

Project HORIZONTAL Validation Report on total nitrogen

Validation of a horizontal standard for the determination of total nitrogen by dry combustion method in soils, sludges and treated biowaste in a European Intercomparison Exercise

E. Sobiecka, H. van der Sloot, E. Janssen, B. M. Gawlik

EUR 23016 EN - 2007

The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union's Policies for the protection and sustainable development of the European and global environment.

European Commission Joint Research Centre Institute for Environment and Sustainability

Contact information Address: Via Enrico Fermi 2749

Address: Via Enrico Fermi 2749, 21027 Ispra (VA), Italy E-mail: bernd.gawlik@jrc.it Tel.: +39 0332 789487 Fax: +39 0332 789158

http://ies.jrc.ec.europa.eu http://www.jrc.ec.europa.eu

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/

JRC 40206

EUR 23016 EN ISBN 978-92-79-07444-8 ISSN 1018-5593 DOI: 10.2788/48548

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2007

Reproduction is authorised provided the source is acknowledged

Printed in Luxemburg

Project HORIZONTAL Validation Report

Validation of a horizontal standard for the determination of total nitrogen (TN) by dry combustion method in soils, sludge and treated biowaste in a European Intercomparison Exercise

E. Sobiecka, H. Van der Sloot, E. Janssen, B. M. Gawlik

Elzbieta Sobiecka, Bernd Manfred Gawlik

European Commission, Joint Research Centre Institute for Environment and Sustainability Via Enrico Fermi 21020 Ispra - Italy

Hans van der Sloot

ECN Emission Characterisation and Reduction Westerduinweg 3, P.O. Box 1 1755 ZG Petten The Netherlands

Enno Janssen

Hessisches Landeslabor Am Versuchsfeld 1 - 13 34128 Kassel Germany

> It to whom correspondence should be sent by email to <u>bernd.gawlik@jrc.it</u>

Summary

Project HORIZONTAL is interdisciplinary aiming at a harmonisation and horizontal standardisation of test procedures, in particular for sludge, soils and biowastes. In the context of this standardization project, a series of draft technical specification were designed upon an extensive desk study, fine-tuned after expert consultations and finally validated in international intercomparisons exercise.

This report summarises the work performed within the validation study of the draft standard for the determination of total nitrogen (TN) by dry combustion method in soils, sludge and treated bio-waste. It further explains the underlying statistical concept for the calculation of reproducibility and repeatability from intercomparisons data. In addition all single values, results of the statistical evaluation as well as background information on the validation materials used are described and explained.

Abbreviations

Throughout this report the following abbreviations are used:

ANOVA	Analysis of variances	JRC	Joint Research Centre
CAS	Chemical Abstracts System	MILC	Measure Interlaboratory Comparison
CEN	Comitteé Européen de Normalisation	р	Number of labs
DG	Directorate General	r	Repeatability limit
ECN	Energy Research Centre for	R	Reproducibility limit
	the Netherlands	s _r	Repeatability standard deviation
EU	European Union	s _R	Reproducibility standard
IES	Institute for Environment and		deviation
	Sustainability	TC	Technical Committee
IT	Information Technology	TN	Total Nitrogen
ISO	International Organization for Standardisation		

Table of Contents

Summary	
Abbreviations	
Table of Contents	
Introduction to the validation project	5
1.1 Statistical concept underlying the validation	6
1.1.1 Introduction to the statistical model	6
1.1.2 Requirements for precision experiment	7
1.1.3 Statistical analysis	
1.2 Validation exercise for total nitrogen	
1.2.1 Samples dispatched for the validation of total nitrogen	
1.2.2 Draft standards to be followed	
1.2.3 Analytical program	
1.2.4 Timing and Submission of data	9
1.2.5 Participants	
1.3 Summary results and derived performance characteristics	
1.4 Annexes	
	 Table of Contents Introduction to the validation project

Introduction to the validation project

Project HORIZONTAL is interdisciplinary aiming at a harmonisation and horizontal standardisation of test procedures, in particular for sludge, soils and biowastes. It was created as in response to the European Commission Mandate M 330 given to CEN, asking for the development and validation of those standards in support of forthcoming EU Directives, such as:

- o The revision of the Sewage Sludge Directive 86/278/EEC.
- o The Directive on the biological treatment of biodegradable waste.
- The initiative on a legal framework for soil monitoring in Europe.

This mandate explicitly considers standards for the entire analytical procedure (i.e., sampling, pre-treatment and analytical measurement methods for inorganic, organic, hygiene and biological parameters). These are grouped into classes according to their physical/chemical properties, which in turn determine the methods needed to quantify the potential impact on human and animal health, plant uptake, soil function and groundwater quality. As the materials generally feature a mixture of different types of contaminants, it is important to provide an integrated answer covering evaluation of all relevant pollutants.

In order to fulfil the requirements of the aforementioned mandate, the European Commissions Joint Research Centre (JRC) and its Directorate-General for Environment (DG ENV) together with the Technical Committees of the European Standardisation Committee (CEN TCs) concerned designed a pre-normative research initiative called Project HORIZONTAL and presented it to the Commission and the Environmental Authorities in the Member States.

After an extensive literature research and careful evaluation of the feasibility of a given horizontal standard, the standards were drafted and finally validated in a European laboratory intercomparison.

The underlying statistical concept, information about the materials used, details about the participants, measurement results obtained as well as the derived performance characteristics obtained for the determination of total nitrogen (TN) are described hereafter.

1.1 Statistical concept underlying the validation

According to the requirements of the work package concerning data handling & interpretation of the project HORIZONTAL-ORG the respective validation intercomparisons have to be evaluated according to the principles laid down in ISO standard 5725-2:1994. In particular repeatability and reproducibility of the draft standard methods have to be determined. The determination of trueness would require the availability of independent reference values for the materials investigated. This, however, is not possible and was not requested in the frame of this work. In the following, the approach chosen is explained.

1.1.1 Introduction to the statistical model

The statistical model used in ISO 5725 for estimation of accuracy of a measurement method assumes that every test result is the sum of three components:

y = m + B + e

y: test resultm: general meanB: laboratory component of bias under repeatability conditionse: random error occurring in every measurement under repeatability conditions

In the workprogram the quantification of term e is explicitly asked for (i.e. repeatability and reproducibility). The repeatability variance is measured directly as the variance of the error term e, but the reproducibility depends on the sum of the repeatability variance and the between-laboratory variance:

$$\sigma_r = \sqrt{\operatorname{var}(e)}$$

$$\sigma_R = \sqrt{\sigma_L^2 + \sigma_r^2} \quad \text{with} \quad \sigma_L = \sqrt{\operatorname{var}(B)}$$

However, soil, biowaste and sludge are multi-phase materials, i.e. they contain two or more distinct types of particles which are fundamentally different in their properties and composition. As a consequence, this introduces an important source of variation for the intercomparison exercise which needs to be considered, i.e. the inherent heterogeneity of the materials.

Thus, a contribution of variation between samples H is introduced to the general statistical model:

y = m + B + e + H

Using ANOVA techniques the different variances are calculated and separated for the evaluation.

1.1.2 Requirements for precision experiment

Layout of the experiment

A suite of 10 to 12 different materials (soil, sludge and biowaste) has been made available for the intercomparison exercise. For each parameter investigated, at least 10 to laboratories should be nominated to participate. The same laboratories should be used for different parameters as far as possible. Due to the complexity of analysis and the respective workload to the laboratories, it was decided to propose three materials for the validation of the TN draft standard.

Each laboratory received two bottles of each material and was be requested to perform 6 independent analyses per material¹ (3 per bottle) using the respective draft standard methods. The 6 analysis per material should be carried out under repeatability conditions (i.e. same operator², same equipment, within a short period of time). As far as possible, also the different materials should be measured under repeatability conditions; however, changes of e.g. operator or equipment are permitted, but must be reported. Likewise, different materials can be analysed on different days if necessary.

Equipment used in the experiment needed to be checked prior to the experiment according to the requirements of the draft standard. The results of these checks have to be documented. Similarly, date <u>and</u> time of each measurement had to be recorded for verification of repeatability conditions.

An appropriate timeframe for the entire exercise has been set and was to be respected.

Recruitment of the laboratories

Each sub-workpackage leader of HORIZONTAL was asked to select the laboratories using the information from section 5.2 of ISO 5725-2:1994 and provide the signed questionnaires (see also Annex 1). The workpackage leaders were responsible for providing the laboratories with the draft standard method and explaining the context of this exercise.

Preparation and use of the materials

Materials used for the exercise were prepared according to the general requirements for reference materials as laid down in ISO Guide 34. Materials were accompanied by instructions for use.

Reporting of results

Online submissions of results using an internet-based IT platform as well as XLS-Spreadsheets were used. In case of online data submission, the participating laboratories received a unique and confidential login and password in due time, enabling them to

¹ Independent analysis means analysis of independent test portions, applying the entire analytical scheme to this test portion, from e.g. extraction to quantification. For instance it does not mean replicate injections of aliquots into a GC-MS instrument.

² Operator in this context may also consist of a fixed team of persons, e.g. one person performing extraction, one clean-up, one quantification.

enter their data in a structured form. For authentication purposes a signed printout had to be submitted by mail.

The online data submission included a detailed questionnaire for additional information on the measurements.

1.1.3 Statistical analysis

Statistical analysis of data followed the requirements of ISO 5725-2:1994 and ISO 5725-5:1998. Appropriate tests for the homogeneity of variance, detection of outliers and normal distribution were applied. Statistical evaluation was done using an Excel Macro, developed, tested and successfully applied in other occasion by ECN. Evaluation was executed jointly by JRC and ECN.

1.2 Validation exercise for total nitrogen

1.2.1 Samples dispatched for the validation of total nitrogen

After a preliminary rough screening, the following materials were used for the validation round of TN:

- Compost 1 A pollutant loaded compost material from Vienna
- Compost 2 A pollutant loaded compost materia from Germany
- Sewage Sludge 1 A mixed sewage sludge from Essen, Germany
- Sewage Sludge 2 A mixed municipal WWTP sludge from North Rhine Westphalia, Germany
- Soil 4 A sludge amended soil from Hohenheim, Germany
- Soil 5 An agricultural soil from Reading, UK

A more detailed description of background concentrations can be found in Annex 2 to this report. The samples were dispatched simultaneously to all participants using a private courier service.

1.2.2 Draft standards to be followed

The draft standards to be followed could be downloaded following this link, which is situated on the website of the Project HORIZONTAL:

http://www.ecn.nl/docs/society/horizontal/Total-N Dumas standard for validation.pdf

1.2.3 Analytical program

Of each of the six materials 2 bottles had to be analyzed and each bottle had to analyze independently three times. As mentioned above analyses were to be done under repeatability conditions. Results were to be reported referring to DRY MATTER content. The choice, how to apply d.m. correction was free for each participant.

1.2.4 Timing and Submission of data

Dispatch of samples was done on the 18th of October 2006. For users of the Online data submission system (MILC), User Registration was possible from 14th of November 2006 with opening of the MILC Data Submission on 1st of December 2006. The deadline for submission of results has been set for TN to the 31st of January 2007. After that no further submission was possible.

Alternatively the participants were allowed to submit data electronically as Excel sheet using simply Email.

All data were treated in a confidential way. Any presentation hereafter will refer only to numerical data and it will not be possible to identify the originating laboratory. Lab Codes displayed are NOT related to the order of laboratories hereafter.

In addition to the information provide a Helpdesk was implemented in order to give quick and individual response to the participants during and immediately after the validation study. In case of doubt and suspected transcription errors, further enquires were conducted by JRC.

1.2.5 Participants

The following table lists the participating organizations and entities in the validation exercise for the horizontal TN standard;

- Austria
 - o barbara Engineering, Consulting, Research & Service GmbH
 - Federal Research and Training Centre for Forests, Natural Hazards and Landscape,
 - o Österreichische Agentur für Gesundheit und Ernährungssicherheit
 - Universität für Bodenkultur Wien
 - o Umweltbundesamt
 - o University of Natural resources and Applied Life Sciences
- Belgium
 - o VITO
- Finland
 - o Finnish Food safety Authority Evira
- France
 - o INRA Laboratoire d'Analyse des Sols
 - o SAS Laboratoire
- Germany
 - o Hessisches Landeslabor
 - o Fachhochschule Weihenstephan, Forschungsanstalt für Gartenbau
- Italy
 - o C.R.A. Istituto Sperimentale per la Nutrizione delle Piante

1.3 Summary results and derived performance characteristics

The result of the various statistical evaluation including outlier tests, calculation of repeatability and reproducibility standard deviation for the congeners of interest can be found in Annex 3 of this report. In addition, all data submitted by the participants as well as those considered for the calculation of the performance characteristics are listed in Annex 3 to this report.

Based on these calculations the following results were obtained in the validation round upon statistical evaluation according to ISO 5725-2. The average values, the repeatability standard deviation (s_r) and the reproducibility standard deviation (s_R) were obtained (Table1).

The repeatability is determined as an interval around a measurement result (i.e. "repeatability limit"). This interval corresponds to the maximum difference that can be expected (with a 95% statistical confidence) between one test result and another, both test results being obtained under the following conditions: The tests are performed in accordance with all the requirements of the present standard by the same laboratory using its own facilities and testing laboratory samples obtained from the same primary field sample and prepared under identical procedures. The repeatability limit was calculated using the relationship: $r_{test} = f \cdot \sqrt{2} \cdot s_{r,test}$ with the critical range factor f = 2. The reproducibility, like repeatability is also determined as an interval around a measurement result (i.e. "reproducibility limit"). This interval corresponds to the maximum difference that can be expected (with a 95% statistical confidence) between one test result and another test result obtained by another laboratory, both test results being obtained under the following conditions : The tests are performed in accordance with all the requirements of the present standard by two different laboratories using their own facilities and testing laboratory samples obtained from the same primary field sample and prepared under identical procedures. The reproducibility limit was calculated using the relationship: $\mathbf{R} = \mathbf{f} \cdot \sqrt{2} \cdot \mathbf{s}_{\mathbf{R}}$ with the critical range factor $\mathbf{f} = 2$.

Matrix	Parameter	Mean	sr	sR	r	R	р	Outliers	Used number of data	Number of data reported below detection	Total no of data reported
Sludge 1	N tot	39.15	0.84%	1.80%	0.917	1.970	9	2	51	0	60
Sludge 2	N tot	35.88	1.54%	5.03%	1.547	5.054	11	1	57	0	63
Compost 1	N tot	18.07	2.02%	5.61%	1.024	2.840	11	1	57	0	61
Compost 2	N tot	13.79	3.86%	9.59%	1.489	3.701	12	2	64	0	64
Soil 4	N tot	1.79	5.89%	22.5%	0.295	1.127	11	1	58	0	61
Soil 5	N tot	1.92	6.52%	15.3%	0.350	0.821	9	2	52	0	58

 Table 1 - Results of the interlaboratory comparison studies of total nitrogen (TN) by dry combustion method in treated biowaste, sludge and soil. All concentrations are expressed in g/kg dm.

Abbreviations: sr Repeatability standard deviation; SR Reproducibility standard deviation; r Repeatability limit (comparing two measurements); R Reproducibility limit (comparing two measurements); p Number of labs.

1.4 Annexes

Annex 1: Model questionnaire to be filled by the participating laboratories

Annex 3: Report on the validation materials used

Annex 2: Statistical calculations

Annex 3: Data submitted

Annex 1:

Model questionnaire to be filled by the participating laboratories

Model questionnaire to be filled by the participating laboratories

Name of laboratory: Contact person: Contact details: email: Phone: Fax: Mail address of lab:

Dispatch address of lab for shipment of samples (no PO boxes!):

Title of measurement method (copy attached):

Our laboratory is willing to participate in the precision experiment for this draft standard method.

Yes 🗆 No 🗆

As participant we understand that:

- All essential apparatus, chemicals and other requirements specified in the method must be available in our laboratory when the programme begins
- Specified timing requirements such as starting and finishing date of the programme must be rigidly met
- The method must be strictly adhered to
- Samples must be handled in accordance with instructions
- A qualified operator must perform the measurements

Having studied the method and having made a fair appraisal of our capabilities and facilities, we feel that we will be adequately prepared for cooperative testing of this method.

Comments:

Signature

Date

Annex 2:

Report on the validation materials used

Abstract

This report gives an overview on the available analytical information on the following raw materials to be used for the production of validation materials of the so-called Project HORIZONTAL:

- Four sludge materials from Düsseldorf, Germany,
- An agricultural soil material from Reading, United Kingdom;
- A compost material from Vienna, Austria;
- A compost material from Korschenbroich, Germany;
- A sludge-amended, agricultural soil from Pavia Province, Italy;
- A sludge-amended soil from Barcelona, Spain
- A sludge-amended soil from Essen, Germany
- A long-term sludge exposed soil from Hohenheim, Germany

List of Abbreviations

Throughout this report the following abbreviations are used.

AOX	absorbable organic halogens	LoD	limit of detection
C_{org}	organic carbon content	LUA	Landesumweltamt
C _{total}	total carbon content	N _{total}	total nitrogen content
CAT	cation exchangeable	NH ₄ -N	Ammonium nitrogen
CDD	chlorinated dibenzodioxin	NO ₃ -N	Nitrate nitrogen
CDF	chlorinated dibenzofuran	NP	nonylphenol
DEHP	di(2-ethylhexyl)phthalate	NRW	North Rhine Westphalia
DM	dry matter	0	octa
EPA	Environment Protection Agency	Р	poly
EU	European Union	PAH	polycyclic aromatic hydrocarbon
FM	fresh matter	PCB	polychlorinated biphenyl
Нр	hepta	Pe	penta
Hx	hexa	Т	tetra
IES	Institute for Environment and Sustainability	TEQ	toxicity equivalent
IRMM	Institute for Reference Materials and	UBA	Umweltbundesamt
	Measurements	WHO	World Health Organization
JRC	Joint Research Centre	WWTP	waste water treatment plant
LAS	linear alkylsulfonates	,, ,, 11	
	l		

1 Introduction

This report gives an overview on the available analytical information on the following raw materials to be used for the production of validation materials of the so-called Project HORIZONTAL:

- Four sludge materials from Düsseldorf, Germany,
- An agricultural soil material from Reading, United Kingdom;
- A compost material from Vienna, Austria;
- A compost material from Korschenbroich, Germany;
- A sludge-amended, agricultural soil from Pavia Province, Italy;
- A sludge-amended soil from Barcelona, Spain
- A sludge-amended soil from Essen, Germany
- A long-term sludge exposed soil from Hohenheim, Germany

The following analytical information was gathered partly before and during the sampling of the raw materials, to be used for the production of the HORIZONTAL validation materials. The material were sampled by IES and shipped to IRMM in the course of the year 2005. The information gathered was then completed by various analytical screenings for PAHs and PCBs done by the Institute for Reference Materials and Measurements, Geel, Belgium, for phthalates done by UBA, Berlin, Germany, for PBDE done by IIQAB-CSIC, Barcelona, Spain, for trace elements and some selected major and minor elements by the Institute for Environment and Sustainability, Ispra, Italy.

The work compiled hereafter is based on the numerous additional efforts of the scientists working at various members of the consortium Project HORIZONTAL-Org and contributing organisations.

This work is gratefully acknowledged.

2 Overview on property values

2.1 Sludge materials from Düsseldorf, Germany

The various sewage sludge materials originate from various installations in the North Rhine Westphalia and were produced and sampled by staff from the Landesumweltamt (LUA) NRW under the responsibility from Dr. K. Furtmann.

In total, four sludge materials (Sludge A and D from a major municipal WWTP, Sludge B from a municipal WWTP with industrial input, and Sludge C from a municipal WWTP with high PCB-Content,) were obtained and will be blended to two final materials. Before sampling the following analytical data for a typical sample were received.

Parameter	Concentration
PCB	120 ug/kg
DEHP	110 mg/kg
PAH	5 mg/kg (EPA)
PCDD/F	15 ng TE/kg
PBDE	400 ug/kg
NP	40 mg/kg
LAS	3 g/kg
AOX	300 mg/kg

Table 1 – Analytical data obtained on an average sludge sample in LUA NRW (with courtesy of K. Furtmann, LUA, Düsseldorf)

Subsequent screening led to the information displayed hereafter. It should be stressed that the data were obtained as SCREENING information on the UNTREATED or partially treated raw materials. Therefore, the final target values, which are relevant for the validation intercomparison can be different.

	Sewage sludge A Dusseldorf	sewage sludge D Dusseldorf
PCB (ng/g)		
28	62	35
52	101	65
101	31	38
118	49	40
153	30	33
105	24	11
138	46	38
156	<1	<1
180	34	23
170	23	19
PAH (ng/g)		
Naphtalene	34	381
Acenaphtylene	15	43
Acenaphthene	81	108
Fluorene	94	1167
Phenantrene		3440
Anthracene	22	344
Flouranthene	316	4817
Pyrene	235	3011
Benz(a)anthracene	473	791
Chrysene	691	1078
Benz(b)fluoranthene	538	1688
Benz(k)fluoranthene	228	635
Benz(a)pyrene	383	1114
Indeno(1,2,3-c,d)pyrene	92	229
Dibenzo(a,h)anthracene	71	70
Benzo(g,h,i)perylene	80	185

Table 2 - Analytical data obtained on a first screening on the sludge samples from LUA NRW

	DiBP	DBP	DCHP	DEHP	Water
	µg∕g dm	µg∕g dm	µg∕g dm	µg∕g dm	Wgt. %
Sludge D (1)		0.135		41.474	3.85
Sludge B (2)	0.538	0.034		30.634	5.47
Sludge A (3)	0.184	0.037		31.399	1.46
Sludge C (4)		0.354	1.528	6.678	2.29

Table 3 – Data on phthalate contents (with courtesy of S. Heise, UBA, Germany)

Table 4 – Data on PDBE contents (with courtesy of D. Barceló and co-workers, IIQAB-CSIC, Barcelona, Spain)

	Sludge 2
	<i>(B)</i>
Tetra-BDE-47	55.4
Penta-BDE-100	9.59
Penta-BDE-99	69.4
Hexa-BDE-154	5.91
Hexa-BDE-153	7.72
Hepta-BDE-183	5.09
Octa-BDE-196	nq
Octa-BDE-197	nq
Octa-BDE-203	9.70
Deca-BDE-209	2216
TOTAL	2379

Table 5 – Screening data on some selected trace elements by ICP-AES after micro-wave assisted digestion using aqua regia (with courtesy of F. Sena, IES, Ispra, Spain). Note that these data are based on single measurements!

	Cd								Tl		
Sludge 1 (D)	µg∕g	µg∕g	μg/g	µg/g	µg/g	µg/g	μg/g	µg/g	µg/g	µg/g	µg/g
Sludge 1 (D)	2.65	29.0	53.3	359	1231	33.8	78.4	4.38	< 0.05	23.2	786
Sludge 2 (B)	1.19	31.1	62.6	202	278	29.9	72.2	2.51	< 0.05	11.8	625
Sludge 2 (B) Sludge 3 (A)	1.68	36.0	62.1	332	847	41.6	119	4.51	< 0.05	11.6	1237
Sludge 4 (C)	5.63	19.8	116	273	726	51.1	473	6.18	< 0.05	44.4	2015

Table 6 - Screening data on some selected matrix constituents and elements by WDXRF (with courtesy of S. Vaccaro).

									-
Sample	SiO2 (%)	Al2O3 (%)	CaO (%)	K2O (%)	Fe2O3 (%)	MgO (%)	TiO2 (PPM)	S (PPM)	P2O5 (PPM)
Sludge 1 (D)	21.54	5.8	8.44	0.99	10.3	1.01	4367	<15	50448
Sludge 2 (B)	10.67	3.66	6.92	0.46	14.91	0.77	5217	<15	57633
Sludge 3 (A)		6.63	6.84	0.35	12.87	0.68	3733	<15	60369
Sludge 4 (C)		9.65	5.27	1.63	5.22	1.07	5628	<15	23945
Sample	Na2O (%)	Cl (PPM)	Pb (PPM)	Zn (PPM)	Cu (PPM)	Ni (PPM)) Mn (PPM)	Cr (PPM))
	Na2O (%)		Pb (PPM) 101	Zn (PPM) 1002	<i>Cu (PPM)</i> 350			Cr (PPM) 132	-
Sample	Na2O (%) 0.3			· · ·	350		5 1944	- (- /	2
Sample Sludge 1 (D)	Na2O (%) 0.3 0.31	2403 315	101	1002	350	15	5 1944 2 514	132	2)

2.2 Agricultural soil material from Reading, United Kingdom

The material was proposed by the University of Reading (S. Nortcliff) and was sampled from a site called "*Frogmore Farm*" which was featured in the "*Metals*" Report for HORIZONTAL. This site is close to Reading with soils developed on flintyloamy periglacial materials over Chalk, has a long and well documented history of sludge application. The focus of the work of Nortcliff *et al.* undertook at this site and the monitoring and control at the site (by Thames Water and the subsequent subsidiary bodies dealing with sludge application to soil) was on metals (and metal loads), with no analysis or indeed any form of investigation in to organics in the broadest sense.

The analytical information produced in the context of the screening of the raw material is displayed below.

DibleDibleDBPDCHPDEHPWater $\mu g/g dm$ $\Psi g/g dm$ $\Psi g/g dm$ Soil 3
(Reading)0.0320.1196.69

Table 7 – Data on phthalate contents (with courtesy of S. Heise, UBA, Germany)

Table 8 – Screening data on some selected trace elements by ICP-AES after micro-wave assisted digestion using aqua regia (with courtesy of F. Sena). Note that these data are based on single measurements!

	Cd	Со	Cr	Cu	Mn	Ni	Pb	Sb	Τl	V	Zn
Soil 3 (Reading)	μg/g 0.15	μg/g 7.06	μg/g 27.9	μg/g 13.8	μg/g 152	μg/g 9.01	μg/g 26.7	μg/g 3.00	$\begin{array}{c} \mu g/g \\ < 0.05 \end{array}$	μg/g 25.8	μg/g 93.1

Table 9 – Analytical data obtained on a first screening
on the sludge-amended soil from Reading (courtesy of IRMM)

Parameter	Concentration
РСВ	ng/g
28	<1
52	<1
101	<1
118	<1
153	<1
105	<1
138	<1
156	<1
180	<1
170	<1
РАН	ng/g
Naphtalene	<10
Acenaphtylene	21
Acenaphthene	<10
Fluorene	<10
Phenantrene	<10
Anthracene	<10
Flouranthene	818
Pyrene	776
Benz(a)anthracene	565

Parameter	Concentration
Chrysene	608
Benz(b)fluoranthene	824
Benz(k)fluoranthene	329
Benz(a)pyrene	799
Indeno(1,2,3-	779
c,d)pyrene	
Dibenzo(a,h)anthracene	118
Benzo(g,h,i)perylene	394

.

Table 10 – Data on PDBE contents (with courtesy of D. Barceló and co-workers, IIQAB-CSIC, Barcelona, Spain)

	Soil 3
	(Reading)
Tetra-BDE-47	nq
Penta-BDE-100	nq
Penta-BDE-99	1.03
Hexa-BDE-154	0.03
Hexa-BDE-153	nq
Hepta-BDE-183	nq
Octa-BDE-196	nq
Octa-BDE-197	nd
Octa-BDE-203	nd
Deca-BDE-209	272
TOTAL	273

Table 11 – Screening data on some selected trace elements by ICP-AES after micro-wave assisted digestion using aqua regia (with courtesy of F. Sena). Note that these data are based on single measurements!

	Cd	Со	Cr	Cu	Mn	Ni	Pb	Sb	Tl	V	Zn
Soil 3 (Reading)	μg/g	μg/g	μg/g	µg/g	μg/g	µg/g	µg/g	µg/g	µg∕g	μg/g	µg/g
Soil 3 (Reading)	0.15	7.06	27.9	13.8	152	9.01	26.7	3.00	< 0.05	25.8	93.1

Table 12 – Screening data on some selected matrix constituents and elements by WDXRF (with courtesy of S. Vaccaro).

Sample	SiO2 (%)	Al2O3 (%)	CaO (%)	K2O (%)	Fe2O3 (%)	MgO (%)	TiO2 (PPM)	S (PPM)	P2O5 (PPM)
Soil 3 (Reading)	79.36	4.77	1.12	0.96	1.94	0.17	4107	443	2102
									_
Sample	Na2O (%)	Cl (PPM)	Pb (PPM)	Zn (PPM)) Cu (PPM)) Ni (PPM)	Mn (PPM)	Cr (PPM))

Table 13 – Screening data on mercury by solid-sampling cold-vapour AAS using amalgamation enrichment (with courtesy of G. Locoro).

Sample	Hg μg/g
Soil 3 (Reading)	0.12

2.3 Compost from Vienna, Austria

The fresh compost material was obtained from the Austrian Federal Environment Agency (UBA, Vienna), which had used a sub-batch of the raw material for national intercomparson. The remainder of the material was stored at 4°C until shipment to IRMM for further processing. The following analytical information was provided by UBA Austria and completed with various screenings.

Parameter	Unit	Sample fraction used	Observed mean
B CAT	mg/l F.M.	Fresh sample, <10mm	6.1
K CAT	mg/l F.M.	Fresh sample, <10mm	2624
Mg CAT	mg/l F.M.	Fresh sample, <10mm	242
P CAT	mg/l F.M.	Fresh sample, <10mm	49
B CAT	% D.M.	Fresh sample, <10mm	0.0017
K CAT	% D.M.	Fresh sample, <10mm	0.72
Mg CAT	% D.M.	Fresh sample, <10mm	0.07
P CAT	% D.M.	Fresh sample, <10mm	0.01
NO3-N	mg/kg F.M.	Fresh sample, <10mm	3.5
NH4-N	mg/kg F.M.	Fresh sample, <10mm	230
Ctotal	% D.M.	<45° dry, milled	29
Corg	% D.M.	<45° dry, milled	27
Ntotal	% D.M.	<45°dry, milled	1.7
Р	mg/kg D.M.	<45°dry, milled	2596
Κ	mg/kg D.M.	<45°dry, milled	11019
Κ	% D.M.	<45° dry, milled	1.10
В	mg/kg D.M.	<45° dry, milled	60
Cd	mg/kg D.M.	<45° dry, milled	0.46
Cr	mg/kg D.M.	<45° dry, milled	25
Cu	mg/kg D.M.	<45° dry, milled	46
Hg	mg/kg D.M.	<45° dry, milled	0.20
Ni	mg/kg D.M.	<45° dry, milled	18
Pb	mg/kg D.M.	<45° dry, milled	45
Zn	mg/kg D.M.	<45°dry, milled	198
Ca	mg/kg D.M.	<45° dry, milled	68776
Ca	% D.M.	<45° dry, milled	6.9
Мо	mg/kg D.M.	<45° dry, milled	0.8
S	mg/kg D.M.	<45° dry, milled	2137
Fe	mg/kg D.M.	<45° dry, milled	9959
Mn	mg/kg D.M.	<45°dry, milled	418
Na	mg/kg D.M.	<45° dry, milled	742
Со	mg/kg D.M.	<45°dry, milled	4.1
AOX	mg/kg D.M.	<30° dry, milled	62

Table 14 – Analytical data on compost material received from UBA Austria Inorganic and sum parameters

Table 15 – Analytical data on compost material received from UBA Austria
Polycyclic aromatic hydrocarbons

PAH	Unit	Result
Naphthaline	μg/kg DM	9.3
Acenaphthylene	μg/kg DM	8.6
Acenaphthene	μg/kg DM	5
Fluorene	μg/kg DM	8.0
Phenanthrene	μg/kg DM	89
Anthracene	μg/kg DM	27
Fluoranthene	μg/kg DM	487
Pyrene	μg/kg DM	380

PAH	Unit	Result
Benzo(a)anthracene	µg/kg DM	278
Chrysene	µg/kg DM	317
Benzo(b)fluoranthene	μg/kg DM	365
Benzo(k)fluoranthene	µg/kg DM	193
Benz(a)pyrene	µg/kg DM	320
Indeno(1,2,3-c,d)pyrene	µg/kg DM	233
Dibenz(a,h)anthracene	µg/kg DM	67
Benzo(g,h,i)perylene	µg/kg DM	225
Sum EPA	µg/kg DM	3013
Sum EPA	mg/kg DM	3.0

Table 16 – Analytical data on compost material received from UBA Austria Sum PCDDs and PCBs

Parameter			
Dioxine	TEQ (ITEF)	ng/kg DM	7.3
PCB	TEQ (WHO)	ng/kg DM	3.5
	Σ Ballschmiter	mg/kg DM	0.05

Table 17 – Analytical data on compost material obtained by screening in IRMM

Parameter	Result in ng/g
РСВ	
28	2
52	2
101	4
118	3
153	10
105	1
138	8
156	1
180	5
170	<1
DAT	
PAH Nonhtalana	<10
Naphtalene A conceptulone	<10
Acenaphtylene Acenaphthene	<10
Fluorene	<10
Phenantrene	<10
Anthracene	26
Fluoranthene	611
Pyrene	510
Benz(a)anthracene	888
Chrysene	957
Benz(b)fluoranthene	1531
Benz(k)fluoranthene	547
Benz(a)pyrene	1101
Indeno(1,2,3-c,d)pyrene	416
Dibenzo(a,h)anthracene	81
Benzo(g,h,i)perylene	295

Table 18 – Data on PDBE contents (with courtesy of D. Barceló and coworkers, IIQAB-CSIC, Barcelona, Spain)

	Compost 1
	(Vienna)
Tetra-BDE-47	4.02
Penta-BDE-100	0.19
Penta-BDE-99	2.59
Hexa-BDE-154	nq
Hexa-BDE-153	0.23
Hepta-BDE-183	0.04
Octa-BDE-196	nq
Octa-BDE-197	nq
Octa-BDE-203	1.44
Deca-BDE-209	17.4
TOTAL	25.9

Table 19 - Data on phthalate contents (with courtesy of S. Heise, UBA, Germany)

	DiBP	DBP	DCHP	DEHP	Water
Compost 1 (Vienna)	µg/g dm	μg/g dm 0.058	µg/g dm	μg/g dm 1.426	Wgt. % 5.57

Table 20 – Screening data on some selected trace elements by ICP-AES after micro-wave assisted digestion using aqua regia (with courtesy of F. Sena). Note that these data are based on single measurements!

	Cd	Со	Cr	Cu	Mn	Ni	Pb	Sb	Tl	V	Zn
	µg∕g	µg/g	µg/g	µg/g	µg/g	µg/g	μg/g	µg/g	μg/g	µg/g	µg/g
Compost 1 (Vienna)	0.39	7.36	31.9	41.0	365	12.7	49.5	0.04	0.79	0.13	208

Table 21 - Screening data on some selected matrix constituents and elements by WDXRF (with courtesy of S. Vaccaro).

Sample	SiO2 (%)	Al2O3 (%)	CaO (%)	K2O (%)	Fe2O3 (%)	MgO (%)	TiO2 (PPM)	S (PPM)	P2O5 (PPM)
Compost 1 (Vienna)	20.63	4.31	6.17	4.26	1.99	2.49	1602	<15	10521

Sample	Na2O (%)	Cl (PPM)	Pb (PPM)	Zn (PPM)	Cu (PPM)	Ni (PPM)	Mn (PPM)	Cr (PPM)
Compost 1 (Vienna)	0.35	3496	81	375	79	55	653	60

-

Table 22 – Screening data on mercury by solidsampling cold-vapour AAS using amalgamation enrichment (with courtesy of G. Locoro).

,	,
Sample	Hg μg/g
Compost 1 (Vienna)	0.17

2.4 Agricultural soil, sludge amended soil from Pavia, Italy

This sludge-amended soil material was obtained during a monitoring campaign, which aimed at a generic description of the over-all soil quality in Pavia Province, Italy. The material, which was collected from the upper horizon, originates from a small farm called "*Cascina Novello*". During the characterisation of the site, the following analytical information was obtained on a pooled sample of a sub-area of the farm of 20 X 20 m².

Parameter	Result
Al	7.13 Wgt%
As	22.4 mg/kg
Cd	0.79 mg/kg
Cr	59 mg/kg
Cu	30.8 mg/kg
Hg	0.08 mg/kg
Ni	34.4 mg/kg
Pb	24.6 mg/kg
Zn	95 mg/kg
С	0.91 Wgt %
2,3,7,8-TCDD	0.047 pg/g
1,2,3,7,8-PeCDD	0.15 pg/g
1,2,3,4,7,8-HxCDD	0.19 pg/g
1,2,3,6,7,8-HxCDD	1.5 pg/g
1,2,3,7,8,9-HxCDD	0.74 pg/g
1,2,3,4,6,7,8-HpCDD	26 pg/g
OCDD	382 pg/g
2,3,7,8-TCDF	0.68 pg/g
1,2,3,7,8-PeCDF	0.53 pg/g
2,3,4,7,8-PeCDF	0.71 pg/g
1,2,3,4,7,8-HxDF	1.00 pg/g
1,2,3,6,7,8-HxDF	0.66 pg/g
2,3,4,6,7,8-HxDF	1.6 pg/g
1,2,3,7,8,9-HxDF	0.27 pg/g
1,2,3,4,6,7,8-HpDF	12 pg/g
1,2,3,4,7,8,9-HpDF	0.68 pg/g
OCDF	33 pg/g
I-TEQ	2.0 pg/g
WHO-TEQ	1.7 pg/g

Table 23 – Analytical data on Pavia soil

In addition, the screening performed at IRMM did not reveal significant quantities of PCBs and PAHs, which were all below the LoDs (1 ng/g for PCBs and 10 ng/g for PAHs, respectively).

Table 24 – Data on phthalate contents (with courtesy of S. Heise, UBA, Germany)

	•	•			
	DiBP	DBP	DCHP	DEHP	Water
	µg∕g TM	µg∕g TM	µg∕g TM	µg∕g TM	Wgt. %
Soil 5 (Pavia)		0.005		0.011	1.54

Table 25 – Data on PDBE contents (with courtesy of D. Barceló and co-workers, IIQAB-CSIC, Barcelona, Spain)

	Soil 5
	(Pavia)
Tetra-BDE-47	nq
Penta-BDE-100	nq
Penta-BDE-99	0.39
Hexa-BDE-154	nq
Hexa-BDE-153	nq
Hepta-BDE-183	0.08
Octa-BDE-196	nq
Octa-BDE-197	nd
Octa-BDE-203	nd
Deca-BDE-209	670
TOTAL	671

Table 26 – Screening data on some selected trace elements by ICP-AES after microwave assisted digestion using aqua regia (with courtesy of F. Sena). Note that these data are based on single measurements!

	Cd	Со	Cr	Cu	Mn	Ni	Pb	Sb	Tl	V	Zn
Soil 5 (Pavia)	µg∕g	µg/g	μg/g	μg/g	μg/g	µg/g	µg/g	μg/g	µg∕g	μg/g	µg/g
Soil 5 (Pavia)	0.33	18.4	57.3	22.5	426	30.5	20.6	2.00	< 0.05	38.1	87.8

Table 27 – Screening data on some selected matrix constituents and elements by WDXRF (with courtesy of S. Vaccaro).

Sample	SiO2 (%)	Al2O3 (%)	CaO (%)	K2O (%) I	Fe2O3 (%)	MgO (%)	TiO2 (PPM)	S (PPM)	P2O5 (PPM)
Soil 5 (Pavia)	69.39	12.9	1.45	2.24	4.25	1.16	6118	255	1789
Sample	Na2O (%)	Cl (PPM)	Pb (PPM)	Zn (PPM)	Cu (PPM)) Ni (PPM)) Mn (PPM)	Cr (PPM))

Table 28 – Screening data on mercury by solidsampling cold-vapour AAS using amalgamation enrichment (with courtesy of G. Locoro).

Sample	Hg μg/g
Soil 5 (Pavia)	0.06

2.5 Sludge-amended-soil from Barcelona, Spain

The sludge-amended soil material from Barcelona sampled upon indication from the Barcelo'- Group in Barcelona.

Table 29 - Data on phthalate contents (with courtesy of S. Heise, UBA, Germany)

	DiBP	DBP	DCHP	DEHP	Water
	µg/g dm	µg∕g dm	µg∕g dm	µg/g dm	Wgt. %
Soil 2 (Lleida T.)		0.015		0.183	11.38

Table 30 – Data on PDBE contents (with courtesy of D. Barceló and co-workers, IIQAB-CSIC, Barcelona, Spain)

COIC, Darcelona, C	pulli)
	Soil 2
	(Lleida T.)
Tetra-BDE-47	nq
Penta-BDE-100	nq
Penta-BDE-99	1.59
Hexa-BDE-154	0.45
Hexa-BDE-153	nq
Hepta-BDE-183	0.48
Octa-BDE-196	1.60
Octa-BDE-197	nq
Octa-BDE-203	nq
Deca-BDE-209	1000
TOTAL	1004

Table 31 – Screening data on some selected trace elements by ICP-AES after micro-wave assisted digestion using aqua regia (with courtesy of F. Sena). Note that these data are based on single measurements!

	Cd	Со	Cr	Cu	Mn	Ni	Pb	Sb	Tl	V	Zn
Soil 2 (Lleida T.)	µg∕g	μg/g	μg/g	µg/g	µg/g	µg/g	µg/g	µg/g	μg/g	μg/g	µg/g
Soil 2 (Lleida T.)	0.59	14.1	32.7	53.6	405	18.6	18.4	2.24	< 0.05	31.8	111

Table 32 - Screening data on some selected matrix constituents and elements by WDXRF (with courtesy of S. Vaccaro).

Sample	SiO2 (%)	Al2O3 (%)	CaO (%)	K2O (%)	Fe2O3 (%)	MgO (%)	TiO2 (PPM)	S (PPM)	P2O5 (PPM)
Soil 2 (Lleida T.)	44.43	10.67	14.29	2.53	3.44	2.04	4116	780	3396
Sample	Na2O (%)	Cl (PPM)	Pb (PPM)	Zn (PPM) Cu (PPM)) Ni (PPM) Mn (PPM)	Cr (PPM)

Sample	Na20 (%)	Ci(PPM)	PD (PPM)	Ln (PPM)	Cu (PPM)	NI (PPM)	MN (PPM)	Cr(PPM)
Soil 2 (Lleida T.)	0.64	65	26	125	59	17	547	65

Table 33 – Screening data on mercury by solidsampling cold-vapour AAS using amalgamation enrichment (with courtesy of G. Locoro).

Sample	Hg μg/g
Soil 2 (Lleida T.)	0.10

2.6 Sludge amended soil from Essen, Germany

The German sludge-amended soil from Essen, which was provided as the three sludge materials by LUA NRW, did not feature significant concentrations of the PCB congeners 28, 52, 101, 118, 153, 105, 138, 156, 180, 170, but had detectable amounts of some PAHs.

Parameter	Concentration
	(ng/g)
Naphtalene	<10
Acenaphtylene	<10
Acenaphthene	<10
Fluorene	<10
Phenantrene	<10
Anthracene	<10
Fluoranthene	28
Pyrene	20
Benz(a)anthracene	24
Chrysene	47
Benz(b)fluoranthene	76
Benz(k)fluoranthene	20
Benz(a)pyrene	35
Indeno(1,2,3-c,d)pyrene	35
Dibenzo(a,h)anthracene	10
Benzo(g,h,i)perylene	26

Table 34 – Analytical screening data on the German sludge-amended soil.

Table 35 – Data on phthalate contents	(with courtesy of S. Heise, UBA, Germany)
---------------------------------------	---

	DiBP	DBP	DCHP	DEHP	Water
	µg/g dm	µg∕g dm	µg∕g dm	µg/g dm	Wgt. %
Soil 4 (Essen)		0.011		0.302	0.55

Table 36 – Data on PDBE contents (with courtesy of D. Barceló and co-workers, IIQAB-CSIC, Barcelona, Spain)

	. ,
	Soil 4
	(Essen)
Tetra-BDE-47	nq
Penta-BDE-100	nq
Penta-BDE-99	nq
Hexa-BDE-154	nq
Hexa-BDE-153	nq
Hepta-BDE-183	nq
Octa-BDE-196	nq
Octa-BDE-197	nq
Octa-BDE-203	1.28
Deca-BDE-209	19.1
TOTAL	20.3

Table 37 – Screening data on some selected trace elements by ICP-AES after microwave assisted digestion using aqua regia (with courtesy of F. Sena). Note that these data are based on single measurements!

	Cd	Со	Cr	Cu	Mn	Ni	Pb	Sb	Tl	V	Zn
	µg/g	μg/g	µg/g	μg/g	µg/g	μg/g	μg/g	μg/g	µg∕g	μg/g	μg/g
Soil 4 (Essen)	0.52	5.45	26.1	8.05	320	4.03	27.3	2.73	< 0.05	29.5	78.1

Table 38 – Screening data on some selected matrix constituents and elements by WDXRF (with courtesy of S. Vaccaro).

Sample	SiO2 (%)	Al2O3 (%)	CaO (%)	K2O (%) I	Fe2O3 (%)	MgO (%)	TiO2 (PPM)	S (PPM)	P2O5 (PPM)
Soil 4 (Essen)	79.47	4.42	0.85	0.6	0.86	0.07	2163	189	2019
									_
Sample	Na2O (%)	Cl (PPM)	Pb (PPM)	Zn (PPM)	Cu (PPM)	Ni (PPM)) Mn (PPM)	Cr (PPM))

Table 39 – Screening data on mercury by solidsampling cold-vapour AAS using amalgamation enrichment (with courtesy of G. Locoro).

Sample	Hg μg/g
Soil 4 (Essen)	0.04

2.7 Long-term sludge exposed soil from Hohenheim-Stuttgart, Germany

Similarly, an additional sludge exposed soil was sampled at the University of Hohenheim, Stuttgart, were a test soil was long-term exposed to elevated concentrations of sewage sludge.

Table 40 - Data on phthalate contents (with courtesy of S. Heise, UBA, Germany)

	DiBP	DBP	DCHP	DEHP	Water
	µg∕g TM	µg∕g TM	µg∕g TM	µg∕g TM	Wgt. %
Soil 1 (Stuttgart)		0.045		0.263	17.65

Table 41 – Data on PDBE contents
(with courtesy of D. Barceló and
co-workers, IIQAB-CSIC,
Barcelona, Spain)

	Soil 1
	(Stuttgart)
Tetra-BDE-47	nq
Penta-BDE-100	nq
Penta-BDE-99	2.30
Hexa-BDE-154	0.06
Hexa-BDE-153	0.04
Hepta-BDE-183	0.04
Octa-BDE-196	nq
Octa-BDE-197	nd
Octa-BDE-203	nd
Deca-BDE-209	498
TOTAL	500

Table 42 – Screening data on some selected trace elements by ICP-AES after micro-wave assisted digestion using aqua regia (with courtesy of F. Sena). Note that these data are based on single measurements!

	Cd	Со	Cr	Cu	Mn	Ni	Pb	Sb	Tl	V	Zn
	µg/g	μg/g									
Soil 1 (Stuttgart)											

Table 43 – Screening data on some selected matrix constituents and elements by WDXRF (with courtesy of S. Vaccaro).

Sample	SiO2 (%)	Al2O3 (%)	CaO (%)	K2O (%)	Fe2O3 (%)	MgO (%)	TiO2 (PPM)	S (PPM)	P2O5 (PPM)
Soil 1 (Stuttgart)	71.94	10.06	1.33	1.86	3.66	0.88	7874	275	3571

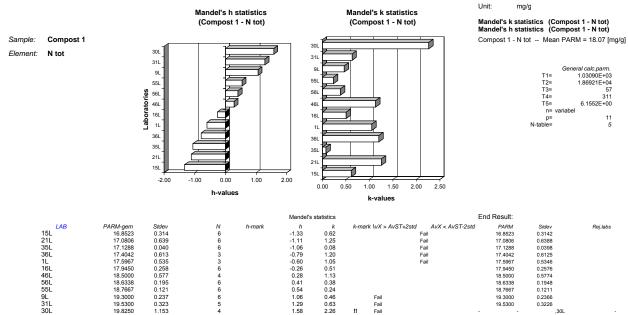
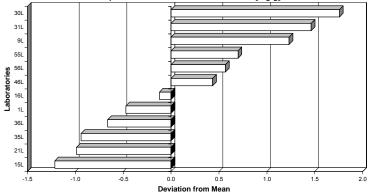

Sample	Na2O (%)	Cl (PPM)	Pb (PPM)	Zn (PPM)	Cu (PPM)	Ni (PPM)	Mn (PPM)	Cr (PPM)
Soil 1 (Stuttgart)	1.23	50	47	212	85	69	991	129

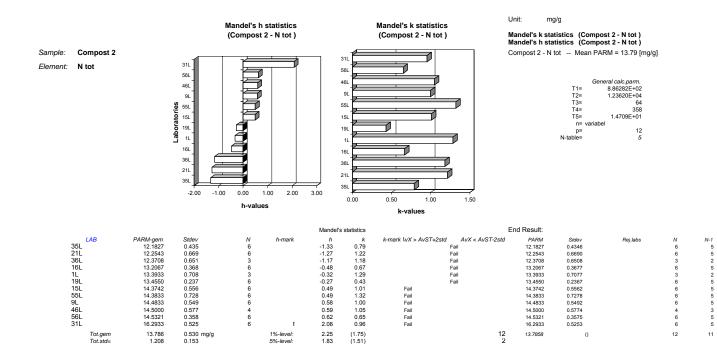
Table 44 – Screening data on mercury by solidsampling cold-vapour AAS using amalgamation enrichment (with courtesy of G. Locoro).

Sample	Hg μg/g
Soil 1 (Stuttgart)	1.77

Annex 3:

Statistical calculations


			Mandel's	statistics				End Result:					
Stdev	N	h-mark	h	k	k-ma	ark \vX > AvST+2std	AvX < AvST-2std	PARM	Stdev	Rej.labs	N	N-1	dev_mean
0.314	6		-1.33	0.62			Fail	16.8523	0.3142		6	5	-1.21
0.639	6		-1.11	1.25			Fail	17.0806	0.6388		6	5	-0.99
0.040	6		-1.06	0.08			Fail	17.1288	0.0398		6	5	-0.94
0.613	3		-0.79	1.20			Fail	17.4042	0.6125		3	2	-0.66
0.535	3		-0.60	1.05			Fail	17.5967	0.5346		3	2	-0.47
0.258	6		-0.26	0.51				17.9450	0.2576		6	5	-0.12
0.577	4		0.28	1.13				18.5000	0.5774		4	3	0.43
0.195	6		0.41	0.38				18.6338	0.1948		6	5	0.57
0.121	6		0.54	0.24				18.7667	0.1211		6	5	0.70
0.237	6		1.06	0.46		Fail		19.3000	0.2366		6	5	1.23
0.323	5		1.29	0.63		Fail		19.5300	0.3226		5	4	1.46
1.153	4		1.58	2.26	!!	Fail			,30L	-			1.76
0.417 mg/g		1%-level:	2.25	(1.75)			11	18.0671	(30L)		11	10	
0.305		5%-level:	1.83	(1.51)			1						
							61						


RESULTS:	Mean =	18.06709	mg/g			
Repeatability variance	S2r =	0.13381				
Repeatability std.	Sr =	0.36580	>	2.02%	r =	1.0242
Between lab variance	S2L =	0.89482				
Reproducibility var.	S2R =	1.02863				
Reproducibility std.	SR =	1.01421	>	5.61%	R =	2.8398
Remarks:	1 Lab rejecte	d! (30L)				

18.214 1.022

Tot.gem Tot.std⊨

Compost 1 - N tot -- Mean PARM = 18.07 [mg/g]

1.4892

R = 3.7009

r =

RESULTS:

Remarks:

Repeatability variance

Between lab variance

Reproducibility var.

Reproducibility std.

Repeatability std.

Mean =

S2r =

Sr =

S2L =

S2R =

SR =

none

13.78576

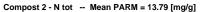
0.28286

0.53185

1.46417

1.74704

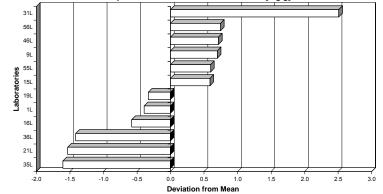
1.32175

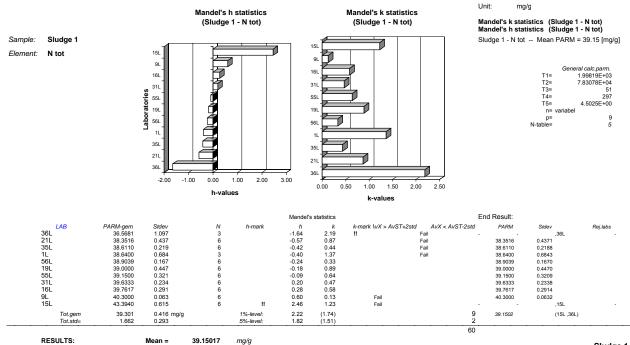

mg/g

-->

-->

3.86%


9.59%



5

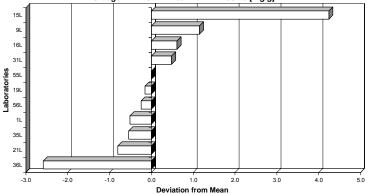
dev_mean -1.60 -1.53 -1.41 -0.58 -0.39 -0.33 0.59 0.60 0.70

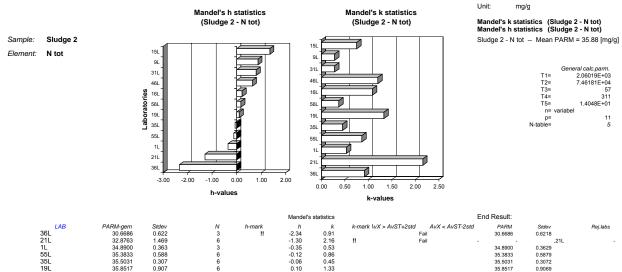
0.71 0.75 2.51

RESULTS:	mean =	39.15017	ng/g				
Repeatability variance	S2r =	0.10720					
Repeatability std.	Sr =	0.32742	>	0.84%	r =	0.9168	
Between lab variance	S2L =	0.38790					
Reproducibility var.	S2R =	0.49510					
Reproducibility std.	SR =	0.70363	>	1.80%	R =	1.9702	
Remarks:	2 Labs rejected	ed! (15L ,36L)					

Sludge 1 - N tot -- Mean PARM = 39.15 [mg/g]

N-1

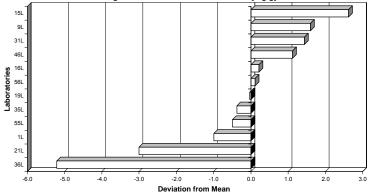

2

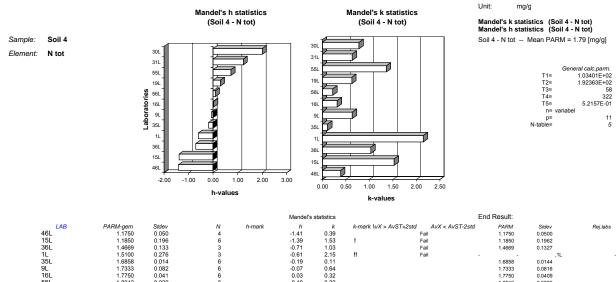

8

Ν

9

dev_mean -2.58 -0.80 -0.54 -0.51 -0.25 -0.15 0.00 0.48 0.61 1.15 4.24

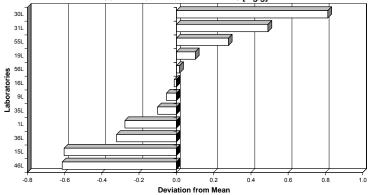


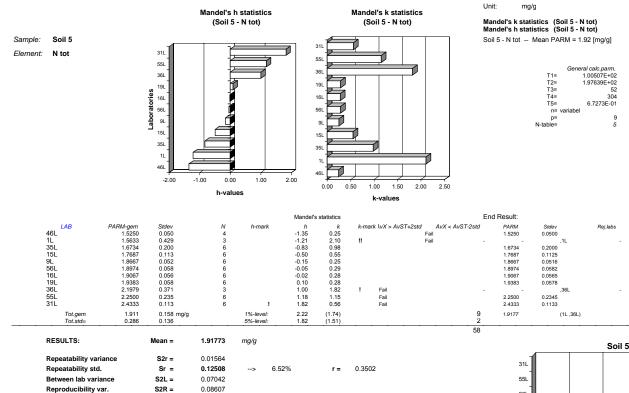


					Mandel's	statistics		Er	nd Result:					
LAB	PARM-gem	Stdev	N	h-mark	h	k	k-mark \vX > AvST+2std	AvX < AvST-2std	PARM	Stdev	Rej.labs	N	N-1	dev_mean
36L	30.6686	0.622	3	!!	-2.34	0.91	F	ail	30.6686	0.6218		3	2	-5.21
21L	32.8763	1.469	6		-1.30	2.16	11 F	ail -	-	,21L	-	-		-3.01
1L	34.8900	0.363	3		-0.35	0.53			34.8900	0.3629		3	2	-0.99
55L	35.3833	0.588	6		-0.12	0.86			35.3833	0.5879		6	5	-0.50
35L	35.5031	0.307	6		-0.06	0.45			35.5031	0.3072		6	5	-0.38
19L	35.8517	0.907	6		0.10	1.33			35.8517	0.9069		6	5	-0.03
56L	35.9937	0.251	6		0.17	0.37			35.9937	0.2515		6	5	0.11
16L	36.1000	0.739	6		0.22	1.09			36.1000	0.7394		6	5	0.22
46L	37.0000	0.816	4		0.64	1.20	Fail		37.0000	0.8165		4	3	1.12
31L	37.3200	0.192	5		0.79	0.28	Fail		37.3200	0.1924		5	4	1.44
9L	37.4833	0.194	6		0.87	0.29	Fail		37.4833	0.1941		6	5	1.60
15L	38.5038	0.512	6		1.35	0.75	Fail		38.5038	0.5124		6	5	2.62
Tot.gem	35.631	0.580 mg/g		1%-level:	2.25	(1.75)		11	35.8816	(21L)		11	10	
Tot.std=	2.125	0.371		5%-level:	1.83	(1.51)		1						
								63						

RESULTS:	Mean =	35.88160	mg/g			
Repeatability variance	S2r =	0.30540				
Repeatability std.	Sr =	0.55263	>	1.54%	r =	1.5474
Between lab variance	S2L =	2.95321				
Reproducibility var.	S2R =	3.25861				
Reproducibility std.	SR =	1.80516	>	5.03%	R =	5.0545
Remarks:	1 Lab rejecte	d! (21L)				

Sludge 2 - N tot -- Mean PARM = 35.88 [mg/g]





					Mandel's	s statistics		E	nd Result:						
LAB	PARM-gem	Stdev	N	h-mark	h	k	k-mark \vX > AvST+2sto	AvX < AvST-2std	PARM	Stdev	Rej.labs	N	N-1	dev_mean	
46L	1.1750	0.050	4		-1.41	0.39		Fail	1.1750	0.0500		4	3	-0.61	
15L	1.1850	0.196	6		-1.39	1.53	!	Fail	1.1850	0.1962		6	5	-0.60	
36L	1.4669	0.133	3		-0.71	1.03		Fail	1.4669	0.1327		3	2	-0.32	
1L	1.5100	0.276	3		-0.61	2.15	11	Fail -	-	,1L	-	-		-0.28	
35L	1.6858	0.014	6		-0.19	0.11			1.6858	0.0144		6	5	-0.10	
9L	1.7333	0.082	6		-0.07	0.64			1.7333	0.0816		6	5	-0.05	
16L	1.7750	0.041	6		0.03	0.32			1.7750	0.0409		6	5	-0.01	
56L	1.8042	0.029	6		0.10	0.22			1.8042	0.0286		6	5	0.02	
19L	1.8883	0.081	6		0.30	0.63			1.8883	0.0806		6	5	0.10	
55L	2.0667	0.175	6		0.73	1.36	Fail		2.0667	0.1751		6	5	0.28	
31L	2.2783	0.082	6		1.23	0.64	Fail		2.2783	0.0821		6	5	0.49	
30L	2.6000	0.100	3	!	2.00	0.78	Fail		2.6000	0.1000		3	2	0.81	
Tot.gem	1.764	0.105 mg/g		1%-level:	2.25	(1.75)		11	1.7871	(1L)		11	10		
Tot.std=	0.417	0.078		5%-level:	1.83	(1.51)		1							
								61							
DECIN TO.		Moon -	1 70714	ma/a											

r =	0.2950
R =	1.1268

Soil 4 - N tot -- Mean PARM = 1.79 [mg/g]

0.8214

R =

Reproducibility std.

Remarks:

SR =

2 Labs rejected! (1L ,36L)

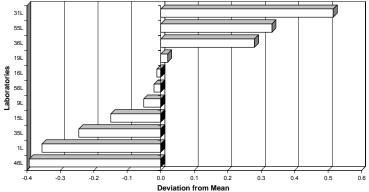
0.29337

-->

15.30%

dev_mean -0.39 -0.35

-0.35 -0.24 -0.15 -0.05 -0.02 -0.01 0.02 0.28


0.33 0.52

N-1

3

5

8

Annex 4:

Raw data submitted

	mple: ment:	Compost 1 TN		Sample: Element:	Compost 2 TN		Sample: Element:	Sewage Sludge1 TN
L	AB	PARM	[mg/g]	LAB	PARM	[mg/g]	LAB	PARM
	15L	17.32		15L	15.38		15L	44.14
	15L	17.05		15L	14.57		15L	43.86
	15L	16.92		15L	14.23		15L	43.71
	15L	16.80		15L	14.20		15L	43.29
	15L	16.53		15L	14.11		15L	42.72
	15L	16.49		15L	13.76		15L	42.65
	1L	18.18		19L	13.83		19L	39.52
	1L	17.48		19L	13.52		19L	39.37
	1L	17.13		19L	13.48		19L	39.26
	21L	17.80		19L	13.46		19L	38.84
	21L	17.47		19L	13.33		19L	38.57
	21L	17.38		19L	13.11		19L	38.44
	21L	17.00		1L	14.21		1L	39.43
	21L	16.86		1L	13.01		1L	38.26
	21L	15.97		1L	12.96		1L	38.23
	30L	21.10		21L	12.97		21L	39.07
	30L	20.30		21L	12.95		21L	38.58
	30L	19.50		21L	12.44		21L	38.36
	30L	18.40		21L	12.14		21L	38.24
	31L	19.91		21L	11.72		21L	38.06
	31L	19.81		21L	11.30		21L	37.81
3	31L	19.46		31L	17.19		31L	40.00
3	31L	19.32		31L	16.45		31L	39.70
3	31L	19.15		31L	16.41		31L	39.70
3	35L	17.17		31L	16.09		31L	39.60
3	35L	17.17		31L	15.93		31L	39.50
	35L	17.13		31L	15.69		31L	39.30
	35L	17.13		35L	12.89		35L	39.03
	35L	17.09		35L	12.50		35L	38.61
	35L	17.09		35L	12.12		35L	38.60
	36L	17.95		35L	11.99		35L	38.56
3	36L	17.52		35L	11.86		35L	38.44
	36L	16.74		35L	11.73		35L	38.43
	16L	19.00		36L	12.99		36L	37.73
	16L	19.00		36L	12.42		36L	36.42
	16L	18.00		36L	11.70		36L	35.55
	16L	18.00		46L	15.00		55L	39.70
	55L	19.00		46L	15.00		55L	39.30
	55L	18.80		46L	14.00		55L	39.20
	55L	18.70		46L	14.00		55L	38.90
	55L	18.70		55L	15.40		55L	38.90
	55L	18.70		55L	14.70		55L	38.90
	55L	18.70		55L	14.60		56L	39.19
	56L	18.88		55L	14.20		56L	38.99
	56L	18.82		55L	14.20		56L	38.88
	56L	18.64		55L	13.20		56L	38.86
	56L	18.61		56L	15.00		56L	38.80
	56L	18.49		56L	14.89		56L	38.71
	56L	18.37		56L	14.54		9L	40.40
	9L	19.60		56L	14.44		9L	40.30
	9L	19.50		56L	14.18		9L	40.30
	9L	19.40		56L	14.14		9L	40.30
	9L	19.20		9L	15.10		9L	40.30
	9L	19.10		9L	15.00		9L	40.20
	9L	19.00		9L	14.60		16L	39.37
	16L	17.55		9L	14.50		16L	39.66
	16L	18.26		9L	14.00		16L	39.50
	16L	17.95		9L	13.70		16L	40.05
	16L	18.14		16L	13.08		16L	40.01
	16L	17.76		16L	13.42		16L	39.98
	16L	18.01		16L	13.64			
				16L	13.45			
					40.00			
				16L 16L	12.63 13.02			

[mg/g]	Sample: Element:	Sewage Sludge 2 TN PARM	[mg/g]	Sample: Element:	Soil 4 TN PARM	[mg/g]	Sample: Element:
[mg/g]	15L	39.15	[mg/g]	15L	1.52	[mg/g]	15L
	15L	39.04		15L	1.32		15L
	15L	38.60		15L	1.20		15L
	15L	38.20		15L	1.09		15L
	15L	38.16		15L	1.03		15L
	15L	37.87		15L	0.99		15L
	19L	37.14		19L	2.01		19L
	19L	36.54		19L	1.94		19L
	19L	35.92		19L	1.90		19L
	19L	35.78		19L	1.86		19L
	19L	34.97		19L	1.84		19L
	19L	34.76		19L	1.78		19L
	1L 1L	35.30		1L 1L	1.73		1L 1L
	1L 1L	34.76 34.61		1L	1.60 1.20		1L
	21L	34.69		30L	2.70		31L
	21L	34.54		30L	2.60		31L
	21L	32.96		30L	2.50		31L
	21L	32.07		31L	2.41		31L
	21L	31.89		31L	2.33		31L
	21L	31.12		31L	2.29		31L
	31L	37.50		31L	2.23		35L
	31L	37.40		31L	2.22		35L
	31L	37.40		31L	2.19		35L
	31L	37.30		35L	1.71		35L
	31L	37.00		35L	1.69		35L
	35L 35L	35.85 35.74		35L 35L	1.68		35L 36L
	35L	35.62		35L	1.68 1.68		36L
	35L	35.55		35L	1.67		36L
	35L	35.14		36L	1.60		46L
	35L	35.12		36L	1.46		46L
	36L	31.38		36L	1.34		46L
	36L	30.41		46L	1.20		46L
	36L	30.22		46L	1.20		55L
	46L	38.00		46L	1.20		55L
	46L	37.00		46L	1.10		55L
	46L 46L	37.00		55L 55L	2.30		55L
	46L 55L	36.00 36.10		55L	2.20 2.10		55L 55L
	55L	35.90		55L	2.00		56L
	55L	35.70		55L	2.00		56L
	55L	35.00		55L	1.80		56L
	55L	34.90		56L	1.85		56L
	55L	34.70		56L	1.82		56L
	56L	36.43		56L	1.81		56L
	56L	36.13		56L	1.80		9L
	56L	35.95		56L	1.79		9L
	56L	35.86 35.85		56L	1.77		9L
	56L 56L	35.74		9L 9L	1.90 1.70		9L 9L
	9L	37.70		9L	1.70		9L
	9L	37.60		9L	1.70		16L
	9L	37.60		9L	1.70		16L
	9L	37.50		9L	1.70		16L
	9L	37.30		16L	1.79		16L
	9L	37.20		16L	1.73		16L
	16L	36.33		16L	1.74		16L
	16L	36.61		16L	1.83		
	16L	36.58		16L	1.75		
	16L	36.04		16L	1.81		
	16L 16L	36.39 34.65					
	IUL	57.05					

Soil 5 TN PARM 1.92 1.87 1.78 1.76 1.68 1.62 2.01 2.00	[mg/g]
1.95 1.90 1.90 1.87 1.85 1.77 1.07 2.54 2.51 2.50 2.41 2.41	
2.23 2.05 1.70 1.64 1.55 1.47 2.50 2.32 1.78 1.60	
1.50 1.50 2.60 2.40 2.30 2.20 2.00 2.00 1.96 1.94 1.93 1.88 1.84	
1.82 1.90 1.90 1.90 1.80 1.80 1.88 2.01 1.90 1.91 1.84 1.90	

European Commission

EUR 23016 EN – Joint Research Centre – Institute for Environment and Sustainability Title: Project HORIZONTAL Validation Report on total nitrogen Author(s): E. Sobiecka, H. van der Sloot, E. Janssen, B. M. Gawlik Luxembourg: Office for Official Publications of the European Communities 2007 – 51pp. – 21.0 x 29.7 cm EUR – Scientific and Technical Research series – ISSN 1018-5593 ISBN 978-92-79-07444-8

Abstract

Project HORIZONTAL is interdisciplinary aiming at a harmonisation and horizontal standardisation of test procedures, in particular for sludge, soils and biowastes. In the context of this standardization project, a series of draft technical specification were designed upon an extensive desk study, fine-tuned after expert consultations and finally validated in international intercomparisons exercise. This report summarises the work performed within the validation study of the draft standard for the determination of total nitrogen (TN) by dry combustion method in soils, sludge and treated bio-waste. It further explains the underlying statistical concept for the calculation of reproducibility and repeatability from intercomparisons data. In addition all single values, results of the statistical evaluation as well as background information on the validation materials used are described and explained.

The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.

