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Introduction 
This work was mainly performed under the IP DESURVEY1 project, a project contributing to the 
implementation of the actions 'Mechanisms of desertification' and 'Assessment of the vulnerability to 
desertification and early warning options' within the 'Global Change & Ecosystems priority'. 
 
Within this project, as base data for a number of applications in the Mediterranean (e.g. erosion 
modelling, desertification syndrome modelling, hot spot detection, land use change, and trend analysis) 
an enhanced measure of vegetation density was needed. Using common vegetation indices like NDVI 
entail some limitations detecting thin vegetation cover, as it happens in areas of sparse vegetation 
found in arid areas or in areas vulnerable to desertification or land degradation.  
 
The NDVI is known to be influenced by soil and rock background. Additionally, the NDVI shows 
sensitivity to several parameters such as the atmosphere, the illumination and the observation 
geometry, which is however supposed to be partly eliminated through a temporal maximum value 
compositing of the data (Holben, 1986). Moreover, the NDVI values are platform dependant due to 
different spectral properties as well as the observation geometry which complicates a direct 
comparison among different sensors. Due to these problems it is preferable to find a measure for 
vegetation abundance which is expected to be a better indicator for vegetation cover density.  
 
In this context Linear Unmixing has been recognized as the most promising approaches for vegetation 
cover estimates, as shown in earlier studies (European Commission, 1998; Sommer, 1999). The 
applied unmixing technique is based on the inverse relationship between NDVI and land surface 
temperature. Generally, surface temperature (Ts) is observed to be inversely proportional to the 
amount of vegetation canopy cover and thus to the NDVI. This is due to a variety of factors including 
latent heat transfer through evapotranspiration, the lower heat capacity and thermal inertia of 
vegetation compared to soil (Choudhury, 1989; Goward & Hope, 1989).  
 
The applied methodology to derive Green Vegetation Fraction (GVF) was expected to offer higher 
reliability and robustness than a simple vegetation index. It has been shown that using both NDVI and 
Ts, allows a characterization of land cover in a more comprehensive and climatically resistant manner 
than by multitemporal NDVI data alone (Nemani et al., 1993; Ehrlich & Lambin, 1996). 
 
Since improved vegetation indices, like the JRC-FAPAR (Gobron et al., 2000) are not available for a 
long time span (FAPAR available from 1998 onwards) its use for long term assessments (e.g. trend 
analysis) are limited. Therefore a long term time series of AVHRR data with a time span of 17 years 
(1989 – 2005) was selected as base data set for the derivation of an enhanced vegetation abundance 
measure. The used base data set was the MEDOKADS data set (Koslowsky, 1998). Thanks to Freie 
Universität Berlin this dataset was recently updated and refined, putting strong effort to data pre-
processing chain (Koslowsky, 2003). It consists of radiometrically and geometrically corrected data of 
all AVHRR channels, including derived data such as NDVI, surface temperature and meta data such as 
viewing angles or illumination geometry data. Despite its relatively coarse spatial resolution of 0.01 
degrees (approx. 1 km2) it does still offer one of the most valuable data sets for long term vegetation 
analysis.  

                                                 
1 http://www.desurvey.net/ 
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Algorithm overview 

Objectives 
The objective was to derive a measure of vegetation cover density for the Mediterranean, which can be 
derived for a long term remote sensing archive, such as NOAA/AVHRR. The parameter should lead to 
an improvement of the typical drawbacks of classical vegetation indices, especially in the context of 
scarcely vegetated areas. In view of a future extension, the methodology should also be applicable to 
sensors of newer generation, allowing the derivation of comparable results and potentially allow 
transferability. 

Data characteristics 
The AVHRR data set used covers the whole Mediterranean region [upper left corner 46° N, 10° W; 
lower right corner 27° N, 42° E (see Figure 4)]. This represents a subset of the original data, which is 
available also for regions further north.  
 
The base data is provided by the MEDOKADS (Mediterranean Extended Daily One Km AVHRR Data 
Set) (Koslowsky et al., 2005). From this dataset 10-day-composites were used, computed according to 
Holben (1986) and matching the 1st, 11th and 21st of each month.  
 
The data is provided as geographic lat/long WGS-1984 with a spatial resolution of 0.01 degrees. 
 
The time series consists of AVHRR data of different NOAA satellites (NOAA11 for the time span 
1989 - 1994, NOAA14 for the time span 1995 - 2000, NOAA16 for the time span 2001 to 2005).  
 
The change from NOAA 14 (AVHRR/2) to NOAA 16 (AVHRR/3) was combined with a stronger 
spectral separation of the short wave channels 1 and 2 that led to an increase of the NDVI. The 
correction formulas published by Trishchenko et al. (2002) were applied to the data (channel 1 and 2) 
of NOAA 16 to account for it. In the case of the derived NDVI, the corrections seemed to be 
insufficient. 
 
The calibration coefficients that were derived that account for the effects of sensor degradation to the 
shortwave channels of the AVHRR of the different NOAA satellites use an invariant target in the 
Western Great Erg desert in Algeria (Koslowsky et al., 2001). To remove the effects of changing 
illumination and observation geometry due to orbital shift, the effect of the BRDF (Bidirectional 
Reflectance Distribution Function) to the time series for the calibration target was removed by 
corrections for sun zenith angle (cosine correction) and  normalization to nadir view conditions (Bolle 
et al., 2006). The slope of the regression lines for the time series of each satellite and for the whole 
time series of 17 years as well was forced to be zero. Thus artificial trends due to the characteristics of 
the different instruments are removed in the time series of the shortwave channels using the new 
calibration coefficients. As long as no BRDF corrections, mainly defined by surface and vegetation 
structure, are performed to the whole MEDOKADS area these effects are still included in the time 
series of selected targets. 
 
The land surface temperature (Ts) is derived by the split window approach (Coll et al., 1994; Coll & 
Caselles, 1997) and normalized to the time of the local sun zenith plus 1 hour and 42 minutes (Billing, 
2007). 
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Strategy 
The status and dynamic of vegetation is usually assessed by vegetation indices (e. g. NDVI) when 
using NOAA-AVHRR data. Limitations for the detection of sparse vegetation with vegetation indices 
have been widely discussed in the literature. Several alternative indices, like GEMI (Pinty & 
Verstraete, 1992) or SAVI (Huete, 1988) have been developed to compensate for atmospheric and 
illumination conditions and soil background reflectance. 
In this context spectral mixture analysis (SMA) has been applied by different authors [e. g. Smith et al. 
(1990); Hill et al. (1995)] to detect sparse vegetation cover from Landsat TM images in areas with 
spectrally diverse substrates. The difficulty encountered in the application of SMA to NOAA AVHRR 
data is related to the limited number of reflectance channels recorded and hence, restricts the 
separability of different surface materials.  
Lambin and Ehrlich (1995) used the ratio between Ts and NDVI for continental scale land-cover 
classification and demonstrated a clear increase of biome discrimination when integrating both thermal 
information and vegetation index. Another technique to combine Ts and NDVI, is described hereafter. 
In contrast to the classical SMA approach, previous studies have used a modified unmixing approach 
with NOAA AVHRR data based on the inverse relationship between vegetation cover and the surface 
temperature under dry conditions (European Commission, 1998; Sommer, 1999).  
 
Due to factors like the latent heat transfer through evapotranspiration, the lower heat capacity and the 
thermal inertia of vegetation compared to soil, the surface temperature is inversely proportional to the 
amount of vegetation canopy (Gates, 1980; Goward & Hope, 1989), which itself is proportional to the 
NDVI (Huete et al., 1987). On small spatial scale the variations of different vegetation species and soil 
classes can show a high variability regarding surface temperature (Choudhury, 1989), while on coarse 
geometric resolution (e.g. AVHRR) the variation seems to be primarily caused by the vegetation 
fraction, vegetation physiology and physiognomy being of secondary importance (Nemani et al., 
1993). Thus, linear approximations to explain NDVI as well as surface temperature of mixed AVHRR 
pixel (vegetation and non-vegetation) in relation to vegetation have been given (Figure 1 and Figure 
3). Fractional cover should predominantly control the position of an AVHRR land surface pixel in the 
feature space of NDVI and Ts. Water, surface moisture and local meteorological conditions may 
influence this position further.  
 
 

 
Figure 1 : Simplified Ts/NDVI (Lambin & Ehrlich, 1996; Sandholt et al., 2002) 



7 

Algorithm description 
The concept of the classical linear spectral mixture analysis is based on the assumption, that the 
measured surface reflectance of a pixel is equivalent to the sum of the single reflectance from a limited 
number of pure materials - the so-called endmembers (EM) - depending on their pixel fraction (Adams 
& Smith, 1986). Mathematically, this assumption can be expressed as:     

jji

m

i
ij eF ερρ +⋅= ∑

=
,

1
          (1) 

 
Where ρj denotes the reflectance of the mixed spectrum in band j, Fi the fraction of an endmember i of 
the pixel, ρei,j the reflectance of an endmember spectrum i in channel j and εj is the residual error in 
band j. At the same time the proportions of the endmember have to fulfill the sum-to-unity constraint, 
which can be expressed as: 
 

1
1

=∑
=

m

i
iF            (2) 

 
If the reflectance values of the endmembers are known, their fractions can be estimated for each pixel 
by solving a linear system of equations. 
 
 

 
Figure 2 : Linear unmixing scheme applied to AVHRR time series for the assessment of vegetation coverage, after 
Sommer et al. (1999) 
 
Instead of using reflectance characteristics like in the classical SMA approach (Adams & Smith, 
1986), a spectral unmixing strategy was implemented based on the inverse relationship between the 
vegetation index NDVI and the land surface temperature as described before.  
The scheme for the derivation of green vegetation fraction from the NOAA/AVHRR time series is 
given in Figure 2.  
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Technically, this approach derives three endmembers for each decade, the non-vegetated EM, the 
vegetated EM and the cold EM. These EMs represent the edges of the space spanned up by NDVI and 
surface temperature (Figure 1 and Figure 3) and therefore build a distinct and robust model to estimate 
the vegetation cover. The cold EM works similar to the shade EM in the common SMA, accounting 
for effects that lower the surface temperature of the surface, including local gradients related to altitude 
and exposition, temperature variations due to soil moisture, variable evaporation and transpiration 
respectively and remaining cloud artifacts.  
 
Price (1993) expressed the NDVI of a mixed NOAA/AVHRR pixel as a function of the vegetation 
cover fraction as 
 

vegnonvegpixel NDVIfNDVIfNDVI −⋅−+⋅= )1(       (3) 
 
where NDVIpixel is the NDVI of a given pixel, f is the vegetation fraction, NDVIveg is the NDVI value 
for full vegetation and NDVInon-veg is the NDVI value for a non vegetated surface. 
Likewise, the relationship between vegetation cover fraction and surface temperature was stated by 
Caselles and Sobrino (1989) as 
 

vegnonvegpixel TfTfT −⋅−+⋅= )1(         (4) 
 

where Tpixel is the surface temperature of a 
pixel, f is the fraction of vegetation, Tveg the 
surface temperature for full vegetation and 
Tnon-veg denotes the surface temperature of a 
non vegetated surface. According to these 
relationships, the implemented spectral 
unmixing approach acts on the assumption 
that vegetation cover should predominantly 
control the position of an AVHRR land 
surface pixel within the feature space formed 
by NDVI and surface temperature (European 
Commission, 1998), which is illustrated by 
Figure 3. 
 
 
 
 
 
 
 
 
 
 
 

Endmember selection from MEDOKADS data  
For the determination of the three endmembers, the Mediterranean area was subdivided into an eastern 
and western window (Figure 4). This segmentation was introduced because the aforementioned 
vegetation – surface temperature relationship can strongly vary along the east-west gradient. 
Therefore, to improve the vegetation fraction estimation, this effect was accounted for by deriving the 
endmembers from a eastern and a western window. To avoid sharp transitions between the two tiles 

 

Figure 3 : Unmixing triangle for a scatterplot consisting of 
the NDVI (x-axis) and Ts (y-axis) for the 16th decade 2001 
(western Mediterranean window). EMs are depicted as 
symbols: non-vegetated EM (◊), vegetated EM (∆) and cold 
EM (*). 
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for each pixel a linear interpolation of the derived endmembers was implemented. All criteria for the 
extraction of endmembers are documented in Table 1.  
 

 
Figure 4 : Area covered for the study and subset windows used for the derivation of endmembers. The image depicts 
the derived average GVF for all years of the time series. 
 
The NDVI-Ts relationship is not constant in time and space due to variable climatic conditions and the 
changing observation geometry. Therefore the “mixture triangle” has to be determined for each time 
step. An automated approach based on synthetic endmembers, following the method described by 
Stellmes et al. (2005), was applied. Endmembers were either defined upon theoretical considerations 
or extracted form the data using statistical methods. 
In this context the NDVI value of the fully vegetated endmember was set to 0.7, which is the 
maximum NDVI value of vegetation for not atmospherically corrected NOAA AVHRR data according 
to literature (Czajkowski et al., 2004). To account for the dependency of the NDVI on the sun zenith 
angle (Θs)(Singh, 1988), the maximum possible NDVI value is corrected for each decade. The 
relationship between sun zenith angle and maximum NDVI has been determined empirically. To 
extract this relationship, the periods from 1989 – 2000 and 2001 – 2004 were analyzed.  



10 

 
a) b) 
Figure 5 : Relationship of extracted maximum SZA and corresponding NDVI for each decade of (a) the time spans 
1989 – 2000 and (b) 2001 – 2005. Also shown is the ’outer hull’ of the NDVI/SZA values as well as the difference to 
the selected NDVI value of 0.7 and a fitted function at the lower part of the plots. 
 
 
Although MEDOKADS data have been corrected for the SZA, a decline of NDVI with increasing SZA 
is clearly visible in Figure 5. As reported by Singh (1988), the reason for this might be atmosphere 
induced disturbances  (ozone absorption, changing global irradiance and path radiance, water vapour) 
but also bidirectional effects (e.g. shadows) and the presence of non-Lambertian surfaces. As 
mentioned earlier, there was no atmospherical nor BRDF correction performed. 
The separation into two periods should take into account the varying response of the AVHRR/2 and 
AVHRR/3 instruments in the red and near infrared band. Since the NDVI of bare soil is almost not 
affected by Θs, its NDVI was extracted at the lower edge of the decadal NDVI distribution (1 % 
percentile) of the whole Mediterranean dataset. To avoid the influence of remaining cloud pixels on 
the NDVI of the non-vegetated EM a temperature threshold was introduced (0° C). The NDVI of the 
cold EM was extracted separately for the eastern and western window at the lower edge of the decadal 
NDVI distribution (1 % percentile). 
The temperatures of the fully vegetated and the non-vegetated EM were defined through the NDVI-Ts 
relationship. The relationship, which is described by a linear regression equation, was derived by the 
automatic approach described by Nemani (1993).  
Modifying the initial method described by Stellmes et al.(2005), the temperature of the cold EM was 
set to a fixed value (-20 °C). Unlike other EMs, the cold EM can be considered as an artificial EM and 
is therefore less dynamic. The chosen temperature value represents occurring extreme values in the 
population of both windows (Eastern and Western Mediterranean).  
 
Linear interpolation was applied for EM outliers in the temporal domain.  
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Table 1 : Selection criteria for endmembers in the NDVI-TS feature space 

Endmember NDVI Ts 
Non-vegetated Based on percentile at the lower 

edge of NDVI values (1 %), 
considering positive NDVI values 
only. To avoid effects of remaining 
cloud pixels to the NDVI of the 
extracted non-vegetated EM, a 
threshold of 0 deg. C (lowest 
allowed value) was applied. 

Ts following Nemani (1993). 
Following this approach, the 
upperbound pixels of the Ts-NDVI 
scatter are extracted for each 
decade and fitted by a linear 
function. Gain and offset of this 
function are used to derive the 
temperature of the given NDVI.  

 One window for the whole area Number of window(s): n=2 

Fully vegetated Max. NDVI is set to 0.7 and 
corrected then for the relationship 
sun zenith angle (corrected for 
orbital drift) versus NDVI (Holben 
and Fraser 1984, Singh 1988) - 
empirical approach, defined 
separately for the two time periods 
1989-2000 and 2001-2004  

Ts following Nemani (1993). 
Following this approach, the 
upperbound pixels of the Ts-NDVI 
scatter are extracted for each 
decade and fitted by a linear 
function. Gain and offset of this 
function are used to derive the 
temperature of the given NDVI. 

 Number of window(s): n=2,  Number of window(s): n=2,  

Cold  Based on percentile at the lower 
edge of NDVI values (1 %) 

-20 degrees C 

 Number of window(s): n=2,  Number of window(s): n=2  

 
Figure 6 and Figure 7 depict EMs for decades of the year 2001 for the Eastern and Western 
Mediterranean. The coordinates of the EMs in the NDVI-Ts feature space are shown in Figure 6. The 
temporal run of the EMs is given in Figure 7. The NDVI for the fully vegetated EM follows a smooth 
run throughout the year, depending on the sun zenith angle. Ts values for the non-vegetated EMs are 
reaching a distinct peak in summer, whereas the Ts value of the fully vegetated EM shows smaller 
variation throughout the year. The cold EM run gives variations for NDVI only (temperature was 
fixed).  
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Figure 6 : Scatterplots for the NDVI (x-axis) – Ts (y-axis) relationship for 12 decades (first decade of a month at a 
time) of the year 2001 (western window).  The number of decade is indicated in each title. EMs are depicted as 
symbols: non-vegetated EM (◊), vegetated EM (∆) and cold EM (*). 
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Figure 7 : Multi-temporal NDVI-(-) and Ts-run (∆) for vegetated EM (1st column), non-vegetated EM (2nd column) 
and cold EM (3rd column) for the year 2001. The first row depicts EMs for the Western, the 2nd row for the Eastern 
Mediterranean. 

Unmixing  
Prior to linear unmixing, the initially discrete number of chosen EMs (i.e. 3 EMs times 2 windows) 
were interpolated spatially (linearly) for each pixel, setting the EMs as central window pixels.  

The computation of proportional abundance can be principally explained and solved with a simple 
system of linear equations as follows: 

BXA =⋅            (5) 

where  A  = m (channels) * n (endmember) matrix of spectral endmembers 
X = n * 1 unknown vector of abundances 
B = m * 1 observed data vector (mixed pixel NDVI and Ts) 

The unknown vector of abundances is determined by inverting the endmember matrix A:  

BAX ⋅= −1            (6) 
 
A unique solution is possible if the number of spectral endmembers corresponds to the number of 
spectral bands. Furthermore in the case of an underdetermined problem (this study) the number of 
unknown endmembers exceeds the number of bands by one, a solution can be found by assuming the 
set of endmembers is exhaustive (i. e., the sum of the computed endmember fractions is equal to one). 
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The unmixing procedure resulted in the three abundances images for each decade: the vegetation, non-
vegetated (soil) and “cold” abundance. 

Normalization of the vegetation abundance 
The vegetation abundance was normalized according to the assumption that the “cold” component 
does not change the ratio between the other derived abundances. The abundance of the cold 
endmember was apportioned to the remaining endmembers by taking into account their fractional 
abundance through the following factor: 
 

)1/(1 coldFF −=           (7) 
 

 
This is applied up to a cold abundance of 
30 %. If the cold abundance exceeds this 
value, this GVF modeling approach is 
rejected as invalid and these pixels are 
flagged as NODATA. The value 30 % 
was chosen, as it represents a value, 
when the cold EM starts getting 
predominant and this implies that the 
assumption of an inverse NDVI-Ts-
relationship starts getting questionable. It 
was found for the Iberian Peninsula that 
the number of pixels above this 
threshold did not exceed 15 % during the 
period March – October, averaged over 
all years 1989 – 2005 (see Figure 8). 
 
The terms normalized vegetation 
abundance and green vegetation fraction 
(GVF) will be used equally in this 
document.  

 

Post-Processing of the GVF time series 
Most post processing steps were carried out with the non-commercial software TIMESTATS 
developed by Thomas Udelhoven (Udelhoven, 2006). 
Missing data were substituted by the seasonal mean of the time series. 
Outliers were identified according to the Chebyshev's Theorem, which states that a random variable 
will take on a value within k standard deviations s of the mean with a probability of at least (1- 1/k2) 
(Lohninger, 1999). The probability (confidence interval) has been set to 0.95, which corresponds to a k 
of 4.5. Outliers were replaced, by the seasonal mean of pixel.  
Filtering was applied using a the Savitzky-Golay-filter (Chen et al., 2004). The window size was set to 
6 decades in forward and backward direction. Polynomial degree was chosen as 2.  

 
Figure 8 : Occurrence of cold abundance greater than 30 %. 
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Practical consideration 
As described above, data gaps and outliers were filled with seasonal means of the remaining years. 
Additionally, data filtering occurred. In most cases data gaps consisted of a single decadal gap. In few 
cases, however, longer gaps had to be filled. This was the case between the 17th decade 1990 and the 
6th decade 1991, between the 26th decade 1994 and the 4th  decade 1995 and between the 25th decade 
and the 36th decade 2005 (see Figure 9). 
 

Figure 9 : Typical time series profile of non post-processed GVF data (blue line) in comparison with post-processed 
data (black line). A value of 0 of the non post-processed time series indicates missing values for this pixel. 
 
The output data is in ENVI format (binary files with ENVI header files). The data is coded as integer 
values, GVF being expressed as % times 100. A value of 20 % GVF has the value 2000. NoData 
values are coded as 0. All data has remained un-projected in lat-long WGS-1984, spatial resolution is 
0.01 degrees, as the original data is. 
 
The output generated by the unmixing algorithm consists in four stacked abundance images: the 
normalised (GVF) and non-normalised green vegetation abundance, the soil (background) abundance 
and the “cold” abundance, each data set consisting of 612 layers (17 years * 36 decades per year). 
The data is available for scientific purposes. Free download of the data is foreseen from the website 
http://desert.jrc.ec.europa.eu. For further information contact the authors of this report. 
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Results 
As an example for the derived data set, a colour combination of three decadal values of GVF from year 
1989, covering the whole Mediterranean, is shown in Figure 10. The colored map, which is composed 
of three decades, depicts only a small part of the information, which this contained especially in the 
time domain of the time series. 

 

 
Figure 10 : RGB-composite of green vegetation abundance for three decades of the year 1989. 
Decade 8 (2nd decade March) is colored red, decade 17 (2nd decade June) green and decade 26 (2nd 
decade September) colored blue. Color saturation of the respective decade indicate highest values. 
 
GVF was tested over different test sites. An overall comparison was carried out for the Iberian 
Peninsula, disregarding specific land cover. For more detailed analysis, test sites of specific properties 
have been chosen. The aim was to test and compare GVF on sites with different amounts of vegetation 
cover and vegetation dynamics within the growing cycle. Additionally, GVF was compared with 
independently derived high and low resolution vegetation cover (fCover). 

NDVI-GVF Relationship 
For the comparison of GVF with NOAA/AVHRR NDVI, the original NDVI and a scaled NDVI has 
been included in the analysis. 
 
Scaled NDVI values for each pixel were computed as follows: 

vegnonveg

vegnoni
iscaled EMNDVIEMNDVI

EMNDVINDVI
NDVI

−

−

−

−
=,  

10 , ≤≤ iscaledNDVI  (8) 

 
where  NDVIscaled = scaled NDVI 
 NDVI = original NDVI 

i = pixel index  
 NDVI EMnon-veg = NDVI endmember non-vegetated 
 NDVI EMveg = NDVI endmember fully vegetated. 
 
NDVI values for the non-vegetated and fully vegetated case were set to the corresponding endmember 
(Non-vegetated and fully vegetated EM) NDVI values, as extracted for the unmixing approach (see 
Table 1).  
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In Figure 11 and Figure 12 scatterplots between MEDOKADS NDVI (original and scaled) and GVF 
are shown for selected decades of the year 2001 for the whole Iberian Peninsula. 
For obvious reasons (NDVI does not exceed 0.7), the range of original NDVI values is much lower as 
the GVF range, as seen in Figure 11. When the NDVI is scaled (Figure 12) to the same range as GVF, 
the scatterplot is almost arranged around the 1:1 with slightly higher values for GVF. The scatter cloud 
has especially low dispersions in summer. Well visible is the lower offset in summer time. This should 
be due to the changes of vertical vegetation density and is shown in more detailed way for the specific 
test sites in Figure 17 - Figure 21. 

Figure 11 : Comparison MEDOKADS NDVI (x-axis) vs. MEDOKADS GVF (y-axis) for 12 decades of the year 2001 
(whole Iberian Peninsula). The continuous line indicates the correlation between both datasets, while the dashed line 
stands for the 1:1 relationship. Coefficient of determination (R2), slope (sl) and offset (o) of the regression line are 
indicated. 
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Figure 12 : Comparison MEDOKADS scaled NDVI (x-axis) vs. MEDOKADS GVF (y-axis) for 12 decades of the 
year 2001 (whole Iberian Peninsula). The continuous line indicates the correlation between both datasets, while the 
dashed line stands for the 1:1 relationship. Coefficient of determination (R2), slope (sl) and offset (o) of the 
regression line are indicated.  
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Figure 13 : Histogram comparison between GVF (thick line) and the scaled NDVI (dotted line) and the NDVI (thin 
line) for 12 decades of the year 2001. The area covers the Iberian Peninsula. 
 
The difference between the GVF and the scaled NDVI becomes more evident when looking at the 
histograms (Figure 13). This reveals that the overall shape of the histogram is maintained by GVF, but 
reaches higher values especially during winter when the cold abundance increases.  

Results for test sites 
Selected test sites for comparison between scaled NDVI and GVF are shown in Figure 14. A 
description of the test sites is given in Table 2. Two sites with predominantly agricultural land use 
were chosen in Spain (Valladolid, Cuenca). A test site with broadleaved forest is located in the North 
of Italy (Pistoia). Furthermore a scarcely vegetated area in Spain (Almeria) and a desert area in Tunisia 
were selected.  
 
The GVF follows closely the seasonal run of the scaled NDVI in all test sites (see Figure 15). The 
GVF is generally slightly higher (not for Tunisian desert), which should be due to the normalisation of 
GVF, as reported above (see Eq. 7).  
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Figure 14 : Specific test sites for data comparison. The subset of the “Iberian Peninsula” (including also parts of 
North Africa) is depicted as hatched rectangle. 
 
 
 
Table 2 : The specific test sites (see also Figure 14): 

Colour  Name Description n 
(pixels) 

 Valladolid A manually delineated area around Valladolid, predominated by agricultural 
land use, disposing of a high degree of seasonal vegetation dynamic. 1 167 

 Cuenca CLC1 class 12 (‘non-irrigated arable land’), limited to the province of Cuenca 
and to pixels, that contained a minimum of 80 % of the respective land cover. 3 142 

 Almeria A manually delineated area around Almeria, predominated by scarcely 
vegetated land cover.    997 

 Tunisian 
desert 

A manually delineated area in the Tunisian desert predominated by the GLC2 
class ‘sandy dunes’.    103 

 Pistoia CLC class 23 (broadleaved forest), limited to the Italian province of Pistoia 
and to pixels, that contained a minimum of 70 % of the respective land cover    315 

1CLC – Corine Land Cover 2000 (EEA, 2006) 
2GLC – Global Land Cover 2000 http://www-gvm.jrc.it/glc2000 
 



21 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 15 : Temporal profile of scaled NDVI and GVF for test sites in the Mediterranean: a) Valladolid, b) Cuenca 
c) Almeria, d) Tunisian desert and e) Pistoia.  
 
 



22 

 
Figure 16 : Green vegetation fraction [% * 100] and cold abundance for test 
site Cuenca. 
 
The seasonal run of GVF and cold abundance is depicted in Figure 16. The peaks of the cold 
abundance are most pronounced in the cold season (end/beginning of the year). In comparison to the 
scaled NDVI the GVF (which re-distributes the cold abundance proportionally to the remaining 
vegetation abundance and soil abundance) is therefore generally higher during the cold season (see 
Figure 15). The higher values of GVF on top of the growing peaks instead might be due to the 
proportional re-distribution of the cold EM, which is favouring GVF for a cold abundance assignment 
around the growing cycle peak. 
 
Scatter diagrams of scaled NDVI versus GVF for selected decades for each test side are shown in 
Figure 17 - Figure 21. For both agricultural test sites Valladolid and Cuenca, GVF tends to be slightly 
higher, the difference increasing with higher values.  
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Figure 17 : Scatter diagrams (GVF vs. scaled NDVI) for the test site Valladolid for selected decades of the year 
2001. Coefficient of determination (R2), slope (sl) and offset (o) of the regression line are indicated. 
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Figure 18 : Scatter diagrams (GVF vs. scaled NDVI) for the test site Cuenca for selected decades of the year 2001. 
Coefficient of determination (R2), slope (sl) and offset (o) of the regression line are indicated. 
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Figure 19 : Scatter diagrams (GVF vs. scaled NDVI) for the test site Almeria for selected decades of the year 2001. 
Coefficient of determination (R2), slope (sl) and offset (o) of the regression line are indicated. 
 
For the scarcely vegetated test site Almeria GVF and scaled NDVI show a good fit in the low range. A 
notable offset with higher GVF values can be observed for values above 0.15 – 0.20.  
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Figure 20 : Scatter diagrams (GVF vs. scaled NDVI) for the test site Tunisian desert for selected decades of the year 
2001. Coefficient of determination (R2), slope (sl) and offset (o) of the regression line are indicated. 
 
The difference between GVF and scaled NDVI for the test site in the Tunisian desert is low, for most 
decades there could be observed a slightly higher GVF of approx. 0.01 units.  
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Figure 21: Scatter diagrams (GVF vs. scaled NDVI) for the test site Pistoia for selected decades of the year 2001. 
Coefficient of determination (R2), slope (sl) and offset (o) of the regression line are indicated. 
 
As for a broadleaved deciduous forest (Figure 21), the GVF/scaled NDVI scatter moves along the 1:1 
line when onset and senescence of the growing cycle occur. The sideward movement (offset) is due to 
changes of the vertical vegetation density (LAI), as this was shown by other authors (Gutman & 
Ignatov, 1998; Myneni et al., 1992). 
 

Effect of the cold abundance on GVF 
Does the cold abundance contribute to an improvement of the GVF and if so, to which extent? As 
reported earlier (see introduction), several effects may lead to a wrong NDVI. Amongst them, 
atmospheric effects, which are not eliminated by the maximum value compositing algorithm, play a 
major role. Generally, clouds and poor atmospheric conditions depress NDVI values (Chen et al., 
2004). In the case of GVF, this effect should be attenuated by the normalization, when the cold 
abundance (if being between 0 and 30 %) is re-distributed to the remaining fractions.  
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The effect was tested for the 
subset of the Iberian Peninsula 
for the first decade of May of all 
years 1989-2005. Out of this 
subset, only pixels of supposed 
‘stable’ land use types were used. 
Supposed ‘stable’ pixels were 
extracted from unfiltered NDVI 
data for each decade and pixel, 
considering the deviation to the 
long term median. These 
represented mainly forests and 
sclerophyllous vegetation, while 
urban areas and agricultural land 
use types were excluded. As 
Figure 22 shows, both GVF and 
NDVI show negative deviations 
from their long term mean in the 
case of a high cold abundance of 
20-30 % (except for the year 
2005). However, the negative 
deviations are clearly larger for 
the NDVI, the difference 
between GVF and NDVI ranging 
between -0.1 and -13.0 % 
percentage points, in average 

over all years 1989-2005 amounting to -5.4 percentage points. It should be noted that the degree of 
compensation of poor atmospheric conditions via cold abundance is depending on the relation of 
vegetation and soil abundance: A strong compensation is theoretically possible in the case of 
abundances closed to 100 %, where the cold abundance has a strong absolute compensation effect with 
normalisation (see Eq. 7). In the case of equal values for soil and vegetation abundance the cold 
abundance is distributed equally and has hence a minor impact on the absolute value of the single 
fraction. 
Keeping in mind, that the pixels used in Figure 22 are supposed to be stable (no land use change, no 
seasonal change), it indicates, that the GVF is much closer to stability than the NDVI. 
 

Data quality 
As Eidenshink (2008) reports for a similar data set there are three primary factors that affect the data 
quality of NOAA AVHRR composite data sets: Cloud contamination, aerosol contamination and the 
orbital drift. Cloud contamination is considered first by application of a cloud mask and second by 
normalisation of the data by the cold abundance. There is no correction for aerosol contamination 
applied. The largest effect of aerosol contamination occurs during volcanic eruptions and major 
wildfire outbreaks. There has been one major volcanic eruption in 1991 (Mt. Pinatubo). Mt. Pinatubo 
eruption had the most significant effect on the stratospheric aerosol in the equatorial region of the 
world. As reported by the author, the impact in the northern hemisphere was relatively smaller. The 
third factor is satellite orbital drift. Despite SZA correction and normalisation of surface temperature 
there were observed relatively low values for the year 1999 and 2000, which are due to the orbital drift 
of NOAA-14 (Figure 23) and related negative effects (BRDF effects and atmosphere induced effects). 
The correction for SZA, as it was performed, was not sufficient, as this is shown also in Figure 5. At 
launch the typical time of day for the NOAA-AVHRR afternoon observation is 1:30 pm local solar 

 
Figure 22 : Deviation of unfiltered GVF and NDVI to their long term 
mean for pixels of a (unfiltered) cold abundance between 20 – 30 %. Only 
‘stable’ pixels (no land use change supposed) were used. Data refers the 
first decade of May 1989 – 2005 for the Iberian Peninsula. 
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time, in 2000, the time of observation of NOAA-14 drifted past 5:00 local solar time. This has to be 
considered especially for long-term observations or analysis (e.g. trend analysis). Eidenshink (2008) 
e.g., did not consider the year 2000 data for long term means. 
 
To get a better understanding of the data around the critical year 2000, a comparison of three 
standardized time series ranging from 1998 – 2004 were carried out and displayed in Figure 23. The 
first time series comprised the MEDOKADS NDVI (not scaled), the second one represents the results 
of unmixing, i.e. the GVF time series. The FAPAR data  (Gobron et al. (2000); http://fapar.jrc.it/) is 
shown as a reference. In order to avoid effects from specific land cover types, the test was applied to 
the whole Iberian Peninsula, using pixels with no land cover change. To detect the stable areas, CLC 
1990 and CLC 2000 was used (EEA, 2004).  Also, the data was aggregated to yearly mean values to 
reduce effects of seasonality. The standardization of the data was carried out as z-score normalisation 
(also referred to as autoscaling or zero-mean normalisation). Here, the values for an attribute U are 
normalized based on the local mean ū (1998 – 2004) and the local standard deviation s of U. 
 

s
uUu −

=′             (9) 

  
Figure 23 shows NDVI and GVF with a strong depression in the year 2000, while FAPAR, being 
based on a different sensor (SeaWIFS), is relatively stable. NDVI and GVF exhibit an almost identical 
run (years 1999, 2001 and 2002), GVF being closer to FAPAR in 1998, 2000, 2003 and 2004. This 
comparison, however, is indicative, note, that for a proper comparison a longer time span would be 
needed. 
 

 
 
Figure 23 : z-score comparison for GVF, NDVI and FAPAR, 
averaged for the Iberian Peninsula. Only pixels with stable land 
cover were used. Z-score calculation was computed over the 
years 1998-2004 only. 
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Comparison with independent data 
GVF was compared with independently derived vegetation cover (fCover) estimates for VALERI 
network2 test sites. Within VALERI, a methodology has been developed to derive biophysical 
parameters at spatial resolution of large swath satellites from ground measurements. Each field 
measurement site comprises a flat area of 3km x 3 km, which is relatively homogenous. Sampling is 
done for selected elementary units (20 m x 20 m) that represent the variability observed within the 
whole site. Gap fraction (which is the bare soil percentage seen from a given viewing angle equals the 
1- % cover at nadir) measurements were performed either with LAI2000 Plant Canopy Analyser (Li-
Cor) or hemispherical photographs. Accordingly, fCover was defined as the percentage of soil covered 
by vegetation between 0 º and 7º view zenith angle In order to upscale the ground measurements to 
corresponding high resolution SPOT imagery empirical transfer functions and co-kriging techniques 
were applied. Detailed description of sites, field measurements and retrieval of vegetation cover from 
SPOT HRV is given for each site on the VALERI network website. The sites vary in land cover type 
and in the timing of ground truth measurements / SPOT HRV data acquisition (see Table 3). 
The RMSE (cross-validated) for transfer functions from ground measurements to SPOT data was 
given in the range from 0.1 – 0.22 for the different sites.  
 
Table 3 : Test sites of VALERI network for comparison with GVF values. 

VALERI site Abbreviation Land cover SPOT image 
acquisition 

Decade from GVF 
time series 

Nezer NEa 
 

pine forest 20/07/2000 & 
01/08/2000 

21/2000 

 NEb  02/04/2001 10/2001 
 NEc  20/06/2001 17/2001 
 NEd  21/04/2002 12/2001 
Haouz HA crops 04/03/2003 & 

25/03/2003 
08/2003 

Les Alpilles AP crops 20/07/2002 20/2002 
Plan-de-Dieu PD crops 29/06/2004 18/2004 
Puéchabon PU Mediterranean forest 

(oaks) 
12/06/2001 17/2001 

Sud-Ouest SU crops 20/07/2002 20/2002 
Le Larzac LA grassland  12/07/2002 20/2002 

Barrax BA crops 03/07/2003 19/2003 

 

                                                 
2 http://www.avignon.inra.fr/valeri/ 
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For the comparison SPOT HRV fCover of 20 m resolution was aggregated to 1 km resolution. Mean 
values and standard deviation of fCover and GVF, as shown in Figure 24, were derived from a matrix 
of 3 x 3 pixels from both datasets.   
Certainly, different geometrical issues have to be considered when comparing different products: the 
geo-location accuracy, the point spread function (PSF) and the projection system. As the VALERI 
network provides only a subset of the SPOT HRV data for each test site (in most cases 151 x 151 
pixels) a co-registration of GVF and Spot HRV data was not feasible.  
The revealed relation between GVF and fCover is linear. GVF values result in average 15 % higher. 
Differences in SPOT fCover estimates between June 2000 (NEa) and July 2001(NEc) for test site 
Nezer, which do not occur in the GVF, may be explained with problems during the field measurements 
after a storm event in 1999 and a modified sampling protocol in 2001 as reported by Guyon (2000, 
2001).  

 
a) b) 
Figure 24 : Comparison of (a) GVF and (b) approximated fractional vegetation cover (see eq. 11) with vegetation 
cover derived by high resolution imagery stemming from SPOT HRV for VALERI test sites. Values are averaged 
over 3 km x 3 km. Error bars give standard deviation. For abbreviations see Table 3. 
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For selected VALERI sites with different land cover types, GVF was compared with the CYCLOPES 
(Carbon cYcle and Change in Land Observational Products from an Ensemble of Satellites) fCover 
product. The CYCLOPES algorithm for the derivation of biophysical variables (LAI, fapar and 
fCover) from SPOT VEGETATION is based on training of neural networks over SAIL + PROSPECT 
radiative transfer model simulations for each biophysical variable (Baret et al., 2007). Inputs of the 
networks are made of the median value of the sun zenith angle observed during the compositing period 
and normalized top of canopy nadir reflectance in three VEGETATION bands 2 (645 nm, ∆λ 70 nm), 
3 (835 nm, ∆λ 70 nm), and Short Wave Infrared (1165, ∆λ 170 nm). FCover refers only to the green 
vegetation elements. Products and detailed documentation are available at 
http://postel.mediasfrance.org. For the comparison CYCLOPES product version 3.1 Level 3 B has 
been used. Figure 25 shows the scatter diagram of GVF and CYCLOPES fCover for 36 decades for 
each test site (including different years). Values for each site were averaged over 3 km x 3 km for both 
datasets. Again, the relationship between both estimates is linear with higher values for the GVF. A 
low maximum value (0.6) for the CYCLOPES fCover product is reported in the CYCLOPES product 
information (Medias France, 2006). CYCLOPES fCover values for the site Puechabon (Mediterranean 
oak forest dominated by Quercus ilex) are lower than 0.4 throughout the year in contrast to GVF with 
values at about 0.7. The vegetation cover estimate from high resolution SPOT from June 2001 
indicates a ‘true cover’ between values from both data sets. Furthermore CYCLOPES fCover for this 
site shows a seasonal variation of vegetation cover which can not be observed in the GVF (Figure 26 
a). The SPOT VEGETATION NDVI shows no seasonal variation in agreement with GVF.  
 

 
a) b) 
Figure 25 : Comparison of GVF (a) and approximated fractional vegetation cover (b, see eq. 11) with vegetation cover 
derived from SPOT VEGETATION for VALERI test sites Values are averaged over 3 km x 3 km. 
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a) b) 

Figure 26 : Temporal profile of (a) GVF (black o), SPOT VEGETATION fCover (blue o) and SPOT NDVI (green 
o), (b) fractional cover from GVF (black o), SPOT VEGETATION fCover (blue o) and fractional cover from SPOT 
NDVI (green o) for Puechabon in 2001. Values are averaged over 3 km x 3 km. Standard deviation is indicated (--). 
FCover estimate from the high resolution SPOT data is given (average 3 km x 3 km) in red (*) with standard 
deviation (-). For the derivation of fractional cover from GVF and SPOT NDVI see eq. 11 and eq. 10. 
 
 
 
The results shown in Figure 24 a, Figure 25 a and Figure 26 a clearly indicate that our obtained GVF 
values are higher than CYCLOPES fCover. A literature research revealed that there was found in 
several cases a relation between a scaled NDVI and fractional vegetation cover. The close relation 
between GVF and the scaled NDVI (almost 1:1) allowed an approximate calculation of fractional 
vegetation cover, as outlined below.  
 
Choudhury et al. (1994) and Gillies & Carlson (1995) independently obtained an identical square root 
relation between a scaled NDVI and fractional vegetation cover, which was later confirmed by 
findings of Carlson & Ripley (1997) (see equation 10). Fractional vegetation cover is defined as green 
vegetation cover per unit horizontal surface area. 
 
Fractional vegetation cover ( )2

scaledNDVI≈  (10)

  
Our obtained GVF was highly correlated to the scaled NDVI, as can be seen from Figure 12. The 
relation was almost 1:1, with slightly higher values for GVF, especially in the higher ranges. Assuming 
a direct 1:1 linear relation between the scaled NDVI and GVF, the square of the ‘corrected’ GVF 
should be a real measure of fractional vegetation cover, comparable to the CYCLOPES fCover.  
 
Fractional vegetation cover ( )2GVF≈  (11)

 
A comparison of calculated fractional vegetation cover according to equation 11 on one side and 
SPOT HRV fCover and CYCLOPES fCover on the other side is shown in Figure 24 b and Figure 25 b.  
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Discussion 

Advantages of this Unmixing approach 
NOAA AVHRR is the longest available remote sensing time series. It is known that this satellite 
system is affected by some undesirable properties, e.g. high oscillations due to a bad signal to noise 
ratio or weak geometrical accuracy. Unlike a simple NDVI, which uses 2 channels only, the Unmixing 
is based on 4 NOAA AVHRR channels and built on a physically based relationship between ratios or 
combinations of these channels. Certainly, Unmixing is depending on the base data as well as a 
vegetation index, but mitigates the risk of erroneous data propagation due to its multi-dimensional 
approach. 
 
Another advantage of the Unmixing has to be regarded the fact, that this technique delivers three basic 
outcomes, a vegetation abundance, a bare soil abundance and a cold abundance. All of them can be 
utilized per se and present subpixel information. For obvious reasons the main focus of our data 
derivation was the vegetation abundance, which we normalised (see Eq. 7) and hence corrected for the 
existence of the cold abundance (fourth outcome). The normalised vegetation fraction (GVF) 
represents a refined product for vegetation estimates, corrected for effects that lower the surface 
temperature of the surface, e.g. effects related to altitude and exposition, temperature variations due to 
soil moisture, variable evapo(transpi)ration and remaining atmospheric effects and cloud artifacts. 
Moreover, the position in the Unmixing triangle allows conclusions about occurring 
evaporation/transpiration potential. 
 
While direct NDVI transferability of different sensors is critical, the GVF represents a better 
standardized and hence comparable product, which could be derived from any sensor delivering the 
necessary input variables NDVI and Ts. This comparability was shown for Landsat TM derived GVF 
and NOAA AVHRR derived GVF for the Ayora region in Spain by Stellmes et al. (2005). The 
relationship between both data sets was linear, almost 1:1.  
 
The comparison with independently derived fractional vegetation cover shows clearly, that GVF 
contains considerable volumetric vegetation information, similar as NDVI does. Although the name 
Green Vegetation Fraction might be misleading in this sense, it was kept for historical reasons. 
However, the term ‘normalized vegetation abundance’ would reflect better the real properties of the 
parameter. GVF data is higher in comparison to CYCLOPES fCover although these validation data 
might be too low in general, as stated by the authors themselves. GVF may be considered an improved 
vegetation index which is similar to NDVI, as for the volumetric vegetation information. Most 
important improvements of GVF in comparison to NDVI are the atmospheric disturbance mitigation 
and the widening of range (scaling). Also the derivation of useful by-products from the unmixing 
process and the enhanced cross-comparability of the data are valuable. 
The approximation of a real fractional vegetation cover by squaring GVF leads to close results to the 
CYCLOPES fCover and confirms this approximation technique reported in literature. 

Assumptions and limitations 
As reported above, the approach is based on an inverse relationship between NDVI and surface 
temperature Ts. This inverse relationship is best pronounced during the growing cycle, when some 
vegetation is on ground and acts as cooling agent. On the contrary, the relationship is not inverted for 
regions with extreme cold conditions, when vegetation acts as a warming rather than a cooling agent. 
Hence, this approach is limited to areas of moderate warm or hot temperatures and does not apply, e.g. 
for high mountainous regions.  
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Other regions of limited suitability for this approach are wetlands or areas of high moisture content. 
The presence of surface water biases the relationship NDVI-Ts as the cooling effect does mainly 
derive from the surface water. These areas, however, are recorded by the system as areas with a high 
‘cold’ abundance and are eventually excluded. 
 
Also, over evergreen forests, without a moisture availability constraint, the Ts-NDVI relation is 
modified compared to water limited environments. This is often the case in the tropics. At the scale of 
a decade the slope of the Ts-NDVI relation is positive (Lambin & Ehrlich, 1996). However, this does 
not apply for the Mediterranean area with its classical dryland areas. 
 
A crucial issue for unmixing is the identification of the endmembers (EM). Since scaling of the data is 
determined by the EMs, these should be chosen with care. In order to guarantee the comparability of 
the derived data, windows for the extraction of EMs were kept large. Still, the different climatic 
conditions for Western and Eastern Europe are attempted to be treated differently by the two chosen 
windows. 
 
The quality of the derived GVF data set depends considerably on the base MEDOKADS data. 
Although enormous effort was put into correction of the MEDOKADS base data, there are still 
deficiencies, as reported earlier e.g. the decline of the year 2000 mainly due to the late overpass of 
NOAA14 in its late operating period. Even though some problems could be mitigated by empirical 
approaches, some deficiencies linked to atmospheric effects and illumination effects (BRDF) could not 
be fully corrected. In comparison to the NDVI, the GVF was generally showing a run closer to the 
independent data set FAPAR.  
 
An additional factor to consider is the switch from AVHRR/2 to AVHRR/3 instrument, which 
occurred after the year 2000. The effect of AVHRR/3 is generally a higher NDVI, due to different 
band widths in the red and infrared wavelength range. The switch can not be easily corrected and was 
hence not corrected at all for MEDOKADS. The effect is expected to be mitigated by (decadal) 
Unmixing. A proper demonstration of positive Unmixing effects on the ‘instrumental switch’ is 
difficult since the ‘orbital drift’ effect is overlaid. 
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Conclusions 
Main outcome of this project is a post-processed and validated data base of Green Vegetation Fraction 
for the period 1989-2005, covering the Mediterranean. The data is freely available for scientific 
purposes.  
 
This methodology uses 4 channels of NOAA AVHRR and a physical relationship between surface 
temperature and NDVI. Though the known weaknesses of NOAA AVHRR the unmixing approach 
represents a technique potentially mitigating base data uncertainty by redistribution onto more 
channels and its relationships.  
 
One of the added values of this technique is the outcome of endmember abundances, each of them 
utilizable as standalone products or in combination. In fact, the cold abundance was used to normalize 
GVF for ‘undesired effects’, mainly stemming from poor atmospheric conditions. In contrast to a 
simple NDVI, the positive effect of the cold abundance, improving the GVF, could be clearly shown. 
Moreover, the abundances represent subpixel information, exploiting further the limited NOAA 
AVHRR potentialities.  
 
In this investigation, in comparison to a scaled NDVI, it could not be found a higher sensitivity of 
GVF for scarcely vegetated areas, as this was expected. However, the higher sensitivity is certainly 
given in comparison to a non-scaled NDVI, due to the extended range of GVF, exploiting the full 
margin within statistically derived limits.  
 
It could be shown that the GVF is closer to the FAPAR data set than NDVI data. Considering the 
stability of FAPAR data for the investigated region and time period, GVF data, since it is less affected 
by extremes, can be considered as a more robust and hence a more reliable data set than NDVI. The 
applied unmixing technique can contribute to an improved data set, which is especially important for 
an accurate trend analysis. 
 
As literature studies and our own analyses showed, GVF is still not a real fractional vegetation cover, 
as it contains also volumetric information about vegetation (similar to NDVI). An approximation of a 
real fractional vegetation fraction may be derived by squaring the GVF. Validation with independently 
derived data showed good agreement. 
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Abstract 
 
NOAA AVHRR data stemming from the MEDOKADS archive and ranging from 1989 to 2005 was processed 
and decomposed into their fractions of the vegetated, non-vegetated and the so called ‘cold’ endmember. 
Decomposition occurred via Linear Unmixing within a triangle spanned up by NDVI (y-axis) and surface 
temperature (x-axis), separately for each of the 612 10-day composites. Endmembers were derived statistically 
using percentiles and the inverse relationship between NDVI and Ts. The cold endmember was fixed at -20 
degrees Celsius, the vegetated endmember at NDVI = 0.7, the latter was then empirically corrected for 
illumination effects. Linear Unmixing occurred for the whole Mediterranean area, separately for a western and 
eastern window. Outcomes are the vegetation abundance, soil abundance and ‘cold’ abundance, indicating the 
individual coverage of a pixel by each of these. The vegetation abundance was re-scaled to the so-called Grenn 
Vegetation Fraction (GVF), re-distributing the “cold” abundance on vegetation and soil abundance 
proportionally. Unmixing led to a higher stability of GVF data in comparison to NDVI data with regard to 
atmospheric effects. The data was post-processed for missing values and outliers and it was filtered. The GVF 
shows close parallelism on several test sites in comparison to a re-scaled NDVI within the endmember limits. 
The positive effect of the cold abundance, which is amongst other accounting for negative effects from poor 
atmospheric conditions and which was used to improve the GVF, could be clearly shown. Comparison with high 
and low resolution SPOT data shows a linear relationship and higher values for GVF. Squared GVF values were 
found to be closely correlated with independently derived high and low resolution vegetation cover (fCover), 
confirming this relationship known from literature. Coefficients of determination (R2), slope and offset of linear 
relations between squared GVF on one side and the two validation data sets on the other side were 0.69, 0.91, 
0.07 and 0.58, 1.27, 0.06, respectively. In addition to the ‘per se’ value of the derived abundances, validation 
results indicate that squared GVF may be used as approximation for vegetation cover. 
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