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numbers of factors. The method proposed here represents an improvement over the best available 
practice for this setting, the method of elementary effects. This approach is particularly efficient for factors 
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Introduction

We introduce a new method for screening factors in mathematical or computational

models with large numbers of factors. In factors screening one tries to identify active

factors in a factor-rich model with a minimum number of computer simulations. The

methods proposed here represents an improvement over the best available practice

for this setting, the method of elementary effects (Morris 1991(7), Campolongo et al.

1999(1), Campolongo et al. 2000(2), Campolongo et al. 2007(3)). Reviews of screening

methods for computer experiments are in Campolongo et al. 2000(2), Saltelli et al.,

2007(10), while review on sensitivity analysis in general are in Saltelli et al. 2004(8),

Saltelli et al., 2005(11), Helton et al., 2006(4). Resources for sensitivity are available

at (6).

The idea is to explore the space of the input factors by combining steps along the Xi

axis, where Xi is one of the factors, with steps along the X∼i, an axis where all factors

but Xi change their value. We anticipate that such an approach should be particularly

efficient for factors screening of non-linear and non-additive models.

The method

A generic model 0.0.1 is considered:

Y = f(X1, X2, . . . , Xk) (0.0.1)

The new design is exemplified for a case where the are k = 15 factors and each

factors is explored over l = 5 different values or levels. The reason for these choices

of k and l will be apparent in a moment. According to standard practice(1) the levels

could correspond to equally spaced percentiles of the distribution of each factors.

Table 1 shows how to arrange simulations so that steps in the X∼i direction are

generated.

A step along the X∼1 axis is obtained comparing comparing run r1 with r2, et

coetera as shown in Table 2. E.g., a step along the X∼15 axis is obtained from from r1

and r6 as all factors but X15 change of levels between r1 and r6.

In the following r will indicate number of rows in B and rj a generic row of the

same matrix.

The scheme of table 2 is extended to include steps along the Xi axis as shown in

matrix B Table 3.
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ri X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 2 2 1 3 3 3 3 3 3 3 3 3 3 3 3

4 3 3 3 3 2 1 4 4 4 4 4 4 4 4 4

5 4 4 4 4 4 4 4 3 2 1 5 5 5 5 5

6 5 5 5 5 5 5 5 5 5 5 5 4 3 2 1

Table 1: Base Matrix B. Run number ri and level selected for each factor. The first

column indicates the simulation (or ”run” as a simulation is termed in computer jargon)

ri from i = 1 to i = 6, Xj denotes factor j and the tabled integer number indicates the

level at which the factor is kept, e.g. factor X1 is kept at level 3 in simulation r4.

X∼i run run

1 2 1

2 3 2

3 3 1

4 4 3

5 4 2

6 4 1

7 5 4

8 5 3

9 5 2

10 5 1

11 6 5

12 6 4

13 6 3

14 6 2

15 6 1

Table 2: Scheme for the computation of effects of the type X∼i from the runs of matrix

B, Table (1).

The first column in Table 3 indicates the simulation/run number. If we call N the

total number of runs we moved form r = 6 in B to N = 36 runs in M. The original

runs 1 to 6 have become in the order runs 1, 2, 5, 10, 17, 26. The additional runs have

been generated as follows:

Run 3 is a step in the X1 direction taken from from run 1.

Run 4 is a step in the X1 direction taken from from run 2.

Run 5 is the previous run 3 while:

Run 6 is a step in the X2 direction taken from from run 2.

Run 7 is a step in the X2 direction taken from from run 5.

and Run 8 is a step in the X3 direction taken from from run 1.

Run 9 is a step in the X3 direction taken from from run 5.
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ri X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 type for factor

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 b 1,2,6,10,15

2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 b 1,3,5,9,14

3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 c1(1) 1

4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 c2(1) 1

5 2 2 1 3 3 3 3 3 3 3 3 3 3 3 3 b 2,3,4,8,13

6 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 c2(2) 2

7 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3 c5(2) 2

8 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 c1(3) 3

9 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 c5(3) 3

10 3 3 3 3 2 1 4 4 4 4 4 4 4 4 4 b 4,5,6,7,12

11 2 2 1 4 3 3 3 3 3 3 3 3 3 3 3 c5(4) 4

12 3 3 3 4 2 1 4 4 4 4 4 4 4 4 4 c10(4) 4

13 1 2 2 2 3 2 2 2 2 2 2 2 2 2 2 c2(5) 5

14 3 3 3 3 3 1 4 4 4 4 4 4 4 4 4 c10(5) 5

15 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 c1(6) 6

16 3 3 3 3 2 2 4 4 4 4 4 4 4 4 4 c10(6) 6

17 4 4 4 4 4 4 4 3 2 1 5 5 5 5 5 b 7,8,9,10,11

18 3 3 3 3 2 1 5 4 4 4 4 4 4 4 4 c10(7) 7

19 4 4 4 4 4 4 5 3 2 1 5 5 5 5 5 c17(7) 7

20 2 2 1 3 3 3 3 4 3 3 3 3 3 3 3 c5(8) 8

21 4 4 4 4 4 4 4 4 2 1 5 5 5 5 5 c17(8) 8

22 1 2 2 2 2 2 2 2 3 2 2 2 2 2 2 c2(9) 9

23 4 4 4 4 4 4 4 3 3 1 5 5 5 5 5 c17(9) 9

24 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 c1(10) 10

25 4 4 4 4 4 4 4 3 2 2 5 5 5 5 5 c17(10) 10

26 5 5 5 5 5 5 5 5 5 5 5 4 3 2 1 b 11,12,13,14,15

27 4 4 4 4 4 4 4 3 2 1 *4 5 5 5 5 c17(11) 11

28 5 5 5 5 5 5 5 5 5 5 *4 4 3 2 1 c26(11) 11

29 3 3 3 3 2 1 4 4 4 4 4 5 4 4 4 c10(12) 12

30 5 5 5 5 5 5 5 5 5 5 5 5 3 2 1 c26(12) 12

31 2 2 1 3 3 3 3 3 3 3 3 3 4 3 3 c5(13) 13

32 5 5 5 5 5 5 5 5 5 5 5 4 4 2 1 c26(13) 13

33 1 2 2 2 2 2 2 2 2 2 2 2 2 3 2 c2(14) 14

34 5 5 5 5 5 5 5 5 5 5 5 4 3 3 1 c26(14) 14

35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 c1(15) 15

36 5 5 5 5 5 5 5 5 5 5 5 4 3 2 2 c26(15) 15

Table 3: Matrix M and usage of runs to compute factors effect. Run type b=base run.

Run type ci(j)=copy of run ri with the level of factor Xj increased of one step. There

are r=6 base runs, so that the number of factors is k = 6(5/2) = 15. The total number

of runs is 6 base runs plus 2 ∗ k additional runs for a total of r2 = 36 simulations. Each

base run is cloned exactly five times. Each input factor is explored over five levels. The

exception is marked with asterisk - the 4’s in runs 27 and 28 should have been 6’s. This

type of exception occurs exactly twice regardless of number of factors k. Each base run

is used for 5 different factors. Generalising: a number r of base runs can be used for

k = r(r−1)
2

factors explored over l = (r− 1) levels at a cost of N = r2 simulations. Each

base run is used for exactly (r− 1) factors while each non-base (clone) run is used only

for one factor.
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Run 10 is the previous run 4.

Analogously:

Run 11 is a step in the X4 direction taken from from run 5.

Run 12 is a step in the X4 direction taken from from run 10.

Run 13 is a step in the X5 direction taken from from run 2.

Run 14 is a step in the X5 direction taken from from run 10.

Run 15 is a step in the X6 direction taken from from run 1.

Run 16 is a step in the X6 direction taken from from run 10.

It should be clear how we have proceeded for the other runs. Note that run 17 is

the previous run 5 and run 26 the previous run 6.

Let us now discuss briefly the base matrix B and why we have chosen to exemplify

the approach with k = 15 factors.

In B for a generic row or run number rj, we can estimate rj − 1 steps of the X∼i

type, the simulation number rj− 1 can give rj− 1− 1 steps and so on, e.g. we compute

the five steps X∼11 to X∼15 from row 6, four steps X∼7 to X∼10 from row 5 and so on).

Thus the total number k of steps of the X∼i type which one can estimate with r

simulations is simply

k = r − 1 + r − 2 + ...1 =
r(r − 1)

2
(0.0.2)

Hence for a total run number of r = 3, 4, 5, 6, 7, 8, 9 . . . simulations we can compute

steps of the X∼i type for k = 3, 6, 10, 15, 21, 28, 36 . . . factors respectively in matrix B.

In other words, the number of matrix B simulations for a given number of factors

k is the solution of the quadratic equation above 0.0.2, e.g.

r =
1 + (1 + 8k)

1
2

2
(0.0.3)

that has meaningful solutions for k = 3, 6, 10, 15, 21, 28, 36 . . . factors corresponding to

r = 3, 4, 5, 6, 7, 8, 9 . . . simulations in B as just mentioned. In the matrix B given as

example, k = 15 and r = 6, which the right number to explore 5 different levels for

each factor. It is easy to see that the number of level explored is in general l = r − 1.

Note that the designs for k = 3, 6, 10 are embedded into B or M. One just has to

ignore the unneeded right-most columns. With k = 6, r = 4 we would have explored

conveniently 3 levels and with k = 10, r = 5 we would have explored 4 levels. Given

that the present is a screening method, we would anticipate that it will applied to a k

higher rather than lower than 15.
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Note that in runs 27 and 28 we have moved levels from 5 to 4 instead than from 5

to 6, in order not to have isolated levels 6 explored. This technicality has to be kept in

mind with different values of k as well to ensure that there will not be a level explored

only twice in M. This exception will systematically occur twice in M irrespective of k.

Given that our algorithm in matrix M also need two additional simulations for each

factor to compute steps along the Xi axis, the total numbers of simulations for our

design is the solution of equation 0.0.3 plus twice the number of factors k.

Hence N = r + 2r(r − 1)/2 = r2. In the case of matrix M where r = 6 this makes

N = 36.

Having illustrated the sample design, we now move to discuss how effects are esti-

mated. Let us refer to factor X1 in matrix M to exemplify our approach.

Let us call Yi the model value computed on the i− th row of M. We start with run

r3 which is simply a copy of run r1 were factor X1 has been moved from level (1) to

level (2), and run r = 4 which is a copy of run r2 were again factor X1 has been moved

from level (1) to level (2). Thus both

EEa(1) =
|Y1 − Y3|
|Y1|

and

EEb(1) =
|Y2 − Y4|
|Y2|

Can be taken as estimate of the so-called main effect of X1 (see Figure 1).

Thus the elementary or first order effect EE(1) of X1 can be estimated via

EE(1) =
1

2
(|EEa(1) + EEb(1)|) (0.0.4)

It is also clear that the both the couple of runs 1, 2 and 3, 4 provide an effect of

moving all factors but X1. We hence pose that an estimate of the non-linear and

interaction effects of factor X1 can be gauged by

EIa(1) = ||Y1 − Y2| − |Y3 − Y4|| (0.0.5)

Equation 0.0.5 says that if the effect of X∼1 varies between two different levels of

X1 then there must be a non-linear or interaction effect involving factor X1.

On the same ground if the effect of X1 computed at different points of X∼1 varies,

this should as well provide information on non-linear and interaction effects of X1, hence

EIb(1) = ||Y1 − Y3| − |Y2 − Y4|| (0.0.6)
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Figure 1: Computational scheme for the effects of factor X1 in matrix M, Table 3. Note

that effects can be obtained by comparing points both horizontally and vertically.

In the end an overall effect on non-linear and interaction terms in X1 can be esti-

mated by:

EI(1) =
1

2
|EIa(1) + EIb(1)| (0.0.7)

EE and EI terms for the other factors can be similarly explored.

Note that the EI measure just described excludes the first order effect of a factor

and is hence not a proxy for the total sensitivity index as described by Homma and

Saltelli, 1996(5).

An alternative measure which could play as a proxy of the total sensitivity index

would be the following:

ETa(1) =
1

2

[ ||Y1 − Y2| − |Y1 − Y4||
|Y1| +

||Y2 − Y1| − |Y2 − Y3||
|Y2|

]
(0.0.8)

Equation 0.0.8 says that the difference between moving all and moving all-but-X1

must tell us something about the effect of X1, inclusive of its interaction with non-X1.

Similarly:
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ETb(1) =
1

2

[ ||Y3 − Y4| − |Y3 − Y2||
|Y3| +

||Y4 − Y3| − |Y4 − Y1||
|Y4|

]
(0.0.9)

And proceeding analogously to the approach taken for EI(1) we can estimate the

total effect of X1 as the modulus average of the two:

ET (1) =
1

2
|ETa(1) + ETb(1)| (0.0.10)

As mentioned the present approach favours number of factors such as k = 3, 6, 10, 15, 21, 28, 36 . . .

and the corresponding costs are in Table 4.

r number of factors k number of simulations N

3 3 9

4 6 16

5 10 25

6 15 36

7 21 49

8 28 64

9 36 81

10 45 100

11 55 121

12 66 144

13 78 169

14 91 196

15 105 225

16 120 256

17 136 289

18 153 324

19 171 361

20 190 400

Table 4: Number of factors k and total number of simulations N corresponding to a

given column dimension of matrix B.

These numbers have to be compared with the cost of the elementary effects methods.

When using this methods(1) a number of trajectories t is launched into the space of

the input factors. In each trajectory all steps are taken along the Xi axes (no movements

over the X∼i axes) and only elementary effects are computed using systematically adja-

cent steps of the trajectory. Within each trajectory, composed of k+1 lattice points, one

factor at a time is increased till all k dimensions have been spanned. Each trajectory

thus generate exactly k elementary effects, i.e. one elementary effect per factor.

The cost C of this procedure is thus the number of trajectories t times the number of

factors plus one, C = t(k+1). Given that t can be as high as 10 to produce good results,

it is easy to say that the approach developed in the present paper can be convenient.
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This intuition has its basis on the fact that in the classic elementary effects method

each point is used either once (the trajectory extremes) or twice (all other points in a

given trajectory t), while in the present design runs are used much more exhaustively.

In general in matrix B each run is used to compute effects for a total of r−1 factors.

Thus for k = 15 example where r = 6, each run is used in the estimation of five different

effects as can be easily verified (run r1 is used to estimate factors X1, X2, X6, X10, X15

(see Table 3)).

Thus even if we assume to use not just one but t′ different versions of matrix M,

scrambling the assignment of factors to columns, the costs to be compared would be

C = t(K + 1) (0.0.11)

for the classic elementary effect method against

C ′ = t′N = t′r2 (0.0.12)

Given that r2 is more than the double of k + 1, with the ratio 2
k+1

tending to 2

for large values of k, it will be C ′ < C provided that for t′ < 5 one produce results

comparable in quality to the classic approach at t = 10.

Comparison with the a quantitative method

There are points of similarities between the approach presented in this paper and

that of Saltelli, 2002(12). This is an improvement of the Sobol’ method(13) for the

computation of the so-called variance based measures.

A variance based first order effect for a given factor Xi can be written as

VXi
(EX∼i

(Y | Xi)) (0.0.13)

The meaning of the inner expectation operator is that the mean of Y it is taken of

all possible values on values non-Xi i.e. over all possible values of X∼i, while keeping

Xi fixed. The outer variance is taken over all possible values of Xi.

The associated sensitivity measure (first order sensitivity coefficient) is written as:

Si =
VXi

(EX∼i
(Y | Xi))

V (Y )
(0.0.14)

Because of relation:

EXi
(VX∼i

(Y | Xi)) + VXi
(EX∼i

(Y | Xi)) = V (Y ). (0.0.15)

Si will always be between zero and unit. It measures the first order (e.g. additive)

effect of Xi on the model.
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Another popular variance based measure is the total effect term or index(5; 12):

STi =
EX∼i

(VXi
(Y | X∼i))

V (Y )
(0.0.16)

STi measures the total effect (both first order and higher - e.g. interactions - of

factor Xi.

Variance based methods are quantitative so that these measure are not simply esti-

mated over levels of the factors but over the entire factors distribution using customarily

Monte Carlo methods of various sophistication.

Sampling matrices will be designed to allow the computation of measures 0.0.14 and

0.0.16.

Following Saltelli 2002(12) we imagine to have two independent sampling matrices

A and B. We can write A as

A = X
(a)
i ,X

(a)
∼i (0.0.17)

where X
(a)
i will be a column vector of length N (the number of simulations in the

matrix) and X
(a)
∼i will be a matrix of dimension N times k − 1.

Analogously

B = X
(b)
i ,X

(b)
∼i (0.0.18)

Two more matrices can be constructed as

Ab = X
(a)
i ,X

(b)
∼i (0.0.19)

Ba = X
(b)
i ,X

(a)
∼i (0.0.20)

The theory of variance based measures is based on computing Si from either the

couple of matrices A,Ab or B,Ba(13).

Analogously STi can be computed either using the couple A,Ba or matrices B,Ab

(see Table 5).

Saltelli 2002(12) noted that all what is needed to compute both the set of all Si

and STi for the k factors is the triplet of matrices A,B,Ba or alternatively the triplet

matrices A,B,Ab. If we use e.g. the former triplet we can compute all Si and ST i

using the scheme in Table 6:

Note that 2N simulations are needed for computing Y corresponding to matrices

A,B while kN simulations are needed to compute Y for matrix Ba for all factors. As
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matrix matrix effect

X
(a)
i ,X

(a)
∼i X

(a)
i ,X

(b)
∼i Si

X
(a)
i ,X

(a)
∼i X

(b)
i ,X

(a)
∼i STi

X
(b)
i ,X

(b)
∼i X

(b)
i ,X

(a)
∼i Si

X
(b)
i ,X

(b)
∼i X

(a)
i ,X

(b)
∼i STi

Table 5: Possible ways of computing Si and ST i from 5

matrix matrix effect

X
(a)
i ,X

(a)
∼i X

(a)
i ,X

(b)
∼i Si

X
(b)
i ,X

(b)
∼i X

(a)
i ,X

(b)
∼i STi

Table 6: How to compute Si and STi according to (12)

a result the cost of this quantitative method is N(k +2) with N usually a large number

(1000 or higher).

This has similarities with the approach taken in the present paper, where the com-

putation of the sensitivity effects are based of ’squares’ in the hyper-lattice such as

Table 7.

For example, the square for factor X1 in matrix 3 is in Figure 1

A comparison of the efficiency of the Saltelli 2002(12) method against the approach

of the present paper could be based on the number of times a given point or simulation

is used to compute an effect.

In Saltelli 2002(12) there are N simulation corresponding to points X
(a)
i ,X

(a)
∼i and

N simulations corresponding to points X
(b)
i ,X

(b)
∼i .

Each if these 2N simulations or points is used k times (see Table 6), once for each

factor. There are instead kN points of the type X
(a)
i ,X

(b)
∼i (N points for each factor)

and each of these points is used twice, once for Si and once for ST i. Hence a weighted

average of simulation usage can be written as:

point point

x
(j)
i ,x

(j)
∼i x

(j)
i ,x

(j+1)
∼i

x
(j+1)
i ,x

(j)
∼i x

(j+1)
i ,x

(j+1)
∼i

Table 7: Generic bi-dimensional square in the hyper-lattice
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U =
2kN + 2kN

(k + 2)N
=

4k

k + 2
(0.0.21)

i.e. below and approaching 4 for increasing k.

Let us compare this with the apporach developed in the repsent paper. There are

r2 simulations or points in matrix B. Each of the r base runs is used for r − 1 factors

and 3 effects per factor are computed (e.g. from Y1 one computes EE(1), ETa(1) and

ETb(1), if we do not count EIa(1) and EIb(1)). Each of the remaining 2k runs are used

only for one factor for the same three effects. Hence

W =
3r(r − 1) + 3(2k)

r2
=

3r(r − 1) + 6 r(r−1)
2

r2
=

6(r − 1)

r
(0.0.22)

which is below and approaching 6 for increasing r. As W > U the method presented in

the present work is about 50% more efficient than the one presented in Saltelli 2002(12).

Conclusion

A method has been developed to accelerate screening of factors in factor-rich models

with the interesting property that both first order effects, interaction effects and total

effects are gauged. Further work is needed to test the present method against available

benchmarks for sensitivity analysis tools as described in (10).
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Abstract 
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