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Summary 
To date, the Land Parcel Identification System (LPIS) has often been proposed as the foundation 
for effective spatial management of agriculture and the environment and many land managers 
have suggested incorporating it in most of the instruments for sustainable agriculture. The LPIS is 
originally used for registration of agricultural reference parcels considered eligible for annual 
payments of European Common Agricultural Policy (CAP) subsidies to farmers. Its intrinsic 
quality depends on the frequency and magnitude of the discrepancies in area, since some parcels 
can be under- or over-declared by farmers compared with reference registered within the LPIS. 
General application of the LPIS therefore depends on our capacity to – first identify and explain 
the causes of these area discrepancies perceived as anomalies by national CAP payment agencies 
–second, to propose future improvements in its overall quality. 

From a set of images used during the 2005 Control with Remote Sensing (CwRS) campaign, 
using the geographic information system (GIS) and ecological methodologies we assessed the 
quality of the LPIS by identifying the diversity of the existing anomalies. To that end, the 
ecological sampling method was adapted to the specific case of image-based detection of 
anomalies. The observed anomalies assemblages obtained from a set of European Member States 
representing the four types of LPIS were analysed to establish the spatial pattern of the anomalies. 

We showed that the twelve zones surveyed can be grouped into four different clusters, each 
individually correlated with the presence of certain categories of LPIS anomaly. Some clusters 
were more particularly related to the presence of natural and anthropogenic landscape features, 
whereas others were typified by anomalies which stemmed from the process for creating and 
updating the LPIS, which accounted for 20% of the anomalies detected. Finally, we also showed 
that, even if useful for establishing procedures to manage the LPIS, the LPIS typology used in the 
European Union had no effect on the anomalies assemblage or on the spatial pattern; 
consequently, the type of LPIS no longer needs to be considered and LPIS anomalies 
assemblages could be pooled across Europe. 

In the light of the results obtained, different proposals are made to improve LPIS quality by:  

– identifying the critical points along the LPIS management chain; 

– using landscape ecological methodologies to explain the causes of the clusters observed; and 

– extrapolating the whole results in the CwRS risk analysis to perform ex-ante LPIS anomalies 
risk map.  
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Preface 
 

This report attempts to present, in a coherent form, to European national authorities in charge of 
the Single Payment Scheme (SPS) under the CAP regulatory framework or more generally to 
CAP managers the advantages of making simultaneous use of both ecological and geographic 
information system (GIS) methodologies to address the current quality of the Land Parcel 
Identification System (LPIS) from which payments to millions of farmers every year are decided. 

The reason for conducting a survey of the LPIS across the European Union (EU) was not dictated 
by any future revision of the regulatory framework, but that agricultural and rural development 
managers wanted to make general use of the LPIS. Indeed, the LPIS has recently come to be 
considered the central geographic database able to provide the most accurate and up-to-date 
information about land occupation and land-use changes. Today, for European administrations 
and scientists alike, the LPIS is acknowledged as the foundation for tackling the sustainability of 
European agriculture cost-effectively. Because of the volume of georeferenced information it 
conveys concerning land occupation, cultivated biodiversity and areas identified as of high 
natural value, the LPIS is perceived as a means to address land management, biofuel and biomass 
production, preservation of agri-environmental resources or even problematic biotechnological 
crops. Combined with information and communication technologies, the LPIS then becomes an 
indispensable instrument for monitoring, reporting, certifying or assessing agri-environmental 
practices and possible effects of CAP reforms.  

Consequently, by studying LPIS quality and proposing potential improvements, we expect to play 
an active part in its general application to everyone concerned by agri-environmental 
sustainability. To that end, we assessed LPIS quality by looking at the diversity of the anomalies 
it could contain and by analysing the reasons for them. The results are reported here in an easy-to-
understand, but very detailed manner to allow anybody else to repeat the methods used here or 
adapt them to their specific efforts. 

This quality assessment of the LPIS was made possible by the multidisciplinary nature of the JRC 
GeoCAP staff and by the flexibility we were allowed to develop ideas and conduct experiments. 
For that, we are grateful to our Head of Unit Jacques Delincé and to our respective project leaders 
Simon Kay and Philippe Loudjani. We also wish to thank Florence Carré and Ivan Buck for 
reviewing this document. Finally, we want to thank Charles J. Krebs for the wealth of knowledge 
he made available in his reference work: Ecological Methodology. 

 

David Grandgirard and Rafal Zielinski 

May 2008 

 



  

Contents 
 

List of figures and tables 
List of equations 
List of abbreviations 
 

Part A. European LPIS: implementation and utilisation framework p. 1 
Introduction p. 1 
1. Regulatory framework p. 2 
2. LPIS quality p. 2 
3. Creation and diversity of the LPIS p. 3 
4. LPIS updating p. 5 
5. LPIS irregularities p. 6 

 

Part B. European LPIS appraisal: ecological approach and subsequent objectives p. 7 
6. Ecological approach p. 7 
7. Objectives p. 8 

7.1. Typology of LPIS anomalies p. 8 
7.2. Validation of a sampling method for the survey of LPIS anomalies p. 9 
7.3. Description of LPIS anomalies assemblages p. 10 
7.4. Relationship between LPIS anomalies assemblages and landscape structure  
and LPIS management p. 10 

 

Part C. Data used and preparation p. 12 
8. LPIS dataset selection and preparation p. 12 
 

Part D. Sampling method selection and calibration p. 15 
9. Ex-ante assumptions and sampling method selection p. 15 

9.1. Initial assumptions p. 15 
9.2. Variables of interest P. 17 

10. Sample size p. 17 
11. Quadrat shape p. 20 
12. Quadrat size and sampling design p. 21 

12.1. Wiegert’s method p. 21 
12.2. Sampling designs p. 21 
12.3. Wiegert’s cost calculations p. 24 
12.4. Results of Wiegert’s method p. 24 
12.5. Sampling design control method p. 25 

13. Sampling decision based on comparison of LPIS anomalies assemblages p. 27 
14. Spatial distribution of anomalies in zone FB2 p. 30 

14.1. Statistical assessment of the spatial distribution of anomalies in zone FB2 p. 30 
14.2. Metric assessment of the spatial distribution of anomalies in zone FB2 p. 30 
14.3. Results of the statistical estimation of the spatial distribution of anomalies in  
zone FB2 p. 32 



  

14.4. Results of the metric estimation of the spatial distribution of anomalies  
in zone FB2 p. 34 

15. Preliminary conclusions and decisions concerning the final sampling method  p. 35 
 

Part E. Analysis of diversity in LPIS anomalies p. 36 
16. Validation of sampling method  p. 36 

16.1. Anomalies accumulation curves theory p. 36 
16.2. Non-parametric estimators p. 38 
16.3. Anomalies accumulation curves for completeness of the sampling method  p. 38 
16.4. Non-parametric estimators for completeness of the sampling method  p. 42 
16.5. Final statement on the comparability of anomalies assemblages  p. 42  

17. Description of samples p. 42 
17.1. Areas sampled p. 42 
17.2. Anomalies occurrence and abundance p. 45 
17.3. Relationship between anomalies abundance and reference parcel area  p. 47 

18. Description of anomalies assemblages p. 49 
18.1. Single anomaly detectability and γ-diversity p. 49 
18.2. Single anomaly occurrence and abundance p. 49 

19. Diversity of LPIS anomalies p. 51 
19.1. α-diversity p. 51 
19.2. β-diversity p. 53 
19.3. Anomalies clusters and spatial pattern p. 54 
 

Part F. Final discussion and prospects p. 58 
20. Discussion of the results p. 58 

• The sampling method p. 58 
• Validation of the sampling method p. 59 
• LPIS quality in the EU p. 60 
• The diversity of LPIS anomalies p. 61 
• Typology of LPIS anomalies and causes of the anomalies assemblage  p. 61 

21. Prospects p. 62 
• The LPIS updating process p. 62 
• The landscape ecological approach p. 63 

 

Bibliography p. 65 
Appendices p. 70 

• Appendix A: LPIS anomalies typology proposed a priori p. 70 
• Appendix B: Anomalies accumulation curves from Clench and LD asymptotic  

models p. 71 
• Appendix C: LPIS anomalies assemblages from the twelve zones studied p. 72 



  

List of figures and tables 
Figure 1: “75/90%” LPIS quality rule 

Figure 2: Workflow of LPIS creation and updating processes  

Figure 3: Description of the four types of LPIS existing in Europe 

Figure 4: General workflow for the 2005 LPIS quality survey 

Figure 5: Distribution of the control zones for the CwRS 2005 project 

Figure 6: Decision-making tree for choosing a method for estimating absolute abundance 

Figure 7: The three different sampling designs applied  

Figure 8: Changes in product of (relative variance * relative cost) depending on quadrat size and 
sampling design 

Figure 9: Relative bias, imprecision and MSE of the mean and the standard error of anomaly 
occurrence in the LPIS for FB2 

Figure 10: NMDS plot of Morisita’s similarity index calculated between the true FB2 anomalies 
population and the anomalies population sampled and replicated 

Figure 11: Observed and expected frequency distributions of the number of LPIS anomalies per 
quadrat 

Figure 12: Observed against estimated values of anomalies richness 

Figure 13: Type-by-type relative percentage of anomalies occurrence and abundance for each of the 
twelve selected zones 

Figure 14: Distribution of the mean number of anomalies per reference parcel for all twelve selected 
zones 

Figure 15: Mean reference parcel area for the eight different classes of anomaly abundance observed 
during the survey 

Figure 16: Classification of the product of (relative abundance * relative occurrence) for the sixteen 
anomalies detected 

Figure 17: Non-metric multidimensional scaling and hierarchical ascendant classification of 
similarity measurements between zones 

__________ 

Table 1: Replicates and corresponding acronyms of the four LPIS types surveyed 

Table 2: A priori estimate of the minimum sample size for each LPIS replicate in the survey 

Table 3: Expected uniformity, aggregation and randomness values of indices of dispersion 

Table 4: Predicted maximum richness values from anomalies accumulation curves and non-
parametric estimators 

Table 5: Primary results concerning anomalies occurrence and abundances in the twelve zones 
selected for the survey 

Table 6: α-diversity metrics zone by zone 

Table 7: Relative abundance of single anomalies in the identified clusters of zones 

 

 



  

List of equations 
 

 

 

Equation 1: Anomaly occurrence 

Equation 2: Anomaly abundance 

Equation 3: Normal approximation to the confidence interval 

Equation 4: Desired margin of error 

Equation 5: Sample size for an infinite population 

Equation 6: Correction of sample size for finite population  

Equation 7: Wiegert’s sampling cost 

Equation 8: Morisita’s similarity index 

Equation 9: Component λ1 of Morisita’s similarity index 

Equation 10: Component λ2 of Morisita’s similarity index 

Equation 11: Green’s coefficient of dispersion 

Equation 12: Morisita’s index of dispersion 

Equation 13: Uniform dispersion index 

Equation 14: Clumped dispersion index 

Equation 15: Declination 1 of the standardised Morisita’s index of dispersion 

Equation 16: Declination 2 of the standardised Morisita’s index of dispersion 

Equation 17: Declination 3 of the standardised Morisita’s index of dispersion 

Equation 18: Declination 4 of the standardised Morisita’s index of dispersion 

Equation 19: χ² goodness-of-fit of the Poisson distribution of anomalies per quadrat 

Equation 20: Probabilistic determination of the negative binomial distribution of anomalies per 
quadrat 

Equation 21: Clench model 

Equation 22: 95% and 90% estimators of the Clench model 

Equation 23: Linear dependent model 

Equation 24: 95% and 90% estimators of the linear dependent model 

Equation 25: Gompertz model 

Equation 26: 95% and 90% estimators of the Gompertz model 

Equation 27: Simpson’s reciprocal index of diversity 

Equation 28: Camargo’s index of evenness 

 

 

 

 



List of abbreviations 
 
 
1/D = Simpson’s index of heterogeneity 
2D = 2-dimensional representation 
3D = 3-dimensional representation 
ANOVA = ANalysis Of VAriance 
Aobs = OBServed Abundance of anomalies 
AP = Agricultural Parcel 
Atrue = TRUE Abundance of anomalies 
BRAi = Class of Boundary-Related Anomalies 
(i = from 1 to 4) 
CA = Correspondence Analysis 
CAP = Common Agricultural Policy 
CAPI = Computer-Assisted Photo-Interpretation 
Chao1 = First-order Chao non-metric estimator 
of richness  
Chao2 = Second-order Chao non-metric 
estimator of richness  
CLU = Systematic CLUster sampling design 
CP = Cadastral Parcel 
CwRS = Control with Remote Sensing 
E’ = Camargo’s index of evenness 
E45 = Completeness percentage of the true 
anomalies assemblage when sampling 45 km² 
E90% (E95%) = Number of quadrats necessary to 
sample 90% (95%) of the estimated maximum 
richness in an anomalies assemblage 
EC = European Council 
EU = European Union 
F = F statistic from ANOVA 
FB = Farmer Block 
GAEC = Good Agricultural and Environmental 
Conditions 
GIS = Geographic Information System 
GPS = Global Positioning System (d-GPS = 
differential Global Positioning System) 
Ha = hectare 
HAC = Hierarchic Ascendant Classification 

IACS = Integrated Administration and Control 
System 
Jack1 = First-order Jacknife non-metric 
estimator of richness  
Jack2 = Second-order Jacknife non-metric 
estimator of richness  
JRC = Joint Research Centre 
Km² = Square kilometre 
LD model = Linear Dependent model 
LFA = Less Favoured Area 
LPIS = Land Parcel Identification System 
MRAi = Class of Man-made Related Anomalies 
(i = from 1 to 5) 
MSE = Mean Square Error 
NMDS = Non-metric MultiDimensional Scaling 
OTS = On-The-Spot check 
PB = Physical Block 
PCA = Principal Component Analysis 
POP = Total anomalies assemblage of the pre-
test zone (FB2) as the “true” anomalies census 
r² = Linear regression coefficient 
RAND = RANDom sampling design 
RDR = Rural Development Regulation 
SD = Standard Deviation 
SE = Standard Error 
SMR = Statutory Management Requirements 
Sobs = OBServed anomalies richness 
SPS = Single Payment Scheme 
Strue = TRUE anomalies richness  
SYS = SYStematic sampling design 
TRAi = Class of Tree-Related Anomalies (i = 
from 1 to 4) 
VHR = Very High Resolution 
WRAi = Class of Water-Related Anomalies 
(i = from 1 to 4) 
WTO = World Trade Organization 

 

 



 1

PART A. European LPIS: implementation and 
utilisation framework 

 

Introduction 

Examination of the successive major Common Agricultural Policy (CAP) reforms in Europe 
clearly reveals the consequences of the trade negotiations undertaken at World Trade 
Organization (WTO) level and of citizens’ expectations concerning the sustainability of 
agriculture and rural development. Indeed, from the productive agriculture of the ’90s when 
farmers’ entitlements were directly proportional to the production yields set to safeguard food 
security to the latest 2003 “Fischler” reform, environmental and social considerations have been 
progressively integrated into CAP regulations. To date, CAP reforms have involved significant 
reductions in most of the main forms of support by decoupling them from production and by 
implementing the Single Payment Scheme (SPS) (Buckwell, 2007). Nowadays entitlements are 
mostly calculated from the eligible farm area, whatever its production. At the same time, 
environmental and other non-commodity based support for agriculture, forestry and rural 
development has been restructured in the form of the new 2007-2013 Rural Development 
Regulation (RDR) (Commission Regulation (EC) No 817/2004). Together, the first and second 
pillars in the CAP Regulation (concerning, respectively, management of support for agricultural 
production and environmental/rural sustainability) now encourage integration of environmental, 
social and economic concerns into agriculture. 

Under the first pillar of the CAP, this was done by (i) setting up a new Integrated Administration 
and Control System (IACS) involving mapping for management of all agricultural land and 
(ii) making the SPS payments due to over seven million farmers in Europe conditional on 
meeting cross-compliance standards (Good Agricultural and Environmental Conditions – GAEC 
– and Statutory Management Requirements – SMRs) (Council Regulation (EC) No 1782/2003) in 
order to justify farmers’ CAP subsidies. On the other hand, the second pillar of the CAP proposes 
voluntary agri-environmental schemes to support agricultural and rural activities in less favoured 
areas (LFA), to promote marketing of agricultural products and conversion to organic farming or 
to assist farmers starting up or taking early retirement (Council Regulation (EC) No 1257/1999). 

Even if it could be thought that current economic concerns could negatively counterbalance the 
environmental benefits expected from agriculture (Bennet et al., 2006), cross-compliance under 
the CAP Regulation appears the minimum necessary to limit and control risks. To that end, cross-
compliance standards address (i) food market safety by allowing registration and identification of 
animals, animal welfare and human, animal and plant health; and (ii) protection of environmental 
resources (soil, air, water, biodiversity, etc.) to ensure the sustainability of agriculture. From 
cross-compliance, where GAECs cast an environmentally sensitive light on farms by targeting 
internal characteristics of agricultural holdings and cropping systems, SMR integrate the 
surrounding environment in which agricultural holdings are located (the Nitrates and 
Birds/Habitats Directives are two good examples of SMRs). Today, each individual plot of 
agricultural land is taken into account, by considering the uses made of the land and its 
surrounding landscape. Scientists and policy-makers alike use the term “agri-environment” to 
refer to this new level of integration within the CAP. Council Regulation (EC) No 1257/1999 
(Chapter IV) defines the concept “agri-environment” as “support for agricultural production 
methods designed to protect the environment and to maintain the countryside … it shall promote 
ways of using agricultural land which are compatible with the protection and improvement of the 
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environment, the landscape and its features, natural resources, the soil and genetic diversity.” 
Based on that, “agri-environment” appears to be the crossroads where the environmental 
performance of European agriculture can be assessed, not only at farm but also at higher levels 
when evaluating, respectively, cropping system sustainability and the effectiveness of CAP 
management. 

1. Regulatory framework 

CAP performance can be partly assessed by combining agricultural parcels, defined as “a 
continuous area of land on which a single crop group is cultivated by a single farmer” (Council 
Regulation (EC) No 972/2007), with the particular landscape features within or next to them. 
Performance assessment can be considered relatively feasible locally (at agricultural parcel or 
farm levels), but becomes more complex when undertaken on a larger scale. To solve this 
difficulty, an integrated system is needed for monitoring and reporting on farmers’ compliance 
with CAP requirements. Such a system should make it possible to merge and manipulate datasets 
containing not only agricultural but also environmental information.  

This system is already available. It has been clearly defined as the Integrated Administration and 
Control System (IACS) in the CAP Regulation. As required by Council Regulation (EC) No 
1782/2003 (Article 17) and Commission Regulation (EC) No 796/2004, the IACS manages 
farmers’ applications and direct support payments at national level in EU Member States. The 
IACS is a GIS-assisted (geographic information system) computerised database containing at 
least: 

 An identification system for location and measurement of “reference parcels” declared in 
applications for agricultural aid, i.e. the “Land Parcel Identification System (LPIS)”. 
“Reference parcel” means a geographically delimited area with a unique identification code 
under which it is registered in the Member State’s GIS identification system (Council 
Regulation (EC) No 796/2004); besides reference parcels, features of the surrounding 
landscape are often registered in the LPIS as supplementary elements to be excluded from 
individual calculations of farmers’ area-based aid.  

 Further modules for identification of entitlements, registration of aid applications, 
identification of farmers and an integrated control system. 

Despite its primary objective of supporting CAP schemes, the LPIS is increasingly coming to be 
considered a very accurate, cost-effective system for land-management purposes (Leteinturier et 
al., 2006). Therefore, an increasing number of rural agencies or local agricultural companies 
propose to have recourse to the LPIS and related datasets to build, assess, monitor, report and 
even certify management activities (Milčinski et al., 2007). However, effective use of the LPIS 
for monitoring and reporting on the environmental (and economic) performance of agriculture 
strongly depends on the intrinsic quality of the LPIS. 

2. LPIS quality 

For the purposes of the CAP Regulation, LPIS quality is high when the reference parcel system in 
use is adequate. Adequacy is demonstrated by complying with the “75/90%” rule. This is the case 
if the reference parcels in the 75th percentile of the whole reference parcel population at national 
level present an “up-to-date reference area/total LPIS reference area” ratio equal to or higher than 
90%. The “up-to-date reference area” is measured from up-to-date satellite imagery and/or with 
certified GPS devices and is considered the “true” eligible area. The “total LPIS reference area” is 
the total area actually registered in the LPIS and considered the reference eligible area. This rule 



 3

calls for obtaining regular up-to-date images or measurements of the “true” eligible area to be 
compared with the reference eligible area within the LPIS. 

 
Figure 1: “75/90%” LPIS quality rule  
Because the discrepancy between the “reference” area (registered as eligible within 
the LPIS) and the “true” area (as measured from satellite imagery or in the field 
with a GPS device) for exactly 75% of the reference parcels at national level does 
not exceed 10% of the total national eligible area, situation A is considered 
compliant with the “75/90%” LPIS quality rule; by contrast, situation B is non-
compliant.  

At parcel level, the “75/90%” rule could be interpreted as the need for each reference parcel 
within the LPIS to present a ratio between the true and the reference values higher than 0.9. In 
fact, this rule applies to the total national eligible area and non-conform small parcels 
(discrepancy in the area > 10% of the reference parcel area) can easily be compensated by 
conform larger reference parcels. This leaves national administrations a degree of flexibility to 
comply with this requirement. 

Considering this, LPIS quality can be assessed by measuring the number of anomalous parcels 
presenting a discrepancy in area higher than 10% and the discrepancy in area of the anomalous 
parcels population. These two indicators of the overall LPIS quality could be useful for 
identification of the critical points in (i) LPIS creation (initial registration of reference parcels in 
the LPIS) and/or (ii) LPIS updating (from up-to-date reference area measurements) to decide on 
possible improvements and achieve global correctness. 

3. Creation and diversity of the LPIS 

Although the processes for LPIS creation and updating can vary between Member States, there 
are some common features. 

First, almost all the Member States rely on more or less up-to-date orthophotos to create reference 
parcels. However, reference parcels can also be created from other datasets, such as cadastral 
maps, land distribution plans, topomaps, etc. In both cases, the reference parcels are then checked 
and validated against archives or new orthophotos (see Figure 2). Second, although LPIS 
reference parcels are usually created at national level, some Member States leave the regions the 
possibility of establishing LPIS in accordance with local preferences.  
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Figure 2: Workflow of LPIS creation and updating processes   
(general description of the processes; this figure does not claim to match exactly all 
the situations existing in Europe) 

Finally, the setting-up of the LPIS could be closely related to the available information 
technologies and investment decisions on the date of the country’s accession to the EU or simply 
to historical preferences. Airborne imagery is widely used in Western Europe, whereas Eastern 
Europe tends to use very high resolution (VHR) satellite imagery. In addition, the historical 
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relationship between farmers and land occupation or land ownership has led to slightly different 
procedures for LPIS creation, resulting in a range of different types of LPIS in the EU. 

Today, four major types of LPIS co-exist in Europe (see Figure 3 for descriptions and 
characteristics). The most commonly used LPIS in the EU is (i) the “physical block (PB)” 
because it is stable over time and, consequently, easy to update. Member States also use (ii) the 
“agricultural parcel (AP)” or (iii) “farmer block (FB)” as reference parcel systems. These are 
considered appropriate choices to facilitate administrative CAP checks, but FB and AP updating 
is considered more complex and time-consuming. Finally, Member States which base their LPIS 
on the land register (parcel ownership) use “cadastral parcel (CP)” as the reference (Milenov and 
Kay, 2006). 

 

 

    

LPIS types Agricultural parcel 
(AP) Farmer block (FB) Physical block (PB) Cadastral parcel (CP) 

Content/coverage Single crop group One or more crop 
groups 

One or more crop 
groups 

Does not match 
agricultural patterns 

Applicant Single farmer Single farmer One or more farmers One or more farmers 

Timeframe Annual Multi-annual Semi-permanent Not applicable 

 

Figure 3: Description of the four types of LPIS existing in Europe (Sagris et al., 2007) 

4. LPIS updating 

To ensure correct distribution of annual agricultural subsidies to farmers, it is necessary to 
maintain LPIS quality over time. This is achieved by an updating process to demonstrate that the 
LPIS complies with the regulatory requirements and its capacity to integrate the latest changes to 
farmers’ aids applications. Figure 2 illustrates the three main regulatory paths (Commission 
Regulation (EC) No 796/2004) currently proposed for integrating land-use changes and updating 
the LPIS: 

(1) Farmers could correct pre-printed forms by indicating the new boundaries of each reference 
parcel and, when necessary, by updating their area. The new reference parcel boundaries 
could be then automatically checked by the GIS to pinpoint and correct overlaps 
(de Laroche, 2007). This method could allow annual updating of up to 100% of the reference 
parcels and is generally well accepted by farmers.  

(2) National payment agencies conduct annual on-the-spot (OTS) checks to legitimise individual 
farmers’ aid applications, based on the reference parcels in the LPIS. During these checks, 
field inspectors have recourse to validated remote-sensing procedures and/or certified dGPS 
devices to record the up-to-date situation of the reference parcel areas. Unfortunately, 
although OTS checks provide very precise information and correction of irregularities, 
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complete updating of the LPIS every year by OTS checks is unfeasible for economic reasons. 
Instead, a minimum of at least 5% of farmers’ applications are expected to be checked every 
year (for instance, in the 2007 campaign, 590 000 OTS checks in the EU-27, corresponding 
to an average of 6.7% of the reference parcels). 

(3) An overhaul driven by monitoring anomalies in the LPIS is required; accordingly, national 
CAP payment agencies ask their contractor(s) responsible for image acquisition and 
processing to ensure a complete renewal of orthophoto coverage over a period of five years 
and to update the reference parcels delineation. 

Today, one or more of these possibilities has been introduced in each Member State actively 
participating in the ongoing LPIS updating. 

However, because of the day-to-day changes in the landscape (undeclared anthropogenic changes 
such as new buildings, construction of facilities, deforestation, etc.), misdeclaration (over- or 
even under-declaration of reference parcel areas) or obsolete orthophotos, an exact match 
between the reference parcels area registered in the LPIS and the up-to-date reference parcel area 
is utopian. Several years after introduction of the IACS, the declared area still often does not 
reflect the actual situation (Oesterle and Hahn, 2004). Moreover, a complete and regular check on 
all the reference parcels by national authorities is impossible. Consequently, irregularities persist 
within the LPIS. For all Member States, in 2004 an average of 40% (28.9% in 2006) of the 
applications checked on the spot contained over-declarations of the area claimed (Court of 
Auditors Annual Report, 2005); this was equivalent to 2.1% of the reference area verified by the 
European payment agencies.  

5. LPIS irregularities 

According to Council Regulation (EC) No 796/2004, “irregularities” means “any non-respect of 
the relevant rules for the granting of the aid in question”. Since the 2003 CAP reform, aid has 
become area-based. Consequently, LPIS irregularities usually take the form of differences 
between the area declared in the application (by the farmer or others) and the reference area 
identified as eligible in the LPIS. Most irregularities are over-declarations. However, the 
discrepancy is often below the 5% buffer tolerance accepted and, consequently, does not lead to 
any reduction in payments. The buffer tolerance is currently set at a maximum of 1.5 m applied to 
the perimeter of the reference parcel and the area discrepancy should not exceed 1.0 ha (Council 
Regulation (EC) No 972/2007). This buffer tolerance is partly explained by the accuracy of 
today’s imagery and of the dGPS used (Pluto-Kossakowska et al., 2007).  

No survey has yet been undertaken of the irregularities found in the European LPIS. 
Consequently, a preliminary description of the nature and frequency of irregularities in the LPIS 
would greatly help administrations with general application of the LPIS for sustainable agri-
environmental management and would provide meaningful information for cost-effective 
updating of the LPIS. 
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PART B. European LPIS appraisal: ecological 
approach and subsequent objectives 

 
Strictly speaking, LPIS irregularities are defined as a significant discrepancy between the area 
stated in the farmer’s annual declaration and the reference area in the LPIS, calling for 
withdrawal of undue payments. This implies control procedures, measurement and monetary 
valuation of the discrepancy in area triggering a reduction/exclusion/correction process. Because 
neither individual farmers’ subsidies nor economic valuations of discrepancy in area are widely 
available public information, this survey did not focus on these aspects. 

Moreover, because no area discrepancy measurements were planned during the survey, it was 
decided not to use the regulatory term “irregularity”. Instead, “anomaly” was substituted for 
“irregularity”. Anomaly is a more general term covering reference area discrepancies observed 
(but not measured). In accordance with the accuracy of the images used during the survey, 
“anomaly” corresponded to area discrepancies equal to or higher than 0.1 ha.parcel-1, whatever 
the cause. 

6. Ecological approach 

During the survey, LPIS anomalies were detected and analysed by computer-assisted photo-
interpretation (CAPI). “LPIS anomaly” meant nothing other than the existence of an 
inconsistency between the area registered in the LPIS and the area observed on the up-to-date 
orthorectified image of the real situation.  

Whatever the size of the discrepancy observed, the anomaly was identified by the nature of the 
cause of the discrepancy; object in cause was then considered as sub-area to be excluded from the 
reference parcel. Area discrepancies could have many causes and could be differentiated by the 
nature of the object partly or totally embedded in the reference parcel. Anomalies could then be 
conceived as spatially (i) clumped (aggregative) in the case of non-eligible marshlands 
surrounding several contiguous reference parcels situated along a river, (ii) systematically 
distributed across an area in the case of a shift in parcel boundaries due to a systematic 
orthorectification error during processing of images or (iii) randomly distributed in the case of 
new buildings constructed by farmers who have decided to invest since the last LPIS update. In 
this study the spatial distribution of anomalies was perceived as similar to the spatial distribution 
of many biological organisms, with individual anomalies and classes of anomalies treated like 
species and taxa respectively. The ecological approach was consequently considered a suitable 
method for analysing diversity of LPIS anomalies. 

Over the last 80 years, numerous ecologists addressing biological diversity have needed to answer 
the central question “How many are there?”, meaning the biological diversity in one specific 
area or the diversity between different areas. Local measurements of the number of species, 
i.e. species richness, by a complete survey of local diversity (α-diversity1) is generally out of the 
question due to limited human and financial resources. To overcome this limitation, extrapolation 
from samples has proven relevant (Sanders, 1968; Heltshe and Forrester, 1983; Colwell and 
Coddington, 1994). Unfortunately, as underlined by Colwell et al. (2004), species richness is 
                                                 
1 Alpha diversity (α-diversity) is the biodiversity within a particular area, community or ecosystem, 
generally habitat, and is measured by counting the number of taxa (distinct groups of organisms) within the 
habitat (e.g. families, genera or species). 
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notoriously dependent on sample size due to sampling effects and depends intrinsically on sample 
size when data from habitats are successively pooled, due to species turnover (β-diversity2). In 
most cases, an optimum sample size exists that allows detection of the maximum species 
richness. Once this is reached, any additional sampling will identify no extra species. 
Consequently, an approximate inventory of species is produced mainly by (i) measuring or 
estimating the species richness of each local species assemblage (α-diversity) and (ii) measuring 
or estimating the complementarity (i.e. distinctness) of different local inventories (β-diversity) in 
order finally to extrapolate it to the overall diversity on global scale (γ-diversity) (Whittaker, 
1972).  

Combined with the development and everyday application of spatial devices such as GIS to 
manipulate and analyse orthophoto and associated data, the ecological approach was seen as a 
meaningful solution to analyse the diversity of LPIS anomalies. It was adapted to a large range of 
scales, from local (a group of reference parcels in a given zone) to distinct sites on different 
continents (between Member States or in the whole EU). With this in mind, the general approach 
taken was to combine the well accepted ecological methodology and geographic information 
system in order to propose a complete, replicable method to assess LPIS quality. 

7. Objectives 

The goal of this study was to assess the consistency and robustness of LPIS for actual and future 
users or decision-makers responsible for the CAP by surveying the diversity and the spatial 
pattern of LPIS anomalies.  

7.1. Typology of LPIS anomalies  
Each LPIS anomaly corresponds to a single reference area discrepancy and a single cause. A 
typology of LPIS anomalies reflecting all possible causes of the observed discrepancies was 
compiled ex ante.  

First, LPIS anomalies could be the consequence of inaccurate orthophotos used when creating the 
LPIS. They could also stem from weaknesses in image processing (e.g. misuses of 
orthorectification) or be due to computer-assisted photo-interpreters’ inexperience. Second, 
during LPIS updating, reference area boundaries can be corrupted, whether intentionally or not. 
Third, if the shape of the reference parcel is complex or if irregular landscape features surround it, 
correct delineation of its area can be difficult. Finally, addition of anthropogenic landscape 
elements, such as buildings, roads, electricity facilities, etc., or changes of land use continuously 
change reference parcels and require up-to-date delineation of the area. 

Accordingly, an a priori classification of possible LPIS anomalies was proposed. This 
classification was used for this survey. In parallel, it was also used to address automatic detection 
in the LPIS of 2/3D objects considered elements to be excluded from the LPIS reference parcels 
(Zielinski, 2009). All the possible LPIS anomalies were organised into four distinct classes based 
on their plausible cause (see Appendix A): 

 Tree-related anomalies (TRAi): this class covers reference areas where a high density of trees 
was erroneously declared as an eligible part of the parcels. Four different types of anomaly 
make up this class in which 3D objects are considered. 

                                                 
2 Beta diversity (β diversity) is a measure of biodiversity which works by comparing the species diversity 
between ecosystems or along environmental gradients. It is the rate of change in species composition across 
habitats or among communities. 
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 Man-made related anomalies (MRAi): this class covers reference areas where new man-made 
objects were erroneously declared as an eligible part of the parcels. Five different types of 
anomaly make up this class in which 3D objects are considered. 

 Water-related anomalies (WRAi): this class covers reference areas where water bodies, such 
as rivers, ditches or ponds, were erroneously counted as part of the reference area. Four 
different types of anomaly make up this class in which 2D objects are considered. 

 Finally, boundary-related anomalies (BRAi): this class covers anomalies explained by 
incorrect positioning (i.e. shifting) of the reference boundaries in the LPIS. It also includes 
overlapping of boundaries in the LPIS from two different contiguous reference areas. A final 
category of anomaly is uses of the reference parcel other than for agriculture; these were 
considered as BRAi anomalies because of the need to exclude them or to redefine the true 
reference area boundaries. Four different types of anomaly make up this class in which 2D 
objects are considered. 

→ The first objective was then to assess the validity of the typology of LPIS anomalies against 
the census of anomalies within the LPIS. 

7.2. Validation of a sampling method for the survey of LPIS anomalies 
Diversity analysis initially depends on obtaining significant estimators of diversity. This means 
obtaining samples representative of the real situation. Consequently, an appropriate sampling 
method for gaining an approximate picture of the diversity in LPIS anomalies was required. 

Neither the technical reports provided from national authorities in charge of the LPIS nor the 
scientific literature have explicitly described the diversity and spatial pattern of LPIS anomalies. 
It was also difficult to find examples of sampling methods adapted to detection and description of 
LPIS anomalies from Member States conducting yearly reference parcel sampling from 
orthophotos. As it was necessary to propose a complete methodology to sample anomalies 
assemblages within the LPIS, it was important to validate use of the method for the range of types 
of LPIS existing and the multiple causes of LPIS anomalies all along the LPIS creation and 
updating chain (see Figure 2). 

→ The second objective was to propose and calibrate an easy-to-understand, cost-effective and 
replicable method to sample anomalies within the LPIS accurately in order to compare LPIS 
anomalies assemblages. 
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7.3. Description of LPIS anomalies assemblages  
In line with the typology proposed above, diversity in LPIS anomalies can be addressed by 
considering anomaly diversity in a single LPIS type (α-diversity), between LPIS types (β-
diversity or spatial pattern) and at EU level, considering all LPIS types (γ-diversity) (Whittaker, 
1972). The different levels of diversity obtained from the relative occurrence (i.e. the frequency 
of anomalous parcels) and/or relative abundance (i.e. density of each type of anomaly) of each of 
the 17 anomalies listed (see Appendix A) can (i) provide a reliable identification of common and 
rare anomalies regarding each LPIS type and (ii) allow description and comparison of the LPIS 
anomalies assemblages obtained. 

→ The third objective was to produce a description of the α- and β-diversity of the relevant 
LPIS anomalies. 

7.4. Relationship between LPIS anomalies assemblages and landscape structure and 
LPIS management   

From the typology of anomalies proposed, LPIS anomalies assemblages could be related to the 
conditions for LPIS creation and updating and/or to the landscape organisation. Certain candidate 
variables describing the workflow for LPIS creation/updating or landscape should be of interest 
to depict the anomalies assemblages. Identification of such relationships could provide potential 
indicators of LPIS quality; it could also provide suitable information to map “at-risk” LPIS 
situations and to help Member States to decide the zones to be included in LPIS risk analyses 
each year. 

→ The last objective was to discuss possible relationships between LPIS anomalies 
assemblages and (1) LPIS creation/updating conditions and (2) landscape structure 
descriptors. 

 

The workflow followed during the LPIS survey is illustrated in Figure 4. This shows the 
successive steps taken during the survey and can be perceived as a guideline for everyone who 
would like to conduct or improve the general method in particular situations. 
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Figure 4: General workflow for the 2005 LPIS quality survey 
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PART C. Data used and preparation 

8. LPIS dataset selection and preparation 

Annually, the satellite imagery for the Control with Remote Sensing (CwRS) to check farmers’ 
declarations is provided by the European Commission’s Joint Research Centre (JRC) and 
delivered to each Member State participating in the project. The satellite data acquired are 
geometrically and radiometrically corrected so that they can be used in the computer-assisted 
photo-interpretation phase for parcel determination and irregularity diagnosis. Due to budgetary 
and technical limitations, checks are conducted on only a limited number of zones in each 
Member State (see Figure 5). These zones are selected by the national administrations based on 
pre-established rules, including random sample and risk analysis criteria. They are then 
distributed to each contractor responsible for the CwRS in a Member State.  

 
 

Figure 5: Distribution of the control zones for the CwRS 2005 project 

 

Once the CwRS is completed, the data from the zones are then sent back to the JRC following a 
clearly defined procedure, so that it can assess the quality and efficiency of the CwRS performed 
by the Member States. The data consist of the basic details among them LPIS normally used by 
the contractor to carry out the ordinary check (except for the “dossiers”, i.e. the irregularities 
detected and resultant withdrawals of subsidies). Consequently, an extensive database of year-to-
year images and orthophotos from all the Member States is available at JRC level.  

From these datasets, in line with the objectives of this study, it was decided to concentrate on a 
single year – 2005 – to obtain preliminary knowledge about the diversity of LPIS anomalies 
before planning broader or longer-term studies. In 2005 the CwRS project covered 161 zones (see 
Figure 5) in 23 Member States and 27 national contractors were employed to perform LPIS 
quality assessment. This year was chosen because relatively complete LPIS datasets (imagery and 
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reference LPIS data) were available for 21 Member States. For two other MS the national datasets 
(image or vector data) sent to the JRC were found to be incomplete (e.g. parts of the LPIS or 
landscape exclusion layers were missing). From these 21 available datasets, the zones were 
classified in accordance with the four existing European LPIS types (Milenov and Kay, 2006). 
Next, the completeness and usability (computer incompatibility could limit use of some complete 
datasets) were verified for each LPIS type, the goal being to select randomly three replicates 
(three different Member States, with one CwRS zone each) from each LPIS type. In 2005, three 
replicates were available for three of the four different LPIS types (AP – agricultural parcel, CP – 
cadastral parcel and PB – physical block). For FB (farmer block), due to lack of availability, two 
replicates (zones) from the same Member State had to be included to obtain the same statistical 
validity. This was possible because the zones in this particular Member State were highly distant 
and managed by two different CwRS contractors. First, it was assumed that, despite the common 
European technical specifications they had received, their internal procedures, skills and 
management could vary widely and lead to different LPIS anomalies assemblages; second, high 
distance between zones allowed for sampling very different landscapes. 

The zones selected as replicates for the survey are listed in Table 1. 
 

Table1: Replicates and corresponding acronyms of the four LPIS types surveyed   
(Member States’ denominations are not indicated to respect the initial anonymity terms; however, 
they could be communicated to the Member States concerned by this survey individually on request) 

LPIS types Agricultural 
parcels 

Cadastral 
parcels Farmer blocks Physical blocks 

Acronyms AP CP FB PB 
Replicate 1 AP1 CP1 FB1 PB1 
Replicate 2 AP2 CP2 FB2 PB2 
Replicate 3 AP3 CP3 FB3 PB3  

 

Since the goal of this survey was to address LPIS quality for the range of LPIS types existing in 
the EU and not to compare LPIS quality between Member States, the names of the Member 
States from which zones were sampled were not indicated. However, on request, the national 
authorities concerned could obtain results concerning their territory. 

The selected zones and corresponding images were subjected to several procedures to ensure that 
each test zone would be elaborated in the same manner, e.g. by a unified file structure and 
processing. First, the entire dataset for each zone was individually established in the GIS 
environment. Second, several GIS vector operations were used to select from the dataset 
delivered only parcels which could be checked against the image content (exclusion of 
incomplete parcels on the edge of the image). In addition, vector layers (anomalies) with defined 
attributes (cause of anomalies) were assigned to each zone. 

One of the twelve zones selected (FB2) was chosen for adaptation (calibration) of the sampling 
method. Zone FB2 was chosen on the basis of several considerations:  

- Zone FB2 is in a Member State where a very limited number of irregularities are generally 
reported, implying that the quality of the LPIS was a priori high. 

- Because it was assumed that landscape characteristics and reference parcel area could have an 
effect on the composition of LPIS anomalies, a zone was selected for which (i) the mean 
reference parcel area was close to the EU average and where (ii) the landscape structure (and 
farming system) were representative of the European situation. In this way, this sampling 
method adapted to the difficult circumstances of zone FB2 (low number of anomalous 
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parcels) and its medium landscape structure was expected to prove suitable for any other 
landscape and/or more anomalous situations. 
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PART D. Sampling method selection and calibration 

 
This part explains the successive steps to decide and adapt the ecological sampling method to the 
specific case of LPIS quality assessment. Adaptation and calibration of the sampling method were 
performed on zone FB2, which had first been selected as the pre-test zone (see above). 

9. Ex-ante assumptions and sampling method selection 

9.1. Initial assumptions 
Regarding the typology of anomalies proposed, LPIS anomalies could stem from landscape 
features intersecting the reference parcel or from GIS misuse during LPIS creation/updating. 
Then absolute3 abundance of LPIS anomalies could be partly correlated with the structure and 
level of complexity of the landscape in a zone. Landscape complexity is defined as the 
fragmentation of the habitat (Fahrig, 2003) into different classes of land use, spatially distributed 
in accordance with driving forces. The five principal types of factor determining the land-use 
pattern are political, socio-economic, natural, cultural and technological (Brandt et al., 1999). 
Recently, Sklenicka and Salek (2007) showed that land ownership patterns, expressed as mean 
parcel size and the proportions of private/public land ownership, have a positive impact on 
landscape fragmentation and reciprocally. This suggests that the probability of TRAi or MRAi 
(see Appendix A) landscape-related anomalies could increase in proportion to reference parcel 
area: larger reference parcels should have more chance of intersecting with tree-related or man-
related landscape features. On the other hand, in zones of high natural value, the ban on 
deforestation could be expected to limit groupings of contiguous reference parcels and favour 
small reference parcels. In this case, the presence of a highly complex network of ditches and 
hedges around the parcels could favour a high proportion of tree- or water-related anomalies as 
the predominant natural driving force. 

It was therefore assumed that: 

- Land-use classes present in a zone, or next to a reference parcel, could explain the anomalies 
detected.  

- The magnitude of each anomaly detected could be correlated with the level of fragmentation 
of landscape around the reference parcels. 

- Finally, reference parcel area could also have an impact on both the occurrence and 
abundance of anomalies, because of the higher probability of being surrounded by more 
numerous and complex landscape features, i.e. the “parcel area” effect.  

Because both the occurrence and abundance of anomalies could be consequences of landscape 
fragmentation and/or of reference parcel area, direct sampling of reference parcels as the 
sampling unit was out of the question. Sampling of a set range of reference parcel areas would 
provide a biased estimate of anomalies occurrence and abundance because of the assumed “parcel 
area” effect. To free the sample of this potential bias, it was decided to use a method independent 
of parcel area to sample anomalies in the LPIS. According to Krebs (1999) (see Figure 6), the 
facts that (i) absolute abundance is expected, (ii) no supplementary information, such as area 

                                                 
3 Absolute occurrence or abundance means the real number of individuals of a species of interest, mainly 
expressed per unit area (i.e. absolute density); by contrast, relative occurrence or abundance means the 
number of individuals of species A per unit area relative to another species B.  
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discrepancy, is measured and (iii) LPIS anomalies are immobile on orthophotos, at least during 
the current campaign, led to opting for quadrat counts. 

 

 

 

Figure 6: Decision-making tree for choosing a method for estimating absolute 
abundance (Krebs, 1999)  

 

Quadrat counts are widely used for evaluating the diversity of immobile organisms such as plants 
(Moora et al., 2007; Singh et al., 2007). The main idea is to sample a unit area, i.e. quadrat, 
instead of sampling individuals. The species richness is then expressed as the number of 
individual specimens per unit area (quadrat) and, consequently, corresponds to a density. There 
are two basic requirements for applying this technique: (i) that the sampling unit area is known 
and (ii) that the individual specimens are immobile during the counting period.  

During the LPIS survey, LPIS anomalies were the individuals to be detected in the reference 
parcels in the quadrats sampled. Reference parcels were considered as belonging to the quadrat if 
(1) the highest proportion of their area fell within the quadrat (in cases where more than two 
quadrats intersected the reference parcel) or (2) more than 50% of the parcel area fell within the 
quadrat (in cases where a parcel intersected a maximum of two quadrats).  

Once the sampling method had been decided, the focus turned to the different steps to adapt it to 
the LPIS survey. This adaptation stage was all the more important since no references to this 
topic were available in the literature. 
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9.2. Variables of interest 
To allow analysis of the diversity of LPIS anomalies, two variables of interest were calculated at 
quadrat level: 
 
 Anomaly occurrence was expressed as the percentage of anomalous reference parcels within 

the jth quadrat:  
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where  (%)jO  = the anomaly occurrence in the jth quadrat; 

iO  = the anomaly occurrence in the ith reference parcel in the jth quadrat; this was 
assigned the value 0 in the absence and 1 in the presence of at least one anomaly in 
the ith reference parcel, whatever the cause of the anomaly detected; 

 nj = the number of reference parcels in the jth quadrat. 

 Anomaly abundance was determined for each anomaly type and for each parcel in a certain 
quadrat; it was expressed as the total number of anomalies by quadrat and/or as the total 
number of one of the seventeen possible anomaly types listed (see Appendix A) by quadrat. 
Because it corresponded to a number of individuals per unit area (quadrat), abundance was 
also a density of anomaly. The formula is as follows: 
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where  ljA ,  = the total abundance of anomaly type l  in the jth quadrat; 

liA ,  = the abundance of anomaly type l  counted in the ith reference parcel of the 
jth quadrat. 

10. Sample size 

Sample size, i.e. the minimum recommended number of quadrats to consider when assessing the 
diversity of LPIS anomalies, is determined a priori from a complete census of all the anomalies. 
It consequently required measurement of the “true” occurrence and abundance of anomalies. 
Within an orthophoto, the number of reference parcels is high, as could be the number of 
anomalous parcels; because of the limited time and human resources, a complete census of all 
twelve zones selected was impossible. The sample size was determined from the pre-test zone 
(FB2) for which a complete census of anomalies was conducted for the whole orthophoto. The 
total anomalies assemblage was considered the “true” anomalies assemblage within zone FB2 and 
was called “POP”. 

Within POP, 11 of the 17 types of anomaly proposed were detected. The table set out below 
shows the absolute abundance detected for each of the 11 anomalies from the initial LPIS 
anomalies typology. The six remaining anomalies were not detected in zone FB2. 
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Anomaly 
category TRA1 TRA2 TRA3 MRA1 MRA2 MRA3 MRA4 MRA5 WRA1 WRA2 BRA3 

Abundance 328 8 7 121 20 58 43 56 15 16 13 

 

The true number of anomalous parcels was 572 out of the 9 936 reference parcels in zone FB2. 
Hence, the anomaly occurrence was 5.76%. This means that 5.76% (p) of the reference parcels in 
zone FB2 displayed at least one anomaly. The remaining 94.36% (1-p) were not anomalous. 
From this, the sample size needed to estimate a population to a specified margin of error within a 
specified level of confidence was calculated. This corresponded to probabilistic determination of 
sample size when sampling an infinite population where the expected sample will be less than 
10% of the population (Remenyi et al., 2007). To that end, it was assumed that anomaly 
occurrence, as a discrete variable, was described statistically by the binomial distribution with 
only two parameters: 

p = the proportion of anomalous parcels with at least one anomaly in zone FB2, and 

pq −=1 , the proportion of non-anomalous parcels in zone FB2. 

The sample size was then determined by considering an acceptable margin of error (d) in the 
estimate of p and the probability (α) of not achieving this margin of error. This led to use of the 
normal approximation to the confidence interval given by the formula: 

 pstp ˆˆ α±  (equation 3) 

where p̂ = observed proportion of anomalous reference parcels (0.0576), 

 αt = the value of the Student’s t-distribution for n-1 degrees of freedom and 

 ps ˆ = the standard error of p̂. 

The desired margin of error is then: 
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 (equation 4) 

Solving for n, the sample size required for an infinite population is: 
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Finally, if the sample size equals more than 5% of the initial population, the procedure is to 
calculate the sample size from equation 3 above and then to correct it with the following finite 
population correction: 
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where 'n = estimated sample size required for finite population N, 

 n = estimated sample size required for an infinite population, 

 N = total size of the finite population. 
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For the specific zone FB2 where p̂ = 0.0576 ( q̂ = 0.9424), p was estimated within an error limit 
of ± 0.02 (2%) with α = 0.1 ( αt  = 1.645). From equation 3: 

( ) ( )( )
( )
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02.0

9424.00576.0645.1
2

2

2
==FBn  

Because the 367 reference parcels to be sampled (n) equalled less than 5% of the total number of 
reference parcels (N) in zone FB2 (RFB2 = 367/9 936 = 3.68%), no finite population correction 
was applied. From the mean reference parcel area in zone FB2 (5.04 ± 9.13SD ha.parcel-1), the 
minimum orthophoto area to sample was 18.5 km².  

From this, it was assumed that anomalous parcel occurrence in the eleven other zones selected 
was close to the occurrence measured for zone FB2. Consequently, the minimum number of 
reference parcels to be sampled obtained from zone FB2 was applied to all eleven other zones by 
multiplying nFB2 by the mean reference parcel area for each of the eleven zones. Finite population 
correction was applied solely to the zones for which n/N (%) ≥ 5%. The minimum area to be 
sampled by zone is shown in Table 2. 
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Table 2: A priori estimate of the minimum sample size for each LPIS replicate in the survey 

LPIS 
types Replicates 

N 
(equation 

6) 

Total area 
(ha) 

Mean 
area 
(ha) 

N 
(equation 

6) 

R(n/N) 
(%) n’ km² 

AP1 18 307 87 872.96 4.80 367 2.00 367 17.62 

AP2 5 647 6 621.64 1.17 367 6.50 344 4.04 
 

AP 
AP3 6 507 24 249.38 3.73 367 5.64 347 12.95 

CP1 172 540 96 275.56 0.56 367 0.21 367 2.05 

CP2 44 784 168 494.04 3.91 367 0.82 367 14.35 
 

CP 
CP3 69 170 28 635.84 0.41 367 0.53 367 1.52 

FB1 5 365 35 714.45 6.66 367 6.84 343 22.87 

FB2 9 936 50 074.62 5.04 367 3.69 367 18.50 
 

FB 
FB3 3 302 16 910.00 5.12 367 11.11 329 16.92 

PB1 3 068 13 535.63 4.41 367 11.96 327 14.47 

PB2 39 118 71 190.80 1.82 367 0.94 367 6.68 
 

PB 
PB3 2 144 82 632.59 38.54 367 17.12 313 120.82 

 

The minimum area to be sampled on the orthophoto was between 2.05 km² (AP1) and 120.82 km² 
(PB3). To obtain comparable results on the distribution of LPIS anomalies between zones, the 
sample size should be the same for every zone and should correspond to the maximum value 
obtained, in this case PB3 ≈ 121 km². However, because of limited time and human resources, it 
was inconceivable to apply a sampling size of 121 km² to all the zones. Instead, it was decided to 
apply the second highest minimum sample size (FB1: 22.87 km²) and to double it bearing in mind 
the total of four weeks available for the GIS-assisted anomalies census. A sample size of 45 km² 
was therefore applied to each of the LPIS zones. This sample size, at a constant anomaly 
occurrence of between 4% and 7%, should at least make it possible to obtain accurate (to 2%) 
estimates of anomalies assemblages for the first eleven zones and an approximate idea of the 
anomalies assemblage in zone PB3. This will be verified in Section 16. 

11. Quadrat shape 

In practice, “quadrat” means any sampling unit, whether circular, hexagonal or even irregular in 
outline. However, the shape of the quadrat introduces a degree of bias due to the “edge effect” 
(= ratio between the length of the edge and the area inside). An individual anomaly on the edge of 
a quadrat can be considered either inside or outside the quadrat and, consequently, counted or not. 
If it is counted, this leads to possible overestimation of the density. The higher the edge effect of 
the quadrat, the greater the potential bias. To reduce the bias related to the edge effect, a circular 
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shape could be chosen as it displays the lowest edge effect. At the same time, however, use of 
circular quadrats cannot cover the whole area of interest without overlaps. For this LPIS survey a 
square quadrat was chosen, as this shape seemed the best compromise between a rectangular 
quadrat (with a high edge effect but complete coverage) and a circular quadrat (with the lowest 
edge effect but incomplete coverage). 

12. Quadrat size and sampling design 

It is never easy to determine the quadrat size to apply. The simplest approach is to refer to the 
literature and use the same size as everyone else (Krebs, 1999). Unfortunately, no references to 
sampling of reference parcels from orthophotos were available at the time of the survey. The 
second solution is to test the optimum quadrat size for the particular study. “Optimum” means 
statistically and/or logistically optimal. Because the experiment was GIS-assisted, there was no 
logistical difficulty in setting and using any kind of quadrat size. Consequently, “optimum” meant 
“statistically” only, i.e. a quadrat size giving the highest statistical precision (i.e. the lowest 
standard deviation) for a given amount of available time. However, detection of anomalous 
reference parcels within the LPIS from orthophoto surveys can be seen as the first step in LPIS 
quality assessment. Following the GIS-assisted census of area discrepancies, direct measurements 
of area discrepancies in the field could be planned to evaluate technical or financial sanctions. In 
that case, optimum quadrat size could also mean statistically optimum in terms of the shorter 
direct route which a field inspector would have to take to on-the-spot check anomalies. 

Cost-effective and statistical assessment of the optimum quadrat size and sampling design is 
expected to produce a robust sampling method which makes it possible to obtain an accurate 
figure for anomaly occurrence (at 2%) and abundance (at least 90% complete). 

12.1. Wiegert’s method 
The method applied to determine the optimum quadrat size is based on the method proposed by 
Wiegert (1962). Two factors were considered crucial for deciding the optimum quadrat size: 
(i) the relative variance obtained for the variables of interest, i.e. anomaly occurrence and 
abundance, and (ii) the relative cost of spatial detection and registration of anomalies in the GIS 
database, the goal being to optimise measurements (to reduce variance) in terms of sampling time 
(cost).  

This method requires setting up different experiments to obtain samples from different sized 
quadrats at constant sample size. The results should help to decide the optimum quadrat size and 
not to analyse anomalies diversity. Hence, although the 45 km² sample size (see above) was to 
apply to all twelve zones for assessing anomalies diversity, in this case it was possible to use any 
other sample size facilitating setting up quadrats in accordance with the sizes and designs tested.  

This was done for constant sampling of 75km² for square quadrats of six different sizes (0.1, 0.25, 
0.5, 1, 3 and 5 km²) applied to zone FB2 for which the “true” anomalies assemblage was known.  

12.2. Sampling designs 
From the orthophoto of zone FB2, from which external reference parcels within a boundary strip 
of 1 km width were excluded to avoid any incomplete reference parcels on the border, six 
different grids were built with quadrat sizes ranging between 0.1 and 5 km². Each quadrat (in 
each grid) was numbered from 1 (top left-hand corner) to N (bottom right-hand corner). Within 
the GIS, for each grid, quadrats which did not contain at least one reference parcel (more 
than50% of its area) were considered empty and were excluded. The remaining N’ (non-empty) 
quadrats were then renumbered to ensure continuity of quadrat identification and selection during 
sampling design. 
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From each grid, the number of quadrats (n) necessary to obtain a sample size of 75 km² were 
sampled by applying three different sampling designs: systematic (SYS), random (RAND) and 
systematic cluster (CLU) (Krebs, 1999; Mier and Piquelle, 2008) (see Figure 7).  

Each “quadrat size (6)/sample design (3)” combination was replicated twenty times to assess 
variability. A total of 360 anomalies assemblages were obtained to be later compared to POP, the 
true anomalies assemblage in the zone FB2. 

 

 
Figure 7: The three different sampling designs applied  
A = systematic; B = random; C = systematic cluster (for the “systematic cluster” 
design, different examples of sampling non-empty quadrats inside blocks from the 
central quadrat are indicated; the dark quadrats represent “empty quadrats” which 
are not considered in the grids – any empty quadrat was excluded and the next 
quadrat clockwise was considered.) 

 Systematic sampling (SYS) without replacement meant sampling n quadrats out of the N’ 
available in a grid by sampling quadrats constantly spaced at [integer(N’/n)-1] quadrats; for 
instance, if n = 25 and N’ = 610 [ ] 23125/610int =− , then the first quadrat was i and the 
second was i + 23; for the twenty replicates, i was equal to 1, 2, 3, etc. 

 Random sampling design (RAND) meant simple random sampling without replacement 
where n quadrats were sampled randomly out of the remaining N’ non-empty quadrats. 

 Systematic cluster design (CLU) was performed on the initial grids before excluding empty 
quadrats. The grids were divided into M blocks as primary units also called “clusters” in the 
relevant literature. Each block contained a varying number of quadrats (or secondary units), 
depending on the quadrat size tested: 32, 52, 52, 72, 92 and 152 respectively for quadrat sizes of 
0.1, 0.25, 0.5, 1, 3 and 5 km². Five blocks were randomly sampled within the grid. In each of 
the five blocks, starting from the central quadrat and depending on the quadrat size tested, 3, 
5, 15, 30, 60 and 150 non-empty quadrats were sampled clockwise; whenever an empty 
quadrat was sampled, it was excluded and the next quadrat was considered in order finally to 
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obtain the necessary number of quadrats per block. This follows Cochran’s aligned or “square 
grid” systematic sample in two dimensions (Cochran, 1977). First a primary unit is sampled, 
then the corresponding secondary units per primary unit in the same relative positions in each 
block. 

Compared with adaptive sampling (Thompson, 1992), it was assumed that the systematic 
cluster design should permit local sampling of rare anomalies supposedly clustered in 
complex landscapes. This sampling method should use the hypothetical spatial pattern in the 
anomaly population assumed to be clustered in order to obtain more precise measurements of 
occurrence and abundance. Furthermore, it should greatly reduce the travel costs related to 
field inspections to verify and confirm area discrepancies observed previously during the 
GIS-assisted stage.  

Then, for each twenty replicates of each quadrat size/sampling design combination, the total 
number of parcels sampled, total number of anomalous parcels, total anomaly abundance and 
total anomaly abundance per type of anomaly were calculated. These values were then 
standardised to a single unit area (per 0.1 ha). Wiegert’s method was then applied to each 
anomalies assemblage to determine the cost-effectiveness of the quadrat size and sampling 
design. 
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12.3. Wiegert’s cost calculations 
The sampling cost was calculated as follows: 

 ( ) ( ) ( )quadratquadratanomalyanomaliesparcelparcelsample CnCnCnC *1** −++=  (equation 7) 

It was assumed that the sampling cost was strongly related to (i) the number of reference parcels 
contained within a quadrat, individually displayed and checked on screen, (ii) the number of 
anomalies detected and to be declared in the GIS table and (iii) the number of quadrats to check. 
The mean basic costs for these three components were measured during the pre-testing of zone 
FB2 and were approximated to, respectively, 3.5, 4.0 and 2.0 seconds. 

Then, the product of (1) the “relative cost” (defined as the ratio between the time to take one 
sample of a given size divided by the minimum time to take one sample for all quadrat sizes 
considered) and (2) the “relative variance” (defined as the ratio between the square of the 
standard deviation for one given size divided by the square of the minimum standard deviation 
for taking one sample for all quadrat sizes considered) was calculated for each quadrat size for 
each replicate (Krebs, 1999).  

12.4. Results of Wiegert’s method  
The results obtained from Wiegert’s method are shown in Figure 8. 

 
Figure 8: Changes in product 
of (relative variance * 
relative cost) depending on 
quadrat size for (a) anomaly 
occurrence and (b) total 
anomaly abundance (vertical 
lines indicate twice the 
standard deviation) 
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Whatever the variable of interest considered, Figure 8 shows that the maximum precision at the 
lowest cost was observed from a quadrat size of 1 km². Quadrat sizes smaller than 1 km² showed 
higher product values, indicating that the relative cost and/or relative variance were higher with 
smaller quadrat sizes. The product of (relative variance * relative cost) increased slightly for 
quadrat sizes above 1 km² but, because of the logarithmic scale used in the figure, this is not 
visible. Second, whatever the quadrat size considered, the relative products for anomaly 
occurrence and anomaly abundance were not very different between sampling designs; this did 
not allow differentiation of the best sampling design. It just cleared the way to exclude small 
quadrat sizes (less than 1 km²) and indicated that a 1 km² square quadrat could be the appropriate 
quadrat size to use. 

Further tests should be conducted to assess the bias and the imprecision of each remaining 
sampling design/quadrat size combination. 

12.5. Sampling design control method 
Studies that have introduced methods to control sample size and sampling design include those by 
Lo et al. (1997), Christman (2003), Su and Quinn (2003) and Mier and Picquelle (2008). Like any 
other method, the ones used in this LPIS survey introduce bias into the estimators of the variables 
of interest (in this case, anomaly occurrence and abundance). This bias or systematic error is then 
measured by repeating sampling on the initial population and comparing the true values of the 
population with the repeated estimates. 

The control method used in this study was adapted from Mier and Picquelle (2008). All the 
formulae to calculate estimators of mean population and variance and to compare properties of 
estimators between different survey designs against the true population of LPIS anomalies were 
carefully respected. The sole difference was the number of populations used in the control 
process: whereas Mier and Picquelle (2008) used 100 artificial populations simulated from 
ichthyoplankton surveys conducted between 1986 and 1998, this study used the single population 
of anomalies detected within pre-test zone (POP) FB2, where the global anomaly occurrence 
equalled 5.76%, which means that 5.76% of the LPIS reference parcels in zone FB2 contained at 
least one anomaly. 

In this study, the comparison of survey design and remaining quadrat size (≥ 1 km²) was based on 
the bias, precision and root square of the MSE (mean square error) of the estimated mean 
anomaly occurrence and standard error. The relative bias, imprecision and root square of the MSE 
expressed as a percentage of the true population anomaly occurrence were measured to allow 
comparison between sampling designs and quadrat sizes. MSE is often used to compare 
estimators showing different levels of bias and precision. In fact, the MSE corresponds to the sum 
of the bias and of the imprecision. 

The results obtained for each of the nine remaining quadrat size/sampling design combinations 
are set out in Figure 9. 



 26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Relative bias, imprecision and MSE of the mean and standard error of anomaly 
occurrence in the LPIS for FB2 for the nine remaining quadrat size/sampling design combinations 
averaged from twenty replicates from pre-test zone FB2  
(a), (c) and (e) and (b), (d) and (f) are the relative bias, imprecision and MSE  for the mean 
occurrence and the standard error respectively. 

 

Whatever the quadrat size, systematic (SYS) and systematic cluster (CLU) design estimators 
overestimated the mean anomaly occurrence, whereas random sampling design (RAND) 
estimators generally underestimated it (Figure 9(a)). The bias was not constant between quadrat 
sizes for all the sampling designs, but the smallest bias was observed for a 1 km² quadrat, 
considering all designs combined, with a bias of around 2%. This indicated that, regardless of the 
sampling design, a quadrat size of 1 km² should be used to sample anomalous LPIS parcels from 
orthophotos more accurately.  
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Despite the negligible bias in the mean observed for a 1 km² quadrat, the bias in the standard error 
was high and exceeded the 10% negligibility threshold (Cochran, 1977) (Figure 9(b)). This 
indicated that, although the mean estimators from the three designs appeared relatively accurate, 
above all with a 1 km² quadrat size, they nevertheless displayed considerable variability which, in 
certain situations, could lead to misinterpretation. 

When comparing the precision obtained for the mean occurrence, results ranged between 15% 
and 25% and were not very different between sampling designs. The imprecision of the mean 
increased slightly in parallel to the quadrat size, confirming that better precision should be 
obtained both for the mean and for the standard error with a quadrat size of 1 km². In the case of 
standard error, the systematic cluster design performed significantly worse than the other two, 
confirming the lower precision of the standard error which can be expected from the systematic 
cluster design. The relative MSE as the sum of the relative bias and of the relative imprecision 
painted the same picture: (i) a 1 km² square quadrat appeared the best size and (ii) even though 
three designs were allowed for sampling the equivalent mean anomaly occurrence, the systematic 
cluster design was again less precise and more biased than systematic or random designs.  

The results set out above confirmed those obtained from Wiegert’s method: all in all, the 
statistically and cost-effectively optimum quadrat size for the GIS was 1 km². This quadrat size 
was therefore selected for the remainder of this study. 

As regards the relative MSE , random or systematic designs should be chosen. At constant cost-
effectiveness (see Figure 8), these two designs appeared more precise and less biased (see 
Figure 9) than the systematic cluster design. However, Wiegert’s method measured cost-
effectiveness taking into account the sole costs of GIS-assisted detection and ignored the travel 
costs incurred by one field inspector for verifying, on the spot, the area discrepancies detected. 
For that purpose, the minimum distance (as the crow flies) to link all the quadrats sampled was 
taken as a proxy for the travel costs and was measured in the GIS for each of the 20 replicates for 
each sampling design. Then a, analyse of variance was performed.  

The travel costs (i.e. minimum direct distances in km) differed significantly between sampling 
designs (F(2.59) = 158.4416, p-value <.0001) at 126.0 ± 38.0SD, 208.7 ±8.3SD and 314.2 
± 43.0SD kilometres for the systematic cluster, systematic and random designs respectively. It 
was consequently assumed that travel costs for the systematic and random designs would be 
166% and 249% higher than for the systematic cluster design. From this, it was assumed that, 
despite its relative weakness in terms of MSE concerning the standard error, the systematic 
cluster design would be the most suitable to achieve both representativeness (MSE concerning the 
mean is relatively similar between designs) and cost-effectiveness at the same time for LPIS 
contractors and field inspectors. It was perceived as the best compromise to address GIS and on-
the-spot LPIS quality cost-effectively.  

It was therefore decided to apply systematic cluster design to all the zones selected. 

13.  Sampling decision based on comparison of LPIS anomalies 
assemblages  

In the previous section, the optimum sampling method was decided by considering LPIS anomaly 
occurrence and/or LPIS anomaly abundance. However, the anomalies assemblages obtained from 
each sampling combination were never verified. Anomalies assemblage concerns the 
presence/absence of each of the seventeen anomaly types proposed in the typology and the exact 
abundance of each type detected in all the 1 km² quadrats sampled. The completeness of the 
anomalies assemblages sampled was verified against the true anomalies population of pre-test 
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zone FB2 (POP). This corresponded to assessment of the similarity between the POP assemblage 
and sampled assemblages to determine the degree to which the structure of the original FB2 
anomalies assemblage was preserved when diversely sampled. 

Currently two kinds of methods are widely used to estimate the similarity between species 
assemblages: univariate and multivariate methods (Cheng, 2004).  

- Univariate methods are used when species by site matrices are reduced to a single coefficient 
of diversity, such as Shannon-Wiener’s, Simpson’s or Pielou’s index of diversity. These 
indices are then discriminated using univariate methods such as analyses of variance (Clarke 
and Warwick, 1994). 

- Ordination entails multivariate methods; different multivariate methods exist, such as 
hierarchical clustering (Johnson and Wichern, 1992), non-metric multidimensional scaling 
(NMDS) (Kruskal, 1964), correspondence analysis (CA) (Jongmann et al., 1995) or principal 
component analysis (PCA) (Wold et al., 1987). They start from a triangular matrix of 
similarity indices between every pair of anomalies assemblages. All the methods are applied 
to reduce the complexity of multivariate information in the original matrices to a low-
dimensional picture.  

There are numerous measurements of similarity (Legendre and Legendre, 1983), and confusion 
exists about which similarity measurement to use. Two broad classes of similarity coefficient 
exist: (i) binary coefficients using presence/absence (1/0) data, such as Jaccard’s coefficient 
(Chao, 2005) or Sorensen’s coefficient (Sorensen, 1948); these coefficients are generally used 
when only the lists of species are available and comparisons are possible at this lower level of 
resolution, weighting rare species the same as common species; (ii) quantitative coefficients for 
which supplementary information such as species abundance in an assemblage is required; among 
these, Morisita’s index of similarity (Morisita, 1959) is considered the best overall measurement 
of similarity for ecological use (Wolda, 1981), almost independent of sample size (unlike 
Sorensen’s index). 

From zone FB2, 60 anomalies assemblages (3 sampling designs (1 km²) * 20 replicates) were 
grouped together in a single table. A supplementary sample corresponding to the “true” FB2 
anomalies assemblage (POP) was added to the table. Then, Morisita’s similarity coefficient for 
each pair of anomalies assemblages (non-transformed data) was calculated as follows: 
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where Cλ = Morisita’s index of similarity between samples j and k, 

 Xij, Xik = the abundance of anomaly i in samples j and k, 

 ni, nk = the total numbers of anomalies in samples j and k. 
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First, analyses of variance of Morisita’s similarity index between sampling designs (from the 
twenty replicates) were performed. The mean similarity index was significantly different for 
systematic clusters (F(2.59) = 5.286, p-value = 0.008). The mean Morisita similarity between the 
POP and systematic cluster designs was 93.60% ± 6.11SD, whereas it was 96.66% ± 2.49SD and 
97.42% ± 1.65SD respectively for random and systematic designs. Despite this difference, all 
three sampling designs allowed sampling of assemblages very similar to the true LPIS anomalies 
assemblage detected for zone FB2. Whatever the sampling design, the completeness of the true 
anomalies assemblage was preserved. 

Second, because the choice of sampling method cannot be decided from this sole analysis of 
variance, two-stage similarity ordination (Cuffney et al., 2007) was also used to confirm the 
greater variability of systematic cluster design. This was done by using PAST© freeware 
(Hammer, 2001). Non-metric multidimensional scaling is based on a distance matrix calculated 
with Morisita’s similarity distance. The algorithm then attempts to place the data points in a two- 
or three-dimensional coordinate system so that the ranked differences are preserved. For example, 
if the original distance between points 4 and 7 is the ninth largest of all distances between any 
two points, points 4 and 7 will ideally be placed so that the Euclidean distance between them in 
the 2D plane or 3D space is still the ninth largest. Non-metric multidimensional scaling 
intentionally does not take absolute distances into account. The program may converge on a 
different solution in each run, depending on the random initial conditions. Each run is actually a 
sequence of 11 trials, from which the one with smallest stress is chosen. The stress value indicates 
the obtained versus the observed ranks, i.e. the quality of the result. Ideally, all points should be 
placed on a straight ascending line (x = y) and stress should be around zero. The results of the 
NMDS are shown in Figure 10. 

 
Figure 10: Non-metric multidimensional scaling (NMDS) plot of Morisita’s similarity index 
calculated between the twenty 1 km² quadrat sampling design replicates and the true FB2 LPIS 
anomalies population (dark circle marks the 95% confidence interval) 
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From the correlation matrix of similarity, the ordination clearly and significantly (Kruskal stress 
= 0.137) showed that the three designs produced anomalies assemblages very similar to the true 
anomalies assemblage. Like systematic and random designs, and despite three replicates for 
which the similarity values were outside the 95% confidence circle, systematic cluster designs 
produced assemblages well grouped around the POP. These results confirmed the trend suggested 
earlier, i.e. that although CLU, SYS and RAND were adequate to sample LPIS anomalies 
assemblage from orthophotos and to provide good estimators of mean occurrence and abundance, 
CLU was less precise than the other two because of its higher variability.  

Clearly, there is no obvious best design for sampling LPIS anomalies. Based on the MSE for 
occurrence, systematic cluster design would be a poor choice and systematic or random designs 
offer superior performance. However, the systematic cluster design’s MSE for mean occurrence 
did not differ from the other two designs and was even smaller when using a 1 km² quadrat size 
(see Figure 9(a)). Second, the completeness of the true anomalies assemblage was correctly 
preserved by all three designs; CLU achieved a lower similarity value, but this value was still 
higher than the 90% completeness expected. Finally, systematic cluster design offered one 
significant benefit concerning post-management of anomalies detection by reducing by at least 
166% the travel costs necessary to verify and confirm on the spot the area discrepancies observed. 
Consequently, the systematic cluster design was perceived as relevant for the successive steps; its 
relative imprecision and bias were taken into account by applying the interval of validity for 
anomalies occurrence results, as described later (see Table 5). 

14. Spatial distribution of anomalies in zone FB2 

As explained earlier, systematic cluster and other adaptive designs are generally used when 
species are expected to be spatially clumped. Here, even though CLU1 (systematic cluster design 
using 1 km² square quadrats) performed correctly (2% bias of mean occurrence and > 93% 
completeness of the true anomalies assemblage), assessment of the spatial distribution of 
anomalies in zone FB2 was required to decide whether it was ultimately applicable. To do this, 
the adequacy and validity of using systematic cluster design to sample LPIS anomalies was 
verified a posteriori. 

The spatial distribution of anomalies within pre-test zone FB2 was determined by statistical and 
metric assessment. 
14.1. Statistical assessment of the spatial distribution of anomalies in zone FB2 

Statistical analysis of the spatial distribution of LPIS anomalies in zone FB2 is simple. Over 
the whole of zone FB2, sampled using a 1 km² quadrat size, the observed frequency 
distribution of the number of anomalies per quadrat was counted. Then, this observed 
frequency distribution was fitted against the expected frequency distribution. If a random 
spatial pattern prevailed, the Poisson distribution would be the appropriate descriptor of the 
data. If not, the spatial pattern could be aggregative, in which case negative binomial 
distribution should fit the data distribution (Patil et al., 1971). By default, any observed 
frequency distribution not fitted by either Poisson or negative binomial distributions would 
suggest a uniform spatial pattern (Krebs, 1999). 

The Poisson and negative binomial anomalies frequency distributions were tested and the 
goodness of fit verified. 

14.2. Metric assessment of the spatial distribution of anomalies in zone FB2 
To confirm the spatial pattern obtained from frequency distribution comparisons, several other 
indices of dispersion for quadrat counts were calculated: 
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- The “variance-to-mean” ratio; because it is a function of the sample size, application of this 
ratio to clumped populations is a problem. Nevertheless, Myers (1978) showed that the 
variance-to-mean ratio is only slightly affected by population density. 

- Green’s coefficient of dispersion (Green, 1966) is based on the variance-to-mean ratio:  
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where  ( )∑ x  is the total number of anomalies within the quadrats. 

A negative value of GId indicates a uniform pattern, a positive value indicates a clumped 
pattern and 0 equals a random distribution. This was considered one of the indices almost 
independent of sample size and population density (Myers, 1978). 

- Morisita’s index of dispersion (1962) (not to be confused with Morisita’s index of similarity, 
see Section C.14) is relatively independent of population density but is affected by sample 
size; consequently, it is not as good as Green’s coefficient of dispersion. For that reason, 
Smith-Gill (1975) set out to improve Morisita’s index of dispersion by standardising it on an 
absolute scale from -1 (uniform) to +1 (clumped).  

From Morisita’s initial index of dispersion: 
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where  Id = Morisita’s index of dispersion, 

 n = sample size, 

 ∑ x  = the total number of anomalies within the quadrats, 

∑ 2x  = the square of the total number of anomalies within the quadrats,  

the uniform index (MU) and the clumped index (MC) are calculated from the following 
formulae: 
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where 2
975.χ  and 2

025.χ are chi-squared values from the table with (n-1) degree of 
freedom that have respectively 97.5% and 2.5% of the area to the right, 

 xi = the total number of LPIS anomalies (all categories combined) within the ith 
quadrat, 

 n = the number of quadrats. 
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Then, the standardised Morisita’s index of dispersion is calculated by one of the following 
formulae: 

when Id ≥ MC > 1.0 ⎟⎟
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The standardised Morisita’s index of dispersion is independent of population density and 
sample size. Green (1966) recommended that the minimum sample size should be 50 
quadrats and that, in case of a highly clumped pattern, at least 200 quadrats are required. In 
the case of zone FB2, 1 023 non-empty quadrats of 1 km² were available. 

Table 3 shows the limits of each of the three indices of dispersion used.  
Table 3: Expected (maximum) uniformity, (maximum) aggregation and randomness values 
calculated for the three indices of dispersion used for LPIS anomalies spatial pattern determination 
(∑ x = sum of quadrat counts) 

 

14.3. Results of the statistical estimation of the spatial distribution of anomalies in zone 
FB2 

The LPIS spatial pattern was tested on the whole of zone FB2. From the 1 023 quadrats, both the 
observed and the expected frequency from Poisson and negative binomial distributions were 
calculated. Figure 12 sets out the diagrams obtained.  

 Value expected under 

 Maximum 
uniformity Randomness Maximum 

aggregation 

Variance-to-mean ratio 0 1 ∑ x  

Green’s index of dispersion (GId) 1)(
1
−

−

∑ x
 0 +1 

Standardised Morisita’s index of 
dispersion (Ip) -1 0 +1 
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Figure 11: Observed and expected frequency distributions of the number of LPIS 
anomalies per quadrat counted over 1 023 quadrats (quadrat size = 1 km²) in zone 

FB2 ( 559.0=x  anomalies.km-2; 818.02 =s ; (a) expected frequency from 
Poisson distribution and (b) expected frequency from negative binomial 
distribution)  

In the case of the Poisson distribution, the null hypothesis that the Poisson distribution fits the 
observed data was tested by the chi-squared goodness-of-fit test: 
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As the minimum number of individuals expected by class was 3, quadrat counts for 5, 6 and 7 
anomalies per quadrat were added together to satisfy this condition. Then, the tabular value of 

2χ  for 05.=α  and 4=ν  was equal to 9.49. As the observed chi-squared value (54.21) was 
larger than the tabular value, the null hypothesis was rejected. 

Consequently, contrary to the hypothesis of a random distribution of LPIS anomalies within zone 
FB2, the test showed that the distribution was not random. Furthermore, the index of dispersion 
from the variance-to-mean ratio (equal to 1.43) suggested that the distribution was clumped.  



 34

In the case of the negative binomial distribution, the null hypothesis was that the negative 
binomial distribution fitted the observed frequency if the LPIS anomalies were aggregated. The 
negative binomial distribution is a discrete probability distribution governed by two parameters: 
the negative binomial k and p (p = q - 1) related to the mean such as kp=μ . For each class of 
frequency, a probability of a quadrat containing i anomalies is given by: 
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where  =μ  the mean of the distribution, 

 =Γ  a gamma function (see Krebs, 1999), 

=k  the negative binomial exponent for which an initial approximate 

2069.1ˆ
2

2

=
−

=
xs

xk can be calculated and used to calculate a maximum likelihood 

estimate for k by trial and error from equation 4.14 proposed by Krebs (1999). 
Applied here, the maximum likelihood estimate for k was 1.2034. Applying 
equation 20, the expected probabilities for each counter of anomaly by quadrat was 
calculated (see Figure 11(b)). 

Then, the null hypothesis that the negative binomial distribution fits the observed data was tested 
by: (i) the chi-squared goodness-of-fit test and (ii) the U-statistic goodness-of-fit test: 

- Chi-squared goodness-of-fit test: for 05.0=α and 43 =−= nν , the tabular value of 2χ  
was equal to 9.49, whereas the observed value of 2χ was equal to 2.673; because the observed 
value was smaller than the tabular one it was possible to accept the null hypothesis; 

- U-statistic goodness-of-fit test: the corresponding formulae can be found in Krebs (1999). For 
05.0=α , if the observed value of U exceeds two standard errors of U (2SEU), the null 

hypothesis that the spatial pattern of LPIS anomalies is aggregative is rejected. In this case, 
an observed value of U = -7.6*10-4 and 2SEU = 5.86*10-2 was obtained; the observed value of 
U was smaller than 2SEU.  

Based on these two tests, the null hypothesis that the negative binomial distribution was an 
adequate fit to the observed data was accepted and, in accordance with the previous results, the 
LPIS anomalies distribution pattern was clumped for zone FB2 in 2005. 

14.4. Results of the metric estimation of the spatial distribution of anomalies in zone 
FB2 

Even though statistical evaluation of the spatial dispersion of LPIS anomalies within zone FB2 
can be easily performed by specific software (this study used Ecological Methodology 
Software ©; Krebs, 1999), it remains complex. For this reason, the results set out above 
concerning the spatial distribution of anomalies were confirmed by using spatial distribution 
metrics. 

The different indices of dispersion used here produced a variance-to-mean ratio and Green’s and 
standardised Morisita’s indices of dispersion of 1.46, 8.11.10-4 and 0.50 respectively. Positive and 
non-null randomness values in Table 3 suggested an aggregative pattern of LPIS anomalies. 
Moreover, the standardised Morisita’s index of dispersion was recognised as the best estimator of 
spatial distribution (Krebs, 1999) and the value of 0.50 confirmed results obtained from previous 
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statistical tests: the LPIS anomalies spatial pattern in zone FB2 was aggregative (in 2005). Also 
the systematic cluster sampling design could be robustly used. 

15. Preliminary conclusions and decisions concerning the final sampling 
method 

To sum up this part, concerning pre-test zone FB2 in 2005, the study confirmed that: (i) the LPIS 
anomalies pattern was clumped and, consequently, systematic cluster design was relevant to 
sampling LPIS anomalies from orthophotos, (ii) a minimum sample size of 45 km² should allow 
sampling of LPIS anomalies in most European LPIS situations and (iii) 1 km² was the most 
accurate quadrat size to use. It also showed that (iv) although systematic cluster design was less 
precise than other designs it provided an excellent estimate of mean anomaly occurrence and was 
more cost-effective. 

For these reasons, the calibration of the sampling method can be considered validated and will be 
applied in the rest of this study.  

The sampling design characteristics specified above have been calibrated for the sole case of zone 
FB2 in 2005. However, this sampling method might not be suitable for application to every 
Member State. Consequently, adequacy assessment would be of prime importance for validation 
of systematic cluster sampling, as discussed in Part E. 
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PART E. Analysis of diversity in LPIS anomalies 

16. Validation of sampling method 

As indicated in the preliminary conclusions (Section 15), confirmation of the adequacy of the 
sampling method was an important milestone on the way to interpreting the diversity in LPIS 
anomalies. This took the form of assessing the adequacy of the sampling method calibrated from 
zone FB2 for eliciting LPIS anomalies assemblages and, especially, anomalies richness for all the 
zones. 

As explained by Coleman et al. (1982), to estimate the anomalies richness of areas larger than 
those sampled, the “anomalies richness/sampled area” relationship is important. Indeed, as 
suggested by Arrhenius (1921), all other conditions being equal, the number of species is related 
to the area sampled. Then, the observed number of anomalies (Aobs) sampled is used as a 
surrogate for the true number of species (Atrue). If Aobs is expected precisely to match Atrue, the 
bias of the method leads to the exclusion of many rare species and to underestimation of Atrue 
when Atrue is high or when species detectability is low (Palmer, 1990). A large number of 
extrapolation methods have been developed to reduce this bias (Colwell, 2004). They are 
classified as either species accumulation curves or as non-parametric estimators. The latter are 
generally less biased but seldom used, as the former is preferred because of its simplicity.  

- On the one hand, species accumulation curves extrapolate species richness vs. sample size 
(i.e. area) data to an asymptote of total richness (Colwell and Coddington, 1994). The most 
commonly used models are the exponential (Holdridge et al., 1971), the Michealis-Menten 
(Michaelis and Menten, 1913) or the sigmoid models (Tjorve, 2004). As reported by Brose et 
al. (2003), the performances of these equations are related to the species abundance 
distribution, the spatial species aggregation and/or the habitat heterogeneity. 

- On the other, a number of non-parametric methods have been developed specifically for 
estimating species richness from samples. All are non-parametric in the statistical sense, 
although their performance clearly depends on the underlying empirical distribution. Chao 
(1984) derived simple estimator Chao1 of the true number of species in an assemblage by 
taking into account singletons (species represented by only one individual within the 
assemblage) and doubletons (species with exactly two individuals in the assemblage). She 
also proposed Chao2 as an estimator requiring only presence/absence data. In parallel, other 
estimators such as Jacknife1 and Jacknife2 (Burnham and Overton, 1979) estimate species 
richness on the basis of the number of species that occur in only one and in exactly two 
samples respectively.  

Colwell and Coddington (1984) provided a complete review of these parametric and non-
parametric methods to estimate maximum species richness in samples and Tjorve (2003) tested a 
wide range of exponential and sigmoid asymptotic models for species accumulation curve 
methods. 

In this survey, sampling method adequacy was assessed by assuming that a constant sampling 
effort of 45 km² was sufficient to estimate the maximum anomalies richness reliably. This 
assumption was tested by applying anomalies accumulation curves and non-parametric estimators 
to evaluate the completeness of the inventories of LPIS anomalies in each of the twelve zones.  

16.1. Anomalies accumulation curves theory 
Concerning accumulation curves, the order in which samples are added to the total is relevant to 
the shape of the curve; to eliminate this effect, the order of entry of the samples was randomised 
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500 times using Estimate-S software (Colwell, 2004). Then, as advocated by Keating and Quinn 
(1998), least squares non-linear regressions with the quasi-Newton algorithm in JMP 6.0 
(SAS Institute) were used to fit the three accumulation curve models selected to the mean species 
richness obtained from Estimate-S. 

Next, the number of quadrats required to reach 90% and 95% of the estimated maximum richness 
and the percentage of completeness achieved when applying a sampling effort of 45 quadrats 
(E45) were calculated as proof of the completeness of the sampling method (Shiu and Lee, 2003; 
Hernandez-Stefanoni and Ponce-Hernandez, 2004).  

The three anomalies accumulation curve models were: 

 the Clench model (Soberon and Llorente, 1993):  
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where  A = the estimated number of anomalies or richness, 

 q = the number of quadrats, 

 b, c = the parameters of the model given by the regression analysis, 

 with 
c
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 = the asymptote or the maximum number of anomalies.  

From this, the number of quadrats required to reach 90% and 95% of the estimated anomalies 
richness was given by: 
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 the Linear Dependence model (Soberon and Llorente, 1993):  
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where  SA = the estimated number of anomalies or richness, 

 q = the number of quadrats, 

 b, c = the parameters of the model given by the regression analysis, 

 with 
c
b

 = the asymptote or the maximum number of anomalies.  

From this, the number of quadrats required to reach 90% and 95% of the estimated anomalies 
richness was given by: 
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 the Gompertz model (Ratkowsky, 1990; Tjorve, 2003):  
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where  SA = the estimated number of anomalies or richness, 

 q = the number of quadrats, 
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 b, c, d = the parameters of the model given by the regression analysis, 

 with b = the asymptote or the maximum number of anomalies.  

From this, the number of quadrats required to reach 90% and 95% of the estimated anomalies 
richness was given by: 
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16.2. Non-parametric estimators 
Non-parametric estimators were Chao1, Chao2 and first- and second-order Jacknife (Jack1, 
Jack2). They were calculated using Estimate-S software (Colwell, 2004). 

16.3. Anomalies accumulation curves for completeness of the sampling method  
The anomalies accumulation curves obtained from the Linear Dependent (LD) and Clench 
models and the observed data are shown in Appendix B for each of the twelve zones selected. 
The anomalies accumulation curves from the Gompertz model are not included to avoid 
overloading the diagrams. The estimated parameters and goodness-of-fit (r²) and non-parametric 
estimators are indicated in Table 4. 

Based on the traditional r² rule of thumb (r² values higher than or equal to 0.95 confirm a good 
fit), the LD model does not fit the observed data well (mean r² = 0.89 ± 0.15SD). This was 
especially true for zone CP1, for which the LD model did not fit the observed data (r² = 0.44). On 
the other hand, the anomalies accumulation curves fitted very well with the Clench and Gompertz 
models (mean r² = 0.98 ± 0.03SD and 99.22 ± 1.43SD respectively) (see Table 4). Because the 
goodness of fit (i.e. r²) was sometimes poor or even bad when using the LD model, it is advisable 
to choose the Clench, or even better, Gompertz model to achieve a higher level of significance. 

For each of the twelve zones, the LD model predicted a lower asymptote than the Clench model 
(see Figure 13 and Appendix B), always providing an estimated maximum richness (Sest) lower 
than the observed values (Sobs). By contrast, the maximum estimated richness from the Clench 
model was generally higher than the observed richness, sometimes by more than 10% (for zones 
FB2 and PB2) (see Figure 13). This confirmed previous results about the tendency of the Clench 
and LD models respectively to overestimate and underestimate species richness (Moreno and 
Halffter, 2001; Hernandez-Stefanoni and Ponce-Hernandez, 2004). In the case of the Gompertz 
model, Sest is usually lower than Sobs, but the Gompertz model gave the most accurate estimate of 
Sobs with a mean difference of -2.11% (± 1.20SD) expressed as a percentage of Sobs. The mean 
difference between Sobs and Sest was equal to 4.69% (± 4.28SD) and to -5.55% (± 3.30SD) for the 
Clench and LD models respectively.  

Altogether, use of asymptotic models to fit the anomalies accumulation curves mainly confirmed 
the adequacy of a 45 km² sampling effort to sample Sobs. Apart from zone FB2 (with the Clench 
model), the rule of thumb E45 ≥ 90% was respected in every zone with all the models. It allowed a 
fair representation of the number of anomalies in the zones selected. On average, Sobs obtained 
from 45 km² equalled 93.70% (± 3.04SD), 99.92% (± 0.14SD) and 99.22 (± 1.43SD) of Sest from 
the Clench, LD and Gompertz models respectively (see Table 4). Under these conditions, 
detection of one extra anomaly within the assemblages became increasingly expensive in terms of 
sampling effort and the observed richness values were therefore considered satisfactory and the 
inventories of LPIS anomalies in the different zones comparable.  
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Figure 12: Observed (Sobs) against estimated (Sest) values of anomalies richness for 
each of the twelve LPIS zones studied from the three asymptotic models used (solid 
line = the x/y relationship; dashed lines = ± 10% of the x/y relationship) 
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Table 4: Predicted parameters from two anomalies accumulation curve models (Clench and linear dependence) fitted to the twelve 
LPIS zones studied (Sobs = observed richness; a, b = predicted parameters of the asymptotic models; Sest = estimated richness (= a/b for 
the Clench and LD models and = a for the Gompertz model); E90% (E95%) = minimum number of quadrats to sample 90% (95%) of 
Sest; E45 = Sobs/Sest ratio expressed as a percentage when applying a sampling effort of 45 quadrats (= 45 km²); underlined values = r² 
values below the 0.95 rule of thumb; bold values = E45 values lower than 90% of the expected completeness of the estimated richness 
Sest) 

 
    Anomalies accumulation curves 

    Clench model  LD model 

  
LPIS Zones Sobs 

 
a b Sest R² 

E90% 

(km²) 

E95% 

(km²) 

E45 

(%)  
a b Sest R² 

E90% 

(km²) 

E95% 

(km²) 

E45 

(%) 

 AP1 15  5.15 0.32 15.99 0.99 27.9 59.0 93.5  3.14 0.22 14.39 0.96 10.6 13.7 99.9 
AP AP2 7  1.85 0.26 7.05 0.95 34.2 72.3 92.2  0.99 0.16 6.28 0.92 14.6 20.9 99.8 

 AP3 10  2.82 0.27 10.59 0.96 33.7 71.2 92.3  1.70 0.18 9.44 0.90 12.8 16.7 99.9 
 CP1 10  5.56 0.56 9.99 0.91 16.2 34.1 96.2  9.19 1.03 8.93 0.41 2.2 2.9 100.0 

CP CP2 8  4.05 0.49 8.19 0.99 18.2 38.5 95.7  2.29 0.30 7.56 0.91 7.6 9.9 100.0 
 CP3 5  1.87 0.35 5.31 0.99 25.5 53.9 94.1  1.06 0.22 4.90 0.97 10.6 13.8 99.99 
 FB1 12  4.99 0.41 12.26 0.98 22.1 46.6 94.8  2.73 0.24 11.24 0.91 9.5 12.3 100.0 

FB FB2 8  1.20 0.13 9.53 0.99 71.3 150.5 85.0  0.92 0.12 7.82 0.99 19.5 25.4 99.5 
 FB3 12  6.03 0.49 12.27 0.98 18.3 38.7 95.7  3.42 0.30 11.33 0.87 7.6 9.9 100.0 
 PB1 8  6.69 0.81 8.26 0.99 11.1 23.5 97.3  3.59 0.46 7.80 0.90 5.0 6.5 100.0 

PB PB2 8  2.50 0.28 8.84 0.99 31.9 67.3 92.7  1.54 0.20 7.90 0.98 11.8 15.4 99.9 
 PB3 10  4.08 0.40 10.28 0.99 22.7 46.1 94.9  2.40 0.26 9.41 0.92 9.0 11.0 100.0 

 

(to be continued) 
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    Anomalies accumulation curves  Non-parametric estimators 

    Gompertz model  

LPIS Zones Sobs  a b c Sest R² 
E90% 

(km²) 

E95% 

(km²) 

E45 

(%) 
 

Chao 1 
1

45
ChaoE  

(%) 
Chao 2 

2
45
ChaoE  

(%) 
Jack 1

1
45
JackE  

(%) 
Jack 2

2
45
JackE  

(%) 

 AP1 15  14.58 1.16 0.19 14.58 0.97 12.89 16.75 99.97  15.00 100.00 15.00 100.00 15.98 93.87 16.00 93.75 
AP AP2 7  6.88 0.88 0.08 6.88 0.96 25.43 34.06 97.96  7.00 100.00 7.98 87.72 8.96 78.13 10.87 64.40 

 AP3 10  9.96 0.91 0.10 9.96 0.99 21.03 28.05 99.10  10.00 100.00 10.00 100.00 10.98 91.07 11.00 90.91 
 CP1 10  9.91 0.6 0.10 9.91 0.98 17.83 25.15 99.28  10.00 100.00 10.00 100.00 10.98 91.07 11.00 90.91 

CP CP2 8  7.73 0.86 0.18 7.73 0.97 12.37 16.01 99.98  5.00 100.00 5.00 100.00 5.00 100.00 5.00 100.00 
 CP3 5  4.93 1.21 0.2 4.93 0.98 11.53 15.48 99.98  8.00 100.00 8.00 100.00 8.98 89.09 9.93 80.56 
 FB1 12  11.57 0.85 0.15 11.56 0.96 14.40 19.38 99.87  13.00 92.31 12.98 92.45 13.96 85.96 15.87 75.61 

FB FB2 8  7.82 1.69 0.14 7.82 0.99 19.71 24.83 99.70  8.00 100.00 8.00 100.00 8.98 89.09 9.93 80.56 
 FB3 12  11.70 0.77 0.15 11.70 0.97 13.16 17.91 99.92  12.00 100.00 12.00 100.00 12.98 92.45 13.00 92.31 
 PB1 8  7.91 0.78 0.26 7.91 0.96 7.66 10.41 100.00  8.00 100.00 8.00 100.00 8.00 100.00 8.00 100.00 

PB PB2 8  7.95 1.32 0.19 7.95 0.89 13.18 16.94 99.98  8.00 100.00 8.00 100.00 8.00 100.00 8.00 100.00 
 PB3 10  9.61 0.98 0.17 9.61 0.94 21.86 46.14 94.88  10.00 100.00 10.00 100.00 10.98 91.07 11.00 90.91 
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16.4. Non-parametric estimators for completeness of the sampling method  
Concerning non-parametric methods, the different estimators used provided very variable 
estimation of the maximum richness for all the zones. The Chao1 and Chao2 estimates were close 
to the observed richness (mean E45 values of 99.36 ± 2.13SD and 98.35 ± 3.82SD respectively), 
but both the first- and, even more so, second-order Jacknife estimators indicated more limited 
completeness of the sampling effort (91.82 ± 6.08SD and 88.33 ± 10.52SD respectively). The 
higher variance of E45 values obtained from Jacknife estimators revealed that their completeness 
was not always good, depending on the zone considered. Four zones were considered poorly 
sampled by a 45 km² effort with Jacknife, whereas only one was incomplete when estimated with 
Chao (see Table 4). The lowest E45 value was observed for zone AP2 from the Chao2, Jack1 and 
Jack2 estimators alike, whereas no zones were considered under-sampled with Chao1.  

16.5. Final statement on the comparability of anomalies assemblages  
Regarding the results obtained from anomaly accumulation curves and from non-parametric 
estimation, anomalies’ assemblages obtained from 45 km² sampling effort were relatively 
complete. If maximum anomalies’ richness could be considered as non-reached for FB2 when 
assessing by the anomalies accumulation curve method (depending of the model used), AP2 
would be the one from the non-parametric method (common to all the non parametric estimators). 
Because zones considered as potentially under sampled are not common among methods or even 
more among models or estimators, we assumed here that no method and even more, no precise 
models or estimators constantly suggested a specific zone as under sampled. Then, 
underestimation situation could be more related to the method than to the sampling effort and we 
considered that 45 km² sampling size provided an accurate enough estimation of the maximum 
richness i.e. the number of anomalies existing in each zone for all the zones selected. Concerning 
PB3 for which a sampling effort of 120 km² was initially calculated (Table 2), all the parametric 
and non-parametric methods showed here that maximum anomalies’ richness was reached when 
performing 45 km² sampling effort. This indicated that the sampling effort was adequate and that 
its determination from a pre-test zone where quality is known as good or very good is a solution. 
All together, this authorized to further perform analysis of the different components of the LPIS 
anomaly diversity because of the adequacy of our 45km² sampling size to sample at least 90% of 
the anomaly richness existing in all zones. 

17. Description of samples 

Reference parcels in the quadrats sampled were counted. Then, the absolute occurrence and 
abundance by quadrat (or by parcel when necessary) were determined for each of the seventeen 
anomaly types listed. The preliminary results by LPIS zone are summarised in Table 5. Because 
they were mean occurrence values by zone, they have been corrected to integrate the MSE  
relative to a systematic cluster sampling design of 1 km² quadrats, as described in Section 12.5 
(i.e. ± 23.16% of the mean). 

17.1. Areas sampled 
On the one hand, as mentioned in the introduction, LPIS types displayed high variability in the 
mean reference parcel area, from 0.64 ha (± 0.93SD) for zone CP3 to 54.76 ha (± 61.85SD) for 
PB3. As expected, CP and AP had lower reference parcel areas and FB and PB the highest. 
Because of that, at a constant sampling effort of 45 km², an inversely proportional number of 
parcels were sampled by zone (from 154 in zone PB3 to 6 243 in CP3). If it were decided to 
sample reference parcels instead of quadrats, at a constant number of parcels the total area 
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sampled would vary by a factor of 50. This would have introduced a considerable source of bias 
based on the parcel area-related assumption made. 

Use of a constant sample size (45 km²) made it possible to free the result from the possible 
reference parcel area effect. The parcel area sampled was between 16.85 km² (AP3) and 56.77 
km² (CP2). Most of the zones offered a sample area around or lower than 45 km². However, three 
zones (PB2, CP2 and, especially, PB3) showed an over-sampled area; at the opposite end, under-
sampling was observed for AP3 (< 20 km²), mainly due to (i) exclusion of areas with non-
agricultural land uses (forests, urban zones, etc.) and (ii) agricultural parcels not registered in the 
LPIS as eligible parcels (i.e. not receiving CAP aid) but sampled within quadrats. In this typical 
case, a relatively correct agricultural area close to 45km² was sampled in quadrats, but a large 
proportion of the parcels contained within the quadrats were not registered within the LPIS and, 
consequently, not counted. Concerning over-sampling, the reference parcels-to-quadrat rules 
(see Part C) induced over-sampling of the number of parcels and, hence, of the area when the 
reference parcels area was large (especially PB).  

To solve this problem, two parcels-to-quadrat rules could be envisaged. First, by deciding to 
select solely quadrats in which at least 75% of the area contained reference parcel(s), under-
sampling should be limited. Second, to address over-sampling, only quadrats for which the 
maximum sampled parcel area outside the quadrat does not exceed 20% could be suitable. 
Although easy to implement within the GIS, these rules remain controversial: in highly 
segmented LPIS, such as in mountainous zones or fragmented landscapes (farmland criss-crossed 
by hedges and trees), the number of quadrats complying with these rules could be limited and the 
sample difficult to obtain. For that reason, and because the results were observed a posteriori, 
these new parcel-to-quadrat rules were not applied in this study. Although the authors suggest 
that all future users should take them into consideration. 
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Table 5: Primary results concerning the LPIS zones selected during the 2005 survey: sample size - 45 km² for all zones  

LPIS 
types 

LPIS 
zones 

Orthophoto 
area (km²) 

Total area 
sampled 

(km²) 

Mean sampled 
reference parcel 

area (ha) 

Total No of 
reference 
parcels 

Total No of 
reference parcels 

sampled 

Sampled 
reference 

parcel (%) 

No of 
anomalous 
reference 
parcels 

Anomalous reference 
parcels percentage (%) 

( MSE corrected) 

Total No of 
anomalies 

AP1 1 213.4 48.77 5.11 (±7.28SD) 18 307 866 4.73 237 27.37   (21.03 – 32.24) 460 

AP2 595.8 32.32 1.28 (±1.18SD) 6 507 1 321 20.30 167 12.64   (9.71 – 14.89) 223 AP 

AP3 506.5 16.85 3.70 (±4.91SD) 5 647 879 15.57 232 16.39   (12.59-19.31) 614 

CP1 1 938.9 33.79 4.44 (±0.88SD) 172 540 6 233 3.61 1 762 28.27   (21.72 – 33.30) 3 061 

CP2 2 003.4 56.77 2.86 (±5.40SD) 44 784 2 547 5.69 121 4.75     (3.65 – 5.60) 170 CP 

CP3 278.7 39.73 0.64 (±0.93SD) 69 170 6 243 9.02 504 8.07     (6.20 – 9.51) 623 

FB1 784.5 46.27 7.48 (±8.70SD) 5 365 619 11.54 237 38.29   (29.42 – 45.10) 525 

FB2 930.2 42.94 6.41 (±12.33SD) 9 936 573 5.77 48 8.38     (6.44 – 9.87) 60 FB 

FB3 311.3 45.88 5.82 (±7.38SD) 3 302 788 23.86 434 55.08   (42.32 – 64.88) 1 143 

PB1 376.8 35.58 6.05 (±10.77SD) 3 068 547 17.83 271 49.54   (38.07 – 58.36) 578 

PB2 1 105.9 50.79 5.51 (±8.92SD) 39 118 922 2.36 101 10.95   (8.41 – 12.90) 186 PB 

PB3 928.6 84.32 54.76 (±61.85SD) 2 144 154 7.18 103 66.88   (51.39 – 78.78) 1 662 
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17.2. Anomalies occurrence and abundance 
The main result obtained on LPIS anomaly occurrence was that a very variable number of 
anomalous reference parcels were detected in the samples (see Table 4). Taking all zones 
together, around 8 anomalous parcels and 17 anomalies were detected per square kilometre. 

For half of the zones, the percentage of anomalous parcels either did not exceed or slightly 
exceeded 15% of the total number of reference parcels checked. In the other six zones, the 
observed anomalies occurrence was higher than 25% and in PB1 and PB2 it reached 50%. 
Although high proportions of anomalous reference parcels were observed, especially for FB and 
PB, the type of LPIS had no significant effect (F(3.8) = 1.33, p-value > .05). The mean anomaly 
occurrences, expressed as percentages of the anomalous reference parcels sampled, were 18.80 (± 
7.66SD), 13.70 (± 12.73SD), 33.92 (± 23.66SD) and 42.46 (± 28.63SD) for AP, CP, FB and PB 
respectively. 

MRAi and TRAi were the two prevalent classes of anomalies detected during the survey. They 
were significantly more frequent (F(3.44) = 13.16, p-value <.001) and abundant (F(3.44) = 14.56, 
p-value <.001) than BRAi and WRAi. The mean occurrences (%) were 45.12 (± 21.36SD), 31.40 
(± 14.33SD), 18.34 (± 16.54SD) and 5.14 (± 6.04SD) and the mean abundance (%) was 48.33 
(± 25.04SD), 28.43 (± 14.93SD), 18.69 (± 18.71SD) and 4.55 (± 5.78SD) for MRAi, TRAi, BRAi 
and WRAi respectively (see Figure 14). Whatever the zone considered, both occurrence and 
abundance displayed a relatively constant distribution between classes of anomaly. Only zone 
PB3 showed some variation in the proportions: TRAi and MRAi each accounted for 
approximately 45% of the occurrences, but MRAi for 70% of the abundance of anomalies. In this 
case, in a high proportion of the anomalous reference parcels sampled, several buildings 
belonging to the parcels were often detected, increasing the relative abundance of MRAi in this 
zone. The main reason was that the reference parcels boundaries were drawn up to constant 
landscape features, such as asphalt roads, including buildings and facilities on both sides of the 
road. 

The fact that MRAi and TRAi were the two major anomalies suggests that the regulatory area 
discrepancy tolerance of 1 ha could have been frequently exceeded. Indeed, by nature, the objects 
at the root of these anomalies (patches of trees, parts of a forest, new buildings and facilities, 
roads, etc.) often occupy large areas. However, since the area discrepancy was not measured, 
further work should be carried out to verify this assumption. By contrast, BRAi and, even more 
so, WRAi appeared rarer anomalies with relatively low abundance. Most of the zones selected 
presented all four classes of anomalies listed. Only CP2 and CP3 showed no BRAi anomalies and 
CP2 no WRAi anomalies. 

Finally, whatever the category of the anomalies detected, 25.3% (± 22.6SD) of the anomalous 
reference parcels presented a single anomaly, whereas 21.6% (± 9.26SD) of the anomalous 
parcels presented exactly two, 15.7% (± 10.5SD) between three and five and 6.46% (± 12.1SD) 
more than five anomalies (see Figure 15). Only zone CP2 presented anomalous reference parcels 
with just a single anomaly detected. PB3 was the zone with the highest proportion of anomalous 
parcels, with more than five anomalies per parcel. Because of the large mean reference parcel 
area (see Table 2) and the high MRAi abundance (see Figure 14), an area discrepancy per 
reference parcel higher than the 1 ha regulatory tolerance could be expected. 
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Figure 13: Type-by-type relative percentage of anomalies occurrence and 
abundance for each of the twelve selected zones  
Type-by-type occurrence means the total number of parcels containing TRA 
anomalies (for instance) over the total number of anomalous parcels; Type-by-type 
abundance means the total number of TRA anomalies (for instance) divided by the 
total number of anomalies detected.  
TRA = tree-related anomalies (4 categories); MRA = man-made related anomalies 
(5 categories); WRA = water-related anomalies (4 categories); BRA = boundary-
related anomalies (4 categories). 
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Figure 14: Distribution of the mean number of anomalies per reference parcel for 
all twelve selected zones 

17.3. Relationship between anomalies abundance and reference parcel area  
The last result also suggested a possible relationship between reference parcel area and number of 
anomalies per reference parcel. To build on the “parcel area” assumption made initially, 
anomalous reference parcels from all zones were grouped together. Then, eight classes of 
anomaly abundance by parcel were decided and the individual reference parcels were attributed 
to the corresponding classes, namely [1], [2], [3], [4], [5], [6-7], [8-9], [10-20] or [>20] 
anomalies.parcel-1. This classification made it possible to obtain a sufficient number of reference 
parcels per class and to avoid empty classes of anomaly abundance. Then, an analysis of variance 
was performed on the reference parcel area between classes of anomaly abundance. Significant 
differences were observed between classes of abundance (F(1.4211) = 258.90, p-value < 0.001). 
The number of anomalies per parcel increased in parallel to the mean reference parcel area (see 
Figure 16).  
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Figure 15: Mean reference parcel area for the eight different classes of anomaly 
abundance observed during the survey   
(ANOVA: classes of anomalies abundance not connected by the same letter had 
significantly different mean areas (α = 0.05); the values in italics were the number of 
reference parcels by class of anomaly; the vertical bars are one mean standard 
error.)  

The initial “parcel area” assumption seemed justified. The number of anomalies could partly be 
correlated with reference parcel area. Because TRAi and MRAi were the most frequent classes of 
anomalies detected, it was assumed plausible that landscape elements could be more numerous 
around and so within reference parcels with a higher area.  

However, this result could be questionable. The zone with the highest mean reference parcel area 
had the highest anomaly occurrence (PB3: 66%). Moreover, four of the six PB and FB zones 
showed anomaly occurrences higher than 25%. It could therefore be argued that the number of 
anomalies is indirectly related to the reference parcel area and more certainly a consequence of 
organisation of land use and land ownership (i.e. LPIS type) within each reference parcel. On the 
other hand, the survey showed that the number of anomalous parcels and of anomalies detected in 
FB and PB were no different than the values observed for AP and CP. In fact, at constant 
sampling size (≈ 45km²), this study just suggested that no difference existed between LPIS types 
but, from the point of view of the field inspector, confirmed the necessary differential effort to 
check the area of reference parcels. 

Whatever the origin of this relationship between reference parcel area and anomaly abundance, 
any future work on LPIS quality should consider this effect. Time-span analysis of LPIS updating 
efficiency could be elaborated by considering results for distinct classes of reference parcel area. 

 

 

0

10

20

30

40

50

60

70

80

90

100

[1] [2] [3] [4] [5] [6;7] [8;9] [10;20] [>20]

No. anomalies (.parcel-1)

M
ea

n 
re

fe
re

nc
e 

pa
rc

el
 a

re
a 

(h
a)

(e)          (d)         (d)         (c)          (c)         (b)        (bc)         (b)         (a)

(2392)      (958)     (395)      (188)      (115)       (82)        (30)        (28)       (24)



 49

18. Description of anomalies assemblages 

18.1. Single anomaly detectability and γ-diversity 
Out of the seventeen LPIS anomalies proposed in the anomalies typology, only TRA4 (high 
density of trees within the reference parcel) was not detected (see Appendix C), despite the fact 
that TRAi was the second highest class of anomalies represented (see Figure 14). This suggested 
that TRA4 was not an appropriate anomaly category. Most of the tree-related infringements 
observed were due to continuous tree features such as hedges, woods or part of a forest within the 
reference parcel. “High number of individual trees relatively constantly distributed over the 
reference parcel”, as in agro-forestry or in poplar-dominated patches, was never detected as an 
anomaly. Consequently, deletion of the undetected anomaly category TRA4 could be envisaged.  

On the one hand, it is difficult to define the tree density threshold below which a clump of trees is 
considered TRA4 and above which it becomes TRA1 (patches of trees within the reference 
parcel). The risk of misinterpretation increases when spring/summer orthophotos with full foliage 
make it difficult to assess the density. On the other, enforcing animal welfare requirements and 
maintaining biodiversity as part of CAP cross-compliance could encourage planting of high-
density single trees within permanent pastures to provide shade for animals or alongside arable 
land for biomass production. In these two cases, detection of TRA4 could become suitable to 
allow agriculture and conservation authorities to ease controls and to decide on the eligibility of 
agroforestry and biomass production. Consequently, even if TRA4 were not observed, 
supplementary results should be obtained from specific areas (agroforestry) before deciding 
whether to delete it. Considering every zone, all sixteen remaining anomalies were detected at 
least once, but the presence/absence and abundance of each type of anomaly varied highly 
between zones.  

Judging from the last two results, the anomaly typology proposed ex ante to address the 2005 
LPIS quality assessment was suitable. The γ-diversity of LPIS anomalies observed in 2005 was 
equal to 16 distinct anomaly types. Finally, the fact that none of the area discrepancies detected 
was due to any cause other than those proposed in the typology strongly confirmed the 
representativeness of the anomalies typology, for a wide range of LPIS types and national 
situations.  

18.2. Single anomaly occurrence and abundance 
Out of the 16 different anomalies detected, four were commonly detected in all the zones: TRA1, 
MRA1, MRA3 and MRA4. With more than 2 000 occurrences each, together TRA1 and MRA1 
accounted for more than 50% of all anomalies detected. Together, all four of these “common” 
anomalies made up approximately 70% of the total abundance.  

By contrast, four individual anomalies were detected infrequently and were not counted more 
than twenty times each: TRA3, WRA3, WRA4 and BRA2 (see Appendix C). These anomalies 
are therefore called “rare” in the rest of this document. 

Between these two groups of “common” and “rare” anomalies, the eight remaining anomalies 
were (i) abundantly detected in a few zones (BRA4 = 1 685 occurrences in 5 zones) or (ii) non 
abundantly detected but present in almost all zones (WRA1 = 130 in 11 zones). 

Thus, classification of individual anomalies by considering abundance and occurrence separately 
was not easy. We then decided to calculate the product of relative occurrence (the proportion of 
the twelve zones displaying a given single anomaly) – relative abundance (the proportion of the 
abundance of a single anomaly in the total abundance) (see Figure 15).  
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Figure 16: Classification of the single anomalies detected during the LPIS survey 
within the twelve zones studied as product of (relative occurrence * relative 
abundance)   
(TRA4 is between parentheses as a reminder that this anomaly was not detected 
during the 2005 survey) 

This classification clearly shows the weight that should be lent to each type of anomaly when 
seeking to improve LPIS quality and object detection within the LPIS, considering all LPIS types 
and Member States. Attention could be paid, inter alia, to elevation-related segregation of objects 
appearing as 3D events on the one hand and to reflectance-related segregation of biological 
versus anthropogenic objects on the other. Together, these two possibilities could help to detect 
and classify objects within reference parcels and to decide on necessary on-the-spot verification. 

However, other anomalies were present, such as BRA4 and BRA3 in 66% and 42% of the zones 
respectively. Altogether, they accounted for approximately 20% of the total anomalies 
abundance. The majority of the cases of BRA3 (boundaries not following the reference parcel 
perimeter) were detected in zones PB1 and FB1, whereas BRA4 (reference parcels overlap 
resulting in allocation of the same area twice to two contiguous parcels) was detected in CP1, 
FB1 and FB3 (the last two in the same Member State) (see Appendix C). In this case, because 
these anomalies were not intrinsically connected to any identified landscape object, it could be 
assumed that LPIS creation and updating processes were the cause of the anomalies. The 
delineation of the reference parcel was false and the photointerpreter had failed to establish the 
correct reference area for a given reference parcel. This could be a consequence of use of an 
unsuitable imagery sensor or imagery resolution (Pluto-Kossakowska et al., 2007) or even of 
inexperience on the part of the photointerpreter (Pluto-Kossakowska et al., 2008). The similarities 
between the anomalies assemblage between zones FB1 and FB3 (richness: 12 anomalies detected 
and relatively identical abundance for each type of anomaly) reinforced the idea that (i) landscape 
and/or (ii) LPIS creation and updating influences the final community of anomalies. For these 
two zones, the landscapes were very similar (almost open fields containing a residual part of a 
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forest/hedges and a low proportion of urban features). By contrast, zone CP2 (very large open 
fields without residual forests or hedges and large presence of permanent olive/nut trees) showed 
a limited number of anomalies (n = 170), mainly in the form of MRA1 (agricultural buildings to 
stock olive tree production and material) with TRA1 virtually absent.  

From all these results, the anomalies assemblage appeared to differ highly between Member 
States. With each zone representing a single Member State (except FB1 and FB3), it was assumed 
that a specific landscape composition or complexity could be responsible for part of the 
anomalies assemblage (around 75%) and LPIS creation and updating processes for 16%. Further 
experiments addressing, first, the relationship between landscape composition and complexity 
and, second, the efficiency of the LPIS creation and updating workflow should make it possible 
to determine the cause of LPIS anomalies and, consequently, possible action to take to improve 
LPIS quality significantly. 

19. Diversity of LPIS anomalies 

Considering anomalies assemblages zone by zone, different indicators of the diversity of LPIS 
anomalies were calculated, namely the α-diversity for each of the zones and the β-diversity (or 
spatial pattern) between zones, when occurrence- and abundance-based similarity measurements 
were performed. 

19.1. α-diversity 
α-diversity involves two distinct concepts: anomalies richness or the maximum number of 
anomaly types in an assemblage (S) and evenness (E) or quantification of the unequal dominance 
of certain types of anomaly in two assemblages with the same richness. Evenness can be seen as a 
measure of the extent to which the occurrences observed are equitably distributed across 
anomalies to express any dominance of a few common anomalies within the assemblage. 

• Richness 
Earlier in this study, the estimated anomalies richness (Sest) was determined when samples were 
tested for completeness (see Section 16). However, even if close to the observed richness (Sobs), 
the estimated maximum richness (Sest) obtained varied, depending on the method used. The 
results were consequently not accurate enough to be considered when addressing α-diversity. For 
this reason, it was decided to calculate new measurements of α-diversity (using the Ecological 
Methodology – Diversity Measures module; Krebs, 1999).  

Richness was estimated by calculating the Simpson’s reciprocal index (Mac Arthur, 1972):  

 
∑

= 2
11

ipD
 (equation 27) 

where  1/D =  the Simpson’s reciprocal index of diversity, 

 pi =  the proportion of anomaly i in the assemblage. 

• Evenness 
The metric index of evenness was decided in accordance with the initial assumption of 
considering rare and common anomalies equally (Routledge, 1983). Because it is relatively 
unaffected by rare anomalies, giving the same weight to all anomalies, Camargo’s index of 
evenness (E’) (Camargo, 1993) was used (Smith and Wilson, 1996). It is also relatively 
independent of the richness of the sample: 
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where  E’ =  the Camargo’s index of evenness, 

 pi =  the proportion of anomaly i in the assemblage, 

 pj =  the proportion of anomaly j in the assemblage, 

 S =  the total number of anomalies in the assemblage. 

Because several quadrats per zone had anomaly abundances equal to zero, the calculation of α-
diversity indexes for each quadrat sampled was not possible individually. Mean values of 
Simpson’s reciprocal index of richness (heterogeneity) and Camargo’s index of evenness were 
calculated from anomalies assemblages obtained from each of the five blocks per zone (one block 
containing nine square kilometre quadrats). By doing this, the mean value and variance of the 
diversity indices from five replicates in a zone were obtained. 

Heterogeneity and evenness measurements for each of the zones selected are shown in Table 6. 
Table 6: Non-parametric diversity indices zone by zone (Sobs = observed richness in samples; 1/D = 
Simpson’s reciprocal index of richness; E’ = Camargo’s index of evenness; ANOVA = diversity 
indices not connected by the same letter had significantly different mean values (α = 0.05) 

 α-diversity 

 Richness  Evenness 

 Sobs 1/D  E’ 
AP1 15 4.40 (±1.99)  (a)  0.50 (±0.11)  (bcd) 
AP2 7 2.83 (±0.69)  (cd)  0.57 (±0.09)  (b) 
AP3 10 3.31 (±0.70)  (bcd)  0.48 (±0.03)  (bcde) 
CP1 10 4.00 (±0.28)  (ab)  0.55 (±0.11)  (bc) 
CP2 5 2.33 (±0.51)  (d)  0.58 (±0.14)  (b) 
CP3 8 2.51 (±0.89)  (d)  0.43 (±0.08)  (cde) 
FB1 12 4.24 (±0.51)  (ab)  0.48 (±0.05)  (bcde) 
FB2 8 3.36 (±1.00)  (abcd)  0.71 (±0.19)  (a) 
FB3 12 3.72 (±0.81)  (abc)  0.39 (±0.06)  (de) 
PB1 8 4.03 (±0.70)  (ab)  0.54 (±0.03)  (bc) 
PB2 8 3.21 (±0.29)  (bcd)  0.56 (±0.05)  (b) 
PB3 10 2.84 (±0.36)  (cd)  0.38 (±0.08)  (de) 

 

Even though the observed richness (Sobs) varied between zones, no significant difference was 
observed (F(3.11) = 0.921 p-value = 0.474) between the four LPIS types. This was confirmed 
from Simpson’s and Camargo’s indices; no significant effect of LPIS type was observed for 
Simpson’s and Camargo’s indices of diversity ((F(3.59) = 1.820 p-value = 0.154 and F(3.59) = 
0.179 p-value < 0.910 respectively). However, significant differences in Simpson’s and 
Camargo’s indices of diversity were observed between zones (F(11.59) = 3.275 p-value = 0.0021 
and F(11.59) = 4.559 p-value < 0.0001 respectively) (see Table 6).  

Some zones (AP1, CP1, FB1 and PB1) were found to be richer (high Simpson’s index) than 
others, whereas AP2, CP2, CP3 and PB3 presented low richness (heterogeneity) values. In these 
cases, low heterogeneity, did not signify a high dominance of one of the anomalies. On the 
contrary, zones CP3 and PB3 showed a small number of anomalies with a relatively well 
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balanced abundance between them, i.e. a small evenness value. On the other hand, heterogeneous 
zones such as AP1, CP1, FB1 and PB1 showed medium values of evenness. Only zone FB2 was 
strongly dominated by one category of anomaly (TRA1, see Appendix C), despite the fact that it 
was a medium heterogeneous zone. 

The previous result showed no clear trend between zones and that use of α-diversity metrics was 
relatively difficult to interpret because of the variability of the measurement obtained. Zones with 
medium heterogeneity could have low (FB3) or high (FB2) evenness and homogeneous zones 
showed independently low (CP3 and PB3) or medium (CP2 and AP2) evenness. Although 
informative, use of single α-diversity metrics to distinguish LPIS zones appeared unsuitable. 

These results also confirmed previous conclusions suggesting that classification of zones by LPIS 
type was no longer suitable when addressing LPIS anomalies assemblages. Driving forces other 
than LPIS type should be considered to explain the anomalies assemblage observed in each zone. 

19.2. β-diversity 
To allow comparison and classification of LPIS zones, an analysis of β-diversity was performed, 
by considering the similarity between pairs of zones. This took the form of ordering the twelve 
zones by two-stage NMDS into occurrence- and abundance-related similarity measures. Jaccard’s 
(Romesburg, 1984) and Morisita’s (Krebs, 1999) measures of similarity were calculated between 
each pair of zones with Estimate-S software (Colwell, 2004). In parallel, HAC (Spearman’s 
correlation coefficient of similarity; average linkage) was performed to facilitate visualisation of 
the clusters obtained from NMDS. 

Because the robustness of the ordination of Jaccard’s index of similarity was insufficient (three 
NMDS axes and Kruskal’s stress = 0.246), the clusters were not considered. Unlike Jaccard’s 
result, ordination from Morisita’s index of similarity provided a very good ranking of the zones 
between four different clusters (see Figure 17). β-diversity was therefore interpreted only from 
Morisita’s index of similarity (three NMDS axes and Kruskal’s stress = 0.042). 

Considering all pairs of zones, the mean similarity value was 0.62 (± 0.21SD). However, the 
Morisita’s similarity index observed was between 0.15 (CP2/PB1), indicating wide dissimilarity 
between the two zones and almost total similarity between AP3 and PB3 (similarity = 0.99). 
These extreme similarity values corresponded to the longest and shortest distances between 
NMDS coordinates in respectively (see Figure 17-a). 
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Figure 17: (a) NMDS ordination and (b) hierarchic ascendant classification of the 
anomalies assemblages obtained by zone from Morisita’s index of similarity (HAC: 
Spearman’s correlation coefficient/average linkage/4 classes expected; NMDS using 
SMACOF (Scaling by MAjorizing a COnvex Function) algorithm from Leeuw, 
1977) 

From the NMDS ordination, without the help of the HAC result, three different clusters could be 
considered: AP2 and the three neighbouring zones at the bottom of the chart; PB1 and FB2; and a 
single cluster with all the remaining zones. HAC, on the other hand, proposed four different 
clusters. Verification of the NMDS clusters displayed in a 3D chart clearly separated PB1 from 
FB2, then FB2, CP3 and AP1 from the rest of the four zones in the upper part of the chart; 
consequently, four clusters were obtained, corresponding to the four ranked by HAC. To facilitate 
visualisation on the 2D chart, clusters were then circled in the NMDS chart. 

Together with the HAC results, NMDS made it possible to classify the zones into four clusters for 
which the cause of the dissimilarity between clusters was analysed. 

19.3. Anomalies clusters and spatial pattern 
Considering α-diversity metrics (see Table 6), none of the clusters classified from NMDS 
presented any particular organisation of the α-diversity metrics. All the clusters presented very 
similar mean heterogeneity and evenness values. Consequently, the cluster origin was ascertained 
for the anomalies assemblages of the zones in each cluster.  

Anomalies assemblages (see Appendix C) were grouped on the basis of clusters obtained from 
NMDS. For each zone embedded within a cluster, proportion for each of the sixteen anomaly 
categories was calculated; then, a mean proportion (and standard deviation) for each of the 
sixteen anomaly categories was calculated per cluster and expressed as a percentage. The 
resulting mean percentages of the sixteen anomaly categories per cluster are set out in Table 7. 
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Table 7: Mean anomaly abundances (%) for each anomaly categories per cluster  

(Numbers between parenthesis are standard deviation – Cluster 4 being composed of one single zone, 
standard deviation was not calculable) (Dark cells correspond to the first-order anomalies in a 
cluster (≥ 30%); dark grey cells to second-order anomalies (15% ≤ < 30%) and light grey cells to 
third-order anomalies (10% ≤ < 15%). Values below 10% are shown in smaller font size.) 

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Single anomalies 

AP2, FB1, FB3, CP1 AP3, PB2, PB3, CP2 AP1, CP3, FB2 PB1 
TRA1 41.60 (±10.20) 29.55 (±12.58) 16.85 (±9.46) 18.69 
TRA2 1.61 (±1.55) 1.00 (±1.24) 0.41 (±0.70) 0 

TRA3 0.29 (±0.41) 0.02 (±0.04) 0.18 (±0.31) 0 

MRA1 17.50 (±7.70) 15.28 (±4.37) 49.85 (±5.98) 4.33 

MRA2 4.35 (±4.19) 0.63 (±0.69) 1.35 (±2.02) 0 

MRA3 5.52 (±1.88) 0.82 (±0.75) 3.26 (±4.60) 0.87 

MRA4 2.64 (±1.91) 5.39 (±5.62) 6.91 (±3.64) 11.42 
MRA5 12.83 (±0.94) 7.69 (±0.75) 16.53 (±4.75)  3.98 

WRA1 3.99 (±1.69) 1.13 (±0.65) 1.21 (±1.79) 1.90 

WRA2 0.84 (±0.61) 0.57 (±0.35) 1.82 (±2.70) 17.30 
WRA3 0.58 (±0.82) 0 0 0 

WRA4 0.07 (±0.10) 0 0 0 

BRA1 1.45 (±2.05) 0.09 (±0.09) 0 0 

BRA2 0.58 (±0.82) 0.05 (±0.08) 0 0 

BRA3 6.16 (±6.41) 5.55 (±7.99) 1.60 (±1.10) 41.52 
BRA4 0 32.23 (±3.66) 0.04 (±0.07) 0 

 

Each of the clusters showed a particular anomalies assemblage, in which at least one single 
anomaly prevailed. In every case, these first-order anomalies accounted for more than 30% of the 
cluster’s total abundance; first-order anomalies were never the same from one cluster to another. 
These first-order anomalies were TRA1, BRA4, MRA1 and BRA3 respectively for clusters 1 to 
4. For cluster 1, only one second-order anomaly was identified: MRA1 accounted for more than 
20% of the total abundance. For the remaining clusters, there were two second-order anomalies: 
TRA1 and MRA1 for cluster 2, TRA1 and MRA5 for cluster 3 and, finally, TRA1 and WRA2 for 
cluster 4.  

Some of the anomalies were classified as first- or second-order anomalies for only one cluster 
each: BRA4 for cluster 2, BRA3 for cluster 4, MRA5 for cluster 3 and WRA2 for cluster 4. 
Because they represented landscape features at the root of area discrepancies commonly detected 
within each cluster, this table strongly suggests that LPIS anomalies assemblage could be 
inextricably linked to landscape organisation and fragmentation around the reference parcels. 
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 Cluster 1 consisted of zones where “patches of trees” (TRA1) prevailed, followed by 
“buildings” (MRA1). This composition accurately describes composite rural landscapes 
with a mix of urban (or anthropogenic) and natural elements (forests and woods). In 
practice, the zones in this cluster were urban zones within residual forests corresponding 
to medium-moisture continental or Mediterranean climates. Another interesting finding 
was that zones FB1 and FB3, from two different regions of the same Member State (with 
two different contractors in charge of the LPIS), were considered as belonging to the 
same cluster. This reinforced the idea that the LPIS anomalies assemblage and LPIS 
quality improvements could be more landscape composition and fragmentation driven 
than LPIS creation and updating driven.  

 Cluster 2 consisted mainly of zones where the highest proportion of anomalies was 
caused by “overlapping boundaries of contiguous parcels” (BRA4). It was the sole cluster 
presenting a huge proportion of this single anomaly. The second-order anomalies were 
then TRA1 and MRA1. From this it was pointed out that the landscapes were relatively 
similar to those described for cluster 1: apart from CP2, which was under the influence of 
a dry Mediterranean climate, all the zones benefited from the influence of oceanic 
conditions, with high annual water availability favouring biomass production, and were 
on the western side of Europe. The fact that zones PB2 and PB3 were grouped in the 
same cluster also indicated a possible link between BRA4 anomaly category and physical 
blocks LPIS.  

LPIS quality within this cluster could first be addressed by analysing image acquisition, 
processing and interpretation at the level of the contractors before addressing the 
landscape structure effect. 

 In cluster 3 the segregation was mainly due to the first-order anomaly MRA1 
“Buildings”. However, a large share of MRA5 (“farm within reference parcel”) suggested 
that the main problem with LPIS quality here could be due to the recent development of 
urban and agricultural anthropogenic elements. Because the Member States concerned 
were from Eastern Europe, it was assumed that the recent economic expansion and 
restructuring of Agriculture (and the agricultural landscape) since EU accession were 
responsible for the construction of numerous new facilities and buildings, to the 
detriment of agricultural and natural land which, up until now, had been closed to 
urbanisation. Urban and agricultural extension in these zones has induced a high 
proportion of man-made related anomalies. Furthermore, as urban extension is 
continuing, more and more changes of land use could be later responsible for the 
numerous tree-related anomalies detected in these zones (TRA1 as second-order 
anomaly).  

The situation in this cluster suggested that LPIS creation and especially LPIS updating 
were crucial to match the continuous land-use changes and to keep pace with the 
expansion and development of the related Member States. Protection of natural landscape 
features or of zones of high nature value should also be considered directly by general 
application of LPIS to identify and trace protected areas or areas of interest precisely. 

 Finally, cluster 4 consisted of a single zone. PB1 was the sole cluster presenting BRA3 
(“boundary not following the landscape features”) and WRA2 (“ditches within the 
reference parcels”). This result reflected a highly complex landscape, where aquatic and 
forest features were widely present. At the same time, the medium proportion of TRA1 
(“patch of the trees) and the low proportion of MRA1 (“buildings”) suggested that zone 
PB1 is in a Member State with a low population density and a limited number of open-
field situations. In fact, the zone is in a Scandinavian Member State where continuous 
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vegetation and water networks are omnipresent. The dispersion index for PB1 (result not 
shown) was the highest, suggesting the highest clustering of the anomalies around 
landscape features, in places where human beings have decided to deforest, to drain off 
and cultivate land.  

Concerning cluster 4, landscape structure and fragmentation would be of primary 
importance if it were to be decided to improve LPIS quality. 
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PART F. Final discussion and prospects 

20. Discussion of the results 

A wealth of information was obtained from the survey addressing the diversity in LPIS 
anomalies. Some of it just confirmed previously accepted aspects of LPIS quality, while most 
highlighted the advantages of recourse to ecological methodology to improve regulatory and 
technical systems such as the LPIS.  

• The sampling method 
Adaptation of an ecological sampling method for obtaining the anomalies assemblages within the 
LPIS was guided by the specific constraints of on-the-spot check (remote sensing AND rapid 
field visit) within CAP as defined by European regulation EC N° 796/2004. This study has shown 
that, despite the absence of any reference to LPIS anomaly occurrence in the literature, taking all 
the zones together, the probabilistic approach to sampling size (see Section 12) gave an 
approximate of the minimum number of reference parcels to sample. However, this paper has 
demonstrated that this minimum number of reference parcels would not be realistic when 
applying the mean reference parcel area in a given zone. In the case of zone PB3, the total area to 
sample corresponding to 367 reference parcels would then be 121 km² (see Section 14). At a 
constant number of reference parcels and time investment, this called for display of each 
reference parcel on screen, losing visibility in the case of very large reference parcels and 
increasing the risk of underestimation of anomalies abundance.  

Based on the LD and Gompertz models of anomalies accumulation curves, the decision was taken 
to opt for the second highest sampling area (FB1: 22.87 km²), which allowed detection of at least 
95% of the richness of each of the twelve zones. By contrast, the Clench model indicated that 
mean values of 28 km² and 59 km² were necessary to reach 90% (E90%) and 95% (E95%) 
respectively of the estimated richness in all the zones (see Section 18). In that case, a 23 km² 
sample size, as obtained from PB3, would have been inadequate. 

However, the decision to double the second highest minimum area to be sampled and to apply a 
45 km² sample size to all the zones was good. This decision was based on the time and human 
resources available and allowed sampling, in almost all situations, of 90% of the maximum 
anomalies richness. Depending on the estimators considered, only zones FB2 and AP2 (E45) 
showed a richness value slightly lower than the 90% initially expected. 

To conclude on sample size, a constant sampling effort of 45 km² was necessary and sufficient to 
obtain good completeness of the LPIS anomalies assemblages, considering all zones (and LPIS 
types). 

Concerning quadrat size, Wiegert’s method clearly identified a medium-sized quadrat of 1 km² as 
efficient for complete anomalies assemblages. It was the best compromise for achieving the 
lowest variance at the lowest cost. This was also confirmed by the smaller relative bias and 
imprecision of the mean obtained for anomaly occurrence. Moreover, by using a 1 km² quadrat 
size, the number of quadrats available provided coverage of a sufficient diversity of sub-zones of 
interest within the image. This result was also valid whatever the sampling designs assessed. 

When applying systematic, systematic cluster or random sampling designs, a quadrat size of 
1 km² should be used with a sample size of 45 km². 

All three sampling designs tested achieved more than 90% completeness compared with the true 
anomalies assemblage for the pre-test zone (FB2). Consequently, all three appeared suitable for 
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sampling anomalies in the LPIS. But, because the choice of the sampling design cannot be 
considered independent of the occurrences to detect, the clumped distribution of anomalies in the 
image suggested that the systematic cluster design was the most suitable.  

As regards the correlation between the spatial pattern of anomalies and landscape structure, other 
sampling designs, such as “stratified random” and “adaptive” (also called “response-adaptive”) 
sampling, could possibly be envisaged in due course. These sampling methods would permit 
sampling of anomalies from CwRS images by, respectively, (1) applying a higher sampling effort 
to the sub-parts of a landscape perceived as more complex within the image or (2) using 
anomalies detection outcomes as they become available to adjust the assignment of future 
quadrats to zones suspected of containing expected anomalies (Thompson, 1992). 

Box 1: Conclusions about the sampling method 

 CwRS imagery appeared useful and precise enough to address LPIS quality. 

 Cost-effective sampling for LPIS anomalies detection within CwRS imagery requires a 
square quadrat of 1 km². 

 A sampling effort of 45 km² is the minimum required to cover at least 90% of the richness of 
the LPIS anomalies assemblages, whatever the LPIS type and Member State considered. 

 If random sampling without replacement is the design which should usually be set up 
whenever possible, systematic cluster (or stratified and adaptive) sampling design should be 
envisaged to match the effect of landscape structure on anomalies assemblage characteristics. 

 Reference parcels-to-quadrat attribution rules are an important aspect of sampling to take into 
account before conducting the experiment. 

 

• Validation of the sampling method 
Next, the sampling method was calibrated on one particular pre-test zone for which (1) LPIS 
quality was a priori considered good (because of the suspected limited number of anomalous 
reference parcels) and (2) the landscape structure was considered representative of the diversity 
of the situations found in the EU. 

Use of anomalies accumulation curves and of non-parametric estimators (see Section 18) to 
verify the adequacy of the sampling corroborated the choice of sampling method. Considered 
individually, these two methods gave relatively constant and similar estimates of the anomalies 
richness in the zones selected. However, while the choice of model appeared crucial for the 
former, the choice of the non-parametric estimators regarding the nature of the data available 
(occurrence vs. abundance) highly conditioned the estimated anomaly richness within the zone.  

Judging from the results of this study, the linear dependence model was not suitable to fit the 
observed anomalies-area relationships; by contrast, the Clench and Gompertz models were more 
precise. 

Concerning non-parametric estimators, because anomalies abundance measurements were 
available, the Chao1 and Chao2 estimators should attract the greatest interest. Colwell and 
Coddington (1994) suggested that Chao2 can be perceived as the least biased estimate of species 
richness for small numbers of samples.  

Consequently, it can be assumed a posteriori that the sampling method was adequate (at least 
90% of the maximum estimated richness was sampled) for eleven of the twelve zones. Only AP2 
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was sampled at lower completeness but the richness obtained stayed relatively close (87.7%) to 
the maximum estimated richness. 

Box 2: Conclusions about validation of the sampling method 

 Verification of the completeness of the sampling method requires use of both anomalies 
accumulation curves and non-parametric estimators. 

 Accumulation curves require selection of several models to compare the estimates and finally 
decide on the adequacy of the sampling method. 

 Non-parametric estimators could be used to cross-verify the constancy of the outliers 
identified by the accumulation curve method. 

 If used alone, the choice of non-parametric estimators should be based on the type of data 
available; with occurrence data Jack1 & 2 could be favoured, whereas Chao1 & 2 would be 
used with abundance data. Other estimators, such as the bootstrap procedure or ICE (Colwell, 
2004), could also be envisaged. 

 N.B.: Whatever the validation method, only estimates are obtained, never the true anomalies 
richness. 

 

• LPIS quality in the EU 
All the zones and, consequently, all the Member States surveyed presented a high proportion of 
anomalous reference parcels (see Table 5). However, because the minimum area set for 
anomalies was 0.1 ha, not all the zones exceeded the regulatory tolerance (1 ha over-declaration 
tolerance by reference parcels). Second, the CwRS zones used during this survey had been 
identified by the dedicated LPIS risk analysis as zones at risk. It would therefore be normal to 
find a high proportion of anomalous reference parcels in these zones, whereas the rest might be 
less contaminated, i.e. with LPIS quality matching the regulatory requirements. 

However, this study showed that half of the zones presented a proportion of anomalous reference 
parcels higher than 25% and detected a high proportion of tree- and man-made related anomalies 
(see Figure 14), suggesting a high probability of some zones exceeding the area discrepancy 
tolerance set.  

To decide finally on the real LPIS quality in Europe, area discrepancies corresponding to the 
anomalies should be measured in the future to statute onto the proportion of anomalous parcels to 
be considered as non-compliant. 

Box 3: Overall European LPIS quality 

 The proportion of anomalous reference parcels was higher than initially expected. However, 
this does not mean that LPIS quality does not comply with the regulatory requirements.  

 Although analysis of the diversity in LPIS anomalies was the prime objective, further 
measurement of the area discrepancies detected during this survey should determine the real 
frequency and magnitude of irregularities within the LPIS. 
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• The diversity of LPIS anomalies 
The typology of LPIS anomalies decided a priori precisely matched the anomalous situations 
found. No area discrepancy ever called for creation of a new anomaly category.  

In all the zones surveyed, tree-related (TRAi) and man-related (MRAi) anomalies were the major 
anomalies detected. These two classes generally accounted for more than 50% of the total 
anomalies abundance detected and were common to all the zones. Other classes of anomalies 
such as boundary-related (BRAi) and, even more so, water-related anomalies (WRAi) were rarer 
and specific to certain zones (see Figure 15). 

Moreover, within classes of anomalies, each category was not equally detected. For example, in 
the case of class TRAi, TRA1 (patch of trees in the reference parcel) appeared very common, 
while MRA1 (buildings), MRA4 (asphalt road) and MRA5 (farm features around the buildings) 
were very commonly detected within class MRAi. This suggested that natural landscape features 
surrounding the reference parcels (forests, hedges, etc.) and continuous anthropogenic landscape 
features were the two main sources of anomalies detected. Taking them into account when 
addressing LPIS quality updating should correct the majority of the potential irregularities 
existing within the LPIS (Oesterle and Hahn, 2004). This also calls for continuous integration 
within the LPIS of georeferenced information concerning land-use planning and management. 

Box 4: Overall European LPIS quality 

 The typology of LPIS anomalies proposed a priori to assess LPIS quality in 2005 was 
validated. 

 By focusing on tree-related and man-made related anomalies, every LPIS manager should 
address and correct more than 50% of the existing anomalies within the LPIS. 

 Although initially focusing on solely agricultural concerns, LPIS quality improvements must 
integrate relevant information on other land uses, such as non-agricultural/natural elements 
and anthropogenic features. 

 

• Typology of LPIS anomalies and causes of the anomalies assemblage 
Throughout this survey, the effect of the well accepted LPIS typology on the composition of 
anomalies assemblages was analysed. No clear, significant effect was found. At class of 
anomalies or single anomaly category level, neither anomaly occurrence nor anomaly abundance 
showed any significant difference between LPIS types. Furthermore, within each LPIS type, this 
study showed that anomalies diversity was highly variable between zones (see Section 21), 
limiting the possibility of differentiating between LPIS types. 

By contrast, the anomalies assemblages of the zones were clearly and significantly grouped 
together based on the abundance of the anomaly categories they contained. Since α-diversity 
metrics (and occurrence-based β-diversity metrics/Jaccard’s similarity index) were difficult to 
interpret and were not performed significantly, these zones were clustered by using ordination 
methods based on abundance-based β-diversity metrics (Morisita’s index of similarity). This 
provided a means of depicting the spatial pattern of possible LPIS anomalies. 

Whatever the ordination method used, the clusters of zones obtained were constant and correctly 
differentiated (see Figure 16). From this, construction of the cluster-by-cluster relative proportion 
(see Table 7) clearly showed that the identity of each cluster was a consequence of the presence 
(absence) and abundance of the more common and of some of the less frequent (abundant) 
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anomalies detected. The rare anomalies were never involved in the segregation of the clusters. 
Distinction between clusters was mainly based on the high proportion of one particular anomaly 
category: TRA1 for cluster 1, BRA4 for cluster 2, MRA1 for cluster 3 and BRA3 for cluster 4. 
Together with the clumped spatial distribution of the anomalies (see Section 16), this reinforced 
the idea of the need to incorporate landscape characteristics in order appropriately to review and 
update the overall LPIS quality. This also suggested that some of the anomalies for clusters 2 and 
4 were strongly related to the GIS-assisted and/or d-GPS delineation of reference parcels during 
LPIS creation and updating. 

Accordingly, the landscape characteristics of a CwRS zone should be considered pertinent 
indicators of the anomalies composition and of the dominant anomalies which can be expected. 
The LPIS or at least the CwRS risk analysis could then be updated by considering landscape 
properties as a surrogate of LPIS quality. By doing this, national LPIS contractors would be able 
to identify, faster and more accurately, technical and political improvements to decision-making 
all along the LPIS management chain.  

Box 5: Overall European LPIS quality 

 Although the official LPIS typology is a useful indication of the administrative elements to be 
considered in CwRS on-the-spot (OTS) checks, it is never a characteristic conditioning LPIS 
quality.  

 LPIS quality seems highly correlated with the nature and the structure of the landscape in 
which the reference parcels are established. 

 In certain circumstances, LPIS quality could also be a consequence of misuse of GIS/d-GPS 
technologies when delineating reference parcels.  

 Every process for improvement of LPIS quality should (1) integrate landscape structure and 
fragmentation characteristics and (2) assess the GIS/d-GPS based on procedures for reference 
parcels delineation in order to be effective. 

 

21. Prospects  

• The LPIS updating process 
According to the results outlined above, there could be two main causes for anomalies observed 
within the LPIS: (1) non-exclusion of landscape features embedded within reference parcels and 
consequently considered ineligible; (2) errors during delineation of reference parcels from LPIS 
imagery by national LPIS contractors or farmers. Of course, both could be efficiently addressed 
during the CAPI (computer-assisted photo-interpretation) process and consideration could be 
given to reviewing all these anomalies ex post during the CAPI step. For logistical and economic 
reasons, this appears unrealistic. The solution could be to consider them separately:  

- at the image processing stage, where correct conversion of the original raster into vector 
classes of landscape features (to address TRAi, MRAi and WRAi) should help to (i) directly 
identify potential ineligible objects within reference parcels and (ii) indirectly delineate the 
zones at risk to search for LPIS anomalies or to conduct CwRS risk analyses; 

- then, in the case of BRAi anomalies, at the CAPI stage by analysing the critical points within 
the LPIS updating chain, such as image processing, reference parcels boundary delineation 
and the procedure for correction of out-of-date boundaries. 
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The initial statements made before deciding the methodology to apply in this survey commonly 
acknowledged that the anomalies detection from CwRS images covered only some of the possible 
aspects of LPIS quality which can be considered. Other critical points in the LPIS creation and 
updating chain should be analysed at the same time: 

- The data acquisition stage: when testing different imagery with different levels of resolution 
and visibility, Pluto-Kossakowska et al. (2007) showed that some of the area measurement 
discrepancies observed are largely explained by use of imagery which is not accurate enough.  

- Depending on the imagery used, the CAPI operators have a non-negligible effect on the area 
discrepancy: some operators achieved higher precision with delineating reference parcels 
boundaries using traditional imagery (orthophotos) than when using recent radar imagery. 
This could be related to their personal level of experience. To describe this potential effect, 
compliance with any internal and regulatory procedures which exist would have to be 
assessed. 

- Among the possible solutions to update the LPIS, farmers’ annual declaration of reference 
parcels boundaries is the most promising. It should provide 100% up-to-date information 
every year to the LPIS contractors and greatly limit the risk of incorrect delineation. In this 
case, consideration should be given to assessment of d-GPS users’ procedures and d-GPS 
device accreditation. A specific effort should be made on the conditions of use and the 
robustness of the measurements obtained. 

 

• The landscape ecological approach 

In the near future the authors propose to address the following complementary aspects of the 
method described above: 

- Landscape ecology approach: by analysing the landscape structure and fragmentation 
characteristics of the zones used during this survey, the authors believe that it will be possible 
to identify the main relationships between LPIS anomalies assemblages and landscape 
characteristics. This could be done simply by: (1) establishing the landscape classification 
from the images in terms of the major anomalies detected (forests, roads, urban zones, water 
networks, etc.), (2) measuring the landscape pattern and structure metrics and (3) conducting 
multivariate analyses of landscape factors and anomalies assemblages. 

This approach is highly complementary to automatic detection of objects by remote sensing. 
Whereas automatic detection focuses on detection of anomalous situations by intersecting 
layers containing each single (2/3D) object existing within the landscape and LPIS reference 
parcels to flag the anomalous situation (Oesterle and Hahn, 2004; Zielinski, 2009), the 
landscape ecological approach focuses on identification of the zones at risk (potentially 
anomalous). Consequently, the former can be seen as a curative system to update the LPIS 
promptly, while the latter can be perceived as an investigative system designating the zones 
to cure, as an instrument to perform the CwRS risk analysis. 

- In a second stage, descriptors of the LPIS updating procedures performed in each of the 
twelve zones selected should be incorporated. Documents and databases such as the LPIS 
census conducted by Milenov in 2007 would be of primary importance. Supplementary 
inquiries addressed to the Member States should also allow more accurate identification of 
the principal critical points along the LPIS management chain responsible for part of the 
anomalies detected. 

- Finally, measuring the area discrepancies observed during the survey would make it possible 
to determine the real LPIS quality by substituting regulatory irregularities to anomalies. 
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If accepted, these proposals would undoubtedly provide a cost-effective means of adjusting the 
quality of the LPIS to a level at which its general application to address any agri-environmental 
problem would be undisputed. Powerful ICT instruments, numerous accurate satellite and 
airborne images and effective computer-assisted systems are already available to propose rapidly 
to all land managers and decision-makers the geo-referenced land-use structure needed, with the 
Land Parcel Identification System at its core. 
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Appendices 
 

Appendix A: LPIS anomalies typology proposed a priori 

Anomaly classes Anomaly 
codes Description 

TRA1 
Patch(es) of trees – relatively homogeneous tree-covered area that differs 
from its surroundings fully or partly within the reference parcel and with a 
minimum area greater than 0.1 ha 

TRA2 

Row(s) of trees – relatively homogeneous tree-covered area that differs 
from its surroundings in a row shape (length twice its width) fully or 
partly within the reference parcel and with a minimum area greater than 
0.1 ha 

TRA3 
Forest – an area with a high density of trees fully or partly within the 
reference parcel with a minimum area greater than 1.0 ha 

Tree-related 

TRAi 

TRA4 
Dense trees – dense coverage of single or small patches (< 0.1ha) of trees 
within the reference parcel and with a significant total area 

 

MRA1 
Building – man-made structure used for residential or production 
purposes fully or partly within the reference parcel 

MRA2 
Other man-made objects not covered by code 5 (“building”) fully or 
partly within the reference parcel (e.g. telecommunication facilities, 
electricity facilities, etc.) 

MRA3 
Ground road – an identifiable ground (land substrate) road, way or path 
between two or more places with width greater than 2 m 

MRA4 
Asphalt road – an identifiable asphalt road or way between two or more 
places with width greater than 2 m 

Man-made related 

MRAi 

MRA5 
Farmland not used for agricultural production, such as structures and 
facilities, excluding buildings and kitchen gardens 

 

WRA1 Pond – typically a man-made body of water smaller than a lake 

WRA2 
Ditch – a small to moderate depression created to channel water with 
width greater than 2 m 

WRA3 
River – natural waterway that carries water through a landscape from 
higher to lower elevations called divides 

Water-related 

WRAi 

WRA4 
Marshland – temporarily or permanently flooded zone where agricultural 
production is impossible  

 

BRA1 Shift 

BRA2 Other agricultural land use not covered by another code 

BRA3 Boundary not following stable land features 
Boundary-related 

BRAi 

BRA4 
The border parcel selected for checking significant overlaps with another 
parcel. The possible overlap should be noticeable with the working 
display scale (1:2000-1:25000) on GIS 
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Appendix B: Anomalies accumulation curves from Clench and LD asymptotic models 
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Observed and predicted anomalies accumulation curves from Clench (dashed lines) and Linear Dependent (solid lines) models 
obtained from 45 km² sample size for all 12 LPIS zones selected; the three replicates by LPIS type are presented for (a) agricultural 
parcels (AP), (b) cadastral parcels (CP), (c) farmer blocks (FB) and (d) physical blocks (PB) 
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Appendix C: LPIS anomalies assemblages from the twelve zones studied 

A.C. = Anomaly category; NA= total number of anomalies. See Appendix A for the list of anomaly categories. See 
Table 2 for the list of the zones studied. Anomaly category TRA4 is between parentheses because it was undetected. 

 

A.C. AP1 AP2 AP3 CP1 CP2 CP3 FB1 FB2 FB3 PB1 PB2 PB3 Total 

TRA1 130 111 130 553 3 331 105 26 347 108 51 283 2 178 

TRA2 17 0 0 0 0 7 16 0 11 0 0 27 78 

TRA3 4 0 0 0 0 0 0 0 1 0 0 12 17 

(TRA4) 0 0 0 0 0 0 0 0 0 0 0 0 0 

MRA1 109 26 280 695 101 138 67 4 160 25 82 836 2 523 

MRA2 14 4 2 11 0 0 0 6 4 0 9 4 54 

MRA3 37 0 3 5 19 22 9 3 16 5 0 23 142 

MRA4 12 3 59 456 19 2 22 3 13 66 4 78 737 

MRA5 53 15 112 249 28 85 38 8 99 23 17 370 1 097 

WRA1 26 1 3 19 0 29 7 1 24 11 8 1 130 

WRA2 5 0 5 28 0 9 4 0 7 100 12 0 170 

WRA3 8 0 0 0 0 0 0 0 0 0 0 0 8 

WRA4 1 0 0 0 0 0 0 0 0 0 0 0 1 

BRA1 20 0 0 5 0 0 1 0 0 0 0 0 26 

BRA2 8 0 0 0 0 0 1 0 0 0 0 0 9 

BRA3 16 0 19 0 0 0 101 9 34 240 3 28 450 

BRA4 0 63 1 1040 0 0 154 0 427 0 0 0 1 685 

NA 460 223 614 3 061 170 623 525 60 1 143 578 186 1 662 9 305 
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Abstract 
To date, the Land Parcel Identification System (LPIS) has often been proposed as the foundation for 
effective spatial management of agriculture and the environment and many land managers have 
suggested incorporating it in most of the instruments for sustainable agriculture. The LPIS is originally 
used for registration of agricultural reference parcels considered eligible for annual payments of 
European Common Agricultural Policy (CAP) subsidies to farmers. Its intrinsic quality depends on the 
frequency and magnitude of the discrepancies in area, since some parcels can be under- or over-
declared by farmers compared with reference registered within the LPIS. General application of the 
LPIS therefore depends on our capacity to – first identify and explain the causes of these area 
discrepancies perceived as anomalies by national CAP payment agencies –second, to propose future 
improvements in its overall quality. 

From a set of images used during the 2005 Control with Remote Sensing (CwRS) campaign, using 
the geographic information system (GIS) and ecological methodologies we assessed the quality of the 
LPIS by identifying the diversity of the existing anomalies. To that end, the ecological sampling 
method was adapted to the specific case of image-based detection of anomalies. The observed 
anomalies assemblages obtained from a set of European Member States representing the four types 
of LPIS were analysed to establish the spatial pattern of the anomalies. 

We showed that the twelve zones surveyed can be grouped into four different clusters, each 
individually correlated with the presence of certain categories of LPIS anomaly. Some clusters were 
more particularly related to the presence of natural and anthropogenic landscape features, whereas 
others were typified by anomalies which stemmed from the process for creating and updating the 
LPIS, which accounted for 20% of the anomalies detected. Finally, we also showed that, even if 
useful for establishing procedures to manage the LPIS, the LPIS typology used in the European 
Union had no effect on the anomalies assemblage or on the spatial pattern; consequently, the type of 
LPIS no longer needs to be considered and LPIS anomalies assemblages could be pooled across 
Europe. 

In the light of the results obtained, different proposals are made to improve LPIS quality by:  

– identifying the critical points along the LPIS management chain; 

– using landscape ecological methodologies to explain the causes of the clusters observed; and 

– extrapolating the whole results in the CwRS risk analysis to perform ex-ante LPIS anomalies risk 
map.  

 
Keywords 
Land Parcel Identification System, Control with Remote Sensing, orthophoto, quality assessment, 
diversity, spatial pattern, landscape structure 
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The mission of the JRC is to provide customer-driven scientific and technical support 
for the conception, development, implementation and monitoring of EU policies. As a 
service of the European Commission, the JRC functions as a reference centre of 
science and technology for the Union. Close to the policy-making process, it serves 
the common interest of the Member States, while being independent of special 
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