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Abstract

The Heston stochastic volatility model is commonly used in financial mathematics.

While closed form solutions for pricing vanilla European options are available, this

is not the case for other exotic options, especially for path dependent ones, where

Monte Carlo methods are often applied. In this thesis, we develop an accurate and

efficient simulation method for the Heston model, which is then employed in the

pricing of options that are computationally challenging.

We consider the problem of sampling the asset price based on its exact distribu-

tion. One key step is to sample from the time integrated variance process conditional

on its endpoints. We construct a new series expansion for this integral in terms of

infinite weighted sums of exponential and gamma random variables through measure

transformation and decompositions of squared Bessel bridges. This representation

has exponentially decaying truncation errors, which allows efficient simulations of

the Heston model.

We develop direct inversion algorithms combined with series truncations, lead-

ing to an almost exact simulation for the model. The direct inversion is based on

approximating the inverse distribution functions by Chebyshev polynomials. We de-

rive asymptotic expansions for the corresponding distribution functions to evaluate

the Chebyshev coefficients. We also design feasible strategies such that those coef-

ficients are independent of any model parameters, whence the resulting Chebyshev

polynomials can be used under any market conditions. Efficiency of our method is

confirmed by numerical comparisons with existing methods.
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the conditional integral Ī simulated by direct inversion and gamma

expansion versus the truncation levels for Case 3 with different values

for vt. Both methods are implemented with tail simulation. We

perform 5 · 107 simulations for each case. Below the dashed line, the

errors are not statistically significant at the level of three standard

deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.3 We indicate the absolute errors in the first four moments of the condi-
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Chapter 1

Introduction

Stochastic volatility models involving a pair of stochastic differential equations, with

the diffusion term of the first one governed by the evolution of the second equation,

are immensely popular in the pricing of derivatives. These models are often used

to capture the dynamics of a financial variable such as stock price or interest rate,

coupled with the underlying volatility of its instantaneous returns treated as a ran-

dom process. By relaxing the restrictions on constant volatility of the well-known

Black-Scholes model to allow uncertainty, we are now able to explain the long-term

features of the implied volatility surface in a self-consistent way.

Among all the existing stochastic volatility models, e.g. SABR model, GARCH

model and 3/2 model, the Heston model (Heston [38]) plays an important role and

is used widely. Under the Heston settings, the volatility process is modelled as a

mean-reverting process. This assumes that the volatility has a tendency to move

towards its average over the time. If the current volatility is above the average

level, then the volatility is expected to show a falling trend. If the current volatility

is below the average level, then the volatility tends to develop upwards. In other

words, with mean reversion it is less likely for the volatility to diverge or attain

zero eventually. This is a typical characteristic that can be observed in the financial

markets.

On top of that, the Heston model introduces a correlation between the returns

and the volatility, meaning that the changes in the price level of the assets will impact

on the volatility. This assumption is in accordance with the behaviour reflected in
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Chapter 1: Introduction

the markets as well. For instance, volatility is usually anticipated to increase when

decreasing in the asset price occurs, which is known as the leverage effect.

The Heston model thus provides a more realistic framework to describe the

movements of the asset price and the correlated volatility by taking into account

many of the aspects that are observed in the financial markets. What makes the

Heston model even more attractive is the existence of closed form solutions for

prices of plain vanilla European options. This property is particularly useful when

calibrating the model.

Despite its tractability for certain options, the Heston model does not always

yield analytical forms for other exotic options, especially for path-dependent options.

Hence, alternative techniques are required for pricing purposes under the Heston

model, among which Monte Carlo simulation is one of the most important and

widely applicable schemes. The aim of this thesis is to develop an accurate and

efficient numerical simulation method for the Heston model with applications in

pricing challenging options when combined with the Monte Carlo approach.

1.1 The Heston stochastic volatility model

In this section, we give a brief review of the Heston stochastic volatility model and

some of its properties.

The Heston model is expressed in the following form of a two-dimensional system:

dSt
St

= µ dt+
√
Vt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
, (1.1)

dVt = κ (θ − Vt) dt+ σ
√
Vt dW

1
t , (1.2)

where the component S characterises the dynamics of the stock price while the com-

ponent V specifies the variances of its returns and W 1 and W 2 are two independent

standard Brownian motions. The model parameters include the rate of return of

the stock µ, the speed of mean reversion of the variance κ, the long-term average

variance θ, the volatility of the variance σ and the instantaneous correlation be-

2
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tween the return and the volatility ρ. Here, κ, θ, σ and typically also µ are positive

constants with ρ ∈ [−1, 1].

To complete the understanding of the motivation for the work carried out below,

we first quote some analytical properties with regard to the Heston model. We start

from the variance process governed by (1.2). First, the variance process follows

a mean-reverting square-root Cox-Ingersoll-Ross (CIR) process (Cox, Ingersoll and

Ross [18]). By the Yamada condition (Yamada and Watanabe [69]), we can verify

that there is a unique strong solution for this equation, yet the explicit form of which

is not available. However, we are able to find its transition probability analytically,

which is given as a scaled noncentral chi-squared distribution. With the degrees of

freedom for this process defined to be δ := 4κθ/σ2, we have the following proposition

which can be found in Cox, Ingersoll and Ross [18] or Andersen [6].

Proposition 1.1.1

Conditional on the initial value V0 > 0, Vt has a scaled noncentral chi-squared

distribution

Vt =
σ2 (1− exp (−κt))

4κ
χ2
δ

(
4κ exp (−κt)

σ2 (1− exp (−κt))
V0

)
(1.3)

for t > 0, where χ2
δ (λ) denotes a noncentral chi-squared random variable with degrees

of freedom δ and noncentrality parameter λ.

This tells us that Vt is distributed as a constant σ2 (1− exp (−κt)) / (4κ) multi-

plied by a noncentral chi-squared distribution with degrees of freedom δ and non-

centrality parameter

λ :=
4κ exp (−κt)

σ2 (1− exp (−κt))
V0

given V0. The above law provides a way to exactly simulating the variance process

from time 0 to t, see Scott [62], Glasserman [31], Broadie and Kaya [15] and Malham

and Wiese [51] for details.

Second, the variance process is non-negative. In particular, the classical Feller

boundary classification criteria leads to the proposition stated below on the bound-

3
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ary behaviour; see Feller [27] and Karlin and Taylor [46].

Proposition 1.1.2

The variance process Vt has the following properties:

• the zero boundary is attainable and strongly reflecting if δ < 2;

• the zero boundary is unattainable if δ ≥ 2.

Importantly, when the process hits zero, it will move away from it immediately to

the positive domain. This phenomenon is referred to as strongly reflecting, meaning

that the time spent by the process at the origin is zero, see Revuz and Yor [60].

Now we turn to the stock price process satisfying (1.1). By employing Itô’s

formula, the exact solution of (1.1) can be written as

St = S0 exp

(
µt− 1

2

∫ t

0

Vs ds+ ρ

∫ t

0

√
Vs dW

1
s +

√
1− ρ2

∫ t

0

√
Vs dW

2
s

)
. (1.4)

Integrating equation (1.2) which defines the variance process, we obtain

Vt − V0 =

∫ t

0

κ (θ − Vs) ds+ σ

∫ t

0

√
Vs dW

1
s .

This gives an alternative form for the integral of the square root of the variance

process
√
V with respect to the Brownian motion W 1 as

∫ t

0

√
Vs dW

1
s =

1

σ

(
Vt − V0 −

∫ t

0

κ (θ − Vs) ds
)

=
Vt − V0 − κθt

σ
+
κ

σ

∫ t

0

Vs ds,

which depends on the values of V0 and Vt and the time integrated variance
∫ t
0
Vs ds.

Taking logarithms and substituting the previous results, (1.4) becomes

log
St
S0

= µt+
ρ

σ
(Vt − V0 − κθt) +

(
ρκ

σ
− 1

2

)∫ t

0

Vs ds+
√

1− ρ2
∫ t

0

√
Vs dW

2
s .

Since the process V is independent of the Brownian motion W 2, the Itô integral∫ t
0

√
Vs dW

2
s is normally distributed conditional on the trajectory generated by V .

Then, the next proposition regarding the conditional distribution of the log return

follows; see Broadie and Kaya [15], Andersen [6] or Glassermand and Kim [32].

4
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Proposition 1.1.3

Assume V0 is given. Then conditional on the variance process Vt at time t and its

time integral
∫ t
0
Vs ds, the distribution of log (St/S0) is normal, i.e.

log
St
S0

∼ N

(
µt+

ρ

σ
(Vt − V0 − κθt) +

(
ρκ

σ
− 1

2

)∫ t

0

Vs ds,
(
1− ρ2

) ∫ t

0

Vs ds

)
.

(1.5)

Hence, an exact simulation for the stock price St given the initial conditions S0

and V0 is now reduced to sampling a conditional normal random variable given in

(1.5) provided there is a way to sampling from the joint distribution
(
Vt,
∫ t
0
Vs ds

)
.

As Vt can be simulated using the transition law in (1.3), it is clear that the main

challenge becomes to design a tractable method for sampling from the conditional

distribution of the time integral of the variance process Vs over the interval [0, t]

given its values at the endpoints V0 and Vt, i.e.

(∫ t

0

Vs ds

∣∣∣∣V0, Vt) .
Once we have a mechanism for drawing samples for the stock price St, the Monte

Carlo estimator Ĉ for a European call option price can be evaluated by taking the

sample average of the simulated discounted payoff at maturity, i.e.

Ĉ = exp (−rT )
1

M

M∑
i=1

(
SiT −K

)+
,

where M is the sample size, T is the maturity time, K is the strike price, r is

the interest rate and SiT are independent samples for the terminal stock price for

i = 1, 2, . . . ,M .

For pricing path-dependent options such as Asian options, the payoff functions

will be depending on a series of simulated stock prices St at certain times. For

example, we have the following price estimator Â for an Asian call option with

5
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discrete arithmetic average for the period [0, T ]:

Â = exp (−rT )
1

M

M∑
i=1

(
1

N

N∑
j=1

Sitj −K

)+

,

where the underlying asset price is monitored at the times tj = jT/N for j =

1, 2, . . . , N and Si =
(
Sit1 , S

i
t2
, . . . , SitN

)
are independent observations for the asset

path for i = 1, 2, . . . ,M . Similarly, the Monte Carlo estimator B̂ for the price of

a digital double no touch barrier option with lower barrier level L and and upper

barrier level U is given by

B̂ = exp (−rT )
1

M

M∑
i=1

(
N∏
j=1

1{
L<Sitj

<U
}
)
,

where 1{L<S<U} is the indicator function. Such an option pays either zero or one unit

of currency depending on whether the asset price has touched one of the barriers.

We end this section with the following analytical results for the price of a stan-

dard vanilla option under the Heston model. This result is based on Fourier inversion

of the corresponding characteristic functions; see Heston [38], Lipton [49], Carr and

Madan [16] and Kahl and Jäckel [45].

Proposition 1.1.4

The price of a European call option with maturity time T , strike price K and interest

rate r is

C = exp (−rT )

(
S0 −

K

2π

∫ ∞
−∞

exp
((

1
2
− ik

)
log S0

K
+ α (k)−

(
1
4

+ k2
)
β (k)V0

)
k2 + 1

4

dk

)
,

where

α (k) = −κθ
σ2

(
Ψ+ (k)T + 2 log

Ψ− (k) + Ψ+ (k) exp (−ζ (k)T )

2ζ (k)

)
,

β (k) = − 1− exp (−ζ (k)T )

Ψ− (k) + Ψ+ (k) exp (−ζ (k)T )
,

Ψ± (k) = ζ (k)∓ (ikρσ + κ̂) ,

6
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ζ (k) =

√
k2σ2 (1− ρ2) + 2ikσρκ̂+ κ̂2 +

σ2

4
,

κ̂ = κ− ρσ

2
.

The above proposition is useful for comparing different methods as the closed

form solution for the European option price can serve as a benchmark. When eval-

uating this formula, numerical integration technique such as fast Fourier transform

is a convenient way.

1.2 Literature review

Driven by the aim to investigate new numerical scheme for simulating the Heston

model and pricing derivatives, we review a number of standard methods that exist

in the literature in this section.

First of all, as mentioned earlier, explicit expressions for the prices of standard

vanilla options are available under the Heston setting. These often take the form

of Fourier transform methods expressed in terms of the corresponding characteristic

functions, see Heston [38], Lipton [49], Carr and Madan [16] and Kahl and Jäckel

[45].

Second, Monte Carlo simulation still serves as a popular way to handling exotic

options, especially to pricing path-dependent options, where closed form solutions

are unknown in general. Typically, continuous stochastic processes are approximated

by paths simulated on discrete time grids. Often the Euler-Maruyama scheme is con-

sidered, which converges weakly with convergence rate one under certain regularity

conditions; see Section 14.5 in Kloeden and Platen [47], or other standard higher-

order discretization approaches such as the Milstein [54] and Itô-Taylor schemes

introduced in Chapter 14 and 15 in Kloeden and Platen [47]; see Section 6.2 in

Glasserman [31] as well. However, these conditions do not hold in the Heston model,

which will be discussed in detail below.

Discretization schemes such as those have several drawbacks for the Heston

model. The first issue is that the probability of the discretised variance process

7
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becoming negative is nonzero, which will bring considerable biases to the simulation

estimators. Correction techniques such as absorption and reflection are designed

to overcome this problem, see Gatheral [28], Bossy and Diop [12] and Higham and

Mao [39]. Lord, Koekkoek and Van Dijk [50] unify a large number of traditional

correction techniques and design a new scheme, the full truncation method, which

seems to perform well in many situations. Taking advantage of the qualitative prop-

erties of the true distributions, Andersen [6] proposes two new time-discretization

algorithms based on moment-matching strategies, namely the truncated Gaussian

scheme and the quadratic-exponential scheme. These positivity-preserving schemes

are reported to have substantial improvements in efficiency and robustness over

other existing methods; see Andersen [6], Lord, Koekkoek and Van Dijk [50] and

Haastrecht and Pelsser [66].

The second issue is related to convergence, which requires the drift and diffu-

sion coefficients to be globally Lipschitz, see Kloeden and Platen [47]. However,

the square root functions embedded in the Heston model are not Lipschitz around

zero. Thus, convergence of these discretization schemes is difficult to establish; see

Glasserman [31] and Andersen [6]. Recently, Altmayer and Neuenkirch [5] have stud-

ied the weak convergence rate for a numerical scheme under the Heston model, which

consists of an Euler scheme and a drift-implicit Milstein scheme (Kahl, Günther and

Rossberg [44]) for the log-asset price and the volatility, respectively. With mild as-

sumptions for the payoff functions, the scheme reaches weak order one in the case

of unattainable boundaries when the Feller ratio is greater than two. Neuenkirch

and Szpruch [56] consider the one-dimensional CIR process restricted to the regime

where the zero boundary is not accessible and show strong convergence with order

one for the backward (or drift-implicit) Euler-Maruyama scheme of Alfonsi [3] ap-

plied to the SDE with constant diffusion coefficient after Lamperti transformation.

Cozma and Reisinger [21] prove that the full truncation scheme in Lord, Koekkoek

and Van Dijk [50] for the CIR process converges strongly with order 1/2 in Lp. This

result is established under the assumptions on the model parameters such that the

boundary point is unattainable and the Feller ratio is above three. More general

cases with accessible boundaries are discussed in Hutzenthaler, Jentzen and Noll

[41], where they derive a positive strong convergence rate for the drift-implicit Euler

8
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approximation (Alfonsi [3]) when the Feller ratio is bigger than 1/2. Hefter and

Herzwurm [36] propose a truncated Milstein scheme, which achieves strong conver-

gence at a polynomial rate for the full parameter range. Hefter and Jentzen [37]

show that the time stepping methods for the CIR process based on equidistant eval-

uations of the underlying Brownian motions, such as the implicit or explicit Milstein

or Euler scheme, may have an arbitrarily slow convergence rate in the strong sense.

In fact, the strong convergence order for each such method is at most δ/2, where δ is

the degrees of freedom for the CIR process. See Alfonsi [4], Chassagneux, Jacquier

and Mihaylov [17], Bossy and Olivero [13], Cozma, Mariapragassam and Reisinger

[19] for more discussions on the convergence of the discretised univariate variance

process.

Apart from discretization schemes, there are also (almost) exact simulation meth-

ods based on the exact conditional distributions of the stock price and variance pro-

cesses stated in Proposition 1.1.1 and Proposition 1.1.3, respectively. Broadie and

Kaya [15] take this approach to generate sample variance and stock price. They

apply an acceptance-rejection method to the noncentral chi-square sampling for the

variance process. Malham and Wiese [51] propose an exact and robust acceptance-

rejection method and a high-accuracy direct inversion method for the simulation of

the generalised Gaussian distribution, which are then applied to the noncentral chi-

squared sampling. Haastrecht and Pelsser [66] focus on the efficient approximation

of the variance. They explore the features of the distribution for the variance process

and suggest a cache for its inverse distribution functions, leading to an almost exact

simulation scheme.

To realise the stock price, the key task of Broadie and Kaya [15] is to sample

from the time integrated variance conditional at the endpoints, i.e.
(∫ t

0
Vs ds

∣∣∣V0, Vt).

They build on the results (2.m) and (6.d) in Pitman and Yor [57] to derive the explicit

form for the corresponding characteristic function. Fourier inversion techniques

in conjunction with the trapezoidal rule are applied to numerically evaluate the

probability distribution function. This is followed by inverse transform sampling

to simulate the value of the above integral. Their numerical results imply that the

proposed method has a faster convergence rate compared to the Euler scheme with

bias-free simulation.

9
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Because of the dependence on V0 and Vt , Broadie and Kaya [15] compute the

characteristic function for each step and path in the Monte Carlo simulation. At

the expense of a small bias, Smith [64] presents an approximation to the character-

istic function, which makes it possible to precalculate and store the values of the

characteristic function for all the points required in advance. Glasserman and Kim

[32] provide another sampling method for the time integrated conditional variance,

which relies on an explicit representation as infinite sums and mixtures of gamma

random variables. When combined with the exact simulation method suggested by

Broadie and Kaya [15], their method is highly effective in terms of both accuracy

and computational speed for pricing non-path-dependent options across a full range

of model parameter values.

Other approximation methods such as the Fokker-Planck or Kolmogorov forward

equation method are also available. This method is based on a partial differential

equation describing the time evolution of the joint probability density function of

the log return and the variance with initial and boundary conditions, which is of-

ten solved in the form of Fourier and inverse Laplace transforms (Drăgulescu and

Yakovenko [23] and Fang and Oosterlee [26]) or by alternating direction implicit

time discretization schemes (Haentjens and In ’t Hout [35], Wyns and Du Toit [67]

and Wyns and In ’t Hout [68]) and the finite element method with a backward

differential formula (Cozma, Mariapragassam and Reisinger [20]).

Motivated by the decomposition of squared Bessel bridges in Pitman and Yor

[57] and Glasserman and Kim [32], we focus on developing a new series expansion

for the above integral in this thesis. After applying a measure transformation, we

represent this quantity by a linear combination of double infinite weighted sums of

particular independent random variables and establish a relationship between the

probability density functions for the distributions of the conditional integral under

the new and original probability measures. For practical implementation of those

series, direct inversion algorithms are used combined with an acceptance-rejection

method for tracing back to the original measure. The inverse distribution functions

are approximated by Chebyshev polynomials of a uniform error of order 10−12. To

predetermine and cache the coefficients of the polynomials outside the Monte Carlo

simulation loop, we develop an asymptotic expansion up to all orders for the relevant

10
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distribution function through the steepest descent method.

1.3 Outline

This thesis is structured as follows.

Serving as a preparation work, Chapter 2 contains a comprehensive discussion on

the relevant concepts, properties and theorems that will be revisited in subsequent

chapters.

In Chapter 3, we present the new series representation for the time integrated

conditional variance. We transform the CIR variance process to a special case, i.e.

a squared Bessel process through change of measure, whence the integral can be

decomposed using its properties under the new probability measure. A relation

between the distributions of the integral with respect to these two measures is also

established there.

Chapter 4 addresses the simulation processes for the conditional integral and the

Heston model. Specifically, we apply direct inversion and acceptance-rejection meth-

ods to realise the theorems developed in Chapter 3. To improve the computational

speed, these algorithms are constructed to allow for caching purposes.

In Chapter 5, we provide the framework for completing the main step in direct

inversion, i.e. approximations of the inverse distribution functions. In fact, starting

with the characteristic functions, we detail the derivation of the asymptotic series

expansion for the distribution function. Based upon that, we approximate the in-

verse functions by Chebyshev polynomials with coefficients computed and tabulated

using the limiting behaviour of the distribution functions.

In Chapter 6, we carry out empirical studies by sampling the conditional integral

using four typical sets of model parameters for the Heston model. We also apply

the new method to pricing some challenging European call options and two path-

dependent derivatives, one Asian call option and one double no touch barrier option.

The results are compared with that of Glasserman and Kim [32] for the consideration

of both accuracy and efficiency. To further examine the performance of the new

11
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method, we also benchmark it against Lord, Koekkoek and Van Dijk’s [50] full

truncation scheme, which is a standard time stepping simulation method.

Conclusions are drawn in Chapter 7.
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Chapter 2

Preliminaries

In this chapter, we set up a collection of notations, definitions and lemmas that will

be fundamental to our analysis throughout the thesis. Specifically, we introduce

the concepts and properties related to asymptotic series, squared Bessel bridge and

Chebyshev polynomial approximation.

2.1 Asymptotic expansion

In Chapter 5, we are concerned with the study of the limiting behaviour of certain

functions when their arguments approach some fixed values, such as zero and infin-

ity. This motivates the following introduction of the so-called order relations; see

Bleistein and Handelsman [11, Chapter 1.2] and Ablowitz and Fokas [1, Chapter

6.1].

Definition 2.1.1

Suppose that f (z) and g (z) are two functions of z defined on some domain D of

the complex plane C with its closure D̄ containing z0. Then we write

f (z) = O (g (z)) , as z → z0

if there exist constants K, δ > 0 such that

|f (z)| ≤ K |g (z)| , for z ∈ D ∩ {z : 0 < |z − z0| < δ} .

13
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The preceding definition implies that |f (z) /g (z)| is bounded in a neighbourhood

of z0 except z0, where g (z) is nonzero. Similarly, we have the following when the

point z0 is at infinity.

Definition 2.1.2

Suppose that f (z) and g (z) are two functions of z defined on an unbounded domain

D of the complex plane C. Then we write

f (z) = O (g (z)) , as z →∞

if there exists a constant K > 0 such that

|f (z)| ≤ K |g (z)| , for z ∈ D ∩ {z : |z| > K} .

The above statements claim that f (z) is bounded by a fixed multiple of |g (z)|.

This can be extended to the case when f (z) is bounded by any multiple of |g (z)|

for z ∈ D that is close enough to z0, leading to the following definitions.

Definition 2.1.3

Suppose that f (z) and g (z) are two functions of z defined on some domain D of

the complex plane C with its closure D̄ containing z0. Then we write

f (z) = o (g (z)) , as z → z0

if for any ε > 0, there exists a constant δ > 0 such that

|f (z)| ≤ ε |g (z)| , for z ∈ D ∩ {z : 0 < |z − z0| < δ} .

This equivalently means that the limit of f (z) /g (z) is zero as z approaches

z0 provided g (z) is nonzero in a neighbourhood of z0 except z0. Notice that an

alternative notation for f (z) = o (g (z)) as z → z0 is

f (z)� g (z) , as z → z0.

Similar order relation near infinity is defined as follows.

14
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Definition 2.1.4

Suppose that f (z) and g (z) are two functions of z defined on an unbounded domain

D of the complex plane C. Then we write

f (z) = o (g (z)) , as z →∞

if for any ε > 0, there exists a constant M > 0 such that

|f (z)| ≤ ε |g (z)| , for z ∈ D ∩ {z : |z| > M} .

We are now ready to introduce another relative behaviour of two functions given

below.

Definition 2.1.5

Suppose that f (z) and g (z) are two functions of z defined on some domain D of

the complex plane C. If

f (z) = g (z) + o (g (z)) , as z → z0,

then we write

f (z) ∼ g (z) , as z → z0.

Equivalently, this definition indicates that f (z) /g (z) tends to one as z → z0

provided g (z) does not vanish at nearby points of z0.

The above order relations allow us to introduce the general structures of asymp-

totic sequences and expansions given in Definition 2.1.6 and Definition 2.1.7 respec-

tively, which can be found in Bender and Orszag [8, Chapter 3.5] and Miller [53,

Chapter 1.3] as well.

Definition 2.1.6

Let {φn (z)}∞n=0 be a sequence of functions defined on some domain D of the complex

plane C. Then {φn (z)}∞n=0 is said to be an asymptotic sequence as z → z0 in D if
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for all n ≥ 0,

φn+1 (z) = o (φn (z)) , as z → z0.

Definition 2.1.7

Let {φn (z)}∞n=0 be an asymptotic sequence of functions as z → z0 in D and {an}∞n=0

be a sequence of complex constants. We say that the infinite series

∞∑
n=0

anφn (z)

is an asymptotic expansion (or asymptotic approximation) of f (z) as z → z0, de-

noted by

f (z) ∼
∞∑
n=0

anφn (z) , as z → z0,

if for each N ,

f (z)−
N∑
n=0

anφn (z) = o (φN (z)) , as z → z0.

Hence, an asymptotic expansion is not necessarily convergent. It only requires

that the remainder

RN (z) := f (z)−
N∑
n=0

anφn (z)

decays faster than the last retained term φN (z) as z → z0 for fixed N , but needs not

go to zero as N →∞ for fixed z. In particular, the partial sum
∑N

n=0 anφn (z) gives

a good approximation to f (z) if z is sufficiently close to z0, however, the accuracy

of which will not always increase as N increases.
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Chapter 2: Preliminaries

2.2 Squared Bessel bridge

Since much of our work is based upon the squared Bessel process and bridge, we

outline a brief discussion on the related definitions and properties in this section.

For preparation, we start with the definition stated below for the Bessel random

variable; see Yuan and Kalbfleisch [70, Section 1].

Definition 2.2.1

A discrete random variable X is said to be a Bessel random variable with parameters

ν > −1 and z > 0 if, for n = 0, 1, 2, . . ., the probability mass function of X is given

by

P (X = n) =
1

Iv (z)n!Γ (n+ ν + 1)

(z
2

)2n+ν
,

where Γ (α) is the gamma function and Iν (z) is the modified Bessel function of the

first kind given by

Iν (z) =
(z

2

)ν ∞∑
k=0

1

k!Γ (k + ν + 1)

(z
2

)2k
for z > 0 and ν > −1.

We are now ready to define the squared Bessel process and bridge.

Definition 2.2.2

For any real δ ≥ 0 and x ≥ 0, a process A is called a δ-dimensional squared Bessel

process starting at x if it is the unique strong solution of the stochastic differential

equation

dAt = δ dt+ 2
√
At dWt

with A0 = x and a standard Brownian motion W .

A description of the preceding definition can be found in for example Pitman

and Yor [57, Section 1] or Revuz and Yor [60, Chapter XI Definition (1.1)]. Note

that the squared Bessel process is a reduced case of the squared Ornstein-Uhlenbeck

17
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(OU) process defined below; see Pitman and Yor [57, Section 1] and Göing-Jaeschke

and Yor [33, Section 2].

Definition 2.2.3

For any δ, x ≥ 0 and a ∈ R, a process A is called a δ-dimensional squared Ornstein-

Uhlenbeck (OU) process starting at x with parameter a if it is the unique strong

solution of the stochastic differential equation

dAt = (δ + 2aAt) dt+ 2
√
At dWt

with A0 = x and a standard Brownian motion W .

Clearly, with a = 0 the squared OU process becomes a squared Bessel process.

In fact, Pitman and Yor [57] have suggested two methods for reducing the family of

squared OU processes to the case of squared Bessel process, namely transformation

of space-time (Theorem (6.1)) and change of law (Theorem (6.3)). We will make

use of the second approach in this thesis with formula presented in the next lemma.

Lemma 2.2.4

Suppose that under the probability measure Q, A is a δ-dimensional squared OU

process with parameter a, i.e.

dAt = (δ + 2aAt) dt+ 2
√
At dW

Q
t ,

where WQ is a standard Brownian motion under Q. Under the probability measure

P, A is a δ-dimensional squared Bessel process, i.e.

dAt = δ dt+ 2
√
At dW

P
t ,

where W P is a standard Brownian motion under P. Then, we have

dQ
dP

= exp

(
a

2
(At − A0 − δt)−

a2

2

∫ t

0

As ds

)
.

Let us consider the conditional law of the squared Bessel process A, which leads

to the definition for the squared Bessel bridge.

18
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Definition 2.2.5

Suppose that A is a δ-dimensional squared Bessel process starting at x. For δ, x, y ≥

0, a δ-dimensional squared Bessel bridge from x to y over the time interval [0, 1],

denoted by Aδ,1x,y =
{
Aδ,1x,y (s)

}
0≤s≤1, is the stochastic process As for 0 ≤ s ≤ 1

conditioned on A1 = y, i.e.

(As, 0 ≤ s ≤ 1|A0 = x,A1 = y) .

A more rigorous definition is made by Pitman and Yor [57, Section 5], who treat

the conditional distribution as a probability defined on the space C ([0, 1] ; [0,∞))

with weak continuity in y wherever possible. Similarly, the definition can be gener-

alised to that of a squared OU bridge.

Definition 2.2.6

Suppose that A is a δ-dimensional squared OU process starting at x with parameter

a. For δ, x, y ≥ 0, a δ-dimensional squared OU bridge from x to y over the time

interval [0, 1], denoted by aAδ,1x,y =
{
aAδ,1x,y (s)

}
0≤s≤1, is the stochastic process As for

0 ≤ s ≤ 1 conditioned on A1 = y, i.e.

(As, 0 ≤ s ≤ 1|A0 = x,A1 = y) .

We are interested in the integration form of a squared Bessel bridge, i.e.

∫ 1

0

Aδ,1x,y (s) ds.

The lemma below summarises its Laplace transform. Detailed proof is derived in

Revuz and Yor [60, Chapter XI Corollary (3.3)] and for a more general case in

Pitman and Yor [57, formula (2.m)].
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Lemma 2.2.7

For any b ≥ 0, the Laplace transform of
∫ 1

0
Aδ,1x,y (s) ds is given by

E
[
exp

(
−b
∫ 1

0

Aδ,1x,y (s) ds

)]
=

√
2b

sinh
√

2b
exp

(
x+ y

2

(
1−
√

2b coth
√

2b
))Iν

( √
2bz

sinh
√
2b

)
Iν (
√
z)

,

(2.1)

where ν = δ/2− 1 and z = xy. In particular, we have

E
[
exp

(
−b
∫ 1

0

Aδ,1x,0 (s) ds

)]
=

( √
2b

sinh
√

2b

)δ/2

exp
(x

2

(
1−
√

2b coth
√

2b
))
.

(2.2)

The above Laplace transforms are expressed in a product of several terms, which

suggest there may exist an interesting decomposition for the squared Bessel bridge.

Indeed, Pitman and Yor [57] have found such a decomposition; see Theorem 5.8.

Inspired by Glasserman and Kim [32, Proof of Theorem 2.2], we apply an additivity

property (Shiga and Watanabe [63, Theorem 1.2]) and time reversal (Pitman and Yor

[57, Section (5.2)]) to the squared Bessel bridges, leading to the following alternative

form for the decomposition.

Lemma 2.2.8

A δ-dimensional squared Bessel bridge Aδ,1x,y for δ, x, y ≥ 0 admits the following

decomposition

Aδ,1x,y
d

== A0,1
x+y,0 + Aδ,10,0 +

η∑
j=1

(
A4,1

0,0

)
j
,

where the processes
(
A4,1

0,0

)
j

are independent copies of A4,1
0,0 for any 1 ≤ j ≤ η,

A0,1
x+y,0, A

δ,1
0,0 and A4,1

0,0 are independent, η is an independent Bessel random variable

with parameters ν and
√
z.

Next, we introduce two families of random variables Sh and Ch with infinitely

divisible distributions, which arise frequently in the study of Bessel processes. Their

Laplace transforms, associated with the hyperbolic functions sinh and cosh, will be

repeatedly revisited in later discussions. Assume that Γh,n are independent gamma
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random variables with shape parameter h > 0 and rate parameter 1 for n ≥ 1. Let

Sh and Ch be random variables such that

Sh :=
2

π2

∞∑
n=1

Γh,n
n2

,

Ch :=
2

π2

∞∑
n=1

Γh,n(
n− 1

2

)2 .
Then, their Laplace transforms are reported in the lemma as follows.

Lemma 2.2.9

For any b ≥ 0, the random variables Sh and Ch have the Laplace transforms

E
[
exp

(
−bSh

)]
=

( √
2b

sinh
√

2b

)h

,

E
[
exp

(
−bCh

)]
=

(
1

cosh
√

2b

)h
.

Except for the Laplace transforms, Biane, Pitman and Yor [9, Section 3] have

presented a number of other characterisations concerning the probability laws of

Sh and Ch, including their Lévy densities, probability densities, reciprocal relations,

moments and Mellin transforms with special emphasis on the cases h = 1 and h = 2;

see Pitman and Yor [58] as well.

The last lemma of this section specifies the relationship between the Laplace

transforms for the integral of the squared Bessel bridge and squared OU bridge.

This result is adopted in both Broadie and Kaya [15, Proof of formula (13)] and

Glasserman and Kim [32, Proof of Lemma 2.4] following from the law of changing

the squared Bessel bridge to the squared OU bridge in Pitman and Yor [57, formula

(6.d)], which is also a direct consequence of Lemma 2.2.4.

Lemma 2.2.10

For any b ≥ 0, we have

EQ
[
exp

(
−b
∫ 1

0

aAδ,1x,y (s) ds

)]
=

EP
[
exp

(
−
(
b+ a2

2

) ∫ 1

0
Aδ,1x,y (s) ds

)]
EP
[
exp

(
−a2

2

∫ 1

0
Aδ,1x,y (s) ds

)] ,
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where aAδ,1x,y and Aδ,1x,y are a δ-dimensional squared OU bridge with parameter a un-

der the probability measure Q and a δ-dimensional squared Bessel bridge under the

probability measure P, respectively.

2.3 Chebyshev polynomial approximation

The simulation of the time integrated conditional variance is based on direct in-

version sampling, where the complicated inverse distribution functions are approx-

imated by some simpler functions, such as polynomials. Chebyshev polynomial

approximation is a powerful technique in evaluating smooth functions as it is nearly

optimal in terms of smallest maximum deviation from the original function. We give

a overview of the relevant definitions and lemmas in this section. The definition for

Chebyshev polynomials is given as follows; see Press et al. [59, Chapter 5.8].

Definition 2.3.1

For n = 0, 1, 2, . . ., the Chebyshev polynomial of degree n, denoted by Tn (x), is

defined on the interval x ∈ [−1, 1] as

Tn (x) = cos (n arccosx).

For a detailed summary of their properties and proofs, see for instance Gil, Segura

and Temme [30, Chapter 3.3] and Arfken and Weber [7, Chapter 13.3]. Here, we

quote propositions of their zeros and orthogonality relation, which are important for

evaluation of the approximations.

Proposition 2.3.2

The polynomial Tn (x) has n zeros xk for k = 0, 1, . . . , n − 1 in the interval [−1, 1]

given by

xk = cos

(
π
(
k + 1

2

)
n

)
.
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Proposition 2.3.3

The Chebyshev polynomials satisfy the orthogonality relation

n−1∑
k=0

Ti (xk)Tj (xk) =


0, i 6= j,

n
2
, i = j 6= 0,

n, i = j = 0,

for i, j < n, where xk, k = 0, 1, . . . , n− 1, are the n zeros of Tn (x).

Using the properties above, we can now construct the Chebyshev polynomial

approximation.

Definition 2.3.4

For arbitrary function f (x) defined in the interval [−1, 1], a degree N Chebyshev

polynomial approximation fN (x) takes the form

f (x) ≈ fN (x) := c0T0 (x) + c1T1 (x) + · · ·+ cNTN (x)− 1

2
c0, (2.3)

where the N + 1 coefficients cj, j = 0, 1, . . . , N , can be computed by

cj =
2

N + 1

N∑
k=0

f (xk)Tj (xk)

with xk denoting the N + 1 zeros of TN+1 (x) for k = 0, 1, . . . , N .

It should be mentioned that the previous approximation is restricted to functions

with domain [−1, 1]. However, it is certain that this approximation can be extended

to allow the range of functions f (x) being considered to be the interval with arbitrary

lower and upper limits a and b, respectively, as long as appropriate scaling factors

are applied. Specifically, by introducing the new variable y with

y :=
x− 1

2
(b+ a)

1
2

(b− a)
,

23



Chapter 2: Preliminaries

the function f (x) becomes

f (x) = f

(
b− a

2
y +

b+ a

2

)
:= g (y)

with y ∈ [−1, 1]. Then, we approximate the function g (y) by a Chebyshev polyno-

mial in y.

Suppose that we have now computed the Chebyshev coefficients cj, j = 0, 1, . . . , N .

To implement the Chebyshev polynomial approximation (2.3), it is better to em-

ploy Clenshaw’s recurrence method without the need to compute every Chebyshev

polynomials Tj (x) for j = 0, 1, . . . , N explicitly. This approach turns out to be

an efficient way to determine a sum involving known coefficients multiplied by func-

tions which obey some recurrence relations, see Press et al. [59, Chapter 5.8 formula

(5.8.11)].

Lemma 2.3.5

Clenshaw’s recurrence formula to evaluate the the Chebyshev polynomial approxima-

tion fN (x) of degree N is

dN+2 ≡ dN+1 ≡ 0,

dj = 2xdj+1 − dj+2 + cj, j = N,N − 1, . . . , 1

fN (x) ≡ d0 = xd1 − d2 +
1

2
c0

with Chebyshev coefficients cj, j = 0, 1, . . . , N computed in advance.
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Time integrated conditional

variance

In this chapter, we propose a new method for the realisation of the conditional

integral of the variance process Vs over the time interval [0, t] given its levels at the

endpoints, i.e.

(∫ t

0

Vs ds

∣∣∣∣V0, Vt) .
We first transform the variance process V to a squared Bessel process by rescaling

of time and change of measure. Then, the time integrated conditional variance can

be expressed in the form of an integration of a squared Bessel bridge under the

new probability measure, which, hence, can be decomposed into the sum of some

independent random variables by the decomposition of Pitman and Yor [57] and

Glasserman and Kim [32] on the squared Bessel bridge. For each element in the

decomposition, we identify an alternative representation in terms of infinite series

with the same distribution through Laplace transforms. To trace back to the original

measure, we establish a connection between the probability density functions for the

distribution of the integral with respect to the original and new measures. This will

provide a basis for sampling our target, i.e. the conditional integral of the variance

process, under the original measure.
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3.1 Time and measure transformations

This section gives the details for the preparation work carried out before deriving

the main results.

Recall that the variance process V follows

dVt = κ (θ − Vt) dt+ σ
√
Vt dW

1
t .

To transform the above CIR process to a squared Bessel process, we proceed follow-

ing the two steps outlined below.

First, define a new process Ã by time-rescaling

Ãt = V 4t
σ2
.

Then, Ã satisfies the following stochastic differential equations

dÃt = dV 4t
σ2

= κ
(
θ − V 4t

σ2

)
d

(
4t

σ2

)
+ σ
√
V 4t
σ2
dW 1

4t
σ2

=
4

σ2
κ
(
θ − Ãt

)
dt+ 2

√
Ãt

(σ
2
dW 1

4t
σ2

)
=
(
δ − 2qÃt

)
dt+ 2

√
Ãt dW̃

1
t ,

where δ := 4κθ/σ2, q := 2κ/σ2 and W̃ 1
t := σW 1

4t/σ2/2 becomes a standard Brownian

motion. Now, Ã is a squared OU process with parameter −q. To further reduce the

rescaled variance Ã to a squared Bessel process, we apply a measure transformation.

Suppose that the original model is established under the probability measure Q,

meaning that our target is to simulate from the distribution of the random variable

(∫ t

0

Vs ds

∣∣∣∣V0 = v0, Vt = vt

)
=

(
4

σ2

∫ τ

0

Ãs ds

∣∣∣∣Ã0 = a0, Ãτ = aτ

)

under Q with τ = σ2t/4, a0 = v0 and aτ = vt.
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Second, we introduce a new probability measure P such that

dP
dQ

= exp

(
q

∫ τ

0

√
Ãs dW̃

1
s −

q2

2

∫ τ

0

Ãs ds

)
. (3.1)

According to the change of law formula presented in Lemma 2.2.4, the rescaled

process Ã becomes a δ-dimensional squared Bessel process under P with dynamics

dÃt = δ dt+ 2

√
Ãt dW

P
t , (3.2)

where by Glasserman and Kim [32], W P is a standard Brownian motion under P

satisfying W P
t = W̃ 1

t −
∫ t
0
q
√
Ãs ds.

Hence with these replacements, our objective is to sample from the time integral

of a squared Bessel process Ã given its values at the endpoints under the new prob-

ability measure P and to find out how the distributions for the conditional integral

under the original and new measures are related to each other. For convenience, we

denote the conditional integral by I, i.e.

I =

(∫ τ

0

Ãs ds

∣∣∣∣Ã0 = a0, Ãτ = aτ

)
.

3.2 Series expansion of time integrated squared

Bessel bridges

Working on the probability measure P, we put forward a new representation for the

distribution of the time integrated conditional variance I and provide an explicit

analysis in this section. Indeed, the new representation, based on decomposing

the squared Bessel bridge, is formed as double infinite weighted sums of certain

independent random variables. We state the main theorem below followed by its

proof.

Theorem 3.2.1

Under the new probability measure P, the conditional integral of the rescaled variance

process Ã is equivalent in distribution to the sum of three infinite series of random
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variables

I =

(∫ τ

0

Ãs ds

∣∣∣∣Ã0 = a0, Ãτ = aτ

)
d

== X1 +X2 +

η∑
j=1

Zj,

where X1, X2, η, Z1, Z2, . . . are mutually independent, and η is a Bessel random

variable with parameters ν = δ/2 − 1 and z =
√
a0aτ/τ , i.e. η ∼ Bessel (ν, z).

Moreover, X1, X2, Z1, Z2, . . . admit the following representations:

(a) We have

X1
d

==
∞∑
n=0

τ 2

4n

Pn∑
k=1

Sn,k,

where for n = 0, 1, . . ., the Pn are independent Poisson random variables with mean

(a0 + aτ ) 2n−1/τ and for k = 1, 2, . . . , Pn, the Sn,k are independent copies of the

random variable S := (2/π2)
∑∞

l=1 εl/l
2 and εl ∼ Exp (1) are independent exponential

random variables for l = 1, 2, . . .;

(b) Further we have

X2
d

==
∞∑
n=1

τ 2

4n
Cδ/2
n ,

where for n = 1, 2, . . ., the C
δ/2
n are independent copies of the random variable

Cδ/2 := (2/π2)
∑∞

l=1 Γδ/2,l/(l − 1/2)2 and Γδ/2,l ∼ Gamma (δ/2, 1) are independent

gamma random variables for l = 1, 2, . . .;

(c) And also we have the Zj, j = 1, 2, . . . , η, which are independent copies of the

random variable Z such that

Z
d

==
∞∑
n=1

τ 2

4n
C ′n,

where for n = 1, 2, . . ., the C ′n are independent copies of the random variable C2 :=

(2/π2)
∑∞

l=1 Γ2,l/(l − 1/2)2 and Γ2,l ∼ Gamma (2, 1) are independent gamma random

variables for l = 1, 2, . . ..

Proof. Instead of taking the integration from 0 to τ , we separate the time variable τ

and fix the range to the unit interval [0, 1] for easier computation. For a fixed τ > 0
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and 0 ≤ s ≤ 1, set

As :=
1

τ
Ãsτ .

Then, we find that

(∫ τ

0

Ãs ds

∣∣∣∣Ã0 = a0, Ãτ = aτ

)
=

(
τ 2
∫ 1

0

As ds

∣∣∣∣A0 = x,A1 = y

)
, (3.3)

where x = a0/τ and y = aτ/τ . Further, using equation (3.2) which defines Ã, we

can verify

dAs =
1

τ
dÃsτ

=
1

τ

(
δ d (sτ) + 2

√
Ãsτ dW

P
sτ

)

= δ ds+ 2
√
As dWs,

where Ws := W P
sτ/
√
τ is a standard Brownian motion. We observe that {As}0≤s≤1 is

a δ-dimensional squared Bessel process. Conditional on the end points, the process

(As, 0 ≤ s ≤ 1|A0 = x,A1 = y) is then a squared Bessel bridge, denoted by Aδ,1x,y ={
Aδ,1x,y (s)

}
0≤s≤1. As an immediate result, the right hand side of (3.3) has the same

distribution as

(
τ 2
∫ 1

0

Aδ,1x,y (s) ds

)
. (3.4)

Next, we construct the proof in three steps.

First, the integral (3.4) can be decomposed into the sum of three independent

parts as follows:

τ 2
∫ 1

0

Aδ,1x,y (s) ds
d

== X ′1 +X ′2 +

η∑
j=1

Z ′j,
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where

X ′1 = τ 2
∫ 1

0

A0,1
x+y,0 (s) ds,

X ′2 = τ 2
∫ 1

0

Aδ,10,0 (s) ds,

Z ′j
d

== Z ′ = τ 2
∫ 1

0

A4,1
0,0 (s) ds,

and η is an independent Bessel random variable with parameters ν = δ/2 − 1 and

µ =
√
xy =

√
a0aτ/τ , i.e. η ∼ Bessel (ν, µ). Note that Z ′j are independent copies of

Z ′ for j = 1, 2, . . . , η. This is a direct result from Lemma 2.2.8 on the decomposition

of the squared Bessel bridge, suggested by Pitman and Yor [57] and Glasserman and

Kim [32].

Second, it follows from (2.2) in Lemma 2.2.7 that the Laplace transforms of X ′1,

X ′2 and Z ′ for b ≥ 0 are given by

Φ′1 (b) = exp

(
a0 + aτ

2τ

(
1−
√

2bτ coth
(√

2bτ
)))

, (3.5)

Φ′2 (b) =

 √
2b τ

sinh
(√

2b τ
)
δ/2

, (3.6)

Φ′3 (b) =

 √
2b τ

sinh
(√

2b τ
)
2

. (3.7)

Third, to confirm the random variables X ′1, X
′
2 and Z ′ have the same distribution

as the series expansions which define X1, X2 and Z respectively, it is sufficient to

show that they have identical Laplace transforms. Before that, let us first rewrite

Φ′i, i = 1, 2, 3 using some important identities regarding the hyperbolic functions

coth and sinh; see Malham and Wiese [52]. Specifically, we observe

coth z ≡ coth
z

2
− 1

sinh z
,

sinh z ≡ 2 sinh
z

2
cosh

z

2
.
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Iterating N times gives us

coth z ≡ coth
z

2N+1
−

N∑
n=0

1

sinh z
2n

, (3.8)

sinh z ≡ 2N sinh
z

2N

N∏
n=1

cosh
z

2n
. (3.9)

Substituting (3.8) into the Laplace transform (3.5) of X ′1 and setting z :=
√

2bτ , we

get that

Φ′1 (b) = exp

(
a0 + aτ

2τ
(1− z coth z)

)

= exp

(
a0 + aτ

2τ

(
1− z coth

z

2N + 1
+ z

N∑
n=0

1

sinh z
2n

))

= exp

(
a0 + aτ

2τ

(
1− z coth

z

2N + 1

))
exp

(
a0 + aτ

2τ
z

N∑
n=0

1

sinh z
2n

)

=
N∏
n=0

exp

(
a0 + aτ

2τ
2n

z
2n

sinh z
2n

)
IN (z, τ, a0, aτ ) ,

where

IN (z, τ, a0, aτ ) := exp

(
−a0 + aτ

2τ

(
z coth

z

2N + 1
− 1

))
.

On the other hand, using
∑N

n=0 2n = 2N+1 − 1 leads to

IN (z, τ, a0, aτ ) = exp

(
−a0 + aτ

2τ

(
z coth

z

2N + 1
+

N∑
n=0

2n − 2N+1

))

= exp

(
−a0 + aτ

2τ

(
z coth

z

2N+1
− 2N+1

))
exp

(
−a0 + aτ

2τ

N∑
n=0

2n

)

=
N∏
n=0

exp

(
−a0 + aτ

2τ
2n
)

exp
(
ε1N (z, τ, a0, aτ )

)
,
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where

ε1N (z, τ, a0, aτ ) := −a0 + aτ
2τ

(
z coth

z

2N+1
− 2N+1

)
→ 0, as N →∞.

Thus, for z =
√

2b τ , Φ′1 can be expressed in the alternative form

Φ′1 (b) =
∞∏
n=0

exp

(
a0 + aτ

2τ
2n

( √
2b τ
2n

sinh
√
2b τ
2n

− 1

))
.

Similarly, for Φ′2 after substitution and rearrangement, we have

Φ′2 (b) =
( z

sinh z

)δ/2

=

z(2N sinh
z

2N

N∏
n=1

cosh
z

2n

)−1δ/2

=
N∏
n=1

(
cosh

z

2n

)−δ/2
ε2N (z, δ) ,

where

ε2N(z, δ) :=

( z
2N

sinh z
2N

)δ/2
→ 1, as N →∞.

Therefore, plugging z =
√

2b τ into this expression yields

Φ′2 (b) =
∞∏
n=1

(
cosh

√
2b τ

2n

)−δ/2
.

In the context below, we derive the Laplace transforms of X1 and X2, denoted

by Φ1 and Φ2 respectively. Notice that the infinite series defining X1 and X2

both converge almost surely since the respective sums of the corresponding vari-

ance 7τ 3 (a0 + aτ )
∑∞

n=0 8−n/90 and δτ 4
∑∞

n=1 16−n/3 are both finite. Then, for any

b ≥ 0, directly compute

Φ1 (b) = E [exp (−bX1)]
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= E

[
exp

(
−b

∞∑
n=0

τ 2

4n

Pn∑
k=1

Sn,k

)]

=
∞∏
n=0

E

[
exp

(
−bτ

2

4n

Pn∑
k=1

Sn,k

)]

=
∞∏
n=0

E

[
Pn∏
k=1

E
(

exp

(
−bτ

2

4n
Sn,k

))]

=
∞∏
n=0

E




√
2bτ2

4n

sinh
√

2bτ2

4n

Pn


=
∞∏
n=0

exp

[
a0 + aτ

2τ
2n

( √
2b τ
2n

sinh
√
2b τ
2n

− 1

)]
,

where the third equality comes from the interchange of expectation and limit by the

Bounded Convergence Theorem and the fifth equality holds due to the property of

the random variable Sn,k of an infinite divisible distribution in Lemma 2.2.9, with

h = 1 here.

Following similar arguments, we now determine the Laplace transform Φ2 for

X2. Indeed, from Lemma 2.2.9 that E
[
exp

(
−bCδ/2

n

)]
=
(

cosh
√

2b
)−δ/2

for any

n ≥ 1, we conclude that

Φ2 (b) = E [exp (−bX2)]

= E

[
exp

(
−b

∞∑
n=1

τ 2

4n
Cδ/2
n

)]

=
∞∏
n=1

E
[
exp

(
−bτ

2

4n
Cδ/2
n

)]

=
∞∏
n=1

(
cosh

√
2b τ

2n

)−δ/2
.

Hence, we can now deduce that X ′i
d

== Xi as Φ′i = Φi for i = 1, 2. In line with

the steps explained above, Z ′
d

== Z follows since this is a special case when δ = 4,
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completing the proof.

We have represented the conditional time integral I by double infinite weighted

sums and mixtures of simple independent random variables under the new probabil-

ity measure P. This serves as a theoretical basis for the exact simulation from the

distribution of the random variable I under P. However, our goal is set up under

the probability measure Q. We now focus on the task of generating a sample from

the distribution of the conditional integral I under Q once we have generated a

sample under P using the theorem introduced earlier. In particular, we explore the

relationship between the probability density functions of the distributions of the in-

tegral under these two probability measures. We specify the details in the following

section.

3.3 Probability density function of time integrated

squared OU bridges

This section associates the distribution of the random variable I under measure P

to its distribution under measure Q. This is achieved by examining the connections

between their respective Laplace transforms. In fact, the conditional integral I has

the same distribution as the integral of a squared Bessel bridge and a squared OU

bridge under P and Q, respectively. A useful tool to work with these two bridges is

Lemma 2.2.10.

Theorem 3.3.1

Suppose that fP and fQ are the probability density functions of I under the probability

measures P and Q, respectively. Then, we have

fQ (x) = L (q, ν, τ, a0, aτ ) exp

(
−q

2

2
x

)
fP (x) ,

where

L (q, ν, τ, a0, aτ ) =
sinh (qτ)

qτ
exp

(
a0 + aτ

2τ
(qτ coth (qτ)− 1)

) Iν

(√
a0aτ
τ

)
Iν

(
q
√
a0aτ

sinh (qτ)

) ,
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and where Iν (·) denotes the modified Bessel function of the first kind.

Proof. We will make use of the shift property of the Laplace transform to justify the

theorem. We first establish a relation between their respective Laplace transforms.

For any b ≥ 0, consider the Laplace transform L{fQ} (b) of fQ at b, which is the

Q-expectation of exp (−bI). Thus, we get

L
{
fQ

}(
b
)

= EQ
[
exp

(
−b
∫ τ

0

Ãs ds

)∣∣∣∣Ã0 = a0, Ãτ = aτ

]

=
EP
[
exp

(
−
(
b+ q2

2

) ∫ τ
0
Ãs ds

)∣∣∣Ã0 = a0, Ãτ = aτ

]
EP
[
exp

(
− q2

2

∫ τ
0
Ãs ds

)∣∣∣Ã0 = a0, Ãτ = aτ

]

=
L
{
fP

}(
b+ q2

2

)
L
{
fP

}(
q2

2

)

= L

{
fP

L
{
fP

}(
q2

2

)}(b+
q2

2

)
.

The second equality is an immediate consequence of the change of law formula in

Lemma 2.2.10.

Now by the application of the shift property, we can write

fQ (x) =
fP (x)

L
{
fP

}(
q2

2

) exp

(
−q

2

2
x

)
.

Using the formula (2.1) in Lemma 2.2.7 for the Laplace transform L{fP} of fP at

q2/2 given by

L{fP}
(
q2

2

)
= EP

[
exp

(
−q

2

2

∫ τ

0

Ãs ds

)∣∣∣∣Ã0 = a0, Ãτ = aτ

]

= EP
[
exp

(
−q

2

2
τ 2
∫ 1

0

As ds

)∣∣∣∣A0 =
a0
τ
, A1 =

aτ
τ

]

=
qτ

sinh (qτ)
exp

(
a0 + aτ

2τ
(1− qτ coth (qτ))

)Iν

(
q
√
a0aτ

sinh (qτ)

)
Iν

(√
a0aτ
τ

)
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and setting L (q, ν, τ, a0, aτ ) := (L{fP} (q2/2))
−1

establish the stated result.

The above theorem relates the density fP , from which it is easy to obtain sim-

ulations by Theorem 3.2.1 to the density fQ of our interested distribution. This

means we can simulate the random variable I under measure Q provided an obser-

vation from its distribution under measure P is available. Practically, we apply the

acceptance-rejection algorithm to generate samples from fQ, which will be discussed

in detail in Chapter 4.

So far, we have described the theories behind the simulation of the time inte-

grated conditional variance. It is a matter of sampling infinite series, combined with

the acceptance-rejection method. For the next stage, we will address some issues

concerning the practical implementation of the theory. For example, as presented

above, each individual term X1, X2 and Z contained in the series representation

for I under P consists of a double infinite summation of some random variables.

Furthermore, because of their dependence on the model parameters, it might be

difficult to precompute those elements and tabulate them in advance, leaving the

whole procedure rather time-consuming. We specify the strategies for how we put

the theorems just derived into practice in the next chapter.
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Almost exact simulations

For the exact simulation of the Heston model, we closely follow the lead of Broadie

and Kaya [15] and Glasserman and Kim [32] with one key difference for the con-

ditional integral of the variance process. Given the initial values V0 and S0, the

procedure breaks down into three steps as follows.

Algorithm 4.1 Exact simulation for St

1: Generate a sample for Vt from the scaled noncentral chi-squared distribution

given in Proposition 1.1.1.

2: Generate a sample for
∫ t
0
Vs ds.

3: Generate a sample for log (St/S0) from the normal distribution given in Propo-

sition 1.1.3 and recover St from the normal sample.

In this chapter, we outline how to complete the second step by the decomposition

theorem for the time integrated squared Bessel bridge and the theorem specifying its

relationship with the time integrated squared OU bridge. In particular, we discuss

the sampling techniques corresponding to each component for I, i.e. the random

variables X1, X2 and Z defined by some infinite sums in Theorem 3.2.1. In addition,

we give the details for the acceptance-rejection algorithm used to generate random

values for variable I under probability measure Q once we have a sample for I under

probability measure P according to Theorem 3.3.1.

In order to apply the decomposition theorem to sample the random variable I

under the new probability measure P, we need to determine a point at which the
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infinite summation is terminated. We consider the truncation for the outer summa-

tion now, leaving the inner one to be discussed further in the following sections. Let

us denote the truncation level by K and the resulting remainder random variables

of X1, X2 and Z by RK
1 , RK

2 and RK respectively, i.e.

RK
1 :=

∞∑
n=K+1

τ 2

4n

Pn∑
k=1

Sn,k,

RK
2 :=

∞∑
n=K+1

τ 2

4n
Cδ/2
n ,

RK :=
∞∑

n=K+1

τ 2

4n
C ′n.

We investigate the effect of truncation by summarising the means and variances of

the remainder terms in the next lemma.

Lemma 4.0.1

Given the truncation level K > 0, we have

E
[
RK

1

]
=

(a0 + aτ ) τ

6

1

2K
, Var

[
RK

1

]
=

(a0 + aτ ) τ
3

90

1

8K
,

E
[
RK

2

]
=
δτ 2

6

1

4K
, Var

[
RK

2

]
=
δτ 4

45

1

16K
,

E
[
RK
]

=
2τ 2

3

1

4K
, Var

[
RK
]

=
4τ 4

45

1

16K
.

Proof. For the remainder RK
1 , as stated in Theorem 3.2.1, the Sn,k are independent

and identically distributed random variables and the Pn are independent Poisson

random variables with mean (a0 + aτ ) 2n−1/τ . Taking the expectation of RK
1 di-

rectly and interchanging expectation with summation by the Monotone Convergence

Theorem, we have

E
[
RK

1

]
=

∞∑
n=K+1

τ 2

4n
E

[
Pn∑
k=1

Sn,k

]

=
∞∑

n=K+1

τ 2

4n
E

[
E

(
Pn∑
k=1

Sn,k

∣∣∣∣∣Pn
)]
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=
∞∑

n=K+1

τ 2

4n
E [PnE (Sn,k)]

=
∞∑

n=K+1

τ 2

4n

(
a0 + aτ
τ

2n−1
)(

2

π2

∞∑
l=1

1

l2

)

=
(a0 + aτ ) τ

6

1

2K
,

where the last identity comes from the formulae for hyperharmonic series
∑∞

l=1 l
−2 =

π2/6 and partial geometric sum
∑∞

n=K+1 2−(n+1) = 2−(K+1). Similarly, we can com-

pute

Var
[
RK

1

]
=

∞∑
n=K+1

τ 4

16n
Var

[
Pn∑
k=1

Sn,k

]

=
∞∑

n=K+1

τ 4

16n

(
Var

[
E

(
Pn∑
k=1

Sn,k

∣∣∣∣∣Pn
)]

+ E

[
Var

(
Pn∑
k=1

Sn,k

∣∣∣∣∣Pn
)])

=
∞∑

n=K+1

τ 4

16n
(Var [PnE (Sn,k)] + E [PnVar (Sn,k)])

=
∞∑

n=K+1

τ 4

16n
(
Var [Pn] (E [Sn,k])

2 + E [Pn] Var [Sn,k]
)

=
∞∑

n=K+1

τ 4

16n

(
a0 + aτ
τ

2n−1
)( 2

π2

∞∑
l=1

1

l2

)2

+
4

π4

∞∑
l=1

1

l4


=

(a0 + aτ ) τ
3

90

1

8K
,

where we use the formulae
∑∞

l=1 l
−4 = π4/90 and

∑∞
n=K+1 8−n = 8−K/7.

For the remainder RK
2 , similar to the calculations for the moments of RK

1 , we

find

E
[
RK

2

]
=

∞∑
n=K+1

τ 2

4n
E
[
Cδ/2
n

]

=
∞∑

n=K+1

τ 2

4n

(
2

π2

∞∑
l=1

δ

2

1(
l − 1

2

)2
)
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=
δτ 2

π2

(
∞∑

n=K+1

1

4n

)(
4
∞∑
l=1

1

(2l − 1)2

)

=
δτ 2

6

1

4K
.

Note that the last step is a direct result of
∑∞

l=1 (2l − 1)−2 = π2/8 and
∑∞

n=K+1 4−n =

4−K/3. Further we can proceed with the computation of the variance:

Var
[
RK

2

]
=

∞∑
n=K+1

τ 4

16n
Var

[
Cδ/2
n

]

=
∞∑

n=K+1

τ 4

16n

(
4

π4

∞∑
l=1

δ

2

1(
l − 1

2

)4
)

=
2δτ 4

π4

(
∞∑

n=K+1

1

16n

)(
16

∞∑
l=1

1

(2l − 1)4

)

=
δτ 4

45

1

16K
,

in which we apply
∑∞

l=1 (2l − 1)−4 = π4/96 and
∑∞

n=K+1 16−n = 16−K/15.

Taking δ = 4 we establish the results for RK .

The above lemma implies that the truncation errors decay exponentially. This

is an appealing property of the new series as the truncation error will decrease so

quickly that the Monte Carlo error will dominate the total error even for small

truncation level K. Hence, including the terms at lower levels will be enough to

produce an accurate approximation. This is supported by our numerical simulations

in Chapter 6.

4.1 Direct inversion for weighted sums of expo-

nential random variables

This section contains a description of the method for the practical realisation of

the first component X1 in the decomposition for I. Specifically, we sample X1 by
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truncating its series and approximating the tail sum by a moment-matching gamma

random variable. To improve the efficiency, part of the series, namely the Poisson

sum, is simulated by direct inversion method.

Recall that by dropping the remainder, we approximate X1 by XK
1 where

XK
1 =

K∑
n=0

τ 2

4n

Pn∑
k=1

Sn,k.

Notice the that Sn,k are independently and identically distributed as S = (2/π2)
∑∞

l=1

εl/l
2. To reduce the truncation error further, we simulate the tail sum RK

1 as well.

Glasserman and Kim [32] use the central limit theorem to show the validity of a

normal approximation for the remainders. They also point out that a gamma ap-

proximation is feasible and better in the sense that its cumulant generating function

is closer to that of the remainder random variable compared with that of a normal

approximation. Therefore, inspired by this observation, the approximation to X1

including tail simulation for a given truncation level K is

X1 ≈ XK
1 + ΓK1 ,

where ΓK1 is a gamma random variable such that its first two moments are matched

with those of the remainder RK
1 from Lemma 4.0.1.

We now detail our sampling procedure for XK
1 . The series which defines XK

1 sug-

gests two potential problems. First, the random variables Sn,k
d

== S are represented

by an infinite weighted sum of independent exponential random variables, which

requires an efficient simulation method. Second, given a Poisson sample Pn = P for

a fixed level n = 0, . . . , K, sampling the sum of P independent random variables S

becomes increasingly computationally demanding when the sample P tends to be

larger. Thus, an effective sampling scheme for the Poisson sum is fundamental to

the simulation of XK
1 . We now incorporate these two tasks with each other and

consider simulating the sum of P independent random variables S directly, denoted
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by SP , i.e.

SP =
P∑
k=1

Sk,

where Sk are independent copies of S. By Lemma 2.2.9, SP has the following Laplace

transform:

ΦSP (b) := E
[
exp

(
−bSP

)]
=

( √
2b

sinh
√

2b

)P

, (4.1)

for b ≥ 0.

Suggested by Malham and Wiese [52], we observe that any positive integer P

can be expressed in the form

P = p1 + 10p10 + 50p50 + 5000p5000 + 104p104 + 105p105 + 106p106 .

Here p106 is the multiples of 106 present in the integer P , i.e. p106 = bP/106c, p105

is the multiples of 105 present in the remainder of the division of P by 106, i.e.

p105 = b(P − 106p106) /105c, and so forth. By the infinite divisibility, for any P > 0

the sum SP admits

SP
d

==
∑
k∈S

pk∑
i=1

Ski ,

where S = {1, 10, 50, 5000, 104, 105, 106} and for i = 1, . . . , pk, S
k
i are independent

copies of Sk with k ∈ S. Then, the above representation can be intended as a

framework for an efficient sampling scheme for SP for all P > 0 if we can realise Sk

effectively for k ∈ S. Indeed, we apply the direct inversion method to simulate Sk

with their inverse distribution functions approximated by predetermined Chebyshev

polynomials for each k ∈ S. In general, the direct inversion algorithm for generating

the samples of SP for any P > 0 is described in Algorithm 4.2.

The advantage of this algorithm is that we only need to construct the Cheby-

shev polynomial approximations for the inverse distribution function of Sk for k ∈ S.

With this replacement, the complicated inverse distribution function becomes very

42



Chapter 4: Almost exact simulations

easy to compute at arbitrary points. Moreover, since Sk does not depend on any

model parameters, the coefficients of the polynomials can be computed and tabu-

lated in advance. As such, when a sample for X1 is needed, we truncate the series

representation to include the terms at n ≤ K with the tail approximated by a

gamma distribution. For each n = 0, . . . , K, we generate Poisson samples Pn and

simulate the sums SPn by Algorithm 4.2, which requires evaluating some prescribed

polynomials with coefficients drawn directly from the cached tables; see Appendix

A.

Algorithm 4.2 Direct inversion for SP

1: For each k ∈ S, sample pk independent random variables Ski , i = 1, . . . , pk

from the distribution of Sk using the inverse distribution functions based on the

corresponding Chebyshev polynomial approximations.

2: Compute the accumulated sum, i.e.
∑

k

∑pk
i=1 S

k
i ∼ SP .

To make the above process fast for implementation, we take advantage of the

direct inversion to obtain Poisson samples Pn = P when the mean µ is no bigger

than 10. The inversion method for sampling discrete random variables is analogous

to that for continuous random variables. The only difference is that the inverse

of the cumulative distribution function is found by sequential search iterations for

the discrete case. This is because the distribution function for the discrete random

variable is no longer strictly monotonically increasing and continuous, whence its

inverse is not unique. To solve this problem, we define the generalised inverse

distribution function to be

F−1 (p) := inf {x ∈ R : F (x) ≥ p},

where F is a distribution function and p is a probability. Then the uniqueness of

the inverse is preserved in its definition. Applied in Poisson sampling, the direct

inversion is given in Algorithm 4.3. For larger means, Algorithm 4.4 for PTRD

transformed rejection method suggested by Hörmann [40] will be applied.

To obtain the Chebyshev coefficients, it is crucial to determine the values of

the distribution functions at several points efficiently and accurately. For large P ,
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we derive an asymptotic series expansion for the distribution function of SP when

P →∞ through the inverse Fourier transform of its characteristic function. While

for small P , we utilise the explicit expression for the density function given by

Biane and Yor [10], which involves the parabolic cylinder functions. To derive the

representation for the distribution function, we use a routine consisting of the power

series and asymptotic expansions for the parabolic cylinder functions to evaluate the

density function followed by term-wise integration. We present the detailed analysis

in Chapter 5.

Algorithm 4.3 Direct inversion for P (µ ≤ 10)

1: Generate a uniform sample U from Unif (0, 1).

2: Set k := 0, p := exp (−µ), s := 0.

3: Update s := s+ p, k := k + 1, p := pµ/k.

4: If U ≤ s, return k − 1 as a sample for P .

Otherwise, go to the third step.

Algorithm 4.4 PTRD for P (µ > 10)

1: Set b := 0.931 + 2.53
√
µ, a := −0.059 + 0.02483b, α := 1.1239 + 1.1328/ (b− 3.4)

and vr := 0.9277− 3.6224/ (b− 2).

2: Generate a sample V from the uniform distribution Unif (0, 1).

3: If V ≤ 0.86vr, set U := V/vr − 0.43 and return b(2a/ (0.5− |U |) + b)U + µ +

0.445c as a sample for P .

If V ≥ vr, generate a uniform sample U from Unif (−0.5, 0.5).

If 0.86vr < V < vr, set U := 0.5sign (V/vr − 0.93) − V/vr + 0.93 and update

V by generating a uniform sample from Unif (0, vr), where sign (x) denotes the

signum function of a real number x.

4: Set us := 0.5− |U |. If us < 0.013 and V > us, go to the second step.

5: Set k := b(2a/us + b)U + µ+ 0.445c and update V := αV/ (a/u2s + b).

If k ≥ 10 and log
(
V
√
µ
)
≤ (k + 0.5) log (µ/k) − µ − log

√
2π + k −

(1/12− 1/ (360k2)) /k, return k as a sample for P .

If 0 ≤ k ≤ 9 and log V ≤ k log µ− µ− log (k!), return k as a sample for P .

Otherwise, return to the second step.
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Remark 4.1

The set S is chosen for the consideration of convenience and efficiency. In particular,

we choose this so that the distribution function for each Sk, k ∈ S can be computed

with great accuracy at modest computational cost. We may improve the efficiency

of sampling SP by decomposing P more finely using more basis in S, which, how-

ever, will increase the number of Chebyshev polynomial approximations we have to

evaluate.

4.2 Direct inversion for weighted sums of gamma

random variables

The truncation method established above for X1 can be similarly employed here for

X2. However, the structure of the random variable X2, along with its dependence

on the model parameters, provides us with another possibility for sampling. In fact,

the Laplace transform of X2/τ
2 is identical to that for Sh. We can therefore extend

the direct inversion of Sh for any h ∈ N outlined in Section 4.1 for the simulation

of X2.

Let us first introduce the notation h := δ/2, which is typically between zero and

one. Hence, after separating the time parameter X2 can be written in the form

X2 =
∞∑
n=1

τ 2

4n
Ch
n = τ 2

∞∑
n=1

1

4n
Ch
n = τ 2Y h

2

with

Y h
2 :=

∞∑
n=1

Ch
n

4n

depending only on the parameter h. We notice that the Laplace transform of Y h
2

ΦY h2
(b) = E

[
exp

(
−bY h

2

)]
=

( √
2b

sinh
√

2b

)h

, for b ≥ 0

has the same expression as that of Sh given by (4.1) after replacing P by h. The
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only difference is that the parameter h now is restricted to the interval (0, 1) rather

than positive integers. This suggests that Y h
2 is equivalent in distribution to Sh, i.e.

Y h
2

d
== Sh,

but the decomposition proposed in Section 4.1 for integer h and the resulting Sh is

no longer reasonable. However, motivated by Malham and Wiese [51], we have the

following alternative formula for 0 < h < 1, which is given to the first three decimal

places:

h =
h5
5

+
h10
10

+
h20
20

+
h50
50

+
h100
100

+
h200
200

+
h500
500

+
h1000
1000

+
h2000
2000

,

where hk ∈ {0, 1, 2} for k ∈ H = {5, 10, 20, 50, 100, 200, 500, 1000, 2000}. Next, we

give the direct inversion algorithm for generating Y h
2 for any h ∈ (0, 1) given to the

first three decimal places.

Algorithm 4.5 Direct inversion for Y h
2

1: For each k ∈ H, sample hk independent random variables Y
1/k
2,i , i = 1, . . . , hk

from the distribution of Y
1/k
2 by inverse transform sampling based on the corre-

sponding Chebyshev polynomial approximations.

2: Compute the accumulated sum, i.e.
∑

k

∑hk
i=1 Y

1/k
2,i ∼ Y h

2 .

Given Algorithm 4.5, for a general h the simulation of Y h
2 is reduced to simulat-

ing several particular random variables such as Y
1/5
2 , Y

1/10
2 , . . . using their inverse

distribution functions, which are approximated by the associated Chebyshev poly-

nomials. We will apply the same approach for SP with small integer P to design the

Chebyshev polynomial approximations, which will be reported in the next chapter.

As Z is a special case of X2 when δ = 4, the strategy to generate samples

of X2 discussed earlier is fully applicable here. Indeed, we directly construct the

Chebyshev polynomial approximations for the inverse distribution function F−1Z′ with

Z ′
d

== Z/τ 2 since Z ′ is independent of any model parameters.

Remark 4.2

Similar to the decomposition of P , we choose the set H in the consideration of
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efficiency and convenience. The corresponding decomposition works for the case

when h is rounded to three decimal digits only. But this decomposition can be

generalised to h ∈ (0, 1) given to any decimal places in principle.

4.3 Direct inversion for Bessel random variables

To simulate the random variable I under the new probability measure P, samples

for the Bessel random variable η ∼ Bessel (ν, z) with parameters

ν =
δ

2
− 1,

z =

√
a0aτ
τ

,

as outlined in Theorem 3.2.1 are needed. While there are various exact ways to

generate Bessel variates such as fast acceptance-rejection algorithms and conditional

schemes (see Devroye [22] and Iliopoulos and Karlis [42]), Glasserman and Kim [32]

apply the more stable inversion method based on the inverse of the cumulative

distribution function; see the sequential search method in Iliopoulos and Karlis [42]

as well. We briefly summarise this procedure in this section.

Algorithm 4.6 Direct inversion for η

1: Generate a uniform sample U from Unif (0, 1).

2: Set k := 0, p := (z/2)ν / (Iν (z) Γ (ν + 1)), sl := 0, su := 0.

3: Update k := k + 1, sl := su, su := su + p, p := z2p/ (4k (k + ν)).

4: If sl < U ≤ su, return k − 1 as a sample for η.

Otherwise, go to the third step.

Similar to the direct inversion of Poisson simulation, the Bessel distribution

function is inverted at u ∈ [0, 1] by accumulating the probabilities until it exceeds u.

The evaluation of the probability mass function and thus the distribution function

is straightforward. Recall that the probability mass function, denoted by pn :=

P (η = n), for the Bessel random variable η ∼ Bessel (ν, z) introduced in Definition

2.2.1 satisfies the following recursive relation (see Iliopoulos and Karlis [42] and

47



Chapter 4: Almost exact simulations

Glasserman and Kim [32]):

pn+1 =
z2

4 (n+ 1) (n+ 1 + ν)
pn, n ≥ 0,

p0 =
1

Iν (z) Γ (ν + 1)

(z
2

)ν
.

Taking advantage of these formulas, we perform the sequence of instructions given

in Algorithm 4.6 to generate from the Bessel distribution.

Notice that the probability mass function for the Bessel random variable is con-

centrated around zero for parameters with values varying across a wide range. This

property guarantees the efficiency of the above inversion method for the short-tailed

distribution as it is not necessary to calculate the probabilities for a larger range

of values for n. Numerical comparisons of the computing time with this approach

across different parameter values are presented in Section 4.2 of Glasserman and

Kim [32].

To sum up, we have described the steps to sample from the distribution of I

under P. The main process is to generate SP random variables by direct inversion

algorithms for some fixed values P ∈ S, P = 1/k with k ∈ H and P = 2. The

question we now face becomes how can we develop accurate Chebyshev polynomial

approximations to the inverse distribution function for SP . We show this process

step by step in Chapter 5.

4.4 Acceptance-rejection for time integrated squared

OU bridges

After having samples from the distribution of I under measure P, we now turn

to the simulations for I under Q. We apply the technique which makes use of a

similar distribution other than the one of our interest, i.e. the acceptance-rejection

sampling. Instead of sampling directly from the distribution of I under Q, we accept

those samples of I under P which fall inside the region of interest as samples for

our target. The region of interest is indicated by the relationship between their
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probability density functions given in Theorem 3.3.1. In general, we construct the

following algorithm to generate samples for I under Q.

Algorithm 4.7 Acceptance-rejection for I under Q
1: Simulate a realisation Y of the random variable I under P using Theorem 3.2.1.

2: Obtain a sample U independently from the uniform distribution Unif (0, 1).

3: If U ≤ exp (−q2Y/2), accept Y as a sample drawn from the distribution of I

under Q.

Otherwise, reject the value of Y and return to the first step.

On average, the probability p of accepting a proposed sample is

p = P
(
U ≤ exp

(
−q

2Y

2

))

=

∫ ∞
0

P
(
U ≤ exp

(
−q

2Y

2

)∣∣∣∣Y = y

)
fP (y) dy

=

∫ ∞
0

P
(
U ≤ exp

(
−q

2y

2

))
fP (y) dy

=

∫ ∞
0

exp

(
−q

2y

2

)
fP (y) dy

=

∫ ∞
0

fQ (y)

L (q, ν, τ, a0, aτ )
dy

=
1

L (q, ν, τ, a0, aτ )
,

where U ∼ Unif (0, 1) and independently Y follows the distribution of I under P.

Consequently, we require L (q, ν, τ, a0, aτ ) ≥ 1 due to the fact that a probability only

takes values between zero and one. In practice, we prefer a value of L closer to one

as it implies higher acceptance probability on average, and thus fewer iteration steps

needed.

To illustrate the efficiency of this method, we report its computational complexity

for the test cases considered in this thesis. The complexity is measured by the

expected number of iterations n performed to produce an accepted value, which is
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the reciprocal of the probability of acceptance p on average, i.e.

n =
1

p
= L (q, ν, τ, a0, aτ ) .

The sets of parameters are shown in Table 4.1. These four sets of European call

options are taken from Glasserman and Kim [32] (see Andersen [6] and Duffie, Pan

and Singleton [25] as well), which are found to be in the typical range of parameter

values of the Heston model in practice. They describe Case 1 as being relevant

to long-dated FX options, Case 2 as possible for long-dated interest rate options,

Case 3 as related to equity options and Case 4 as corresponding to S&P 500 index

options. Note that for Case 3 and Case 4, the risk-free interest rate r is assumed to

be 0.05 and 0.0319 with reference to Haastrecht and Pelsser [66] and Broadie and

Kaya [15], respectively.

Table 4.1: Parameters for European call options for the Heston model.

Parameters Case 1 Case 2 Case 3 Case 4

κ 0.5 0.3 1 6.21

θ 0.04 0.04 0.09 0.019

σ 1 0.9 1 0.61

ρ −0.9 −0.5 −0.3 −0.7

t 10 15 5 1

v0 0.04 0.04 0.09 0.010201

S0 100 100 100 100

r 0 0 0.05 0.0319

δ 0.08 0.059 0.36 1.268

Table 4.2 records the average number of iterative steps that are needed for all

four cases. Since the simulated value of vt differs for each path, we take three possible

levels for it with a representative one being the middle and two extreme ones. As

we can see from the table, the number of iterations required by Case 4 is larger

than the double of that for the other three cases. However even for the less efficient
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case, it turns out that the time needed to realise the Heston model using our new

method is still less than that for Glasserman and Kim [32], which will be supported

by numerical analysis in Chapter 6.

Table 4.2: Expected number of iterations required

Case 1 Case 2

vt 0.000004 0.04 4 vt 0.000004 0.04 4

n 1.049 1.063 4.042 n 1.031 1.041 2.693

Case 3 Case 4

vt 0.000009 0.09 0.9 vt 0.0025 0.010201 0.05

n 1.239 1.317 2.280 n 2.599 2.847 4.556

In this chapter, we have designed a series of algorithms for the simulation of

the conditional time integrated variance process in the Heston model. The main

ingredients are direct inversion and acceptance-rejection sampling. In particular,

the direct inversion is based on approximating the inverse distribution functions

by predetermined Chebyshev polynomials. Importantly, the underlying random

variables are independent of any model parameters, which makes it possible to cache

the Chebyshev coefficients before the Monte Carlo loop. Our discussion so far has

not yet covered the construction of the approximations. In the next chapter, we

address this issue.
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Chebyshev polynomial

approximations

This chapter contains an introduction of the Chebyshev polynomial approximations

for the inverse distribution functions of the random variable SP
d

== Y P
2 . As discussed

in Chapter 4, we are concerned with two classes of fixed values for P , i.e. P ∈ S =

{1, 10, 50, 5000, 104, 105, 106} and P = 1/k with k ∈ H = {5, 10, 20, 50, 100, 200, 500,

1000, 2000}. First, we derive the asymptotic expansions for the distribution function

of SP . Second, based on the asymptotic behaviour of the function we identify

appropriate scaling factors to construct the approximated polynomials.

5.1 Asymptotic expansion for the distribution func-

tion of SP for large P

In what follows, we present comprehensive details of analysis behind the development

of the series representation for the distribution function of SP in the large sum

asymptotic limit. We start from its characteristic function to build the corresponding

probability density function by inverse Fourier transform, followed by term-wise

integration resulting in the asymptotic expansion for the distribution function in

the limit P → +∞.
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Recall that S = (2/π2)
∑∞

l=1 εl/l
2 has the characteristic function

ϕS (ξ) := E [exp (iξS)] =

√
−2ξi

sinh
√
−2ξi

for any ξ ∈ R. By independence, we deduce that the characteristic function for the

sum SP is

ϕSP (ξ) := E
[
exp

(
iξSP

)]
=

( √
−2ξi

sinh
√
−2ξi

)P
.

Then taking the inverse Fourier transform of its characteristic function, the proba-

bility density function fSP of SP can be expressed in the form

fSP (x) =
1

2π

∫ +∞

−∞
exp (−iξx)ϕSP (ξ) dξ

=
1

2π

∫ +∞

−∞
exp (−iξx)

( √
−2ξi

sinh
√
−2ξi

)P
dξ

=
1

2π

∫ −∞
+∞

exp

(
i
1

2
zx

)( √
zi

sinh
√
zi

)P (
−1

2

)
dz

=
1

4π

∫ +∞

−∞
exp

(
1

2
xzi

)( √
zi

sinh
√
zi

)P

dz,

in which we make the change of variable z = −2ξ for the third step. Note that the

above integral converges absolutely.

Before moving on to the analysis, it is worth noticing that the expectation

E
[
SP
]

= P/3 and variance Var
[
SP
]

= 2P/45 of SP will diverge when P →∞. For

easier calculation, we standardise the random variable SP by

ZP :=
SP − P

3√
2P
45

,

so that the new random variable ZP has mean zero and variance one. As SP is

non-negative, the support for ZP is
[
−
√

5P/
√

2,+∞
)

. The classical theorem on
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transforming the probability density functions yields

fZP (x) =

√
2P

45
fSP

(
P

3
+ x

√
2P

45

)

=

√
2P

45

1

4π

∫ +∞

−∞
exp

(
1

2

(
P

3
+ x

√
2P

45

)
zi

)( √
zi

sinh
√
zi

)P

dz

=
1

4π

√
2P

45

∫ +∞

−∞
exp

(
1

6
Pzi

)
exp

(√
P

90
xzi

)( √
zi

sinh
√
zi

)P

dz (5.1)

with fZP denoting the probability density function of ZP . To explore the asymp-

totic behaviour of this integral as P → +∞, we rewrite (5.1) by introducing

β := x
√

2/45/
√
P as

fZP (x) =
1

4π

√
2P

45

∫ +∞

−∞
exp (Pρ (z; β)) dz, (5.2)

where ρ (z; β) satisfies

ρ (z; β) = log

( √
zi

sinh
√
zi

)
+ zi

(
1

6
+

1

2
β

)
. (5.3)

Here the integrand has a removable singularity at z = 0 and poles at z = π2n2i for

all n ∈ Z+.

We apply the standard technique of the steepest descent method to develop the

large P asymptotics of fZP , where all the higher order terms are given in reciprocal

powers of P ; see Bender and Orszag [8], Bleistein and Handelsman [11] and Ablowitz

and Fokas [1]. The expansion is then integrated term by term to generate the

asymptotic approximation for the distribution function. We state the results in a

series of lemmas and theorems.

Lemma 5.1.1

For fixed x such that |x| �
√
P/
√

2/45, i.e. β � 1, we have

fZP (x) =
1

4π

√
2P

45

∫
Cr−Cl

exp (Pρ (z; β)) dz,
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where Cr and Cl are the two steepest descent paths explicitly outlined in the proof.

Proof. We follow the general procedure of the steepest descent method and Cauchy’s

theorem summarised below to complete the deformation of the contour of integration

for fZP . We first identify the critical points including saddle points z0 of ρ (z; β)

such that ρ′ (z0; β) = 0. Note that since ρ (z; β) depends on the parameter β,

the saddle point z0 will also depend on β. Due to the fact that β � 1, we can

establish a useful expression for z0 as an asymptotic series in β. Afterwards, we

obtain the steepest descent paths emanating from the saddle point z0 by setting

Im (ρ (z; β)) = Im (ρ (z0; β)) and Re (ρ (z; β)) < Re (ρ (z0; β)). Following this, we

demonstrate that the original contour, i.e. the real line, can be deformed onto the

steepest descent paths in the domain where the integrand is analytical. In this way,

the rapid oscillations of the integrand can be removed when P is large, whence the

asymptotic behaviour of the integral can be determined locally depending only on

a small neighbourhood of the critical points.

Proceeding as indicated above, we are interested in the saddle point z0 which

solves ρ′ (z0; β) = 0. First, let

ς (z) :=

√
zi

sinh
√
zi
,

which gives

ρ (z; β) = log (ς (z)) + zi

(
1

6
+

1

2
β

)
.

We observe that ς (z) and ρ (z; β) are analytic when Im (z) < π2 after defining

ς (0) := 1 and ρ (0; β) := 0. Then for real z, we have

|ς (z)| =
∣∣∣∣E [exp

(
−1

2
izS

)]∣∣∣∣
=

∣∣∣∣∫ +∞

−∞
exp

(
−1

2
izx

)
fS (x) dx

∣∣∣∣
≤
∫ +∞

−∞

∣∣∣∣exp

(
−1

2
izx

)∣∣∣∣ fS (x) dx
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=

∫ +∞

−∞
fS (x) dx

= 1,

where fS is the probability density function of the random variable S. Hence, we

see

Re (ρ (z; β)) = Re (log (ς (z))) = log |ς (z)| ≤ log(1) = 0

for all z ∈ R with equality when z = 0. This suggests that all points on the

real axis are in the valley of ρ with respect to those saddle points z0 such that

Re (ρ (z0; β)) > 0. These saddle points are inadmissible since they are not able to

contribute to the asymptotic expansion of the integral fZP . In fact, the integrand

along the real axis is exponentially smaller than any such contribution. Further, the

real axis, except the origin, lies in the valley of ρ with respect to the origin.

Following the above arguments, Bleistein and Handelsman [11, Chapter 7.6, p.

300] suggest that we should seek a saddle point near z = 0, which will be the

dominant one. To obtain an explicit form for the saddle point, we take advantage of

the series expansions of ρ (z; β) and its differentiation ρ′ (z; β). Let us first consider

the series expansion of ρ (z; β) about z = 0, which is of the form

ρ (z; β) =
1

2
βiz +

∞∑
k=2

r̂kz
k, (5.4)

where r̂2 = −1/180, r̂3 = i/2835 and so forth. Although we can compute the

coefficients r̂k analytically through Taylor expansion of ρ (z; β) up to any order, we

compute them using Maple in practice. Hence, its differentiation can be written as

ρ′ (z; β) =
1

2
βi +

∞∑
k=2

kr̂kz
k−1.

Note that the above two series converge pointwise in the domain where |z| < π2.
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Then, the saddle point z0 is the solution to

ρ′ (z0; β) = 0.

It seems that a precise form for this saddle point is not obtainable. However, we

can get a good approximation by making use of the smallness of β. For β � 1,

i.e. |x| �
√
P/
√

2/45, we solve the above equation by iteration. In fact, after two

iterations, we have the subsequent approximate form for the desired saddle point

z0 = 45iβ − 1350

7
iβ2 + O

(
β3
)
.

In this sense by successive iterations, we can approximate the saddle point z0 by an

asymptotic expansion in β to any order, i.e.

z0 ∼ β
∞∑
k=0

ξ̂kβ
k, (5.5)

in which ξ̂0 = 45i, ξ̂1 = −1350i/7 and so on. Again, all these coefficients ξ̂k are

calculated via Maple in practice. Notice that the saddle point z0 is near the origin

and along the imaginary axis. In order to deform the original contour, i.e. the real

axis, into the steepest descent path passing through the saddle point in the domain

of analyticity of ρ (z; β), we need to show that the saddle point z0 will not hit its

singularity, i.e. Im (z0) < π2. Indeed, we know that z0 satisfies

ρ′ (z0; β) =
ς ′ (z0)

ς (z0)
+ i

(
1

6
+

1

2
β

)
= 0.

Equivalently, there is

Im

(
ς ′ (Im (z0) i)

ς (Im (z0) i)

)
+

(
1

6
+

1

2
β

)
= 0.

If we introduce the function κ (z) := Im (ς ′ (zi)/ς (zi)), then by algebra we see κ (z)

is a monotonically decreasing function for real z < π2 and κ (z) → −∞ as z ↑ π2.

Adding a positive constant to κ (z) moves its graph upwards, whence the intersection

with the real axis is shifted to the right. Due to the limiting behaviour as z ↑ π2,

the zero of κ (z) + (1/6 + β/2) that we are interested in is always below π2, yielding
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Im (z0) < π2.

Now, we can expand ρ (z; β) as a Taylor series close to the saddle point z0

ρ (z; β) = ρ (z0; β) +
1

2!
ρ′′ (z0; β) (z − z0)2 + (z − z0)3

∑
k≥0

ρ(k+3) (z0; β)

(k + 3)!
(z − z0)k ,

(5.6)

which is convergent in a neighbourhood of z0. For preparations, we must evaluate

ρ(k) (z; β) for k ≥ 2 at z = z0. Differentiating (5.4) leads to

ρ(n) (z; β) =
∞∑
k=n

k (k − 1) · · · (k − n+ 1) r̂kz
k−n =

∞∑
k=n

ϕ̂k,nz
k−n

for n ≥ 2, where ϕ̂k,n := k (k − 1) · · · (k − n+ 1) r̂k for k ≥ n. The above series con-

verges in the same domain as (5.4). By substituting the asymptotic approximation

(5.5) regarding the saddle point z0 into the equation above and noting that

zj0 ∼ βj
∞∑
l=0

υ̂l,jβ
l (5.7)

for j ≥ 0, where

υ̂0,j = ξ̂j0,

υ̂l,j =
1

lξ̂0

l∑
k=1

(kj − l + k) ξ̂kυ̂l−k,j, for l ≥ 1,

we can get that for n ≥ 2,

ρ(n) (z0; β) ∼
∞∑
l=0

φ̂l,nβ
l (5.8)

with β � 1, where φ̂l,n =
∑l

k=0 ϕ̂n+l−k,nυ̂k,l−k for l ≥ 0.

With the completion of the foregoing, we are now ready to determine the paths

of steepest descent through z0 given by

Im (ρ (z; β))− Im (ρ (z0; β)) = Im (ρ (z; β)− ρ (z0; β)) = 0.
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When expanding ρ (z; β) in the Taylor series (5.6) near the saddle point z0, we

consider the leading order and set

Im (ρ (z; β)− ρ (z0; β)) = Im

(
1

2!
ρ′′ (z0; β) (z − z0)2 + O

(
(z − z0)3

))
= 0. (5.9)

On the other hand, from (5.8) we have

ρ′′ (z0; β) ∼ φ̂0,2 + O (β) = ϕ̂2,2υ̂0,0 + O (β) = 2r̂2 + O (β) = − 1

90
+ O (β) . (5.10)

Indeed using the properties of the functions ς (z) and ρ (z; β), we can show ρ′′ (z0; β) <

0. If we set z := u + iv for u, v ∈ R, then (5.9) implies that the paths of steepest

descent and ascent from z0 lie along the curves

2u (v − Im (z0)) + O
(
|z − z0|3

)
= 0

since z0 is purely imaginary. These two steepest paths, close enough to the saddle

point z0, that is when |z − z0| is small, are the two straight lines

u = 0, (5.11)

v = Im (z0) . (5.12)

To distinguish between the ascent and descent paths, we consider Re (ρ (z; β)) along

the two lines near z = z0. Along (5.11) by application of (5.6) and (5.10), we have

Re (ρ (z; β)) = Re

(
ρ (z0; β) +

1

2!
ρ′′ (z0; β) (z − z0)2 + O

(
(z − z0)3

))

= Re (ρ (z0; β)) +
1

2!
ρ′′ (z0; β) Re

(
(z − z0)2

)
+ O

(
|z − z0|3

)
= Re (ρ (z0; β)) +

1

2!
ρ′′ (z0; β)

(
u2 − (v − Im (z0))

2)+ O
(
|z − z0|3

)
= Re (ρ (z0; β))− 1

2!
ρ′′ (z0; β) (v − Im (z0))

2 + O
(
|z − z0|3

)
≥ Re (ρ (z0; β)) ,
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when z is near z0. Along (5.12) we proceed very much in the same way as above to

write

Re (ρ (z; β)) = Re (ρ (z0; β)) +
1

2!
ρ′′ (z0; β)

(
u2 − (v − Im (z0))

2)+ O
(
|z − z0|3

)
= Re (ρ (z0; β)) +

1

2!
ρ′′ (z0; β)u2 + O

(
|z − z0|3

)
≤ Re (ρ (z0; β))

for z close enough to z0. Thus, the path of steepest descents from z0 is v = Im (z0),

parallel to the real axis.

We now show that the original contour of the integration (5.2) can be deformed

onto the steepest descent paths through the saddle point z0, denoted by Cl for u < 0

and Cr for u > 0, both pointing a direction away from z0. As z0 is in the domain of

analyticity of ρ (z; β), Cauchy’s theorem tells us that

∫ R

−R
exp (Pρ (z; β)) dz +

∫ −R+Im(z0)i

R+Im(z0)i

exp (Pρ (z; β)) dz

=−
∫ R+Im(z0)i

R

exp (Pρ (z; β)) dz −
∫ −R
−R+Im(z0)i

exp (Pρ (z; β)) dz

for some R > 0. Further, we have∣∣∣∣∣
∫ R+Im(z0)i

R

exp (Pρ (z; β)) dz

∣∣∣∣∣
≤
∫ Im(z0)

0

|exp (Pρ (R + yi; β))| dy

=

∫ Im(z0)

0

exp (PRe (ρ (R + yi; β))) dy.

In the limit R → +∞, the above integral tends to zero because z = R + yi lies in

the valley of ρ and Re (ρ (z; β)) tends to negative infinity as z descends away from
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the saddle point. Similarly, we have∣∣∣∣∫ −R
−R+Im(z0)i

exp (Pρ (z; β)) dz

∣∣∣∣→ 0, as R→ +∞.

Then it follows that

fZP (x) =
1

4π

√
2P

45

∫ +∞

−∞
exp (Pρ (z; β)) dz

=− 1

4π

√
2P

45

∫ Im(z0)i−∞

Im(z0)i+∞
exp (Pρ (z; β)) dz

=
1

4π

√
2P

45

∫
Cr−Cl

exp (Pρ (z; β)) dz, (5.13)

completing the proof.

Theorem 5.1.2

As P → +∞ with fixed x such that |x| �
√
P/
√

2/45, i.e. β � 1, we have

fZP (x) ∼ 1

4π

√
2

45
exp

(
P
∞∑
l=2

ρ̂lβ
l

)
∞∑
j=0

∞∑
l=0

b 2
3
jc∑

n=0

α̂n,l,jΓ

(
j +

1

2

)
βlP n−j,

where ρ̂l and α̂n,l,j are constants with explicit form given in the proof and Γ (c) is

the gamma function.

Proof. In Lemma 5.1.1, we have deformed the original contour of integration, i.e.

the real axis, onto the steepest descent paths where Im (ρ (z; β)) is constant and

Re (ρ (z; β)) reaches its maximum at the saddle point z0. Hence, the main contribu-

tions to the asymptotic expansion of the integral comes from a small neighbourhood

of z0 for large P . We use Laplace’s method to evaluate the integral (5.13). For some

ε > 0, we have the following asymptotic relation:

fZP (x) ∼ 1

4π

√
2P

45

∫ Im(z0)i+ε

Im(z0)i−ε
exp (Pρ (z; β)) dz, as P → +∞, (5.14)

where by replacing the contour of integration Cr−Cl with a narrow interval centred

around z0, only exponentially small errors are introduced for large P . Now, ε can

be chosen so small that we can replace ρ (z; β) by its Taylor expansion (5.6), which
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converges on the interval (Im (z0) i− ε, Im (z0) i + ε). Then, separating the quadratic

term from all the higher-order terms of the series expansion (5.6) in exp (Pρ (z; β))

and setting

g (z; β) := exp

(
P (z − z0)3

∑
k≥0

ρ(k+3) (z0; β)

(k + 3)!
(z − z0)k

)
, (5.15)

the integral (5.14) becomes

fZP (x) ∼ 1

4π

√
2P

45
exp (Pρ (z0; β))

∫ Im(z0)i+ε

Im(z0)i−ε
exp

(
P

1

2!
ρ′′ (z0; β) (z − z0)2

)
g (z; β) dz,

(5.16)

as P → +∞.

To find ρ (z0; β), we use (5.4), (5.5) and (5.7) to write

ρ (z0; β) =
1

2
βiz0 +

∞∑
k=2

r̂kz
k
0

∼ 1

2
βi

(
β
∞∑
l=0

ξ̂lβ
l

)
+
∞∑
k=2

r̂k

(
βk

∞∑
l=0

υ̂l,kβ
l

)

∼ 1

2
i
∞∑
k=2

ξ̂k−2β
k +

∞∑
k=2

(
k∑

m=2

r̂mυ̂k−m,m

)
βk

∼
∞∑
k=2

(
1

2
iξ̂k−2 +

k∑
m=2

r̂mυ̂k−m,m

)
βk

∼
∞∑
k=2

ρ̂kβ
k,

where for k ≥ 2, ρ̂k := iξ̂k−2/2 +
∑k

m=2 r̂mυ̂k−m,m.

Since the series in the argument of the exponential function which defines g (z; β)

in (5.15) is convergent near z0, we can write as z → z0,

g (z; β) = exp

(
P (z − z0)3

∑
k≥0

σ̂k (β) (z − z0)k
)
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∼
∞∑
n=0

1

n!
P n (z − z0)3n

(∑
k≥0

σ̂k (β) (z − z0)k
)n

, (5.17)

where σ̂k (β) := ρ(k+3) (z0; β)/(k + 3)! for k ≥ 0. Further, the asymptotic approxi-

mation (5.8) for ρ(k+3) (z0; β) gives us

σ̂k (β) ∼
∞∑
l=0

γ̂l,kβ
l

with γ̂l,k := φ̂l,k+3/(k + 3)! for l, k ≥ 0 when β is small. As an immediate consequence

of the properties for asymptotic series, we have for n ≥ 2,

(∑
k≥0

σ̂k (β) (z − z0)k
)n

∼
∞∑
k1=0

k1∑
k2=0

· · ·
kn−1∑
kn=0

σ̂kn (β) σ̂kn−1−kn (β) · · · σ̂k1−k2 (β) (z − z0)k1 ,

as z → z0. In addition, we observe for n ≥ 2 and 0 ≤ kn ≤ kn−1 ≤ · · · ≤ k1,

σ̂kn (β) σ̂kn−1−kn (β) · · · σ̂k1−k2 (β)

∼

(
∞∑
l1=0

γ̂l1,knβ
l1

)(
∞∑
l2=0

γ̂l2,kn−1−knβ
l2

)
· · ·

(
∞∑
ln=0

γ̂ln,k1−k2β
ln

)

∼
∞∑
l1=0

l1∑
l2=0

· · ·
ln−1∑
ln=0

γ̂ln,kn γ̂ln−1−ln,kn−1−kn · · · γ̂l1−l2,k1−k2βl1

∼
∞∑
l1=0

Ĉl1,k1,k2,··· ,knβl1 ,

where Ĉl1,k1,k2,··· ,kn :=
∑l1

l2=0 · · ·
∑ln−1

ln=0 γ̂ln,kn γ̂ln−1−ln,kn−1−kn · · · γ̂l1−l2,k1−k2 for l1 ≥ 0.

Generally, for n ≥ 0 we see that(∑
k≥0

σ̂k (β) (z − z0)k
)n

∼
∞∑
k=0

θ̂k,n (β) (z − z0)k , as z → z0.

Here θ̂k,n(β) are functions of β satisfying θ̂k,n(β) ∼
∑∞

l=0 Êl,k,nβl for k ≥ 0 with the
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constants Êl,k,n as stated below: for n = 0,

Êl,k,n = Êl,k,0 =

1, for k = l = 0,

0, otherwise,

for n = 1,

Êl,k,n = Êl,k,1 = γ̂l,k, for k, l ≥ 0,

for n = 2,

Êl,k,n = Êl,k,2 =
k∑

k2=0

Ĉl,k,k2 , for k, l ≥ 0,

for n ≥ 3,

Êl,k,n =
k∑

k2=0

k2∑
k3=0

· · ·
kn−1∑
kn=0

Ĉl,k,k2,··· ,kn , for k, l ≥ 0.

Using these factors, we can rewrite g (z; β) in (5.17) as

g (z; β) ∼
∞∑
n=0

1

n!
P n (z − z0)3n

(
∞∑
k=0

θ̂k,n (β) (z − z0)k
)

∼
∞∑
n=0

∞∑
k=0

1

n!
P nθ̂k,n (β) (z − z0)3n+k

∼
∞∑
j=0

∑
3n+k=j

1

n!
P nθ̂k,n (β) (z − z0)j

∼
∞∑
j=0

b j
3
c∑

n=0

1

n!
P nθ̂j−3n,n (β) (z − z0)j

∼
∞∑
j=0

ĝj (β) (z − z0)j

in the limit z → z0, where ĝj (β) :=
∑bj/3c

n=0 P nθ̂j−3n,n (β) /n! for j ≥ 0. Hence by
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Definition 2.1.7, we have

g (z; β)−
J∑
j=0

ĝj (β) (z − z0)j = o
(

(z − z0)J
)
, as z → z0

for any J ≥ 0. From this it follows from Definition 2.1.3 that for any ε∗ > 0 there

is an interval |z − z0| < L for some L > 0, in which

∣∣∣∣∣g (z; β)−
J∑
j=0

ĝj (β) (z − z0)j
∣∣∣∣∣ ≤ ε∗

∣∣∣(z − z0)J ∣∣∣ .
Therefore for any 0 < ε < L, we have∣∣∣∣∣

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)(
g (z; β)−

J∑
j=0

ĝj (β) (z − z0)j
)
dz

∣∣∣∣∣
≤
∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

) ∣∣∣∣∣g (z; β)−
J∑
j=0

ĝj (β) (z − z0)j
∣∣∣∣∣ dz

≤ε∗
∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

) ∣∣∣(z − z0)J ∣∣∣ dz
=ε∗ (−1)J

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
(z − z0)J dz.

Then as ε→ 0+, we can write

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
g (z; β) dz

=
J∑
j=0

ĝj (β)

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
(z − z0)j dz

+ o

(∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
(z − z0)J dz

)
,

which gives

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
g (z; β) dz
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∼
∞∑
j=0

ĝj (β)

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
(z − z0)j dz

for small ε. Now the above integrals can be evaluated by change of variables. For

arbitrary j ≥ 0, the substitution z = Im (z0) i + x yields

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
(z − z0)j dz =

∫ 0

−ε
exp

(
P

1

2
ρ′′ (z0; β)x2

)
xj dx.

Let us introduce the new variable ζ by

1

2
ρ′′ (z0; β)x2 = −ζ.

This leads to

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
(z − z0)j dz

=

∫ 0

− 1
2
ρ′′(z0;β)ε2

exp (−Pζ)

(
−

√
−2ζ

ρ′′ (z0; β)

)j (
−

√
−2

ρ′′ (z0; β)

1

2
√
ζ

)
dζ

=
1

2
(−1)j

(
−2

ρ′′ (z0; β)

) 1
2
(j+1) ∫ − 1

2
ρ′′(z0;β)ε2

0

ζ
1
2
(j−1) exp (−Pζ) dζ.

Thus as ε→ 0+, we have

∫ Im(z0)i

Im(z0)i−ε
exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
g (z; β) dz

∼
∞∑
j=0

ĝj (β)
1

2
(−1)j

(
−2

ρ′′ (z0; β)

) 1
2
(j+1) ∫ − 1

2
ρ′′(z0;β)ε2

0

ζ
1
2
(j−1) exp (−Pζ) dζ.

Similar arguments give us that

∫ Im(z0)i+ε

Im(z0)i

exp

(
P

1

2
ρ′′ (z0; β) (z − z0)2

)
g (z; β) dz

∼
∞∑
j=0

ĝj (β)
1

2

(
−2

ρ′′ (z0; β)

) 1
2
(j+1) ∫ − 1

2
ρ′′(z0;β)ε2

0

ζ
1
2
(j−1) exp (−Pζ) dζ,

as ε→ 0+.
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Hence, the integration in (5.16) can be expanded in an asymptotic series for

small ε as follows:

∫ Im(z0)i+ε

Im(z0)i−ε
exp

(
P

1

2!
ρ′′ (z0; β) (z − z0)2

)
g (z; β) dz

∼
∞∑
j=0

1

2

(
1 + (−1)j

)
ĝj (β)

(
−2

ρ′′ (z0; β)

) 1
2
(j+1) ∫ − 1

2
ρ′′(z0;β)ε2

0

ζ
1
2
(j−1) exp (−Pζ) dζ,

where terms with odd j vanish. For large P , we can extend the integration region

in each integral to infinity. With this replacement, we introduce only exponentially

small errors for large P , whence we have as P → +∞,

∫ − 1
2
ρ′′(z0;β)ε2

0

ζ
1
2
(j−1) exp (−Pζ) dζ

∼
∫ +∞

0

ζ
1
2
(j−1) exp (−Pζ) dζ

=P−
1
2
(j+1)Γ

(
j

2
+

1

2

)

for j ≥ 0. Assembling the above results, we have the following asymptotic series for

(5.16)

fZP (x) ∼ 1

4π

√
2P

45
exp

(
P
∞∑
l=2

ρ̂lβ
l

)
∞∑
j=0

ĝ2j (β)

(
−2

ρ′′ (z0; β)

)j+ 1
2

P−(j+ 1
2)Γ

(
j +

1

2

)
(5.18)

in the limit P → +∞ for fixed x such that |x| �
√
P/
√

2/45.

Lastly, we wish to express the terms involving β, i.e. ĝ2j (β) (−2/ρ′′ (z0; β))j+1/2

as an asymptotic series in β. This can be achieved by collecting the coefficients from

the product of their individual series. Assume that√
−2

ρ′′ (z0; β)
∼

∞∑
n=0

K̂nβ
n (5.19)
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for some constants K̂n for n ≥ 0. Then taking the square on both sides yields

−2

ρ′′ (z0; β)
∼

∞∑
l=0

l∑
k=0

K̂kK̂l−kβ
l ∼

∞∑
l=0

µ̂lβ
l,

where µ̂l :=
∑l

k=0 K̂kK̂l−k for l ≥ 0. On the other hand, by performing simple

arithmetical operations on the asymptotic series (5.8) with n = 2 for ρ′′ (z0; β), we

see

−2

ρ′′ (z0; β)
∼

∞∑
l=0

$̂lβ
l,

where

$̂0 = − 2

φ̂0,2

,

$̂l = − 1

φ̂0,2

l−1∑
m=0

$̂mφ̂l−m,2, for l ≥ 1.

Hence, by equating the coefficients following the uniqueness of asymptotic expan-

sions (Bender and Orszag [8, Chapter 3.8, p. 125]), we find

$̂l = µ̂l =
l∑

k=0

K̂kK̂l−k, for l ≥ 0,

providing the values for the constants K̂k with k ≥ 0.

Based on the previous analysis, we are now ready to derive the asymptotic ap-

proximation of (−2/ρ′′ (z0; β))j+1/2 for β � 1. Indeed, from (5.19) we have for

j ≥ 0,

(
−2

ρ′′ (z0; β)

)j+ 1
2

∼

(
∞∑
n=0

K̂nβ
n

)2j+1

∼
∞∑
n=0

ω̂n,jβ
n,

where for j = 0,

ω̂n,j = ω̂n,0 = K̂n, for n ≥ 0,
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for j ≥ 1,

ω̂n,j =
n∑

n2=0

n2∑
n3=0

· · ·
n2j∑

n2j+1=0

K̂n2j+1
K̂n2j−n2j+1

· · · K̂n2−n3K̂n−n2 , for n ≥ 0.

If we combine the series which is asymptotic to ĝ2j (β) with the explicit expansion

given above, we obtain for j ≥ 0,

ĝ2j (β)

(
−2

ρ′′ (z0; β)

)j+ 1
2

∼

b 23 jc∑
n=0

1

n!
P n

∞∑
l=0

Êl,2j−3n,nβl
( ∞∑

n=0

ω̂n,jβ
n

)

∼

 ∞∑
l=0

b 23 jc∑
n=0

1

n!
P nÊl,2j−3n,n

 βl

( ∞∑
k=0

ω̂k,jβ
k

)

∼
∞∑
l=0

 l∑
k=0

b 23 jc∑
n=0

1

n!
P nÊk,2j−3n,n

 ω̂l−k,j

 βl

∼
∞∑
l=0

b 2
3
jc∑

n=0

l∑
k=0

1

n!
ω̂l−k,j Êk,2j−3n,nP nβl

∼
∞∑
l=0

b 2
3
jc∑

n=0

α̂n,l,jP
nβl

with α̂n,l,j :=
∑l

k=0 ω̂l−k,j Êk,2j−3n,n/n! for 0 ≤ n ≤ b2j/3c and l ≥ 0. Then (5.18)

becomes

fZP (x) ∼ 1

4π

√
2P

45
exp

(
P

∞∑
l=2

ρ̂lβ
l

)
∞∑
j=0

∞∑
l=0

b 2
3
jc∑

n=0

α̂n,l,jP
nβlP−(j+ 1

2)Γ

(
j +

1

2

)
,

(5.20)

as P → +∞ with β � 1, which completes the proof.

Having developed the large P asymptotic approximation for the probability den-

sity function fZP with all the higher order terms given in reciprocal powers of P ,
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the next stage is to derive an asymptotic representation for the corresponding dis-

tribution function, which can be accomplished by taking the integration of (5.20).

Before that, we first consider the integration on a finite interval (z1, z2), leading to

an asymptotic expansion for the probability P
(
z1 < ZP ≤ z2

)
. We then explain how

this expression can be used to approximate the distribution function. The results

are summarised in the next theorem.

Theorem 5.1.3

For |z1|, |z2| �
√
P/
√

2/45, the following asymptotic series expansion holds as

P → +∞. For z1 < z2 < 0, we have

∫ z2

z1

fZP (x) dx ∼ 1

4π

√
2

45

∞∑
j=0

P−
j
2

j∑
r=0

r∑
n=0

j−r∑
l=0

η̂n,rλ̂l,j−r (−1)r+l
(√

2
)2n+r+l−1

·

(
γ

(
2n+ r + l + 1

2
,
(z1)

2

2

)
− γ

(
2n+ r + l + 1

2
,
(z2)

2

2

))
.

For z1 < 0 ≤ z2, we have

∫ z2

z1

fZP (x) dx ∼ 1

4π

√
2

45

∞∑
j=0

P−
j
2

j∑
r=0

r∑
n=0

j−r∑
l=0

η̂n,rλ̂l,j−r

(√
2
)2n+r+l−1

·

(
(−1)r+l γ

(
2n+ r + l + 1

2
,
(z1)

2

2

)
+ γ

(
2n+ r + l + 1

2
,
(z2)

2

2

))
.

Here, η̂n,r and λ̂l,j−r are constants explicitly outlined in the proof and γ (α, β) is the

lower incomplete gamma function.

Proof. Before integrating the density function, we first rewrite its asymptotic ex-

pansion in Theorem 5.1.2 in terms of the original variable x by using the identity

β = x
√

2/45/
√
P . Accordingly in the limit P → +∞ with |x| �

√
P/
√

2/45, the

probability density function admits

fZP (x) ∼ 1

4π

√
2

45
exp

(
∞∑
l=2

ρ̂l

(
2

45

) l
2

P 1− l
2xl

)
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·
∞∑
j=0

∞∑
l=0

b 2
3
jc∑

n=0

α̂n,l,j

(
2

45

) l
2

Γ

(
j +

1

2

)
P n− l

2
−jxl. (5.21)

To justify that the integrated series is indeed asymptotic to the distribution function,

we adjust the terms in (5.21) to form a more appropriate expression for easier

computation.

Specifically, we separate the quadratic term ρ̂2 (2/45)x2 from the argument∑∞
l=2 ρ̂l (2/45)l/2 P 1−l/2xl of the exponential function. As the integration is taken

with respect to x, we expand the remaining term in an asymptotic approximation

in P with all the coefficients given as polynomials of x. Note that

ρ̂2 =
1

2
iξ̂0 + r̂2

(
ξ̂0

)2
= −45

4
,

which gives

exp

(
∞∑
l=2

ρ̂l

(
2

45

) l
2

P 1− l
2xl

)
∼ exp

(
−1

2
x2
)

exp

(
∞∑
l=3

ρ̂l

(
2

45

) l
2

P 1− l
2xl

)
, (5.22)

as P → +∞, where

exp

(
∞∑
l=3

ρ̂l

(
2

45

) l
2

P 1− l
2xl

)

∼
∞∑
n=0

1

n!

(
∞∑
l=3

ρ̂l

(
2

45

) l
2

P 1− l
2xl

)n

∼
∞∑
n=0

1

n!

(
∞∑
l=0

ρ̂l+3

(
2

45

) l+3
2

P 1− l+3
2 xl+3

)n

∼
∞∑
n=0

1

n!

(
2

45

) 3n
2

P−
n
2 x3n

(
∞∑
k=0

ρ̂k+3

(
2

45

) k
2

P−
k
2xk

)n

. (5.23)

Analogous to the previous computations, the generalisation of multiplication of

asymptotic expansions tells us for n ≥ 0,

(
∞∑
k=0

ρ̂k+3

(
2

45

) k
2

P−
k
2xk

)n

∼
∞∑
k=0

ϑ̂k,n

(
2

45

) k
2

P−
k
2xk, (5.24)
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where

ϑ̂0,n = (ρ̂3)
n ,

ϑ̂k,n =
1

kρ̂3

k∑
m=1

(mn− k +m) ρ̂k+3ϑ̂k−m,n, for k ≥ 1.

Using (5.22)−(5.24) amounts to

exp

(
∞∑
l=2

ρ̂l

(
2

45

) l
2

P 1− l
2xl

)

∼ exp

(
−1

2
x2
) ∞∑

n=0

1

n!

(
2

45

) 3n
2

P−
n
2 x3n

∞∑
k=0

ϑ̂k,n

(
2

45

) k
2

P−
k
2xk

∼ exp

(
−1

2
x2
) ∞∑

n=0

∞∑
k=0

1

n!

(
2

45

) 3n+k
2

ϑ̂k,nP
−n+k

2 x3n+k

∼ exp

(
−1

2
x2
) ∞∑

j=0

(
j∑

n=0

1

n!

(
2

45

) 2n+j
2

ϑ̂j−n,nx
2n+j

)
P−

j
2

∼ exp

(
−1

2
x2
) ∞∑

j=0

Âj (x)P−
j
2 ,

as P → +∞, where

Âj (x) :=

j∑
n=0

1

n!

(
2

45

) 2n+j
2

ϑ̂j−n,nx
2n+j =

j∑
n=0

η̂n,jx
2n+j, for j ≥ 0

with η̂n,j := (2/45)n+j/2 ϑ̂j−n,n/n! for 0 ≤ n ≤ j. Further, we see that when P →

+∞,

∞∑
j=0

∞∑
l=0

b 2
3
jc∑

n=0

α̂n,l,j

(
2

45

) l
2

Γ

(
j +

1

2

)
xlP n− l

2
−j

∼
∞∑
m=0

∞∑
l=0

3m∑
j=m

α̂j−m,l,j

(
2

45

) l
2

Γ

(
j +

1

2

)
xlP−(m+ l

2)
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∼
∞∑
r=0
r even

r∑
l=0
l even

3(r−l)
2∑

j= r−l
2

α̂j− r−l
2
,l,j

(
2

45

) l
2

Γ

(
j +

1

2

)
xlP−

r
2

+
∞∑
r=1
r odd

r∑
l=1
l odd

3(r−l)
2∑

j= r−l
2

α̂j− r−l
2
,l,j

(
2

45

) l
2

Γ

(
j +

1

2

)
xlP−

r
2

∼
∞∑
r=0

B̂r (x)P−
r
2

with

B̂r (x) :=
r∑
l=0

λ̂l,rx
l, for r ≥ 0,

where for even r,

λ̂l,r :=


0, for odd l,
3(r−l)

2∑
j= r−l

2

α̂j− r−l
2
,l,j

(
2
45

) l
2 Γ
(
j + 1

2

)
, for even l,

and for odd r,

λ̂l,r :=


0, for even l,
3(r−l)

2∑
j= r−l

2

α̂j− r−l
2
,l,j

(
2
45

) l
2 Γ
(
j + 1

2

)
, for odd l.

Following the above discussion, (5.21) can be rearranged as

fZP (x) ∼ 1

4π

√
2

45
exp

(
−1

2
x2
)( ∞∑

j=0

Âj (x)P−
j
2

)(
∞∑
r=0

B̂r (x)P−
r
2

)

∼ 1

4π

√
2

45
exp

(
−1

2
x2
) ∞∑

j=0

(
j∑
r=0

Âr (x) B̂j−r (x)

)
P−

j
2

∼ 1

4π

√
2

45
exp

(
−1

2
x2
) ∞∑

j=0

ψ̂j (x)P−
j
2 ,
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where for j ≥ 0,

ψ̂j (x) :=

j∑
r=0

Âr (x) B̂j−r (x)

=

j∑
r=0

(
r∑

n=0

η̂n,rx
2n+r

)(
j−r∑
l=0

λ̂l,j−rx
l

)

=

j∑
r=0

r∑
n=0

j−r∑
l=0

η̂n,rλ̂l,j−rx
2n+r+l.

Then, by Definition 2.1.7 for asymptotic expansions, we have the order relation given

below: for any J ≥ 0,

fZP (x)− 1

4π

√
2

45
exp

(
−1

2
x2
) J∑

j=0

ψ̂j (x)P−
j
2 = o

(
P−

J
2

)
,

as P → +∞ with |x| �
√
P/
√

2/45. Integrating on finite interval (z1, z2] such that

|zi| �
√
P/
√

2/45 for i = 1, 2, we have

∫ z2

z1

fZP (x) dx =
1

4π

√
2

45

J∑
j=0

P−
j
2

∫ z2

z1

exp

(
−1

2
x2
)
ψ̂j (x) dx+ o

(
P−

J
2

)
.

Next, we show the integrals on the right hand side are finite. In fact, for 0 ≤ j ≤ J ,

we can write ∣∣∣∣∫ z2

z1

exp

(
−1

2
x2
)
ψ̂j (x) dx

∣∣∣∣
≤
∫ z2

z1

exp

(
−1

2
x2
) ∣∣∣ψ̂j (x)

∣∣∣ dx
≤

j∑
r=0

r∑
n=0

j−r∑
l=0

∣∣∣η̂n,rλ̂l,j−r∣∣∣ ∫ z2

z1

exp

(
−1

2
x2
) ∣∣x2n+r+l∣∣ dx

<+∞.

Notice that the constants η̂n,r and λ̂l,j−r are finite. Hence, we have the following
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asymptotic expansion: when P → +∞,

∫ z2

z1

fZP (x) dx

∼ 1

4π

√
2

45

∞∑
j=0

P−
j
2

∫ z2

z1

exp

(
−1

2
x2
)
ψ̂j (x) dx

∼ 1

4π

√
2

45

∞∑
j=0

P−
j
2

∫ z2

z1

exp

(
−1

2
x2
) j∑

r=0

r∑
n=0

j−r∑
l=0

η̂n,rλ̂l,j−rx
2n+r+l dx

∼ 1

4π

√
2

45

∞∑
j=0

P−
j
2

j∑
r=0

r∑
n=0

j−r∑
l=0

η̂n,rλ̂l,j−r

∫ z2

z1

exp

(
−1

2
x2
)
x2n+r+l dx. (5.25)

We apply the change of variable v = x2/2 to compute the above integrals. For

z1 < z2 < 0 and q ≥ 0, we have

∫ z2

z1

exp

(
−1

2
x2
)
xq dx

=

∫ z22
2

z21
2

exp (−v)
(
−
√

2v
)q (
− 1√

2v

)
dv

= (−1)q
(√

2
)q−1 ∫ z21

2

z22
2

exp (−v)v
q+1
2
−1 dv

= (−1)q
(√

2
)q−1(

γ

(
q + 1

2
,
(z1)

2

2

)
− γ

(
q + 1

2
,
(z2)

2

2

))
.

For z1 < 0 ≤ z2 and q ≥ 0, we consider the integral on the two sub-intervals [z1, 0)

and [0, z2] separately. By additivity, we get

∫ z2

z1

exp

(
−1

2
x2
)
xq dx

=

∫ 0

z21
2

exp (−v)
(
−
√

2v
)q (
− 1√

2v

)
dv +

∫ z22
2

0

exp (−v)
(√

2v
)q ( 1√

2v

)
dv

= (−1)q
(√

2
)q−1 ∫ z21

2

0

exp (−v)v
q+1
2
−1 dv +

(√
2
)q−1 ∫ z22

2

0

exp (−v)v
q+1
2
−1 dv
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=
(√

2
)q−1(

(−1)q γ

(
q + 1

2
,
(z1)

2

2

)
+ γ

(
q + 1

2
,
(z2)

2

2

))
.

Substituting the explicit form for the integrals back into (5.25) yields the stated

representation, completing the proof.

We have thus established a large P asymptotic series expansion for the probabil-

ity that the random variable ZP takes a value in (z1, z2]. Notice that this represen-

tation is valid only when |zi| �
√
P/
√

2/45 for i = 1, 2. Next, we explain how the

above theorem can be applied to approximate the distribution function in reality.

Recall that the restriction imposed on zi for i = 1, 2 can be traced back to

Lemma 5.1.1, where an asymptotic approximation for the saddle point is desired

for β � 1. Hence, for each fixed P and β closer to zero, the truncated asymptotic

expansion serves as an accurate estimate of the saddle point. More precisely, there

is a region centred around zero with width β̃, throughout which the error of the

estimate is below some threshold. The range of validity can be determined by

numerical comparisons using Maple in practice. Following this, Theorem 5.1.3 can

be applied to evaluate the probability P
(
z1 < ZP ≤ z2

)
as long as |zi| ≤ z̃ for i = 1, 2

with z̃ := β̃
√
P/
√

2/45.

Although we have put forward a restriction on Theorem 5.1.3, this result is

still practically useful to compute the distribution function for large P with high

accuracy because the integration of the density function fZP outside the range of

validity is negligible. Intuitively, the distribution of ZP for large P is close to a

standard normal distribution, approximately 99.7% of whose samples are within

three standard deviation of its mean. In practice, the width z̃, and hence β̃, can be

chosen sufficient large such that the integral of fZP on the interval (−z̃, z̃], evaluated

by the asymptotic representation given in Theorem 5.1.3, is close enough to one.

Due to the characteristics of normal distributions, often z̃ is not required to be too

large, whence β̃ can still be near zero for large P .

Recall that the support for ZP is
[
−
√

5P/
√

2,+∞
)

. Suppose z̃ is chosen such
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that

1−
∫ z̃

−z̃
fZP (x) dx =

∫ −z̃
−
√
5P√
2

fZP (x) dx+

∫ +∞

z̃

fZP (x) dx = ε.

Then, we have

FZP (z)−
∫ z

−z̃
fZP (x) dx =

∫ −z̃
−
√

5P√
2

fZP (x) dx ≤ ε

for z ∈ (−z̃, z̃]. This means if ε ≤ ε0 for some predetermined threshold ε0 for the

error, then the integral of the density function along the interval
(
−
√

5P/
√

2,−z̃
]

can be considered as insignificant to the distribution function. In other words,∫ z
−z̃ fZP (x) dx can be used as an accurate approximation to the distribution function

at z, the error of which is smaller than the threshold ε0.

In summary, we have so far developed a tractable method to evaluate the distri-

bution function FZP (z). This is approximated by integration of the corresponding

density function on some restricted interval (−z̃, z] with z̃ carefully chosen for each

P . We derive an asymptotic expansion for the integral in reciprocal powers of P for

all orders following the steepest descent method, which is essential for the compu-

tation of Chebyshev coefficients explained in Section 5.3. In practice, we compute

enough terms for the representation to achieve the desirable accuracy in Maple for

P = 5000, 104, 105 and 106, along with the root-finding for F−1
ZP

values at particular

points required by Chebyshev polynomial approximations.

Remark 5.1

For all the cases considered here, we take z̃ = 20 with the resulting β̃ being 0.0596,

0.0421, 0.0133 and 0.0042 for P = 5000, 104, 105 and 106, respectively.

5.2 Series expansion for the distribution function

of SP for small P

In this section, we turn to the specifics of the series expansion for the distribution

function of SP for small P . Similarly as the case for large P , we begin with the
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probability density function and perform term by term integration to generate the

required function. Indeed, we take advantage of the explicit expression for the

probability density function suggested in Biane and Yor [10, formula (3x)].

Recall that SP is characterised by the Laplace transform

ΦSP (b) := E
[
exp

(
−bSP

)]
=

( √
2b

sinh
√

2b

)P

,

for b ≥ 0. Through application of the expansion (Biane and Yor [10, formula (3v)])

(
b

sinh b

)P
=

2P bP

Γ (P )

∞∑
n=0

Γ (n+ P )

Γ (n+ 1)
exp (− (2n+ P ) b)

and term-wise inversion employing Lévy’s formula [48]

∫ ∞
0

exp (−λt) a√
2πt3

exp

(
−a

2

2t

)
dt = exp

(
−a
√

2λ
)
, for a ≥ 0

to the above Laplace transform, Biane and Yor [10, formula (3x)] have developed

an explicit formula for its probability density function fSP . Namely, for arbitrary

P > 0, there exists the following infinite series for fSP :

fSP (y) =
1√
2π

2P

Γ (P )
y−

1
2
(P+2)

∞∑
n=0

Γ (n+ P )

Γ (n+ 1)
exp

(
−(2n+ P )2

4y

)
DP+1

(
2n+ P
√
y

)
,

(5.26)

where DP+1 (z) denotes the parabolic cylinder function with order P + 1. For a

review of its properties, see Chapter 19 in Abramowitz and Stegun [2]. To calculate

these functions, we use different strategies according to the different ranges of the

variable z. For small z, the power series is preferable while for large z an asymptotic

expansion will be applied. Notice that the order P+1 is fixed to be small throughout

this section. Next, we summarise these two methods.

First, the series expansion for the parabolic cylinder function can be written as

DP+1 (z) = DP+1 (0)
∞∑
k=0

ĉ2k (P )
z2k

(2k)!
+D′P+1 (0)

∞∑
k=0

ĉ2k+1 (P )
z2k+1

(2k + 1)!
,
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where the initial values are given by

DP+1 (0) =

√
π

2−
1
2
(1+P )Γ

(
−P

2

) ,
D′P+1 (0) = −

√
π

2−(P2 +1)Γ
(
−P+1

2

) ,
and the coefficients satisfy the recurrence relations given by

ĉk+2 (P ) = −
(
P +

3

2

)
ĉk (P ) +

1

4
k (k − 1) ĉk−2 (P ) , for k = 2, 3, . . . ,

with ĉ0 (P ) = ĉ1 (P ) = 1; see Gil, Segura and Temme [29, formula (2), (14), (15), (16)]

or Abramowitz and Stegun [2, formula (19.2.5), (19.2.6)]. We use Maple for their

practical implementation. Hence if we denote the coefficients in front of zk by d̂k (P ),

then the power series for DP+1 (z) is

DP+1 (z) =
∞∑
k=0

d̂k (P ) zk. (5.27)

Second, in the limit z → +∞, the parabolic cylinder function has the following

asymptotic behaviour (Gil, Segura and Temme [29, formula (23), (24), (25)]):

DP+1 (z) ∼ exp

(
−1

4
z2
)
zP+1

∞∑
k=0

(−1)k
(− (P + 1))2k
k! (2z2)k

, (5.28)

where (a)k denotes the Pochhammer symbol such that (a)k = Γ (a+ k) /Γ (a). For

comparisons of different computational methods with the consideration of both ac-

curacy and speed, see Temme [65] and Gil, Segura and Temme [29].

Finally, integrating the density function (5.26) for fSP term-wise after the com-

putation of the parabolic cylinder functions using the routines described above yields

the series representation for the distribution function FSP of SP stated below.

Theorem 5.2.1

For any 0 ≤ x < ∞ and P ∈ (0, 1) ∪ N, the distribution function FSP (x) can be

79



Chapter 5: Chebyshev polynomial approximations

written as the following convergent series

FSP (x) =
1√
2π

2P+1

Γ (P )

∞∑
n=0

Γ (n+ P )

Γ (n+ 1)
(2n+ P )−P G

(
2n+ P√

x

)
, (5.29)

where the function G (y) for y > 0 is given by

G (y) =

∫ +∞

y

zP−1 exp

(
−1

4
z2
)
DP+1 (z) dz. (5.30)

Proof. The distribution function FSP is derived by term-wise integration of the series

(5.26) for the probability density function fSP . First we show that
∑∞

n=0

∫ x
0
|fn (y)| dy

<∞ for any finite x ≥ 0, where

fn (y) :=
Γ (n+ P )

Γ (n+ 1)
exp

(
−(2n+ P )2

4y

)
DP+1

(
2n+ P
√
y

)
y−

1
2
(P+2).

For fixed n ≥ 0, application of the variable transformation z = (2n+ P ) /
√
y gives

∫ x

0

|fn (y)| dy

=
Γ (n+ P )

Γ (n+ 1)

∫ 2n+P√
x

+∞
exp

(
−1

4
z2
)
|DP+1 (z)|

(
z

2n+ P

)P+2

(2n+ P )2
(
−2z−3

)
dz

=2
Γ (n+ P )

Γ (n+ 1)
(2n+ P )−P

∫ +∞

2n+P√
x

exp

(
−1

4
z2
)
|DP+1 (z)| zP−1 dz.

Notice that the parabolic cylinder function DP+1 (z) is square integrable on [0,∞)

(Gradshteyn and Ryzhik [34, Chapter 7.711]), i.e.

‖DP+1‖2 :=

(∫ +∞

0

|DP+1 (z)|2 dz
) 1

2

<∞.

By Hölder’s inequality, we have

∫ +∞

y

exp

(
−1

4
z2
)
|DP+1 (z)| zP−1 dz ≤

(∫ +∞

y

z2(P−1) exp

(
−1

2
z2
)
dz

) 1
2

‖DP+1‖2

(5.31)

for y ≥ 0. Next we consider the following two cases for P separately: P ∈ (0, 1) and
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P ∈ N.

For any P ∈ (0, 1), z2(P−1) is monotonically decreasing, which yields

∫ +∞

y

exp

(
−1

4
z2
)
|DP+1 (z)| zP−1 dz

≤yP−1
(∫ +∞

y

exp

(
−1

2
z2
)
dz

) 1
2

‖DP+1‖2

=yP−1
(√

2π
1√
2π

∫ +∞

y

exp

(
−1

2
z2
)
dz

) 1
2

‖DP+1‖2

= (2π)
1
4 ‖DP+1‖2 y

P−1 (1− Φ (y))
1
2

for y > 0, where Φ (y) is the distribution function of a standard normal random

variable. Then, it follows that the sequence
∫ x
0
|fn (y)| dy with x < ∞ is bounded

by

∫ x

0

|fn (y)| dy

≤2
Γ (n+ P )

Γ (n+ 1)
(2n+ P )−P (2π)

1
4 ‖DP+1‖2

(
2n+ P√

x

)P−1(
1− Φ

(
2n+ P√

x

)) 1
2

=2 (2π)
1
4 ‖DP+1‖2 x

1
2
(1−P )Γ (n+ P )

Γ (n+ 1)

1

2n+ P

(
1− Φ

(
2n+ P√

x

)) 1
2

.

By the ratio test, we can deduce that the series
∑∞

n=0 bn where

bn := 2 (2π)
1
4 ‖DP+1‖2 x

1
2
(1−P )Γ (n+ P )

Γ (n+ 1)

1

2n+ P

(
1− Φ

(
2n+ P√

x

)) 1
2

is convergent. In fact, we have

∣∣∣∣bn+1

bn

∣∣∣∣ =
n+ P

n+ 1

2n+ P

2 (n+ 1) + P

1− Φ
(

2(n+1)+P√
x

)
1− Φ

(
2n+P√

x

)


1
2

→ 0, as n→∞.

The comparison test implies that the series
∑∞

n=0

∫ x
0
|fn (y)| dy is also convergent

for any finite x.
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For any P ∈ N, the integral on the right hand side of (5.31) can be regarded as

the moment of some transformation of a standard normal random variable Z, i.e.

∫ +∞

y

z2(P−1) exp

(
−1

2
z2
)
dz =

√
2π

1√
2π

∫ +∞

−∞
z2(P−1) exp

(
−1

2
z2
)

1{z≥y} dz

=
√

2πE
[
Z2(P−1)1{Z≥y}

]
≤
√

2π
(
E
[
Z4(P−1)]) 1

2

(
E
[(

1{Z≥y}
)2]) 1

2

=
√

2π
(
E
[
Z4(P−1)]) 1

2 (P (Z ≥ y))
1
2

=
√

2π
(
E
[
Z4(P−1)]) 1

2 (1− Φ (y))
1
2

for y ≥ 0, where 1{z≥y} is the indicator function and the inequality follows from

Hölder’s inequality. Hence, the above argument gives the bounds for
∫ x
0
|fn (y)| dy

with x <∞ as

∫ x

0

|fn (y)| dy

≤2
Γ (n+ P )

Γ (n+ 1)
(2n+ P )−P (2π)

1
4
(
E
[
Z4(P−1)]) 1

4

(
1− Φ

(
2n+ P√

x

)) 1
4

‖DP+1‖2

=2 (2π)
1
4 ‖DP+1‖2

(
E
[
Z4(P−1)]) 1

4
Γ (n+ P )

Γ (n+ 1)
(2n+ P )−P

(
1− Φ

(
2n+ P√

x

)) 1
4

.

Similarly, with the notation

bn := 2 (2π)
1
4 ‖DP+1‖2

(
E
[
Z4(P−1)]) 1

4
Γ (n+ P )

Γ (n+ 1)
(2n+ P )−P

(
1− Φ

(
2n+ P√

x

)) 1
4

,

the series
∑∞

n=0 bn converges by the fact that

∣∣∣∣bn+1

bn

∣∣∣∣ =
n+ P

n+ 1

(
2n+ P

2 (n+ 1) + P

)P 1− Φ
(

2(n+1)+P√
x

)
1− Φ

(
2n+P√

x

)


1
4

→ 0, as n→∞,

suggesting the convergence of the series
∑∞

n=0

∫ x
0
|fn (y)| dy for finite x as well.
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Thus, for fixed 0 ≤ x <∞ and P ∈ (0, 1) ∪ N, we have

∞∑
n=0

∫ x

0

|fn (y)| dy <∞.

Then, applying a corollary of the Dominated Convergence Theorem (Rudin [61,

Theorem 1.38]) yields

∞∑
n=0

∫ x

0

fn (y) dy =

∫ x

0

∞∑
n=0

fn (y) dy,

where the integration and summation can be interchanged. This leads to the follow-

ing convergent series expansion for the distribution function FSP : for any x <∞,

FSP (x) =

∫ x

0

fSP (y) dy

=
1√
2π

2P

Γ (P )

∫ x

0

∞∑
n=0

fn (y) dy

=
1√
2π

2P

Γ (P )

∞∑
n=0

∫ x

0

fn (y) dy

=
1√
2π

2P

Γ (P )

∞∑
n=0

Γ (n+ P )

Γ (n+ 1)

∫ x

0

y−
1
2
(P+2) exp

(
−(2n+ P )2

4y

)
DP+1

(
2n+ P
√
y

)
dy

=
1√
2π

2P+1

Γ (P )

∞∑
n=0

Γ (n+ P )

Γ (n+ 1)
(2n+ P )−P G

(
2n+ P√

x

)
,

where the function G (y) is defined in the statement of the theorem.

Before computing the distribution function FSP , a clear strategy for the evalu-

ation of the function G needs to be formulated. As G is given in the form of an

integral, we first follow the methods mentioned earlier to calculate the parabolic

cylinder functions DP+1 and hence its integrand. We may replace DP+1 (z) by its

convergent power series on the entire interval of integration to derive the corre-

sponding series expansion for G. However, the power series converges too slowly to

be of practical use for large z. Instead, we split the interval of integration [y,+∞)

into two small elements, say [y, y∗) and [y∗,+∞) for some sufficiently large y∗ ≥ y,
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where we apply different representations for DP+1 (z) depending on the value of z.

This gives the following theorem.

Theorem 5.2.2

For any y > 0, we have

G (y) = G1 (y, y∗) +G2 (y∗)

for some y∗ ≥ y, where G1 can be expressed as the convergent series

G1 (y, y∗) =
∞∑
k=0

d̂k (P ) 2P+k−1

(
Γ

(
P + k

2
,
y2

4

)
− Γ

(
P + k

2
,
(y∗)2

4

))
(5.32)

and G2 has the asymptotic approximation

G2 (y∗) ∼
∞∑
k=0

(−1)k
(− (P + 1))2k

k!
2P−2k−

1
2 Γ

(
P − k +

1

2
,
(y∗)2

2

)
, as y∗ → +∞.

(5.33)

Here, Γ (α, β) is the upper incomplete gamma function.

Proof. Considering the integral on sub-intervals [y, y∗) and [y∗,+∞) for large y∗ ≥ y,

we have

G (y) = G1 (y, y∗) +G2 (y∗) ,

where

G1 (y, y∗) :=

∫ y∗

y

zP−1 exp

(
−1

4
z2
)
DP+1 (z) dz,

G2 (y∗) :=

∫ +∞

y∗
zP−1 exp

(
−1

4
z2
)
DP+1 (z) dz.

In this way, different techniques for approximating the respective integrand can

be adopted on these intervals. Specifically, the asymptotic expansion (5.28) is a

convenient way to compute DP+1 (z) on [y∗,+∞) and hence G2, otherwise the power

series (5.27) will be useful on [y, y∗) for G1. Hence, we consider the integral on the
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two sub-intervals case by case.

On [y∗,+∞), we can approximate the parabolic cylinder function Dp+1 (z) by

its asymptotic series (5.28) on the entire interval under consideration. The series

is then multiplied by zP−1 exp (−z2/4) and integrated term by term to generate a

series approximation for the integral G2. To confirm that the resulting series is the

correct asymptotic expansion for the integral with large y∗, we note that

zP−1 exp

(
−1

4
z2
)
DP+1 (z) ∼ z2P exp

(
−1

2
z2
) ∞∑

k=0

âkz
−2k, as z → +∞,

where âk = (−1)k 2−k (− (P + 1))2k /k! for k ≥ 0. By Definition 2.1.7, we have for

each K,

zP−1 exp

(
−1

4
z2
)
DP+1 (z)− z2P exp

(
−1

2
z2
) K∑

k=0

âkz
−2k = o

(
z2P exp

(
−1

2
z2
)
z−2K

)
,

as z → +∞, meaning that for any ε > 0, there exists a z0 > 0 such that for z > z0,∣∣∣∣∣zP−1 exp

(
−1

4
z2
)
DP+1 (z)− z2P exp

(
−1

2
z2
) K∑

k=0

âkz
−2k

∣∣∣∣∣ ≤ ε

∣∣∣∣z2P exp

(
−1

2
z2
)
z−2K

∣∣∣∣ .
Then, properties of integration yield for any y∗ > z0,∣∣∣∣∣G2 (y∗)−

K∑
k=0

âk

∫ +∞

y∗
y2P exp

(
−1

2
y2
)
y−2k dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ +∞

y∗

(
yP−1 exp

(
−1

4
y2
)
DP+1 (y)− y2P exp

(
−1

2
y2
) K∑

k=0

âky
−2k

)
dy

∣∣∣∣∣
≤
∫ +∞

y∗

∣∣∣∣∣yP−1 exp

(
−1

4
y2
)
DP+1 (y)− y2P exp

(
−1

2
y2
) K∑

k=0

âky
−2k

∣∣∣∣∣ dy
≤ε
∫ +∞

y∗

∣∣∣∣y2P exp

(
−1

2
y2
)
y−2K

∣∣∣∣ dy
=ε

∫ +∞

y∗
y2P exp

(
−1

2
y2
)
y−2K dy.
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Hence by Definition 2.1.4, we have the following asymptotic relation: as y∗ → +∞,

G2 (y∗)−
K∑
k=0

âk

∫ +∞

y∗
y2P exp

(
−1

2
y2
)
y−2k dy = o

(∫ +∞

y∗
y2P exp

(
−1

2
y2
)
y−2K dy

)
,

which further gives the asymptotic expansion

G2 (y∗) ∼
∞∑
k=0

âk

∫ +∞

y∗
y2P exp

(
−1

2
y2
)
y−2k dy, as y∗ → +∞.

Introducing a new variable ζ = y2/2, we find that

G2 (y∗) ∼
∞∑
k=0

âk

∫ +∞

y∗
y2P−2k exp

(
−1

2
y2
)
dy

=
∞∑
k=0

âk

∫ +∞

(y∗)2
2

(2ζ)P−k exp (−ζ)

√
2

2
ζ−

1
2 dζ

=
∞∑
k=0

âk2
P−k− 1

2

∫ +∞

(y∗)2
2

ζP−k−
1
2 exp (−ζ) dζ

=
∞∑
k=0

âk2
P−k− 1

2 Γ

(
P − k +

1

2
,
(y∗)2

2

)
,

in the limit y∗ → +∞. Replacing âk by the explicit form given above generates the

stated asymptotic expansion (5.33) for G2.

On [y, y∗), approximating the parabolic cylinder function DP+1 (z) using the

power series (5.27), we can write

G1 (y, y∗) =

∫ y∗

y

zP−1 exp

(
−1

4
z2
)( ∞∑

k=0

d̂k (P ) zk

)
dz

=
∞∑
k=0

d̂k (P )

∫ y∗

y

zP+k−1 exp

(
−1

4
z2
)
dz

=
∞∑
k=0

d̂k (P )

∫ (y∗)2

4

y2

4

(
2
√
ζ
)P+k−1

exp (−ζ)ζ−
1
2 dζ
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=
∞∑
k=0

d̂k (P ) 2P+k−1
∫ (y∗)2

4

y2

4

ζ
P+k
2
−1 exp (−ζ) dζ

=
∞∑
k=0

d̂k (P ) 2P+k−1

(
Γ

(
P + k

2
,
y2

4

)
− Γ

(
P + k

2
,
(y∗)2

4

))
,

where the interchange of integration and summation in the second step follows from

the fact that the power series is uniformly convergent over the interval of integration

and a change of variable ζ = z2/4 is applied for the third step. Notice that the above

series is convergent for any 0 < y ≤ y∗.

The previous theorems provide an effective approach to calculating the distri-

bution function FSP for small P across its support with high precision, as required

by the construction of the Chebyshev polynomials in Section 5.4. In practice, we

choose to use the asymptotic expansion for the parabolic cylinder function DP+1 (z)

whenever z ≥ ∆ (P + 3/2) for some positive ∆ � 1, suggested by Gil, Segura and

Temme [29, Section 5]. Accordingly, we set

y∗ = max

{
∆

(
P +

3

2

)
, y

}

when computing the function G (y) for fixed y ≥ 0. This means only asymptotic

series is involved in the computation of G (y) = G2 (y) for sufficiently large y such

that y ≥ ∆ (P + 3/2). The constant ∆, which may vary depending on the value of

P , can be determined by numerical trials of comparing the accuracy and efficiency

of evaluating both the power series and asymptotic representations at particular

points.

Notice that the series expansion (5.29) developed here is valid for any P ∈ (0, 1),

not only for integer P . This means that the expansion is also useful in evaluating

the distribution functions for Y P
2

d
== SP with P ∈ (0, 1) and Z ′

d
== S2 defined in

Section 4.2. As the case for large P , we compute the above series representation for

FSP and perform the root-finding for F−1
SP

in Maple for P = 1, 2, 10, 50 and P = 1/k

with k ∈ H.
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5.3 Chebyshev polynomial approximation for the

inverse distribution function of SP for large P

As presented in Algorithm 4.2, for any positive integer P , the simulation of SP is

reduced to generating a series of random variables Sk for k ∈ S by direct inversion.

This method takes a uniform sample u ∼ Unif (0, 1) and returns the quantile function

evaluated at u as a sample for the associated distribution, which requires computing

the inverse of the distribution function. Although accurate approximations for the

distribution function can be generated with great efficiency, it is often the case that

the inverting process is computationally inefficient due to many factors such as poor

initial guess and the lack of an analytical expression for the corresponding quantile

function. Since a large number of samples is needed for the Monte Carlo simulation

when the same number of inversions of the distribution function will be performed,

we now look for a more tractable technique to complete this step.

Indeed, we employ approximations to the inverse distribution function for fixed

P . More precisely in this section, we design Chebyshev polynomials to approximate

the inverse distribution function F−1
SP

for large P , i.e. P = 10, 50, 5000, 104, 105

and 106, where the coefficients are computed based on the distribution function

representations explained in Section 5.1 and Section 5.2. Despite the fact that the

polynomial is just an approximation, we can still obtain highly accurate results

by restricting the error, which is controlled by the degrees of the polynomials we

construct. In practice, we require the uniform error to be far smaller than the Monte

Carlo error, e.g. of order 10−12.

Recall from Definition 2.3.4 that a degree n Chebyshev polynomial approxima-

tion

fn (z) := c0T0 (z) + c1T1 (z) + · · ·+ cnTn (z)− 1

2
c0

is defined on the interval [−1, 1]. Since polynomials often exhibit more rapid changes

than the distribution functions, approximations by polynomials might not be able

to fully capture the behaviour of the inverse function F−1
SP

(u) on its entire domain.

Hence, identifying appropriate scaling schemes of the argument u is of great impor-
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tance to allow the application of the Chebyshev polynomial approximation. The

choices of the scales are mainly characterised by the behaviour of the function de-

pending on the range of P . We briefly state the scaling and its rationale behind for

large P below.

Instead of the sum SP , we take the normalised random variable ZP with zero

mean and unit variance into consideration. For the approximation of the inverse

distribution function F−1
ZP

, we focus on the sub-interval [FZP (0) , 1) of its support

first, corresponding to the region where the random variable ZP takes positive values.

In the limit of large P , the distribution function of ZP resembles that of a standard

normal distribution. Thus, we generalise and apply the ideas underlying the Beasley-

Springer-Moro direct inversion method for standard normal random variable; see

Moro [55], Joy, Boyle and Tan [43] and Malham and Wiese [52].

The normal distribution function has three regions exhibiting different character-

istic behaviours on the positive real line. Accordingly, we roughly split the interval

[FZP (0) , 1) into three regimes: the central [FZP (0) , u1], the middle (u1, u2] and the

tail (u2, 1− 10−12] regimes. In general, the central regime roughly represents the

area where the decreasing density function has a increasing slope while the middle

regime represents the area where the decreasing density function has a declining

slope with the tail regime representing the region where the density function is flat

taking values close to zero. We neglect the regimes from 1− 10−12 to 1.

Remark 5.2

It should be pointed out here that the above rule is just for reference only. In reality,

we can choose optimal values for the boundaries u1 and u2 by a small number of

experiments in Maple to ensure that the resulting Chebyshev polynomial approxi-

mations have moderate degrees while retaining the accuracy for all three regimes.

We may come across the circumstance that the approximations which achieves the

desired accuracy have degrees of say 15 for both the central and middle regimes but

a higher degree of say 50 for the tail regime for some given u1 and u2. Such a case

should be avoided from the perspective of efficiency as higher degree is often together

with higher computational cost. Hence, it is necessary to set the values u1 and u2

again through additional investigations so that the degrees of the approximation for
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all regions are balanced with each other. If both of the degrees of the Chebyshev

polynomials constructed for two neighbouring regions are at relative lower level, we

may combine those two regimes to one and produce a unified approximation.

5.3.1 Central regime

In the central regime where u ∈ [FZP (0) , u1], we follow Malham and Wiese [52] to

scale and shift the variable. Define

U :=
√

2π (u− FZP (0)) ,

z := k1U + k2,

where the parameters k1 and k2 are chosen to make sure z = −1 when u = FZP (0)

and z = 1 when u = u1. Then, we approximate the inverse distribution function

F−1
ZP

(u) by a degree n Chebyshev polynomial approximation applied to the scaled

and shifted variable z as follows:

F−1
ZP

(u) ≈ U

(
c0T0 (z) + c1T1 (z) + · · ·+ cnTn (z)− 1

2
c0

)
.

5.3.2 Middle and tail regimes

In the middle and tail regimes with u ∈ (u1, u2] and u ∈ (u2, 1− 10−12], respectively,

we approximate F−1
ZP

(u) by a degree n Chebyshev polynomial approximation of a

scaled and shifted variable as follows:

F−1
ZP

(u) ≈ c0T0 (z) + c1T1 (z) + · · ·+ cnTn (z)− 1

2
c0,

where

U := log (− log (1− u)),

z := k1U + k2,
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with the parameters k1 and k2 suitably chosen such that z = −1 at the left endpoint

and z = 1 at the right endpoint. The ansatz for U follows from inverting the

asymptotic tail approximation for the distribution function of the standard normal,

which is equivalent in distribution as ZP when P →∞ by the central limit theorem;

see Moro [55] and Malham and Wiese [52].

Figure 5.1: We plot the errors in the Chebyshev polynomial approximations to the
inverse distribution function F−1

ZP
(u) with P = 106 across all regimes. Note that to

highlight the tail we use a log-log10 scale with 1− u on the abscissa.

The above serves as a general discussion for choosing the scaled variables and

approximations in the region of [FZP (0) , 1− 10−12] for large P . We apply this

procedure to the cases P = 10, 50, 5000, 104, 105 and 106, the inverse distribution

functions of which are roughly anti-symmetric. For the remaining half sub-interval

of its support, we can apply similar results to the scaling and approximation follow-

ing the arguments mentioned above. We list the values for the coefficients of the

approximations in Appendix A, which are computed in the standard fashion (see

Press et al. [59]) using Maple.

We end this section by showing the respective errors in the Chebyshev polynomial

approximations to F−1
ZP

(u) with u ∈ [10−12, 1− 10−12] when P = 106 in Figure

5.1. To highlight the tail we plot the errors on a log-log10 scale with 1 − u on the

abscissa. We split the interval [10−12, 1− 10−12] into two regimes: [10−12, 0.5001) and
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[0.5001, 1− 10−12], where both of the Chebyshev polynomials have degrees 16. The

figure shows that across the two regions, the errors in the approximations generated

by the coefficients quoted in Appendix A are of order 10−13. Results for the other

values of P , reported in Appendix B, share similar accuracy as those in Figure 5.1.

5.4 Chebyshev polynomial approximation for the

inverse distribution function of SP for small

P

In the Chebyshev polynomial approximation for small P , the idea remains the same

as that for large P introduced in Section 5.3. Notice that the random variable SP

takes positive values only. Since the distribution for SP has a heavy right tail with

small P , we break down the support of F−1
SP

into four regimes: the left [10−12, u1],

the central (u1, u2], the middle (u2, u3] and the right tail (u3, 1− 10−12] regimes.

We neglect the regimes at a distance of 10−12 from its endpoints. In theory, these

boundary points are determined in accordance with the behaviour of the distribution

function, but again it is better to set them via empirical studies in practice.

The central limit theorem tells us the asymptotic distribution of the sum SP

when P is large. However, for small P we have to analyse the limiting behaviour

of the distribution function FSP and its inverse F−1
SP

in order to help us find the

proper scaled variables when we construct Chebyshev polynomial approximations.

We build on the series representation for FSP given in Theorem 5.2.1 and Theorem

5.2.2 to derive the results below.

Corollary 5.4.1

For any P ∈ (0, 1) ∪ N, the distribution function FSP has the following asymptotic

relation

FSP (x) ∼ 1√
π

2P+ 1
2P P−1x−P+ 1

2 exp

(
−P

2

2x

)
, as x→ 0+. (5.34)
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Proof. Recall that we have

FSP (x) =
1√
2π

2P+1

Γ (P )

∞∑
n=0

Γ (n+ P )

Γ (n+ 1)
(2n+ P )−P G

(
2n+ P√

x

)
(5.35)

for any 0 ≤ x <∞, where the function G has the asymptotic approximation

G (y) ∼
∞∑
k=0

(−1)k
(− (P + 1))2k

k!
2P−2k−

1
2 Γ

(
P − k +

1

2
,
y2

2

)
, as y → +∞.

Then it follows from Definition 2.1.7 that

G (y) = 2P−
1
2 Γ

(
P +

1

2
,
y2

2

)
+ o

(
Γ

(
P +

1

2
,
y2

2

))
, as y → +∞.

Further, by the asymptotic expansion for the incomplete gamma function (Abramowitz

and Stegun [2, formula (6.5.32)])

Γ (s, z) ∼ zs−1 exp (−z)
∞∑
k=0

Γ (s)

Γ (s− k)
z−k, as z → +∞, (5.36)

we have

Γ

(
P +

1

2
,
y2

2

)
=

(
y2

2

)P− 1
2

exp

(
−y

2

2

)
+ o

(
y2P−1 exp

(
−y

2

2

))
, as y → +∞.

The above analysis yields

G (y) = y2P−1 exp

(
−y

2

2

)
+ o

(
y2P−1 exp

(
−y

2

2

))
, as y → +∞.

Hence, we can write

G

(
2n+ P√

x

)
= (2n+ P )2P−1 x

1
2
−P exp

(
−(2n+ P )2

2x

)

+ o

(
(2n+ P )2P−1 x

1
2
−P exp

(
−(2n+ P )2

2x

))
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in the limit x→ 0+. The observation

(2n+ P )2P−1
exp

(
− (2n+P )2

2x

)
exp

(
−P 2

2x

) = (2n+ P )2P−1 exp

(
−4n2 + 4nP

2x

)
→ 0, as x→ 0+

for any n ≥ 1 establishes

G

(
2n+ P√

x

)
= o

(
G

(
P√
x

))
, as x→ 0+.

Therefore, (5.35) becomes

FSP (x) =
1√
2π

2P+1

Γ (P )

Γ (P )

Γ (1)
P−PG

(
P√
x

)
+ o

(
G

(
P√
x

))

=
1√
2π

2P+1P P−1x
1
2
−P exp

(
−P

2

2x

)
+ o

(
x

1
2
−P exp

(
−P

2

2x

))
, as x→ 0+.

Using Definition 2.1.5 generates the stated result for FSP .

The above expression describes the behaviour of the distribution function FSP (y)

as y → 0+. Now, our goal is to invert this relation to obtain the asymptotic approx-

imation for the inverse distribution function F−1
SP

(u) as u → 0+. Let u = FSP (y),

then from (5.34) it is clear

u
√
π

2P+ 1
2P P−1

∼ y−P+ 1
2 exp

(
−P

2

2y

)
, as y → 0+. (5.37)

Introducing the new variable v := u
√
π/
(

2P+ 1
2P P−1

)
and taking logarithm on both

sides, we can rewrite (5.37) as

log v ∼
(
P − 1

2

)
log

1

y
− P 2

2y
, as y → 0+.

After rearrangement, the above expression becomes

1

y
∼ 2

P 2

(
P − 1

2

)
log

1

y
− 2

P 2
log v, as y → 0+.

We wish to write y in terms of v. Specifically, taking advantage of the asymptotic
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inverse of these kinds of relationships we have

1

y
∼ − 2

P 2
log v +

2

P 2

(
P − 1

2

)
log

(
− 2

P 2
log v

)
, as y → 0+.

In particular, as y → 0+, i.e. u→ 0+, its leading order behaviour yields

y ∼
(

2

P 2

(
P − 1

2

)
log

2

P 2
− 2

P 2
log v

)−1

=

(
2

P 2

(
P − 1

2

)
log

2

P 2
− 2

P 2
log

(
u
√
π

2P+ 1
2P P−1

))−1
,

where the last equation comes from the transformation v = u
√
π/
(

2P+ 1
2P P−1

)
.

As u → 1, i.e. y → +∞, we adopt a gamma approximation for the tail. This

is implied by empirical tests which show that the distribution is positively skewed

with a longer right tail. Hence, by matching the mean and variance of SP with

those of a gamma random variable, the shape and rate parameters take the form

s = 5P/2 and r = 15/2. Then, the distribution function FSP is approximated by

the distribution function FX of a gamma random variable X with parameters s and

r given as follows:

FX (y) = 1− 1

Γ
(
5
2
P
)Γ

(
5

2
P,

15

2
y

)
.

Again, making use of the asymptotic relationship given in (5.36) establishes as y →

+∞,

FX (y) ∼ 1− 1

Γ
(
5
2
P
) (15

2
y

) 5
2
P−1

exp

(
−15

2
y

)
(5.38)

Set u = FX (y). After rewriting (5.38), we obtain

(1− u) Γ

(
5

2
P

)
∼
(

15

2
y

) 5
2
P−1

exp

(
−15

2
y

)
, as y → +∞.

To generate an asymptotic expression for y, we start by taking logarithm and defin-
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ing the new variable v := (1− u) Γ (5P/2), which gives

log v ∼
(

5

2
P − 1

)
log

(
15

2
y

)
− 15

2
y, as y → +∞. (5.39)

Rearranging (5.39) leads to

y ∼ − 2

15
log v +

2

15

(
5

2
P − 1

)
log

(
15

2
y

)
, as y → +∞.

By a short calculation analogous to what is indicated earlier, we conclude

y ∼ − 2

15
log v +

2

15

(
5

2
P − 1

)
log (− log v), as y → +∞.

On substituting v = (1− u) Γ (5P/2), as y → +∞, i.e. u → 1, its leading order is

of the form

y ∼ − 2

15
log

(
(1− u) Γ

(
5

2
P

))
.

The analysis above outlines the asymptotic approximation for F−1
SP

(u) as u→ 0

and u→ 1, providing us with the rationale in the choices of reasonable scaling vari-

ables for Chebyshev polynomial approximations for small P , i.e. P = 1. Accord-

ingly, we report the routines for approximations of the inverse distribution function

F−1
SP

(u) through Chebyshev polynomials for the four regimes identified in detail.

Note again the parameters k1 and k2 given below restrict the ranges of the trans-

formed variable z to the interval [−1, 1].

5.4.1 Left regime

For the left regime where u ∈ [10−12, u1], we approximate F−1
SP

(u) by a degree n

Chebyshev polynomial approximation of a scaled and shifted variable as below:

F−1
SP

(u) ≈ c0T0 (z) + c1T1 (z) + · · ·+ cnTn (z)− 1

2
c0,
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where

U :=

(
2

P 2

(
P − 1

2

)
log

2

P 2
− 2

P 2
log

(
u
√
π

2P+ 1
2P P−1

))−1
,

z := k1U + k2.

5.4.2 Central regime

For the central regime where u ∈ (u1, u2], we apply a linear scaling for the variable

u and a degree n Chebyshev polynomial approximation for F−1
SP

(u), i.e.

F−1
SP

(u) ≈ c0T0 (z) + c1T1 (z) + · · ·+ cnTn (z)− 1

2
c0,

where

U := (u2 − u)

√
2P

45
,

z := k1U + k2.

5.4.3 Middle and right tail regimes

For the middle and right tail regimes where u ∈ (u2, u3] and u ∈ (u3, 1− 10−12],

we approximate F−1
SP

(u) by a degree n Chebyshev polynomial approximation of a

scaled and shifted variable as follows:

F−1
SP

(u) ≈ c0T0 (z) + c1T1 (z) + · · ·+ cnTn (z)− 1

2
c0,

where

U := − 2

15
log

(
(1− u) Γ

(
5

2
P

))
,

z := k1U + k2.

According to the above approximation techniques, we evaluate the Chebyshev
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polynomials for some fixed values of P in Maple, the values for the coefficients of

which are presented in Appendix A. Figure 5.2 shows the errors related to approx-

imating the inverse distribution function F−1
SP

(u) with P = 1 by the Chebyshev

polynomials constructed using the coefficients listed in Appendix A. The plot is on

a log-log10 scale with abscissa of 1 − u for u ∈ [10−12, 1− 10−12]. We generate ap-

proximations for five regimes as described above where the right tail region is further

split into two, the degrees for which are 25 in the left with u ∈ [10−12, 0.2), 18 in the

central with u ∈ [0.2, 0.63), 15 in the middle with u ∈ [0.63, 0.9), 18 and 13 in the

right tail regimes with [0.9, 0.999) and [0.999, 1− 10−12], respectively. We observe

the errors for all cases are of order 10−12

Figure 5.2: We plot the errors in the Chebyshev polynomial approximations to the
inverse distribution functions F−1

SP
(u) with P = 1 across all regimes. Note as above

we use a log-log10 scale with 1− u on the abscissa.

Finally, we turn to the simulations of Y h
2 = X2/τ

2 for h = 1/5, 1/10, 1/20, 1/50,

1/100, 1/200, 1/500, 1/1000, 1/2000. As illustrated in Section 4.2, Y h
2 has the same

distribution as Sh. Hence, the approach to designing the inverse distribution func-

tion approximations for SP for small P is fully applicable here. Therefore, we apply

the same strategy to calculate the Chebyshev polynomial approximations for the

inverse distribution function F−1
Y h2

of Y h
2 for fixed values of h. Their coefficients can

be found in Appendix A.
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Figure 5.3: We plot the errors in the Chebyshev polynomial approximations to the
inverse distribution functions F−1

Y h2
(u) with h = 0.01 (top panel) and h = 2 (bottom

panel) across all regimes. Note as above we use a log-log10 scale with 1 − u on the
abscissa.
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Figure 5.3 plots the resulting errors in the approximation for F−1
Y h2

by Chebyshev

polynomials across all regimes when h = 1/100 (top panel) and h = 2 (bottom

panel). For the case h = 1/100, because of the heavy tail we further split the

right tail region into two smaller regions where different Chebyshev polynomials are

developed, making a total of five separate regions: [10−12, 0.3364), [0.3364, 0.7854),

[0.7854, 0.9936), [0.9936, 0.9997) and [0.9997, 1− 10−12] with degrees 24, 19, 18, 19

and 31, respectively. The case h = 2 is corresponding to Z ′ = Z/τ 2, where the

approximated polynomials have degrees between 22 and 27 in the four regimes. The

errors for both circumstances are fluctuating at the level of 10−12. See Appendix B

for more results of the other cases.

In summary, we have detailed the approximation procedures for the inverse dis-

tribution function F−1
SP

(u) taking into account the various values that P and u can

take. The coefficients can be calculated and stored outside the Monte Carlo loop

due to their independence of the model parameters. With all these accurate and

reliable coefficients then imported to Matlab, further Chebyshev approximations are

evaluated by Clenshaw’s recurrence formula, see Lemma 2.3.5. Thus, for any P > 0,

SP
d

== Y P
2 can be sampled repeatedly with high efficiency using either Algorithm

4.2 or Algorithm 4.5 depending on the value of P .
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Numerical analysis

In the previous three chapters, we have developed a direct inversion scheme to

simulate the conditional time integrated variance process based on the series repre-

sentation as described in Theorem 3.2.1. In this chapter, we test our new method by

pricing four challenging European call options in the Heston model with parameter

values presented in Table 4.1. These four cases are corresponding to a long-dated

FX option, a long-dated interest rate option, an equity option and an S&P 500 index

option, respectively. Two path-dependent options including an Asian option with

yearly fixings (see Smith [64], Haastrecht and Pelsser [66] and Malham and Wiese

[51]) and a digital double no touch barrier option (see Lord, Koekkoek and Van Dijk

[50] and Malham and Wiese [51]) are also tested with parameter values shown in

Table 6.1.

We compare our method with the gamma expansion of Glasserman and Kim

[32] chosen as a benchmark, where they conclude that their method outperforms

the exact scheme of Broadie and Kaya [15] by reducing the computation time with

a factor of 102 to 103. Apart from that, the efficiency of the new method is also

compared to Lord, Koekkoek and Van Dijk’s [50] full truncation Euler scheme. This

is a standard time discretization method, which seems to produce the smallest bias

among all Euler schemes in practice.
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Table 6.1: Parameters for path-dependent options for the Heston model.

Parameters Case Asian Case Barrier

κ 1.0407 0.5

θ 0.0586 0.04

σ 0.5196 1

ρ −0.6747 0

t 4 1

v0 0.0194 0.04

S0 100 100

r 0 0

δ 0.9035 0.08

6.1 Time integrated conditional variance

Before giving simulation results for option prices, we first illustrate the performance

in the light of accuracy of our new method for sampling the conditional integral

of the variance process. Recall from Section 3.1 that our objective is to sample

from the distribution of the random variable
∫ t
0
Vs ds given its endpoints V0 and Vt,

denoted by Ī, i.e.

Ī =

(∫ t

0

Vs ds

∣∣∣∣V0 = v0, Vt = vt

)
=

4

σ2

(∫ τ

0

Ãs ds

∣∣∣∣Ã0 = a0, Ãτ = aτ

)
4

σ2
I,

under the probability measure Q. We have decomposed the integral into the sum

of three independent series after measure transformation. Among the realisation of

those three series, the first one is truncated with tail approximated by a moment-

matching gamma random variable and the remaining two series are simulated exactly

by direct inversion. In contrast, Glasserman and Kim [32] apply their decomposi-

tion under the origin measure through truncation of each series with approximation

preserving the first two moments for the remainder. To demonstrate the accuracy
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of the sampling methods for Ī, we focus on its first four moments. In particular,

we show the differences between the sample moments and the true moments us-

ing the four sets of parameters for the European options. The true moments can be

straightforwardly calculated by evaluating the respective derivatives of the following

moment generating function derived by Broadie and Kaya [15] at the origin:

E
[
exp

(
−bĪ

)]
=
γ (b) exp

(
−1

2
(γ (b)− κ) t

)
(1− exp (−κt))

κ (1− exp (−γ (b) t))

· exp

[
v0 + vt
σ2

(
κ (1 + exp (−κt))

1− exp (−κt)
− γ (b) (1 + exp (−γ (b) t))

1− exp (−γ (b) t)

)]

·
Iν

(
4γ(b)

√
v0vt

σ2

exp (− 1
2
γ(b)t)

1−exp (−γ(b)t)

)
Iν

(
4κ
√
v0vt
σ2

exp (− 1
2
κt)

1−exp (−κt)

) ,

where γ (b) =
√
κ2 + 2σ2b and ν = δ/2 − 1. Table 6.2 provides the exact moments

obtained via Maple for all four cases considered with three distinct values of vt each.

In Figure 6.1 and Figure 6.2 the absolute errors in the first four moments are

displayed for simulating the conditional integral Ī with different values of vt using

our new method. For comparison, we include the results by employing the gamma

expansion from Glasserman and Kim [32] as well. For both methods, we apply

tail approximations with truncation level increasing in integers. The number of

samples generated in each case is 5 · 107. The dashed lines represent the level of

logarithmic error, below which the errors are statistically insignificant at the level of

three standard deviations. The three panels shown in Figure 6.1 from top to bottom

correspond to the three representative values vt = 0.04, 4, 0.000004 for Case 1 and the

panels in Figure 6.2 correspond to the three fixed values vt = 0.010201, 0.05, 0.0025

(top to bottom) for Case 4.

We observe that most errors for the first two moments across different values of

vt and truncation levels for both Case 1 and 4 are not significantly different from

zero at the level of three standard deviations, suggesting both methods achieve high

accuracy for these two moments as expected. This is consistent with the theory

as tail simulation in each method is designed such that the first two moments are
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matched. In other words, the simulations should lead to the exact first and second

moments in principle, whence only Monte Carlo noise with a scaling as the inverse

of the square root of the sample size, i.e., (5 · 107)
−1/2

, is observed.

Table 6.2: True nth moment of Ī

Case 1

n
vt 0.000004 0.04 4

1 0.32106 0.40002 8.20987

2 0.78953 1.12915 96.13869

3 5.08077 8.25777 1523.80429

4 52.33534 96.28896 30770.60608

Case 2

n
vt 0.000004 0.04 0.4

1 0.46952 0.60008 1.77502

2 2.27912 3.41708 15.18175

3 29.60642 51.53938 287.81493

4 610.31254 1223.33275 8066.07463

Case 3

n
vt 0.000009 0.09 0.9

1 0.36119 0.45002 1.24925

2 0.32352 0.47507 2.54633

3 0.56474 0.95331 7.79412

4 1.51400 2.91212 32.38336

Case 4

n
vt 0.0025 0.010201 0.05

1 1.49633 · 10−2 1.61887 · 10−2 2.25215 · 10−2

2 3.11870 · 10−4 3.61014 · 10−4 6.62850 · 10−4

3 8.88968 · 10−6 1.09094 · 10−5 2.52008 · 10−5

4 3.33844 · 10−7 4.31598 · 10−7 1.20806 · 10−6
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(a) Case 1: v0 = vt = 0.04

(b) Case 1: v0 = 0.04, vt = 4

Figure 6.1: We indicate the absolute errors in the first four moments of the con-
ditional integral Ī simulated by direct inversion and gamma expansion versus the
truncation levels for Case 1 with different values for vt. Both methods are imple-
mented with tail simulation. We perform 5 ·107 simulations for each case. Below the
dashed line, the errors are not statistically significant at the level of three standard
deviations.

Remark 6.1

We note that the absolute error in the fourth moment for Case 1 with vt = 4, shown

in the lower right panel in Figure 6.1b, is much higher compared to that when
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(c) Case 1: v0 = 0.04, vt = 0.000004

Figure 6.1: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 1 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 107 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.

(a) Case 4: v0 = vt = 0.010201

Figure 6.2: We indicate the absolute errors in the first four moments of the con-
ditional integral Ī simulated by direct inversion and gamma expansion versus the
truncation levels for Case 4 with different values for vt. Both methods are imple-
mented with tail simulation. We perform 5 ·107 simulations for each case. Below the
dashed line, the errors are not statistically significant at the level of three standard
deviations.
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vt = 0.04 and vt = 0.000004, shown in the two lower right panels in Figure 6.1a and

Figure 6.1c, respectively. This is due to the fact that the fourth moment for vt = 4

has a much larger magnitude than the other two cases, which can be observed from

Table 6.2

For the higher moments, the errors of the direct inversion are fluctuating at some

level below the statistical significance for all circumstances considered. These errors

are so small that a decreasing trend is not visible when increasing the truncation

level. In contrast, with the increment of the truncation levels, the errors of the

gamma expansion first exhibit a decaying pattern until the curves become horizontal.

For example, the behaviour of the decreasing errors of the third and fourth moments

is obvious when the truncation level is increased from one to two. The falling

tendency appears to be more significant when we increase the sample size, thus,

reduce the Monte Carlo effect, see, for example, the lower panels in Figure 6.3a,

Figure 6.3b and Figure 6.3c and the discussions there for Case 1 with sample size

increased by 10. This suggests that there exists some bias in the gamma expansion

with small truncation levels while the direct inversion with lower truncation levels

has the same accuracy as that with higher ones.

While the figures for Case 1 and Case 4 have many details in common, they also

reveal noteworthy differences in the first two moments. As illustrated in the upper

panels in Figure 6.2a, Figure 6.2b and Figure 6.2c for Case 4, most of the first and

second moment errors in the direct inversion are slightly higher compared to those

in the gamma expansion at the same truncation level. Errors of the two schemes

considered in the first two moments for Case 1 on the other hand seem to be of the

same order to some extent with the same truncation level, which can be seen from

the upper panels in Figure 6.1a, Figure 6.1b and Figure 6.1c. In order to find a

plausible explanation for this difference, we increase the sample size by a factor of

10 and plot the resulting errors versus the truncation levels from 1 to 5 in Figure

6.3 and Figure 6.4.

For Case 1, Figure 6.3 demonstrates the errors in all four moments based on

the direct inversion are decreased as expected, i.e., proportional to the reciprocal

of the square root of the sample size across all the values of vt and truncation
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(b) Case 4: v0 = 0.010201, vt = 0.05

Figure 6.2: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 4 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 107 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.

(c) Case 4: v0 = 0.010201, vt = 0.0025

Figure 6.2: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 4 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 107 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.
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levels. This confirms that the moment errors observed in Figure 6.1 using the direct

inversion are overwhelmed by the Monte Carlo error. On the other hand, for the

gamma expansion we note in the upper panels of each subplots that the first two

moments of the simulations for all five truncation levels are indeed matched with

errors improving roughly according to the expected scaling when increasing the

sample size. However, we see in the lower panels that the errors in the third and

fourth moments hardly show any changes for lower truncation levels such as one

and two while the accuracy for the other truncation levels is improved with the

increase of the sample size. In fact, after reducing the Monte Carlo noise, there

exists an even more clear decreasing trend for the higher order moment errors with

the gamma expansion as the truncation level increases. This seems to corroborate

the observations from Figure 6.1 for Case 1, indicating that the gamma expansion

with small truncation levels exhibits some bias while the direct inversion achieves

the same accuracy, restricted by the Monte Carlo error, for all truncation levels.

(a) Case 1: v0 = vt = 0.04

Figure 6.3: We indicate the absolute errors in the first four moments of the con-
ditional integral Ī simulated by direct inversion and gamma expansion versus the
truncation levels for Case 1 with different values for vt. Both methods are imple-
mented with tail simulation. We perform 5 ·108 simulations for each case. Below the
dashed line, the errors are not statistically significant at the level of three standard
deviations.

In comparison, Figure 6.4 shows different behaviour for the errors related to the
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(b) Case 1: v0 = 0.04, vt = 4

(c) Case 1: v0 = 0.04, vt = 0.000004

Figure 6.3: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 1 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 108 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.
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direct inversion for Case 4 while similar conclusion can be reached for the gamma

expansion as Case 1. More specifically, we notice that all moment errors in direct

inversion sampling for Case 4 are invariant to increasing the sample size when the

truncation levels are fixed. Further we observe that the errors, all remaining steady

across a set of different truncation levels, become statistically significant when the

number of samples is increased, especially for the first and second moments. Thus,

this implies in Case 4 the direct inversion performs equally well for all truncation

levels, nevertheless, the accuracy of which is overridden by some bias. We should not

fail to mention that the bias is roughly of the same order as the Monte Carlo error

with 5 · 107 samples, whence it is not reflected in Figure 6.2. This accounts for the

finding for Case 4 that the first and second moment errors for the direct inversion

are always slightly larger than those for gamma expansion, where only Monte Carlo

error is in presence. We give a possible explanation for this bias as follows.

(a) Case 4: v0 = vt = 0.010201

Figure 6.4: We indicate the absolute errors in the first four moments of the con-
ditional integral Ī simulated by direct inversion and gamma expansion versus the
truncation levels for Case 4 with different values for vt. Both methods are imple-
mented with tail simulation. We perform 5 ·108 simulations for each case. Below the
dashed line, the errors are not statistically significant at the level of three standard
deviations.

The reason for the bias with the direct inversion method for Case 4 lies in the

arithmetic precision we use for the parameter h, which is related to the random

variable X2. Recall that the proposed decomposition requires the rational parameter
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(b) Case 4: v0 = 0.010201, vt = 0.05

(c) Case 4: v0 = 0.010201, vt = 0.0025

Figure 6.4: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 4 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 108 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.
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h is given as a decimal with three significant figures. Let h̃ stand for the rounded

number and X̃2 denote the approximation to X2 by replacing h with h̃. Next, we

give the analytical expressions for the exact errors in the first four moments of X2.

Directly computing its moments using the derivatives of the moment generating

function (3.6) evaluated at the origin, we can write

E [X2] =
1

3
hτ 2,

E
[
X2

2

]
=

(
2

45
h+

1

9
h2
)
τ 4,

E
[
X3

2

]
=

(
16

945
h+

2

45
h2 +

1

27
h3
)
τ 6,

E
[
X4

2

]
=

(
16

1575
h+

404

14175
h2 +

4

135
h3 +

1

81
h4
)
τ 8.

Then, the corresponding relative errors are∣∣∣E [X2]− E
[
X̃2

]∣∣∣
E [X2]

=

∣∣∣h− h̃∣∣∣
h

,

∣∣∣E [X2
2 ]− E

[
X̃2

2
]∣∣∣

E [X2
2 ]

=

∣∣∣2(h− h̃)+ 5
(
h2 − h̃2

)∣∣∣
2h+ 5h2

,

∣∣∣E [X3
2 ]− E

[
X̃2

3
]∣∣∣

E [X3
2 ]

=

∣∣∣16
(
h− h̃

)
+ 42

(
h2 − h̃2

)
+ 35

(
h3 − h̃3

)∣∣∣
16h+ 42h2 + 35h3

,

∣∣∣E [X4
2 ]− E

[
X̃2

4
]∣∣∣

E [X4
2 ]

=

∣∣∣144
(
h− h̃

)
+ 404

(
h2 − h̃2

)
+ 420

(
h3 − h̃3

)
+ 175

(
h4 − h̃4

)∣∣∣
144h+ 404h2 + 420h3 + 175h4

.

The above equations show a linear scaling of the moment errors of X2 in terms

of the discrepancy between the true value h and the approximated value h̃. Table

6.3 quotes the values for h and h̃ for all four cases considered. Note that for Case

1 and Case 3 accurate values of h are used while the relative errors for Case 2 and

Case 4 are of order 10−3 and 10−4, respectively. In Figure 6.5 the panels show

the relative errors in the first four moments of X2 for Case 1 to Case 4 using 108

and 109 simulations. For Case 1 and Case 3, by successively increasing the sample
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size the high accuracy for the first four moments of X2 sampled by direct inversion

Algorithm 4.5 is indeed limited by the Monte Carlo error, which improves roughly

according to the expected scale. However, the errors are invariant for Case 2 and

Case 4 when increasing the sample size. For these two cases, the systematic Monte

Carlo error is lower than the bias caused by replacing the true value h with the

approximated value h̃. Hence, the errors reflected in Figure 6.5, dominated by the

bias, fail to show improvement when the sample size is increased by a factor of 10.

Table 6.3: True value h and rounded value h̃.

Case 1 Case 2 Case 3 Case 4

h 0.04000 0.02963 0.18000 0.63418

h̃ 0.04000 0.02950 0.18000 0.63400

Figure 6.5: We plot the relative errors in the first four moments of X2 simulated by
direct inversion Algorithm 4.5 for Case 1 to Case 4. By increasing the sample size
by a factor of 10, we note that the accuracy in the moment errors is improved as
expected for Case 1 and Case 3. The four moment errors are invariant for Case 2
and Case 4 when increasing the sample size, suggesting possible bias in the direct
inversion for these two cases.

Based on the above analysis, we conclude that the direct inversion method for

X2 exhibits some small bias when approximation of the parameter h is applied.
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This can conceivably lead to the bias of the general direct inversion scheme for the

conditional integral Ī. However, this bias has nothing to do with the development of

the method, but is associated with the decomposition technique and the arithmetic

precision involved. Without loss of generality, this method can be extended to allow

for a finer decomposition of the parameter h given to any number of decimal places.

In this sense, we expect that the accuracy available for this method will become

more apparent.

6.2 Option price

In this section, we apply the direct inversion method combined with the classical

Monte Carlo approach to the pricing of options. The prices for the options considered

here will depend on a set of observed asset prices at various given times. Under the

new scheme, observations of the asset prices are obtained through almost exact

simulation, i.e. Algorithm 4.1, where the integrated conditional variance process is

realised by acceptance-rejection sampling of Algorithm 4.7 and series decomposition

of Theorem 3.2.1. These series are simulated using truncation and direct inversion,

see Algorithm 4.2-4.6.

For comparison, Glasserman and Kim’s [32] gamma expansion is implemented

as well in this section. They also apply the almost exact simulation method to

generate samples for the asset price. The difference is that random samples of the

time integral of the variance process are produced under the original measure by

adding three independent samples of random variables, with each one represented

in terms of series of weighted gamma random variables and simulated by series

truncation.

A further comparison is performed using the full truncation scheme of Lord,

Koekkoek and Van Dijk’s [50]. This time stepping method simulates the asset price

and variance on discrete time grids. Thus, multiple time steps, depending on the step

size ∆t under consideration, are required when pricing a European option, whilst

the (almost) exact simulation scheme simulates the variables at maturity within a

single step.
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We present the numerical results for pricing four European call options and two

path-dependent options, including an Asian option and a barrier option, in the

following sections.

6.2.1 European options

For all European options considered, we investigate the performance of the three

simulation schemes mentioned above with three strike levels for each: at the money

K = 100, out of the money K = 140 and in the money K = 60. As an accurate

benchmark for comparison, we use the numerical result of the closed form solution

given in Proposition 1.1.4.

Table 6.4: Estimated biases with standard errors in parentheses using 5 · 107 paths
and truncation level M for European call options with strike K

K = 100

Case 1 Case 2

True price 13.085 16.649

M = 1
Direct inversion 0.06833 (0.00188) 0.09125 (0.00672)

Gamma expansion 0.98501 (0.00182) 0.81935 (0.00638)

M = 5
Direct inversion 0.00213 (0.00188) 0.01262 (0.00673)

Gamma expansion 0.04155 (0.00188) 0.05609 (0.00642)

M = 10
Direct inversion 0.00202 (0.00188) 0.00184 (0.00649)

Gamma expansion 0.00104 (0.00188) 0.00086 (0.00662)

Case 3 Case 4

True price 33.597 6.806

M = 1
Direct inversion 0.01317 (0.00842) 0.00394 (0.00105)

Gamma expansion 0.06724 (0.00828) 0.00729 (0.00105)

M = 5
Direct inversion 0.00443 (0.00826) 0.00174 (0.00105)

Gamma expansion 0.00242 (0.00827) 0.00142 (0.00105)

M = 10
Direct inversion 0.00305 (0.00828) 0.00106 (0.00105)

Gamma expansion 0.01493 (0.00840) 0.00186 (0.00105)
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To demonstrate the truncation effect of the two almost exact schemes, i.e. the

gamma expansion and the direct inversion, we first summarise in Table 6.4 the

estimated biases resulting from these two sampling methods using 5 · 107 trials with

numbers in the parentheses being the standard errors. For each case, we include

the results for three truncation levels, denoted by M : M = 1, M = 5 and M = 10.

Recall from Section 4.1 and Section 4.2 that we only truncate the first series in the

decomposition of the integrated conditional variance, i.e. Theorem 3.2.1, with the

other two series sampled exactly by direction inversion. In contrast, all three series

in the gamma expansion are approximated by finite sums.

Table 6.4: (cont.) Estimated biases with standard errors in parentheses using 5 ·107

paths and truncation level M for European call options with strike K

K = 140

Case 1 Case 2

True price 0.296 5.138

M = 1
Direct inversion 0.00574 (0.00036) 0.04257 (0.00556)

Gamma expansion 0.06760 (0.00033) 0.49502 (0.00572)

M = 5
Direct inversion 0.00051 (0.00036) 0.01975 (0.00552)

Gamma expansion 0.00134 (0.00036) 0.03068 (0.00592)

M = 10
Direct inversion 0.00040 (0.00036) 0.02029 (0.00577)

Gamma expansion 0.00086 (0.00036) 0.01091 (0.00578)

Case 3 Case 4

True price 18.157 0.0014

M = 1
Direct inversion 0.01067 (0.00724) 3.469 · 10−5 (1.443 · 10−5)

Gamma expansion 0.21657 (0.00727) 3.003 · 10−5 (1.437 · 10−5)

M = 5
Direct inversion 0.00528 (0.00728) 5.020 · 10−5 (1.453 · 10−5)

Gamma expansion 0.00297 (0.00725) 2.403 · 10−5 (1.429 · 10−5)

M = 10
Direct inversion 0.00031 (0.00724) 2.641 · 10−5 (1.455 · 10−5)

Gamma expansion 0.00469 (0.00744) 2.886 · 10−5 (1.436 · 10−5)

The table indicates that the decline of the bias gradually slows down with the
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increment of the truncation level for both schemes. In terms of accuracy, the gamma

expansion shares very similar conclusions as the new method for large M . Despite

this, it turns out that much more significant biases remain in the gamma approxi-

mation with small M compared to the direct inversion, especially for the cases with

large maturity time t such as Case 1 with t = 10 and Case 2 with t = 15. This

observation confirms the earlier finding that the gamma expansion yields biased

estimators when small truncation level is applied.

Table 6.4: (cont.) Estimated biases with standard errors in parentheses using 5 ·107

paths and truncation level M for European call options with strike K

K = 60

Case 1 Case 2

True price 44.330 45.287

M = 1
Direct inversion 0.01653 (0.00355) 0.06045 (0.00730)

Gamma expansion 0.55146 (0.00363) 0.42595 (0.00753)

M = 5
Direct inversion 0.00312 (0.00354) 0.01563 (0.00728)

Gamma expansion 0.00506 (0.00355) 0.01752 (0.00723)

M = 10
Direct inversion 0.00062 (0.00354) 0.01134 (0.00748)

Gamma expansion 0.00110 (0.00354) 0.02413 (0.00713)

Case 3 Case 4

True price 56.575 41.914

M = 1
Direct inversion 0.01044 (0.00917) 0.00604 (0.00177)

Gamma expansion 0.03257 (0.00913) 0.00076 (0.00177)

M = 5
Direct inversion 0.01495 (0.00907) 0.00405 (0.00177)

Gamma expansion 0.00677 (0.00906) 0.00135 (0.00177)

M = 10
Direct inversion 0.01175 (0.00906) 0.00330 (0.00177)

Gamma expansion 0.00650 (0.00903) 0.00216 (0.00177)

Next, we show the tradeoff between speed and accuracy of the direct inversion

method and the gamma expansion. Figure 6.6 plots the root mean square error for

the price of an at the money European call option with strike K = 100 against the
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(a) Case 1

(b) Case 2

Figure 6.6: We show the root mean square error in the option price with K = 100
versus the CPU time required to complete the simulation on a log-log10 scale for
Case 1 to Case 4. We use a sample size of 5 · 107 with truncation levels increasing
in integers from 1 to 10.
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(c) Case 3

(d) Case 4

Figure 6.6: (cont.) We show the root mean square error in the option price with
K = 100 versus the CPU time required to complete the simulation on a log-log10

scale for Case 1 to Case 4. We use a sample size of 5 · 107 with truncation levels
increasing in integers from 1 to 10.
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CPU time required to complete the simulation on a log-log10 scale for Case 1 to Case

4. For both methods, we use a sample size of 5 · 107 and truncate after M terms,

increasing M in integers from 1 to 10.

For large maturity, i.e. Case 1 and Case 2, the direct inversion exhibits a faster

convergence rate, revealed by the steeper slope in Figure 6.6a and Figure 6.6b, in

contrast with the gamma expansion. Indeed, truncation after three terms already

provides a satisfactory estimator with error curve eventually becoming noisy in the

larger M regime. To obtain the same accuracy, many more terms up to M = 10

are required for the gamma approximation. For small maturity such as Case 4,

increasing M from one to two indeed helps to reduce the error. However, further

increase in M does not seem to bring improvement to the error for both methods,

as seen from the horizontal error curves with small fluctuations in Figure 6.6d.

This implies that approximations with small M are sufficient to achieve acceptable

accuracy.

With regard to the computing time, the gamma expansion is almost two to three

times slower than the direct inversion with similar accuracy for all cases except for

Case 4. While the new methods for Case 1 to Case 3 are roughly of the same

speed, that for Case 4 takes much more time, in which more effort is needed for

the acceptance-rejection sampling due to the slightly unfavourable values for the

model parameters. Although the time needed for the direct inversion is marginally

more than the gamma expansion for Case 4 with M = 1, as the desired accuracy is

increased the new method requires less computational budget.

We end this section with comparisons between the almost exact methods and the

full truncation Euler scheme, which is a standard time discretization method with

typical weak convergence order of one. In Figure 6.7, we plot the root mean square

error in the option price as a function of the CPU time required on a log-log10 scale

for all schemes. For the two almost exact methods, we choose to use truncation level

M = 5. For the full truncation Euler method, we set the number of time steps equal

to the square root of the sample size. This is motivated by Duffie and Glynn [24]’s

optimal allocation for the number of time steps, which is proportional to the square

root of the number of trials for methods with weak order of convergence being equal
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to one; see Broadie and Kaya [15] and Lord, Koekkoek and Van Dijk [50].

Figure 6.7: We show the convergence of the root mean square error in the option
price for Case 1 to Case 4 with K = 100 of gamma expansion and direction inversion,
both at a truncation level M = 5, and full truncation Euler scheme, with number
of time steps equal to the square root of the sample size.

We can see from the upper panels in Figure 6.7 that the bias in the gamma

expansion with M = 5 for Case 1 and Case 2 eventually dominates the root mean

square error when the number of sample trails increases. By comparison, the root

mean square errors for the direct inversion and full truncation Euler scheme are

declining monotonically, with the former presenting a more rapid rate with reduced

computational cost. For Case 3 and Case 4, the two almost exact methods both

outperform the full truncation Euler scheme, which has a slower convergence rate

reflected by the less steeper slope in the graph. While the gamma expansion and the

direct inversion exhibit similar convergence rates, the computation time required by

the latter is reduced by a factor of two to three. In summary, we conclude that the

performance of the direct inversion is the best among the three schemes considered

here.

Remark 6.2

Additional numerical tests for in the money and out of the money European call

options with strike K = 60 and K = 140, respectively, are reported in Appendix C,

where similar conclusions can be reached as above. Figures displaying the absolute
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errors in the first four moments of the conditional integral Ī for Case 2 and Case 3

using the two almost exact schemes with 5 ·107 and 5 ·108 samples are also provided

therein.

6.2.2 Path-dependent options

In this section, we test the three methods we have considered, the gamma expansion,

the direct inversion and the full truncation Euler scheme by pricing options with

payoffs depending on sample paths.

Figure 6.8: We show the convergence of the root mean square error in the option
price for Case Asian with K = 100 of gamma expansion and direction inversion,
both at a truncation level M = 1, and full truncation Euler scheme, with number
of time steps equal to the square root of the sample size.

We first consider an at the money Asian option with yearly fixings, the payoff

of which is determined by the average of asset prices at the end of each year. We

show in Figure 6.8 the root mean square error of the price versus the CPU time

on a log-log10 scale. For the two almost exact schemes, we truncate the series after

M = 1 and simulate the asset prices for each year. Within one year, the terminal

value is obtained directly using a single step. For the time discretization scheme,

multiple steps are needed for each year. In this test, the number of time steps is

taken to be the square root of the sample size in a similar manner to Broadie and

Kaya [15] and Smith [64].
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We observe that both the gamma expansion and the direct inversion, even with

a lower truncation level, deliver similar accuracy compared to the full truncation

scheme for small sample sizes. However when the number of simulations increases,

bias starts to dominate the root mean square error for all three methods, which

decelerates its decrease. Among the above three methods, the direct inversion pro-

duces the smallest bias. In terms of the computing time, very similar conclusions can

be drawn as the European option cases. For similar accuracy, the direct inversion

is approximately 2 to 7 times faster than the gamma expansion. The time required

by the full truncation Euler scheme is by far the largest.

We end this section with a test for pricing a digital double no touch barrier option.

The payoff for such an option is either one or zero unit of currency depending on

whether the barriers have been crossed. In Table 6.5, we report the estimated price

and standard error together with the CPU time of the direct inversion and gamma

expansion at truncation level M = 1 for a double no touch barrier option with

barriers 90 and 110. We sample a total of 106 paths for each case. We increase the

number of timesteps per year from 1 to 128 and monitor at each timestep if the

asset price has hit one of the two barriers.

We see from Table 6.5 that as we decrease the stepsize, the estimated price of

both direct inversion and gamma expansion is decreasing monotonically. This is in

accordance with our expectation since when more dates are being monitored, there

are more chances for the asset price to cross the barriers. Because of the nature

of these two methods, we expect their estimated price will eventually be almost

exact with negligible truncation errors when the asset price is monitored on a more

frequent basis, for instance, every trading day. The results here are also consistent

with those of the four schemes tested in Malham and Wiese [51, Table 5] and the

PT, FT and ABR scheme in Lord, Koekkoek and Van Dijk [50, Table 7] in terms of

accuracy. Similar conclusions can be reached as the cases for European and Asian

options in terms of the computational time. The time required for the gamma

expansion is 1.5 to 3 times more than the direct inversion.

124



Chapter 6: Numerical analysis

Table 6.5: Estimated prices with standard errors and CPU time using 106 paths and
truncation level M = 1 for the digital double no touch barrier option with barriers
at 90 and 110.

Stepsize Direct inversion Gamma expansion

1

Estimated price 0.68944 0.68908

Standard error 0.00046 0.00046

CPU time 121.33 179.86

1/2

Estimated price 0.65891 0.65892

Standard error 0.00047 0.00047

CPU time 202.52 328.76

1/4

Estimated price 0.63105 0.63182

Standard error 0.00048 0.00048

CPU time 353.68 593.03

1/8

Estimated price 0.60544 0.60565

Standard error 0.00049 0.00049

CPU time 653.35 1152.22

1/16

Estimated price 0.58364 0.58424

Standard error 0.00049 0.00049

CPU time 1224.06 2278.41

1/32

Estimated price 0.56563 0.56556

Standard error 0.00050 0.00050

CPU time 2173.38 3952.07

1/64

Estimated price 0.54983 0.54943

Standard error 0.00050 0.00050

CPU time 4984.79 9904.97

1/128

Estimated price 0.53743 0.53763

Standard error 0.00050 0.00050

CPU time 8020.93 24521.84
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Remark 6.3

The full truncation Euler scheme has also been tested for the barrier option. Al-

though it is the fastest, we are concerned that the accuracy it delivers for the step-

sizes shown in Table 6.5 is not consistent with the other various schemes in Malham

and Wiese [51] and Lord, Koekkoek and Van Dijk [50].

In this chapter, we have compared the numerical efficiency of our new method

with that of the gamma approximation from Glasserman and Kim [32] through two

aspects. The first comparison is made directly on the first four moments of the

conditional integral of the variance process. After that, we look into the errors

and computing time for pricing both path-independent and path-dependent options

with different levels of strike. The results are further compared with a standard

time stepping method, i.e. the full truncation Euler scheme. We conclude that

the two almost exact methods outperform the full truncation Euler scheme from

the perspective of convergence rate. While the new method delivers comparable

accuracy as the gamma expansion, the faster computation speed makes the former

clearly preferable to the latter.
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Conclusions

Efficient simulation for the conditional time integrated variance process is a key

step for the exact sampling of the stock price under the Heston stochastic volatility

model. This thesis proposes a new method to realise this quantity. On combining our

results with the method of Broadie and Kaya [15], almost exact simulations of the

stock price and variance can be generated on the basis of their exact distributions.

We start our thesis by presenting several necessary properties of the Heston

model in Chapter 1, including the transition laws of the variance and stock price

processes and closed form solutions for standard vanilla option prices. Moreover,

we also review the existing numerical schemes that are popular when sampling the

Heston model.

In Chapter 2, we set up the foundations for our further analysis. In particular,

a series of concepts regarding asymptotics are introduced therein. We also describe

two classes of conditional distributions which are frequently revisited in Chapter 3:

the squared Bessel bridge and the squared OU bridge, with their relationships and

decomposition forms stated as well.

The following chapter provides the main theorem on the conditional integral.

After time rescaling and measure transformation, the integral is expressed in terms

of a squared Bessel bridge, which is then represented as sums of three independent

random variables written in the form of double infinite series under the new prob-

ability measure. Connections between the probability distributions of the integral
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with respect to the original and new measures are developed, suggesting a possible

way to sample our target.

Chapter 4 addresses the problems related to the practical implementation of

the theorems derived in Chapter 3. Specifically, we construct direct inversion algo-

rithms for the simulation of each series among the decomposition with additional

tail approximation for the first one. The direct inversions require accurate and ef-

fective computation of some inverse distribution functions, which are approximated

by Chebyshev polynomials. These techniques are designed such that the entire

simulation problem is reduced to evaluating predetermined polynomials with coef-

ficients tabulated in advance. Once samples under the new measure are obtained,

acceptance-rejection method is applied to trace back to the original measure under

consideration.

In Chapter 5, we outline the details for the development of the Chebyshev polyno-

mial approximations. We derive the limiting behaviour of the distribution functions

through inverse Fourier transform of the characteristic functions. Based upon that,

we identify proper scaling factors for the approximations. The suggested approxi-

mations are of high accuracy with a uniform error of 10−12.

Numerical comparisons with one of the leading almost exact methods to simu-

lating the Heston model, i.e. the gamma expansion from Glasserman and Kim [32],

are given in Chapter 6. We examine the truncation effect of these two approaches

by illustrating the errors in the moments of the conditional integral and the prices

of the European call options. Evidence reveals that much more significant errors

exist in the gamma approximation with small truncation level. Apart from that,

two path-dependent options including an Asian option and a barrier option are also

tested using the above two methods. Further comparisons with a standard time

discretization method, i.e. the full truncation Euler scheme of Lord, Koekkoek and

Van Dijk [50], are performed in pricing options. We find that while the two almost

exact methods have similar convergence rate with the full truncation Euler scheme

exhibiting a slower rate, our new method requires the least computational budget

for similar accuracy.

Another advantage of our new method is that computation of almost exact option
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price derivatives, i.e. the Greeks, becomes possible without additional cost. Specif-

ically, we can generalise the exact simulation method of the Greeks by Broadie and

Kaya [14] to generate almost unbiased estimators. This method is based on the

(almost) exact simulation of the Heston model given in Algorithm 4.1 together with

pathwise and likelihood ratio approaches.

Suppose that we are interested in finding the derivative of prices with respect to

some model parameter θ. In the pathwise method, the discounted payoff, denoted

by f , is viewed as a function of θ and hence the option price, denoted by α, takes

the form

α (θ) = E [f (θ)] .

To find the derivative of α with respect to θ, we write

α′ (θ) =
d

dθ
E [f (θ)] = E

[
d

dθ
f (θ)

]
,

if the interchange of differentiation and expectation is allowed. Then, df (θ) /dθ is

an unbiased estimator for α′ (θ). Now we see that the pathwise method differenti-

ates the payoffs to estimate the Greeks, where certain continuity of the discounted

payoff function is required for unbiasedness; see Glasserman [31, Chapter 7.2.2] for

a detailed discussion of its conditions.

In the likelihood ratio method, the discounted payoff is treated as a function of a

random vector S, representing values of an asset at multiple times for example, with

a probability density function depending on θ. If we denote the density function of

S by gθ, then we have

α′ (θ) =
d

dθ
E [f (S)] =

∫
f (s)

d

dθ
gθ (s) ds =

∫
f (s)

g′θ (s)

gθ (s)
gθ (s) ds = E

[
f (S)

g′θ (S)

gθ (S)

]
,

assuming the interchange of differentiation and integration can be justified. Thus,

f (S) g′θ (S) /gθ (S) is an unbiased estimator of α′ (θ). Again, the validity of this

method relies on some regularity conditions, which, however, are often satisfied

since probability density functions are typically smooth.
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For the practical implementation of the above two estimators, Broadie and Kaya

[14] express the asset price as a series of lognormal random variables by conditioning

on the path followed by the variance process. The lognormal random variables

depend only on the integral of the variance process, which can be simulated almost

exactly by taking advantage of the direct inversion method designed in this thesis.

Therefore, we expect that almost exact estimators for the Greeks can be generated

without too much computational effort.

The series representation and sampling techniques developed here can also be

transferable to the generalised squared OU process xt with parameter b ∈ R and

dimension δ > 0 such that

dxt = (δ + 2bxt) dt+ 2
√
xt dWt,

where Wt denotes a standard Brownian motion. Although in this thesis we focus

only on the case 0 < δ < 2, the present result can be applied to other cases δ ≥ 2.

In essence we need to find an appropriate decomposition for δ and hence establish

efficient Chebyshev polynomial approximations required for the resulting direct in-

version algorithm. We believe that the expansions derived in Section 5.1 and Section

5.2 will be helpful in determining the coefficients.

Lastly, we recommend a direction for future research. Our method entails an

acceptance-rejection algorithm with acceptance probability depending on model pa-

rameters. Thus, it is difficult to measure its general computational complexity,

i.e., the average number of iterations needed. Besides, in the application of risk

management and trading, the acceptance-rejection scheme is less favourable as it

will introduce considerable Monte Carlo noise in sensitivity analysis. For these rea-

sons, an alternative should be considered. One realistic way to avoid the use of

acceptance-rejection is to sample the Radon-Nikodým derivative directly under the

new probability measure instead.

130



Appendix A

Chebyshev coefficients

In the tables below, we quote the Chebyshev coefficients computed in Chapter 5 for

the approximations to the inverse distribution functions of the (standardised) sums

(ZP ) SP and Y h
2 , where Sh

d
== Y h

2 . Note that the u denotes the right boundary

point of each regime.
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Table A.1: Chebyshev coefficients cn for F−1
SP

with P = 1.

n left central middle

0 1.870164486816790e-01 4.979491420716220e-01 9.481879998153620e-01

1 7.543713026654420e-02 8.479024376573340e-02 1.331260262296900e-01

2 -8.902496689813970e-04 5.515061682001420e-03 -2.432806629044970e-04

3 5.081110592347190e-04 1.234615565280710e-03 7.536358417854170e-05

4 -6.749946441432770e-05 7.826573846201580e-05 -1.832873207509700e-05

5 1.869595919328090e-05 3.190249135857450e-05 3.735655017085910e-06

6 -4.954381513667230e-06 6.911355172727800e-07 -6.763222944593870e-07

7 1.546665396688050e-06 1.101914889591240e-06 1.152436476933680e-07

8 -5.158806635369980e-07 -4.732064488662130e-08 -1.948453255574870e-08

9 1.840226824599990e-07 4.708456855473810e-08 3.380721765672400e-09

10 -6.893572202548840e-08 -5.304437974915840e-09 -6.060338021312360e-10

11 2.688851615671340e-08 2.373716110861710e-09 1.110982538990550e-10

12 -1.083817122960260e-08 -4.052654986799920e-10 -2.059320821371500e-11

13 4.489823790157280e-09 1.347795701927130e-10 3.835128401417810e-12

14 -1.903315339772780e-09 -2.837136223549530e-11 -6.941256697800590e-13

15 8.228619256107180e-10 8.275614752183520e-12

16 -3.618241198589310e-10 -1.932522965168290e-12

17 1.614597119724730e-10 4.988201361092360e-13

18 -7.298521657921080e-11

19 3.336786065994890e-11

20 -1.540524697535400e-11

21 7.165207365475960e-12

22 -3.335368012294930e-12

23 1.513427174673910e-12

24 -5.858440022503530e-13

u

2.000000000000000e-01 6.300000000000000e-01 9.000000000000000e-01

k1 k1 k1

1.059586512649680e+01 -2.206240228024450e+01 1.146497265429040e+01

k2 k2 k2

-1.186186343393790e+00 1.000000000000000e+00 -2.084692506698210e+00
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Table A.1: (cont.) Chebyshev coefficients cn for F−1
SP

with P = 1.

n right tail right tail

0 2.147319302658020e+00 7.301291887179110e+00

1 4.666085467273610e-01 2.110381075693420e+00

2 -5.745397085771070e-06 -3.401385019474830e-12

3 3.926281274449900e-06 3.135451774873670e-12

4 -2.335817034793870e-06 -2.797671851935420e-12

5 1.221893569112290e-06 2.415971255636180e-12

6 -5.676317622953180e-07 -2.018406573717770e-12

7 2.363679020058830e-07 1.629565101375640e-12

8 -8.898571009069280e-08 -1.267921039843530e-12

9 3.052532824574800e-08 9.444179410663350e-13

10 -9.610414759815690e-09 -6.622577811449470e-13

11 2.796013299028150e-09 4.176644424605940e-13

12 -7.568881452656740e-10 -2.012958534474450e-13

13 1.920738140207490e-10

14 -4.610765872702790e-11

15 1.059477675547800e-11

16 -2.363411529421280e-12

17 4.992754651101120e-13

18

19

20

21

22

23

24

u

9.990000000000000e-01

k1 k1

3.257208614274380e+00 7.201627100158970e-01

k2 k2

-1.876363800261230e+00 -1.635958636579130e+00
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Table A.2: Chebyshev coefficients cn for F−1
ZP

with P = 10.

n left tail left central

0 -4.186236205146250e+00 -1.966613010380010e+00

1 1.605190906754510e+00 -1.483681112879300e-02

2 1.059708264495660e-02 -5.446775372602540e-03

3 -2.569138906164220e-02 2.105452172418740e-06

4 2.657630896552880e-03 -3.250251439573260e-05

5 5.038422707739470e-04 6.250462841383680e-07

6 -1.420477191393670e-04 -2.522741048643350e-07

7 -2.983752657616170e-06 1.026418500454660e-08

8 5.644770851826920e-06 -2.286307882545840e-09

9 -4.127971330420580e-07 1.386590908961820e-10

10 -2.164910928216110e-07 -2.303940103504890e-11

11 3.970382219542570e-08 1.773158449711400e-12

12 8.721275989102100e-09 -2.474347778199780e-13

13 -3.382084859676620e-09

14 -2.332160758995600e-10

15 2.833835970869750e-10

16 -2.159881036758510e-11

17 -1.980176647976920e-11

18 5.076230137995960e-12

19 8.012161542244290e-13

20 -6.172636726201170e-13

u

3.331451575280440e-01 5.379510893093010e-01

k1 k1

-6.189978932685550e-01 -3.895807869740060e+00

k2 k2

1.058533490397160e+00 1.000000000000000e+00
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Table A.2: (cont.) Chebyshev coefficients cn for F−1
ZP

with P = 10.

n right central right tail

0 2.105468260211710e+00 1.013961870007640e+01

1 5.526660297932240e-02 5.881348912778960e+00

2 6.562580263096990e-03 1.613214220004240e+00

3 4.554851569107730e-04 3.583662354665820e-01

4 4.959544883969950e-05 6.562610713857870e-02

5 4.554114153141270e-06 1.013276567637800e-02

6 4.895102446478050e-07 1.335612973263590e-03

7 5.011014704681740e-08 1.508499455059680e-04

8 5.446620224111430e-09 1.461564610943890e-05

9 5.859569797393820e-10 1.229129368330510e-06

10 6.466760957427150e-11 9.368122509902420e-08

11 7.143472968048850e-12 6.969255008216930e-09

12 7.892055904355890e-13 5.168922908502960e-10

13 3.395515411597460e-11

14 1.469649165527180e-12

15 -3.355536462420540e-14

16

17

18

19

20

u

7.168371818502030e-01

k1 k1

4.460293975175440e+00 6.354110577138770e-01

k2 k2

-1.000000000000000e+00 -1.147724394557630e+00
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Table A.3: Chebyshev coefficients cn for F−1
ZP

with P = 50.

n left tail left central

0 -5.288942152307260e+00 -2.000965923235480e+00

1 2.354558187240890e+00 5.027272329447840e-03

2 -2.148300929212860e-01 -5.388241960386400e-03

3 1.167801704830350e-03 1.321210600565510e-04

4 4.271918579401850e-03 -3.328258515654870e-05

5 -7.367600678980360e-04 1.691117475054500e-06

6 3.190352612884990e-05 -2.758671231347400e-07

7 1.049570860070370e-05 2.011261792238410e-08

8 -2.661096411008500e-06 -2.690233651951720e-09

9 2.849363340335400e-07 2.380979895569440e-10

10 6.003686941040730e-09 -2.896342891338410e-11

11 -9.314474427911970e-09 2.851594174388340e-12

12 2.078536143889170e-09 -3.279640552952750e-13

13 -2.199997312217100e-10

14 -1.383145073419240e-11

15 1.142880443224370e-11

16 -2.619066923423380e-12

17 3.160327088396940e-13

u

3.197003565947650e-01 5.169883337643990e-01

k1 k1

-6.266377357307220e-01 -4.044263478442090e+00

k2 k2

1.082311211678360e+00 9.999999999999990e-01
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Table A.3: (cont.) Chebyshev coefficients cn for F−1
ZP

with P = 50.

n right central right tail

0 2.062558090116340e+00 8.002513934544340e+00

1 3.614884716178920e-02 4.310172977793670e+00

2 5.905537215326120e-03 9.680044235587960e-01

3 3.302424143714490e-04 1.854270427762370e-01

4 4.120186343509380e-05 3.016976801851500e-02

5 3.385543742585720e-06 4.333887776280000e-03

6 3.843164000781120e-07 5.620910828054070e-04

7 3.717029485793840e-08 6.549643858862510e-05

8 4.112363385448630e-09 6.704595648415990e-06

9 4.289267466426690e-10 5.921631388292800e-07

10 4.741128697087930e-11 4.529653831824030e-08

11 5.137505874838590e-12 3.042863599628060e-09

12 5.647548074791590e-13 1.746343337679330e-10

13 9.109476838228590e-12

14 8.873841036286460e-13

15

16

17

u

7.027660432349340e-01

k1 k1

4.294834741352050e+00 6.327817827711070e-01

k2 k2

-1.000000000000000e+00 -1.122310983565170e+00
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Table A.4: Chebyshev coefficients cn for F−1
ZP

with P = 5000.

n left tail left middle

0 -9.007526636815000e+00 -2.320006146407520e+00

1 2.127535755063470e+00 1.266023709561750e+00

2 -1.873229942604270e-01 -1.152857342660610e-01

3 1.220927893353500e-02 9.871525791146420e-03

4 -5.143519783570370e-04 -6.330801524297140e-04

5 1.053201736042580e-05 2.721250039684760e-05

6 2.597870360642370e-07 -5.511437046510560e-07

7 -3.977373581792380e-08 -9.780799116408280e-09

8 2.731783965620670e-09 7.487832322276510e-10

9 -1.221138438089840e-10 -6.846285108906070e-11

10 3.067277829880080e-12 1.419621555779360e-11

11 -1.657314975397310e-13 -1.036284107015480e-12

12 -3.034958826524900e-14

13

14

15

16

17

18

19

u

5.000000000000000e-03 5.016991626360740e-01

k1 k1

-1.210717168704150e+00 -9.809650284289560e-01

k2 k2

3.018736842909130e+00 6.356505843676840e-01
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Table A.4: (cont.) Chebyshev coefficients cn for F−1
ZP

with P = 5000.

n right middle right tail

0 2.350506283752280e+00 9.391788080584070e+00

1 1.288612184352350e+00 2.304276718789270e+00

2 1.238550415075650e-01 2.244838261893660e-01

3 1.126367631985240e-02 1.723724750804200e-02

4 8.113776712522790e-04 1.029865654753350e-03

5 4.574695148394010e-05 5.284626922206710e-05

6 2.146343317877790e-06 2.632282130705390e-06

7 1.059607255591610e-07 1.297109856324030e-07

8 6.522023447796370e-09 6.005448267256560e-09

9 3.433932966389800e-10 3.273100583196690e-10

10 7.415030905551360e-12 5.306924125563730e-11

11 -5.333234673760680e-14 2.645356635940220e-11

12 1.613648499072340e-11

13 9.700093322305410e-12

14 5.663793575999130e-12

15 3.213742114800220e-12

16 1.771549706162470e-12

17 9.437229274020540e-13

18 4.731397672671720e-13

19 1.949505078193680e-13

u

9.950000000000000e-01

k1 k1

9.857057212990940e-01 1.210983500602370e+00

k2 k2

-6.435551648966840e-01 -3.019180921864380e+00
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Table A.5: Chebyshev coefficients cn for F−1
ZP

with P = 104.

n left tail left middle

0 -8.763208308698120e+00 -2.117708885805710e+00

1 2.272856177544270e+00 1.148679380728190e+00

2 -2.195485611789300e-01 -9.719454925386660e-02

3 1.600603323734860e-02 7.829228309183660e-03

4 -7.913864835076260e-04 -4.795725327622320e-04

5 2.398092020649720e-05 2.045360216276630e-05

6 -1.924215235351760e-07 -5.013317907576720e-07

7 -3.279659242674000e-08 3.503726442772780e-09

8 3.433751594624110e-09 -1.253562317413470e-10

9 -1.944135457019680e-10 -1.311511811147320e-12

10 5.718823252641270e-12 5.140621840511810e-12

11 -3.006387310778820e-13 -4.635014571234970e-13

12

13

14

15

16

17

u

1.000000000000000e-02 5.012014905499710e-01

k1 k1

-1.115994743243930e+00 -1.054206693922630e+00

k2 k2

2.704324434390850e+00 6.099629843489590e-01
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Table A.5: (cont.) Chebyshev coefficients cn for F−1
ZP

with P = 104.

n right middle right tail

0 2.134535481408690e+00 9.022503475215680e+00

1 1.161232186820710e+00 2.401317040413510e+00

2 1.019807405937260e-01 2.487767815506420e-01

3 8.555012569847670e-03 2.028231950132690e-02

4 5.664908014626390e-04 1.266220882300120e-03

5 2.890763831163810e-05 6.623334821975800e-05

6 1.181852005087120e-06 3.326141775983180e-06

7 4.960639757165790e-08 1.667239146689460e-07

8 2.822677760359780e-09 7.705454473071610e-09

9 1.409816724283650e-10 3.768066578229160e-10

10 1.871694274577610e-12 3.560180300524010e-11

11 -1.571409536591980e-13 1.210420538657680e-11

12 7.304190736146010e-12

13 4.532327470602990e-12

14 2.727718438162450e-12

15 1.578085621557310e-12

16 8.497824077877610e-13

17 3.683334903311600e-13

u

9.900000000000000e-01

k1 k1

1.058073632931550e+00 1.115994743243930e+00

k2 k2

-6.158684948176150e-01 -2.704324434390850e+00
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Table A.6: Chebyshev coefficients cn for F−1
ZP

with P = 105.

n left tail right tail

0 -5.706926051399320e+00 5.760300411129710e+00

1 3.395553188579180e+00 3.436321449713240e+00

2 -6.300054999277720e-01 6.483188840749760e-01

3 9.838818354304640e-02 1.035993426134920e-01

4 -1.136750936655030e-02 1.252833208873680e-02

5 9.513883577249630e-04 1.161417162277510e-03

6 -6.015836221231600e-05 9.191380802217640e-05

7 3.618126012554300e-06 7.737590464616790e-06

8 -1.697979831324770e-07 6.400595433239310e-07

9 -1.897253631189280e-08 2.904203939446630e-08

10 3.326071860640010e-09 1.050861883541800e-09

11 2.442263784022650e-10 6.008685289953490e-10

12 -3.833832227759890e-11 6.651321295963480e-11

13 -1.297154428240060e-11 -1.031199486940060e-11

14 1.412983301319550e-12 -9.752972166933010e-13

15 4.089569727968860e-13 5.588332180241710e-13

u

5.003799449933160e-01

k1 k1

-5.424593574874610e-01 5.427821460191420e-01

k2 k2

8.005868439521350e-01 -8.016582768171050e-01
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Table A.7: Chebyshev coefficients cn for F−1
ZP

with P = 106.

n left tail right tail

0 -5.946145460337920e+00 5.964470382846980e+00

1 3.556004911984500e+00 3.570041770711440e+00

2 -6.801894131410160e-01 6.865586194977590e-01

3 1.092510150797910e-01 1.110985275994380e-01

4 -1.307725205702110e-02 1.349685679309470e-02

5 1.160328523663860e-03 1.237761453545620e-03

6 -8.240107479627320e-05 9.434859113712600e-05

7 5.926003936265940e-06 7.508635778142890e-06

8 -3.827985039853400e-07 5.673276390309780e-07

9 -4.939610258605130e-09 1.429761666233160e-08

10 2.191431812357590e-09 -4.002728561697650e-10

11 4.611932833470640e-10 6.107231293159660e-10

12 -4.959733545874770e-11 6.167427914388110e-11

13 -1.701165301087770e-11 -1.590293060974530e-11

14 1.492500677577930e-12 -1.334659663440940e-12

15 5.860252785293660e-13 6.358368604978550e-13

u

5.001201491665880e-01

k1 k1

-5.310898090226540e-01 5.311876095528130e-01

k2 k2

8.051645964724630e-01 -8.054970186947690e-01
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Table A.8: Chebyshev coefficients cn for F−1
Y h2

with h = 2.

n left left

0 3.746732186396810e-01 1.246285546643250e+00

1 1.195997564921540e-01 3.358246308532060e-01

2 -8.070601474351940e-03 2.386732322681120e-02

3 1.339603001568510e-03 1.294898023275990e-02

4 -2.506080830464610e-04 2.637423242240120e-03

5 5.637743633696060e-05 1.091486949977880e-03

6 -1.413866007641720e-05 3.083088185622240e-04

7 3.869664142567620e-06 1.183343193111800e-04

8 -1.132969831139660e-06 3.838648490201040e-05

9 3.501617974093610e-07 1.440406811311990e-05

10 -1.130976314574740e-07 5.002488355310480e-06

11 3.788372056248530e-08 1.869987422785930e-06

12 -1.308238855480900e-08 6.739900491698620e-07

13 4.635781671551490e-09 2.526970560301390e-07

14 -1.679323548784110e-09 9.311688370921460e-08

15 6.200204087490220e-10 3.508754493020290e-08

16 -2.327351020956820e-10 1.311638643142900e-08

17 8.863586972126330e-11 4.968660909382380e-09

18 -3.418842923801670e-11 1.875958145331950e-09

19 1.333107561719920e-11 7.141781072249230e-10

20 -5.234957827868200e-12 2.716166269988070e-10

21 2.035050527498960e-12 1.038650818883500e-10

22 -7.009107859412300e-13 3.972098592976600e-11

23 1.524237223546780e-11

24 5.838842289005870e-12

25 2.206347821363880e-12

26 7.400818875262400e-13

u

4.943694484749030e-02 8.724214735883850e-01

k1 k1

4.396896568327450e+00 1.265081819857330e+00

k2 k2

-1.301445639726460e+00 -1.662175466937440e+00
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Table A.8: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 2.

n middle right tail

0 3.527966142386780e+00 1.003328309377590e+01

1 7.472142334253430e-01 2.496706503355630e+00

2 -1.333644417363060e-02 -1.589949448670880e-02

3 2.622018509548740e-03 3.113590178926820e-03

4 -6.027577883155430e-04 -6.963073964368400e-04

5 1.515242268297150e-04 1.678769292503920e-04

6 -4.036373098988620e-05 -4.250114645375870e-05

7 1.119644049107180e-05 1.113756440553480e-05

8 -3.199289309119440e-06 -2.994727316140500e-06

9 9.349240809409510e-07 8.214913272814210e-07

10 -2.779917579878980e-07 -2.289772183834370e-07

11 8.378973634959820e-08 6.466492239429990e-08

12 -2.552869970129400e-08 -1.846256500319380e-08

13 7.845488794437930e-09 5.320336235290850e-09

14 -2.428118880696940e-09 -1.545402456085360e-09

15 7.559005461053680e-10 4.520062644698680e-10

16 -2.364994613022200e-10 -1.330078378584710e-10

17 7.431800136657720e-11 3.934888781070520e-11

18 -2.344374813365950e-11 -1.169587411803260e-11

19 7.415598838082110e-12 3.489114825460500e-12

20 -2.333558791113770e-12 -1.037689978383220e-12

21 6.745346171083730e-13 2.859557405213800e-13

22

23

24

25

26

u

9.997923134230980e-01

k1 k1

2.336282203175340e+00 6.370068451629010e-01

k2 k2

-6.514171570857550e-01 -1.450272673332570e+00
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Table A.9: Chebyshev coefficients cn for F−1
Y h2

with h = 1/5.

n left central middle

0 1.551440631887020e-02 5.965851817537560e-02 2.365922039769370e-01

1 7.154056831584140e-03 1.701537131814850e-02 7.509528018047970e-02

2 1.120793580526900e-04 2.597262497204220e-03 6.749060031298220e-03

3 -2.767589127786680e-05 4.709183006272860e-04 -9.756034732487180e-05

4 5.310776527089690e-06 7.145518311775060e-05 -4.546713797013430e-05

5 -1.242484981459680e-06 1.330260630541950e-05 2.265934249688390e-06

6 3.545760586969740e-07 1.967551836645490e-06 3.137406427278980e-07

7 -1.173714662110980e-07 3.949016650674680e-07 1.344476627067410e-08

8 4.313888580276150e-08 5.420695609123570e-08 -8.390259114557700e-09

9 -1.709037630074550e-08 1.243550067642890e-08 7.380356092377570e-10

10 7.159028761307770e-09 1.439656776199120e-09 -2.253776759627590e-10

11 -3.130641321239270e-09 4.213671249996360e-10 4.735083288679860e-11

12 1.416650107438240e-09 3.320038533665110e-11 -6.226333936166750e-12

13 -6.591639233672150e-10 1.566391114883240e-11 2.369177040131120e-12

14 3.138939220131410e-10 4.052720676134970e-13 -5.354588204982430e-13

15 -1.524291404102210e-10

16 7.526974215608190e-11

17 -3.770866706212000e-11

18 1.912726184698180e-11

19 -9.801629544246880e-12

20 5.055418302750250e-12

21 -2.598617692870460e-12

22 1.287201224090770e-12

23 -5.308318388467400e-13

24

u

2.096913523963960e-01 6.331471212688160e-01 9.308037742250030e-01

k1 k1 k1

1.685718137659840e+02 -5.009544088177860e+01 8.992727193150630e+00

k2 k2 k2

-1.121868009800680e+00 1.000000000000000e+00 -1.516097941825860e+00
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Chapter A: Chebyshev coefficients

Table A.9: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/5.

n right tail right tail

0 9.766531067045770e-01 5.548556192934720e+00

1 3.018335097399800e-01 2.006312378503930e+00

2 1.137764493492590e-02 2.401553462574660e-02

3 -1.796551902064940e-03 -5.827238250950370e-03

4 2.961890615175630e-04 1.564108444981820e-03

5 -3.906140490786640e-05 -4.425250341488140e-04

6 3.228136981746220e-07 1.292806696330270e-04

7 1.990381470117290e-06 -3.860207865611520e-05

8 -7.180791153930990e-07 1.171917601240400e-05

9 1.237304075899030e-07 -3.609533592707930e-06

10 4.797867870237380e-09 1.128193509794600e-06

11 -1.022283804766720e-08 -3.587762176720570e-07

12 3.242766128356910e-09 1.166622015545860e-07

13 -3.934089138513010e-10 -3.905857435831940e-08

14 -1.071903231878940e-10 1.356481292566670e-08

15 7.087360088039800e-11 -4.912140911093540e-09

16 -1.797818306057730e-11 1.854288283705740e-09

17 1.002649821269040e-12 -7.243408051055720e-10

18 1.130725736108390e-12 2.888927287597260e-10

19 -5.251498162236730e-13 -1.156809097791060e-10

20 4.568355593550070e-11

21 -1.746849139303890e-11

22 6.337718113837970e-12

23 -2.123287366692640e-12

24 6.058538275109010e-13

u

9.985870051144820e-01

k1 k1

3.854817463192980e+00 7.119316740438860e-01

k2 k2

-2.078549151656860e+00 -1.568565612274160e+00
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Chapter A: Chebyshev coefficients

Table A.10: Chebyshev coefficients cn for F−1
Y h2

with h = 1/10.

n left central middle

0 3.130510092436480e-03 2.226333345761940e-02 1.988982349173300e-01

1 1.417002017122930e-03 1.019151935447450e-02 8.748062377822970e-02

2 2.360674641499860e-05 2.673461828675050e-03 1.322178512127460e-02

3 -6.764554780577090e-06 7.541005867012180e-04 1.783172989082840e-05

4 1.073524111115770e-06 1.825724014495560e-04 -1.742061549930600e-04

5 -2.165240827636890e-07 5.070406265568320e-05 1.493474602053700e-06

6 5.714805445297290e-08 1.156695182629010e-05 3.359055560341540e-06

7 -1.802784817620430e-08 3.413930484845420e-06 5.333580684343860e-08

8 6.351907282247520e-09 6.943759577207300e-07 -5.521667146922230e-08

9 -2.410001034673680e-09 2.411908456774390e-07 -2.276235131191450e-09

10 9.649353406509400e-10 3.679790048414060e-08 -2.893556379100810e-10

11 -4.026554373758090e-10 1.888991234749740e-08 -6.436850207940640e-11

12 1.736498040397030e-10 1.106003127127480e-09 2.350168269709400e-11

13 -7.693121262340320e-11 1.752401085721140e-09 2.321358068727610e-11

14 3.485269197769610e-11 -1.364762944049400e-10 2.636593526158310e-12

15 -1.608506662519110e-11 2.000879783288780e-10 -1.139207052258690e-12

16 7.530478144378150e-12 -4.354349576970780e-11 -7.314416583435210e-13

17 -3.545863047530390e-12 2.738074123398660e-11

18 1.631081082539690e-12 -8.687479490879170e-12

19 -6.387767991337950e-13 4.196188738890250e-12

20 -1.521565690726930e-12

21 5.748616824737570e-13

u

1.060708119058860e-01 7.049238354832290e-01 9.715292650150570e-01

k1 k1 k1

8.775453590729910e+02 -5.009576443446880e+01 6.414761023377960e+00

k2 k2 k2

-1.150665798108190e+00 1.000000000000000e+00 -9.422665062905070e-01
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Table A.10: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/10.

n right tail right tail

0 1.167088563196560e+00 5.557949689428240e+00

1 4.028821977072450e-01 1.804403214930680e+00

2 1.589726864878320e-02 2.001076313509190e-02

3 -2.776444180529080e-03 -4.157908839745580e-03

4 5.440877740378380e-04 9.533639401005060e-04

5 -1.067963570631730e-04 -2.298471294547870e-04

6 1.602535986540860e-05 5.706424934572410e-05

7 3.639164819106390e-07 -1.443342632426860e-05

8 -1.502345300041770e-06 3.696661627610680e-06

9 6.684757371238390e-07 -9.553281498410900e-07

10 -1.716295249441840e-07 2.486726588153440e-07

11 1.635394935133220e-08 -6.518766056569630e-08

12 8.892938254607340e-09 1.724037249294330e-08

13 -5.718412804481970e-09 -4.621243803810740e-09

14 1.784898899321030e-09 1.266095041880900e-09

15 -2.594370983148820e-10 -3.591505441133860e-10

16 -6.261300169685750e-11 1.071702367595880e-10

17 5.827210983507830e-11 -3.409479146600340e-11

18 -2.189105354284160e-11 1.160098934787350e-11

19 4.514597736601770e-12 -4.170286799495240e-12

20 -6.083212355274470e-14 1.531989721713420e-12

21 -5.089272134222660e-13

u

9.998315799958800e-01

k1 k1

2.923879081718190e+00 7.878535911129940e-01

k2 k2

-1.885294461971110e+00 -1.777456775656590e+00
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Table A.11: Chebyshev coefficients cn for F−1
Y h2

with h = 1/20.

n left central middle

0 8.320108386176210e-04 1.028289222803400e-02 1.796716788945920e-01

1 3.797922844843720e-04 6.051387649842750e-03 9.215513210293030e-02

2 6.119152516315670e-06 2.386515701734710e-03 1.798443115218620e-02

3 -2.216499535843720e-06 9.149383182711960e-04 3.536164396647110e-04

4 3.549796569970470e-07 3.260804312989740e-04 -3.290230257519090e-04

5 -6.909777679284210e-08 1.174302244391950e-04 -9.190331115977190e-06

6 1.800406773387910e-08 4.046558068563540e-05 8.941392960865090e-06

7 -5.727807832664590e-09 1.430511004864880e-05 4.569100427021660e-07

8 2.048306829365080e-09 4.845772394724280e-06 -1.898690252517310e-07

9 -7.892933375352230e-10 1.708561223033970e-06 -1.470693084569340e-08

10 3.208272429161220e-10 5.709919634096530e-07 9.061517318686080e-10

11 -1.358581479450600e-10 2.027725977295490e-07 -4.996134827280960e-10

12 5.944136353935250e-11 6.667913363885620e-08 -3.085715272976990e-11

13 -2.671169627505600e-11 2.408641753810910e-08 8.541875621658270e-11

14 1.227327977365970e-11 7.729248497752880e-09 3.049756612877170e-11

15 -5.743936308401000e-12 2.879366774439790e-09 7.727805117204180e-13

16 2.726212185552570e-12 8.872469780543650e-10 -3.534457536346360e-12

17 -1.300587961514960e-12 3.484429145625870e-10 -1.357036283678530e-12

18 6.052241498351530e-13 1.001335286917030e-10 4.056653202382400e-14

19 -2.390157663283510e-13 4.301663419431590e-11 2.166251245948460e-13

20 1.093494057671200e-11

21 5.462280485697060e-12

22 1.109419945826550e-12

23 6.264905101784660e-13

u

9.952451539818020e-02 7.959736941620220e-01 9.872109261016380e-01

k1 k1 k1

3.350041337835460e+03 -6.091816627093630e+01 5.415831650268340e+00

k2 k2 k2

-1.142970216093080e+00 9.999999999999990e-01 -6.895558541579670e-01
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Table A.11: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/20.

n right tail right tail

0 9.761057883039990e-01 5.196073467821070e+00

1 3.017284864244530e-01 1.831141920349890e+00

2 1.166946937938650e-02 2.543065037748800e-02

3 -1.687052247930820e-03 -5.741796704905520e-03

4 2.745955374164150e-04 1.425454072455160e-03

5 -4.255962891388790e-05 -3.709730129757980e-04

6 3.654738784807000e-06 9.914921759807330e-05

7 9.678759239832620e-07 -2.692978838795340e-05

8 -5.962323527180650e-07 7.390951335687150e-06

9 1.619073566570090e-07 -2.044323535428500e-06

10 -2.044848058779340e-08 5.700139242154510e-07

11 -3.557663286168380e-09 -1.608555974873110e-07

12 2.792106872070250e-09 4.637422326004220e-08

13 -8.014791797406380e-10 -1.388223005657000e-08

14 9.886383182987460e-11 4.408914855308600e-09

15 2.338331909817720e-11 -1.513613329915950e-09

16 -1.720362865683670e-11 5.636677579981080e-10

17 5.096915629190340e-12 -2.238514411774360e-10

18 -7.701281537440130e-13 9.204119152754310e-11

19 -3.802089545459430e-11

20 1.539622910176950e-11

21 -5.993091125355200e-12

22 2.193183001782910e-12

23 -6.910989846330210e-13

u

9.997667653179200e-01

k1 k1

3.745971846148320e+00 7.690538107824300e-01

k2 k2

-2.168616210929900e+00 -1.650521806358000e+00
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Table A.12: Chebyshev coefficients cn for F−1
Y h2

with h = 1/50.

n left central middle

0 3.342404855864120e-04 5.287504606339480e-03 1.679802218836370e-01

1 1.582119045977730e-04 3.609167042053240e-03 9.425159027828380e-02

2 -4.034459826869400e-06 1.936145076792510e-03 2.146641276528240e-02

3 -1.781674777546940e-06 9.633501098384940e-04 7.761771414171210e-04

4 6.111894067922420e-07 4.586062099584780e-04 -4.715700923865780e-04

5 -1.616413643230560e-07 2.128565367871230e-04 -2.911833910065390e-05

6 4.535507820139480e-08 9.711724060740930e-05 1.543681974168120e-05

7 -1.504566368490170e-08 4.380458926575550e-05 1.397441335389570e-06

8 5.916977370301480e-09 1.959490913685950e-05 -3.947158787904660e-07

9 -2.631104077272520e-09 8.713044455946110e-06 -4.582398590716480e-08

10 1.265674285428750e-09 3.857017778878400e-06 4.537121001350180e-09

11 -6.412984582939380e-10 1.701669482580570e-06 -8.587058106556160e-10

12 3.373488093146030e-10 7.488328990975590e-07 -3.395277343066420e-10

13 -1.827196103322590e-10 3.288850425725560e-07 1.497940638456500e-10

14 1.013577890763330e-10 1.442278857066740e-07 9.047367570431170e-11

15 -5.736165706600700e-11 6.317620038821080e-08 1.532712463574530e-11

16 3.301900838213170e-11 2.764873413720030e-08 -5.899234983630280e-12

17 -1.928175236669550e-11 1.209228320347620e-08 -4.759599480764640e-12

18 1.139207390775460e-11 5.285996098982320e-09 -9.845099825540200e-13

19 -6.784952996564540e-12 2.309885154214610e-09 3.353301735326340e-13

20 4.046041780101790e-12 1.009129182529950e-09

21 -2.377799356621700e-12 4.407929681530870e-10

22 1.318077536426880e-12 1.925241011297400e-10

23 -5.870490384521500e-13 8.408559765252570e-11

24 3.672433365477260e-11

25 1.603764366665510e-11

26 6.998237196315440e-12

27 3.040158479208740e-12

28 1.288881492848470e-12

29 4.729004482220710e-13

u

2.931123896950420e-01 8.963482076412410e-01 9.952179896810610e-01

k1 k1 k1

7.818489955336010e+03 -1.112036741342440e+02 4.876183772221110e+00

k2 k2 k2

-1.055332320056090e+00 1.000000000000000e+00 -5.434844889094470e-01
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Table A.12: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/50.

n right tail right tail

0 9.761146326247320e-01 5.440971360286980e+00

1 3.016928648060240e-01 1.956911680269630e+00

2 1.167231718705550e-02 2.774260925258890e-02

3 -1.651276452041100e-03 -6.436890817427100e-03

4 2.666875570608340e-04 1.641299885337870e-03

5 -4.247191460497480e-05 -4.384480040071970e-04

6 4.247919767558580e-06 1.201938574075190e-04

7 7.240192379129260e-07 -3.345172414930230e-05

8 -5.468504974426760e-07 9.394648359883000e-06

9 1.621838761986780e-07 -2.653557174889410e-06

10 -2.469682517941960e-08 7.531228230971810e-07

11 -1.846812979021150e-09 -2.152447292666570e-07

12 2.453530993347930e-09 6.237985768142150e-08

13 -8.104795070564440e-10 -1.859198071101320e-08

14 1.328212021134180e-10 5.827250350019080e-09

15 9.746012118699450e-12 -1.970501685911340e-09

16 -1.445305942484280e-11 7.299803884539630e-10

17 5.164008080182290e-12 -2.939243341028580e-10

18 -1.029938970952760e-12 1.250293085781460e-10

19 -5.430549502597070e-11

20 2.340535807434650e-11

21 -9.802247791887950e-12

22 3.924623772975130e-12

23 -1.472095272217620e-12

24 4.733000270115360e-13

25

26

27

28

29

u

9.999145446729710e-01

k1 k1

3.727057577727170e+00 7.200044464436850e-01

k2 k2

-2.179745438075220e+00 -1.614273003898510e+00
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Table A.13: Chebyshev coefficients cn for F−1
Y h2

with h = 1/100.

n left central middle

0 1.064576523939530e-04 7.757528496943120e-04 6.583911279090600e-02

1 4.967483886634580e-05 3.963182148041290e-04 4.630386572794730e-02

2 -2.574907330657640e-06 1.452820177102820e-04 1.757544141274220e-02

3 -5.303715403034550e-07 4.855954814287430e-05 3.315284363718870e-03

4 2.663871929167150e-07 1.531863558980860e-05 1.968319378136480e-05

5 -8.401958707782950e-08 4.676444520070530e-06 -1.223428005218250e-04

6 2.541840517940170e-08 1.394003778702580e-06 -1.557379115932890e-05

7 -8.458536138015860e-09 4.088490384098530e-07 3.231990249141240e-06

8 3.265291063082850e-09 1.184092050832930e-07 9.273005743030420e-07

9 -1.446267628365560e-09 3.397158988245300e-08 -3.854154049131540e-08

10 7.070186386866000e-10 9.672491318170320e-09 -3.568282952834910e-08

11 -3.686990455737440e-10 2.737461712290990e-09 -8.276509465005380e-10

12 2.008214150700490e-10 7.708833517653440e-10 1.206706537754170e-09

13 -1.129090416703240e-10 2.161982864910210e-10 9.225936702119910e-11

14 6.508194177274500e-11 6.042419184248020e-11 -3.617701898545350e-11

15 -3.828935422940620e-11 1.683809589516920e-11 -4.590404543093130e-12

16 2.291651606295010e-11 4.678693771234670e-12 9.605943640102250e-13

17 -1.391339883329400e-11 1.290808850907540e-12 1.614097426563670e-13

18 8.543046330402440e-12 3.320491288954070e-13

19 -5.282416801082770e-12

20 3.263505722460020e-12

21 -1.979537858186990e-12

22 1.125706972359240e-12

23 -5.098805064619270e-13

24

25

26

27

28

29

30

u

3.364182499030230e-01 7.854302604129020e-01 9.936476554735930e-01

k1 k1 k1

2.356466133610040e+04 -2.112823879640160e+02 4.261592636084800e+00

k2 k2 k2

-1.042176040321580e+00 1.000000000000000e+00 2.136086687920960e-01
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Table A.13: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/100.

n right tail right tail

0 5.721713263001800e-01 5.012707101453430e+00

1 2.017820038440810e-01 2.062096651831810e+00

2 1.377375013917080e-02 3.999684930491520e-02

3 -1.806370775567440e-03 -1.094915283125730e-02

4 1.523593047177290e-04 3.280050342478830e-03

5 2.295752543436920e-05 -1.026359592164550e-03

6 -1.211645711839800e-05 3.290839108300620e-04

7 1.558915013492110e-06 -1.072510048733330e-04

8 3.379002506728420e-07 3.549425811224850e-05

9 -1.589627733030860e-07 -1.199878274669090e-05

10 8.281053242094130e-09 4.199796533313160e-06

11 9.754591213299920e-09 -1.552499344038120e-06

12 -2.587101485419120e-09 6.174229919308360e-07

13 -2.654922061326020e-10 -2.654025845860760e-07

14 2.854986006586100e-10 1.213436337756570e-07

15 -4.288462498279560e-11 -5.724458644126490e-08

16 -1.614286040010380e-11 2.696385391883710e-08

17 8.227664210952470e-12 -1.231399370142220e-08

18 -8.469562416364850e-13 5.303258910110760e-09

19 -2.080169945416400e-09

20 6.955732723896000e-10

21 -1.600540556356630e-10

22 -1.256262769207180e-11

23 4.730496708984260e-11

24 -3.958827080866930e-11

25 2.486066180938770e-11

26 -1.342780201739010e-11

27 6.510864817550600e-12

28 -2.877910389935840e-12

29 1.155822468250210e-12

30 -3.885406981704200e-13

u

9.997327929473050e-01

k1 k1

4.734018530749910e+00 6.757660555129490e-01

k2 k2

-1.873568041871660e+00 -1.410192678438050e+00
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Chapter A: Chebyshev coefficients

Table A.14: Chebyshev coefficients cn for F−1
Y h2

with h = 1/200.

n left central middle

0 3.518991274756410e-05 8.392520820142320e-04 3.802327783487680e-02

1 1.590990829653500e-05 6.431136826076690e-04 2.293406644160820e-02

2 -1.491507257739220e-06 4.085596936397010e-04 6.950796412254630e-03

3 -9.066540515692110e-08 2.399296017984750e-04 1.080933113927390e-03

4 1.118185077651370e-07 1.344982201802290e-04 3.968276530040400e-05

5 -4.689629675507750e-08 7.316918708694770e-05 -1.510396050891140e-05

6 1.672578243190620e-08 3.898020499880180e-05 -2.164545910662930e-06

7 -5.962483120983330e-09 2.045075653316810e-05 1.031238628209570e-07

8 2.299928220409480e-09 1.060530105647120e-05 4.715822375760120e-08

9 -9.951311785026230e-10 5.449951689909770e-06 1.338195202962630e-09

10 4.813973704272400e-10 2.780434074253660e-06 -7.162524074055580e-10

11 -2.538921373245920e-10 1.410169685110300e-06 -5.838646258223060e-11

12 1.421639472958470e-10 7.117308974598150e-07 9.035922879320320e-12

13 -8.292852778673320e-11 3.577606972109200e-07 1.324669429761400e-12

14 4.981742953446680e-11 1.792155094219700e-07 -9.136939392295840e-14

15 -3.060881416945410e-11 8.951262809172500e-08

16 1.915173995253590e-11 4.459614066323350e-08

17 -1.216412493952420e-11 2.216977555006010e-08

18 7.820244746397910e-12 1.100014354771840e-08

19 -5.072097961571190e-12 5.448923967042200e-09

20 3.302395224132890e-12 2.695162687572180e-09

21 -2.138908948989570e-12 1.331357683924740e-09

22 1.351588122026080e-12 6.569059660914260e-10

23 -7.937121438141360e-13 3.237909926903930e-10

24 3.670269446605750e-13 1.594506248721020e-10

25 7.845610579728340e-11

26 3.857391556723110e-11

27 1.895058050737670e-11

28 9.300136827782300e-12

29 4.552865562504600e-12

30 2.209843826831820e-12

31 1.035453103819420e-12

32 4.092881791896840e-13

u

3.889455754261150e-01 9.290038930121230e-01 9.933230995102950e-01

k1 k1 k1

6.580451400950010e+04 -2.484251686923060e+02 6.345255066723990e+00

k2 k2 k2

-1.029129856396840e+00 1.000000000000000e+00 4.634771910249610e-01
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Chapter A: Chebyshev coefficients

Table A.14: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/200.

n right tail right tail

0 4.996811103033990e-01 4.914258356400540e+00

1 2.283166265702910e-01 2.011738127244220e+00

2 2.514423513031140e-02 3.937356800757610e-02

3 -3.474198991631110e-03 -1.065266526129480e-02

4 5.077220214696980e-05 3.152291195578990e-03

5 1.613616422231270e-04 -9.738895553647930e-04

6 -3.880889586523480e-05 3.081786621477630e-04

7 -3.634159932107060e-06 -9.909792676876670e-05

8 3.510602114428830e-06 3.236113469325020e-05

9 -1.965557011348580e-07 -1.080367954217730e-05

10 -2.893679425552990e-07 3.742488200776480e-06

11 4.919338342933830e-08 -1.374128809584760e-06

12 2.766224437511810e-08 5.450001386646270e-07

13 -9.150633315570560e-09 -2.341737771120620e-07

14 -2.629338358854130e-09 1.069346503420290e-07

15 1.702910382225310e-09 -5.021967626980480e-08

16 1.193636414090970e-10 2.344515094335100e-08

17 -2.861147205442400e-10 -1.056108154875410e-08

18 3.711031444447810e-11 4.460714134159520e-09

19 3.822894605668730e-11 -1.700913808398090e-09

20 -1.452954868328440e-11 5.418507670597150e-10

21 -2.818928436440390e-12 -1.082511209350410e-10

22 3.052195946657300e-12 -2.332308071729190e-11

23 -4.763636711850320e-13 4.458678049756930e-11

24 -3.438522185303320e-11

25 2.066800196185060e-11

26 -1.078966568122650e-11

27 5.070919968888770e-12

28 -2.172493412014030e-12

29 8.448217334599220e-13

30 -2.756966775927990e-13

31

32

u

9.998681694019440e-01

k1 k1

3.821761784764750e+00 6.915167979999310e-01

k2 k2

-1.323148927258810e+00 -1.420354956151160e+00

157



Chapter A: Chebyshev coefficients

Table A.15: Chebyshev coefficients cn for F−1
Y h2

with h = 1/500.

n left central middle

0 5.483749876010110e-06 6.081052138201620e-05 5.473769059145150e-02

1 2.486444309865310e-06 3.802911084933030e-05 4.351538755149590e-02

2 -2.246254082499000e-07 1.823368632895470e-05 2.198780054496340e-02

3 -1.578587968151560e-08 7.946990081244100e-06 6.662984075703520e-03

4 1.732923293003160e-08 3.273356396625700e-06 7.907173467155090e-04

5 -7.081399642607430e-09 1.301100356483330e-06 -2.243067264619810e-04

6 2.482198403770570e-09 5.043448241124080e-07 -1.032261735179880e-04

7 -8.749831841180770e-10 1.919418161993110e-07 -5.350827374548070e-06

8 3.358446096487060e-10 7.202571800642050e-08 6.032870474106270e-06

9 -1.452715547964040e-10 2.672894811858380e-08 1.389775608451320e-06

10 7.036053028305940e-11 9.830459878805920e-09 -1.667794341081250e-07

11 -3.712078515936340e-11 3.588823452512340e-09 -1.098049445185050e-07

12 2.075613750341230e-11 1.302082454421850e-09 -3.990118701505270e-09

13 -1.206646596058050e-11 4.699379616814380e-10 6.210083081288950e-09

14 7.203733700544870e-12 1.688418171221920e-10 9.633344895225670e-10

15 -4.375271295344370e-12 6.042392709176170e-11 -2.609783367202760e-10

16 2.674170121231740e-12 2.154618744858780e-11 -8.315421351488380e-11

17 -1.612760826306620e-12 7.648543523947050e-12 6.884100040797620e-12

18 9.148126116574210e-13 2.675596311035580e-12 5.334393632012140e-12

19 -4.140244318492850e-13 8.418748326551250e-13 8.096094478676180e-14

20

21

22

23

24

25

26

27

28

u

3.765509769494760e-01 8.507269533566090e-01 9.987527542914820e-01

k1 k1 k1

4.258473700427800e+05 -4.473698477162510e+02 3.134901409944510e+00

k2 k2 k2

-1.030074288714920e+00 1.000000000000000e+00 4.184273889203900e-01
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Chapter A: Chebyshev coefficients

Table A.15: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/500.

n right tail right tail

0 5.722628305041310e-01 4.619812351486570e+00

1 2.017761232436850e-01 1.860589481022900e+00

2 1.372549559855630e-02 3.705233566867130e-02

3 -1.799486944230340e-03 -9.679912077752170e-03

4 1.548179312896880e-04 2.763008630922070e-03

5 2.188831960478400e-05 -8.227338295193510e-04

6 -1.205509962337280e-05 2.508114545966220e-04

7 1.626588892457290e-06 -7.771817988229720e-05

8 3.184920827863740e-07 2.450094311357910e-05

9 -1.604199428018640e-07 -7.933144007790290e-06

10 1.026914924420950e-08 2.688223932510620e-06

11 9.459364972251820e-09 -9.765416694004460e-07

12 -2.712392941794810e-09 3.865875322747180e-07

13 -2.064497813254310e-10 -1.657778704727940e-07

14 2.839303432413090e-10 7.480889417663440e-08

15 -4.871222002206250e-11 -3.419915104148740e-08

16 -1.444200355589110e-11 1.528919983568170e-08

17 8.372113940734350e-12 -6.479029251360270e-09

18 -8.215034741114150e-13 2.513840140749040e-09

19 -5.718274703852940e-13 -8.420176316921800e-10

20 2.056434736961980e-10

21 -1.906441397640450e-12

22 -4.118010901086640e-11

23 3.573866647613250e-11

24 -2.210862584205230e-11

25 1.157843167001790e-11

26 -5.392753508375620e-12

27 2.255758034817050e-12

28 -7.825720526313930e-13

u

9.999476900342120e-01

k1 k1

4.729614165580610e+00 7.444073462053960e-01

k2 k2

-1.877416447914540e+00 -1.452884710450130e+00
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Chapter A: Chebyshev coefficients

Table A.16: Chebyshev coefficients cn for F−1
Y h2

with h = 1/1000.

n left central middle

0 1.702183541035490e-06 4.683227357260450e-05 5.536218616018370e-02

1 7.420902874786450e-07 3.703626675908400e-05 4.374721584420760e-02

2 -9.865066726948370e-08 2.459788457587220e-05 2.175988835715650e-02

3 2.116960181208080e-09 1.509706997971100e-05 6.418561137830700e-03

4 5.497757664443210e-09 8.833813587467830e-06 7.077802624591750e-04

5 -3.075679409634440e-09 5.007785871509320e-06 -2.234688941525440e-04

6 1.295461350315460e-09 2.775387397751700e-06 -9.419306294251860e-05

7 -5.101921537607560e-10 1.512369265686620e-06 -3.360150759204160e-06

8 2.046470586232400e-10 8.133846678811090e-07 5.606215973335820e-06

9 -8.795781406451570e-11 4.329046589636920e-07 1.138744283796740e-06

10 4.150674524923850e-11 2.284469855279910e-07 -1.744975342137300e-07

11 -2.146959372032940e-11 1.197027748370620e-07 -9.175604868426630e-08

12 1.195357510557560e-11 6.234932494901730e-08 -9.405807379254040e-10

13 -7.007921488894990e-12 3.231076406508410e-08 5.303111119723830e-09

14 4.242800470479290e-12 1.667069009839590e-08 6.408776988724720e-10

15 -2.605046952660330e-12 8.568338007765290e-09 -2.359584489071990e-10

16 1.583112277512220e-12 4.389129098487210e-09 -5.912784735389660e-11

17 -9.048703171667920e-13 2.241645822968350e-09 7.661640011719350e-12

18 4.117767633668480e-13 1.141836261366410e-09 3.874828519769480e-12

19 5.802414152021550e-10 -1.166357191529630e-13

20 2.942280531036410e-10

21 1.489078538692040e-10

22 7.522864040175020e-11

23 3.794343618365480e-11

24 1.910697269597880e-11

25 9.603319488497660e-12

26 4.810076959555690e-12

27 2.385153926155570e-12

28 1.138578899937880e-12

29 4.560886440536520e-13

u

4.174876557129840e-01 9.322059315659190e-01 9.993778254256840e-01

k1 k1 k1

1.251565690963700e+06 -5.828431086945030e+02 3.197606134309120e+00

k2 k2 k2

-1.022376759557920e+00 1.000000000000000e+00 4.064120883541780e-01
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Chapter A: Chebyshev coefficients

Table A.16: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/1000.

n right tail right tail

0 5.722747148899260e-01 4.619756015894420e+00

1 2.017753450395610e-01 1.860594275953970e+00

2 1.371924357276870e-02 3.708005345183760e-02

3 -1.798581149904210e-03 -9.684906797069410e-03

4 1.551213775007560e-04 2.763643547482780e-03

5 2.175254385332560e-05 -8.226383894790430e-04

6 -1.204645343665120e-05 2.506774823695970e-04

7 1.634965165513770e-06 -7.763711144862410e-05

8 3.159981622016710e-07 2.446026791697160e-05

9 -1.605777694467310e-07 -7.914262660093390e-06

10 1.051874919029200e-08 2.679801742363760e-06

11 9.419608354447810e-09 -9.728790947989900e-07

12 -2.727465609582260e-09 3.850313981959300e-07

13 -1.988937692998890e-10 -1.651364788520010e-07

14 2.836178919653510e-10 7.455668628814350e-08

15 -4.943002831236930e-11 -3.410750194426710e-08

16 -1.421606720565160e-11 1.526049674012990e-08

17 8.387073685132120e-12 -6.472921009013150e-09

18 -8.503982177047600e-13 2.514557909430010e-09

19 -5.640963743958300e-13 -8.439824101491240e-10

20 2.072428649649550e-10

21 -2.907032521718890e-12

22 -4.063479916620070e-11

23 3.546906613254100e-11

24 -2.198580726676460e-11

25 1.152667195366080e-11

26 -5.372666511779400e-12

27 2.248692740626720e-12

28 -7.804828886326500e-13

29

u

9.999739151276640e-01

k1 k1

4.729078684657730e+00 7.443447629709830e-01

k2 k2

-1.877882960729700e+00 -1.452971340318820e+00
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Chapter A: Chebyshev coefficients

Table A.17: Chebyshev coefficients cn for F−1
Y h2

with h = 1/2000.

n left central middle

0 8.340782562108630e-08 2.468455017350800e-06 2.280294691861450e-02

1 3.790348335769390e-08 1.808380820210530e-06 1.944720833702610e-02

2 6.055403556177730e-10 9.977786192716340e-07 1.206597650481470e-02

3 -2.457590587255680e-10 5.095262839987460e-07 5.365044701332910e-03

4 3.852931864752010e-11 2.442450448287340e-07 1.591201684585540e-03

5 -7.060509039767990e-12 1.138166487478510e-07 2.189680324488170e-04

6 1.745854017090540e-12 5.143505829362960e-08 -5.028795904628390e-05

7 -4.817127130663800e-13 2.294108192095960e-08 -3.473771288547360e-05

8 1.003514899934200e-08 -6.612748781444720e-06

9 4.362945792279890e-09 8.987877800239290e-07

10 1.869145494199750e-09 7.769588194187460e-07

11 7.993315810705080e-10 1.334497286164690e-07

12 3.374445612260960e-10 -2.638905677337200e-08

13 1.426920238747580e-10 -1.641293598763500e-08

14 5.956301256742100e-11 -1.798371164119140e-09

15 2.498973580154360e-11 8.162891792784300e-10

16 1.032764886165950e-11 3.081840920792170e-10

17 4.294120630111000e-12 5.391475739175650e-12

18 1.719237245981860e-12 -2.108451751530640e-11

19 6.120456681919270e-13 -4.569166977955490e-12

20 5.618348229993250e-13

21

22

23

24

25

26

27

28

u

7.747528004946140e-02 8.259386083799630e-01 9.993395585026600e-01

k1 k1 k1

3.425124201204160e+07 -5.668468349121090e+02 2.690942655592710e+00

k2 k2 k2

-1.151540996208610e+00 1.000000000000000e+00 7.708355493813890e-01
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Table A.17: (cont.) Chebyshev coefficients cn for F−1
Y h2

with h = 1/2000.

n right tail right tail

0 4.997785332154770e-01 4.423666819273090e+00

1 2.283167712864410e-01 1.759820399395010e+00

2 2.509022440364520e-02 3.541998526121500e-02

3 -3.473302792894460e-03 -9.020823900527120e-03

4 5.642398807896140e-05 2.508301403041810e-03

5 1.601477839497730e-04 -7.271867741631950e-04

6 -3.917135579658680e-05 2.157837314850230e-04

7 -3.440824241326090e-06 -6.511087849455130e-05

8 3.519318737665760e-06 2.002320021389280e-05

9 -2.194212259839980e-07 -6.350484440175680e-06

10 -2.877017875529080e-07 2.122832316166740e-06

11 5.198973063531290e-08 -7.670810351604750e-07

12 2.710916358293460e-08 3.034734463075500e-07

13 -9.510243857620710e-09 -1.296599648285680e-07

14 -2.488075646152630e-09 5.774831521471910e-08

15 1.740766101870460e-09 -2.574755859857420e-08

16 8.803780581176800e-11 1.108702976174010e-08

17 -2.866253352551910e-10 -4.459918192937880e-09

18 4.280148433910290e-11 1.605691932192970e-09

19 3.704110753342690e-11 -4.731139230730710e-10

20 -1.527178121204120e-11 7.876459425075550e-11

21 -2.422082175650230e-12 2.822685782970860e-11

22 3.088328322933460e-12 -3.938365394966450e-11

23 -5.645136949758670e-13 2.737131256274070e-11

24 -1.510876686567670e-11

25 7.257145569467030e-12

26 -3.126553351859830e-12

27 1.213046040716070e-12

28 -3.939886674131800e-13

u

9.999869750663500e-01

k1 k1

3.820640730812540e+00 7.845522141906270e-01

k2 k2

-1.325371123114800e+00 -1.477505002954480e+00
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Appendix B

Errors of Chebyshev polynomial

approximations

We present the errors resulting from the Chebyshev polynomial approximations to

the inverse distribution functions F−1
ZP

and F−1
Y h2

below. We observe that the error

across all regimes in all cases is at least of order 10−12.

Figure B.1: We plot the errors in the Chebyshev polynomial approximations to the
inverse distribution functions F−1

ZP
(u) with P = 10 across all regimes. Note that to

highlight the tail we use a log-log10 scale with 1− u on the abscissa.
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Figure B.1: (cont.) We plot the errors in the Chebyshev polynomial approximations
to the inverse distribution functions F−1

ZP
(u) with P = 50 (top panel) and P = 5000

(bottom panel) across all regimes. Note as above we use a log-log10 scale with 1−u
on the abscissa.
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Figure B.1: (cont.) We plot the errors in the Chebyshev polynomial approximations
to the inverse distribution functions F−1

ZP
(u) with P = 104 (top panel) and P = 105

(bottom panel) across all regimes. Note as above we use a log-log10 scale with 1−u
on the abscissa.
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Figure B.2: We plot the errors in the Chebyshev polynomial approximations to the
inverse distribution functions F−1

Y h2
(u) with h = 0.2 (top panel) and h = 0.1 (bottom

panel) across all regimes. Note as above we use a log-log10 scale with 1− u on the
abscissa.
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Figure B.2: (cont.) We plot the errors in the Chebyshev polynomial approximations
to the inverse distribution functions F−1

Y h2
(u) with h = 0.05 (top panel) and h = 0.02

(bottom panel) across all regimes. Note as above we use a log-log10 scale with 1−u
on the abscissa.
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Figure B.2: (cont.) We plot the errors in the Chebyshev polynomial approximations
to the inverse distribution functions F−1

Y h2
(u) with h = 0.005 (top panel) and h =

0.002 (bottom panel) across all regimes. Note as above we use a log-log10 scale with
1− u on the abscissa.
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Figure B.2: (cont.) We plot the errors in the Chebyshev polynomial approximations
to the inverse distribution functions F−1

Y h2
(u) with h = 0.001 (top panel) and h =

0.0005 (bottom panel) across all regimes. Note as above we use a log-log10 scale
with 1− u on the abscissa.
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Numerical results

In this appendix, we give additional numerical results for the moment errors of the

time integrated conditional variance Ī defined in Section 6.1 for Case 2 and Case 3.

Apart from that, tradeoffs between speed and accuracy when pricing in the money

and out of the money European call options are also reported for all four cases.

C.1 Time integrated conditional variance

The figures in this section demonstrate the relative errors in the first four moments

of the integral Ī of the variance process for Case 2 and Case 3, conditional on

vt = 0.04, 0.4, 0.000004 and vt = 0.09, 0.9, 0.000009, respectively. For each case, our

new direct inversion method and the gamma expansion by Glasserman and Kim [32]

are implemented using 5 · 107 and 5 · 108 samples with truncation level increasing in

integers.

Similar conclusions as Case 1 can be reached for Case 3, where the four moment

errors of the direct inversion all maintain at fixed levels with small fluctuations

across a range of truncation levels. This suggests that the new scheme performed at

different truncation levels achieves the same accuracy. Furthermore, we observe that

all errors in the first four moments are decreased according to the expected scaling

when the sample size is increased by a factor of 10 with truncation level remaining

unchanged. In contrast, the gamma expansion for lower truncation levels exhibits

some small bias, which is evident from the unimproved errors in higher moments for
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truncation level one and two with the increase of the sample size.

(a) Case 2: v0 = vt = 0.04

(b) Case 2: v0 = 0.04, vt = 0.4

Figure C.1: We indicate the absolute errors in the first four moments of the con-
ditional integral Ī simulated by direct inversion and gamma expansion versus the
truncation levels for Case 2 with different values for vt. Both methods are imple-
mented with tail simulation. We perform 5 ·107 simulations for each case. Below the
dashed line, the errors are not statistically significant at the level of three standard
deviations.

However for Case 2, we notice that the moment errors resulting from the direct

inversion are invariant to increasing the number of simulations when the truncation

levels are fixed. For first and second moments, most of the errors in the direct
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(c) Case 2: v0 = 0.04, vt = 0.000004

Figure C.1: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 2 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 107 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.

(a) Case 3: v0 = vt = 0.09

Figure C.2: We indicate the absolute errors in the first four moments of the con-
ditional integral Ī simulated by direct inversion and gamma expansion versus the
truncation levels for Case 3 with different values for vt. Both methods are imple-
mented with tail simulation. We perform 5 ·107 simulations for each case. Below the
dashed line, the errors are not statistically significant at the level of three standard
deviations.
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(b) Case 3: v0 = 0.09, vt = 0.9

(c) Case 3: v0 = 0.09, vt = 0.000009

Figure C.2: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 3 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 107 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.
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(a) Case 2: v0 = vt = 0.04

(b) Case 2: v0 = 0.04, vt = 0.4

Figure C.3: We indicate the absolute errors in the first four moments of the con-
ditional integral Ī simulated by direct inversion and gamma expansion versus the
truncation levels for Case 2 with different values for vt. Both methods are imple-
mented with tail simulation. We perform 5 ·108 simulations for each case. Below the
dashed line, the errors are not statistically significant at the level of three standard
deviations.
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(c) Case 2: v0 = 0.04, vt = 0.000004

Figure C.3: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 2 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 108 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.

(a) Case 3: v0 = vt = 0.09

Figure C.4: We indicate the absolute errors in the first four moments of the con-
ditional integral Ī simulated by direct inversion and gamma expansion versus the
truncation levels for Case 3 with different values for vt. Both methods are imple-
mented with tail simulation. We perform 5 ·108 simulations for each case. Below the
dashed line, the errors are not statistically significant at the level of three standard
deviations.
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(b) Case 3: v0 = 0.09, vt = 0.9

(c) Case 3: v0 = 0.09, vt = 0.000009

Figure C.4: (cont.) We indicate the absolute errors in the first four moments of the
conditional integral Ī simulated by direct inversion and gamma expansion versus
the truncation levels for Case 3 with different values for vt. Both methods are
implemented with tail simulation. We perform 5 · 108 simulations for each case.
Below the dashed line, the errors are not statistically significant at the level of three
standard deviations.
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inversion are slightly larger than those of the gamma expansion. These findings are

analogous with Case 4, indicating there is a small bias related to the direct inversion

method for these two cases. As explained in Section 6.1, this bias comes from the

approximations involved in the second factor X2 of the series expansion Theorem

3.2.1.

C.2 Option price

In this section, we plot the root mean square error in the European call option

prices with strike K = 140 and K = 60 against the CPU time on a log-log10 scale

for all four cases considered using a number of 5 · 107 samples. Compared to the

gamma expansion, the direct inversion scheme requires much less computational

budget for Case 1 to Case 3. Case 4 takes longer time to complete the new method,

where more iterations are needed for the acceptance-rejection sampling because of

the marginally unfavourable parameter values.

We end this section with comparisons between the almost exact methods and the

full truncation Euler scheme for pricing in the money and out of the money European

call options. In Figure C.7 and Figure C.8, we plot the root mean square error of the

option price versus the CPU time required on a log-log10 scale with strikes K = 140

and K = 60, respectively. The truncation level taken here for the two almost exact

methods are 5 and the number of time steps used in the full truncation Euler scheme

is equal to the square root of the sample size. We can conclude from the plots that

the direction inversion outperforms the other two methods in terms of convergence

rate and computational time.
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(a) Case 1

(b) Case 2

Figure C.5: We show the root mean square error in the option price with K = 140
versus the CPU time required to complete the simulation on a log-log10 scale for
Case 1 to Case 4. We use a sample size of 5 · 107.
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(c) Case 3

(d) Case 4

Figure C.5: (cont.) We show the root mean square error in the option price with
K = 140 versus the CPU time required to complete the simulation on a log-log10

scale for Case 1 to Case 4. We use a sample size of 5 · 107.
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(a) Case 1

(b) Case 2

Figure C.6: We show the root mean square error in the option price with K = 60
versus the CPU time required to complete the simulation on a log-log10 scale for
Case 1 to Case 4. We use a sample size of 5 · 107.
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(c) Case 3

(d) Case 4

Figure C.6: (cont.) We show the root mean square error in the option price with
K = 60 versus the CPU time required to complete the simulation on a log-log10

scale for Case 1 to Case 4. We use a sample size of 5 · 107.
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Figure C.7: We show the convergence of the root mean square error in the option
price for Case 1 to Case 4 with K = 140 of gamma expansion and direction inversion,
both at a truncation level M = 5, and full truncation Euler scheme, with number
of time steps equal to the square root of the sample size.

Figure C.8: We show the convergence of the root mean square error in the option
price for Case 1 to Case 4 with K = 60 of gamma expansion and direction inversion,
both at a truncation level M = 5, and full truncation Euler scheme, with number
of time steps equal to the square root of the sample size.
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