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Abstract

We discuss how computational data science and agent-
based modeling, are shedding new light on the age-old is-
sue of human conflict. While social science approaches fo-
cus on individual cases, the recent proliferation of empirical
data and complex systems thinking has opened up a com-
putational approach based on identifying common statistical
patterns and building generative but minimal agent-based
models. We discuss a reconciliation for various disparate
claims and results in the literature that stand in the way of
a unified description and understanding of human wars and
conflicts. We also discuss the unified interpretation of the
origin of these power-law deviations in terms of dynamical
processes. These findings show that a unified computational
science framework can be used to understand and quantita-
tively describe collective human conflict.
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The proliferation of large empirical datasets has opened up a new compu-
tational science approach toward understanding one of the core puzzles of
sociology: collective human conflict towards other humans in the form of
warfare and terrorism. This computational focus is still viewed with some
suspicion in the social sciences because of its unfamiliar aim of seeking a
system-level understanding across conflicts, as opposed to a drill-down nar-
rative for a specific conflict. However, one of the more remarkable results
that has emerged from this computational approach, is the finding that the
distribution of the aggregate numbers of fatalities in entire wars and conflicts
(i.e. the distribution of their sizes) can be well modeled as an approximate
power-law (Cederman, 2003; González-Val, 2016; Clauset, 2018). This em-
pirical regularity is known as Richardson’s Law — after polymath Lewis Fry
Richardson who first studied this phenomenon more than half a century ago
(Richardson, 1948, 1960). Separate work has shown that approximate power
laws also tend to capture well the distributions of event sizes, measured by
fatality counts, within wars (Bohorquez et al., 2009; Johnson et al., 2013;
Spagat et al., 2018) and terrorism (Spagat et al., 2018; Clauset et al., 2007).
Moreover an explanatory generative, multi-agent model has been suggested
(Bohorquez et al., 2009).

Here we draw together various distinct results to date in this area, including
published and unpublished works of ours. We discuss a novel, unifying analysis
of the computational science results to date, and the agent-based model that
helps explain them. The scientific approach that we adopt in this particularly
difficult area of human conflict, is a computational science one in that we start
with no theoretical hypothesis and instead simply observe the data, taking in
as much as we can into our analysis as opposed to simply sampling from it.
We describe the hidden statistical patterns following Bohorquez et al. (2009),
Johnson et al. (2013) and Spagat et al. (2018) based on computational analyses
of the datasets. We then discuss three contributions that open up a unified
understanding of human conflict. First, we discuss how the approximate
power laws obtained across wars, treating the number of fatalities in each war
as a single data point, bear a simple relationship to the approximate power
laws found within single wars. More precisely, we use simulations to show
that the ranges of power-law exponents found within individual conflicts will,
when we aggregate the event data they generate into complete wars, produce
the sorts of power-law exponents researchers have found across whole wars
(Figs. 1-3). This insight overturns apparent assumptions in the literature
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(see for example Clauset (2018)) that the behavior over aggregated conflicts
is somehow separate from the behavior within wars, due to their different
power-law exponents. Second, we highlight a common feature of conflict event
data that is often ignored, leading some researchers to exaggerate evidence
against power laws in some conflicts. Third, we explain that the generative
theory of human conflict in Bohorquez et al. (2009) does not assume pure
power-law behavior. On the contrary, it is far more general: specifically, it
describes and explains approximate power-laws when they exist, but also it is
able to explain observed departures from power laws in terms of microscopic
dynamical processes. The Appendix provides a stripped-down, simplified
version of this mathematical model that explicitly reproduces the common
statistical power-law feature (i.e. an exponent near 2.5) that seems to arise
for all human conflict – from wars to terrorism as shown in Figs. 1-3.

1 Computational Science Approach

Our focus is on collective phenomena since complex systems thinking suggests
that if there are interesting patterns, then they are more likely to emerge
in activities that involve a larger collection of people. Just as traffic jam
patterns are known to occur similarly in cities across the world, despite the
differences in the people involved, the mechanical details of their cars, and the
environmental factors, it seems that the sheer fact of having to self-organize
in a way that avoids being found out or apprehended, might lie behind some
hidden systematic patterns. In short, the crowd behavior of how humans
collectively ‘do’ terrorism and insurgency – and hence in general commit
violent acts – might be expected show some form of universality. In our
analysis the size s of a discrete event, such as a suicide bombing or an attack,
is defined as the number of people killed in the event, which is termed the
severity of the event.

Figures 1-2 arise from analyzing the latest version of the empirical event data
on armed conflict and terrorism in the Georeferenced Event Dataset (GED) of
the Uppsala Conflict Data Programme. This is the most comprehensive and
accurate georeferenced dataset available. We then perform the same analysis
of terrorist incidents (Fig. 3) using the Global Terrorism Database (GTD,
the 2017 version), provided by the National Consortium for the Study of
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Terrorism and Responses to Terrorism (START). This GTD dataset includes
both trans/inter-national and domestic terrorist incidents, and is updated
annually. It provides the most comprehensive publicly available dataset
on terrorist events. It covers the period from 1970 to 2016 and includes
detailed information on incident times, locations, fatality counts and, when
identifiable, the perpetrating group or individual. We include only events that
are, according to the coding, definitely acts of terrorism causing at least one
fatality and that are attributed to a known organization that has perpetrated
at least 30 attacks. Also, we only use events occurring after 1997 because the
GTD coding procedures changed in that year. This provides us with 16, 399
terrorist attacks between 1998− 2016, carried out by 60 groups.

Our computational approach uses Gillespie’s poweRlaw software package
in R (see Gillespie (2015)) to fit the model Ms−α to the distributions of
the event severities above an estimated cut-off value smin using maximum
likelihood estimation. M is a constant, s is the size of the event (i.e. severity
in our analysis, which is the number killed in the event), and α is called the
power-law exponent. Following the standard procedure, the minimum cut-off
smin is estimated using a Kolmogorov-Smirnov approach which minimizes the
distance between the cumulative density function of the data and the fitted
model. The estimates are obtained using a bootstrap procedure with 1,000
iterations, in order to account for parameter uncertainty.

Figure 1 illustrates the power-law distribution emerging for the histogram
of the severity of conflict events. Such a power-law distribution emerges
frequently in the study of collective behavior in systems of interacting objects
(which could include humans) when there are complex feedback mechanisms
at play. For human events such as in conflicts and terrorism, there will also
likely be such feedback processes during the attack preparation and execution.
The opposite case to this is a process that has no feedback, like the outcome
from tossing a coin, producing a Normal distribution. Figures 2 and 3 show
the exponent values α for the power-laws across conflicts and across terrorist
organizations’ campaigns respectively. They all tend to be clustered near the
exponent value α = 2.5.

Having looked at computational patterns for events within a given conflict
or terrorist campaign, we now turn to consider patterns across conflicts, i.e.
where each conflict now provides one datapoint obtained by summing up
the casualties from all the events within the conflict. It has been shown by
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Cederman (2003), Clauset (2018) and most recently Braumoeller (2019), that
the distribution of severities for entire wars is an approximate power-law
within an estimated range of α ∼ 1.5 − 1.7, depending on the date range
and war types included. The goodness-of-fit values seem to be fairly high
as well (p ∼ 0.5). However as shown above, events within each individual
war i show an approximate power-law distribution which is spread broadly
around an exponent value of βi ∼ 2.5, again with reasonably high p values.
The question therefore arises: are these two findings for the power-law test
for (i) aggregate wars yielding exponent α ∼ 1.5 − 1.7 and (ii) individual
wars yielding exponents {βi} ∼ 2.5, consistent with each other? Below we
show through computer simulations that they are indeed consistent. Thus,
we provide the first unified treatment of human conflict that crosses the
boundary separating fatality events within individual wars from aggregated
fatality totals across entire wars.

To show this, we first simulate a set of individual events for an individual war
i (see Fig. 4). Though we could in principle generate these events using the
cluster interactions from our generative model discussed later on, or its more
basic one-dimensional version in the Appendix, for simplicity for a given war i
we instead choose to generate random events from a power-law with exponent
βi, where βi is picked randomly from a distribution spread around 2.5. We
then repeat this procedure to generate a number of different simulated wars,
allowing a different number of events n for each war. We have checked the
robustness of our results for different choices of peaked distribution for these
βi values, and also different choices of smin for the power-law onset. Here
for simplicity, we show results for a normal distribution of βi values. We
have also checked that our results are robust to different choices of standard
deviation in βi around 2.5. We have also checked the robustness for having a
peak away from 2.5, and we have checked the robustness to having different
numbers of events for each simulated model war i.

In all cases, we find that the results that we provide in Fig. 4 are indeed
representative and the core finding is robust. The aggregated casualty total
for each war i is given by Wi which is the sum of the individual events 1, 2, ..
etc. within that war, i.e. Wi = si1 + si2 + .... This is shown schematically in
Figs. 4(a) and (b). This entire process provides us with a set of values {Wi}
corresponding to the total fatalities in our simulated model wars i = 1, 2, ...
This represents our model’s predicted record for all human wars. In the
real world, only some prior wars have data available for them. Indeed, some
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wars may have been lost from the history books and hence their existence is
unknown. We therefore sample subsets of {Wi} in order to mimic the known
history books, and hence mimic the existing database of wars analysed by
other researchers. We then proceed as if with real data, by doing the usual
power-law test.

Fig. 4(c) shows the striking result that the resulting distribution of entire
war exponents for different samples tends to be bunched in the same range
α ∼ 1.5−1.7 as in the empirical findings. Moreover, the goodness-of-fit values
are distributed around p ∼ 0.5. We chose for simplicity xmin = 1, and the
{βi} to be distributed normally with a mean at 2.5 and a standard deviation
of 0.5, similar to the empirical findings in our previous work. We also chose
the number of events per war to follow a lognormal distribution which is
again consistent with actual war data (see Spagat et al. (2018) for statistical
details and links to the original data and code) and we show the resulting
α distributions for three representative values of the mean in Fig. 4(c). We
also chose 1000 total wars {Wi}, and sampled subsets of size 100. Again, we
checked that the results in Fig. 4 are robust to variations in each of these
choices.

Figure 4(c) serves to unify the power-law testing results for event sizes within
individual wars with the corresponding results for fatalities aggregated over
entire wars. It therefore captures how the scaling coefficient changes moving
from the intra-conflict level to the inter-conflict level. As a result, we see
that looking at individual violent events within a single war is not the same
as looking at individual wars within a collection of many wars, despite the
fact that both phenomena can be captured reasonably well by power laws. In
particular, it shows that compiling aggregate data across wars has the effect
of lowering the value of the best-fit exponent.

Now that several researchers are repeating this approach of power-law testing
of human conflict data, we feel it is prudent to provide a note of caution
regarding best computational science practice: estimates of goodness-of-fit
for power-laws based on publicly available datasets viewed as pure ‘event
data’ can be misleading and wrong. This is because many such datasets
mix together true events with composite events. Such entries are not single
discrete events in which X people were killed. In fact, it may be closer to a
composite of X events in which 1 person is killed. Indeed, many databases
contain entries that are composites of multiple events. To take an example,
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the commonly used GED (Georeferenced Event Database) developed by the
Uppsala Conflict Data Program (UCDP), has many such entries. These are
flagged in the dataset with a special indicator variable, (event_clarity), so
they are relatively easy to exclude. While only 10% of the observations in this
dataset are composite events, this can have a noticeable effect on inference in
power-law testing, and hence whether the goodness-of-fit is sufficiently high
to be a power law or not. For example, Zwetsloot (2018) tests for power laws
using the ACLED (Armed Conflict Location & Event Data Project) which is
even less appropriate for this purpose than is the GED database if one does
not first remove the composite events. ACLED has the practice of simply
coding 10 deaths whenever the real number of people killed in an event is
unknown, thereby creating a database that mixes together true events with
many other that are, essentially, fabricated 10’s.

2 Beyond Power Laws: Generative Theory

As suggested earlier, many conflict event datasets are well fit by power-laws
with exponent values clustering around 2.5 (Bohorquez et al., 2009; Johnson
et al., 2013; Spagat et al., 2018), and with p-values well above standard
rejection thresholds for a power-law test. However Bohorquez et al. (2009)
noted that there are important deviations from this approximate power-
law pattern and explicitly present a two-population model featuring conflict
between Red and Blue populations (see inset Fig. 5). As well as capturing
the approximate power-law shape and slope in the event size distributions,
Fig. 5 illustrates how this multi-sided generative model also reproduces the
conflict-dependent deviations beyond a power law. The solid curves in Fig. 5
show this explicitly. Bohorquez et al. (2009) and Johnson et al. (2013) go
on to discuss how a more basic one-population version of this model can
be solved mathematically using calculus, to reproduce the approximate 2.5
empirical exponent value. This is shown in the Appendix, and is obtained by
replacing the impact of the Blue population by a probability of Red cluster
fragmentation. The full model — i.e. the two-population version of the model
— goes much further by also explaining the deviations at low and higher
casualty numbers, and hence the deviations from a power-law as shown in
Fig. 5. A closer examination of the agent-based dynamics in the model shows
that the ratio between the two populations’ strengths (Red and Blue) tends
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to control the general behavior of the slope, with greater strength differences
resulting in steeper slopes, while the total Red strength tends to control the
large high-end roll-off in Fig. 5 (Bohorquez et al., 2009).

3 Conclusion

We have reviewed how computational data science techniques and agent-
based modeling can now shed new light on the age-old issue of human conflict.
We also provided three contributions which help unify disparate existing
claims in the literature, and support the notion of a unified framework for
understanding human conflict. We showed that the approximate power law
obtained for whole war sizes bears a simple relationship to the approximate
power laws obtained from events within individual wars. Our finding that
looking at individual violent events within a single war is therefore not the
same as looking at individual wars within a collection of many wars, serves
as a warning to computational science in general – that numerical statistical
signatures can depend on the way in which data is collected and binned. More
importantly, our finding overturns apparent assumptions in the literature
(see for example Clauset (2018)) that the behavior over aggregated conflicts
is somehow separate from the behavior within wars, due to their different
power-law exponents. We note in passing that we have also tried hard
to reproduce this effect analytically, whereby aggregating over all conflicts
produces another approximate power law distribution but now with a different
power-law exponent. We have not yet been able to do so, and hence we leave
this as a challenge to the scientific community as an interesting and open
mathematical problem. We also clarified some misunderstandings relating to
the application of power-law estimation and testing procedures to the messy
conflict datasets available to modern researchers.

We also reviewed how a generative theory of human conflict can be provided
that reproduces the observed casualty distributions but does not make any
implicit assumptions about power-law behavior. Not only can it replicate the
approximate power-law behaviors, it also provides a quantitative explanation
of deviations from pure power laws of these distributions and relates it to the
dynamics of the conflict.

We believe that this data driven and computational science approach could
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help intervene in human conflict in two ways. The first way is to use the
approximate power-law universality over all conflicts (i.e. power-law exponent
α ∼ 1.5 − 1.7) and the power law within single conflicts (i.e. power-law
exponent βi ∼ 2.5) to make order-of-magnitude predictions concerning what
to expect in terms of casualties across and within future conflicts respectively.
For example, the approximate power-law functional form of the single conflict
distribution (i.e. Cs−βi for s > simin) can be used to calculate analytically an
estimate for the expected number of casualties in the next event within an
ongoing conflict or terrorist campaign, given by [(βi − 1)/(βi − 2)]simin where
simin is the event size above which the power-law applies. Choosing βi = 2.5
and simin = 50 as illustration, yields the expected number of casualties in the
next event to be 150. This can help with planning in terms of dealing with
casualties, and may conceivably even act as a partial deterrent for initiating
such a future event. A consequence of our accompanying dynamical cluster
theory (see Appendix) is that a state army can avoid having to find and
destroy the largest (i.e. most lethal) insurgent clusters, by instead regularly
breaking up smaller (i.e. less powerful) ones. The second way focuses on
relating the deviations from perfect universality to the narrative of a specific
conflict, i.e. it provides benchmark results against which specific conflicts
(Fig. 2) or terrorist organization activity (Fig. 3) can be compared to see how
and why they may deviate. For example, if a specific conflict deviates from
the benchmark 2.5 approximate power-law either by having a very low p value
and/or a β value far from 2.5, then a specific narrative of this conflict could
be used to explain why the mechanism in that conflict might be different from
the others, and hence different from the generative mechanism presented in
the Appendix. We see this as a particularly attractive way to bring together
the computational science and social science communities around the topic of
human conflict and terrorism studies.

Appendix

We now review, for completeness, the basic one-population version of our
generative model in the inset in Fig. 5 and discussed in Sec. 2. It focuses on
the Red population and their clustering dynamics. To simplify the multi-sided
nature of the generative model, we replace the feature that clusters fragment
when interacting with Blue, or when sensing imminent danger, by simply
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assigning a probability for the Red clusters to fragment. As we show below,
this yields an exponentially cutoff 2.5-exponent power-law for the distribution
of Red cluster sizes. If we then assume that the civilian population represents
a passive background that simply absorbs the strength of each Red cluster
when that Red cluster acts, the distribution of civilian casualties should have
a similar distribution to that of the insurgent (i.e. Red) clusters. The internal
coherence of a population of N objects (which we refer to as an ‘agents’ to
acknowledge potential future application to human and/or cyber systems)
comprises a heterogenous soup of clusters, at each timestep. Within each
cluster, the component objects have a strong intra-cluster coherence. The
inter-cluster coherence is weak between clusters. An agent i is then picked
at random, or equivalently a cluster is randomly selected with probability
proportional to size. Here we let si be the size of the cluster to which this
agent belongs. The probability νfrag is the probability that the coherence of a
given cluster fragments completely into si clusters of size one. If it doesn’t
fragment, then a second cluster is randomly selected with probability again
proportional to size, or equivalently another agent j is picked at random.
With probability νcoal, the two clusters then coalesce – or equivalently this
can be thought of them developing a common ‘coherence’ in their thinking or
activities.

We start with the Master Equation for these cluster dynamics:
∂ns
∂t

= νcoal

N2

s−1∑
k=1

knk(s− k)ns−k −
νfragsns
N

− 2νcoalsns
N2

∞∑
k=1

knk , s ≥ 2 ,(1)

∂n1

∂t
= νfrag

N

∞∑
k=2

k2nk −
2νcoaln1

N2

∞∑
k=1

knk . (2)

We make an approximation that N →∞. The terms on the right hand side
of Eq. (1) represent all the ways in which the number of clusters of size s,
given by ns, can change. Taking the steady state, we obtain:

sns = νcoal

(νfrag + 2νcoal)N

s−1∑
k=1

knk(s− k)ns−k , s ≥ 2 , (3)

n1 = νfrag

2νcoal

∞∑
k=2

k2nk . (4)

Consider

G[y] =
∞∑
k=0

knky
k = n1y +

∞∑
k=2

knky
k ≡ n1y + g[y] , (5)
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where y is a parameter and g[y] governs the cluster size distribution nk for
k ≥ 2. Multiplying Eq. (3) by ys and then summing over s from 2 to ∞,
yields:

g[y] = νcoal

(νfrag + 2νcoal)N
G[y] , (6)

i.e.
g[y]2 −

(
νfrag − 2νcoal

νcoal
N − 2n1y

)
g[y] + n2

1y
2 = 0 . (7)

From Eq. (5), g[1] = G[1] − n1. Substituting this into Eq. (7) and setting
y = 1, we can solve for g[1]

g[1] = νcoal

νfrag + 2νcoal
N . (8)

Hence
n1 = N − g[1] = νfrag + νcoal

νfrag + 2νcoal
N . (9)

Substituting this into Eq. (7) yields

g[y]2−
(
νfrag + 2νcoal

νcoal
N − 2N(νfrag + νcoal)

νfrag + 2νcoal
y

)
g[y]+(N(νfrag + νcoal))2

(νfrag + 2νcoal)2 y2 = 0 .

(10)
This quadratic can now be solved for g[y]

g[y] = (νfrag + 2νcoal)N
4νcoal

2− 4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2 y − 2

√√√√1− 4(νfrag + νcoal)νcoal

(νfrag + 2νfrag)2 y

 ,

(11)
which can then be written out as

g[y] = (νfrag + 2νcoal)N
2νcoal

∞∑
k=2

(2k − 3)!!
(2k)!!

(
4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2 y

)k
. (12)

We now compare with the definition of g[y] in Eq. (5), leading to

ns = νfrag + 2νcoal

2νcoal

(2s− 3)!!
s(2s)!!

(
4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2

)s
. (13)

Then making use of Stirling’s series, we obtain

ln[s!] = 1
2 ln[2π] +

(
s+ 1

2

)
ln[s]− s+ 1

12s − ... . (14)
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Hence for s ≥ 2, we find

ns ≈
(

(νfrag + 2νcoal)e2

23/2
√

2πνcoal

)(
4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2

)s (s− 1)2s−3/2

s2s+1 N , (15)

which gives

ns ∼
(
νs−1

coal (νfrag + νcoal)s
(νfrag + 2νcoal)2s−1

)
s−5/2 . (16)

For s� 1, which means larger cluster sizes such as in the tail of the distribu-
tion, this is the same as saying

ns ∼ exp(−s/s0)s−5/2 (17)

where

s0 = −
[
ln
(

4(νfrag + νcoal)νcoal

(νfrag + 2νcoal)2

)]−1

. (18)

The power law behavior is dominated by the exponential function for large
cluster sizes (i.e. large s such that s ∼ O(N)). Then the equilibrium state for
the distribution of cluster sizes can therefore be considered a power-law with
exponent α ∼ 5/2 = 2.5 together with an exponential cut-off. This model
captures the fact that the interactions in future conflicts, given the advances in
communications technology, will likely be effectively distance-independent, i.e.
it captures the fact that messages can be transmitted over arbitrary distances.
There are many generalizations that can be added to the model and yet give
the same result, which confirms the robustness of this 2.5 result. An even
wider variety of exponents very similar to the range of empirical findings
in Figs. 1-3, emerges if we then allow a generalized form for the rigidity
of clusters (i.e. probability of a picked cluster coalescing or fragmenting)
such that it depends on size. In this case, the exponent is expected to vary
typically from 1.5 to about 3.5, which is consistent with the observed range
in Figs. 2-3.

We are very grateful to past students and post-docs who were part of this
research program and contributed to the understanding and results shown
here.
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Figure 1: Histogram for attacks involving ISIS, follows a power law to a
good approximation. The number of events of a given size or larger are shown
on the y axis. Event sizes are given by the number of casualties, which are
plotted on the x-axis. The plot shows the cumulative total, and the solid line
indicates the best-fit power law.
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Figure 2: Plot shows (vertical axis) estimates of α parameter, along with 50
percent uncertainty interval, versus (horizontal axis) goodness-of-fit p values
for power-law hypotheses for global violent armed conflicts. Grey shaded
area corresponds to goodness-of-fit p ≤ 0.05. Adapted from the authors own
original figure as appearing in Spagat et al. (2018), which permits unrestricted
use under the terms of the Creative Commons Attribution License.
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Figure 3: Plot shows (vertical axis) estimates of α parameter, along with
50 percent uncertainty interval, versus (horizontal axis) goodness-of-fit p
values for power-law hypotheses for terrorist organizations. Grey shaded
area corresponds to goodness-of-fit p ≤ 0.05. Adapted from the authors own
original figure as appearing in Spagat et al. (2018), which permits unrestricted
use under the terms of the Creative Commons Attribution License.
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Figure 4: (a) Schematic of the simulation procedure, shown in more detail
in (b). To generate a number of wars consistent with our model, we generate
events from power-law distributions with exponents distributed around 2.5
(see text). The aggregate size of each war is calculated, yielding {Wi}. This
set of {Wi} values is then sampled to mimic the process of using a database
of known wars with known aggregate totals. As shown in (c), the resulting
power law exponents for the aggregate size of entire wars, is in the range
observed empirically. Each distribution is for a different number of mean
events per war. In each case, the distribution of α values tends to be peaked
in a range that is consistent with the empirical values for entire wars (i.e.
α ∼ 1.5− 1.7) and they each have reasonably high goodness-of-fit values p
(p ∼ 0.5).
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Figure 5: The behavior across four example conflicts, of the complementary
cumulative distribution of event size P (X ≥ x) where x is the number of
casualties in an event within the conflict. We have adapted this figure from
Bohorquez et al. (2009). The results from our generative model (shown as
an inset and discussed in Sec. 2) are shown as solid, light gray curves. The
inset shows schematically our generative model which is a two-population
Red-Blue conflict: clusters of red squares and clusters of blue triangles that
interact, together with Greens (green circles) who are passive civilians. The
dashed line is a straight line guide-to-the-eye: it is not a power-law fit.
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