Then, every vertex has the same degree in Ĥ
and in Pmulti. Moreover, M1 ⊆ E(Ĥ) means that Ĥ has a spanning tree and hence it is connected. Since
Pmulti has an Euler (s, t)-trail for some vertices s, t ∈ V (G) (this trail is simply P ), by Theorem 8, Ĥ also
has an Euler (s, t)-trail, say Q. Then, Q is an r-simple k-path with the same (or fewer) number of distinct
edges as P . From our choice of {v1, v2}, it follows that (xQ1 , x

Q
2 , . . . , x

Q
m) is lexicographically smaller than

(xP1 , x
P
2 , . . . , x

P
m). However, this contradict our choice of P .

The usefulness in the second property in Lemma 25 is primarily due to the following result.

Proposition 1 (folklore, see [39, 45]). The treewidth of a graph with no even cycle is at most 2.

Having Proposition 1 at hand, we derive the following corollary to Lemma 25.

Corollary 2. Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then, G has an
r-simple k-path P with fewer than 30(k/r) distinct edges, such that the edge multiset of Pmulti can be
partitioned into two multisets, M1 and M2, with the following properties:

• Pmulti restricted to M1 is a (simple) spanning tree of Pmulti, and

• Pmulti restricted to M2 is a multigraph of treewidth 2.

Corollary 2 partitions some solution into two parts: a spanning tree and a multigraph of low treewidth.
However, for the DP approach considered later, we need the first part to have some Euler (s, t)-trail
rather than just be a spanning tree. The reason for this is that the two parts will be computed somewhat
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Figure 3: The construction in the proof of Lemma 26 with c = 4.

independently. In particular, if some vertices of the first part will have odd degrees, our algorithm cannot
ensure that each of these vertices will be reused an odd number of times (or even used at all) in the second
part. We can guarantee that a “color” (for some vertex-coloring defined later) will be used in total an
even number of times, but each part is “oblivious” to the identity of the vertices that “realize” this color
in the other part. (The endpoints of the solution walk will be an exception to the above—since these are
only two vertices, they can be guessed and thus handled easily.)

Before we proceed with our plan of having a new partition (based on the old one) of the edge multiset
of a solution, we would like to make another remark. At this point, the reader may wonder if such a
new partition is required, or whether we can bound the treewidth of the entire solution (for at least one
solution) by a constant. However, it can be proven that for some instances, all solutions correspond to
graphs with very high treewidth (in particular, of treewidth that cannot be bounded by a fixed constant).
This is of course not a contradiction to Corollary 2 since even the composition of two graphs of treewidth
1 (say, trees) can be a graph of huge treewidth (e.g., a huge grid). For the sake of completeness, let us
present a proof for this claim.

Lemma 26. Let r ≥ 5. For any constant c ∈ N, there exists a nice Yes-instance (G, k, r) of Undirected
r-Simple k-Path such that every r-simple k-path P in G satisfies the following property: the treewidth
of Psimple is larger than c.

Proof. Let G be a c × c grid graph, with edges added to make a 4-regular graph (e.g., a grid embedded
on a torus). We create a graph G′ by first replacing each edge uv of G by a path uxyv on four vertices,
where x, y are new vertices, and then adding a pendant vertex to every vertex (including those vertices
created by subdivision); see Fig. 3. Let W be the set of pendant vertices, and V ′ = V (G′) \W . Let P
be an r-simple path on G′ of maximum length. We will assume that P is a closed walk as the other case
can be treated similarly. Let H be the Euler multigraph induced by Pmulti on V ′. We show that H is a
(simple) graph and, moreover, H = G′[V ′].

First, observe that due to the pendant vertices, every vertex of V ′ has precisely r visits in P . Fur-
thermore, since fewer visits to v in H means more visits to the pendant vertex v′ of v, the total number
of visits to v and v′ is 2r − dH(v). Hence the total number of visits of P is∑

v∈V (H)

(2r − dH(v)) = 2r|V (H)| − 2|E(H)|. (1)

Observe that no edge uv can be of multiplicity at least 3 in H as otherwise by (1) we could remove two
copies of uv from P (and H) and add two copies of the edge between u and its pendant as well as two
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copies of the edge between v and its pendant, thereby increasing the size of P , a contradiction. It follows
that dH(v) ≤ 8 for every v ∈ V ′, since otherwise some edge of G′[V ′] has multiplicity at least 3 in H.

Next, we argue that H spans V ′. Indeed, assume that there is an edge uv ∈ E(G′[V ′]) where
{u, v} ∩ V (H) = {u}. Since r ≥ 5 and dH(u) ≤ 8, we may add two copies of the edge uv to H and
by (1) raise the size of P by 2r − 4 > 0.

Now, finally, let uv ∈ E(G), and let uxyv be the corresponding P4 in G′. Since P visits x and y, and
since H is Euler, P contains either the three edges ux, xy, yv or at least four edges, for example two
copies each of ux and xy. Thus |E(H)| ≥ 3|E(G)|, with equality only if the entire P4 in G′ is traversed
for every edge uv ∈ E(G). Hence, the longest possible r-simple walk on G′ spans the entire grid, and
therefore Psimple has treewidth c.

Towards the proof of the new partition, we first give the following simple lemma.

Lemma 27. Let G be a multigraph which has an Eulerian (s, t)-trail for some vertices s, t ∈ V (G). Then,
G has a subgraph H with the following properties:

• Every distinct edge in G occurs at least once in H.

• H has an Eulerian (s, t)-trail.

• H has only at most 2d edges (including multiplicities), where d is the number of distinct edges in
G.

Proof. By Theorem 8, G is connected, each vertex in V (G) \ {s, t} is of even degree, and either s = t is
of even degree, or s ̸= t are of odd degrees. For every edge e reduce its multiplicity µ to 1 if µ is odd and
2 if µ is even. Let us denote the resulting multigraph by H. Clearly, H is connected and every distinct
edge in G occurs at least once in H. Also, the number of edges of H is at most 2d, where d is the number
of distinct edges in G. Since to obtain H for every edge of G we decreased its multiplicity by an even
number (possibly, 0), each vertex of H is of the same degree parity in H and in G. Thus, by Proposition
8, H has an Eulerian (s, t)-trail.

Having Lemma 27, we can derive the following claim from Corollary 2.

Lemma 28. Let (G, k, r) be a nice Yes-instance of Undirected r-Simple k-Path. Then, G has an
r-simple k-path P with fewer than 30(k/r) distinct edges, such that the edge multiset of Pmulti can be
partitioned into two multisets, M1 and M2, with the following properties:

• Pmulti restricted to M1 is a spanning multigraph of Pmulti with fewer than 60(k/r) edges (including
multiplicities) that has an Eulerian (s, t)-trail where s and t are the end-vertices of P .

• Pmulti restricted to M2 is a multigraph of treewidth 2.

Proof. Consider the decomposition of the edges of Pmulti into M1 and M2 obtained in Corollary 2. Since
P is an Eulerian (s, t)-trail of Pmulti, by Lemma 27, Pmulti has a subgraph H such that every distinct
edge in Psimple occurs at least once in H, H has an Eulerian (s, t)-trail and H has fewer than 60(k/r)
edges (including multiplicities). Let M ′

1 = E(H). Because each edge in M1 has an occurrence in M ′
1 and

M1 is a set, without loss of generality, we may assume that M1 ⊆ M ′
1. Let M ′

2 = E(Pmulti) \M ′
1. Then,

M ′
2 ⊆ M2. Therefore, since Pmulti restricted to M2 is a multigraph of treewidth 2, so is Pmulti restricted

to M ′
2.
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4.3 Color Coding

Knowing that it suffices for us to deal only with solutions having a small number of distinct vertices
(in light of Lemma 28), we utilize the method of color coding to focus on the following problem. Here,
b(k/r) = 30k/r + 1.

Undirected Colorful r-Simple k-Path
Input: An n-vertex b(k/r)-colored undirected graph G and positive integers k, r.
Question/Objective: Output No if G has no r-simple k-path, and Yes if it has a colorful r-simple
k-path with fewer than 30(k/r) distinct edges.

With respect to this problem, when G has no r-simple k-path, the input is called a No-instance, and when
G has a colorful r-simple k-path with fewer than 30(k/r) distinct edges, the input is called a Yes-instance.
The explicit requirement of having fewer than 30(k/r) distinct edges is meant only to simplify Section
4.7. Notice that if the input is neither a Yes-instance nor a No-instance, then the output can be arbitrary.

The proof of the following lemma follows the lines of the proof of Lemma 9 where instead of Lemma
7, we use Lemma 28, and hence it is not repeated here.

Lemma 29. Suppose that Undirected Colorful r-Simple k-Path can be solved in time f(k/r) ·(n+
log k)O(1). Then, Undirected r-Simple k-Path can be solved in time 2O(k/r) · f(k/r) · (n+ log k)O(1).

4.4 Guessing the Occurrence Sequence of the Spanning Multigraph Part

We cannot guess the topology of the spanning multigraph part of a solution in a manner similar to guessing

a topology as in the case of digraphs, since trying every possibility already takes times 2O( k
r
log k

r
). Instead,

inspired by the work of Berger et al. [9] (which guess a degree-sequence of a certain tree), we only guess a
so called “occurrence sequence” of the spanning multigraph part of a solution. Let us first define a notion
that we call an occurrence sequence.

Definition 16. Let r, k ∈ N. An (r, k)-occurrence sequence is a tuple d = (d1, . . . , db(k/r)) that satisfies
the following conditions.

1. For all i ∈ {1, 2, . . . , b(k/r)}, di is an integer between 0 and r.

2.
∑b(k/r)

i=1 di ≤ 2b(k/r).

Let Dr,k be the set of all (r, k)-occurrence sequences.

We now show that the number of occurrence sequences is single-exponential.

Lemma 30. Let r, k ∈ N. Then, |Dr,k| = 2O(k/r).

Proof. Let Ds,r,k be the set of tuples d = (d1, d2, . . . , db(k/r)) of non-negative integers that satisfy
∑b(k/r)

i=1 di =

s. Then, Dr,k =
∪2b(k/r)
s=0 Ds,r,k. Thus, to prove that |Dr,k| = 2O(k/r), it suffices to show that for any

s ∈ {0, 1, . . . , 2b(k/r)}, it holds that |Ds,r,k| = 2O(k/r). The total number of non-negative integral solu-

tions to
∑b(k/r)

i=1 di = s can be found using the following well-known combinatorial reduction: consider
s identical balls placed in a row and set between them b(k/r) − 1 identical sticks (sticks may be placed
before the first ball and after the last ball). Now the value of di is the number of balls after the stick i− 1
and before the stick i (for i = 1 and i = b(k/r) − 1, this term refers to the number of balls before the
first stick and the number of balls after the last stick, respectively). Clearly, the number of placements of
sticks is

(
s+b(k/r)−1

s

)
< 2s+b(k/r) = 2O(k/r).

We now define what structures are good and comply with an occurrence sequence. Here, recall that
a multigraph H is called even if each of its connected components C has an Euler (s, t)-trail with s = t
for some s ∈ V (C). Equivalently (by Theorem 8), every vertex in H has even degree.
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Definition 17. Let r, k ∈ N. Let G be a b(k/r)-colored undirected graph. A pair (W,H) of an r-simple
path W in G and an even multigraph H whose underlying simple graph is a subgraph of G is q-good if
the following conditions are satisfied.

1. The treewidth of H is at most 2.

2. Every connected component of H has at least one vertex that is visited by W .

3. The multigraph H is colorful.

4. The sum of the number of edges visited by W and the number of edges (including multiplicities) of
H is q − 1.

If q is not specified, then q = k.

Definition 18. Let r, k ∈ N. Let G be a b(k/r)-colored undirected graph, and let d,d
′
be (r, k)-occurrence

sequences. A good pair (W,H) complies with d (resp. (d,d
′
)) if for every color i ∈ {1, 2, . . . , b(k/r)}, the

following two conditions are satisfied.

1. The number of times W visits vertices colored i is exactly di (resp. d
′
i).

2. The degree of any vertex colored i in H is at most 2(r − di).

Let us now argue that we can focus on seeking a pair (W,H) as in Definition 18.

Lemma 31. Let (G, k, r) be an instance of Undirected Colorful r-Simple k-Path.

1. If (G, k, r) is a Yes-instance, then there exist d ∈ Dr,k and a good pair that complies with d.

2. If there exist d ∈ Dr,k and a good pair that complies with d, then (G, k, r) is not a No-instance.

Proof. First statement. To prove the first statement, suppose that (G, k, r) is a Yes-instance. That is,
G has a colorful r-simple k-path, say P ′. Let G′ denote the subgraph of G induced by the set of vertices
visited by P ′. Then, no two vertices in G′ have the same color, and (G′, k, r) is a Yes-instance (since P ′ is
a colorful r-simple k-path in G′). By Lemma 28, G′ has an r-simple k-path P such that the edge multiset
of Pmulti can be partitioned into two multisets, M1 and M2, with the following properties:

• Pmulti restricted to M1 is a spanning multigraph of Pmulti with fewer than 60(k/r) edges (including
multiplicities) that has an Eulerian (s, t)-trail W where s and t are the end-vertices of P .

• Pmulti restricted to M2 is a multigraph of treewidth 2.

Necessarily, P is colorful. Let H be the restriction of Pmulti to M2. For all i ∈ {1, 2, . . . , b(k, r)}, let di
denote the number of times W visits the vertex colored i, and define d = (d1, d2, . . . , db(k,r)). We claim

that d ∈ Dr,k and that (W,H) is a good pair that complies with d.
Towards the proof of our claim, first note that since the size of W is at most 60(k/r), it holds that∑b(k/r)
i=1 di ≤ 2b(k/r). Moreover, since W is an r-simple path (because it is a submultigraph of Pmulti), no

vertex is visited by W more than r times, and since W is colorful (because P is colorful), this means that
di ≤ r for all i ∈ {1, 2, . . . , b(k, r)}. Thus, d ∈ Dr,k. Moreover, the definition of d directly ensures that
Condition 1 in Definition 18 is satisfied. In addition, since P is an r-simple path, and since the number
of times P visits any vertex equals the number of times W visits it plus half its degree in H, Condition
2 in Definition 18 is satisfied as well.

It remains to show that the pair (W,H) is good. Condition 1 in Definition 17 follows directly from
the assertion that Pmulti restricted to M2, which is precisely H, is a multigraph of treewidth 2. Since
Pmulti is a connected multigraph (since it has an Euler (s, t)-trail) and W visits every vertex of Pmulti at
least once, it follows that every connected component of H has at least one vertex that is visited by W .
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Thus, Condition 2 in Definition 17 is satisfied as well. By Theorem 8, because both Pmulti and Pmulti

restricted to M1 have Euler (s, t)-trails (where s and t are the end-vertices of P ), every vertex has even
degree in both Pmulti and Pmulti restricted to M1, except for s and t if s ̸= t—in this case, both s and
t have odd degree in both Pmulti and Pmulti restricted to M1. Thus, every vertex has even degree in H.
Next, Condition 3 in Definition 17 is satisfied because H is colorful (since it is a submultigraph of Pmulti

which is colorful). Lastly, Condition 4 in Definition 17 is satisfied because the sum of the number of edges
visited by W and the number of edges (including multiplicities) of H is precisely the number of edge visits
by P , which is k − 1.

Second statement. To prove the second statement, suppose that there exist some d ∈ Dr,k and a good
pair (W,H) that complies with d. Let R be the multigraph on V (Wsimple) ∪ V (H) and edge multiset
E(W ) ∪ E(H) (that is, the number of times an edge occurs in R is the sum of the number of times is
occurs in W and in H). By Condition 2 in Definition 17, R is connected. Thus, since W is a walk and
H is Eulerian, by Theorem 8, R admits an Euler (s, t)-trail P where s and t are the end-vertices of W .
By Definition 18, the degree of every vertex in R is at most 2r, and hence P must be an r-simple path.
In addition, from Condition 4 in Definition 17 it follows that the size of P is k. Thus, (G, k, r) is not a
No-instance.

Accordingly, we define the following problem.

(Walk,TW-2) Partition

Input: An n-vertex b(k/r)-colored undirected graph G, positive integers k, r, and d ∈ Dr,k.
Question/Objective: Does there exist a good pair that complies with d?

Let us now state that we can focus on solving the (Walk,TW-2) Partition problem.

Lemma 32. Suppose that (Walk,TW-2) Partition can be solved in time f(k/r) · (r + n+ log k)O(1).
Then, Undirected Colorful r-Simple k-Path can be solved in time 2O(k/r) ·f(k/r)·(r+n+log k)O(1).

Proof. Let A be an algorithm that solves (Walk,TW-2) Partition in time f(k/r) · (r+ n+ log k)O(1).
In what follows, we describe how to solve Undirected Colorful r-Simple k-Path. To this end, let
(G, k, r) be an instance of Undirected Colorful r-Simple k-Path. For each d ∈ Dr,k, we call A with
(G, k, r,d) as input, and if A returns Yes, so do we. At the end, if no call to A returned Yes, we return
No.

The correctness of our algorithm directly follows from Lemma 31. Now, note that by Lemma 30,
|Dr,k| = 2O(k/r). Thus, it is clear that our algorithm runs in time 2O(k/r) · f(k/r) · (r+ n+ log k)O(1).

4.5 Two-Level Dynamic Programming (DP)

We first give a lemma that handles a single connected component of the treewidth-2 multigraph H that
is a member of the pair we aim to find.

Lemma 33. There exists an 2O(k/r) · (r + n + log k)O(1)-time algorithm that, given an undirected graph
G where every vertex is assigned a color from {1, 2, . . . , b(k/r)}, a set of colors C ⊆ {1, 2, . . . , b(k/r)}, a
vertex v⋆ ∈ V (G) whose color belongs to C, and d = (d1, . . . , db(k/r)) ∈ Dr,k, outputs the largest integer
M for which there exists a colorful multigraph H that satisfies the following conditions.

1. For each v ∈ V (H), the degree of v in H is even and does not exceed 2(r − di) where i is the color
of v.

2. The underlying simple graph of H is a connected subgraph of G.

3. The treewidth of H is at most 2.

4. v⋆ ∈ V (H).
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5. The number of edges (including multiplicities) in H is exactly M.

6. Every vertex in H is colored by a color from C.

Proof. First, we remove all vertices in G whose color does not belong to C. In addition, we remove all
vertices in G whose color is the same as the color of v⋆ but which are not v⋆. For the sake of simplicity,
abuse notation and call the resulting graph G as well. Thus, we can now ignore Condition 6 since it
will be automatically satisfied. The proof is based on a standard DP over a tree decomposition (see,
e.g., [16]) with a slight technicality: we do not know the structure of H and hence we do not have the
tree decomposition over which the DP should be performed. Nevertheless, we can repeatedly “guess” the
current top bag and hence imitate a standard DP over an (unknown) tree decomposition. We remark
that DPs over so-called hidden tree decompositions are a well-known tool to design subexponential-time
algorithms for parameterized problems in Computational Geometry (see, e.g., [31, 6]).

We use a DP table N with an entry N[U,C ′, fdeg, gedg,S] for all U ⊆ V (G) of size at most 3, C ′ ⊆ C
that contains the colors of the vertices in U , fdeg : U → {0, 1, . . . , 2r} such that f(v) does not exceed
2(r − di) where i is the color of v for all v ∈ U , gedg : {{u, v} ∈ E(G) : u, v ∈ U} → {0, 1, . . . , 2r},
and partition S of U . The purpose of an entry N[U,C ′, fdeg, gedg,S] is to store the largest integer M for
which there exists a colorful multigraph H with a nice tree decomposition (T, β) that satisfy the following
conditions.

1. For each v ∈ V (H) \ U , the degree of v in H is even and does not exceed 2(r − di) where i is the
color of v. For each v ∈ U , the degree of v in H is fdeg(v).

2. For each {u, v} ∈ E(G) with u, v ∈ U , the multiplicity of {u, v} in H is gedg({u, v}).

3. The underlying simple graph of H is a subgraph of G. In addition, for all u, v ∈ U , it holds that
u, v belong to the same connected component of H if and only if u, v belong to the same part in S.
Furthermore, every connected component of H contains a vertex from U .

4. The width of (T, β) is at most 2, and β(r) = U for the root r of T .

5. The number of edges (including multiplicities) in H is exactly M .

6. The set of colors of the vertices in V (H) is precisely C ′.

Having computed N correctly, the final output is the maximum value stored in N[U,C ′, fdeg, gedg, S] over
all U ⊆ V (G) of size at most 3, C ′ ⊆ C such that C ′ contains the color of v⋆, fdeg : U → {0, 1, . . . , 2r}
such that fdeg(v) is even for all v ∈ U , gedg : {{u, v} ∈ E(G) : u, v ∈ U} → {0, 1, . . . , 2r}, and partition
S = {U}. In what follows, we show how to correctly compute N in time 2O(k/r) · (r + n + log k)O(1).
Here, every entry N[U,C ′, fdeg, gedg,S] should be computed before all entries N[Û , Ĉ, f̂deg, ĝedg, Ŝ] such

that either |C ′| < |Ĉ| or both |C ′| = |Ĉ| and |Û | < |U |.

Basis. If U = ∅ or C ′ = ∅, then N[U,C ′, fdeg, gedg,S] = 0 if both U = ∅ and C ′ = ∅, and N[U,C ′, fdeg, gedg,S] =
−∞ otherwise. Moreover, if the colors of the vertices in U are not contained in C ′, then also N[U,C ′, fdeg, gedg,S] =
−∞.

Step. Let N[U,C ′, fdeg, gedg,S] be an entry such that both U ̸= ∅ and C ′ contains the colors of the
vertices in U .
Then, N[U,C ′, fdeg, gedg,S] = max{F, I, J}, where F, I and J are computed as follows.

• Forget: If |U | = 3, then F = −∞.

Else, F is the maximum of the integers in N[U ∪{v}, C ′, f̂ , ĝ, Ŝ] over each vertex v ∈ V (G)\U , each
function f̂ : U ∪ {v} → {0, 1, . . . , 2r} that extends fdeg so that f̂(v) is even and does not exceed
2(r− di) where i is the color of v, each function ĝ : {{u, v} ∈ E(G) : u, v ∈ U} → {0, 1, . . . , 2r} that
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extends gedg, and each partition Ŝ of U ∪ {v} such that the part that contains v is of size at least
2 and if |U | = 2, then the two vertices in U are in the same part in S if and only if they are in the
same part in Ŝ.

• Introduce: I is the maximum of the sums N[U \ {ṽ}, C ′ \ {i}, f̂ , ĝ, Ŝ] + fdeg(ṽ) over each vertex

ṽ ∈ U , where i is the color of ṽ, each function f̂ : U \ {ṽ} → {0, 1, . . . , 2r}, where ĝ is the restriction
of gedg to {{u, v} ∈ E(G) : u, v ∈ U \ {ṽ}}, and each partition Ŝ of U \ {ṽ} that altogether satisfy
the following conditions.

1. fdeg(ṽ) =
∑

u∈U :{u,ṽ}∈E(G) gedg({u, ṽ}).

2. For each u ∈ U , fdeg(u) = f̂(u) + b where b = ĝ({u, ṽ}) if {u, ṽ} ∈ E(G) and b = 0 otherwise.

3. If |U | = 3 and the two vertices in U \ {ṽ} are in the same part in Ŝ, then they are also in the
same part in S.

4. For each u ∈ U with {u, ṽ} ∈ E(G) and gedg({u, ṽ}) ≥ 1, u, ṽ are in the same part in S.

5. For each u ∈ U with either {u, ṽ} /∈ E(G) or gedg({u, ṽ}) = 0, if u, ṽ are in the same part in S,
then there exists w ∈ U \ {u, ṽ} with {w, ṽ} ∈ E(G), ĝ({w, ṽ}) ≥ 1 and such that u,w are in
the same part in Ŝ.

(If there exists no entry N[U \{v}, C ′\{i}, f̂ , ĝ, Ŝ] that satisfies the conditions above, then I = −∞.)

• Join: J is the maximum of the sums

N[U,C1, f1, gedg,S1] + N[U,C2, f2, gedg,S2] −
∑

{u,v}∈E(G):u,v∈U

gedg({u, v})

over each C1 ⊆ C ′ that contains X being the set of colors of the vertices in U as well as at
least one other color, and which is not equal to C ′, where C2 = C ′ \ (C1 \ X), each pair of func-
tions f1 : U → {0, 1, . . . , 2r} and f2 : U → {0, 1, . . . , 2r} such that fdeg(v) = f1(v) + f2(v) −∑

{u,v}∈E(G):u∈U gedg({u, v}) for every v ∈ U , and each pair of partitions S1 and S2 of U such that
for all u, v ∈ U , u, v are in the same part in S if and only if u, v are in the same part in the finest
common coarsening of S1 and S2 (i.e., since |U | ≤ 3, either u and v are in the same part in S1 or
S2, or there exists w ∈ U \ {u, v} such that u and w are in the same part in Si and w and v in S3−i
for some i ∈ {1, 2}).

We now analyze the running time and prove the correctness of the algorithm.

Time Complexity. Notice that there are only 2O(k/r) · (r + n + log k)O(1) entries N[U,C ′, fdeg, gedg,S]
in N—indeed, there are 1 + n +

(
n
2

)
+

(
n
3

)
= nO(1) choices for U , 2|C| ≤ 2b(k/r) = 2O(k/r) choices for C ′,

at most (2r+ 1)3 choices for fdeg given U , at most (2r+ 1)(
3
2) = rO(1) choices for gedg given U , and O(1)

choices for S given U . We now claim that each entry in N is computed in time 2O(k/r) · (r+n+ log k)O(1).
Indeed, each entry in the basis is computed in O(1) time. For the step, the Forget case is computed in
time O(n · r · r2) as there are O(n) choices for v, O(r) choices for f̂(v), O(r2) choices how gedg is extended
by ĝ, and O(1) choices for S. The Introduce case is computed in time O(1) as there are O(1) choices for
ṽ, only one choice for f̂ due to Condition 2, and O(1) choices for Ŝ. The Join case is computed in time
2O(k/r) · r3 as there are at most 2|C| =≤ 2b(k/r) = 2O(k/r) choices for C1 and C2, at most O(r3) choices
for f1 and only one choice for f2 given f1, and at most O(1) choices for S1 and S2. Therefore, the total
running time is 2O(k/r) · (r + n+ log k)O(1).

Correctness. By using Theorem 2, the correctness of the computation can be proved by standard
induction on the structure of the recursion. For the sake of completeness, we give the proof that each
entry N[U,C ′, fdeg, gedg,S] stores the integer M in the definition of the purpose of this entry, which we
denote by MU,C′,fdeg,gedg,S . Let us denote the collection of pairs (H, (T, β)) that satisfy the six conditions
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except Condition 5 given in the definition of the purpose of this entry by HU,C′,fdeg,gedg,S . The induction
is on |C ′| where the basis also includes the other cases in the Basis of our algorithm.

In the Basis, when U = ∅, due to Condition 3 (specifically, that every connected component of H
contains a vertex from U), pairs in HU,C′,fdeg,gedg,S must correspond to empty graphs. Thus, if C ′ ̸= ∅,
there is no triple in this collection (due to Condition 6), and otherwise there is exactly one where the
number of edges is 0. For the same reason (Conditions 3 and 6), when C ′ = ∅, it must be that U = ∅
so that HU,C′,fdeg,gedg,S will not be empty, and when the colors of the vertices in U are not present in C ′,
HU,C′,fdeg,gedg,S is empty. This completed the correctness of the Basis.

Now, let us prove correctness for N[U,C ′, fdeg, gedg,S] that does not belong to the Basis, under the
assumption of correctness for all entries with a second argument (color set) of size smaller than |C ′|. Let
HF
U,C′,fdeg,gedg,S , HI

U,C′,fdeg,gedg,S and HJ
U,C′,fdeg,gedg,S denote the subcollections of pairs in HU,C′,fdeg,gedg,S

where the root of the tree decomposition is a forget node, an introduce node and a join node, respec-
tively. Because U ̸= ∅, no pair in HU,C′,fdeg,gedg,S has a root node that is a leaf node. From this,

we get that HU,C′,fdeg,gedg,S = HF
U,C′,fdeg,gedg,S ∪ HI

U,C′,fdeg,gedg,S ∪ HJ
U,C′,fdeg,gedg,S . Let MF

U,C′,fdeg,gedg,S ,

MF
U,C′,fdeg,gedg,S and MJ

U,C′,fdeg,gedg,S denote the maximum number of edges in a graph H of a pair in the

subcollections HF
U,C′,fdeg,gedg,S , HI

U,C′,fdeg,gedg,S and HJ
U,C′,fdeg,gedg,S . Then, due to Condition 5 and since

HU,C′,fdeg,gedg,S = HF
U,C′,fdeg,gedg,S ∪ HI

U,C′,fdeg,gedg,S ∪ HJ
U,C′,fdeg,gedg,S , we derive that MU,C′,fdeg,gedg,S =

max{MF
U,C′,fdeg,gedg,S ,M

F
U,C′,fdeg,gedg,S ,M

J
U,C′,fdeg,gedg,S}. Therefore, because the algorithm computes N[U,C ′, fdeg, gedg,S] =

max{F, I, J}, it suffices to prove that F = MF
U,C′,fdeg,gedg,S , I = M I

U,C′,fdeg,gedg,S and J = MJ
U,C′,fdeg,gedg,S .

We consider each of these cases separately below.

Proof for Forget Case: In case |U | = 3, then HF
U,C′,fdeg,gedg,S = ∅ because any pair (H, (T, β)) where

the root is a forget node whose bag is of size 3 must have as a child a node whose bag is of size 4, which
implies width at least 3, and hence cannot belong to HF

U,C′,fdeg,gedg,S (due to Condition 4). Thus, in this

case, MF
U,C′,fdeg,gedg,S = −∞, which is the value assigned to F .

Now, suppose that |U | ≤ 2. By the computation performed by the algorithm and the induc-
tive hypothesis, it suffices to prove that MF

U,C′,fdeg,gedg,S is equal to the maximum among the integers

M
U∪{v},C′,f̂ ,ĝ,Ŝ over each vertex v ∈ V (G) \ U , each function f̂ : U ∪ {v} → {0, 1, . . . , 2r} that ex-

tends fdeg so that f̂(v) is even and does not exceed 2(r − di) where i is the color of v, each function

ĝ : {{u, v} ∈ E(G) : u, v ∈ U} → {0, 1, . . . , 2r} that extends gedg, and each partition Ŝ of U ∪ {v} such
that the part that contains v is of size at least 2 and if |U | = 2, then the two vertices in U are in the same
part in S if and only if they are in the same part in Ŝ.

In one direction, to show that MF
U,C′,fdeg,gedg,S is equal or smaller than this maximum, consider a pair

(H, (T, β)) ∈ HF
U,C′,fdeg,gedg,S where the number of edges of H equals MF

U,C′,fdeg,gedg,S . Let (T ′, β′) be the

tree decomposition of H obtained from (T, β) when we remove the root of T . Then, to complete the
proof in this case, it suffices to show that (H, (T ′, β′)) ∈ H

U∪{v},C′,f̂ ,ĝ,Ŝ for some choice of v, f̂ , ĝ and Ŝ
considered in the definition of the maximum, as this will imply that the aforementioned maximum is at
least as large as the number of edges of H. Because the root of T is a forget node and U is its bag (by
Condition 4), there exists exactly one vertex v ∈ V (H) ⊆ V (G) that belongs to the top bag of T ′ but not
of T (and hence not to U). Define f̂ as the extension of f that assigns to v its degree in H. Also, define
ĝ as the extension of g that assigns to the edges incident to v and a vertex in U their multiplicity in H.
Lastly, let Ŝ be the partition of the top bag of T ′ where two vertices are in the same part if and only if
they are in the same connected component of H. It is clear that if |U | = 2, then the two vertices in U
are in the same part in S if and only if they are in the same part in Ŝ. The satisfaction of each condition
among Conditions 1–4 and 6 by (H, (T, β)) with respect to HF

U,C′,fdeg,gedg,S directly yields the satisfaction

of the same condition by (H, (T ′, β′)) with respect to H
U∪{v},C′,f̂ ,ĝ,Ŝ . Further, by Condition 1 satisfied

by (H, (T, β)) with respect to HF
U,C′,fdeg,gedg,S , we derive that f̂(v) is even and does not exceed 2(r − di)
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where i is the color of v, and by Condition 3 satisfied by (H, (T, β)) with respect to HF
U,C′,fdeg,gedg,S , we

also derive that the part that contains v in Ŝ is of size at least 2. As argued above, this completes the
proof of this direction.

In the other direction, to show that MF
U,C′,fdeg,gedg,S is equal or larger than the aforementioned maxi-

mum, consider an integer M
U∪{v},C′,f̂ ,ĝ,Ŝ that attains this maximum, and consider a pair (H, (T ′, β′)) ∈

H
U∪{v},C′,f̂ ,ĝ,Ŝ where the number of edges of H equals M

U∪{v},C′,f̂ ,ĝ,Ŝ . Define (T, β) as the tree decompo-

sition of H obtained from (T ′, β′) by adding a new root node with the previous root node as its only child,
whose bag is U . Then, the root is a forget node. Now, to complete the proof in this case, it suffices to
show that (H, (T, β)) ∈ HF

U,C′,fdeg,gedg,S . However, this follows immediately, since he satisfaction of each

condition among Conditions 1–4 and 6 by (H, (T ′, β′)) with respect to H
U∪{v},C′,f̂ ,ĝ,Ŝ directly yields the

satisfaction of the same condition by (H, (T, β)) with respect to HF
U,C′,fdeg,gedg,S .

Proof for Introduce Case: By the computation performed by the algorithm and the inductive hypoth-
esis, it suffices to prove that M I

U,C′,fdeg,gedg,S is equal to the maximum among the sums M
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ +

fdeg(ṽ) over each vertex ṽ ∈ U , where i is the color of ṽ, each function f̂ : U \ {ṽ} → {0, 1, . . . , 2r}, where

ĝ is the restriction of gedg to {{u, v} ∈ E(G) : u, v ∈ U \ {ṽ}}, and each partition Ŝ of U \ {ṽ} that
altogether satisfy the following requirements (we will refer to the conditions below as requirements as to
distinguish between them and Conditions 1–6 in the definition of the meaning of a table entry).

1. fdeg(ṽ) =
∑

u∈U :{u,ṽ}∈E(G) gedg({u, ṽ}).

2. For each u ∈ U , fdeg(u) = f̂(u) + b where b = ĝ({u, ṽ}) if {u, ṽ} ∈ E(G) and b = 0 otherwise.

3. If |U | = 3 and the two vertices in U \ {ṽ} are in the same part in Ŝ, then they are also in the same
part in S.

4. For each u ∈ U with {u, ṽ} ∈ E(G) and gedg({u, ṽ}) ≥ 1, u, ṽ are in the same part in S.

5. For each u ∈ U with either {u, ṽ} /∈ E(G) or gedg({u, ṽ}) = 0, if u, ṽ are in the same part in S, then
there exists w ∈ U \ {u, ṽ} with {w, ṽ} ∈ E(G), ĝ({w, ṽ}) ≥ 1 and such that u,w are in the same
part in Ŝ.

In one direction, to show that M I
U,C′,fdeg,gedg,S is equal or smaller than this maximum, consider a pair

(H, (T, β)) ∈ HI
U,C′,fdeg,gedg,S where the number of edges of H equals M I

U,C′,fdeg,gedg,S . Because the root

of (T, β) is an introduce node, there exists (exactly one) vertex ṽ that belongs to the bag of the root
of T (which equals U), but not to the bag of its child. Let H ′ be the graph obtained from H by
removing ṽ (and all edges incident to it), and let (T ′, β′) be the tree decomposition of H ′ obtained from
(T, β) when we remove the root of T . Then, to complete the proof in this case, it suffices to show that
(H ′, (T ′, β′)) ∈ H

U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ for some choice of v, f̂ , ĝ and Ŝ considered in the definition of the

maximum, as this will imply that the aforementioned maximum is at least as large as the number of
edges of H ′ plus fdeg(ṽ) (which is equal to the degree of ṽ in H because (H, (T, β)) ∈ HI

U,C′,fdeg,gedg,S),

which equals the number of edges of H. Notice that we have already chosen ṽ (and that ṽ ∈ U and hence
considered by the algorithm), and that the choice of g̃ is unique. Moreover, the choice of f̂ is unique as
well due to Requirement 2 above. Thus, we define f̂ and ĝ accordingly. We choose Ŝ as the partition of
U \ {ṽ} where two vertices are in the same part if and only if they are in the same connected component
of H ′. Because (H, (T, β)) ∈ HI

U,C′,fdeg,gedg,S , we know that (gedg and hence also) g̃ assigns to each edge

in its domain its multiplicity in H ′, and that two vertices are in the same part in S if and only if they
are in the same connected component in H. Thus, as H ′ is obtained from H by the removal of ṽ, we
immediately get that Requirements 3–5 are satisfied by the partition Ŝ that we have defined. It remains
to prove that (H ′, (T ′, β′)) ∈ H

U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ . The satisfaction of each condition among Conditions 1–4
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and 6 by (H, (T, β)) with respect to HI
U,C′,fdeg,gedg,S directly yields the satisfaction of the same condition

by (H ′, (T ′, β′)) with respect to H
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ . This completes the proof of this direction.

In the other direction, to show that M I
U,C′,fdeg,gedg,S is equal or larger than the aforementioned max-

imum, consider an integer M
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ + fdeg(ṽ) that attains this maximum, and consider a pair

(H ′, (T ′, β′)) ∈ H
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ where the number of edges of H ′ equals M

U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ . Define H

as the graph obtained from H ′ by adding ṽ to H ′, as well as an edge from ṽ to each u ∈ U \ ṽ that is a
neighbor of ṽ in G with multiplicity gedg({ṽ, u}). Define (T, β) as the tree decomposition of H obtained
from (T ′, β′) by adding a new root node with the previous root node as its only child, whose bag is U .
Then, the root is an introduce node. Now, to complete the proof in this case, it suffices to show that
(H, (T, β)) ∈ HI

U,C′,fdeg,gedg,S—indeed, this follows as the number of edges of H equals the number of

edges of H ′ plus
∑

u∈U :{u,ṽ}∈E(G) gedg({ṽ, u}) where the latter sum equals fdeg(ṽ) by Requirement 1).

The satisfaction of Condition 2 by (H, (T, β)) with respect to HI
U,C′,fdeg,gedg,S directly follows from the

satisfaction of this condition by (H ′, (T ′, β′)) with respect to H
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ and the definition of H

(for the edges not in H ′). Then, because this condition is satisfied, we also get that the satisfaction of
Condition 1 by (H, (T, β)) with respect to HI

U,C′,fdeg,gedg,S follows from the satisfaction of this condition by

(H ′, (T ′, β′)) with respect to H
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ and Requirements 1 and 2. The satisfaction of Condition 3

by (H, (T, β)) with respect to HI
U,C′,fdeg,gedg,S follows from the satisfaction of the second condition and this

condition by (H ′, (T ′, β′)) with respect to H
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ , the definition of H and Requirements 3–5.

The satisfaction of Condition 4 by (H, (T, β)) with respect to HI
U,C′,fdeg,gedg,S follows from the satisfaction

of this condition by (H ′, (T ′, β′)) with respect to H
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ . Lastly, the satisfaction of Condition

6 by (H, (T, β)) with respect to HI
U,C′,fdeg,gedg,S follows from the satisfaction of the second conditions and

this condition by (H ′, (T ′, β′)) with respect to H
U\{ṽ},C′\{i},f̂ ,ĝ,Ŝ and because i is the color of ṽ.

Proof for Join Case: By the computation performed by the algorithm and the inductive hypothesis, it
suffices to prove that MJ

U,C′,fdeg,gedg,S is equal to the maximum among the sums

MU,C1,f1,gedg,S1 +MU,C2,f2,gedg,S2 −
∑

{u,v}∈E(G):u,v∈U

gedg({u, v})

over each C1 ⊆ C ′ that contains X being the set of colors of the vertices in U as well as at least one other
color, and which is not equal to C ′, where C2 = C ′\(C1\X), each pair of functions f1 : U → {0, 1, . . . , 2r}
and f2 : U → {0, 1, . . . , 2r} such that fdeg(v) = f1(v)+f2(v)−

∑
{u,v}∈E(G):u∈U gedg({u, v}) for every v ∈ U ,

and each pair of partitions S1 and S2 of U such that for all u, v ∈ U , u, v are in the same part in S if and
only if u, v are in the same part in the finest common coarsening of S1 and S2 (i.e., since |U | ≤ 3, either
u and v are in the same part in S1 or S2, or there exists w ∈ U \ {u, v} such that u and w are in the same
part in Si and w and v in S3−i for some i ∈ {1, 2}).

In one direction, to show that MJ
U,C′,fdeg,gedg,S is equal or smaller than this maximum, consider a

pair (H, (T, β)) ∈ HJ
U,C′,fdeg,gedg,S where the number of edges of H equals MJ

U,C′,fdeg,gedg,S . Because the

root r of (T, β) is a join node, it has exactly two children, r1 and r2, having the same bag as r (which
is U). For i ∈ {1, 2}, let Hi be the subgraph of H induced by the union of bags of the descendants
of ri (along with ri itself), and let (Ti, βi) be the tree decomposition of Hi that is the restriction of
(T, β) induced by all nodes (and their bags) that are descendants of ri (along with ri itself). Then, we
claim that to complete the proof in this case, it suffices to show that (H1, (T1, β1)) ∈ HU,C1,f1,gedg,S1 and
(H2, (T2, β2)) ∈ HU,C2,f2,gedg,S2 for some choice of C1, C2, f1, f2,S1 and S2 considered in the definition of
the maximum. Indeed, this will imply that the aforementioned maximum is at least as large as the sum
of the number of edges in H1 plus the number of edges in H2 minus

∑
{u,v}∈E(G):u,v∈U gedg({u, v}), which

is precisely the number of edges in H due to Condition 2 and as each edge in H appears in at least one
among H1 and H2 where only the edges between the vertices in U appear in both. For each i ∈ {1, 2},
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we choose Ci as the set of colors of the vertices in Hi, fi the function that assigns to each vertex in U its
degree in Hi, and Si the partition of U where two vertices are in the same part if and only if they are in
the same connected component of Hi. It is clear that for each i ∈ {1, 2}, due to the definition of Ci, fi
and Si, the satisfaction of Conditions 1–4 and 6 by (H, (T, β)) with respect to HJ

U,C′,fdeg,gedg,S implies the

satisfaction of these conditions by (Hi, (Ti, βi)) with respect to HU,Ci,fi,gedg,Si
. It remains to show that

our choice of C1, C2, f1, f2,S1 and S2 is considered in the definition of the maximum. First, notice that
C1 ⊆ C ′ and C2 = C ′ \ (C1 \X) since C1 is the set of colors used in H1, and C2 is the set of colors used
in H2, where the union of H1 and H2 yields H (whose set of used colors is C ′) where the set of common
vertices is precisely X and hence the set of their colors is precisely the set of common colors (because H
is colorful). Next, we need to argue that fdeg(v) = f1(v) + f2(v) −

∑
{u,v}∈E(G):u∈U gedg({u, v}) for every

v ∈ U (the fact that both assign values upper bounded by 2r follows from the fact that H, and hence
also H1 and H2, have maximum degree upper bounded by 2r). To this end, notice that fdeg(v) is the
degree of v in H, and that each edge incident to v in H appears in at least one of H1 and H2 where the
only edges appearing in both are those between v and vertices in U . Thus, the equality follows from the
definition of f1 and f2. Lastly, we need to argue that for all u, v ∈ U , u, v are in the same part in S if
and only if u, v are in the same part in the finest common coarsening of S1 and S2. However, this directly
follows from the definition of S1 and S2 and since any two vertices in U are in the same part in S if and
only if they are in the same connected component of H.

In the other direction, to show that MJ
U,C′,fdeg,gedg,S is equal or larger than the aforementioned maxi-

mum, consider a sum

MU,C1,f1,gedg,S1 +MU,C2,f2,gedg,S2 −
∑

{u,v}∈E(G):u,v∈U

gedg({u, v})

that attains this maximum, and for each i ∈ {1, 2}, consider a pair (Hi, (Ti, βi)) ∈ HU,Ci,fi,gedg,Si
where the

number of edges of Hi equals MU,Ci,fi,gedg,Si
. Define H as the graph whose vertex set and edge set (with

multiplicities) are the union of the vertex sets and edge sets of H1 and H2, respectively, where the edge
multiplicites between vertices in U are only taken from, say, H1. Define (T, β) as the tree decomposition
of H obtained by introducing a new node r as a root whose bag is U , and attaching it as the parent of
the root of T1 and the root of T2 and assigning bags accordingly as done by β1 and β2. Then, for each
i ∈ {1, 2}, the root of Ti is assigned U as its bag (because (Hi, (Ti, βi)) ∈ HU,Ci,fi,gedg,Si

), and hence the
root of (T, β) is a join node. Now, we argue that to complete the proof in this case, it suffices to show that
(H, (T, β)) ∈ HJ

U,C′,fdeg,gedg,S . To see this, observe that the only common vertices of H1 and H2 are those

in U because H1 and H2 are colorful, C1 is the set of colors of H1 and C2 is the set of colors of C2 (due
to membership in HU,Ci,fi,gedg,Si

for the corresponding i ∈ {1, 2}), while C2 = C ′ \ (C1 \X). Moreover,
the edges and their multiplicities between vertices in U are the same in H1 and H2 and equal to the
values specified by gedg (again, due to this membership). Thus, the number of edges of H is the number
of edges of H1 plus the number of edges of H2 minus

∑
{u,v}∈E(G):u,v∈U gedg({u, v}). Finally, notice that

the satisfaction of Conditions 1 by (H, (T, β)) with respect to HJ
U,C′,fdeg,gedg,S directly follows from the

satisfaction of these conditions by (Hi, (Ti, βi)) with respect to HU,Ci,fi,gedg,Si
for each i ∈ {1, 2} and due

to the restrictions on the choice of C1, C2, f1, f2,S1 and S2.

We are now ready to solve the (Walk,TW-2) Partition problem.

Lemma 34. (Walk,TW-2) Partition can be solved in time 2O(k/r) · (r + n+ log k)O(1).

Proof. Let A denote the algorithm in Lemma 33. We now describe a DP procedure to solve (Walk,TW-
2) Partition. To this end, we let (G, k, r,d = (d1, . . . , db(k/r))) be an instance of (Walk,TW-2)

Partition. We have a DP table N with an entry N[v,d
′
, C] for every vertex v ∈ V (G), occurrence

sequence d
′

= (d′1, . . . , d
′
b(k/r)) such that d′i ∈ {0, . . . , di} for every i ∈ {1, . . . , b(k/r)}, and set of colors

C ⊆ {1, . . . , b(k/r)}.
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The purpose of each entry N[v,d
′
, C] is to store the largest integer M such that there exists an M -good

pair (W,H) (i.e., M = |E(W )|+ |E(H)|) which complies with (d,d
′
), where v is an end-vertex of W , and

where the set of colors of vertices in H is a subset of C. The order of computation is non-decreasing with

respect to
∑b(k/r)

i=1 d′i.

In the DP basis, we consider every entry N[v,d
′
, C] that satisfies

∑b(k/r)
i=1 d′i ≤ 1, and let c be the color

of v. If d′c ̸= 1, then N[v,d
′
, C] = −∞. Else N[v,d

′
, C] is the maximum of 0 and the output of algorithm

A when called with input (G,C, v,d).

For the DP step, we consider every entry N[v,d
′
, C] that satisfies

∑b(k/r)
i=1 d′i ≥ 2. Let c be the color

of v. If d′c = 0, then N[v,d
′
, C] = −∞. Now, suppose that d′c ≥ 1. Denote d

′′
= (d′′1, . . . , d

′′
b(k/r)) where

d′′c = d′c − 1 and d′′i = d′i for all i ∈ {1, . . . , b(k/r)} \ {c}. In addition, for every subset C ′ ⊆ C, let AC′ be
the output of algorithm A when called with input (G,C ′, v,d). Then,

N[v,d
′
, C] = max

u:{u,v}∈E(G)

(
max

{
1 + N[u,d

′′
, C], max

C′⊆C
(AC′ + 1 + N[u,d

′′
, C \ C ′])

})
.

After the DP computation is complete, we return Yes if and only if there exists an entry N[v,d, C] for
some v ∈ V (G) and C ⊆ {1, . . . , b(k/r)} that stores an integer that is at least k − 1.

Time Complexity. The table N has 2O(k/r)n entries since there are n choices of v, 2O(k/r) choices for
d
′

(by Lemma 30), and 2|C| = 2b(k/r) = 2O(k/r) choices for C ′. The computation of each entry entails at
most n2O(k/r) calls to the algorithm in Lemma 33, and each call takes time 2O(k/r) · (r + n + log k)O(1).
Thus, the total running time of our algorithm is 2O(k/r) · (r + n+ log k)O(1).

Correctness. The correctness of our algorithm can be verified by a simple induction on
∑b(k/r)

i=1 d′i. For

the sake of completeness, we give the details. For any entry N[v,d
′
, C], let P

v,d
′
,C

be the collection of all

good pairs (W,H) that comply with d
′
, where v is an end-vertex of W , and where the set of colors of

vertices in H is C, and let M
v,d

′
,C

denote the maximum number of edges (with multiplicities) in a pair

in P
v,d

′
,C

. Then, we need to prove that for each entry, N[v,d
′
, C] = M

v,d
′
,C

.

In the basis, consider an entry N[v,d
′
, C] such that

∑b(k/r)
i=1 d′i. First, notice that P

v,d
′
,C

is empty

when d′c ̸= 1 where c is the colors of v, and hence the assignment of −∞ is correct. Now, suppose that

d′c = 1. On the one hand, any q-good pair (W,H) (for any q) that complies with (d,d
′
) must be such

that W consists of a single vertex. Adding the demand that the last (and only) vertex of W is v and
H uses exactly the colors in C, we get that (W,H) ∈ P

v,d
′
,C

must be such that W consists only of v

and that the set of colors of H must beC (and hence H satisfies Constraint 6 in Lemma 33). Further,
H must be either empty or contain a vertex from W (by the second requirement in the definition of a
q-good pair); in the latter case, H must contain v (and hence satisfy Constraint 4 in Lemma 33) as well

as satisfy Constraints 1, 3 and 6 in Lemma 33 (because (W,H) is a q-good pair that complies with d
′
).

Thus, when H is not empty, the output of the algorithm in Lemma 33 (due to Constraint 5) is at least

as large as |E(H)|. From this, we get that N[v,d
′
, C] ≥ M

v,d
′
,C

. On the other hand, notice that any

pair (W,H) where W consists only of v and H is either empty or any multigraph that can attain the
maximum returned by Lemma 33 belongs to P

v,d
′
,C

due to the constraints in this lemma, and therefore

we also have that N[v,d
′
, C] ≤M

v,d
′
,C

. Thus, the basis is correct.

Now, we prove correctness for an entry N[v,d
′
, C] such that

∑b(k/r)
i=1 d′i ≥ 2 under the assumption of

correctness for all entries N[v′′,d
′′
, C ′′] where d

′′
is such that

∑b(k/r)
i=1 d′′i <

∑b(k/r)
i=1 d′i. Let c be the color

of v, and let d
′′

be as defined by the algorithm when it computes N[v,d
′
, C], that is, d

′′
= (d′′1, . . . , d

′′
b(k/r))

where d′′c = d′c − 1 and d′′i = d′i for all i ∈ {1, . . . , b(k/r)} \ {c}. By the inductive hypothesis and the
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formula used by the algorithm, we need to prove that

M
v,d

′
,C

= max
u:{u,v}∈E(G)

(
max

{
1 +M

u,d
′′
,C
, max
C′⊆C

(AC′ + 1 +M
u,d

′′
,C\C′)

})
.

Let us denote the left hand side above by Q.
In one direction, to prove that M

v,d
′
,C

≤ Q, consider a pair (W,H) ∈ P
v,d

′
,C

whose number of edges

(including multiplicities) is M
v,d

′
,C

. Let W ′′ denote W without its last vertex (and edge) occurrence,

and let u denote the last vertex of W ′. Then, {u, v} ∈ E(G). In case H does not contain v, we
immediately get that (W ′′,H) ∈ P

u,d
′′
,C

, which means that M
u,d

′′
,C

≥ |E(W ′′)| + |E(H)|, and therefore

Q ≥ 1 + M
u,d

′′
,C

≥ 1 + |E(W ′′)| + |E(H)| = |E(W )| + |E(H)| = M
v,d

′
,C

. Next, suppose that H has

some connected component H ′ that contains v, and let H ′′ denote the graph H without H ′. Let C ′

be the set of colors used by Hv, and denote C ′′ = C \ C ′. Then, because H is colorful, the set of
colors used by vertices in H ′′ is precisely C ′′. First, notice that (W ′′,H ′′) ∈ P

u,d
′′
,C′′ , which means that

M
u,d

′′
,C′′ ≥ |E(W ′′)|+ |E(H ′′)| = |E(W )| − 1 + |E(H)| − |E(Hv)| = M

v,d
′
,C

− 1− |E(Hv)|, and therefore

Q ≥ AC′ + 1 +M
u,d

′′
,C′′ ≥M

v,d
′
,C

+AC′ − |E(Hv)|. Hence, it remains to prove that AC′ ≥ |E(Hv)|. To

this end, it suffices to prove that Hv satisfies the conditions in Lemma 33 with respect to v, Cv and d
′
.

The satisfaction of all of these conditions directly follows because (W,H) is a q-good pair that complies

with (d,d
′
).

In the other direction, to prove that M
v,d

′
,C

≥ Q, we consider two cases. In the first case, suppose

that the maximum with respect to Q is attained by 1 + M
u,d

′′
,C

for some neighbor u of v, and consider

a pair (W ′′,H) ∈ P
u,d

′′
,C

whose number of edges (including multiplicities) is M
u,d

′′
,C

. Define W as

the walk obtained from W ′′ by visiting v after u at the end. Because (W ′′,H) ∈ P
u,d

′′
,C

, we derive

that (W,H) ∈ P
u,d

′
,C

. Because |E(W )| = |E(W ′′)| + 1, this means that M
v,d

′
,C

≥ |E(W )| + |E(H)| =

1 + (|E(W ′′)|+ |E(H)|) = 1 +M
u,d

′′
,C

= Q. In the second case, suppose that the maximum with respect

to Q is attained by AC′ + 1 + M
u,d

′′
,C\C′ for some neighbor u of v and subset C ′ ⊆ C. Consider a

pair (W ′′,H ′′) ∈ P
u,d

′′
,C\C′ whose number of edges (including multiplicities) is M

u,d
′′
,C\C′ as well as a

multigraph H ′ that satisfies the conditions in Lemma 33 with respect to d, C ′, v and M = AC′ . Define W
as the walk obtained from W ′′ by visiting v after u at the end, and H as the graph obtained by taking the
union of H ′′ and H ′. Because (W ′′,H ′′) ∈ P

u,d
′′
,C\C′ and due to the conditions in Lemma 33, we derive

that (W,H) ∈ P
u,d

′
,C

. Because |E(W )| = |E(W ′′)|+1 and |E(H)| = |E(H ′′)|+ |E(H ′)| = |E(H ′′)|+AC′ ,

this means that M
v,d

′
,C

≥ |E(W )|+ |E(H)| = 1+(|E(W ′′)|+ |E(H ′′)|)+AC′ = 1+M
u,d

′′
,C\C′ +AC′ = Q.

This completes the proof.

4.6 Proof of Lemma 20

By Lemma 34, (Walk,TW-2) Partition can be solved in time 2O(k/r) · (r + n + log k)O(1). Thus, by
Lemma 32, Undirected Colorful r-Simple k-Path can be solved in time 2O(k/r) · (r+n+ log k)O(1).
In turn, by Lemma 29, Undirected r-Simple k-Path can be solved in time 2O(k/r) · (r+n+ log k)O(1),
which completes the proof.

4.7 Bounding r

In what follows, we focus on the proof of Lemma 21. Without loss of generality, we implicitly suppose
that given an instance (G, k, r) of Special Undirected r-Simple k-Path, the graph G is connected,
else the problem can be solved by considering each connected component separately.

Bounding the Vertex Cover Number. The reason why the case where r >
√
k is simpler than the

general case lies in the following lemma.
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Lemma 35. Let (G, k, r) be an instance of Special Undirected r-Simple k-Path. If G has a match-
ing of size ⌈k/r⌉, then (G, k, r) is a Yes-instance.

Proof. Suppose thatG has a matchingM of size s = ⌈k/r⌉, and denoteM = {{u1, v1}, {u2, v2}, . . . , {us, vs}}.
For every i ∈ {1, 2, . . . , s − 1}, let Pi denote an arbitrary path in G from vi to ui+1 (such a path exists
since G is assumed to be connected). Consider the following walk:

W = u1 − v1 − P1 − u2 − v2 − P2 − · · · − us−1 − vs−1 − Ps−1 − us − vs.

For every i ∈ {1, 2, . . . , s − 1}, let occi denote the maximum of the number of occurrences of ui in W
and the number of occurrences of vi in W . Note that each vertex occurs at most once in each path Pj ,
j ∈ {1, 2, . . . , s − 1}. In particular, occi ≤ s ≤ r for all i ∈ {1, 2, . . . , s}. To describe our modification of
W we need the following notation: for every i ∈ {1, 2, . . . , s}, let Qi denote the (ui, vi)-walk that traverses
the edge {ui, vi} several times such that each vertex among ui and vi occurs in Qi exactly r − occi + 1
times. Now, we modify W as follows:

W ′ = Q1 − P1 −Q2 − P2 − · · · −Qs−1 − Ps−1 −Qs.

Then, every vertex occurs at most r times in W ′. Moreover, for every i ∈ {1, 2, . . . , s}, at least one among
the vertices ui and vi occurs exactly r times in W ′. Thus, the size of W ′ is at least s · r = ⌈k/r⌉ · r ≥ k.
Thus, G has an r-simple k-path.

Since the set of endpoints of any maximal matching is a vertex cover, and a maximal matching can be
computed greedily in polynomial time, we derive the following corollary. Here, 2⌈k/r⌉ ≤ 2(k/r+1) ≤ 3k/r
because we can assume that k/r ≥ 2 (else, (G, k, r) is a Yes-instance if and only if G is not edgeless).

Corollary 3. There exists a polynomial-time algorithm that, given an instance (G, k, r) of Special
Undirected r-Simple k-Path, either correctly concludes that it is a Yes-instance or outputs a vertex
cover of G of size at most 2⌈k/r⌉ ≤ 3k/r.

Color Coding and Vertex Guessing. We define the following problem.

Special Undirected Colorful r-Simple k-Path
Input: An n-vertex b(k/r)-colored undirected graph G, positive integers k, r, and a vertex cover U
of G of size at most 3k/r where each vertex in U has a unique color.
Question/Objective: Output No if G has no r-simple k-path, and Yes if it has a colorful r-simple
k-path that visits every vertex in U and which has fewer than 30(k/r) distinct edges.

We refer to any instance where we must output No as a No-instance, and to any instance where we must
output Yes as a Yes-instance). Notice that if the input is neither a Yes-instance nor a No-instance, then
the output can be arbitrary.

Now, we have the following result.

Lemma 36. Suppose that Special Undirected Colorful r-Simple k-Path can be solved in time
f(k/r) · (n + log k)O(1). Then, Special Undirected r-Simple k-Path can be solved in time 2O(k/r) ·
f(k/r) · (n+ log k)O(1).

Proof. By Lemma 29, it suffices to show that Undirected Colorful r-Simple k-Path where r >
√
k

can be solved in time 2O(k/r) · f(k/r) · (n + log k)O(1). Let A be an algorithm that solves Special
Undirected Colorful r-Simple k-Path where r >

√
k in time f(k/r) ·(n+log k)O(1). Then, given an

instance (G, k, r) of Undirected Colorful r-Simple k-Path where r >
√
k, we first use the algorithm

in Corollary 3 to either correctly conclude that (G, k, r) is a Yes-instance or find a vertex cover U of G of
size at most 3k/r. For every subset U ′ ⊆ U , we call A with (G′, k, r, U ′) as input where G′ = G−X for
X = (U \ U ′) ∪ {v ∈ V (G) \ U : there exists a vertex in U ′ with the same color as v}. Thus, we obtain
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G′ from G by removing U \U ′ and all vertices with the same color as vertices from U ′. Notice that U ′ is
a vertex cover for G′. Then, we accept if and only if at least one of the calls accepts.

For correctness, first suppose that (G, k, r) is a Yes-instance, thus G has a colorful r-simple k-path
P . Let U ′ be the set of vertices in U visited by P . Because P is colorful, and by the choice of U ′, we
know that P does not visit any vertex in U \ U ′ as well as any vertex in G having the same color as
a vertex in U ′. Thus, when the algorithm examines this U ′, the call to A must return Yes (because P
is a colorful r-simple k-path in G′). On the other hand, if some call to A, say, with input (G′, k, r, U ′)
returned Yes, then G′ has an r-simple k-path, and therefore so does any supergraph of G′ including G.
For running time, recall that the algorithm in Corollary 3 runs in polynomial time. Since |U | ≤ 3k/r, the
algorithm makes only 2O(k/r) calls to algorithm A, which runs in time f(k/r) · (n+ log k)O(1). Thus, the
total running time is 2O(k/r) · f(k/r) · (n+ log k)O(1).

Occurrence Sequence. The presence of a small vertex cover gives rise to the definition of a problem
simpler than (Walk,TW-2) Partition, which we will be able to solve while having a polylogarithmic
(rather than polynomial) dependency on r. To this end, we need a new definition.

Definition 19. Let r, k ∈ N. Let G be a b(k/r)-colored undirected graph, and let U be a vertex cover
of G. In addition, let d = (d1, d2, . . . , db(k/r)) ∈ Dr,k. An r-simple path W in G is a d-fit if for every
color i ∈ {1, 2, . . . , b(k/r)}, the number of times W visits vertices colored i is exactly di. A function
φ : E(G) → N0 is a d-fit if (i) for every vertex v ∈ V (G),

∑
e∈E(G):v∈e φ(e) is an even number upper

bounded by 2(r − di) where i is the color of v, and (ii)
∑b(k/r)

i=1 di +
∑

e∈E(G) φ(e) ≥ k.

We define the the (Walk,Edges) Partition problem as follows.

(Walk,Edges) Partition
Input: An n-vertex b(k/r)-colored undirected graph G, positive integers k, r, and a vertex cover U
of G of size at most 3k/r where each vertex in U has a unique color, and an occurrence sequence
d = (d1, d2, . . . , db(k/r)) ∈ Dr,k where di ≥ 1 for every color i of a vertex in U .

Question/Objective: Do there exist both an r-simple path W in G that is a d-fit and a function
φ : E(G) → N0 that is a d-fit?

Importantly, the two objects that we seek in the (Walk,Edges) Partition problem are independent of
each other (unlike the case of (Walk,TW-2) Partition). Intuitively, the reason why we can allow this
independence is precisely because we know that the walk is going to visit every vertex of a vertex cover,
and hence no matter what the second object will be, we will necessarily obtain a connected multigraph
at the end when we combine the two. Now, let us formalize this intuition.

Lemma 37. Suppose that (Walk,Edges) Partition can be solved in time f(k/r)·(n+log k)O(1). Then,
Special Undirected Colorful r-Simple k-Path can be solved in time 2O(k/r) ·f(k/r) ·(n+log k)O(1).

Proof. Let A be an algorithm that solves (Walk,Edges) Partition in time f(k/r) · (n + log k)O(1).
We now describe how to solve Special Undirected Colorful r-Simple k-Path. To this end, let
(G, k, r, U) be an instance of Special Undirected Colorful r-Simple k-Path. For each d ∈ Dr,k

such that di ≥ 1 for every color i of a vertex in U , we call A with (G, k, r, U,d) as input, and if A return
Yes, so do we. At the end, if no call to A returned Yes, we return No.

By Lemma 30, |Dr,k| = 2O(k/r). Thus, it is clear that our algorithm runs in time 2O(k/r) · f(k/r) · (n+
log k)O(1). In what follows, we prove that our algorithm is correct.

In one direction, suppose that Special Undirected Colorful r-Simple k-Path is a Yes-instance.
Then, G has a colorful r-simple k-path P that visits all vertices in U and which has fewer than 30(k/r)
distinct edges. Then, Pmulti is a multigraph that has an Eulerian (s, t)-trail for some vertices s, t ∈ V (G).
From Lemma 27, we derive that Pmulti has a colorful r-simple (s, t)-walk W of length shorter than 60(k/r)
that visits every vertex visited by P . For every {1, 2, . . . , b(k/r)}, let di be the number of times vertices of
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color i occur in W . Then, W is a d-fit and necessarily, di ≥ 1 for every color i of a vertex in U . Moreover,
since W has length shorter than 60(k/r), d = (d1, d2, . . . , db(k/r)) ∈ Dr,k. Define φ : E(G) → N0

as follows: for every edge e ∈ E(G), let φ(e) be the number of times e is visited by P minus the
number of times it is visited by W . Since P is a colorful r-simple k-path, it immediately follows that
(i)

∑
e∈E(G):v∈e φ(e) is bounded by 2(r − di) where i is the color of v for every vertex v ∈ V (G), and

(ii)
∑b(k/r)

i=1 di +
∑

e∈E(G) φ(e) ≥ k. Here, the claim that each sum
∑

e∈E(G):v∈e φ(e) is even follows by
Theorem 8 and since both P and W are Eulerian (s, t)-trails with respect to graphs on the same vertex
set, which together imply that the parity of the number of occurrences of every vertex in P and in W is
the same.

In the other direction, suppose that our algorithm returns Yes. Then, there exists d ∈ Dr,k such that
di ≥ 1 for every color i of a vertex in U and (G, k, r, U,d) is a Yes-instance. Then, there exist both an
r-simple path W in G that is a d-fit and a function φ : E(G) → N0 that is a d-fit. We need the following
notations. First, let s and t denote the end-vertices of W . Let R denote the vertices in G incident to
at least one edge e ∈ E(G) such that φ(e) ≥ 1. In addition, let H denote the multigraph whose vertex
set consists of the vertices visited at least once by W and the vertices in R, and whose edge multiset is
defined as follows: for every edge e ∈ E(G), the number of copies of e in H is the number of occurrences
of e in W plus φ(e).

Since W is a d-fit and for every vertex v ∈ V (G),
∑

e∈E(G):v∈e φ(e) is an even number upper bounded
by 2(r − di) where i is the color of v, we have that in H, every vertex is incident to at most 2r edges,
every vertex apart from s and t has an even degree, and s and t either both have even degrees or both

have odd degrees. Moreover, since W is a d-fit and
∑b(k/r)

i=1 di +
∑

e∈E(G) φ(e) ≥ k, we conclude that if H
has an Euler (s, t)-trail, then this trail is necessarily an r-simple k-path in G. To this end, by Theorem 8,
it remains to prove that H is connected. For this purpose, first observe that since di ≥ 1 for every color
i of a vertex in U , and W is a d-fit, it holds that every two vertices in U are not only present in H, but
also connected by a path in H. Now, H has no isolated vertices (by its definition), and V (H) \ U is an
independent set in G. Thus, since every edge in H is a copy of an edge in G, it holds that every vertex in
V (H) \ U has (in H) at least one neighbor in U . This implies that H is connected, and hence the proof
is complete.

Notice that the existence of an r-simple path W in G that is a d-fit can be easily tested by using DP.
Indeed, we can just use a simplified version of the DP procedure in the proof of Lemma 34 that avoids
all calls to the external algorithm from Lemma 33 (since these calls only concern the construction of H);
for the details, see Appendix A. Thus, we have the following observation.

Observation 3. There is a 2O(k/r)(n+ log k)O(1)-time algorithm that, given an instance (G, k, r, U,d) of
(Walk,Edges) Partition, determines whether G has an r-simple path W that is a d-fit.

Flow Network. Finally, we construct a flow network to prove that the existence of a function φ that
is a d-fit can be tested in polynomial time.

Lemma 38. There is a polynomial-time algorithm that, given an instance (G, k, r, U,d) of the (Walk,Edges)
Partition problem, determines whether there exists a function φ : E(G) → N0 that is a d-fit.

Proof. To describe our algorithm A, let (G, k, r, U,d) be an instance of (Walk,Edges) Partition. For
every vertex v ∈ V (G), denote cv = r − di where i is the color of v. In addition, denote F =

∑
v∈V (G) cv

and ℓ = 2(k −
∑b(k/r)

i=1 di). We construct a flow network N with source s and sink t as follows.

• For every vertex v ∈ V (G), insert (into N) two new vertices, v1 and v2, the arc (v1, v2) of infinite
(upper) capacity and cost 1, and the arcs (s, v1) and (v2, t) both of (upper) capacity cv and cost 0.

• For every edge {u, v} ∈ E(G), insert (into N) the arcs (u1, v2) and (v1, u2) both of infinite (upper)
capacity and cost 0.
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The lower capacity of each arc is simply 0. We seek the minimum cost C required to send F units of
(integral) flow from s to t in N . This task can be performed in polynomial time [3]. (We stress that F and
capacities are represented in binary, and the running time is polynomial in the size of this representation.)
After performing this task, algorithm A checks whether C ≤ F − ℓ. (Intuitively, C ≤ F − ℓ means that
at least ℓ edges of cost 0 between vertices indexed 1 and 2 must be used.) If this condition is satisfied,
then A accepts, and otherwise it rejects.

Clearly, A runs in polynomial time, and it remains to show that our reduction is correct.

First direction. In one direction, suppose that there exists a function φ : E(G) → N0 that is a d-
fit. Let H denote the multigraph on vertex set V (G) and where every edge e ∈ E(G) has multiplicity
φ(e). Since for every vertex v ∈ V (G),

∑
e∈E(G):v∈e φ(e) is an even number, by Theorem 8 we have

that H is Eulerian. In particular, we can direct it such that every vertex has in-degree equal to its out-
degree, and denote the result by Ĥ. Now, we define a function f : A(N) → N0 as follows: for every arc
a = (u1, v2) ∈ A(N), let f(a) denote the multiplicity of (u, v) in Ĥ. For each arc a = (u1, u2) ∈ A(N),
let f(a) = cu −

∑
v ̸=u:a′=(u1,v2)∈A(N) f(a′). All other arcs (i.e., arcs incident to s or t) are assigned flow

equal to their capacities. If f is indeed a flow function, then it clearly sends F units of flow (since all arcs
incident to s and t have flow equal to their capacities). In addition, then the cost of f is equal to its flow

minus
∑

e∈E(G) φ(e), that is, F −
∑

e∈E(G) φ(e). Since
∑b(k/r)

i=1 di +
∑

e∈E(G) φ(e) ≥ k, the cost of f is at
most F − ℓ.

It remains to prove that f is a valid flow. It is immediate that the upper capacity constraints are
satisfied, and that flow preservation constraints on vertices of the form u1 are satisfied. Let us first
verify that the lower capacity constraints are satisfied. To this end, we verify that the flow on each arc
a ∈ A(N) is non-negative. It suffices to consider an arc of the form a = (u1, u2) ∈ A(N), else the claim
is immediate. To show that f(a) ≥ 0, we need to show that

∑
v ̸=u:a′=(u1,v2)∈A(N) f(a′) ≤ cu. This is

equivalent to showing that
∑

a=(u,v)∈A(Ĥ)
mul(a) ≤ r − di where i is the color of u in G and mul(a) is

the multiplicity of a in Ĥ. Since for every vertex v ∈ V (G),
∑

e∈E(G):v∈e φ(e) is an even number upper
bounded by 2(r− dj) where j is the color of v, it holds that u is incident to at most 2(r− dj) edges in H,

and hence to at most (r − dj) outgoing arcs in Ĥ. Thus the inequality is satisfied.
Next, we prove that the flow preservation constraints on vertices of the form u2 are satisfied. To this

end, consider some vertex u2 ∈ V (N). By the definition of f , we need to verify that u2 receives flow of
size exactly cu (since this is the amount of flow it sends to t). Observe that the amount of flow that u2
receives is precisely∑

v1:a=(v1,u2)∈A(N) f(a) = f((u1, u2)) +
∑

v ̸=u:a=(v1,u2)∈A(N) f(a)

=
(
cu −

∑
v ̸=u:a=(u1,v2)∈A(N) f(a)

)
+

∑
v ̸=u:a=(v1,u2)∈A(N) f(a).

Thus, we need to show that ∑
v ̸=u:a=(u1,v2)∈A(N)

f(a) =
∑

v ̸=u:a=(v1,u2)∈A(N)

f(a).

However, this follows from the fact that in Ĥ, every vertex (and hence in particular u) has in-degree equal
to its out-degree.

Second direction. In the other direction, suppose that C ≤ F − ℓ. Then, there exists a flow function
f : A(N) → N0 that sends F units of flow from s to t and whose cost is at most F − ℓ. We define a
function φ : E(G) → N0 as follows: for every edge e = {u, v} ∈ E(G), let φ(e) = f((u1, v2)) + f((v1, u2)).
In what follows, we show that φ is a d-fit.

Since f sends F units of flow, all arcs incident to s and t must transfer flow equal to their capacity.
Due to the flow conservation constraints (and lower capacity 0 constraints), for every vertex of the form
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u1 ∈ V (N), it holds that ∑
v:a=(u1,v2)∈A(N)

f(a) = cu.

In addition, due to the flow conservation constraints (and lower capacity 0 constraints), for every vertex
of the form u2 ∈ V (N), it holds that ∑

v:a=(v1,u2)∈A(N)

f(a) = cu.

From this, we have that for every vertex u ∈ V (G), it holds that∑
v:e={u,v}∈E(G) φ(e) =

∑
v ̸=u:a=(u1,v2)∈A(N) f(a) +

∑
v ̸=u:a=(v1,u2)∈A(N) f(a) − 2f((u, u))

= 2(cu − f((u, u))) = 2(r − di − f((u, u))),

where i is the color of u. Thus, for every vertex u ∈ V (G), we have that
∑

e∈E(G):v∈e φ(e) is an even
number upper bounded by 2(r − di) where i is the color of v.

To conclude that φ is a d-fit, it remains to show that
∑b(k/r)

i=1 di+
∑

e∈E(G) φ(e) ≥ k. This is equivalent
to showing that

∑
e∈E(G) φ(e) ≥ ℓ. Recall that the cost of f is at most F − ℓ and it send F units of flow

from s to t. Thus, since the cost of arcs of the form (u1, v2) ∈ A(N) is 0 if v ̸= u and 1 otherwise, we
have that f must send at least ℓ units of flow through arcs of the form (u1, v2) ∈ A(N) where v ̸= u.
However,

∑
e∈E(G) φ(e) is precisely the amount of flow f sends through arcs of the form (u1, v2) ∈ A(N)

where v ̸= u. Thus, the proof is complete.

Conclusion of the Proof. We are ready to prove Lemma 21.

Proof of Lemma 21. By Observation 3 and Lemma 38, (Walk,Edges) Partition is solvable in polyno-
mial time. Thus, by Lemma 37, Special Undirected Colorful r-Simple k-Path can be solved in
time 2O(k/r) · (n+ log k)O(1). In turn, by Lemma 36, this means that Undirected r-Simple k-Path can
be solved in time 2O(k/r) · f(k/r) · (n+ log k)O(1).

5 p-Set (r, q)-Packing: FPT

Recall that in the p-Set (r, q)-Packing problem, the input consists of a ground set V , positive integers
p, q, r, and a collection H of sets of size p whose elements belong to V . The goal is to decide whether there
exists a subcollection of H of size q where each element occurs at most r times. Note that H can contain
copies of the same set, i.e., not all elements of H are distinct sets. In this section, we will show that
p-Set (r, q)-Packing parameterized by κ = pq/r is FPT. This result is in sharp contrast with that for
p-Multiset (r, q)-Packing, where the elements of H may be multisets rather than just sets. In Section
7, we will prove that p-Multiset (r, q)-Packing parameterized by κ is W[1]-hard.

In what follows, for convenience we will study a slight generalization of p-Set (r, q)-Packing by
allowing sets of H to be of size at most p.

Let us consider an instance (H, q, r) of p-Set (r, q)-Packing, and denote m = |H|. Observe that if
q ≤ r, then p-Set (r, q)-Packing is trivial. Thus, in the rest of this section, we assume that q > r and
hence p < κ.

We show a reduction of the set-packing instance (H, q, r) to a situation where the ground set has size
bounded by f(κ). The reduction uses a tool known as representative sets to discard irrelevant parts of the
instance. Representative sets have important applications for both FPT algorithms [23] and kernels [34];
see also [16, Ch. 12]. The full power of the tool emerges in a matroid setting (see Lovász [37] and Marx [38]),
but we need only a restricted setting, which we summarize as follows. This follows from Theorem 1.1
of [23] when applied to the special case of uniform matroids. Note that a linear representation of a uniform
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matroid can be computed in deterministic polynomial time using a Vandermonde matrix [23, Section 2.5],
hence the theorem can be applied.

Theorem 9 ([23]). Let V be a ground set and H a collection of p-sets in V . Let κ ∈ N. In time
(
(
p+κ
p

)
+ |H|)O(1) we can compute a collection H∗ ⊆ H with |H∗| ≤

(
p+κ
p

)
such that the following holds:

For every κ-set B ⊆ V , there exists a set A ∈ H disjoint from B if and only if there exists such a set
A ∈ H∗.

We refer to H∗ as a κ-representative set (or representative family) of H, although technically, H∗ is
representative for H in the uniform matroid Un,κ+p, where n = |V |. See [16] for details.

Given this result, we need only two simple reduction rules.

Reduction Rule 1. Discard any element that occurs at most r times. Exclude any empty sets and reduce
q by the number of empty sets.

Lemma 39. Reduction Rule 1 is sound.

Proof. Assume that the original instance has a subcollection of size q where each element occurs at most
r times. Clearly, the reduction rule does not increase the number of sets in the subcollection and each
element occurs at most r times. Now we prove the opposite direction. Let q′ be q minus the number of
empty sets and suppose that the reduced instance is positive, i.e., there is a subcollection H′ of size q′

where each element occurs at most r times. By adding elements discarded from the sets in H′ and the
q − q′ empty sets, we obtain the required subcollection for the original instance.

We now have m > nr/p, i.e., n < mp/r. Our second rule will decrease the value of m.

Reduction Rule 2. Pad H to be p-uniform using dummy elements for smaller sets. Compute and put
aside q disjoint κ-representative sets as follows. Let H1 = H; for i = 1, . . . , q compute a representative
set H∗

i ⊆ Hi in the uniform matroid Un,κ+p using Theorem 9; and let Hi+1 = Hi \ H∗
i . Finally discard

any sets remaining in Hq+1.

Lemma 40. Reduction Rule 2 is sound and leaves at most

m ≤ q

(
κ+ p

p

)
≤ q4κ

sets. The rule can be applied in time polynomial in the input size and
(
κ+p
p

)
.

Proof. Each representative set has size at most
(
κ+p
p

)
, hence the total size of the output is m′ ≤ q

(
κ+p
p

)
.

Since p < κ, we have
(
κ+p
p

)
≤ 4κ implying m′ ≤ q4κ.

We will argue correctness. Let H′ be the instance produced. Clearly, if H′ is positive, then so is H.
Now assume that H is positive, and let F ⊆ H, |F| = q, be a solution with maximum intersection with
H′. Assume that there exists a set E ∈ F \H′. Let X be the set of elements that occur precisely r times
in F , and let X ′ = X \E. Thus |X ′| ≤ |X| ≤ κ. Then, since E /∈ H′, each representative family contains
at least one set E′ disjoint from X ′, i.e., q alternative sets E′ in total. Since |F \ {E}| < q, for at least
one such set E′ it also holds that E′ /∈ F . Then (F \ {E}) ∪ {E′} is a packing of q sets, where every
element occurs in at most r sets, and with a larger intersection with H′ than F , which contradicts that
F was maximal. Thus F ⊆ H′, and the output instance is positive. The running time follows from the
computation of a representative set (see Theorem 9).

In fact, these two simple rules give us a trivial parameter setting.

Lemma 41. Assume that the two rules have been applied exhaustively. Then n < f(pq/r) where f(κ) =
κ4κ.
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Proof. On the one hand, since every element of the ground set occurs in more than r sets of the input,
there are m > rn/p sets in the input, hence n < mp/r. On the other hand, by the representative sets
reduction we have m < q4pq/r. Then

n < mp/r < q4pq/rp/r = f(pq/r).

It is now easy to solve the problem via an application of an ILP solver.

Lemma 42. An instance of p-Set (r, q)-Packing on a ground set of size n can be solved in time
O(nO(pnp) log q).

Proof. Let M∗ be the collection of all distinct sets in the input and let m∗ = |M∗|. Then m∗ = O(np).
To write an instance of Feasibility ILP that encodes the problem, let us introduce m∗ variables xE
(E ∈ M∗) denoting the number of copies of E to use in the solution. The constraints are as follows: (a)
for each E ∈M∗, XE ≤ µE , the multiplicity of E in the input; (b)

∑
E∈M∗

v
XE ≤ r for each v ∈ V, where

M∗
v = {E ∈M∗ : v ∈ E}; (c)

∑
E∈M∗ XE ≥ q. Thus, the number of variables, constraints and size of the

Feasibility ILP instance are m∗, m∗ + n + 1 and (since q > r) O(n(m∗ + log q)) = O(np+1 + n log q),
respectively. Hence, by Theorem 3, we can solve the instance in time O(nO(pnp) log q).

Now we can obtain the main result of this section.

Theorem 10. p-Set (r, q)-Packing parameterized by κ is FPT.

Proof. Recall that p < κ. We may assume that our instance of p-Set (r, q)-Packing has been reduced
by the two reduction rules above. By Lemma 41, n < κ4κ. Thus, by Lemma 42, p-Set (r, q)-Packing
parameterized by κ is FPT.

We observe that the same reduction gives a polynomial kernel when p is a constant.

Theorem 11. The p-Set (r, q)-Packing problem for constant p has a polynomial-time reduction to a
ground set of size O((q/r)p+1) and a generalized polynomial kernel of O((q/r)p

2+p log r) = O((q/r)2(p
2+p) log(q/r))

bits.

Proof. By Lemma 40, if the reduction rules have been applied then the number of sets is bounded by

m ≤ q

(
pq/r + p

p

)
≤ q(pq/r + p)p,

and as in Lemma 41 with p a constant we get n = O(m/r). Putting them together, we get n =
O((q/r)p+1). This gives the first result. For the latter, we may observe that the reduction produces a
multiset where at most

m∗ ≤ (n+ 1)p = O((q/r)p(p+1))

distinct sets are possible (since sets have size at most p). Hence the instance can be described by giving
the multiplicity in the input for each set type, keeping only the first r copies of each set. This gives a
description with m∗ log r bits. Finally, we note that r ≤ q ≤ m and that the input instance of p-Set
(r, q)-Packing is coded without multiplicities; hence r is bounded by the total input size. If the total
input size is at least 2m

∗ logm∗
then we can solve the problem completely in polynomial time, otherwise

we have log r ≤ m∗ logm∗.

We will use the following simple lemma.

Lemma 43 ([4]). Let L,L′ be a pair of decidable parameterized problems such that L′ is in NP, and L is
NP-complete. If there is a general kernelization from L to L′ producing a generalized kernel of polynomial
size, then L has a polynomial-size kernel.
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Theorem 11 and Lemma 43 imply the following:

Corollary 4. The p-Set (r, q)-Packing problem for constant p admits a polynomial size kernel.

Let us finally complement Theorem 11 by showing that the lower bound for r = 1 carries over to the
parameter q/r for arbitrary values of r.

Theorem 12. The p-Set (r, q)-Packing problem with fixed value of p ≥ 3 does not admit a generalized
kernel of size O((q/r)p−ε) for any ε > 0 unless the polynomial hierarchy collapses.

Proof. Dell and Marx [17] showed that Perfect p-Set Matching (i.e., the variant where r = 1 and
n = pq) does not admit a generalized kernel of O(qp−ε) bits for any ε > 0 unless the polynomial hierarchy
collapses. We show a parameter-preserving reduction from the case of r = 1 to the arbitrary case. Let
H be the input to an instance of Perfect p-Set Matching where H ⊆ 2V is a p-uniform hypergraph
over some ground set V , |V | = n = pq. We produce an output instance of p-Set (r, q)-Packing by
padding H with (r − 1)n sets, each of which is incident with precisely one member of V and which in
total cover every element of V precisely r − 1 times. (We pad these sets with arbitrary dummy elements
to produce a p-uniform output.) We set q′ = q+ (r− 1)n. We claim that the output has a (q′, r)-packing
if and only if H contains a q-packing. This is not hard to see. On the one hand, any q-packing in H
can be padded to a q′-packing in the output by including all the padding sets; on the other hand, for
any (q′, r)-packing where some element v ∈ V is covered by two non-padding sets, we can get a different
(q′, r)-packing by discarding one set from H and replacing it by a further padding set covering v. The
value of p is unchanged. Finally, since q < n we have q′ = q+ (r− 1)n < rn, hence q′/r < n = pq = O(q),
and the parameter is only increased by a constant factor.

6 (r, k)-Monomial Detection: para-NP-Hardness

In this section, we prove that if k is not polynomially bounded in the input size, even an XP algorithm
for the special case of (r, k)-Monomial Detection where only two distinct variables are present is out
of reach. For this purpose, we present a reduction from the Partition problem, which is known to be
NP-hard [28]. In this problem, we are given a multiset M of positive integers, and the goal is to determine
whether M can be partitioned into two multisets, M1 and M2, such that the sum of the integers in M1

is equal to the sum of the integers in M2.

Theorem 13. (r, k)-Monomial Detection is para-NP-hard parameterized by k/r even if the number
of distinct variables is 2 and the circuit is non-canceling.

Proof. To prove this theorem, we give a reduction from Partition to (r, k)-Monomial Detection
parameterized by k/r. To this end, let M be an instance of Partition. We define our set of variables as
{x, y} (that is, we have only two variables), and we define a polynomial POL as follows:

POL =
∑

M ′⊆M

(
∏
n∈M ′

xn) · (
∏

n∈M\M ′

yn)

.
We define k =

∑
n∈M n, and r = k/2. Then k/r = 2 and our reduction shows that (r, k)-Monomial

Detection is NP-hardfor k/r = 2 which implies that (r, k)-Monomial Detection is para-NP-hard by
[22, Theorem 2.14].

We now prove that M is a Yes-instance of Partition if and only if POL has a monomial of degree k
where each variable has degree at most r. To this end, notice that M is a Yes-instance of Partition if and
only if there exists M ′ ⊆ M such that

∑
n∈M ′ n = k/2. Now, for any M ′ ⊆ M , the following statement

holds:
∑

n∈M ′ n = k/2 if and only if (
∏
n∈M ′ xn) · (

∏
n∈M\M ′ yn) is a monomial (of degree k) where each
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variable has degree at most r. However, by the definition of POL, the latter part of the statement is true
if and only if POL has a monomial of degree k where each variable has degree at most r.

Next, we show that POL can be encoded by a non-canceling arithmetic circuit of size polynomial in
log k. To this end, denote M = {n1, n2, . . . , nℓ} where ℓ = |M |, and let n⋆ be the largest number that
occurs at least once in M . Then, for all z ∈ {x, y} and i ∈ {0, 1, . . . , ⌊log2 n

⋆⌋}, we have a gate ĝz,i
defined recursively as follows. First, for all z ∈ {x, y}, we set ĝz,0 to be the input gate z. Second, for all
z ∈ {x, y} and i ∈ {1, 2, . . . , ⌊log2 n

⋆⌋}, we set ĝz,i = ĝ2z,i−1. By simple induction on i, for all z ∈ {x, y}
and i ∈ {0, 1, . . . , ⌊log2 n

⋆⌋}, it holds that ĝz,i encodes z2
i
. Now, for all z ∈ {x, y} and n ∈M , we have a

gate gz,n defined as follows:

gz,n =
∏

i∈{1,2,...,⌊log2 n⋆⌋}
s.t. digit(n,i)=1

ĝz,i,

where digit(n, i) is the i-th least significant digit of n when encoded in binary. Then, for all z ∈ {x, y}
and n ∈M , we have that gz,n encodes zn.

For all i ∈ {1, 2, . . . , ℓ}, we have gates h′i and hi defined recursively as follows. First, we set h1 =
h′1 = gx,n1 + gy,n1 . Second, for all i ∈ {2, 3, . . . , ℓ}, we set h′i = gx,ni + gy,ni and hi = hi−1 · h′i. By simple
induction on i, we have that for all i ∈ {1, 2, . . . , ℓ}, hi encodes the following polynomial:

∑
M ′⊆{n1,n2,...,ni}

(
∏
n∈M ′

xn) · (
∏

n∈{n1,n2,...,nℓ}\M ′

yn)

.
Thus, hℓ encodes POL.

Finally, we argue that (r, k)-Monomial Detection is para-NP-hard parameterized by k/r. Suppose,
by way of contradiction, that this claim is false. Then, (r, k)-Monomial Detection admits an algorithm,
say A, that runs in time |I|f(k/r) on input I for some function f that depends only on k/r. Thus, we
can solve any instance M of Partition by using the reduction above to construct (in polynomial time)
an equivalent instance I of (r, k)-Monomial Detection, and then calling A with I. However, the
parameter k/r equals 2 (since r = k/2), and hence |I|f(k/r) = |I|O(1), that is, we solve Partition in
polynomial-time. Since Partition is NP-hard, we have reached a contradiction. This completes the
proof.

7 p-Multiset (r, q)-Packing and (r, k)-Monomial Detection: W[1]-Hardness

In this section, we prove that p-Multiset (r, q)-Packing is W[1]-hard. To prove this theorem, we present
a reduction from the Multicolored Clique problem, which is known to be W[1]-hard [40, 20]. In this
problem, we are given a vertex-colored graph G and a positive integer k, where each vertex has a color
in {1, 2, . . . , k}, and our goal is to decide whether G has a multicolored k-clique, that is, a clique with k
vertices where each vertex has a distinct color. Later in this section, we show that our theorem implies
that a restricted case of (r, k)-Monomial Detection is W[1]-hard as well.

Theorem 14. p-Multiset (r, q)-Packing is W[1]-hard parameterized by pq/r even if the size of the
universe is pq/r.

Proof. Our source problem is Multicolored Clique. Given an instance (G, k) (each vertex of G is
assigned a color from {1, . . . , k}) of Multicolored Clique, we construct an instance (U,S, p, q, r) of
p-Multiset (r, q)-Packing as follows. For each color i ∈ {1, . . . , k}, let Ci be the set of vertices in G
whose color is i. Let n denote the size of a color class, that is, n = |Ci| for any i ∈ {1, . . . , k}. Moreover,
for all i ∈ {1, . . . , k}, denote Ci = {vi1, vi2, . . . , vin}. Define r = n, p = kn and q = k +

(
k
2

)
. Note that

pq/r = (kn)
(
k +

(
k
2

))
/n = k

(
k +

(
k
2

))
.

The universe U contains the following distinct elements:
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• For each color i ∈ {1, . . . , k}, we have an element ci.

• For each pair (i, j) ∈ {1, . . . , k} × {1, . . . , k} with i ̸= j, we have an element ci→j and an element
ĉi→j .

• For each pair (i, j) ∈ {1, . . . , k} × {1, . . . , k} with i < j, and for each t ∈ {1, . . . , k − 2}, we have an

element c
(i,j)
t .

Observe that |U | = k + 2k(k − 1) +
(
k
2

)
(k − 2) = k

(
k +

(
k
2

))
= pq/r.

Now, we construct S as follows.

• For each color i ∈ {1, . . . , k} and for each x ∈ {1, . . . , n}, we insert the multiset

M i
x = {[n]ci} ∪

 ∪
j∈{1,...,k}\{i}

{[x]ci→j , [n− x]ĉi→j}

.
Note that |M i

x| = n+ (k − 1)n = p.

• For each edge e = {vix, v
j
y} ∈ E(G) (where vix ∈ Ci and vjy ∈ Cj) with i < j, we insert the multiset

M
(i,j)
(x,y) =

 ∪
t∈{1,...,k−2}

{[n]c
(i,j)
t }

 ∪ {[n− x]ci→j , [x]ĉi→j , [n− y]cj→i, [y]ĉj→i}.

Note that |M (i,j)
(x,y)| = (k − 2)n+ 2n = p.

Proof of Correctness. In the forward direction, we suppose that we have a multicolored k-clique K
in G. Let viφ(i) be the (unique) vertex in Ci that belongs to K. Then, it holds that the subcollection

S ′ := {M i
φ(i) : i ∈ {1, . . . , k}} ∪ {M (i,j)

(φ(i),φ(j)) : (i, j) ∈ {1, . . . , k} × {1, . . . , k}, i < j} of S is an r-relaxed

packing of size q. (To see that this claim is true, observe that each element in U occurs in this subcollection
precisely n times.)

In the reverse direction, we suppose that we have a subcollection S ′ of S that is an r-relaxed packing
of size q. Then, we first observe that S ′ can contain at most one multiset from {M i

1, . . . ,M
i
n} for each

i ∈ {1, . . . , k} (since otherwise the element ci occurs more than r times), and at most one multiset from

{M (i,j)
(x,y) : {vix, v

j
y} ∈ E(G)} for each (i, j) ∈ {1, . . . , k}×{1, . . . , k} with i < j (since otherwise the element

c
(i,j)
1 occurs more than r times). Then, because |S ′| = q, we have that S ′ contains exactly one multiset

from {M i
1, . . . ,M

i
n} for each i ∈ {1, . . . , k}, and exactly one multiset from {M (i,j)

(x,y) : {vix, v
j
y} ∈ E(G)} for

each (i, j) ∈ {1, . . . , k} × {1, . . . , k} with i < j. In particular, this means that it is well defined to let
φ(i), i ∈ {1, . . . , k}, denote the integer x such that M i

x ∈ S ′. Moreover, it is well defined to let φ(i, j),

(i, j) ∈ {1, . . . , k} × {1, . . . , k} with i < j, denote the pair (x, y) such that M
(i,j)
(x,y) ∈ S ′.

Define K = {v1φ(1), . . . , v
k
φ(k)}. Then, we claim that K is a multicolored k-clique in G. It is clear that

|K| = k and that K is multicolored. Thus, it remains to show that for each (i, j) ∈ {1, . . . , k}×{1, . . . , k}
with i < j, it holds that {viφ(i), v

j
φ(j)} ∈ E(G). For this purpose, we arbitrarily select (i, j) ∈ {1, . . . , k} ×

{1, . . . , k} with i < j. To show that {viφ(i), v
j
φ(j)} ∈ E(G), it suffices to show that φ(i, j) = (φ(i), φ(j)).

Let us denote φ(i, j) = (x, y). We only show that x = φ(i), since the proof that y = φ(j) is symmetric.
Suppose, by way of contradiction, that x ̸= φ(i). We consider two cases.

• First, suppose that x < φ(i). Note that ci→j occurs φ(i) times in M i
φ(i), and it occurs n− x times

in M
(i,j)
φ(i,j). However, φ(i) + (n − x) > n, which implies that ci→j occurs more than r times in S ′.

Thus, we have reached a contradiction.

55



• Second, suppose that x > φ(i). Note that ĉi→j occurs n−φ(i) times in M i
φ(i), and it occurs x times

in M
(i,j)
φ(i,j). However, (n − φ(i)) + x > n, which implies that ĉi→j occurs more than r times in S ′.

Thus, we have reached a contradiction.

This completes the proof.

Our reduction heavily relies on the inclusion of input instances that contain multisets rather than
sets. In particular, it does not rule out the possibility that p-Set (r, q)-Packing is FPT parameterized
by (pq)/r—that is, this proof does not contradict Section 5.

As a consequence of Theorem 14, we obtain the following theorem.

Theorem 15. (r, k)-Monomial Detection is W[1]-hard parameterized by k/r even if (i) k is polyno-
mially bounded in the input length, (ii) the number of distinct variables is at most k/r, and (iii) the circuit
is non-canceling.

Proof. The proof of this theorem is based on the standard encoding of set packing problems using mul-
tivariate polynomials (see, e.g., [33]). For the sake of completeness, we present the details. By Theorem
14, it suffices to give a reduction from p-Multiset (r, q)-Packing with |U | ≤ (pq)/r. To this end, let
(U,S, p, q, r) be an instance of p-Multiset (r, q)-Packing with |U | ≤ (pq)/r. Since p is the size of each
multiset in the input, it is polynomial in the input size. Moreover, q (and hence also r) can be assumed
to be polynomial in the input size, since if q > |S|, then we have a No-instance.

We define our set of variables as X = {xu : u ∈ U} (that is, we have one variable for each element in
U), and we define a polynomial POL as follows:

POL =
∑
S′⊆S

s.t. |S′|=q

∏
M∈S′

∏
u∈M

xu.

Define k = pq. For any choice of non-negative integers du for each u ∈ U whose sum is k, it holds
that POL has

∏
u∈U x

du
u as a monomial if and only if there exists a subcollection S ′ ⊆ S of size q where

each element u ∈ U occurs exactly du times. Thus, (U,S, p, q, r) is a Yes-instance of p-Multiset (r, q)-
Packing if and only if POL has a monomial (of total degree k) where the degree of each variable is at
most r.

Since k = pq and p and q are polynomially bounded in the input length, so is k showing (i). Since k = pq
and |U | ≤ (pq)/r, we have |U | ≤ k/r proving (ii). To complete the proof, it remains to show that POL can
be encoded by an arithmetic circuit of polynomial size. For this purpose, denote S = {M1,M2, . . . ,Mℓ}
where ℓ = |S|. For each M ∈ S, we have a gate gM which is the multiplication

∏
u∈M xu. Now, for all

i ∈ {1, 2, . . . , ℓ} and j ∈ {1, 2, . . . , q}, we have a gate gi,j that is defined as follows.

• If j = 1, then gi,j =
∑i

t=1 gMi for all i ∈ {1, 2, . . . , ℓ}.

• If i = 1 and j > 1, then gi,j = 0.

• If i > 1 and j > 1, then gi,j = gi−1,j + gi−1,j−1 · gMi .

The output of the arithmetic circuit is given by gℓ,q.
To see that the circuit above encodes POL, we claim that for all i ∈ {1, 2, . . . , ℓ} and j ∈ {1, 2, . . . , q},

it holds that
gi,j =

∑
S′⊆{M1,M2,...,Mi}

s.t. |S′|=j

∏
M∈S′

∏
u∈M

xu.
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The proof is by induction. In the basis, where i = 1 or j = 1, the claim clearly holds. Now, suppose that
the claim holds for i− 1 ≥ 1, and let us prove it for i. Then, by the inductive hypothesis,

gi,j = gi−1,j + gi−1,j−1 · gMi

=
∑

S′⊆{M1,M2,...,Mi−1}
s.t. |S′|=j

∏
M∈S′

∏
u∈M

xu +

 ∑
S′⊆{M1,M2,...,Mi−1}

s.t. |S′|=j−1

∏
M∈S′

∏
u∈M

xu

 · gMi

=
∑

S′⊆{M1,M2,...,Mi}
s.t. |S′|=j

∏
M∈S′

∏
u∈M

xu.

This completes the proof.

In light of Theorems 14 and 15, the reader might wonder whether p-Multiset (r, q)-Packing and
the special case of (r, k)-Monomial Detection where r is polynomially bounded by the input size are
at least in XP. However, this question has already been resolved positively—the 2O((k/r) log r) · nO(1)-time
algorithms by Abasi et al. [1] and Gabizon et al. [27] imply that this containment holds.

8 Conclusion

In this paper, we considered four problems, Directed r-Simple k-Path, Undirected r-Simple k-
Path, p-Set (r, q)-Packing, and (r, k)-Monomial Detection, parameterized by k/r. We proved that
Directed r-Simple k-Path, Undirected r-Simple k-Path, and p-Set (r, q)-Packing are FPT,
but (r, k)-Monomial Detection is para-NP-hard. In particular, we obtained a 2O((k/r)2 log(k/r)) · (n +
log k)O(1)-time algorithm for Directed r-Simple k-Path and a 2O(k/r) ·(n+log k)O(1)-time algorithm for
Undirected r-Simple k-Path. Our work also resolved an open problem posed by Gabizon et al. con-
cerning the design of polynomial kernels for problems with relaxed disjointness constraints whose size
becomes smaller as the relaxation parameter becomes larger.

Let us conclude our paper with a couple of open problems. First, it would interesting to characterize
input polynomials P for which (r, k)-Monomial Detection becomes FPT or, at least, find non-trivial
sufficient conditions for P such that the restricted (r, k)-Monomial Detection is FPT and both Di-
rected r-Simple k-Path and p-Set (r, q)-Packing can be easily reduced to it. Secondly, we would like
to point out that the existence of a single-exponential FPT algorithm for Directed r-Simple k-Path
remains an open problem. The question of the existence of a deterministic 2O((n/d) log d)-time algorithm
for Degree-Bounded Spanning Tree, which we did not consider in this study, is also open.

In general, it would be interesting to study the parameterized complexity of other problems with
relaxed disjointness constraints parameterized by k/r. Indeed, we believe that much remains to be ex-
plored in the realm of problems with relaxed disjointness constraints. Such problems can enable to obtain
substantially (sometimes super-exponentially) better solutions at the expense of allowing repetitions,
sometimes with the great advantage of a time complexity that diminishes surprisingly fast as r increases.

References

[1] Hasan Abasi, Nader H. Bshouty, Ariel Gabizon, and Elad Haramaty. On r-simple k-path. In Erzsébet
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eterized complexity of multiple-interval graph problems. Theor. Comput. Sci., 410(1):53–61, 2009.
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A Pseudocode of the Algorithm

Given that our algorithm for Undirected r-Simple k-Path is optimal under the ETH, we present its
pseudocode (in Algorithm 1) in case it is to be implemented. The pseudocode uses the algorithm in
Lemma 33 as a black box. The precise details of the implementation of this black box are explicitly given
in the beginning of the proof of Lemma 33.

if r ≤
√
k then

Use Algorithm 2 to solve the input instance;
else

Use Algorithm 3 to solve the input instance;
end

Algorithm 1: Algorithm for Undirected r-Simple k-Path.
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for col ∈ F , d ∈ Dk,r do
Color G by col;

Allocate N with an entry [v,d
′
, C] for all v ∈ V (G), d

′
= (d′1, . . . , d

′
b(k/r)) ∈ Dr,k such that

d′i ∈ {0, . . . , di} for all i ∈ {1, . . . , b(k/r)}, and C ⊆ {1, . . . , b(k/r)};

Initialize all N[v,d
′
, C] where

∑b(k/r)
i=1 d′i ≤ 1 as follows. If d′col(v) ̸= 1, then N[v,d

′
, C] = −∞.

Otherwise, N[v,d
′
, C] is the maximum of 0 and the output of algorithm in Lemma 33 with

input (G,C, v,d);

for N[v,d
′
, C] in non-decreasing order on

∑b(k/r)
i=1 d′i ≥ 2 do

if d′col(v) = 0 then

N[v,d
′
, C] = −∞;

else

Let d
′′

= (d′′1, . . . , d
′′
b(k/r)) where d′′col(v) = d′col(v) − 1 and d′′i = d′i for all

i ∈ {1, . . . , b(k/r)} \ {col(v)};
for C ′ ⊆ C do

Let AC′ be the output of algorithm in Lemma 33 with input (G,C ′, v,d);
end

N[v,d
′
, C] = max

u:{u,v}∈E(G)

(
max

{
1 + N[u,d

′′
, C], max

C′⊆C
(AC′ + 1 + N[u,d

′′
, C \ C ′])

})
;

end

end

for N[v,d
′
, C] with d

′
= d do

if N[v,d
′
, C] ≥ k − 1 then

return ”Yes-instance”;
end

end

end
return ”No-instance”;

Algorithm 2: Algorithm for Undirected r-Simple k-Path: Case 1 (r ≤
√
k).
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Compute a maximal matching M in G;
Let U be the set of endpoints of edges in M ;
if |U | > 3k/r then

return ”Yes-instance”
else

for U ′ ⊆ U , col ∈ F , d ∈ Dk,r with dcol(v) ≥ 1 for all v ∈ U ′ do

Color G by col;
Let G′ = G−X for X = (U \ U ′) ∪ {v ∈ V (G) \ U : there exists a vertex in U ′ with the
same color as v};

Allocate N with an entry [v,d
′
] for all v ∈ V (G′), and d

′
= (d′1, . . . , d

′
b(k/r)) ∈ Dr,k such that

d′i ∈ {0, . . . , di} for all i ∈ {1, . . . , b(k/r)};

Initialize all N[v,d
′
] where

∑b(k/r)
i=1 d′i ≤ 1 as follows. If d′col(v) ̸= 1, then N[v,d

′
] = false.

Otherwise, N[v,d
′
] = true;

for N[v,d
′
] in increasing order on

∑b(k/r)
i=1 d′i ≥ 2 do

if d′col(v) = 0 then

N[v,d
′
] = false;

else

Let d
′′

= (d′′1, . . . , d
′′
b(k/r)) where d′′col(v) = d′col(v) − 1 and d′′i = d′i for all

i ∈ {1, . . . , b(k/r)} \ {col(v)};

N[v,d
′
] = ORu:{u,v}∈E(G′)(1 + N[u,d

′′
]);

end

end

if ORv∈V (G′)N[v,d] = true then

Let cv = r − dcol(v) for all v ∈ V (G′), F =
∑

v∈V (G′) cv and ℓ = 2(k −
∑b(k/r)

i=1 di);

Construct a flow network N with source s and sink t as follows. For all v ∈ V (G′),
insert (into N) two new vertices, v1 and v2, the arc (v1, v2) of infinite (upper) capacity
and cost 1, and the arcs (s, v1) and (v2, t) both of (upper) capacity cv and cost 0. For
all {u, v} ∈ E(G′), insert (into N) the arcs (u1, v2) and (v1, u2) both of infinite (upper)
capacity and cost 0;

Compute the minimum cost C required to send F units of (integral) flow from s to t in
N in polynomial time;

if C ≤ F − ℓ then
return ”Yes-instance”;

end

end

end
return ”No-instance”;

end

Algorithm 3: Algorithm for Undirected r-Simple k-Path: Case 2 (r >
√
k).
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