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Abstract: This paper examines the effects of the slope on the burning and spread 12 

process of JP-4 continuous spill fires. Spill fires experiments were conducted on 13 

surfaces with different slope angles (0˚~3˚) in a rectangular trench (0.8m×6m). The 14 

spread and burning behaviors including the spread process, burning rate and flame 15 

height are recorded and analyzed. The results indicate that the whole spread process 16 

can be divided, based on the burning area variations with time, into four phases: 1) 17 

burning layer spread, 2) shrink process, 3) steady burning, and 4) extinguishment. The 18 

results also show that a large slope can increase the spread rate and as a result shorten 19 

the duration of the burning layer spread and shrink process pphases. In addition, it is 20 

found that the slope has a more significant effect on the maximum spread area than the 21 

steady burning area. The steady burning rate decreases with increasing slope and the 22 

ratio of the steady burning rate of a spill fire and that of the corresponding pool fire is 23 

nearly constant. The flame height of continuous spill fires is also well predicted by an 24 

empirical model with a dimensionless heat release rate and equivalent pool diameter. 25 

The experimental data presented in the work will provide a basis for further studies of 26 

liquid fuel spill fire on an inclined surface. 27 
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 30 

Nomenclature w Thickness decrease per time 

a Absorbed coefficient, m-1 Greek symbols 

c Specific heat capacity, J/ (kg·K)  σ Surface tension, N/m 

Hc Heat of combustion, kJ/kg β Absorption extinction coefficient 

h Thickness of fuel, m ρ Density, kg/m3 

k A constant θ Contact angle 

L Length of spread, m Subscripts 

Q Discharge rate, L/s t Real time 

��  Heat release rate, kW min Minimum value 

q Heat flux, kW/m2 steady Steady burning 

S Burning area, m2 rad Heat radiation 

T Temperature, K cov Heat convection 

W Width of trench, m cod Heat conduction 

 31 

1. Introduction 32 

One of major hazards of liquid fuels during their transportation, processing and 33 

storage is that they can be relatively easily involved in leakage which will then be turned 34 

into continuous spill fires after ignition in the presence of an ignition source such as 35 

sparks [1, 2]. For continuous spill fires, as the spreading area is not confined completely 36 

by horizontal physical boundaries, most liquid burning fuels will spread in downhill 37 

direction [3,4]. In the development of spill fire accidents, the spreading process is 38 

usually followed by high flame temperatures and large radiative heat fluxes to adjacent 39 

objects, thus posing a huge threat to nearby facilities and further triggering accident 40 

escalation, which is commonly known as the domino accident [5]. This was 41 

demonstrated in a serious spill fire accident that occurred in April 6, 2015 at Gulei of 42 

Fujian Province (a Chinese city). It was reported that the liquid fuel from a pipe leakage 43 

was ignited and then flowed to a low terrain place leading to three adjacent storage 44 

tanks collapsing and more than ten persons injured [6]. In actual accidents, the 45 

development of continuous spill fires is closely related to the ground slope which 46 

directly determines the spread and burning process. Moreover, the development of spill 47 

fire accidents also determines the proper firefighting time and corresponding measures. 48 

Therefore, it is meaningful to investigate the development of spill fires and analyze the 49 

detail spread process, particular for the spread on slope surface. 50 



In the last decades, liquid fuel spread and pool fire burning have attracted significant 51 

interest among researchers [7-10]. These studies were focused on either liquid layer 52 

spread without ignition or burning rate with a fixed boundary. However, in most fire 53 

accidents involving liquid fuels, the fuels tend to spread while burning, particularly for 54 

the liquid fuel transportation process [3,4]. To date, the research on continuous spill 55 

fires is relatively limited, particular for the continuous experiments. Gottuk et al. [3] 56 

conducted continuous spill fire experiments on a concrete surface using JP-5 and JP-8, 57 

and they found that the mass burning rate of continuous spill fires is around 20% than 58 

that of pool fires with the same surface area. Benfer [11] performed a series of 59 

systematical spill fire experiments using different substrates and fuels [11] and found 60 

that the properties of both the substrate and fuel contribute to the lower burning rate 61 

and subsequently introduced a coefficient to account for the burning rate for 62 

instantaneous spill fires [11]. The spread behaviors of continuous spill fires were 63 

examined in [12,13] by performing continuous spill fire experiments on water surface 64 

in a rectangular trench (1m×12m) and the whole spread process can clearly be 65 

characterized by different phases. 66 

The aforementioned studies on spill fires were all performed on a flat surface. 67 

However, the spread on inclined surface are one of the most common scenarios in real 68 

spill fire accidents [14,15]. Ingason investigated the continuous gasoline burning rate 69 

on the concrete surface and observed that the averaged heat release rate decreases with 70 

the increase of slope [15]. Li et al. studied experimentally the continuously released n-71 

heptane spill fire in a steel trench (3×0.15 m), with five different slopes [16], in which 72 

five phases of spill fire were divided and characterized according to the real time 73 

burning area variations. However, as the width of the trench is relatively small, the 74 

burning rate is controlled mainly by convection, which would be very different from 75 

the real fire accident scenarios, in which radiation will be the dominating factor. 76 

Moreover, the fuel spread on the concrete surface or the iron surface cannot be 77 

controlled well and therefore the real burning area cannot be measured accurately. 78 

Clearly, the effects of the slope on the spread and burning behaviors of continuous spill 79 

fires, especially on the inclined surface, are still little known and should be further 80 



studied as noted by several researchers [3,4,13-17].  81 

To fill this knowledge gap, this work aims to examine and characterize 82 

experimentally the spread and burning behaviors for the continuous spill fires using 83 

surfaces with varying slope angles. A series of 15 continuous spill fire tests was carried 84 

out on a rectangular surface. The real time burning area, the maximum and steady 85 

burning area, burning rate and flame height were measured. The effects of the slope on 86 

these parameters are discussed and analyzed.  87 

 88 

2. Experimental setup 89 

As depicted in Fig.1, an open rectangular trench was used in the tests with a 90 

dimension of 6 m long by 0.8 m wide. The bottom is made of fireproof glass because it 91 

can provide a perfectly flat surface, which can guarantee the even distribution of the 92 

fuel layer on the surface as shown in Fig.2. The detail description of the experimental 93 

platform is given in [17]. In the tests, the glass surface slope can be controlled and 94 

adjusted by the six brackets installed under the trench, as shown in Fig.1 (d). The slope 95 

angle was measured and examined before the start of each test by using a digital angle 96 

ruler (BOSCHDNM60L). After the adjustment of the platform, preliminary tests 97 

without ignition were conducted to ensure uniform spreading of the fuel. The detail 98 

spread process is shown in Fig.2. During the tests, a peristaltic pump (WT600-3J) was 99 

used to provide a steady volumetric flow rate ranging from 4.2 mL/min to 6000 mL/min. 100 

An electronic balance was put under the fuel tank to record the mass loss rate and to 101 

ensure that the peristaltic pump can provide a steady flow. The discharge rate was 102 

calculated by mass loss measured by the electronic balance and the detail values for all 103 

the tests are shown in Table.2.  104 



 105 

Fig. 1. Schematic diagram of the continuous spill fire experiment platform. a) Top 106 

view; b) Sectional view; c) Structure of spill sump; d) Bracket. 107 

 108 

Fig. 2. Liquid layer front after the levelling in a pre-test 109 

In order to reduce the initial fuel velocity from tube, a spill flume was designed, in 110 

which the liquid fuel was introduced by gravity, shown in Fig.1 (c). In addition, some 111 

water layer was added in the sump to cut off the connection between the burning surface 112 

and the fuel tube to reduce the experimental risk. Two cameras were used to record the 113 

whole process and to determine the real time spread front position and the flame height. 114 

The camera one was located at a high place and the lens tilted at an angle so that the 115 

front of the liquid layer could be captured clearly. The other camera located at distance 116 

(~10m) to mainly record the flame height. Reference rulers in vertical and horizontal 117 

directions were used in experiments to calibrate the position of liquid layer front and 118 

the flame height, as illustrated in Fig. 3. 119 



 120 

Fig. 3. The layout of the reference rulers in the tests 121 

The flame shape was determined based on the difference between the flame and the 122 

background in red, green and blue (RGB) values of each pixel in pictures from the video 123 

recording, as commonly done in literature [e.g., 12,16-18]. A schematic diagram of the 124 

flame processing is given in Fig.4.  125 

 126 

Fig. 4. A schematic diagram of the flame processing method（R>200,G>100,B>50） 127 

  In the tests, JP-4 was selected as the discharge fuel and a small amount of heptane 128 

(10 mL) was injected on the fuel surface to ignite the discharge fuel. As soon as the fuel 129 

spread on the glass surface, the heptane was ignited by an electric spark. The properties 130 

of JP-4 are shown in Table 1. 131 

Table 1. The properties of JP-4 in tests [19] 132 

Density (kg/m3) 790  

Burning rate of infinite diameter（kg/m2s） 0.051 

�� value 3.6 

Heat of combustion（MJ/kg） 43.5 

 133 

The ambient temperature was around 26±4 ℃. The tests were conducted in a 134 

quiescent environment with no wind and at atmospheric pressure. The slope angle was 135 



set from 0˚ to 3˚. It is worth noting that larger slopes (>3˚) were also used in preliminary 136 

tests but it was found that the liquid layer could not spread uniformly in these tests 137 

because surface tension is overcome by gravity. The discharge rate can be controlled 138 

by the change of the rotation speed of the peristaltic pump. The detail experimental 139 

configurations are given in Table 2. 140 

Table 2. Specification of the testing configurations 141 

No. θ(˚) 
Revolutions per 

minute (rpm) 
Discharge rate(L/min) Discharge time(s) 

Test-1 0 50 0.93 208 

Test-2 0 100 2.05 201 

Test-3 0 150 3.01 198 

Test-4 0 200 4.39 202 

Test-5 0.5 50 0.93 186 

Test-6 0.5 100 2.05 194 

Test-7 0.5 150 3.01 179 

Test-8 0.5 200 4.39 180 

Test-9 1 50 0.93 186 

Test-10 1 100 2.05 191 

Test-11 1 150 3.01 189 

Test-12 1 200 4.39 176 

Test-13 3 50 0.93 182 

Test-14 3 100 2.05 191 

Test-15 3 150 3.01 186 

 142 

3. Result and discussion 143 

3.1 Spread process 144 

The fuel started to spread on the rectangular glass surface as soon as the pump was 145 

turned on. Due to the difference in the discharge rate and the burning consumption 146 

(change in thickness per unit time ×	spread area), the burning area varies significantly 147 



with time for the whole spread process. In order to clearly display the whole spread 148 

process, Test-8 (���=4.39 L/min) is selected as an example to show the detailed spread 149 

process in Fig. 5. 150 

 151 

Fig. 5. Images of continuous spill fire at some moments after discharge in Test 8 152 

From the time of discharge t=0s to the time t=30 s, we can observe that the fuel 153 

spread fast and the flame only covers a small part of the liquid surface which means 154 

that most of the fresh fuel was not burning in this period (0s<t<30s). The flame was 155 

small and gradually spread on the whole liquid surface in this period. As the spread 156 

continues (60s<t<120s), the burning area continued to increase and the spread length 157 

reached its maximum (around 4.63 m) at t=120s. In this period, the flame occupied the 158 

whole liquid surface and the flame height also achieved the maximum value. 159 

Considering the large burning area and flame height, we can conclude that the burning 160 

consumption (burning area×burning rate) played an important role in this period. 161 

Subsequently, the burning area started to shrink due to the burning consumption higher 162 

than the discharging rate, and reached a nearly constant value at around t=150s, 163 

corresponding to the equilibrium conditions, when the burning consumption becomes 164 

the same as the discharging rate. These spread behaviors were also observed in the other 165 

tests.  166 

Figure 6 shows the real time front position of the liquid layer obtained by the video 167 

analysis. The results indicate that the spread and burning behaviors can be characterized 168 

by four distinct phases (namely burning layer spread, shrink process, steady burning 169 

and extinguishment) appearing in succession in consistence with visual observations in 170 

Fig. 5. The burning layer spread phase corresponds to the fire growth process in which 171 

the burning area increases with time and the burning area reaches a maximum at the 172 



end of this phase. The shrink phase corresponds to the decrease of the burning area due 173 

to the burning consumption larger than the fuel supply rate. The shrink phase is 174 

relatively short, which is followed by nearly constant burning area, which corresponds 175 

to the steady burning phase. Finally, after the stop of fuel supply, the fire gradually 176 

disappears in the extinguishment phase.  177 

 178 

Fig. 6. The front position of liquid layer as a function of time for some spill fire tests 179 

with different slope angles 180 

Comparing the spread process on the different slopes, it can be observed that the 181 

division of the spread phase is independent of the slope angle. However, the detailed 182 

characteristics including the burning area, burning rate or spread rate in each phase are 183 

different and need to be discussed in detail. The phase division of whole spread process 184 

is meaningful to clearly know the development of continuous spill fire accidents and 185 

then further analyze the main physical mechanism related to spread and burning 186 

behaviors. In addition, the unbalance between discharge rate and burning consumption 187 

still exist, which determines these spread phases in the tests will be present in practical 188 

accidental spill fire scenarios. For clarity we summarize here the main spread process 189 

and the schematic is shown in Fig.7.  190 
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 191 

Fig. 7. The diagram of the main spread process (h1, h2 and hmin are the fuel thickness 192 

at the different times, L is the fuel spread length) 193 

In the simplified processes, the fuel thickness gradient with the spread length is not 194 

considered and this assumption has been widely used in some studies [20-22]. In the 195 

burning layer spread phase, gravity is a main force to drive the liquid layer spread, 196 

which is associated with the fuel thickness. And the real-time average thickness (h) can 197 

be expressed as: 198 

	 
 ��
��� �����������
�

�                          (1) 199 

where Qin is the fuel discharge rate, S is the burning area, and w(t) is the burning rate 200 

(thickness decrease per unit time, m/s). It has been confirmed in [7,22] that the liquid 201 

layer will stop spreading when the liquid layer thickness (h) equals to the minimum 202 

value (hmin) indicating the end of the burning layer spread phase. The minimum 203 

thickness is controlled by the balance between surface tension and gravity for spread 204 

on a flat surface [22-24]. The minimum thickness on a flat surface can be expressed as: 205 

	��� 
 �������� �!��
"#                          (2) 206 

where $ is the density of the fuel, % is the contact angle, and & is the surface tension. 207 

It should be noted that the above parameters need to be revised for ignited conditions 208 

in the quantitative analysis. For an inclined surface, this value will decrease with an 209 

increase in the slope as shown experimentally in [25,26], although the detailed value of 210 

the minimum thickness for an inclined surface is still unknown. For liquid layer spread, 211 

an empirical model has been provided by PHAST to calculate the spread rate on a flat 212 



surface. 213 

�'
�� 
 �()�	 − 	����                        (3) 214 

where k is a spread constant (k=2) in a flat surface [27]. Based on Eqs.(1-3), it can be 215 

concluded that the burning layer spread phase for continuous spread on a solid surface 216 

is controlled primarily by the discharge rate, the burning rate and the minimum 217 

thickness. 218 

In the shrink process phase, there is no fresh fuel to supply to the front layer because 219 

the burning consumption is larger than the discharge rate. In this phase, the thickness 220 

of liquid layer reaches its minimum value. So the duration can be simplified under the 221 

condition that the thickness gradient in the horizontal direction can be neglected as 222 

+, 
 -.�

��                              (4) 223 

In the steady burning phase, the burning area is nearly constant as the burning 224 

consumption is the same as the discharge rate. Therefore the controlling equation in this 225 

phase can be written as: 226 

w0�12�3S0�12�3 
 ���                      (5) 227 

where S0�12�3 and w0�12�3 are respectively the burning area and burning rate in the 228 

steady burning phase. This method has been used in poo fires, in which the supply rate 229 

equals to the burning consumption rate in the steady burning stage [26].  230 

Table 3 shows that the duration of burning layer spread phase decreases with the 231 

increase of slope for the tests with the same discharge rate. This can be explained by 232 

examining Eqs.(1-3), where we have deduced that the spread rate will be higher on a 233 

inclined surface due to the lower minimum thickness and gravity, which will result in a 234 

quick decrease of the fuel thickness. Furthermore, the burning consumption also 235 

increases due to the increasing burning surface area. The duration of the shrink phase 236 

tends to decrease with the increase of slope, because the thickness will be shallower on 237 

a larger slope surface. In the shrink process, there is no fresh fuel supplied to the front 238 

layer due to a larger burning consumption and as a result, the shallower liquid layer will 239 

lead to a shorter burning duration. 240 

Table 3. The duration of burning layer spread and shrink process stages 241 



Test 
Spread stage 

duration (s) 

Shrink stage 

duration(s) 
Test 

Spread stage 

duration (s) 

Shrink stage 

duration(s) 

1 116 38 9 82 29 

2 128 35 10 86 25 

3 134 40 11 107 29 

4 152 39 12 110 27 

5 96 31 13 65 18 

6 106 36 14 76 22 

7 107 33 15 82 21 

8 126 37    

 242 

Figure 6 also shows that the burning area will change greatly with a change in the 243 

slope. The maximum burning area and the steady burning area are known as the two 244 

key parameters to determine the open fire damage and thermal hazard risk [2,28]. The 245 

values of the maximum (Smax) and steady burning areas (Ssteady) obtained for all the tests 246 

are shown in Table 4. In addition, a ratio to define the relative difference between Smax 247 

and Ssteady (50 
 �.67�� �869
� �869 ) is also introduced to show the range of variations. 248 

Table 4. The maximum and steady burning area under different tests  249 

No. Smax(m
2) Ssteady(m

2) rs No. Smax(m
2) Ssteady(m

2) rs 

Test-1 0.98 0.62 0.58 Test-9 1.59 0.69 1.30 

Test-2 1.66 1.10 0.50 Test-10 2.42 1.10 1.20 

Test-3 2.30 1.71 0.34 Test-11 3.36 1.56 1.16 

Test-4 3.06 2.28 0.33 Test-12 4.38 2.24 0.95 

Test-5 1.44 0.65 1.21 Test-13 1.75 0.72 1.43 

Test-6 2.16 1.04 1.08 Test-14 2.93 1.29 1.27 

Test-7 2.89 1.48 0.94 Test-15 3.85 1.70 1.26 

Test-8 3.61 2.10 0.66     

 250 

Table 4 shows that both the maximum burning area and the steady burning area 251 



increase with the increasing slope angle for the same discharge rate. However, it can be 252 

observed that the maximum burning area is more sensitive to the slope angle compared 253 

with the steady burning area. For example, comparing Test 1 and Test 5 the maximum 254 

burning area increases by around 41.92%, while for the steady burning area, the 255 

increase is less than 4.84%. This directly leads to the increase of rs with the increase of 256 

slope.  257 

3.2 Burning rate 258 

Although we can’t measure the instantaneous burning rate, it is possible to calculate 259 

using Eq.(5) the burning rate in the steady burning phase from the burning area and the 260 

discharge rate. Fig.8 plot the steady burning rate as a function of the fire equivalent 261 

diameter which is calculated based on the spread length and the width of trench. It can 262 

be observed that the steady burning rate increases with the pool diameter. For 263 

comparison, we also plot in Fig. 8 the burning rate calculated by the empirical 264 

correlation developed from pool fires [29]. It is clear that, while the trends of both sets 265 

of data are similar, the burning rate of a spilled fire is systematically lower than that of 266 

a pool fire with the same pool diameter, which is in accordance with findings from 267 

previous studies [1,3,12,13]. In order to explain this difference, it is important to 268 

consider the difference in the heat transfer process between pool fires and spill fires as 269 

illustrated in Fig. 9.  270 

 271 

Fig. 8. A burning rate comparison for spill fires and pool fires 272 
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 273 

Fig. 9. Schematic of the main heat transfer mechanisms for (a) pool fire burning, 274 

adapted from Hamins et al.[30] and (b) spill fire burning 275 

For pool fires, the heat feedback from the flame to the fuel surface is usually 276 

completely absorbed by the thick liquid layer and the heat loss between the liquid layer 277 

and the pan bottom is negligible [4]. So the burning rate of pool fires can be expressed 278 

as: 279 

:� ; 
 <�=6>?<���@?<���>�<�=8A
B�CDA∆F?'@�                        (6) 280 

where GHI is fuel specific heat capacity and Lv is latent heat of evaporation. For a large 281 

burning area (D>0.2), the heat conduction from the side walls to the liquid layer (J�CK�), 282 

the radiative reflection (J�L1I) and the heat convection (J�CKM) between the flame and the 283 

liquid surface are usually neglected [30]. So an empirical model based on the radiative 284 

heat feedback from flame to surface was proposed by Burgess [29]. 285 

:� HKKN; 
 :O; �1 − Q�RST�                       (7) 286 

where :O;   is the burning rate of an ‘infinite’ pool diameter (burning thickness per 287 

time), k is an absorption extinction coefficient, and � is a mean beam length corrector. 288 

  In the test, the heat loss of liquid layer is considered as the main reason behind the 289 

lower burning rate. The heat loss of liquid layer can be divided into two parts: the 290 

radiative penetration (through the liquid layer and the glass) and the heat transfer from 291 

the liquid layer to the glass including the convection and conduction. For the burning 292 

of pool fires, the radiative heat flux is mainly absorbed by the upper liquid layer (~3mm), 293 

which results in a thin boiling layer [31]. However, the initial thickness was estimated 294 

based on preliminary spread tests (no ignition) to be less than 2 mm in the present tests, 295 

which illustrates that the radiative heat feedback cannot be completely absorbed by the 296 



spread layer, as verified in our previous studies [17,32]. In fact, the radiative heat 297 

feedback can also be divided into two parts: unabsorbed part (J�K��2U) and absorbed 298 

part (J2U) in previous studies [31,32]. The radiative heat loss of the liquid layer can be 299 

expressed as: 300 

JL2�NK00 
 J�K��2U + WJ2UQ�2-                  (8) 301 

where a is an absorption coefficient, h is the thickness of the liquid layer and W is the 302 

transmittance ratio of the fireproof glass.  303 

The heat transfer process between the liquid layer and the glass will be more obvious 304 

due to the thin liquid layer and the movement of the fuel. In the quantitative analysis, it 305 

is difficult to directly calculate this heat loss part due to the coupling effects of radiation 306 

and fuel movement. However, the temperature of the bottom glass can represent the 307 

heat transfer process in qualitative because the radiation effect on the glass temperature 308 

increase can be neglected. Therefore, the transfer heat flux between the liquid layer and 309 

the glass surface due to the convection and the heat conduction can be expressed as: 310 

JNK00X 
 YGHZN200∆[                       (9) 311 

where Y is the glass mass per unit area in the tests, GHZN200 is the specific heat of the 312 

glass at the atmospheric pressure and ∆[ is the temperature increasing rate of the glass. 313 

Combining Eqs.(6-9), the burning rate of continuous spill fires can be deduced as: 314 

:� 0H�NN; 
 �1 − <=6>\�  ?<\�  �
<�=6> �:O; �1 − QRST�$              (10) 315 

In the steady burning phase, the fuel thickness has achieved the minimum value, 316 

which directly determines the stable of the liquid layer radiative heat loss. In addition, 317 

we found that the bottom glass surface temperature nearly kept a constant in the tests, 318 

gradually approaching the boiling point at the steady burning phase, which has been 319 

observed in [17]. The variation trend of the glass temperature illustrates the transfer 320 

process can be approximately considered as a stable process. As a result, the steady 321 

burning area in Fig.6 and stable burning rate in Fig.8 can be observed in the tests. 322 

As mentioned earlier, the increase of the slope angle can lead to a thin liquid layer, 323 

which would indicate based on Eq.(8) that JL2�NK00 will increase and subsequently a 324 

lower burning rate. This is verified in Fig. 8, which shows that for the same discharge 325 



rate the larger the slope angle, the smaller the burning rate in the steady phase. In order 326 

to compare the burning rate of between the spill fire and pool fire quantitatively, the 327 

ratio (Y� 0H�NN; /Y� HKKN; ) is given in Table 5. 328 

Table 5. The burning rate ratio the same burning size 329 

 Qin=0.93L/min Qin=2.05 L/min Qin=3.01 L/min Qin=4.39 L/Min 

θ=0˚ 0.3555 0.4661 0.4819 0.4819 

θ=0.5˚ 0.316 0.4266 0.4266 0.4345 

θ=1.0˚ 0.3081 0.395 0.4029 0.4108 

θ=3.0˚ 0.3002 0.3397 0.3713 Non 

 330 

Table 5 shows that the burning rate of spill fires is systematically lower than that of 331 

pool fires and the burning rate ratio of spill fires to pool fires is from 0.30 to 0.49. For 332 

the tests with the smallest discharge rate of 0.93 L/min, this ratio is the smallest. We 333 

believe that this is because relative importance of the conduction heat loss in the 334 

horizontal direction in the glass is more important in these cases as the spread length is 335 

much smaller than those with large discharge rates. This would suggest less energy is 336 

available for fuel evaporation. With the increasing fuel discharge rate (and spread 337 

length), the importance of this part of heat loss, when compared to the total heat 338 

feedback (^ × JI ) from the flame to the liquid layer, will gradually decrease and 339 

eventually becomes negligible as we noted in Table 5 that the ratio for higher discharge 340 

rates is nearly the same for the same slope angle.  341 
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Fig. 10. The burning rate ratio vs the slope angle 344 

Figure 10 shows the variation of the burning rate ratio with the slope angle except 345 

for the case with Qin=0.93L/min due to its small burning size. All the test data collapse 346 

into one single line. The fact that the burning rate ratio becomes nearly constant can be 347 

explained by examining the change of the thickness of the liquid layer with the slope 348 

angle. With the increasing of slope, the decrease of liquid fuel thickness will gradually 349 

become smaller due to the fuel surface tension limitation [33,34]. We have shown that 350 

the burning rate of spill fires is mainly affected primarily by the fuel thickness. This 351 

explains that the burning rate ratio initially decreases with the slope angle but then 352 

gradually approaches a constant when the slope angle becomes sufficiently large as 353 

shown in Fig.10. It should be noted however that we expect that the relation only holds 354 

up to a certain slope angle because if the slope angle becomes too large, the surface 355 

tension will be overcome by gravity and the fuel will not spread evenly on the glass 356 

surface, resulting in a discontinuous spread area, as we found in some preliminary tests. 357 

 358 

3.3 Flame height 359 

Flame height is a key parameter in the liquid fire and is closely related to the 360 

surrounding radiative distribution [4,9]. The flame height was determined by analyzing 361 

the digital images as discussed earlier. Fig.11 shows the experimental results of the 362 

flame height as a function of time for the case with the discharge rate of 2.05 L/min. 363 

The flame height in the whole spread process experiences the following four stages: 364 

quick increase, slow decrease, stable and extinguishment. The initial flame height was 365 

due to the burning of the ignition source. In general, the flame height variation is 366 

consistent with that of the burning area change. The ignition of JP-4 was identified as 367 

the appearance of strong black smoke.  368 

It is interesting to note that in the steady burning phase, the flame heights nearly keep 369 

constant for the same discharge rate independent of the slope. This is due to the fact 370 

that the burning area and the burning rate at the steady burning phase are almost the 371 

same for the cases with different slopes but the same discharge rate. However, the flame 372 

fluctuations are significant for tests with large slope angles. As mentioned above, the 373 



liquid layer is thin on a large slope angle surface, which results in unsteady burning.  374 

 375 

Fig. 11. The variation of the flame height as a function of time under the 376 

different slopes (Qin=2.05 L/min) 377 

In the steady burning phase, the ratio of fire length to fire width is less than three and 378 

the burning area can approximately consider as a circle pool fire. We can calculate the 379 

flame height following as [35]:  380 

_ `⁄ 
 3.7�� ∗X/f − 1.02                    (11) 381 

where D is the equivalent burning diameter (2(ij/k), �� ∗ is the dimensionless heat 382 

release rate which is defined as: 383 

�� ∗ 
 ��
B�CD6F�Z�.lTl

�
                       (12) 384 

where	$m and [m are ambient density and temperature, respectively. g is the gravity 385 

acceleration. GH2 is the specific heat of air at constant pressure and ��  is the total heat 386 

release rate, which is calculated as: 387 

�� 
 noY� HKKN_C                         (13) 388 

where no is a modified coefficient (a ratio between the spill fire burning rate and the 389 

pool fire burning rate) and its values are given in Table 5 for all the tests. Fig. 12 shows 390 

a comparison of the experimental and calculated flame height. It can be seen that the 391 

flame height model can predict well the spill fire flame height with the modified heat 392 

release rate. The predicted flame heights are generally slightly lower than the 393 

experimental values. This could be due to the non-uniform burning rate on the whole 394 

burning surface as we observed that during the tests the burning near the front and back 395 
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of the spill pool is less intense than that in the center region. This implies that the 396 

equivalent pool diameter is overestimated by the model and as a result based on Eq.(11) 397 

underestimated flame height. 398 

 399 

Fig. 12. The calculated flame height with respect to the burning diameter in 400 

comparison with the measured values in tests 401 

 402 

4. Conclusion  403 

The spill fires experiments with different discharge rates were conducted on a 404 

rectangular glass surface with varied slope angles. The effects of the slope on the spread 405 

and burning behaviors are analyzed and summarized.  406 

For the spread behaviors of spill fires, the whole spread process can be divided into 407 

four phase: 1) burning layer spread phase; 2) shrink phase; 3) steady burning phase and 408 

4) extinguishment, independent of the slope angle. However, the duration and the 409 

burning area vary greatly with the slope angle. The durations of the burning layer spread 410 

phase and shrink phase decrease with the increase in the surface slope angle. It was also 411 

found that the slope has a more important effect on the maximum burning area than the 412 

steady burning area, resulting in an increase of the relative difference, rs =
�.67�� �869

� �869 ) 413 

with increasing slope angle. 414 

For the burning behavior, the burning rate of a spill fire was found to be 415 

systematically lower than that of a pool fire for the same burning size and the burning 416 

rate ratio ranges from 0.30 to 0.49. It was found that the spill fire burning rate at the 417 

steady burning phase decreased with an increase of the slope angle because the shallow 418 

liquid fuel would result in a large heat loss of the liquid layer. The burning rate ratio 419 
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between the spill fire and corresponding pool fire was introduce to characterize the 420 

effects of slope on the burning rate and it was found that the burning rate ratio initially 421 

decreases with the slope angle but then approaches a nearly constant for large slopes 422 

because of the smaller variation of the fuel thickness with an increase of the slope angle. 423 

A correlation between the burning rate ratio and slope angle is also deduced. 424 

The flame height in the steady burning phase was found to increase with increasing 425 

equivalent fire diameter. It was also shown that the flame height correlation developed 426 

for pool fires can be used to predict spill fires after the heat release rate is modified 427 

using the burning rate ratio, provided that the ratio of fire length to fire width is less 428 

than three. 429 

We have presented in this work a detailed study of the effects of the slope on the 430 

spread and burning behaviors of continuous spill fires. The analysis of the spread 431 

process and the determination of some key parameter can provide some guidance in 432 

thermal hazard risk assessment in actual spill fires accidents. Moreover, the 433 

experimental data can be used to further develop numerical models for prediction of 434 

continuous spill fires. However, more experiments, especially on different substrates, 435 

should be conducted to address the continuous spill fire issue.  436 
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