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Abstract

Image hashing based on deep convolutional neural networks (CNN), deep hash-

ing, has acquired breakthrough in image retrieval. Although deep features from

various CNN layers have various levels of information, most of the existing deep

hashing methods extract the feature vector only from the output of the penul-

timate fully-connected layer, focusing primarily on semantic information whilst

ignoring detailed structure information. This calls for research on multi-level

hashing, utilizing multi-level features to exploit di↵erent levels of CNN charac-

teristics. To fill this gap, a novel image hashing method, Multi-Level Supervised

Hashing with deep feature (MLSH), is proposed in this paper to further exploit

multiple levels of deep image features. It uses a multiple-hash-table mechanism

to integrate multi-level features extracted from an individual deep convolutional

neural network. It takes advantage of the complementarity among multi-level

features from various layers of a single deep network. High-level features re-

veal the semantic content of the image, while low-level features provide the

structural information that is missing in high-level features. Instead of simple

concatenation, several hash tables are trained individually using di↵erent levels

of features from di↵erent layers, which are then integrated for e�cient image

retrieval. The method has been systematically evaluated through experiments

on three image databases, including CIFAR-10, MNIST and NUSWIDE, and
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has thus been demonstrated to set a new state of the art in image hashing, out-

performing several state-of-the-art hashing methods. Furthermore, the recall

and precision can be balanced and improved simultaneously.

Keywords: multi-table mechanism, multi-level deep feature, image retrieval,

structural and semantic similarity

1. INTRODUCTION

Hashing [1, 2, 3, 4] is a key enabling technique for ANN based image retrieval.

For hashing-based methods, high-dimensional feature vectors are converted into

low-dimension binary codes (hash codes), and the Hamming distance is calcu-

lated between hash codes as surrogate for the distance between images. Given a5

query, the image with the least Hamming distance to the query is then returned.

Traditional hashing-based methods [1, 2, 3] have already achieved good re-

trieval performance, but they have not advanced much in terms of performance

in recent years because of the limitations of hand-crafted features they have used.

Most hashing methods employs hand-crafted features, including Histogram of10

Oriented Gradients (HOG) [5], Local Binary Pattern (LBP) [6], Scale Invariant

Feature Transform (SIFT) [7] and GIST [8], which are unsupervised and thus

cannot fully capture the underlying semantic similarity of images. Recently,

instead of hand-crafted features, deep features from deep neural networks are

being used as image descriptors to overcome the semantic gap. Deep features15

are more informative and more relevant than hand crafted features, resulting in

moderate improvement in retrieval performance [9].

Normally, a deeper convolutional layer extracts a more abstract feature

map/vector, resulting in a higher-level feature. Higher-level features capture

richer semantic information but lack finer-grained details; lower-level features20

have higher spatial resolution but su↵er more with background cluttering and

semantic blurring. Recent works on deep hashing have extracted the penulti-

mate layer features from a neural network [10, 11] as the global image descriptor.

They are however not desirable image features due to high-level features hav-
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ing rich semantic information but lacking spatial resolution. To alleviate this25

problem, multi-level features, which are feature vectors extracted from various

network layers, can be used to consider both semantic and structure informa-

tion. To calculate similarity, images must first of all be represented in terms of

features, which may be extracted using manually designed feature descriptors

or, more recently, using deep neural networks such as convolutional neural net-30

work (CNN). Each layer of a CNN may be used as a feature vector for a given

image, so multiple feature vectors are available to represent one image. In terms

of its semantics, features from various CNN layers have di↵erent characteristics,

thus they complement each other. How to utilize di↵erent levels of features,

in particular, how to exploit their complementarity for more e↵ective image35

hashing is a challenge. To the best of our knowledge, this challenge has not

been researched in the literature. A related area of research is multi-view hash-

ing [12, 13, 14, 15], where di↵erent types of hand-crafted descriptors are fused

together by concatenation. Sequential Spectral Learning to Hash [14] deter-

mines the best averaged distance matrix by minimizing -averaging view-specific40

distance matrices. Multi-view anchor graph hashing (MVAGH) [12] computes

the subset of eigenvectors of the average similarity matrix to non-linearly com-

bine binary code. Deep Multimodal Hashing with Orthogonal Regularization

(DMHOR) [15] merges various deep features and performs similarity search on

multimodal features. Multimodal features are extracted from di↵erent network45

structure. However, these methods mainly employ hand-crafted features or mul-

timodal features, which do not exploit the relationship between di↵erent views

of features.

To exploit multi-level deep features more thoroughly, this paper proposes a

novel image deep hashing method, Multi-Level Supervised Hashing with deep fea-50

ture, to take advantage of the complementarity of multi-level features extracted

from various layers of a deep neural network. Instead of directly concatenating

feature vectors from multiple layers, a multiple-hash-table mechanism is pro-

posed to make better use of multi-level features. One hash table is trained

using one level of deep features, and then all hash tables are integrated. It55
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returns the intersection set of several returned image sets corresponding to mul-

tiple hash tables. The direct concatenation manner is not an e�cient way to

exploit the high-level semantic similarity and the low-level fine-grained di↵er-

ences. With multiple hash tables being used, high-level features can guarantee

good semantic preservation, while low-level features can avoid the influence of60

high-level features so as to impose a vital role in di↵erentiating fine-grained dis-

tinctions. Moreover, the use of a multi-table mechanism [16] ensures that the

retrieval recall can be improved while preventing precision degradation.

To the best of our knowledge, this is the first study of multi-level deep

hashing where complementarity between di↵erent levels of features is exploited.65

The proposed method can train hash codes preserving both high-level seman-

tic similarity and low-level structural similarity. A related area of research is

multi-view hashing, where di↵erent feature vectors are extracted from the same

image, which are then concatenated into a single one. Di↵erent features vector

comes from di↵erent hand-crafted features (e.g. SIFT, LBP and HOG), or fea-70

tures extracted from di↵erent scales. The relationship between di↵erent views

is unclear and is not exploited.

The main contributions of this paper are as follows:

• A novel hashing method,Multi-Level Supervised Hashing with deep feature,

is proposed. Multiple levels of deep features are extracted from di↵erent75

layers of the deep convolutional neural network to better preserve seman-

tic and structural information simultaneously. The use of a multi-level

mechanism ensures the generated hash codes are more discriminative and

informative.

• Multi-level features are combined by training separate hash tables respec-80

tively, which are then integrated. The integration of several hash tables

can better take advantage of di↵erent-level features by capturing both

semantic and structural information in images. Moreover, recall and pre-

cision can be balanced for better retrieval performance.

• Three widely-used image databases are employed to evaluate the proposed85
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method. Experimental results show that the proposed method outper-

forms other state-of-the-art hashing methods.

This paper is organized as follows. Related works are described in Section 2

and the proposed method is detailed in Section 3. The experimental results and

the conclusion of the paper are shown in Section 4 and Section 5, respectively.90

2. Related Works

Content-based image retrieval (CBIR) has made substantial advancement

recently. It aims to return a collection of images similar to the query based

on the content rather than the metadata of images. One approach to solving

this problem is exhaustive search, which is impractical for large-scale databases.95

Traditional CBIR methods first extract image features and then return similar

images based on the distance of image feature vectors using e.g. cosine distance

and Euclidean distance. However, they are impractical for real-world databases

due to the high computational cost. In the case of a large-scale database or a

high dimensionality of features, the cost of finding an exact accurate nearest100

image is very high. An alternative approach is Approximate Nearest Neighbor

(ANN), which trades o↵ retrieval accuracy for speed. Hashing methods are

proven to be e�cient as one of the ANN for image retrieval. According to

whether the image label information is used, hashing can be generally divided

into three categories: unsupervised, semi-supervised and supervised.105

For the first category, one of the most commonly-used techniques is Locality

Sensitive Hashing (LSH) [1], which randomly generates projections to map da-

ta from high dimensional real-value space to low dimensional Hamming space.

Locality-sensitive binary codes from shift-variant kernels (SKLSH) [2] and ker-

nelized LSH [3] are the improvements of LSH, which assume the data is mul-110

tidimensional and utilize a kernel function to discover the underlying structure

of the images. However, they are data-independent as they ignore the semantic

structure of the data. Iterative Quantization (ITQ) [17] is a data-dependent

method, which minimizes the quantization loss to binarize the outcomes. Spec-
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tral Hashing (SH) [18] is presented to generate balanced hash codes via min-115

imizing the correlations among di↵erent hash functions. Asymmetric Cyclical

Hashing (ACH) [19] uses shorter hash codes for database images and longer

hash codes for query images to reduce storage cost. Semi-supervised hashing

utilizes only a small part of image labels. Semi-supervised hashing (SSH) [20]

aims to generate balanced hash codes and avoid over-fitting by minimizing the120

empirical errors between pairwise data. Semi-supervised nonlinear hashing us-

ing bootstrap sequential projection learning (BSPLH) [21] sequentially trains

several hash functions by amending the errors of all previous hash functions.

Supervised hashing requires the whole database to be labeled. Inspired by

latent structural SVM, Minimum Loss Hash (MLH) [22] is proposed to use struc-125

tural SVMs with latent variables and the hinge loss function to generate hash

codes. Kernel-based Supervised Hashing (KSH) [23] applies the kernel function

to generate the similarity-preserving codes. Binary Reconstructive Embedding

(BRE) [24] explicitly minimizes the construction error between data in the o-

riginal space and that in the Hamming space. Column Sampling based Discrete130

Supervised Hashing (CODISH) [25] learns discrete hash codes directly in a su-

pervised manner.

In addition to the traditional hashing using hand-crafted features, some deep

hashing methods are presented recently to exploit the strong representation ca-

pability of the deep neural network. Conventional Neural Network Hashing135

(CNNH) [26] learns the hash function and the feature representation indepen-

dently, where the hash function learning cannot feedback to the feature learn-

ing. To address this problem, Lai et al. [27] uses a ranking loss based on a

triplet of images to jointly learn the hash codes and feature representation so

that the hash function learning can provide feedback to the feature learning.140

Deep Semantic Preserving and Ranking-based Hashing (DSRH) [28] is also a

triplet-based deep hashing which reduces bit redundancy with the orthogonal

constraints. Deep Supervised Hashing (DSH) [29] is a pairwise-based hashing

to generate the discriminative hash codes. Discriminative Deep Hashing (DDH)

[30] presents a divide-and-encode module to maximize the discriminability of145
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the hash codes. Di↵erent bits contribute di↵erently to the image retrieval, so

they should be treated di↵erently. Bit-Scalable Deep Hashing (DRSCH) [31]

uses a weighting scheme to generate the compact and bit-scalable hash codes.

Zhang et al. [32] applies the query-adaptive scheme to provide more accurate

ranking. WMRDH [33] presents a order-aware ranking loss with a weighting150

scheme to generate similarity preserving hash codes. In addition, studies on

cross-modal hashing are also an important research filed. [34] proposes to learn

hash functions in a domain-adaptive limited text space (DALTS), instead of

image space and common space. [35] applies multitask learning with Capped-1

penalty to map images to semantic concept probability distribution. And then155

a knowledge-based concept transferring algorithm is applied for better global

semantic capturing.Table 1 demonstrates the comparison between the proposed

method and representative aforementioned hashing methods.

Because the aforementioned methods are based on a single table, the pre-

cision drops when the desired number of similar images increases. Multi-table160

hashing is proposed to trade o↵ the recall and precision. Semi-supervised non-

linear hashing using bootstrap sequential projection learning (BSPLH) [21] se-

quentially trains several hash functions in a boosting manner. WMRDH [33]

also weighted integrates several hash tables which are trained with the proposed

order-aware ranking loss function. However, most of the multi-table hashing165

methods are based on the same single-view features, which cannot better cap-

ture the image information.

The aforementioned methods apply only one type of feature. However, dif-

ferent types of feature contain di↵erent information. Inspired by the multi-level

feature aggregation scheme [11, 36], multiple di↵erent types of features should170

be merged to make a more comprehensive descriptor. Several multi-level im-

age retrieval methods are proposed, which can be roughly classified into three

groups. The first one [12, 13] is to cut out several regions from an image or

transform an image into di↵erent resolutions, and then extract features from

di↵erent regions or resolutions of an image. Multi-view Anchor Graph Hashing175

(MVAGH) [12] seeks to find a non-linear combination of binary codes. Compos-
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Table 1: Comparison between the proposed method and the state-of-the-art methods.

Method Di↵erences

BRE [24] 1. BRE applies the single-view hand-crafted

features, while MLSH applies multi-level deep

CNN features.

2. BRE aims to minimize the construc-

tion error between data in the original s-

pace and that in the Hamming space, while

MLSH solves the objective function based on

column-sample space.

Supervised KSH [23] KSH applies the kernel function, while MLSH

extracts deep features and trains hash func-

tion in original deep feature space.

Traditional Hash-

ing

MLH [22] MLH trains hash functions using structural

SVMs. MLSH aims to minimize quantization

error.

ITQ [17] MLSH applied the sample-column space to

improve the e�ciency. ITQ solves the dis-

crete problem directly.

Unsupervised SH [18] SH focuses on reducing the correlation be-

tween hash functions. MLSH takes it as one

of the factors in the objective function, and

it also considers the quantization error.

LSH [1] LSH is data-independent, which generates

hash codes randomly. MLSH is data-

dependent and it learns hash functions based

on its data distribution.

DDH [30] 1.MLSH trains hash function after extracting

di↵erent levels CNN features. All the

DSH [29] comparison methods only apply the high-

level CNN features.

Deep Hashing Supervised DRSCH [31] 2.NINH, DSRH and DRSCH are based on

triplet loss, and DSH is based on pairwise

DSRH [28] loss. The objective function of MLSH is

based on the image itself.

NINH [27] 3.All of the comparison methods only consid-

er the high level semantic similarity.

CNNH [26] MLSH also consider the low-level structural

information.

ite Hash (CHMIS) with multiple information sources [13] applies a weighting

scheme to multiple feature sources to maximize the coding performance. [37]

emposes a geometric-constrained, and calculates the cost value of the energy
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function from multiple images, which is aggregated in an image space using a180

semi-global optimization approach. The fine-grained spatial-temporal attention

model (FSTA) [38] uses a two layer LSTM with the attention mechanism on

the frame level to consider the spatial-region information. Most existing multi-

level hashing methods [12, 13] belong to the first category. The second one

[39, 40, 41, 42] is early fusion, which encodes di↵erent types of descriptors into185

a single feature vector. In [42], hierarchical recurrent neural network is exploit-

ed to construct pyramid image representation and generate a single e↵ective

hash table. However, the direct combination of di↵erent descriptors reduces the

e↵ectiveness of various features. The last one is late fusion [43], which combine

the retrieval results of di↵erent descriptors. In [40], CNN features are extracted190

from various layers which are then encoded as a single feature vector by vector

of locally aggregated descriptors (VLAD) encoding. It measures the similarity

based on Euclidean distance which is time consuming.

The aforementioned works are in the field of feature extraction. Several

works on feature selection have also been studied in recent years. [44] presents195

a hybrid of particle swarm optimization algorithm with genetic operators to

select features. [45] presents to use krill herd algorithms to generate the e�cient

subset for text clustering. Both of the previous two methods use k-means as the

evaluation.

3. Multi-Level Supervised Hashing with Deep Feature200

Normally, a convolutional neural network contains several convolutional block-

s, each of which is constructed with one or more convolutional layers and pooling

layers. The flow diagram of MLSH is demonstrated in Fig. 1. The red star is

the query image. Empty circles of di↵erent colors represent the returned region

with a certain Hamming distance, where the images inside should be returned.205

The purple circle is the center of the returned region. The red circle is the

desired returned region. MLSH divides the whole CNN into Q convolutional

blocks. The proposed network applied the classification layer as the last fully-
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Figure 1: The flow diagram of MLSH. The red star is the query image. Empty circles of

di↵erent colors represent the returned region with a certain Hamming distance, where the

images inside should be returned. The purple circle is the center of the returned region. The

red circle is the desired returned region.

connected layer to form a classifier. Features are generated by minimizing the

classification loss introduced in section 3.1. Assume that a set of N training210

images from C classes with labels Y is given, the proposed method first extracts

a set of feature matrices X = {X{1}, ..., X{Q}} of various levels from the output

of various convolutional blocks and the first fully-connected layer in a deep con-

volutional network, where Q denotes the number of levels and X{q} 2 RN⇥d(q)

denotes the feature matrix of the qth level, and d(q) denotes the feature dimen-215

sion of the qth level. Then, the proposed method applies a supervised hashing

method CODISH [25] introduced in section 3.2 to learn a projection function

for each feature matrix: F {q} : X{q} ! B{q} 2 {�1, 1}N⇥K , which encodes

an image feature x(q) 2 X(q) of the qth level into a K-dimensional binary code

b(q) 2 B(q) in the Hamming space. Instead of being resized to the same dimen-220

sion, features of various levels are used to train corresponding hash table directly

to fully preserve the feature information. Q hash tables of various levels are in-

tegrated for image retrieval. d(q) denotes the feature dimension corresponding

10



to the qth scale. Images belonging to the intersection of the images returned

by Q hash tables are finally returned. The integration of multiple hash tables225

is introduced in Section 3.3. In Fig. 1, the red star and the pink shaded area

denote the query and the true neighbor of the query, respectively. The purple

red point and the open circle indicate the center of the bucket and the area

(Hamming ball) returned by the corresponding hash table according to certain

radius, respectively. In this way, MLSH can utilize the complementarity among230

multi-level features. Moreover, in order to return a desire number of similar

images, the radius of the Hamming ball need to be increased, at the cost of

lower precision. Using multiple tables to combine features of di↵erent levels

can better trade o↵ precision and recall, because it returns the intersection of

multiple hamming balls, so that less dissimilar images are returned.235

In the remainder of this section, Section 3.1 introduces the feature extrac-

tion process. The supervised hashing method is described in Section 3.2. The

integration of multiple hash tables and the complexity analysis are described in

Section 3.3 and 3.4, respectively.

3.1. Multi-level Feature Extraction240

Fig. 2 provides the overview of the entire feature extraction process. The

convolutional network consists of five layers, including three convolutional layers

and two fully-connected layers. The first convolutional layer applies 32 filters

and is followed by the max pooling operation, which forms the first convolutional

block. The last two convolutional layers apply 32 and 64 filters, respectively,245

and are followed by the average pooling operation, which form the second and

third convolutional blocks respectively. The size of the convolutional kernel and

pooling operation are set as 5 ⇥ 5 with the stride 1 and 3 ⇥ 3 with the stride

of 2, respectively. There are 500 units for the first fully-connected layer, which

adopts the rectified linear activation function. The last fully-connected layer is250

the classification layer with C units, where C is the number of categories.

For the single-label classification, the softmax function serves as the activa-
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Figure 2: The flow diagram of MLSH.The big rectangle represents the feature map of a

convolutional layer and the number over it (e.g. ‘32’) is the number of channel. The size of

the rectangle is the width and height of the feature map. The small rectangle is the kernel

and the number below it (e.g. ‘5⇥ 5’) is the kernel size. The Oblique rectangles following the

convolutional layers denotes the fully-connected layers. The rectangles below the convolutional

layers are the flatten vectors.

tion function, and the objective function for the CNN training is:

L = �
NX

i=1

CX

j=1

ti,j log(pi,j) (1)

where ti,j and pi,j denote the target and prediction of the ith data of jth category.

ti,j is 1 if the image i belongs to the jth category, and 0 otherwise.

For the multi-label classification, the sigmoid function serves as the activa-

tion function, and the objective function for CNN training is defined as:

L = �
NX

i=1

CX

j=1

(ti,j ⇥ log(pi,j) + (1� ti,j)⇥ log(1� pi,j)) (2)

The back-propagation mechanisms are applied to train network parameters.

Q levels of feature matrices are extracted from every convolutional block and the255

penultimate layer of the whole network (i.e. the 1st fc layer in Fig. 1). Assume

that the output of a convolutional block consists of C feature maps (each has a

height H and a width W ), an image is represented by a H⇥W ⇥C-dimensional

vector. fci denotes the ith fully-connected layer and convi denotes the ith

convolutional layer. In this paper, Q is set to be 4. Thus four feature matrices260
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are extracted from the first fully-connected layer and three convolutional layers.

Feature of each level serves as the input of the supervised hashing method to

be introduced in Section 3.2. Therefore, Q hash tables of corresponding levels

are generated for image retrieval.

3.2. The Supervised Hashing265

The proposed method applies CODISH [25] as the basic supervised hashing

method to train the hash table of each individual feature level. The description

of CODISH is presented in this section. It is a discrete optimization problem

for iteration solutions. It applies the commonly-used objective function, which

is defined as:

min
B2{�1,+1}N⇥K

||KS �BBT ||2F (3)

Supposed the training feature matrix is X 2 RN⇥d and the semantic simi-

larity matrix is S 2 {�1,+1}N⇥N , where N is the number of training sam-

ples, d is the feature dimension, and Sij = 1 denotes data xi and xj are

semantically similar and Sij = 0 otherwise. In each iteration, several da-

ta are randomly selected from X = {X1, ..., XN} to form a subset Us, and

the rest form a subset Un, where Un = X � Us. |Us| and |Un| denote the

number of samples in two data subset respectively. Thus, the sub seman-

tic similarity matrix eSUs 2 {�1,+1}|Us|⇥|Us| between |Us| selected data and

eSUn 2 {�1,+1}|Un|⇥|Us| could be generated. BUs 2 {�1,+1}|Us|⇥K and

BUn 2 {�1,+1}|Un|⇥K represent the generated hash code of the corresponding

data, and K is the code length. The objective function Eq. 3 in an iteration

can be transformed as:

min
BUs ,BUn

||K eSUn

�BUn

(BUs

)T ||2F + ||K eSUs

�BUs

(BUs

)T ||2F (4)

In each iteration, an optimization strategy is applied to solve the objective

function. BUs

and BUn

can be iteratively updated by fixing the other.

Update BUn

with BUs

fixed.

When BUs

is fixed, we can convert the objective function into:

min
BUn

||K eSUn

�BUn

(BUs

)T ||2F (5)
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To solve it in a discrete way with a constant-approximation bound, the loss

is changed from Frobenius norm to L1 norm, which is defined as:

min
BUn

||K eSUn

�BUn

(BUs

)T ||2F (6)

Obviously, when BUn

= sgn(eSUn

BUs

), Eq. 6 reaches its minimum.

In practice, BUn

t is set as e sgn((eSUn

BUs

, BUn

t�1
) defined in Eq. 7 to avoid

the influence of eSUn

BUs

being zero, where t is the iteration index.

e sgn(a, b) =

8
>>><

>>>:

1, a > 0

b, a = 0

�1, a < 0

(7)

Update BUn

with BUn

fixed. When BUn

is fixed, the problem can be

transformed into K binary quadratic programming (BQP) problems. The opti-

mization of the kth bit of BUn

is defined as

min
bk2{�1,+1}|Us|

(bk)T'(k)bk + (bk)T�(k) (8)

where

'(k)
i,j
i 6=j

= �2(K eSUs

i,j �
k�1X

m=1

bmi bmj ),'(k)
i,j = 0, (9)

�(k)
i = �2

|Un|X

l=1

B|Un|
l,k (K eSUn

l,k �
k�1X

m=1

BUn

l,mBUs

i,m (10)

With binary constraint B 2 {0, 1}, Eq. 8 is transformed into a standard

BQP problem, which is defined as:

min
b
k2{0,1}|US |

(b
k
)T'(k)b

k
+ (b

k
)T�

(k)
(11)

where b
k
= 1

2
(bk+1), '(k) = 4'(k) and �i

(k)
= 2(�(k)

i �
P

l = 1|U
S |(�(k)

i,l +�(k)
l,j )).270

Moreover, Eq. 11 can be turned into Eq. 12 without linear term, and also

an additional constraint is added, which is as follows:

min(ebk)T e'(k)ebk

s.t.ebk 2 0, 1|U
S
+1|,bk|US+1| = 1,

|US
+1|X

i=1

ebi
k
= d|US + 1|/2e

(12)
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Finally, by performing Cholesky decomposition, Eq. 12 can be transformed

to an clustering problem, which can be formulated as:

min
X

u2U 0

||u� 1

dM/2e
X

v2U 0

||2

s.t.U 0 ✓ U,|U 0| = dM/2e, udM/2e 2 U 0

(13)

where U is the dataset, and a subset U with size dM/2e is desired where the

square distances within is minimized. The 2-proximation algorithm is applied

to solve Eq. 13.

Table 2: The overview of the integration of MLSH.

Input: Q hash tables {F {1}, F {2}, ..., F {Q}}, a query image Iq, the

Hamming distance threshold Hthres.

1. Generate hash codes for Iq, Bq = {B{1}, B{2}, ..., B{Q}}

2. According to Q hash tables, images within Hamming

distance Hthres are returned to form Q returned image sets S =

{S{1}, S{2}, ..., S{Q}}.

3. The final returned image set is formed yielding Sq =

S{1} \ S{2}\, ...,\S{Q}.

Output: The final returned image set.

3.3. Integration of Multiple Hash Tables

As is shown in Table 2, images belonging to the intersection of the images275

returned by Q hash tables are finally returned. Given a query image, a subset

of images yielding the least Hamming distance with the query are returned.

Di↵erent hash tables contain di↵erent image information, such as structure in-

formation and semantic information. Images of di↵erent subset intersections are

to be returned to guarantee the preservation of both semantic information and280

structure. Because the fusion of di↵erent features to train a single hash table

leads to the similarity preservation of semantic and structure weaken each oth-

er, the proposed method can e↵ectively eliminate the shortcomings of feature

fusion.
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Moreover, given a query, images within Hamming distance h are returned,285

which forms a Hamming ball with radius h. Normally, the larger Hamming

ball is formed, when more similar images are desired. It unavoidably returns

more dissimilar images, dragging down the precision. The proposed method

only returns the intersection of multiple Hamming ball, which can return more

similar images and meanwhile better remove part of dissimilar images. Precision290

and recall can be balanced in this way.

3.4. Complexity Analysis

The time complexity of the feature extraction CNN isO(
PD

l=1
M2

l K
2

l Cl�1Cl),

where Ml, D, Kl, and Cl is the size of feature map in the lth layer, the num-

ber of layers, the kernel size of the lth layer, and the channel of the lth lay-295

er, respectively. M is ((X � K + 2Padding)/Stride + 1). The space com-

plexity of CNN is O(
PD

l=1
K2

l Cl�1Cl). The time complexity of COSDISH is

O(Tsto ⇥ Talt ⇥ (Nq2 + q4)), where Tsto, Talt, N , and qis the number of iter-

ations, the alternative optimization iterations, the number of images, and the

code length, respectively. The space complexity of COSDISH is O(Nq + q2).300

After the feature extraction, multiple hash tables can be trained simultaneous-

ly. The overall space complexity of hash table training is O(Q ⇥ (Nq + q2)) ,

where Q is the number of hash tables. The complexity of hash code generating

is O(
PQ

t=1
N ⇥dt⇥ q) , where dt is the feature dimension for the tth hash table.

4. Experiments305

In our work, the experiments are conducted on three widely-used image

databases, comparing the proposed method to several state-of-the-art hashing

methods.

4.1. Databases and Settings

The three databases are CIFAR-10, MNIST and NUSWIDE. There are310

60, 000 32 ⇥ 32 color images from 10 categories in cifar-10, where 6, 000 im-

ages for each category with a single label. Following [26, 27], 50, 000images are
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Table 3: Mean Average Precision (MAP) of hashing with di↵erent number of hash bits on

CIFAR-10.

Methods 16-bit 24-bit 32-bit 48-bit 64-bit

MLSH

4⇥ 16-bit 4⇥ 24-bit 4⇥ 32-bit 4⇥ 48-bit 4⇥ 64-bit

74.75% 75.39% 75.57% 75.99% 76.00%

MLSH

4⇥ 4-bit 4⇥ 6-bit 4⇥ 8-bit 4⇥ 12-bit 4⇥ 16-bit

66.69% 69.71% 71.88% 73.76% 74.75%

CODISH [25] 57.12% 60.41% 61.57% 63.25% 63.77%

DDH [30] 60.35% 61.65% 63.21% 63.66% 62.92%

DSH [29] 63.66% 65.12% 66.07% 67.55% -

DRSCH [31] 61.46% 62.19% 62.87% 63.05% 63.26%

DSRH [28] 60.84% 61.08% 61.74% 61.77% 62.91%

NINH [27] 55.40% 56.60% 58.80% 58.10% -

CNNH [26] 44.10% 51.10% 50.90% 52.20% -

BRE-CNN 19.80% 20.57% 20.59% 21.64% 21.96%

KSH-CNN 40.08% 42.98% 44.39% 45.77% 46.56%

MLH-CNN 25.04% 28.86% 31.29% 31.88% 31.83%

BRE [24] 12.19% 15.63% 16.10% 17.19% 17.56%

KSH [23] 32.15% 35.17% 36.51% 38.26% 39.50%

MLH [22] 13.33% 15.78% 16.29% 18.03% 18.84%

ITQ [17] 11.45% 11.63% 11.53% 10.97% 11.24%

SH [18] 19.22% 19.28% 20.09% 20.79% 21.46%

LSH [1] 12.36% 11.74% 12.30% 13.57% 12.42%

chosen as the training set and 10, 000 images as the query set. The raw pixel-

based images are used as the input for the proposed method. The traditional

hashing methods employs the 512-dimension GIST feature as the input.315

MNIST contains 70, 000 28 ⇥ 28 gray-scale images from 10 categories (i.e.

digits from 0 to 9). It is a handwriting digits image database. Following [26, 27],

60, 000 images are chosen to build the training set and 10, 000 images for the

query set. For the proposed method, the raw pixel-based images are used as the

input. For the traditional hashing methods, the SIFT feature representation is320

used as the input.

NUSWIDE contains 269, 648 resized 64⇥64 color images from 81 categories.

Each image belongs to one or multiple categories. Following [26, 27], 21 the most
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Table 4: Mean Average Precision (MAP) of hashing with di↵erent number of hash bits on

MNIST.

Methods 16-bit 24-bit 32-bit 48-bit 64-bit

MLSH

4⇥ 16-bit 4⇥ 24-bit 4⇥ 32-bit 4⇥ 48-bit 4⇥ 64-bit

99.52% 99.53% 99.54% 99.55% 99.63%

MLSH

4⇥ 4-bit 4⇥ 6-bit 4⇥ 8-bit 4⇥ 12-bit 4⇥ 16-bit

99.20% 99.34% 99.43% 99.53% 99.52%

CODISH [25] 86.17% 87.27% 86.77% 87.99% 87.91%

DDH [30] 98.48% 98.61% 98.86% 98.67% 98.89%

DSH [29] 98.92% 99.02% 99.11% 99.20% 99.20%

DRSCH [31] 96.92% 97.37% 97.88% 97.91% 98.09%

DSRH [28] 96.48% 97.79% 97.21% 97.53% 97.75%

NINH [27] 93.90% 94.90% 95.80% 95.90% -

CNNH [26] 93.40% 95.50% 96.40% 96.50% -

BRE-CNN 61.00% 64.05% 64.11% 66.33% 67.02%

KSH-CNN 83.89% 86.67% 88.51% 89.41% 89.67%

MLH-CNN 71.03% 76.18% 78.06% 80.66% 80.87%

BRE [24] 41.96% 57.19% 56.52% 64.74% 66.55%

KSH [23] 82.85% 86.03% 87.37% 88.48% 88.82%

MLH [22] 45.77% 62.16% 63.07% 65.23% 66.70%

ITQ [17] 34.44% 38.99% 40.62% 43.04% 41.76%

SH [18] 13.40% 14.81% 15.28% 16.29% 17.11%

LSH [1] 22.65% 21.39% 35.56% 27.85% 37.78%

commonly-used categories are used, including over 5, 000 images per category.

Some images urls are invalid from the Internet, so there are 157, 465 images in325

total. 500 images and 100 images per category are selected to build the training

set and the query set, respectively. The training set and the query set consist

of 10, 500 images and 2, 100 images in total. The pixel-based images are used

as the input of the proposed hashing network for the proposed method. For

the traditional hashing methods, the GIST feature serves as the input. For330

NUSWIDE database, only the top 5, 000 returned images are used to compute

the MAP score.

For fair comparison, the 4, 096-dimension deep feature extracted from the

AlexNet [46] also serves as the alternative feature representation for the tradi-
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Table 5: Mean Average Precision (MAP) of hashing with di↵erent number of hash bits on

NUSWIDE.

Methods 16-bit 24-bit 32-bit 48-bit 64-bit

MLSH

4⇥ 16-bit 4⇥ 24-bit 4⇥ 32-bit 4⇥ 48-bit 4⇥ 64-bit

70.88% 71.53% 72.61% 72.93% 73.12%

MLSH

4⇥ 4-bit 4⇥ 6-bit 4⇥ 8-bit 4⇥ 12-bit 4⇥ 16-bit

64.26% 64.56% 67.02% 68.72% 70.88%

CODISH [25] 60.04% 61.07% 62.99% 63.65% 64.29%

DDH [30] 54.21% 55.20% 56.86% 57.49% 56.82%

DSH [29] 54.97% 55.13% 55.82% 56.21% -

DRSCH [31] 61.81% 62.24% 62.27% 62.79% 64.14%

DSRH [28] 60.92% 61.78% 62.13% 63.09% 64.02%

NINH [27] 68.10% 69.70% 71.30% 71.50% -

CNNH [26] 62.30% 61.80% 62.50% 60.80% -

BRE-CNN 53.80% 55.79% 56.58% 57.58% 59.13%

KSH-CNN 60.74% 61.89% 62.46% 62.57% 63.11%

MLH-CNN 52.51% 55.91% 56.83% 58.07% 59.79%

BRE [24] 48.64% 51.45% 51.83% 52.75% 54.66%

KSH [23] 54.56% 55.63% 56.22% 56.68% 58.35%

MLH [22] 48.71% 50.69% 51.11% 52.38% 54.03%

ITQ [17] 45.23% 46.14% 46.71% 47.07% 47.29%

SH [18] 43.33% 43.26% 43.81% 43.06% 45.18%

LSH [1] 40.18% 41.88% 42.26% 42.04% 45.48%

tional hashing methods.335

The experiment firstly compares the proposed method to several traditional

hashing methods, including LSH [1], SH [18], ITQ [17], MLH [22], KSH [23],

BRE [24], and CODISH [25]. CODISH is also the basic supervised hashing

method in our proposed method. Moreover, for fair comparison, CNN features

are applied to three traditional hashing methods, i.e. BRE-CNN, KSH-CNN,340

and MLH-CNN, respectively. Also, the proposed method is compared to several

deep hashing methods, including CNNH [26], NINH [27], DSRG [28], DRSCH

[31], DSH cite20, and DDH [30]. The MAP score is used as the measurement

to evaluate the retrieval performance based on the semantic ground-truth.

19



4.2. Comparison with State-of-the-art Hashing345

The comparison MAP scores on CIFAR-10, MNIST and NUSWIDE are

presented in Tables 3 - 5. The cell marked with ‘-’ indicates the corresponding

results are not provided by the original paper. ‘4⇥4’-bit denotes the integration

of four 4-bit hash tables. The cell with the bold font is the largest value and with

the Italic font is the second largest value. In addition, the proposed method350

is tested with several settings and the results are shown in two rows in each

table. The results of the proposed method when the hash code length of every

individual hash table is the same as the comparison methods are presented in

the first row. To further demonstrate the storage e�ciency of the proposed

method, the second row presents the result of the proposed method when the355

total hash code length is the same as that of the comparison methods.

Table 6: Mean Average Precision (MAP) of hashing of di↵erent scales with di↵erent number

of hash bits on CIFAR-10.

MLSH 4-bit 8-bit 16-bit 24-bit 32-bit 48-bit 64-bit

fc1 51.45% 63.55% 68.48% 71.44% 71.62% 72.10% 72.66%

conv3 47.92% 61.57% 66.68% 69.15% 69.86% 70.63% 71.87%

conv2 38.07% 56.95% 62.06% 64.74% 65.94% 66.27% 67.43%

conv1 41.49% 43.53% 57.83% 60.93% 62.52% 63.59% 64.17%

4⇥ 4-bit 4⇥ 8-bit 4⇥16-bit 4⇥24-bit 4⇥32-bit 4⇥48-bit 4⇥64-bit

4 tables 66.69% 71.88% 74.75% 75.39% 75.57% 75.99% 76.00%

- - 4⇥ 4-bit 4⇥ 6-bit 4⇥ 8-bit 4⇥12-bit 4⇥16-bit

4 tables - - 66.69% 69.71% 71.88% 73.76% 74.75%

Clearly, the integration of four hash tables of di↵erent levels is proven to

acquire better retrieval performance than other traditional hashing methods,

even the deep hashing methods. For example, on CIFAR-10, the proposed

method can achieve a MAP of 74.75% when the code length for each table is360

16 bits, while the second largest MAP is 63.66% On MNIST, compared to the

second best method DSH, the MAP score of the proposed method exceeds by

0.6% using 16 bits per table. On NUSWIDE, compared to the second best

method NINH, the MAP of the proposed method exceeds by 2.78% using 16
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Table 7: Mean Average Precision (MAP) of hashing of di↵erent scales with di↵erent number

of hash bits on MNIST.

MLSH 4-bit 8-bit 16-bit 24-bit 32-bit 48-bit 64-bit

fc1 98.25% 98.96% 99.26% 99.31% 99.34% 99.44% 99.44%

conv3 87.31% 98.16% 98.71% 98.69% 98.98% 98.93% 99.15%

conv2 87.08% 97.87% 98.33% 98.61% 98.69% 98.94% 98.85%

conv1 84.99% 96.95% 97.67% 97.80% 97.98% 98.26% 98.32%

4⇥ 4-bit 4⇥ 8-bit 4⇥16-bit 4⇥24-bit 4⇥32-bit 4⇥48-bit 4⇥64-bit

4 tables 99.20% 99.43% 99.52% 99.53% 99.54% 99.55% 99.63%

- - 4⇥ 4-bit 4⇥ 6-bit 4⇥ 8-bit 4⇥12-bit 4⇥16-bit

4 tables - - 99.20% 99.34% 99.43% 99.53% 99.52%

Table 8: Mean Average Precision (MAP) of hashing of di↵erent scales with di↵erent number

of hash bits on NUSWIDE.

MLSH 4-bit 8-bit 16-bit 24-bit 32-bit 48-bit 64-bit

fc1 54.58% 53.97% 49.11% 61.87% 60.50% 62.92% 71.51%

conv3 53.16% 59.00% 57.96% 56.16% 58.71% 59.52% 65.78%

conv2 50.56% 50.99% 54.95% 57.75% 60.96% 53.73% 63.85%

conv1 50.08% 51.97% 53.07% 49.87% 60.16% 59.14% 58.23%

4⇥ 4-bit 4⇥ 8-bit 4⇥16-bit 4⇥24-bit 4⇥32-bit 4⇥48-bit 4⇥64-bit

4 tables 64.26% 67.02% 68.72% 70.88% 71.53% 72.61% 72.93%

- - 4⇥ 4-bit 4⇥ 6-bit 4⇥ 8-bit 4⇥12-bit 4⇥16-bit

4 tables - - 64.26% 64.56% 67.02% 68.72% 70.88%

bits per hash table. Moreover, with the same total storage cost, the proposed365

method outperforms other comparison methods, which proves to have storage

e�ciency. For example, the integration of four-level 4-bit hash table achieves a

MAP of 66.69%, which exceeds by 3.03% compared to the best competitor DSH

on CIFAR-10. In addition, compared to the basic hashing method CODISH

with traditional hand-crafted feature, the proposed method with multi-level370

deep feature achieves better retrieval performance.

4.3. Validation of the Multi-Level Mechanism

With the same basic hashing method, using the integration of multi-level

features achieves better performance than using a single-level representation.
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(a) 16 bits (b) 24 bits

(c) 32 bits (d) 48 bits

(e) 64 bits

Figure 3: Recall-Precision curve of hashing of di↵erent scales with di↵erent number of hash

bits on CIFAR-10.
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Figure 4: Top 10 retrieval results with 32-bit hash table using feature of the corresponding

scale, and the final retrieval results of MLSH on NUSWIDE. (Image with green border is the

positive instance, while image with red border is negative instance.)

Tables 6 - 8 present the retrieval performance of using single-level features and375

multi-level features on CIFAR-10 MNIST and NUSWIDE, respectively. The

row beginning with the cell marked with ‘fc1’ presents the MAP scores of using

the feature extracted from the first fully connected layer in the network with

di↵erent hash bits. Similarly, ‘conv3’ denotes the third convolutional layer in

the network. In each table, the MAP scores of using the features from the cor-380

responding level (i.e. fc1, conv3, conv2, or conv1) are shown as a comparison,

and the MAP scores of the proposed method, which is the integration of the

hash tables using the above four-level features are shown in the bottom. ‘4⇥ 4-

bit’ denotes the integration of four hash tables, each of which is with 4 bits.

From the table, it is obvious that among the single-level methods, using the fea-385

ture from the penultimate layer (i.e. fc1) achieves the best performance. For

example, on CIFAR-10 with 4 bits, using feature from ‘fc1’ achieves the largest

MAP score of 51.45%, while that from ‘conv3’ only achieves 47.92%. More-

over, to reveal the e�ciency of the proposed method, the MAP scores of the

integration of the hash tables using the above four-level features is calculated.390

For example, in the case of using 4 bits for an individual table, the integration
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of four hash tables of corresponding four levels achieves the MAP of 66.69%,

which is 25.2% higher than that of simply using single-level features. In order

to maintain the same total storage cost with the single-level hashing methods,

the code length of each table is shortened. For example, the MAP of using the395

integration of four 4-bit hash tables exceeds that of using a single 16-bit hash

table by 8.86%. Fig. 3 presents the retrieval performance of using single-level

features and multi-level features on CIFAR-10. Take Fig. 3(a) as an example,

‘MLSH 4 ⇥ 16-bit’ indicates that the proposed method integrates four 16-bit

hash tables corresponding to di↵erent levels. ‘level4 16-bit’ denotes that the400

baseline hashing method trains only a single 16-bit table using the feature at

the 4th level. Compared to the single-level methods, MLSH is proved to achieve

higher recall and precision, with the same code length in each individual hash

table. Furthermore, with the code length increasing, the performance improve-

ment of the single-level hashing will slow down. With the same total storage405

cost, MLSH (4⇥16-bit) preforms better than the baseline method with a single

64-bit hash table. From Fig. 3(c) - 3(e), MLSH will become more and more

advantageous as the code length becomes longer.

The proposed multi-level hashing method is more prominent in its superi-

ority on multi-label datasets. As is shown in Table 7, features from the higher410

level cannot guarantee a better retrieval performance. We visualized a retrieval

process on the NUSWIDE dataset, which is illustrated in Fig. 4. When a query

with multiple labels (i.e. person, vehicle and window) is given, top 10 images

are returned using a 32-bit hash table using the features of the corresponding

level. MLSH returns the intersection of multi-level hash table retrieval results.415

All of the top 10 retrieval results using fc1 features share no less than one label

with the query image. However, excessive attention to semantic information

may neglect the detailed features. Therefore, combined with the use of low-

level features to extract detailed information, the retrieved images can be more

similar in both structure and semantics with the query image.420

24



(a) CIFAR-10 (b) MNIST

(c)

Figure 5: Training time of the proposed method on (a)CIFAR-10, (b)MNIST and

(c)NUSWIDE.

4.4. Speed Analysis

Fig. 5 shows the time cost of training hash tables in MLSH, which varies

with di↵erent code lengths and feature dimensions. Training time of hash ta-

ble for di↵erent level of feature increases linearly corresponding to the feature

dimension. Moreover, with the hash code length increases, the training time425

increase exponentially.

5. Conclusion

A novel image hashing method, MLSH, is proposed in this paper, which ap-

plies a multiple-hash-table mechanism to integrate multiple levels of features to

preserve both semantic and structural information. One hash table is trained430
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with a level of deep features extracted from a network layer, which contains

a di↵erent level of information. Experimental results demonstrate a better re-

trieval performance of the proposed method comparing to other state-of-the-art

hashing methods.

The proposed method generates hash code with both semantic similarity435

preserving and structural similarity preserving. Besides, it can better balance

recall and precision. However, it does not consider the bit-wise di↵erence and

redundancy. Moreover, in MLSH, multiple hash tables based on various levels of

features are integrated equally in a bagging manner, where features of di↵erent

levels may contain redundant information. In future work, multiple hash tables440

can be trained in a complementary boosting manner so that the following level

hash table can correct the errors generated from the previous level hash tables.

Moreover, the proposed method individually extracts multi-level features

and trains corresponding hash tables, in which hash code learning cannot pro-

vide feedback to the feature extraction. In future work, the multi-level hashing445

scheme may be extended to an end-to-end system of deep hashing method so

that hash code learning is capable of giving feedback to the multi-level feature

extraction process.
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