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Abstract

Background and objective: Convolutional neural networks (CNNs) play an important role in the field 
of medical image segmentation. Among many kinds of CNNs, the U-net architecture is one of the most 
famous fully convolutional network architectures for medical semantic segmentation tasks. Recent work 
shows that the U-net network can be substantially deeper thus resulting in improved performance on 
segmentation tasks. Though adding more layers directly into network is a popular way to make a network 
deeper, it may lead to gradient vanishing or redundant computation during training.
Methods: A novel CNN architecture is proposed that integrates the Inception-Res module and densely 
connecting convolutional module into the U-net architecture. The proposed network model consists of 
the following parts: firstly, the Inception-Res block is designed to increase the width of the network by 
replacing the standard convolutional layers; secondly, the Dense-Inception block is designed to extract 
features and make the network more deep without additional parameters; thirdly, the down-sampling 
block is adopted to reduce the size of feature maps to accelerate learning and the up-sampling block is 
used to resize the feature maps.
Results: The proposed model is tested on images of blood vessel segmentations from retina images, the 
lung segmentation of CT Data from the benchmark Kaggle datasets and the MRI scan brain tumor 
segmentation datasets from MICCAI BraTS 2017. The experimental results show that the proposed 
method can provide better performance on these two tasks compared with the state-of-the-art algorithms. 
The results reach an average Dice score of 0.9857 in the lung segmentation. For the blood vessel 
segmentation, the results reach an average Dice score of 0.9582. For the brain tumor segmentation, the 
results reach an average Dice score of 0.9867.
Conclusions: The experiments highlighted that combining the inception module with dense connections 
in the U-Net architecture is a promising approach for semantic medical image segmentation.
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1. Introduction

Medical image segmentation has played an important role in the field of medical image analysis and 
attracted much attention from researchers in image processing [1]. Compared with the classical 
segmentation methods [2], algorithms based on Deep Learning have provided state-of-art performance 
and have become very popular [3]. During recent years, with the development of hardware and GPUs, 
several deep learning models have been proposed, such as AlexNet [4], VGG [5], DeepLab [6], 
GoogLeNet [7], Residual network [8] and DenseNet [9]. These network models have achieved good 
performance in the field of computer vision. 

With respect to semantic medical image segmentation, the Fully Convolutional Networks (FCN) [10] 
provide superior performance when compared with other deep learning models. Among the various FCN 
architectures, the U-net [11] model is one of the most popular fully convolutional network models and it 
is widely used in the medical image processing field. The U-net model is a pixel-to-pixel, end-to-end 
fully convolutional network with skip layers between analysis path and synthesis path [11]. The U-Net 
needs less training resources and can reserve more important feature information. However, the standard 
U-Net architecture contains only a few layers and therefore it is not currently deep enough to gain 



3

improved performance over other existing networks. To solve the problem, adding more layers directly 
to the network can enlarge the parameter space and make the network deeper, which may lead to gradient 
vanishing and redundant computation during training [12]. Gradient vanishing means if the network 
contains too many hidden layers, the learning rate will decrease with forward propagation, which may 
decrease the overall network learning. Therefore, the novel contribution of this paper is to make the U-
Net deeper and wider without redundant computation and gradient vanishing to improve medical image 
segmentation.

In order to solve the aforementioned problems, two steps are considered: firstly, reduce redundant 
computation when making the network wider; secondly, avoid gradient vanishing while making the 
network deeper. With respect to reducing redundant computation, existing research indicates that sparse 
matrices can be clustered into dense sub-matrices to improve calculation and performance [13]. Network 
models like AlexNet or VGG demonstrate good experimental performance but they are computationally 
expensive. Compared with the models above, the GoogLeNet architecture proposed the concept of an 
“Inception module” to build a sparse, high performance computing network architecture [7]. The main 
advantage of this module is improving the utilization rate of computing resources by increasing the depth 
and width of network with the inception module while keeping the computational budget constant [14]. 
In the second step, recent research shows that the neural network does not have to be a progressive 
architecture and remains converging even though some layers are dropped randomly [15]. Inspired by 
this idea, a deep network model called DenseNet was proposed as a kind of convolutional neural network 
with dense connections. The DenseNet architecture has various advantages: parameter simplicity, 
vanishing-gradient reducing and feature reuse [16]. These characteristics make the networks a very good 
fit for semantic segmentation as they naturally induce skip connections and multi-scale supervision.

Inspired by the works introduced above, in order to develop a deep learning network appropriate for 
medical image segmentation tasks, we propose an architecture that combines the inception module with 
the densely connected convolutions based on the U-Net architecture named Dense-Inception U-net (DIU-
Net). The details are as followed: 
(1) Based on the architecture of U-Net, the analysis path and synthesis path are used in a network with 

skip connections to transmit feature maps directly from the down-sampling process to the up-
sampling process. 

(2) Based on GoogLeNet, in order to make the network wider without gradient vanishing, every 
convolutional layer is replaced by an Inception-Res module with different sizes of convolutional 
kernels, and residual connection is used in each module. 

(3) In the middle of network, dense connecting is used to make the network deeper, and in these dense 
blocks standard convolutional layers are also replaced by the Inception-Res modules. 

(4) All the convolutional blocks except the bottleneck layers are followed by a batch normalization 
layer [17] to avoid gradient vanishing.

The proposed architecture will be evaluated with respect to accuracy and practicality, on three clinical 
segmentation problems, namely lung segmentation in CT Data from the Kaggle datasets [18] , the blood 
vessel segmentations from retina images [19] and the MRI brain tumor segmentation from Multimodal 
Brain Tumor Segmentation Challenge 2017 [20].

In this paper, a novel module is proposed by combining the inception module with dense connection and 
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construct the network architecture based on the U-Net with the module. The rest of the paper is organized 
as follows: in Section 2, we detail the novel DIU-Net architecture and in Section 3 the performance 
evaluation is presented and compared with the standard U-Net, residual U-Net, FCN-8s [10] and SegNet 
[21]. Finally, Section 4 concludes the work.

2. Methods

Inspired by the U-Net model, GoogLeNet’s Inception-Res module and the Dense-Net model, a novel 
fully connected network is proposed which integrates the inception module and the dense connections 
into the U-Net architecture. Fig. 1 demonstrates the architecture of the proposed Dense-Inception U-Net, 
denoted as DIU-Net. This network model contains the analysis path and the synthesis path, and these 
two paths mainly consist of four kinds of blocks, namely the Inception-Res block, the Dense-Inception 
block, the down-sample block and the up-sample block. The analysis path consists of Three Inception-
Res blocks, one Dense-Inception block and four down-sample blocks. The synthesis path consists of 
three Inception-Res blocks, one Dense-Inception block and four up-sample blocks. In the middle of the 
network, a single Dense-Inception block is deployed and this block contains much more inception layers 
than the others.

Fig. 1 Overall architecture of the DIU-Net model

2.1 Inception-Res Block

A modified residual inception module is proposed to be used in both the analysis path and the synthesis 
path. The main purpose is to aggregate feature maps from different branches of kernels of different sizes, 
which can make the network wider and capable of learning more features [21]. Moreover, the residual 
connections make the learning easier since a residual inception block learns a function with reference to 
the input feature maps, instead of learning an unreferenced function [22]. Fig. 2 shows the proposed 
modified Inception-Res block. Different from the original Inception-Res architecture, each convolutional 
layer is followed by a batch normalization (BN) layer except for bottleneck layers. Batch normalization 
layer can avoid gradient vanishing while retaining convolutional layers.

Fig. 2 Overall architecture of the Inception-Res block

Here let’s assume  is the output of the  layer. The  is a  kernel convolutional layer 𝑥𝑙 𝑙𝑡ℎ 𝑔𝑛 × 𝑛( ⋅ ) 𝑛 × 𝑛
and  denotes the BN layer. The function of concatenation is replaced by the sign of  and the 𝑔𝑏( ⋅ ) ∘

 size convolution kernel represents the bottleneck layer [23]. Thus, the output of the module from 1 × 1
the analysis path is as follows:

(1)1 1 1 1 1 3 3 1 1 3 3 3 3 1 1( ( ) ( ( ( ))) ( ( ( ( ( )))))l l b l b b l lx g g x g g g x g g g g g x x+ × × × × × × ×= +� �

2.2 Dense-Inception Block

In the Dense-Inception block, the inception module proposed above is inserted into the dense connection 
block. By setting the padding as “Same” mode in the convolutional layer, the outputs of the inception 
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module will remain the same size of feature map as the inputs. Thus, the inception module can be 
regarded as a much wider convolutional layer since it is an aggregate of different kernel sizes with 
pooling layers [22]. The main purpose is to fit the inception module into the dense connection architecture 
and therefore make the network simultaneously deeper and wider without gradient vanishing or 
redundant computation. Fig. 3 illustrates an overview of the Dense-Inception block and Fig. 4 shows the 
detail of each Inception-Res block in the Dense-Inception block.

Fig. 3 Overall architecture of a 4-layer Dense-Inception block 

Fig. 4 Overall architecture of each Inception-Res block in Dense-Inception block

The inception module with residual connection in the dense connection block is different from the 
standard residual inception module as the batch normalization layer is also used after each convolutional 
layer. The dense connection’s main purpose is to make the network deeper by concatenating former 
convolution outputs but narrower with the small hyper-parameter of growth rate. Therefore, in order to 
fit the residual inception module in the dense connection block, the dense connection module is modified 
to improve the performance in the dense connection block. In this way, the Dense-Inception blocks are 
set in the middle of the network model, where the size of the feature map is small, and a large kernel can 
be replaced by two smaller kernels to reduce computational cost [24]. Formally, let’s assume  𝑔𝑛 × 𝑛( ⋅ )
denotes a  kernel convolutional layer,  denotes the BN layer, and  denotes the 𝑛 × 𝑛 𝑔𝑏( ⋅ ) 𝑝𝑛 × 𝑛( ⋅ )
Max-pooling layer. The sign  represents concatenation and  represents the function of ∘ 𝑓𝐼𝑅( ⋅ )
Bottleneck layer followed by the proposed Inception-Res module. Thus, the output of the proposed 
Inception-Res module is:

(2)1 1 1 1 1 1 1 3 3 3 1 1 3 1 1( ( ) ( ( ( ))) ( ( ( ( ( ))))))l l b l b b l lx g g x g g p x g g g g g x x+ × × × × × × ×= +� �

The output of the  layer in the Dense-Inception block is as follows:𝑙 + 1𝑡ℎ

(3)1 0 1([ , ,..., ])l IR lx f x x x+ =

Where  refers to the concatenation of the feature maps produced in the layers 0, 1, …, . [𝑥0,𝑥1,…,𝑥𝑙]  𝑙
Three Dense-Inception blocks are designed in total: one block is set in the analysis path, one is in the 
synthesis path, and the last one is set in the middle of network. Each Dense-Inception block except the 
middle one contains 12 proposed Inception-Res modules, and the middle one has 24 Inception-Res 
modules. The growth rate is used as the channel input of the residual inception module. Due to the 
concatenation connection, the size of the feature map will not get changed [25].

2.3 Down-sample & up-sample block

The down-sample block and up-sample block are illustrated in Fig. 5 (left) and Fig. 5 (right) respectively. 
These two blocks have the same architecture except for the convolution and Max-pooling layers in the 
down-sample block and the deconvolution and up-sampling layers in the up-sample block. They can be 
viewed as a simplified inception module with three branches. Compared with the standard U-Net 
architecture, Max-pooling and the Upsampling2D layer are used to reduce and enlarge the size of feature 
maps respectively, which may lead to feature loss and reduce the accuracy of results. Thus, the main 
purpose of the proposed down-sampling and up-sampling blocks is to overcome this problem and avoid 
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feature loss.

Fig. 5 The down-sample block (Left) and the up-sample block (Right)

Formally, let  denote the convolution layer with 2 strides,  denotes the convolution 𝑔 2
𝑛 × 𝑛( ⋅ )  ℎ 2

𝑛 × 𝑛( ⋅ )
transposed layer with 2 strides,  denotes the max-pooling layer with 2 strides and  𝑝 2

3 × 3( ⋅ ) 𝑢2( ⋅ )
represents the up-sampling layer with 2 strides. The expression for the down-sample block is:

(4)
3 3 3 3

2 2 2
1 1 1 1 1 3 3 3 3 1 1( ( ( )) ( ( ( ))) ( )))l l l lx g g g x g g g x p x

× ×+ × × × × ×= ο ο

and the up-sample block is:

(5)
3 3

2 2 2
1 1 1 1 1 3 3 3 3 1 1( ( ( )) ( ( ( ))) ( )))l l l lx h h h x h h h x u x

×+ × × × × ×= ο ο

The Whole network model is designed followed by the concept of Encoding-Decoding architecture with 
skip connections. The encoding process corresponds the analysis path and the decoding process 
corresponds the synthesis path. In the encoding process, when the training images are transmitted into 
the model as the inputs, the channel number will increase by double after each Inception-Res block or 
Dense-Inception block; and the size of feature maps will reduce by half after down-sampling block. In 
the decoding process, the channel of feature maps will reduce by half after each Inception-Res block or 
Dense-Inception block; and the size of feature maps will increase by double after up-sampling block. 
And the training images will return to original as outputs size in final.

3. Performance Evaluation

In order to demonstrate the performance of the DIU-Net model, it is evaluated using three different 
medical image segmentation tasks. We use Keras programing language, based on TensorFlow to 
demonstrate the proposed model on a Core i7 7700 processor and 16 GB RAM with a NVIDIA TITAN 
XP GPU.

3.1 Datasets 

The datasets contain three different segmentation tasks, including lung segmentation in CT datasets, 
blood vessel segmentation and MRI brain tumor segmentation task. The lung segmentation dataset is 
from the “Finding and Measuring Lungs in CT Data” competition in the Kaggle Data Science Bowl in 
2017. It is a collection of CT images, manually segmented lung and measurements in 2/3D. In the 
experiments only 2D images will be used and measured. The blood vessel segmentation task contains 
three different datasets including the DRIVE [26], STARE [27] and CHASH_DB1 [28]. In order to 
enhance the generality of model, these three datasets are randomly merged to create a new dataset which 
will be used in the proposed model. The MRI brain tumor segmentation dataset was acquired on a 3T 
scanner at the UMC Utrecht and contain 88 subjects including patients with diabetes, dementia, 
Alzheimer and matched controls [20]. To fit the dataset into the network each subject was sliced into 2D 
images based on axial direction. Example image data from these three datasets are shown in Fig. 6. In 
this figure, the first row is from lungs dataset, the last row is from brain dataset, and the remaining rows 
are from the retina dataset. The left column shows the original images, the right column shows the ground 
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truth.

Fig. 6 The lung segmentation datasets, the retina blood vessel segmentation and the brain tumor 
segmentation datasets 

3.2 Evaluation metrics

For quantitative performance evaluation, several evaluation measures will be used as follows: DICE 
coefficient (DC) [29], Jaccard similarity (JS) [30], accuracy (AC), sensitivity, specificity (SP) [31], F1-
score [32], area under curve (AUC) [33] and the 95% confidence interval of AUC. In order to define 
these measures, we also use the variables True Positive (TP), True Negative (TN), False Positive (FP), 
False Negative (FN), Ground Truth (GT) and Segmentation Result (SR). The GT stands for the 
segmented region, and all the imaging datasets have been segmented manually by experienced experts, 
following the standard annotation protocol. These GT contours are references for further segmentation 
analysis [34]. The SR stands for the segmentation result from the method to be evaluated. The TP 
represents the pixels exist in both Ground Truth and proposed segmented region. The TN represents the 
pixels doesn’t exist in neither Ground Truth nor segmented region. The FP represents the pixels exit in 
segmented region only. The FN represents the pixels exit in Ground Truth only. These expressions are 
shown in Table 1. The area under the curve (AUC) is the size of area under the Receiver Operating 
Characteristic (ROC); AUC intuitively reflects the classification ability of ROC curve expression. The 
95% CI for AUC represents the 95% confidence interval of area under curve.

Table 1 Expressions of different evaluation metrics

3.3 Implementation details

In the proposed model, every convolution/deconvolution layer is followed by a batch normalization layer 
except the bottleneck layer or the last layer. The ReLU function [35] will be used as the activation 
function. In terms of the loss function, because of the binary labels in the segmentation tasks, a cross-
entropy function will be used in this model. The Adam [36] method will be used as the optimization 
algorithm. During the experiment stage, various kinds of optimization algorithms were considered. The 
Adam optimization algorithm is a combination of algorithm Momentum and Adagrad. In training 
experiments, it had better performance compared with other algorithms. The parameters of the model 
will be initialized with the He_normal initializer [37] which can make the initial parameters of network 
much easier to trian compared with other initializers. In these experiments, the Adam algorithm will get 
employed and the initial learning rate will be set to ,  = 0.900 and  = 0.999. The 1 × 10 ‒ 5 beta_1 beta_2
network won’t get converged if the learning rate is too large or too small. The batch size of training and 
validating datasets is 8. In each epoch 8 samples will be transposed into the network as the input, and too 
large batch size will slow down the training or validating speed. The model requires a total of 120 epochs 
to train with 300 steps per epoch.

In order to make a better comparison with the proposed model, another DIU-Net called DIU-Net-1 is 
also designed with only one Dense-Inception block in the middle of the network. To evaluate the 
proposed model, the results of the experiment will be compared with the SegNet, FCN-8s, U-Net and 
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ResU-Net [8].

3.4 Lung segmentation

The provided lung dataset consists of 267 images and the same number of labels. In this experiment, 90% 
of the data will be used for training and validating, and the remaining data will be used for testing. In 
order to get a reliable and stable model, 5-fold cross-validation will be used in this experiment. The size 
of each original grayscale image is  pixels and will be resized to  after image 512 × 512 256 × 256
preprocessing. The experimental outputs from the models using 3 images from the lung segmentation 
dataset are shown in Fig. 7. The first column shows the original image, the second column shows the 
ground truth, and the remaining columns show the outputs as follows: SegNet, FCN-8s, U-Net, ResU-
Net, DIU-Net-1 and DIU-Net. Fig. 8 shows the training accuracy of each model, and Fig. 9 shows the 
training loss curve of each model. Fig. 10 shows the corresponding validating accuracy and Fig. 11 shows 
the validating loss curve of each model. The testing results indicates that SegNet and FCN-8s have fuzzy 
pixels on the edge of segmentation position, the U-Net and ResU-Net show good performance because 
of the skip connection, but still some pixels are wrongly predicted. Due to the proposed model being 
deeper and capable of learning more features from datasets, the result shows better performance 
compared with the other models.

Fig. 7 Experimental outputs for lung dataset using different kinds of methods

Fig. 8 Training accuracy of the different kinds of models

Fig. 9 Training loss of different kinds of models

Fig. 10 Validating accuracy of the different kinds of models

Fig. 11 Validating loss of different kinds of models

Table 2 summarizes the segmentation performance. From Table 2 it shows that DIU-Net network shows 
better performance under each evaluation index. DICE coefficient is the most direct evaluation index of 
segmentation accuracy. In this experiment, the average DICE coefficient of DIU-Net is 0.9857, and it is 
0.233% higher than the second segmentation performance from ResU-Net’s results; And in terms of 
Jaccard similarity, AC, SE, SP, F1-score and AUC coefficient, the results from DIU-Net are all higher 
than second segmentation performance as follows: 0.9824%, 0.24%, 1.87%, 0.01%, 0.60% and 0.84%. 
Thus, with the help of dense connections and inception layers, DIU-Net can be deeper and more effective 
than the original networks. In order to make the experiment more convincing, the experiments of SegNet, 
FCN-8s, U-Net and ResU-Net used the same initial method, optimization algorithm, loss function and 
other initial parameters with DIU-Net. The DIU-Net with three Dense-Inception modules has better 
segmentation performance than with just one Dense-Inception block. The results show that the module 
can effectively deepen the depth of the network without introducing gradient disappearance, so that the 
network can learn more image features.
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Table 2 Experimental results of proposed approaches for lung segmentation and comparison against 
other networks (The bold font is the best value for each column)

3.5 Blood vessel segmentation

The original images to be used for blood vessel segmentation are RGB images, and they can provide the 
clearest features of blood vessel under the green channel. Thus, preprocessing via normalization is 
necessary before conducting the segmentation experiment. The whole dataset contains only 136 samples 
of RGB images including labels. Among the samples, 85% of the data will be used for training and 
validating, and the remaining 15% data will be used for testing. In order to get a reliable and stable model, 
5-fold cross-validation will be used in this experiment. The size of each original RGB image is 

 pixels and each image will be resized to  after image preprocessing. The training 565 × 584 256 × 256
accuracy and loss curves for the dataset are shown in Figs. 12 and 13 respectively. And the validating 
accuracy and loss curves for the dataset are shown in Figs. 14 and 15. The experimental outputs of DIU-
Net using the blood vessel dataset are shown in Fig. 16. The first row shows an example from the STARE 
dataset, the second row uses the CHASE_DB1 dataset and the last row uses the DRIVE dataset, all of 
these datasets are chosen from the testing set experimental outputs. The first column shows the input 
images, second column shows the ground truth, and the remaining rows show the segmentation results 
in the following order: SegNet, FCN-8s, U-Net, ResU-Net, DIU-Net-1 and DIU-Net. From the training 
curve, in Figure 12, it can be seen that although the DIU-Net requires more epochs to improve the 
accuracy compared with the other networks, the training and validating accuracy lines show that the 
DIU-Net gains overall better performance with a larger number of epochs. Because this retina dataset is 
much more complicated than the lung segmentation dataset, the result of SegNet is fuzzy and therefore 
we cannot view the result clearly, and the U-Net, FCN-8s and ResU-Net models do not segment all of 
the blood vessels as illustrated in Figure 16. The DIU-Net model has a much better performance due to 
the deeper network architecture and anti-gradient vanishing. A deeper network can learn more features 
and the performance is acceptable.

Fig. 12 Training accuracy of different kinds of models

Fig. 13 Training loss of different kinds of models

Fig. 14 Validating accuracy of different kinds of models

Fig. 15 Validating loss of different kinds of models

Fig. 16 Experimental outputs for retina blood vessel segmentation using different kinds of methods

From the training curve we can determine that the DIU-Net with three dense blocks and DIU-Net-1 with 
one dense block show better performance than all other models. In addition, the validation accuracy in 
Fig. 14 demonstrates that the DIU-Net and DIU-Net-1 show better validation accuracy compared with 
the ResU-Net, U-Net and SegNet. Both of DIU-Nets need more epochs to train but the trained models 
obtain better results than the other approaches. 
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In terms of quantitative analysis, Table 3 shows the detail of the evaluation results. As the blood vessel 
data contains three different kinds of datasets including the DRIVE, STARE and CHASH_DB1, the 
results of traditional methods are calculated by averaging. From Table 3 it can be concluded that the 
DIU-Net model shows better performance in terms of the DICE coefficient, Jaccard similarity, accuracy, 
F1-score and the sensitivity. In particular, the DICE coefficient is 0.15% higher than the results of ResU-
Net. In terms of Jaccard similarity, AC, SE, SP, F1-score and AUC coefficient, the results from DIU-Net 
are all higher than second segmentation performance as follows: 0.31%, 0.15%, 2.84%, 0.09%, 2.11% 
and 0.60%. Compared with the traditional methods [33, 35], the DIU-Net also achieves better 
performance. Therefore, the results demonstrate the effectiveness of the proposed method for medical 
image segmentation tasks. In particular, the blood vessel segmentation task is more complicated than the 
lung segmentation task, and the DIU-Net with deeper architecture performs better in this task than other 
networks. The Dense-Inception blocks make the network much deeper and wider in order to gain 
increased performance.

Table 3 Experimental results of proposed approaches for retina blood vessel and comparison against 
other networks or traditional methods (The bold font is the best value for each column)

3.6 Brain tumor segmentation

The provided MRI scans brain tumor segmentation dataset consists of 88 subjects, and each subject was 
sliced into 2D images based on axial direction. After deleting the data without label pixels there are 4937 
images and the same number of labels in total. In this experiment, 90% of the data will be used for 
training and validating, and the remaining data will be used for testing. In order to get a reliable and 
stable model, 5-fold cross-validation will be used in this experiment. The first column shows the original 
image, the second column shows the ground truth, and the remaining columns show the outputs as 

follows: SegNet, FCN-8s, U-Net, ResU-Net, DIU-Net-1 and DIU-Net. Fig. 17 shows the training 

accuracy of each of these models, and Fig. 18 shows the corresponding training loss curves. Fig. 19 
shows the validating accuracy curve of each model and Fig. 20 shows the validating loss curve of each 
model. The experimental outputs from the models using 3 images from the brain tumor segmentation 
dataset are shown in Fig. 21. 

Fig. 17 Training accuracy of different kinds of models

Fig. 18 Training loss of different kinds of models

Fig. 19 Validating accuracy of different kinds of models

Fig. 20 Validating loss of different kinds of models

Fig. 21 Experimental outputs for retina blood vessel segmentation using different kinds of methods

From the training curve we can determine that all the networks can get the level of accuracy around 
0.9800, and the training loss can reduce to about 0.0100. In addition, the validation accuracy in Fig. 19 
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demonstrates that all the networks can get the level of accuracy around 0.9700. In Fig. 20, the validating 
loss curve shows the validating loss can reduce under 0.1000. Testing results from Fig. 21 shows that the 
results of DIU-Net have better segmentation performance than others.

In terms of quantitative analysis, Table 4 summarizes the segmentation performance. From Table 2 it 
shows that DIU-Net network shows better performance under each evaluation index. In this experiment, 
the average DICE coefficient of DIU-Net is 0.9892, and the average Jaccard similarity, AC, SE, SP and 
F1-score of DIU-Net are as follows 0.9940, 0.9970, 0.9284, 0.9986 and 0.9085. In terms of the AUC 
coefficient and its 95% confidence interval, the average AUC of DIU-Net is 0.9867 and the 95% CI is 
(0.9847-0.9889), which is 2.57% higher than second segmentation performance. These results verify the 
feasibility and effectiveness of DIU-Net. 

Table 4 Experimental results of proposed approaches for brain tumor segmentation and comparison 
against other networks or traditional methods (The bold font is the best value for each column)

3.6 Algorithmic Run-time

The overall training and testing time of all the models, in each experiment, are shown in Table 5. From 
Table 5 it can be seen that the proposed model needs more time to train and test than other networks, and 
the DIU-Net network with three Dense-Inception blocks needs more time to train and test than the DIU-
Net-1 network with only one Dense-Inception block, as this block does make the network much deeper 
and wider. The use of the trained DIU-Net model is not significantly slower than others and the training 
time is one of the computational costs. Though the training speed of the DIU-Net is slower than other 
networks, considering the improved performance, its running time is acceptable.

Table 5 Training/Testing time on various kinds of models

4. Conclusions

A novel FCN architecture is proposed as an extension of the U-Net using Dense-Net and GoogLeNet 
and the proposed network is called “DIU-Net”. There are four key features in the DIU-Net, namely 
Inception-Res block, Dense-Inception block, down-sampling and up-sampling block. With the function 
of Inception-Res block the network can be significantly wider, and the residual connection can make the 
network easier to train. In the middle part of the network, dense connection in Dense-Inception block 
makes the network deeper while avoiding the possible gradient disappearance. Meanwhile, densely 
connection can optimize the network results and reduce the computational load of training. In the whole 
network model, the improved lower/upper sampling module is used to replace the pooling layer/upper 
pooling layer in the original U-Net model, which reduces the network change feature ruler. The loss of 
feature information or the introduction of noise caused by inch time also deepens the depth of the network, 
so that the network can learn more image features. 

The model is evaluated using three different medical image segmentation tasks: lung segmentation, blood 
vessel segmentation and brain tumor segmentation. The experimental results demonstrate that the 
proposed DIU-Net model shows better performance compared with existing methods including the 
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SegNet, FCN-8s, U-Net and ResU-Net models. From the comparison between DIU-Net and DIU-Net-1, 
the Dense-Inception block does make the network deeper and wider and hence improves the gradient 
propagation. However, too many Dense-Inception blocks may significantly increase the computational 
burden and does not provide better results. In this experiment just three blocks are needed for the 
proposed network model. In a word, it can be concluded that the proposed DIU-Net is a promising 
approach for semantic medical image segmentation.

The limitation of the proposed DIU-Net model is that in the Dense-Inception block increasing the growth 
rate may lead to too many parameters, making the model more difficult and slower to train. Another issue 
is that the test datasets did not include ultrasound images, which contain more speckle noise. Therefore, 
in the future we will aim to simplify the network structure whilst maintaining its accuracy and 
effectiveness. And we will also test the proposed model on ultrasound datasets and modify it to make the 
model more effective on various kinds of medical problems.
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Evaluation metrics Expression

DICE 2
GT SR
GT SR

∩
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∩

∪
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TP TN FP FN
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+ + +

SE
TP

TP FN+

SP
TN

TN FP+

F1-score
2

2
TP

TP FP FN+ +



Networks DICE JS AC SE SP F1-score AUC (95%CI)

SegNet 0.9816 0.9790 0.9894 0.9662 0.9960 0.9753 0.9810 (0.9788-0.9833)
FCN-8s 0.9793 0.9743 0.9870 0.9632 0.9909 0.9689 0.9821 (0.9794-0.9845)
U-Net 0.9826 0.9810 0.9904 0.9641 0.9978 0.9773 0.9810 (0.9776-0.9844)

ResU-Net 0.9834 0.9824 0.9911 0.9619 0.9981 0.9791 0.9820 (0.9788-0.9853
DIU-Net 0.9857 0.9871 0.9935 0.9846 0.9982 0.9850 0.9903 (0.9890-0.9918)

DIU-Net-1 0.9823 0.9804 0.9901 0.9616 0.9980 0.9768 0.9799 (0.9769-0.9828)



Methods DICE JS AC SE SP F1-score AUC (95% CI)

Yitian 
Zhao [38]

- - 0.9540 0.7503 0.9817 - 0.9643

Fraz [39] - - 0.9491 0.7386 0.9772 - 0.9736
Qiaoliang 

Li [40]
- - 0.9566 0.7593 0.9817 - 0.9743

SegNet 0.9128 0.8521 0.9200 0.3631 0.9736 0.4403 0.8196 (0.8078-0.8313)
FCN-8s 0.9523 0.9228 0.9598 0.7645 0.9788 0.7671 0.9713 (0.9630-0.9796)
U-Net 0.9555 0.9287 0.9630 0.7741 0.9814 0.7834 0.9687 (0.9599-0.9775)

ResU-Net 0.9567 0.9309 0.9642 0.7461 0.9854 0.7829 0.9495 (0.9411-0.9580)
DIU-Net 0.9582 0.9338 0.9657 0.7967 0.9863 0.8003 0.9802 (0.9731-0.9873)

DIU-Net-1 0.9578 0.9331 0.9654 0.7765 0.9818 0.7951 0.9776 (0.9711-0.9842)



Networks DICE JS AC SE SP F1-score AUC (95%CI)

SegNet 0.9878 0.9911 0.9955 0.9018 0.9973 0.8710
0.9496 (0.9425-

0.9567)

FCN-8s 0.9853 0.9862 0.9930 0.9217 0.9942 0.8195
0.8529 (0.8328-

0.8730)

U-Net 0.9872 0.9900 0.9950 0.9233 0.9953 0.8611
0.9495 (0.9424-

0.9566)

ResU-Net 0.9891 0.9938 0.9969 0.9232 0.9981 0.9046
0.9607 (0.9528-

0.9686)

DIU-Net 0.9892 0.9940 0.9970 0.9254 0.9986 0.9058
0.9867 (0.9847-

0.9889)

DIU-Net-1 0.9891 0.9939 0.9959 0.9245 0.9941 0.9056
0.9613 (0.9545-

0.9681)



Lungs segmentation Blood vessel segmentation Brain tumor segmentation

Networks Training 
time

Testing 
time

Training 
time

Testing 
time

Training 
time

Testing 
time

SegNet 3.3h 0.97sec 2.8h 0.87sec 6.2h 0.65sec

`FCN-8s 3.8h 0.97sec 3.2h 0.89sec 6.3h 0.77sec

U-Net 5.0h 1.12sc 4.1h 0.98sc 8.5h 0.89sec

ResU-Net 5.2h 1.18sec 4.7h 1.01sec 8.4h 0.87sec

DIU-Net-1 7.4h 1.34sec 5.0h 1.03sec 9.8h 1.14sec

DIU-Net 7.7h 1.36sec 5.6h 1.07sec 11.2h 1.27sec


