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Abstract 19 

During the Covid-19 pandemic, universities in the UK used social media to raise awareness 20 

and provide guidance and advice about the disease to students and staff. We explain why 21 

some universities used social media to communicate with stakeholders sooner than others. 22 

To do so, we identified the date of the first Covid-19 related tweet posted by each university 23 

in the country and used survival models to estimate the effect of university-specific 24 

characteristics on the timing of these messages. In order to confirm our results, we 25 

supplemented our analysis with a study of the introduction of coronavirus-related university 26 

webpages. We find that universities with large numbers of students are more likely to use 27 

social media and the web to speak about the pandemic sooner than institutions with fewer 28 

students. Universities with large financial resources are also more likely to tweet sooner, 29 

but they do not introduce Covid-19 webpages faster than other universities. We also find 30 

evidence of a strong process of emulation, whereby universities are more likely to post a 31 

coronavirus-related tweet or webpage if other universities have already done so.  32 
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Introduction 33 

University responses to the spread of respiratory illnesses 34 

Pandemic outbreaks of respiratory illnesses have struck universities for hundreds of years. 35 

European universities have documented the effect of pandemics since at least the 36 

fourteenth century [1-2]. Many American universities closed their campuses during the 37 

influenza pandemics of the twentieth century [3-7].  More recently, universities in Asia were 38 

severely affected by the 2009 H1N1 pandemic and the 2002-04 SARS outbreak.  39 

Universities have incentives to prepare and respond to outbreaks of respiratory illnesses 40 

because they affect student health, reduce academic performance, and lead to increased 41 

use of health care [4, 6, 8-13].  42 

In this context, universities’ first line of defence is influenza vaccination. While seasonal 43 

vaccination does not protect against the uncommon viruses at the heart of pandemics, they 44 

provide a basic level of protection [10] and reduce visits to doctors and health centres, as 45 

well as reduce hospitalisation. As a second line of defence against outbreaks of respiratory 46 

illnesses, universities implement non-pharmaceutical interventions, including isolation, 47 

social distancing, smothering of coughs and sneezes, washing hands, and cleaning touched 48 

objects and surfaces, among others [14-18].  49 

Regardless of the specific interventions implemented to mitigate outbreaks of respiratory 50 

illnesses, universities must rely on timely and effective communication campaigns. In this 51 

light, we present a study of the timing of university communication during the height of the 52 

Covid-19 pandemic in the UK. 53 

 54 
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University communication and social media during the Covid-19 55 

pandemic: a crisis informatics approach to studying the impact of 56 

the pandemic on higher education 57 

In early March 2020, Covid-19 had spread across the UK. At that time, the central 58 

government had not issued university-specific advice. Therefore, universities activated their 59 

response systems and implemented their own measures to control the disease on their 60 

campuses. In the first stage, universities raised awareness, reinforced public health advice, 61 

and provided guidance to students and staff [19]. Later on, they implemented more 62 

stringent measures, including social distancing and remote working for staff, particularly in 63 

mid-March 2020 when preparations for a national lockdown were in progress. In spite of 64 

some initial hesitation, universities closed their campuses to non-essential services by 23rd 65 

March 2020. This variation in university responses to Covid-19 motivated us to look more 66 

closely at how universities reacted to the pandemic. 67 

The initial information campaign on university campuses and the subsequent 68 

implementation of interventions were announced to students and staff through email and 69 

internal newsletters. These emails and newsletters are private tools of internal crisis 70 

communication and the research team did not have systematic access to them. Yet, part of 71 

this engagement was observable in universities’ social media channels, as universities are 72 

aware that students may prefer social media posts rather than emails [20], and this 73 

provided us with a unique opportunity to study how universities responded to the 74 

pandemic. Our investigation indicates that UK universities were making references to Covid-75 

19 in social media since late January 2020. These social media posts generally raised 76 

awareness, reinforced public health advice, and provided guidance.  77 
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The public has been using social media and other forms of communication during crises 78 

to learn and inform themselves [21-22]. Organisations have embraced social media to 79 

enable rapid interaction with stakeholders [23-26]. Universities also use social media to 80 

communicate with students and staff in a frequent, timely, open, and targeted manner [27-81 

32].  82 

The use of social media as a two-way communication channel between universities and 83 

students and staff during the Covid-19 pandemic places our research in the area of crisis 84 

informatics [33-39]. Crisis informatics is a relatively new field that explores the role of 85 

information and communication technology (ICT) in crises. Specifically, it focuses on how 86 

networked ICT facilitates the public’s response to a crisis. The field covers different types of 87 

crises, although it is particularly useful for the study of exogenous events such as natural 88 

hazards [37].  89 

As the role of social media has become more important during crises, crisis informatics has 90 

made significant advances in several subjects, including the role of networked ICT on socio-91 

behavioural factors during emergencies and the use of digital communication as a data 92 

source [37, 39, 40]. At the same time, there are challenges emerging from very large 93 

quantities of unstructured, noisy information. However, if the appropriate methods are 94 

applied to the collection, pre-processing, and analysis of data, social media can provide 95 

useful information for empirical analysis [37-39, 41-42].  96 

We rely on crisis informatics to contribute to the emerging research agenda on the impact 97 

of Covid-19 on higher education [43]. This research agenda, while fragmented and 98 

microscopic [44-45], is making important contributions to our understanding of the effects 99 

of the SARS-CoV-2 virus and the pandemic on higher education. Currently, the emphasis has 100 

been on the disruption to traditional learning and the transition to online learning [46-50], 101 
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as well as on the challenges in this transition, particularly for universities in developing 102 

countries [51-52, 43].  103 

Research has also been devoted to the timing and heterogeneity of non-pharmaceutical 104 

interventions during the height of the pandemic [53-54]. Closely linked to this strand of 105 

work are epidemiological simulations for university campuses that inform university 106 

interventions, including contact tracing and quarantining [55-56]. Interventions are 107 

supported by communication efforts and recent research has focused on communication 108 

strategies [57-60, 20, 45, 51], particularly on the use of social media and its positive effects 109 

on student satisfaction with university responses to the crisis [20, 45]. 110 

The pandemic not only affected students but also university staff, both physically and in 111 

terms of additional work pressure and general uncertainty. Thus, recent research has 112 

focused on the mental and physical health of staff [61-62], and the key role of social support 113 

[61]. Recent work is also addressing the role of university leadership in managing the effects 114 

of the pandemic on campuses around the world and new studies are confirming the positive 115 

effect of women in managing the crisis [63, 20]. 116 

In summation, this paper explores the timing of coronavirus-related messages posted by 117 

universities in social media. Research shows that the timing of interventions can reduce the 118 

negative effects of pandemic outbreaks [64]. This is particularly pertinent to risk 119 

communication and therefore our aim is to explain why some universities posted social 120 

media messages sooner than others. In order to confirm our results, we supplemented our 121 

analysis of social media with a study of the introduction of coronavirus-related university 122 

webpages, which were also widely used by universities to communicate Covid-19 123 

information to stakeholders [53].  124 

 125 
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Theoretical framework 126 

In order to explain variation in the timing of communication, we rely on Situational Crisis 127 

Communication Theory (SCCT) and theories of policy emulation.  128 

During crises, organisations engage in strategic communication. According to Situational 129 

Crisis Communication Theory (65-66), institutions have strong incentives to communicate 130 

early with stakeholders when they are also victims of a crisis. This is often the case when 131 

natural disasters, including pandemics, take place–stakeholders do not attribute the crisis to 132 

the organisation, which in turn can benefit from providing information about the 133 

emergency. In fact, research evidence suggests that early communication by an organisation 134 

when a crisis is attributed to external factors contributes to the perceived credibility of the 135 

organisation (65-69). 136 

This logic is particularly important for UK universities in the context of the pandemic. 137 

According to SCCT, UK higher education institutions are victims of the pandemic and this 138 

gives them incentives to provide early information to their stakeholders in order to gain 139 

credibility. Institutional credibility was crucial because UK universities had to compete for 140 

students in the highly uncertain admission cycle of 2020. In this context of urgency and 141 

competition, our empirical analysis focuses on the variables that best reflect universities’ 142 

organisational capacity and ability to communicate early with students and staff.  143 

Theories of policy emulation also help us understand the variation in the timing of university 144 

communications. While there are nuances across theories of emulation, they generally 145 

focus on the opportunities for policy diffusion: “Policy diffusion is the process whereby a 146 

state is more likely to adopt a policy if other states have already adopted that policy.” [70] 147 

We follow this literature and focus on the role of geographic proximity as a source of 148 
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diffusion, which is best exemplified by Tobler’s first ‘law’ of geography where “everything is 149 

related to everything else, but near things are more related than distant things.” [71] More 150 

recent research adds a second ‘law:’ “Everything resembles everything else, but closer 151 

things are more similar” [71]. In terms of crisis communication, we expect that universities 152 

are more likely to communicate early with their stakeholders if universities in their vicinity 153 

have already done so. 154 

 155 

In sum, our study contributes to our understanding of risk communication in the higher 156 

education sector during the pandemic and to our knowledge of the implementation of non-157 

pharmaceutical interventions across campuses in the UK. These interventions, and the 158 

communication efforts that support them, are important because they slow down the 159 

spread of infection on campuses, thus reducing the negative effects of the pandemic on 160 

student health, academic performance, and use of health care. Moreover, and in the 161 

context of the pandemic in the UK, universities filled a vacuum caused by the absence of 162 

central government advice to higher education institutions. In so doing, universities were 163 

confirming their key role as public sources of trust and potentially reducing the negative 164 

effects of a decline of the higher education sector in the UK economy. Universities, as 165 

victims of the crisis, quickly engaged their stakeholders and raised awareness, reinforced 166 

public health advice, and provided guidance through social media, in order to meet their 167 

duty of care and gain credibility in an uncertain admissions cycle.  168 

 169 

Material and methods 170 
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In order to explain why some universities posted Covid-19-related social media messages 171 

sooner than others, we followed a two-fold strategy. First, we collected posts and their 172 

metadata from universities’ official Twitter accounts to identify the date of their first Covid-173 

19-related tweet during the height of the Covid-19 pandemic. Second, we used these dates 174 

to estimate Cox survival models of elapsed time and survival models of diffusion to explore 175 

the role of emulation. We used these two types of models to explore whether universities 176 

choose the timing of communication based only on their university-specific characteristics 177 

or whether they also considered actions taken by other institutions.  178 

To test the validity of our findings from Twitter data, we applied the research design 179 

described above to the dates of universities’ first official Covid-19 webpages. 180 

 181 

Twitter data 182 

The crisis informatics literature explores several peer-to-peer communication platforms 183 

[35]. A large proportion of the research focuses on social media, including “blogging and 184 

microblogging, social networking sites, social media sharing platforms, and wikis” [42]. 185 

Although universities use multiple social media platforms, we focus on Twitter because 186 

most UK universities have a Twitter account. In addition, Twitter’s emphasis on text, as well 187 

as the wide availability of computational methods to pre-process Twitter content and 188 

analyse text as data, make it a suitable source of information for the analysis of risk 189 

communication. In this sub-section we describe how we identified universities’ first tweet 190 

with Covid-19 content.  191 

As a first step, we focused on the Twitter accounts of all officially recognised universities 192 

and colleges in the UK as higher learning institutions that can award degrees [72]. This list 193 
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includes 170 universities, although our sample consists of 166 universities because some 194 

institutions do not have a Twitter account, while others have ceased operations or their 195 

business model is mainly online teaching, which was not as severely affected by the 196 

pandemic. We manually reviewed the Twitter accounts used in this paper to confirm their 197 

authenticity. In addition, we replicated our analyses of Table 1 using only accounts verified 198 

by Twitter; these results are presented in S1 Table. Twitter verifies accounts that are 199 

determined to be in the public interest; this assures the public that these Twitter profiles 200 

are authentic. 201 

As a second step, we collected tweets posted between 31st December 2019 –when the 202 

WHO first identified a statement from Wuhan Municipal Health Commission related to a 203 

new ‘viral pneumonia’– and the end of our study on 6th May 2020. We used Twitter’s public 204 

API to collect tweets that provided data encoded in JavaScript Object Notation (JSON). The 205 

extraction produced 57,340 tweets for the 166 universities in our sample within our period 206 

of interest.  207 

We focus on two attributes of tweets: the text content and the timestamp. The content of a 208 

tweet may contain non-textual characters, including URLs, mentions, hashtags, emojis, or 209 

numbers. We used text pre-processing methodologies to improve the quality of the data, 210 

mitigate the creative use of spacing and punctuation, and remove non-textual content. 211 

These methodologies include separating hyperlinks from the adjacent text, normalising 212 

Twitter-specific tokens (e.g., hashtags and URLs), extracting text from in between symbols, 213 

replacing ampersands, lowercasing the text, normalising multiple occurrences of vowels and 214 

consonants, normalising emojis and numbers, splitting numbers and emojis when adjacent 215 

to text, and removing non-alphanumeric characters. In general, we used text normalisation 216 
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to produce text concordant with standard natural language processing approaches applied 217 

to formal text. 218 

Once we pre-processed all tweets, we applied tokenisation to obtain a bag of words from 219 

each tweet. We then applied pattern-matching rules to extract tweets that mention the 220 

pandemic. Specifically, we used four keywords: ‘coronavirus’, ‘covid’, ‘COVID-19’, and ‘face-221 

to-face.’ Our initial search had a more extensive set of keywords for pattern matching, but it 222 

produced a large set of irrelevant tweets. After some manual exploration, we found that 223 

these four keywords captured the most relevant tweets for the study; they are also a better 224 

reflection of the strict measures that universities would eventually implement, including the 225 

end of face-to-face teaching. 226 

These pre-processing and tokenisation methods reduced our original sample of 57,340 227 

tweets to 7,015 relevant tweets. We then simply ranked them by timestamp to select the 228 

first tweet of each university. We manually cross-checked the first tweet for each university 229 

and removed any results that produced a tweet that was not relevant to our search. Thus, 230 

our final sample includes the date of the first Covid-19 related tweet for 158 universities.  231 

 232 

University-specific characteristics 233 

We use survival analysis –also known as hazard analysis or event history modelling– to 234 

analyse why some universities posted Covid-19 related tweets sooner than others. This 235 

method focuses on time to an event or a transition. In biostatistics, for example, the 236 

emphasis may be on a patient’s time to death or remission after a cancer diagnosis [73]. In 237 

this paper, our event of interest is the first Covid-19 related tweet posted by a university. 238 

Thus, the dependent variable (Days to Tweet) is the number of days from 31st December 239 

2019 to the date of a university’s first Covid-19 related tweet. In our sample of 158 240 
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universities, 153 posted a Covid-19 related tweet; the remaining five universities did not 241 

post a first tweet by the end of our study and therefore we coded them as right-censored. 242 

Our data indicates that the median time to posting the first tweet is 66 days with a 95 per 243 

cent confidence interval of 62 to 72 days. 244 

Fig 1 presents a more systematic analysis of the number of days to post the first tweet 245 

about Covid-19. The figure presents the Kaplan-Meier estimate of the survival function, 246 

which in this case can be interpreted as the proportion of universities that have not posted a 247 

Covid-19 tweet over time. On 31st December 2019, not a single university had mentioned 248 

the novel coronavirus, but as time went by, more and more institutions posted a tweet 249 

about it. By 23rd March, almost all universities in the UK had mentioned something about 250 

Covid-19 at least once.  251 

 252 

Fig 1. Survivor function of days to first Covid-19 tweet. 253 

 254 

There seem to be three periods in this graph. The first period is between 31st December 255 

2019 and 24th January, when few universities posted their first tweet. In the second period, 256 

starting at the end of January, a larger number of universities posted their first Covid-19 257 

related tweet, thus reducing the survival function drastically–by 28th February 2020, when 258 

the first internal transmission was recorded in the UK, about 45 per cent of universities had 259 

already posted their first message. The third period starts in early March, when the 260 

preparations for strict non-pharmaceutical interventions were underway–by 13th March, 261 

about 70 per cent of universities had posted their first tweet. By 23rd March, almost all 262 

universities had posted at least one Covid-19 message on Twitter. 263 
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Why did some universities tweet sooner than others? In this section, we explore if 264 

universities choose the timing of their first tweet based only on their university-specific 265 

characteristics, such as the size of the student population or university financial resources. 266 

To the best of our knowledge, our paper presents the first analysis of the role of university-267 

specific characteristics on the timing of communication during the Covid-19 pandemic.  268 

First, we expect that universities with larger numbers of students will post a Covid-19 tweet 269 

sooner than universities with fewer students. We conjecture that most students and staff 270 

received official university messages about the pandemic over email or internal newsletters, 271 

but that there is a proportion of individuals who would not read those messages. For 272 

universities with a large number of students, that proportion could equate to thousands of 273 

individuals. In this case, posting messages and announcements in Twitter and other social 274 

media channels might be an effective way of reaching out to students and staff–messages 275 

are short and to the point, and can be re-posted by peers and colleagues, thus potentially 276 

reaching the students and staff who may not have read internal communications. In this 277 

case, posting a tweet sooner rather than later can be an effective way to raise awareness of 278 

the pandemic and provide guidance and advice to students and staff.  279 

To measure the size of the student population in universities, we obtained the total number 280 

of student enrolments by higher education provider and applied a natural logarithm 281 

transformation to this number to produce the variable (ln(Total Enrolment)). This 282 

logarithmic transformation represents the orders of magnitude of student numbers and 283 

allows us to compare cases where some universities have more than 40,000 students and 284 

others have fewer than 500. We do not control for staff numbers because they are highly 285 

correlated with the size of the student population, thus creating a collinearity problem. 286 
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Our second set of expectations is related to resilience. The largest effect of the pandemic on 287 

UK universities will be caused by a decrease in student numbers [74]. In this light, our 288 

baseline model (Model 1) controls for additional university-specific factors that make 289 

universities more or less resilient to a negative shock to student numbers.  290 

Our first control variable is the proportion of university income dependent on tuition fees. 291 

We expect that universities that rely heavily on tuition fees are more sensitive to a negative 292 

shock in student numbers than universities that are more research-oriented. The proportion 293 

of income dependent on tuition fees, which we label (Proportion Income Tuition), is simply 294 

the ratio of tuition fees to total income. Total income is composed of tuition fees, funding 295 

body grants, research grants, investment income, donations, and other income.  296 

Our second control variable is university total reserves. Reserves are a measure of wealth 297 

and we expect that wealthy universities have the necessary resources to protect students 298 

and staff, and the capacity to endure a drastic reduction in student numbers. Total reserves 299 

are measured in millions of pounds sterling and include all types of university reserves, both 300 

restricted and unrestricted. As with the number of student enrolments, we applied a natural 301 

logarithm transformation to this variable to account for a large variation in the data; we 302 

labelled this variable (ln(Total Reserves)). 303 

We excluded the University of Oxford and the University of Cambridge from all our analyses 304 

because they have financial resources that are incomparable to the resources of other 305 

universities, even when a logarithmic transformation is applied. Excluding Cambridge and 306 

Oxford, the mean total reserves for our sample of universities is £218 million. In contrast, 307 

Cambridge has £5.1 billion in total reserves while Oxford has £4.1 billion in reserves. We 308 

also removed from the analysis a very small number of universities that had negative total 309 

reserves. 310 
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Our third control variable is interaction with the public. This variable is measured as the 311 

number of attendants to free events, including lectures, performances, exhibitions, 312 

museums, and other events. As with the total number of student enrolments, we applied a 313 

natural logarithm transformation to account for a large variation in the data; we labelled 314 

this variable (ln(Public Interaction)). Interaction with the public is a double-edged sword, as 315 

it may increase the risk of infection through exposure but also strengthen resilience in terms 316 

of links to the community.  317 

Our fourth control variable indicates whether a university is a member of the Russell Group 318 

of universities: (Russell Group). This variable is equal to one if a university is one of the 24 319 

universities in the Russell Group and equal to zero otherwise. We expect that universities in 320 

this group will be more resilient because they are older –which provides experience in 321 

dealing with crises– but also because they have large financial resources and are research-322 

intensive, which allows them to endure negative shocks to student numbers. We obtained 323 

the list of Russell Group universities from the group’s official website. 324 

S2 Table presents additional analyses that control for the gender of university vice-325 

chancellors and for the proportion of positions in university leadership teams occupied by 326 

women. As mentioned in the introduction, the characteristics of the leadership of an 327 

organisation play an important role on crisis response [75-76, 20], and recent work on 328 

Covid-19 indicates that women are more effective in reducing Covid-19 deaths [63]. Results 329 

from S2 Table indicate that the gender of university vice-chancellors and the proportion of 330 

positions in university leadership teams occupied by women do not have a statistically 331 

significant effect on the timing of communication. The names and gender of university vice-332 

chancellors were obtained from Universities UK [77] and from official university websites. 333 
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The proportion of positions in university leadership teams occupied by women were 334 

obtained from official university websites. 335 

To summarise, our baseline Model 1 of university-specific characteristics includes the 336 

log(Total Enrolment), Proportion Income Tuition, Total Reserves, ln(Public Engagement), and 337 

Russell Group membership. In addition, we estimated two alternative models. Model 2 338 

includes a measure of campus size as given by the number of university buildings per 339 

number of students and staff (Buildings per capita). Model 3 replaces ln(Total Reserves) with 340 

ln(Unrestricted Reserves). Unrestricted reserves, measured in millions of pounds sterling, 341 

are a component of total reserves but do not include sensitive sources of funds, such as a 342 

university’s endowment. We note again that we eliminated Oxford and Cambridge from all 343 

our analyses due to their enormous financial resources–the mean unrestricted reserves for 344 

our sample is £157 million. In contrast, Cambridge has over £3 billion in unrestricted 345 

reserves while Oxford has £2.8 billion. We also eliminated a handful of universities with 346 

negative unrestricted reserves.  347 

The variables ln(Total Enrolment), Proportion Income Tuition, ln(Total Reserves), ln(Public 348 

Engagement), Buildings per capita, and ln(Unrestricted Reserves), were obtained from the 349 

Higher Education Statistics Authority (HESA) [78]. These variables correspond to the 350 

academic year 2018-19, with the exception of the number of buildings, which corresponds 351 

to the academic year 2017-18. These were the most recent statistics available from HESA 352 

when we completed our study and we believe that they have not changed drastically for the 353 

academic year 2019-20. Thus, they continue to provide an adequate reflection of university-354 

specific characteristics during the height of the pandemic. Summary statistics for all 355 

variables for the estimation sample of our baseline Model 1 in Table 1 are presented in S3 356 
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Table. The specific tables from HESA used to support the findings of our study are presented 357 

in S4 Appendix. 358 

We now turn to our estimation procedure. Table 1 presents three Cox-semiparametric 359 

models of our dependent variable Days to Tweet, which is the number of days from 31st 360 

December 2019 to the date of a university’s first Covid-19 related tweet. All models in this 361 

paper were estimated in Stata version 15. We use Cox models because we do not have a 362 

strong theory about the shape of the hazard rate and therefore we prefer to leave it 363 

unparametrized. As long as the proportionality assumption is met by the models, this choice 364 

does not affect the substantive effects of our variables of interest.  365 

We applied four different specifications of proportional hazards tests available in Stata 15 to 366 

all Cox models in this paper, including analysis time, the log of analysis time, one minus the 367 

Kaplan-Meier product-limit estimate, and the rank of analysis time [79]. All models passed 368 

either all four tests or at least two of them; we are confident that they meet the 369 

proportionality assumption. The tests are available in our replication files. If a model passed 370 

only two tests out of four, we decided not to adjust the non-proportional covariate because 371 

all variables in our Cox models are time-invariant and the proper solution to the problem is 372 

unlikely to bring large benefits while causing drastic changes to the research design [80].  373 

The estimation results in Table 1 consist of hazard ratios –that is, exponentiated 374 

coefficients– and their standard errors clustered for the upper-tier local authority (UTLA) to 375 

address a potential lack of independence for universities within the same authority. An 376 

UTLA is a geographic unit in the UK often identical to a county, unitary authority, or London 377 

borough. For ease of interpretation of Table 1, a hazard ratio above one indicates an 378 

increase in the hazard rate–this is the rate at which universities post their first tweet over 379 

time since 31st December 2019. In contrast, a hazard ratio below one indicates a decrease in 380 
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the hazard rate. As an illustration, a hazard ratio of 1.3 indicates that a change in a covariate 381 

increases the hazard rate in 30 per cent, while a hazard ratio of 0.8 indicates a decrease of 382 

20 per cent.  383 

Table 1: Cox Models of Days to First Covid-19 Tweet. 384 

 Model 1 Model 2 Model 3 

Ln(Total Enrolment) 1.387*** 1.397** 1.486*** 

 (0.153) (0.188) (0.189) 

Proportion Income 
Tuition 

0.487 0.474 0.365** 

 (0.256) (0.273) (0.179) 

Ln(Total Reserves) 1.294** 1.302**  

 (0.162) (0.174)  

Ln(Public 
Interaction) 

0.883** 0.879** 0.897* 

 (0.0505) (0.0540) (0.0520) 

Russell Group 1.424 1.451 1.563 

 (0.514) (0.559) (0.562) 

Buildings per capita  0.000148  

  (0.00150)  

Ln(Unrestricted 
Reserves) 

  1.131 

   (0.143) 

Observations 141 135 139 

Subjects 141 135 139 

Failures 139 133 137 

Clusters 88 87 87 

Log L -550.7 -520.9 -542.3 

Dependent variable: Days to first Covid-19 tweet. Event of interest: First Covid-19 tweet. 385 
Results in hazard ratios. Standard errors in parentheses clustered on UTLA. Oxford, 386 
Cambridge, and universities with negative total and negative unrestricted reserves are 387 
excluded from the analyses. 388 
* p < 0.1, ** p < 0.05, *** p < 0.01 389 

 390 

Emulation 391 

In this section we investigate if universities consider the actions of other institutions in their 392 

decision to post a first Covid-19 related tweet. To do so, we estimate survival models of 393 

emulation used in the literature on public policy diffusion [81-88]. As mentioned in the 394 
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introduction, “Policy diffusion is the process whereby a state is more likely to adopt a policy 395 

if other states have already adopted that policy.” [70] 396 

We do not aim to understand the causes of emulation –which may be connected to 397 

competition, for instance– but to look for evidence of a diffusion process across UK 398 

universities. To the best of our knowledge, this is the first study of diffusion in university 399 

communication during the Covid-19 pandemic. 400 

Recent models of diffusion rely on dyadic data whereby pairs of states or countries are the 401 

unit of statistical analysis [83-84, 89]. We follow this literature and use dyads of UK 402 

universities as units of analysis. For example, we create the dyad Essex-Bristol, Essex-Kent, 403 

Essex-Roehampton, and so on. For 170 universities, there are 1702=28,900 university dyads. 404 

Each of these dyads is followed daily from 31st December 2019 to 6th May 2020, which gives 405 

us a potential sample of 3,670,300 observations. Our sample is smaller because many 406 

universities posted their first tweet before the 6th of May.  407 

This daily dyadic setup for our data is useful because we can record the date when a 408 

university tweets for the first time and track if other universities have tweeted before in 409 

order to explore the likelihood of emulation. It is precisely for this reason that the dyad 410 

Essex-Kent is not the same as the dyad Kent-Essex: Kent may emulate Essex if Essex tweeted 411 

first, but Essex cannot emulate Kent.  412 

In the daily dyad University A-University B, our dependent variable (Emulation) is equal to 413 

one on the day when University A posts its first tweet if University B has previously posted a 414 

tweet, and zero otherwise. The literature on diffusion prescribes that once Emulation takes 415 

on a value of one on a particular date, it should then be coded as missing; this is simply 416 

because we focus on time to emulation and because once two universities have taken the 417 

same course of action, that is, posting a tweet, emulation is no longer a possibility. For the 418 
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estimation sample of Model 2 in Table 2, there are 5,831 cases where Emulation is equal to 419 

one and 853,141 cases where it is equal to zero. 420 

In a dyad, University A cannot emulate University B if the latter has not posted a tweet in 421 

the first place. Thus, our key determinant of emulation is a variable labelled (B Tweeted) 422 

that is equal to one if University B has tweeted and equal to zero otherwise. For example, in 423 

the dyad University A-University B, the former might tweet on 10th March while the latter 424 

tweeted on 5th March. For the estimation sample of Model 2 in Table 2, there are 171,382  425 

cases where B Tweeted is equal to one and 687,590 cases where it is equal to zero. As 426 

prescribed in the literature on diffusion, the variable B Tweeted would then be equal to zero 427 

from 31st December 2019 to 4th of March and equal to one from 5th March onwards. We do 428 

not expect that a tweet will have an immediate effect and therefore we use a two-day lag of 429 

this event. Our results are robust to the use of three and four-day lags for B Tweeted; S5 430 

Table presents these additional estimation results.  431 

Our dyadic data has all 28,900 dyads and a university may emulate any other university. 432 

Nevertheless, we expect that universities may be more responsive to the actions of their 433 

geographical neighbours because they share similar infection risks. Thus, we created a 434 

variable (Neighbour) that indicates whether two universities in a dyad are geographical 435 

neighbours. The variable Neighbour is equal to one if two universities are separated by a 436 

distance of 50 kilometres of less, and equal to zero otherwise. For the estimation sample of 437 

Model 2 in Table 2, approximately 12 per cent of universities are neighbours according to 438 

this definition.  439 

In S6 Table, we present estimates from the dyadic models of Table 2 using two alternative 440 

definitions of geographic proximity. In the first alternative, two universities are neighbours if 441 

they are separated by a distance of 100 kilometres of less. In the second alternative, two 442 
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universities are neighbours if they are separated by a distance of 25 kilometres of less. Our 443 

results are robust to these alternative definitions of a neighbourhood. 444 

To calculate distances between universities, we used the Google Maps API to request the 445 

full address of each university, including its longitude and latitude. We then used these 446 

coordinates and the package ‘geodist’ [90] in R version 3.5.0 to create a matrix of distances 447 

for each dyad. We follow the literature on diffusion described above and interact the 448 

variable Neighbour with the variable B Tweeted. This interaction of variables allows us to 449 

investigate whether the likelihood of emulation depends on geographic proximity. 450 

In addition to testing for the presence of diffusion, we use our research design to analyse 451 

the effect of the daily number of coronavirus infections in a university’s upper tier local 452 

authority. We focused on infection cases rather than deaths because the recording of Covid-453 

19 related deaths in England is still a matter of debate. The number of Covid-19 cases was 454 

obtained from Public Health England as reported in Coronavirus (COVID-19) in the UK [91]. 455 

For the estimation sample of Model 2 in Table 2, the mean daily number of Covid-19 cases is 456 

0.3 with a variance of 3.32; the minimum number is zero and the maximum is 33. We also 457 

applied a natural logarithm transformation to the number of Covid-19 cases and created the 458 

variable (ln(Covid-19 Daily Cases)). We collected this data on 30th April 2020 and therefore 459 

estimation is restricted to days between 31st December 2019 and 30th April 2020. This does 460 

not affect our analyses, as most universities had posted their first tweet by the end of 461 

March 2020. 462 

The cases of Covid-19 are reported at the upper-tier local authority (UTLA) level in England. 463 

Unfortunately, these figures are not reported for Wales, Scotland, and Northern Ireland. 464 

However, we were able to include observations from universities in Wales, Scotland, and 465 

Northern Ireland until 30 January 2020, when there were no reported cases of infections in 466 
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the UK. There are efforts to collect and organise coronavirus cases for Scotland and Wales 467 

using medical wards [92], but these are not comparable to the UTLAs in England.  468 

We matched universities to UTLAs using their coordinates as explained above and assigning 469 

them to the polygons of UTLAs. These polygons were obtained from the Office of National 470 

Statistics file on Counties and Unitary Authorities (December 2017) Full Clipped Boundaries 471 

in UK [93]. We used the package ‘sp’ [94] in R version 3.5.0 to assign university coordinates 472 

to UTLA polygons. 473 

Our models of diffusion also control for all the university-specific variables used in the 474 

previous section. Although these variables do not change between 31st December 2019 and 475 

6th May 2020, they are useful indicators of university-specific characteristics. Our controls 476 

include university total reserves, and therefore we exclude Oxford, Cambridge, and 477 

universities with negative total reserves from our analyses of emulation. 478 

In dyadic models, it is also recommended that specifications include control variables for 479 

both University A and University B [84]. This is simply because the probability of emulation 480 

depends on the actions of the two universities: the leader and the follower. Thus, all 481 

specifications include controls for both universities in a dyad, which we separate with 482 

subscripts. For instance, Model 2 in Table 2 controls for the natural logarithm of total 483 

student enrolments in University A, denoted, Ln(Total Enrolment)A, and for the natural 484 

logarithm of total student enrolments in University B, denoted, Ln(Total Enrolment)B. 485 

We note that the literature on diffusion finds that traditional dyadic models create a bias in 486 

favour of an emulation effect. The intuition behind the bias is as follows: “Simply put, state i 487 

appears to emulate state j not because it looks to state j as a policy leader, but because both 488 

are independently headed in the same direction and state j may just happened to get there 489 

first.” [84] In other words, the traditional dyadic model cannot distinguish if variables 490 
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increase the likelihood that University B will implement a policy (and therefore that there is 491 

an opportunity for emulation) or if they increase the probability that University A will 492 

emulate University B. The solution to this bias is quite simple; rather than estimating the 493 

original, unconditional dyadic model, one needs to estimate a model that conditions on a 494 

university’s opportunity to emulate. In this light, the purpose of the conditional model is not 495 

to find evidence of emulation but to distinguish if specific variables have an effect on 496 

emulation or on coincidental convergence. 497 

In practical terms, in the conditional dyadic setup, the dependent variable is also Emulation, 498 

but the estimation sample is restricted to those days when there is an opportunity for 499 

emulation, that is, those days after University B has posted its first tweet. Thus, we 500 

condition on the variable (Opportunity), which is equal to one if University B has tweeted 501 

and equal to zero otherwise. For the estimation sample of Model 2 in Table 2, there are 502 

163,670 cases where Opportunity is equal to one and 695,302 cases where it is equal to 503 

zero. In the dyadic conditional model where estimation is restricted to the 163,670 cases 504 

where Opportunity is equal to one, there are 5,831 cases where Emulation is equal to one 505 

and 157,839 cases where it is equal to zero. We note that the variable Opportunity is not 506 

identical to the variable B Tweeted because the opportunity to emulate starts the day after 507 

University B has tweeted. 508 

Table 2 presents three models: a monadic survival model of universities’ first tweet, a 509 

dyadic unconditional model of emulation, and a conditional model of emulation. The goal of 510 

the first model is to explore the effect of Covid-19 cases on the hazard rate of posting a first 511 

Covid-19 related tweet. The previous section did not explore the effect of infections simply 512 

because it uses a cross-section of universities, while the data for infections is measured 513 

daily. Thus, it was more appropriate to present this test here because it uses the same daily 514 
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data organisation than the dyadic models. Having said this, the purpose of Model 2 in Table 515 

2 is to look for evidence of emulation. Model 3 is the conditional model of emulation and its 516 

goal is to differentiate the effect of variables in the likelihood of emulation or coincidental 517 

convergence. 518 

Lastly, we note that all models in Table 2 are discrete survival models [95-96]. Discrete 519 

survival models are implemented as models for binary choice –in our case, a logit model– 520 

that controls for duration dependence by adding a cubic polynomial of days between 31st 521 

December 2019 and the event of interest [96]. In our case, the event of interest in Model 1 522 

is a university’s first tweet, while in Models 2 and 3 the event of interest is emulation. 523 

Results for all models are presented in odds ratios. Standard errors clustered at University A 524 

in the dyad University A-University B are presented in parentheses in order to account for a 525 

potential lack of independence among observations. As in the previous section, we excluded 526 

the University of Oxford and the University of Cambridge, as well as any universities with 527 

negative total or unrestricted reserves. 528 

 529 

Table 2: Models of first Covid-19 tweet and emulation of first Covid-19 tweet. 530 

 

Model 1: 
First Covid-19 

tweet 
(monadic) 

Model 2: 
Emulation of first 
Covid-19 tweet 

(dyadic 
unconditional) 

Model 3: 
Emulation of first 
Covid-19 tweet 

(dyadic 
conditional) 

Ln(Total Enrolment)A 1.440*** 1.536*** 1.514*** 

 (0.188) (0.212) (0.211) 

Proportion Income 
Tuition A 

0.750 0.211 0.235 

 (0.649) (0.204) (0.229) 

Ln(Total Reserves) A 1.328* 1.065 1.093 

 (0.194) (0.145) (0.154) 

Ln(Public 
Interaction) A 

0.796** 0.919 0.915 

 (0.0707) (0.0682) (0.0708) 
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Russell Group A 1.921 1.172 1.168 

 (0.763) (0.564) (0.569) 

Ln(Covid-19 Daily 
Cases) A 

2.341*** 1.505*** 1.375** 

 (0.390) (0.239) (0.215) 

Days A 1.137*** 0.828*** 0.562*** 

 (0.0512) (0.0363) (0.0373) 

Days2
 A

 0.998* 1.005*** 1.011*** 

 (0.000966) (0.00109) (0.00146) 

Days3
 A 1.000** 1.000*** 1.000*** 

 (0.00000575) (0.00000717) (0.00000915) 

Ln(Total Enrolment)B  0.955*** 0.980 

  (0.0109) (0.0131) 

Proportion Income 
Tuition B 

 1.226** 2.243*** 

  (0.114) (0.274) 

Ln(Total Reserves) B  1.018 0.963* 

  (0.0175) (0.0190) 

Ln(Public 
Interaction) B 

 1.009 1.024*** 

  (0.00670) (0.00718) 

Russell Group B  1.014 1.228*** 

  (0.0303) (0.0489) 

Ln(Covid-19 Daily 
Cases) B 

 1.413*** 1.362*** 

  (0.0757) (0.0653) 

B Twitted A(t-2)  27.91***  

  (7.157)  

(Neighbour)(B 
Twitted A(t-2)) 

 0.646***  

  (0.0545)  

Neighbour   0.682*** 

   (0.0537) 

Constant 0.000102*** 0.000132*** 3.957 

 (0.000109) (0.000126) (4.227) 

Observations 6930 858972 163670 

Clusters 131 141 140 

Pseudo-R2 0.167 0.352 0.175 

Log L -480.9 -22637.1 -20753.8 

Dependent variable (Model 1): First Covid-19 tweet. Dependent variable (Models 2-3): 531 
Emulation of first Covid-19 tweet. All models are discrete survival models with logit link and 532 
cubic polynomial for number of days to event. Results in odds ratios. Standard errors in 533 
parentheses clustered by university A. Oxford, Cambridge, and universities with negative 534 
total reserves are excluded from the analyses. 535 
* p < 0.1, ** p < 0.05, *** p < 0.01 536 

 537 
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Webpages data 538 

In this section we supplement our analysis of Twitter data with information from university 539 

webpages. Universities also used Covid-19 dedicated webpages to raise awareness of the 540 

pandemic and provide guidance and advice to students and staff [53]. We acknowledge that 541 

the content of Covid-19 specific webpages is different than Twitter posts–webpages require 542 

more careful planning and implementation than tweets, as well as constant updating and 543 

maintenance. It is precisely for this reason that an analysis of webpages is important, as any 544 

confirmation of substantive results will give more confidence to the analysis presented in 545 

the previous section. 546 

Our research design is the same as in our analysis of Twitter data. We explored if 547 

universities introduce Covid-19 webpages based on their own factors and the actions taken 548 

by other universities. We also used the same estimation methods. First, we used Cox 549 

models for the analysis of the number of days to posting a first webpage, as well as the 550 

same university-specific control variables. Second, we used models of diffusion and 551 

controlled for the same time-varying variables as in the previous section, including the 552 

introduction of webpages by other universities and the number of Covid-19 cases in a 553 

university’s UTLA. 554 

We began by identifying the date when universities first introduced a webpage with Covid-555 

19 related information. We first mapped UK universities to their corresponding web 556 

domains, for instance essex.ac.uk. We then used the Google Search API to search every 557 

domain from 31st December 2019 to 6th May 2020 for the Covid-19 related keywords: 558 

‘Covid-19’, ‘Corona,’ and ‘Coronavirus.’ The returned results for each matching page 559 

included a summary snippet, a title, and a Uniform Resource Locator (URL).  560 
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Unlike tweets, these webpages are as noisy as they are heterogenous in design, and a one-561 

size-fits-all approach to noise reduction would not be useful to extract content. Therefore, 562 

our text extraction was limited to the page body, which allowed us to focus on the main text 563 

in a webpage while limiting noise in the navigation menus or announcements that contain 564 

Covid-19 related terms. This process produced 13,265 matching webpages for 128 565 

universities.  566 

We sorted these matching webpages by date and manually inspected the top result for each 567 

university to minimise noise. We used the dates from these webpages to produce the 568 

dependent variable (Days to Webpage), which is the number of days from 31st December 569 

2019 to the date of a university’s first Covid-19 webpage as described above. We note that 570 

we do not have any right-censored cases because our data collection produced a sample of 571 

128 universities with a webpage. Unfortunately, we cannot be sure that the remaining 42 572 

universities in the UK did not introduce a Covid-19 webpage and therefore it would be 573 

incorrect to code them as right-censored. Having said this, our data indicates that the 574 

median time to posting the first webpage is 55 days with a 95 per cent confidence interval 575 

of 43 to 63 days. Fig 2 presents the Kaplan-Meier estimate of the survival function of the 576 

number of days to introduce a webpage about Covid-19.  577 

 578 

Fig 2. Survivor Function of Days to First Covid-19 Webpage. 579 

 580 

We now turn to our estimation strategy. For the Cox models, our dependent variable is the 581 

number of days from 31st December 2019 to the date when a university first introduced a 582 

Covid-19 webpage.  583 
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Table 3 presents three Cox-semiparametric models of our dependent variable (Days to 584 

Webpage). As in the previous section, we use Cox models because we do not have a strong 585 

theory about the shape of the hazard rate and therefore we prefer to leave it 586 

unparametrized. Likewise, the estimation results in Table 3 consist of hazard ratios with 587 

their standard errors clustered for the upper-tier local authority (UTLA) presented in 588 

parentheses. 589 

Table 3: Cox Models of Days to First Covid-19 Webpage. 590 

 Model 1 Model 2 Model 3 

Ln(Total Enrolment) 1.340*** 1.482*** 1.361*** 

 (0.150) (0.220) (0.153) 

Proportion Income 
Tuition 

0.188*** 0.254*** 0.175*** 

 (0.0999) (0.128) (0.0923) 

Ln(Total Reserves) 1.058 1.079  

 (0.139) (0.154)  

Ln(Public 
Interaction) 

0.982 1.004 0.987 

 (0.0525) (0.0506) (0.0526) 

Russell Group 1.134 1.027 1.286 

 (0.429) (0.395) (0.474) 

Buildings per capita  271972.2  

  (2475205.5)  

Ln(Unrestricted 
Reserves) 

  0.980 

   (0.108) 

Observations 111 106 109 

Subjects 111 106 109 

Failures 111 106 109 

Clusters 77 76 76 

Log L -409.0 -384.7 -400.0 

Dependent variable: Days to first Covid-19 webpage. Results in hazard ratios. Standard 591 
errors in parentheses clustered on UTLA. Oxford, Cambridge, and universities with negative 592 
total and unrestricted reserves are excluded from the analyses. 593 
* p < 0.1, ** p < 0.05, *** p < 0.01 594 
 595 

We now turn to our analysis of emulation, which used the same specifications as the 596 

emulation models of Twitter data, although the key determinant of emulation in this section 597 
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is a variable labelled (B Webpage) that is equal to one if University B has introduced a Covid-598 

19 webpage and equal to zero otherwise. For the estimation sample of Model 2 in Table 4, 599 

there are 99,214 cases where B Webpage is equal to one and 307,954 cases where it is 600 

equal to zero. 601 

We estimated three models: one monadic model of universities’ first Covid-19 related 602 

webpage, and two dyadic models of emulation, one unconditional and one conditional. For 603 

the estimation sample of Model 2 in Table 4, there are 3,405 cases where Emulation is equal 604 

to one and 403,763 cases where it is equal to zero. In the same sample, there are 95,459 605 

cases where Opportunity is equal to one and 311,709 cases where it is equal to zero. 606 

Conditioning the analysis to the 95,459 cases where Opportunity is equal to one, there are 607 

3,405 cases where Emulation is equal to one and 92,054 cases where it is equal to zero.  608 

Table 4 presents results in odds ratios, which reflect changes in the odds of posting a first 609 

Covid-19 related webpage in Model 1 and the odds of emulation in Models 2-3. Standard 610 

errors clustered at University A in dyad University A-University B are presented in 611 

parentheses in order to account for a potential lack of independence among observations. 612 

As in the previous section, we excluded the University of Oxford and the University of 613 

Cambridge, as well as any universities with negative total or unrestricted reserves.  614 

Our results are robust to the use of three and four-day lags for B Webpage for Model 2 in 615 

Table 4 (results presented in S7 Table), and to alternative definitions of a neighbourhood in 616 

the dyadic models of Table 4 (results presented in S8 Table). 617 

 618 

Table 4: Models of first Covid-19 webpage and emulation of first Covid-19 webpage. 619 

 
Model 1: 

First Covid-19 
webpage 

Model 2: Model 3: 
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(monadic) Emulation of first 
Covid-19 
webpage 
(dyadic 

unconditional) 

Emulation of first 
Covid-19 
webpage 
(dyadic 

conditional) 

Ln(Total Enrolment)A 0.952 1.277 1.276 

 (0.145) (0.218) (0.217) 

Proportion Income 
Tuition A 

0.203* 0.677 0.678 

 (0.185) (0.774) (0.774) 

Ln(Total Reserves) A 1.338* 1.207 1.211 

 (0.208) (0.231) (0.232) 

Ln(Public 
Interaction) A 

1.015 1.004 1.004 

 (0.0565) (0.0526) (0.0524) 

Russell Group A 0.862 0.724 0.721 

 (0.537) (0.347) (0.349) 

Ln(Covid-19 Daily 
Cases) A 

1.921** 1.616* 1.600* 

 (0.612) (0.402) (0.396) 

Days A 1.203** 1.102 1.034 

 (0.101) (0.0694) (0.0670) 

Days2
 A 0.997* 0.998 0.999 

 (0.00185) (0.00136) (0.00138) 

Days3
 A 1.000* 1.000 1.000 

 (0.0000123) (0.00000850) (0.00000856) 

Ln(Total Enrolment)B  0.996 1.004 

  (0.0115) (0.0109) 

Proportion Income 
Tuition B 

 0.882*** 0.931* 

  (0.0428) (0.0373) 

Ln(Total Reserves) B  1.023** 1.006 

  (0.00932) (0.00961) 

Ln(Public 
Interaction) B 

 0.989** 0.989** 

  (0.00410) (0.00424) 

Russell Group B  1.009 0.984 

  (0.0134) (0.00968) 

Ln(Covid-19 Daily 
Cases) B 

 1.076 1.070 

  (0.0617) (0.0605) 

B Webpage A(t-2)  30.79***  

  (4.353)  

(Neighbour)(B 
Webpage A(t-2)) 

 0.837**  

  (0.0748)  
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Neighbour   0.849* 

   (0.0725) 

Constant 0.000691*** 0.00000388*** 0.000426*** 

 (0.00111) (0.00000558) (0.000625) 

Observations 4061 407168 95459 

Clusters 81 109 109 

Pseudo-R2 0.136 0.327 0.127 

Log L -312.4 -13252.3 -12821.1 

Dependent variable (Model 1): First Covid-19 webpage. Dependent variable (Models 2-3): 620 
Emulation of first Covid-19 webpage. All models are discrete survival models with logit link 621 
and cubic polynomial for number of days to event. Results in odds ratios. Standard errors in 622 
parentheses clustered by university A. Oxford, Cambridge, and universities with negative 623 
total reserves are excluded from the analyses. 624 
* p < 0.1, ** p < 0.05, *** p < 0.01 625 
 626 

Results and discussion 627 

We organise our discussion around our two sets of results. First, we discuss the effects of 628 

the size of the student community, the role of universities’ financial resources, and the 629 

impact of Covid-19 infections on the hazard rate of posting a first Covid-19 related tweet. 630 

We then consider if evidence from our analysis of university webpages supports our 631 

conclusions. Second, we discuss the role of emulation and whether estimation results are 632 

consistent across our two sources of data.  633 

In order to guide our discussion, we focus on the hazard ratios of independent variables, 634 

and particularly if they are above one (increase hazard rates) or below one (decrease hazard 635 

rates), at an alpha level of 0.05. For consistency, we apply the same terminology to Cox 636 

models and our discrete survival models with logits links.  637 

 638 

University size, financial wealth, and infections 639 

Our first expectation is related to the size of the student community. We conjectured that 640 

not all university students and staff read university Covid-19 announcements communicated 641 
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via email and internal newsletters. In fact, students may prefer social media posts rather 642 

than emails [20]. Therefore, universities have incentives to reinforce these announcements 643 

through social media; these incentives are stronger in large institutions simply because the 644 

number of individuals who may not have read private messages is larger. Thus, we expected 645 

that the number of student enrolments would increase the hazard rate of posting a first 646 

Covid-19 tweet. The hazard ratios for Ln(Total Enrolment) in the Cox models of Table 1 and 647 

the monadic model of Table 2 are well above one and statistically significant. This indicates 648 

that changes to the natural logarithm of total enrolment –which can also be interpreted as 649 

the elasticity of enrolment or per cent changes in total enrolment– increase the hazard rate 650 

of posting a tweet. In other words, universities with larger numbers of students tweeted 651 

sooner than universities with fewer students. This effect is also present in our analyses of 652 

universities with verified Twitter accounts, presented in S1 Table.  653 

Our second set of expectations focuses on university-specific characteristics that determine 654 

resilience to a negative shock in student numbers. While there are multiple characteristics 655 

that deserve discussion, we highlight the role of financial resources because we expect that 656 

they will increase university resilience in the same way that countries’ wealth strengthens 657 

disaster preparedness and response [97-99].  658 

The hazard ratios for Ln(Total Reserves) in the Cox models of Table 1 are well above one and 659 

statistically significant, which indicates that per cent changes in total reserves increase the 660 

hazard rate of posting a Covid-19 related tweet. While the monadic model of Table 2 661 

indicates that the hazard ratio for Ln(Total Reserves) is significant only at an alpha level of 662 

0.1, our analyses of universities with verified Twitter accounts in Table 2 confirm that wealth 663 

increases the hazard rate. Altogether, we find that wealthier universities were more likely to 664 

tweet sooner than universities with more modest means. 665 
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In the context of the current pandemic, we explored the effect of the number of Covid-19 666 

cases on the hazard rate of posting a Covid-19 related tweet. To do so, we used the daily 667 

number of infections in universities’ upper-tier local authority as a control variable in our 668 

monadic model of universities’ first Covid-19 related tweet in Table 2. The hazard ratio for 669 

Ln(Covid-19 Daily Cases)A in this model is well above two and statistically significant, which 670 

indicates that per cent changes in Covid-19 cases greatly increase the hazard rate of posting 671 

a first Covid-19 tweet.  672 

We also note that the hazard ratio for Ln(Covid-19 Daily Cases)A in the dyadic models of 673 

Table 2 are also above one and significant, which indicates that Covid-19 infections also 674 

increase the likelihood of emulation. The fact that the coefficients for Ln(Covid-19 Daily 675 

Cases)A are quite similar across the unconditional and conditional dyadic models suggests 676 

that infections are driving emulation and not coincidental convergence. 677 

We now consider if the effects of the size of the student community, the role of universities’ 678 

financial resources, and the impact of Covid-19 infections in our Twitter data are also 679 

present in our analyses of university webpages. 680 

We acknowledged that data from Twitter can be quite noisy and therefore we 681 

supplemented our analyses with information from official university Covid-19 webpages. 682 

We identified the date when universities first introduced a Covid-19 webpage and then 683 

applied the same research design implemented for our Twitter data to estimate survival 684 

models and models of diffusion. To summarise these results, the analyses from webpages 685 

provide moderate support for the effect of university size and indicate that university 686 

financial resources do not have a statistically significant effect on the hazard rate of 687 

introducing a webpage. Nonetheless, these analyses confirm the effect of Covid-19 infections 688 

on the odds of introducing a first Covid-19 webpage. 689 
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First, the hazard ratios for Ln(Total Enrolment) in the Cox models of Table 3 are well above 690 

one and statistically significant, which indicates that per cent changes in student enrolments 691 

increase the hazard rate of introducing a Covid-19 webpage.  However, the monadic model 692 

of a first Covid-19 webpage in Table 4 indicates that student enrolments do not have a 693 

significant effect on the rate of introducing a webpage. We consider that this is only 694 

moderate support for the effect of the size of the student community on the hazard rate of 695 

introducing a webpage.  696 

Moreover, the models do not find support for an effect of university financial resources. In 697 

fact, all Cox models in Table 3 find that Ln(Total Reserves) does not have a statistically 698 

significant effect, while the monadic model of a first Covid-19 webpage in Table 4 indicates 699 

that university resources would increase the hazard rate of introducing a webpage only at 700 

an alpha level of 0.1. This suggests that university reserves do not determine the likelihood 701 

of introducing a Covid-19 webpage. 702 

Nevertheless, our analyses of webpage data confirm the effect of Covid-19 infections on the 703 

timing of risk communication. Indeed, the hazard ratio for Ln(Covid-19 Daily Cases)A in the 704 

monadic model of universities’ first webpage in Table 4 is well above one and statistically 705 

significant, which indicates that per cent changes in Covid-19 cases increase the hazard rate 706 

of tweeting.  We also observed this effect in our analysis of universities’ first Covid-19 707 

tweet. 708 

It is also important to note that the hazard ratio for Ln(Covid-19 Daily Cases)A in the dyadic 709 

models of Table 4 is also above one and significant, which indicates that Covid-19 infections 710 

also increase the likelihood of emulation. As with Twitter data, the coefficients for Ln(Covid-711 

19 Daily Cases)A are very similar across the unconditional and conditional dyadic models, 712 

which suggests that infections are driving emulation and not coincidental convergence. 713 
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 714 

Emulation 715 

One of the central features of our research design is the estimation of models of diffusion. 716 

We estimated conditional and unconditional dyadic models of emulation to explore 717 

whether universities choose the timing of communication based only on their own 718 

university-specific characteristics or whether the actions of other universities also 719 

contributed to their response. As mentioned, we do not aim to understand the causes of 720 

emulation but to look for evidence of a diffusion process across UK universities.  721 

Our unconditional dyadic model of emulation in Table 2 indicates that the hazard ratio for B 722 

Tweeted A(t-2) is very well above one and statistically significant. This suggests that 723 

universities are much more likely to follow institutions that have previously posted a Covid-724 

19 related tweet. This effect is also present when we use three and four-day lags for B 725 

Tweeted, as indicated in our supplementary analyses in S5 Table. Evidence of emulation is 726 

one of the strongest results in our analyses and it is also replicated in our study of university 727 

webpages. 728 

Interestingly, while a follower’s likelihood of emulation is higher when other universities 729 

have posted a tweet, this likelihood is not as high if the leading university is a geographical 730 

neighbour, as demonstrated by the hazard ratio for (Neighbour)(B Tweeted A(t-2)) in Table 2, 731 

which is smaller than one and statistically significant. We confirmed this effect in our 732 

supplementary analyses in S6 Table, which use two alternative definitions of a 733 

neighbourhood. 734 

Our analyses of university webpages strongly confirm that universities are more likely to 735 

emulate if other institutions have previously posted a Covid-19 related webpage. Results 736 
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from Table 4 indicate that the hazard ratio for B Webpage A(t-2) is also very well above one 737 

and statistically significant. The results are of the same magnitude, direction, and 738 

significance as in our analyses of Twitter data– this is a very strong indication of the effect of 739 

diffusion in university responses during the pandemic. Moreover, this effect is also present 740 

when we use three and four-day lags for B Webpage, as indicated in our supplementary 741 

analyses in S7 Table. They also confirm that while a follower’s likelihood of emulation is 742 

higher when other universities have posted a webpage, this likelihood is not as high if the 743 

leading institution is a geographical neighbour, even when different definitions for a 744 

neighbourhood are used for estimation, as demonstrated in S8 Table. 745 

 746 

These results point to a form of inequality among universities in the UK. Our estimation 747 

results indicate that universities with large student communities are quicker to engage in 748 

risk communication as measured by the timing of their first Covid-19 tweet and their first 749 

Covid-19 webpage. While all universities have similar incentives to reach out sooner to 750 

larger numbers of students during crises, the ability to do so depends on wealth. It is 751 

therefore not a coincidence that our estimation results suggest that universities with large 752 

financial resources, as measured by total reserves, are also quicker to engage in risk 753 

communication over social media.  754 

Universities with large student communities and vast financial resources have something 755 

else in common: age. In the UK, a university’s age is crucial because it brings wealth and 756 

experience with previous crises, and research shows that this has a positive effect in 757 

prevention [100, 97]. This simply means that older universities are wealthier, larger, and 758 

more experienced, and altogether more resilient to pandemics. These characteristics allow 759 

them to engage in risk communication at an earlier stage than other universities. Smaller, 760 
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poorer, younger universities are not so resilient and this is reflected in the timing of their 761 

risk communication, which lags behind the efforts of more established universities. This 762 

coincides with the finding by the Institute of Fiscal Studies that universities with weak 763 

financial positions before the pandemic are at higher risk of insolvency as a result of the 764 

shock to student numbers [74]. 765 

On the more positive side, our analyses show that universities learn from each other. This 766 

means that there is a space for leadership and an opportunity for coordination during crises. 767 

While some coordination was organised by Universities UK, in terms of the negative 768 

consequences of the pandemic on universities’ financial positions, there is a need for better 769 

coordination in the delivery of risk communication and the sharing of best practice that can 770 

allow the system to learn more quickly and respond more effectively to crises.  771 

Indeed, a more effective crisis response would reduce the negative effects of the pandemic 772 

on the education sector and its link to the national economy. The UK education sector 773 

produces close to six per cent of national output and in the second quarter of 2020 it was 774 

estimated that 90 per cent of this output would be lost due to the pandemic [101]. At that 775 

time, multiple studies predicted that UK universities would lose billions of pounds in the 776 

long run and that some institutions would not be financially viable without significant 777 

government assistance [101, 74]. Our study shows that UK universities engaged in swift 778 

crisis communication in the absence of central government guidelines, which probably 779 

reduced some of the negative consequences of the pandemic. 780 

In this light, we draw important lessons for universities around the world and contribute to 781 

our general understanding of the effects of the pandemic on higher education. Although the 782 

empirical results are only valid for institutions in the UK, the paper provides a useful 783 

research design that can be replicated for data on university responses in other countries 784 
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[53, 59]. In addition, our theoretical framework and selection of covariates, as well as the 785 

emphasis on survival analysis and models of policy diffusion, will serve as useful guidelines 786 

for further research.  787 
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