
 1

 
 
 
 
 

Calibration of the LISFLOOD 
model for Europe: current 
status and way forward 

 
 
 
 
 
 
 

Luc Feyen  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2005         EUR 22125 EN 
 
 



 2

 
 
 
 



 3

LEGAL NOTICE 
 
 

Neither the European Commission nor any person 
acting on behalf of the Commission is responsible for the 
use which might be made of the following information.  

 
 
 
 
 
 
 
 
 

A great deal of additional information on the 
European Union is available on the Internet. 
It can be accessed through the Europa server 

(http://europa.eu.int). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© European Communities, 2005  
Reproduction is authorised provided the source is acknowledged  

Printed in Italy



 
 
 



 5

Abstract 

The hydrological model LISFLOOD model forms the core of the European Flood Alert 

System (EFAS) and is used for impact studies to evaluate the effect of changes in land 

use and climate on the hydrological behaviour in catchments across Europe. The 

accuracy of the model predictions depends on the ability of the model to capture the 

dominating hydrological processes that transfer precipitation into river runoff at the 

catchment scale, and on its ability to reproduce historical time series of observed river 

discharges. A crucial step which contributes significantly to the accuracy of the 

LISFLOOD forecasts and simulations is the calibration of the model for all European 

catchments. Owing to the general nature of LISFLOOD, its application to any given 

river basin requires that certain parameters of conceptual functions be identified for the 

particular basin. An automatic calibration procedure has been developed for 

LISFLOOD, based on the Shuffled Complex Evolution Metropolis (SCEM-UA) global 

optimization algorithm [Vrugt et al., 2003]. The algorithm automatically searches 

through the space of feasible parameter values and finds the parameter values that 

produce the best model performance. It also yields a posterior parameter distribution, 

which reflects the residual uncertainty about the model parameters after taking into 

account the discharge observations. The posterior distribution forms the basis for 

making probabilistic flow predictions. To overcome the computational burden the 

optimization has been implemented using parallel computing. This document outlines 

the automatic calibration method and shows results for the Meuse and Morave 

catchments.  
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1. General situation of the problem 

The hydrological model LISFLOOD [De Roo et al., 2000; 2001] model forms the core 

of the European Flood Alert System (EFAS) and is used for impact studies to evaluate 

the effect of changes in land use and climate on the hydrological behaviour in 

catchments across Europe. LISFLOOD is a spatially distributed, partly physically-based 

hydrological model embedded within a PCRaster GIS environment. The model 

simulates river discharges in drainage basins as a function of spatial information on 

topography, soils and land cover. The accuracy of the model predictions depends on the 

ability of the model to capture the dominating hydrological processes that transfer 

precipitation into river runoff at the catchment scale, and on its ability to reproduce 

historical time series of observed river discharges. 

 

A crucial step which contributes significantly to the accuracy of the LISFLOOD 

forecasts and simulations is the calibration of the model for all European catchments. 

Owing to the general nature of LISFLOOD, its application to any given river basin 

requires that certain parameters of conceptual functions be identified for the particular 

basin. In the process of calibration, the values of unknown model parameters are tuned 

such that the model matches the observed predictions as closely as possible.  

 

During the early stages of the EFAS project, the LISFLOOD model has been crudely 

calibrated, without taking due account of the spatial variability of the parameters over 

the different hydrological regimes across Europe. A set of 240 parameters realizations 

was generated, and for large catchments the parameter set was chosen that best 

reproduced a time series of observed river discharges at the outlet. For ungauged 

catchments the parameter set that gave the best prediction in most other catchments was 

used. The underlying assumption was that the 240 parameter realizations were a 

representative sample of the feasible parameter space.  

 

More recently, several detached national experts have been working on a more detailed 

calibration of the LISFLOOD model for the Danube and Elbe catchments, typically by 

manually adjusting the parameters while visually inspecting the agreement between the 

observed and simulated discharges. However, the subjective and time-consuming nature 

of the trial-and-error method renders this method unappealing for use at a European 
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scale. The large number of catchments for which the model needs to be calibrated calls 

for an automatic parameter estimation procedure. Besides shortening the 

implementation time this will also enhance the reliability of the calibrated parameters 

due to a more exhaustive exploration of the parameter space. 

 

An automatic calibration procedure has been developed for LISFLOOD, based on the 

Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm 

[Vrugt et al., 2003]. The algorithm automatically searches through the space of feasible 

parameter values and finds the parameter values that produce the best model 

performance. It also yields a posterior parameter distribution, which reflects the residual 

uncertainty about the model parameters after taking into account the discharge 

observations. The posterior distribution forms the basis for making probabilistic flow 

predictions. To overcome the computational burden the optimization has been 

implemented using parallel computing. 

 

The work done on the calibration in 2005 resulted in one paper in the proceedings of the 

International Conference on Innovation, advances and implementation of flood 

forecasting technology in Tromsø [Feyen et al., 2005a], an oral presentation at the 

American Geophysical Union Fall Meeting in San Francisco [Feyen et al., 2005b], an 

article submitted to Journal of Hydrology [Feyen et al., 2006a], and a manuscript in 

preparation [Feyen et al., 2006b].   

 

The aim of this document is to provide an overview and some results of the calibration 

work of the LISFLOOD model that has been carried out during 2005. The document is 

organised as follows. Section 2 provides details about the automatic calibration 

procedure and its implementation. Some results are presented in Section 3. Conclusions 

and further work can be found in Sections 4 and 5. 

 

2. Automatic calibration of the LISFLOOD model employing the 
Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm 

This section describes the Bayesian inference method adopted for the calibration and 

parameter uncertainty assessment of the LISFLOOD rainfall-runoff model. First, a 

generic mathematical formulation of the Bayesian procedure for hydrological inversion 
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is provided. The second part of this section details the SCEM-UA optimisation code 

used to perform the computations. Details on the parallel implementation of SCEM-UA 

conclude the section. 

 

In Bayesian inference knowledge and uncertainty about variables is summarised in 

probability distributions. In what follows, we use the notation )(p  for probability 

density functions, )(L  for likelihood functions, and a vertical bar to indicate 

conditioning. Arguments on the left side of the vertical bar denote the variables of the 

density; arguments on the right side of the bar denote the fixed values on which the 

density is conditioned. 

 

2.1. Bayesian framework for hydrological parameter estimation 

Calibration or inverse problems arise anywhere data are collected that are related to 

unknown quantities by a mathematical model. The unknown quantities here are the 

hydrological properties of the river basin under study (e.g., hydraulic properties of the 

soil, storage or surface routing properties), with the collected data given by observed 

responses of the system (e.g., river stage or discharge, soil moisture content, 

groundwater table elevation). The Bayesian approach to the non-linear calibration or 

inverse problem is the transfer of information from the observed system responses to the 

unknown quantities, hereby updating the probability density functions that describe the 

uncertainty about the unknown variables.  

 

The functional form, here the non-linear hydrological model LISFLOOD, relating the 

system responses with the unknown quantities can be written as 

 

),(FF ξθy =            (2.1) 

 

where T
F,F,2F,1F ),...,,(

ynyyy=y  is the functional output, θnℜ⊂Θ∈θ  is the vector of 

model parameters representing the unknown hydrological river basin properties, and 
ξnℜ⊂Ξ∈ξ  comprises the forcing inputs to the hydrological model, such as 

precipitation or ET0 rates, recharge or discharge fluxes at boundaries, and 

withdrawal/injection rates.  
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Omitting from the notation the inputs ξ  to the hydrological model that are assumed to 

be known and fixed, the relation between the observed system responses 
T

21 ),...,,(
ynyyy=y  and the model predictions is given by  

 

)(F θεyy y+=           (2.2) 

 

where T
,2,1, ),...,,(

ynyyyy εεε=ε  is the vector of modelling residuals, which contains 

various sources of potential prediction errors. The functions we employ, even the most 

elaborate physically-based models, cannot reflect the true complexity and are 

necessarily simplifications of the processes occurring in the field. Aggregation and 

lumping of processes in space and time leads to parameter identification errors. Also, 

observations of system responses are prone to measurement errors.  

 

To implement Bayesian inference, a probability density function with parameters 
ψnℜ⊂Ψ∈ψ  needs to be specified for the residuals that is consistent with the available 

information about the errors. The joint conditional distribution ),( ψθε yp  describes the 

distribution of the residuals, given θ  and the parameters ψ  of the assumed error model. 

This expression, seen as a function of θ  and ψ , is called the likelihood function, and 

expresses the likelihood of observing the residuals given θ  and ψ . Since the structure 

of )(F θ  is known, the likelihood function is actually proportional to the probability 

distribution of the observed system responses, i.e., ),(),( ψθyyψθ pL ≡ . Parameter 

values that closely reproduce the observed system responses will be characterised by 

high likelihood values.  

 

The information contained in the observed system responses, by means of the likelihood 

function ),( yψθL , is used to update the prior information of the parameters θ , 

expressed by the prior distribution )(θp , and the prior information about the error 

model, expressed by the prior distribution )(ψp . The prior distributions may be defined 

based on other data sets or a modeller’s experience and physical intuition. Assuming 

conditional independence between )(θp  and )(ψp , Bayes’ theorem gives 
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)()(),(),( 1 ψθyψθyψθ ppLCp y
−=         (2.3) 

 

where ∫ ∫
Θ Ψ

∂∂= ψθψθyψθ )()(),( ppLCy  is the normalising constant, provided the 

integral exists.   

 

The marginal posterior distribution )( yθp  is then obtained by integrating the joint 

posterior distribution ),( yψθp  over the nuisance parameters ψ  of the error model  

 

∫
Ψ

∂= ψyψθyθ ),()( pp          (2.4) 

 

The conditional distribution )( yθp  reflects the uncertainty about the model parameters 

after the observations of the system responses have been considered. It forms the basis 

for making predictions about the system responses with the model. For any future time 

step it  the predictive distribution of the system responses is then given by the 

expression  

 

∫
Θ

∂= θyθθyyyy )(),()( ppp
ii tt         (2.5) 

 

Summarising statistics about the flow predictions, such as measures of the central 

tendency or spread, or the probability of exceeding a user-defined threshold, are readily 

obtained from this probability density function. 

 

2.2. Shuffled Complex Evolution Metropolis Algorithm 

Typically, for hydrological problems the joint posterior parameter distribution )( yθp  is 

highly dimensional and complex, with strong non-linear parameter interdependences. 

Hence, )( yθp  is not easily amenable to direct sampling or analytical integration and it 

is necessary to resort to Monte Carlo methods to approximate the distribution. Since we 

do not know the form of the joint posterior distribution in our context, we adopt a 

Markov Chain Monte Carlo (MCMC) approach to compute )( yθp . In particular, we 
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employ the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm [Vrugt et 

al., 2003], which uses the Metropolis-Hastings [Metropolis et al., 1953; Hastings, 1970] 

search strategy to generate a sequence of parameter sets { }nθθθ ,...,, 21  that adapts to the 

target posterior distribution.  

 

The SCEM-UA algorithm starts with generating an initial population of s parameter sets 

sampled from the joint prior parameter distribution )(θp . The latter constrains the 

parameter space and represents the belief about the parameters before any data are 

collected. Independent uniform prior parameter distributions between realistic lower and 

upper bounds are typically adopted for each parameter in θ . This implies that the 

information in the data, expressed by the likelihood function, should dominate the form 

of the resulting posterior distribution. Note that the assumption of prior independence 

among the parameters is by no means necessary and can be relaxed only at the cost of 

making computations more burdensome.  

 

Assuming that the residuals T
,2,1, ),...,,(

ynyyyy εεε=ε  are mutually independent, 

normally distributed with a constant variance εσ , the likelihood of each parameter set 

θ  given the observations y  is computed using [Box and Tiao, 1973] 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑

=

yn

i

iL
1

2
)(

2
1exp),(

εσ
υ θyψθ         (2.6) 

 

where 

 

)()()( , iiFi yGyG −=θυ           (2.7) 

 

The transformation (.)G  of the simulated and observed system responses allows to 

handle non-normality, lack of variance homogeneity and autocorrelation of error terms 

in the residuals. The parameter of the error model, i.e., εσ=ψ , is treated as a 

hyperparameter whose uncertainty is accounted for by marginalisation. Assuming a 

non-informative prior εε σσ 1~)(p , and given the uniform prior parameter 
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distributions adopted, the posterior density for each parameter set θ  given the 

observations y  is obtained using [Box and Tiao, 1973] 

 

ynN

i
iCp

2
1

1

21 )()(
−

=

−
⎥
⎦

⎤
⎢
⎣

⎡
= ∑ θyθ υ          (2.8) 

 

where  ∫ ∑
−

=
⎥
⎦

⎤
⎢
⎣

⎡
= θθ δυ

NN

i
iC

2
1

1

2)(  is the normalising constant. 

  

Once the posterior density has been computed for the s parameter combinations of the 

initial sample using (2.8), the population is partitioned into q complexes. In each 

complex a parallel sequence is launched from the point with the highest posterior 

density. New candidate points are generated employing a multivariate normal 

distribution centred around the current draw of the sequence or the mean of the points in 

the complex augmented with the covariance structure induced between the points in the 

complex. Equation (2.8) is used to compute the posterior density of new candidate 

points, which are added (by random replacement) to the current sequence based on the 

Metropolis-annealing [Metropolis et al., 1953] criterion. After a predefined number of 

iterations the complexes are shuffled to share information gained independently in the 

parallel sequences. This series of operations yields a robust MCMC sampler that 

efficiently and effectively searches the parameter space and converges to the target 

distribution for a sufficiently large number of iterations (typically > 2,500 iterations).   

 

2.3. Implementation of SCEM-UA using parallel computing 

Due to the computational demands of the LISFLOOD model and the large number of 

iterations typically needed to obtain a stable posterior parameter distribution it was 

required to implement the SCEM-UA algorithm using parallel computing. We 

employed a LAM/MPI distributed computing interface for the Octave programming 

environment [Vrugt et al., 2005]. LAM/MPI is a high-quality open-source 

implementation of the Message Passing Interface specification that includes a rich set of 

features for parallel computing. GNU Octave [Eaton, 1998; 2001] is a high-level 

language, compatible with MATLABTM, that is intended primarily for numerical 
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computations. It provides a convenient command line interface for the numerical 

solution of linear and nonlinear problems, and for performing numerical experiments. A 

detailed description and explanation of the software appear in Fernández et al. [2003, 

2004]. The parallel implementation scheme of the SCEM-UA algorithm is presented in 

Figure 2.1. For the calibration of the 5 km Meuse catchment upstream of Borgharen 

(approximately 22.000 km2) the calculations were performed using 11 Pentium IV 3.40 

GHz processors of the LISA cluster belonging to the SARA parallel computing centre 

(the Netherlands). The CPU time required for the stochastic calibration of the 

LISFLOOD model for a 3-year simulation period with a daily time step and 10.000 

SCEM-UA generated parameters combinations was approximately 35 hours. 
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Figure 2.1. Flow chart of parallel implementation of SCEM-UA 

 

2.4. Model parameterisation 

Distributed models require a vast amount of data to represent the spatial distribution of 

the meteorological and hydrological characteristics of large river basins. A rigorous 

parameterisation procedure is crucial to avoid methodological problems during model 

calibration. Spatial patterns of the parameter values have to be specified such that 
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parameters reflect only significant and systematic spatial variations inherent in the 

available data. As such, the parameterisation process can effectively reduce the number 

of free parameters to be adjusted during calibration [Refsgaard, 1997].  

 

To avoid problems of over-parameterisation and to reduce the dimensionality of the 

model calibration, input parameters and variables of LISFLOOD are estimated a priori 

from available data bases as much as possible. For example, soil physical properties are 

derived from the European Soil Geographical Database [King et al., 1994]. The 

HYPRES database [Wösten et al., 1999] is used to estimate porosity, saturated 

hydraulic conductivity and moisture retention properties for each texture class. 

Vegetation and land use information are obtained from the Corine land cover database 

[EEA, 2000]. Meteorological parameters are extracted from the MARS Meteorological 

Database. Digital elevation data are obtained from the Catchment Information System, 

which has a spatial resolution of 1 km [Hiederer and De Roo, 2003].   

 

Although LISFLOOD is based on physics to a certain extent, some processes are only 

represented in a lumped conceptual way. As a result, some parameters lack physical 

basis and cannot be directly obtained from field data. In the current version of 

LISFLOOD, there remain five parameters that need to be estimated by calibration 

against measured stream flow records. The calibration parameters are tabulated in Table 

1, with the upper and lower bounds of the prior distributions used in the inverse 

procedure. The Upper Zone Time Constant (UZTC) and Lower Zone Time Constant 

(LZTC) reflect the residence time of water in the upper and lower groundwater zone, 

respectively. As such, they control the amount and timing of outflow from the 

respective groundwater reservoirs. The Groundwater Percolation Value (GWPV) 

controls the flow from the upper to the lower groundwater zone. The Xinanjiang 

parameter b (Xb) is an empirical shape parameter in the Xinanjiang model [Zhao and 

Lui, 1995] that is used to simulate infiltration. In controls the fraction of saturated area 

within a grid cell that is contributing to runoff, hence it is inversely related to 

infiltration. The Power Preferential Bypass Flow parameter (PPBF) is an empirical 

shape parameter in the power function relating preferential flow with the relative 

saturation of the soil.  
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Table 2.1. Calibration parameters of the LISFLOOD model with upper and lower 

bounds of the prior uniform distributions.  

Parameter Lower bound Upper bound 

Upper Zone Time Constant (UZTC) 1 10 

Lower Zone Time Constant (LZTC) 10 5000 

Ground Water Percolation Value (GWPV) 0 0.5 

Xinanjiang parameter b (Xb) 0.05 0.5 

Power Preferential Bypass Flow (PPF) 5 15 
 

 

3. Calibration results 

So far, the automatic calibration procedure has been tested and implemented for several 

pilot basins, including catchments and subcatchments of the Meuse (both the 5 and 1 

km model), the Saone, the Odra and the Danube. In this section some results are 

presented. The first part presents results for the Meuse (5 km model) catchment 

upstream of Borgharen, where the 5 calibration parameters were uniformly distributed 

over the catchment. In the second part, some results are presented about an exercise to 

evaluate the minimum level of spatial detail of the 5 unknown parameters for simulating 

river discharges in large-scale river basins. 

 

3.1. Uniform parameter calibration for the Meuse catchment 

Results are presented for the Meuse catchment upstream of Borgharen. This part of the 

Meuse catchment covers an area of approximately 21,000 km2 and is situated in 

Belgium, France, and the Netherlands. The Meuse is fed mainly by rain all year round; 

hence flows are generally highest in winter, with relatively low flows during the 

summer. The topography of the area is hilly with the elevation varying from 50 m to 

700 m. The substrata are largely impervious, resulting in precipitation that is discharged 

quickly into the river. The predominant land use types are forest, agriculture (cultivated 

patterns and pasture), moor and heath.  

 

In the model, the area was discretised in 5 by 5 km grid blocks. Daily observed 

discharges are available for the Borgharen gauging station. The model was run with a 

daily time step. The simulation period in the calibration spanned 1/10/1992-30/09/1995. 
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The first year was used as a warming-up period, hence only predicted discharges for the 

last two years were used for the calibration. For validating the model, observations from 

10/1/1990-30/9/1992 were used.  

 

Several important assumptions underlie the use of 2.6 as a likelihood function in the 

derivation of the posterior parameter distribution, namely that the residuals are 

uncorrelated in time and normally distributed with constant variance. If these 

assumptions are not met, the posterior parameter distribution may not adequately 

describe parameter uncertainty, and the derived predictive uncertainty bounds may be 

erroneous. The transformation (.)G  in 2.7 of the simulated and observed system 

responses allows to handle non-normality, lack of variance homogeneity and 

autocorrelation of error terms in the residuals. In this work, we only account for non-

normality and heteroscedastic errors by applying a Box-Cox transformation with λ = 0.4 

to the observed and simulated discharge series. The validity of these assumptions is 

evaluated later in this section using diagnostic checks. Correlation of the residuals in 

time can be accounted for by fitting autoregressive (AR), moving average (MA) or 

mixed (ARMA) error models to the residuals [see e.g., Sorooshian and Dracup, 1980; 

Kuczera, 1983; Bates and Cambell, 2001].  

 

The SCEM-UA algorithm was run with a population sizes s = 250 and q = 10 

complexes, or 25 points in each complex. Convergence of the MCMC sampler to a 

stationary distribution was evaluated using the Scale Reduction score ( SR ) defined by 

Gelman and Rubin [1992]. If the scale reduction score is less than 1.2, the Markov chain 

is considered to be converged; otherwise, more runs are needed. In Figure 3.1 calculated 

values of SR  are plotted against the number of MCMC iterations. The line plots 

indicate that for all parameters the parallel sequences converged to the target 

distribution after approximately 3000 iterations.  
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Figure 3.1. Evolution of the Gelman and Rubin Scale Reduction score for LISFLOOD 

calibration parameters 

 

The rapid convergence is confirmed by the evolution of the samples generated in the q = 

10 sequences presented in Figure 3.2. Initially, parameter values are sampled from the 

feasible parameter space defined by the prior parameter distributions. After this initial 

exploration of the parameter space, the sampler discards parameter regions with low 

posterior probabilities. For the UZTC, GWPV, Xb, and PPF parameters, the SCEM-

algorithm rapidly occupies only a small range of the initial parameter ranges. For the 

LZTC no clear defined region of attraction exists.  
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Figure 3.2. Markov Chain Monte Carlo samples generated in the q = 10 sequences for 

the LISFLOOD calibration parameters 

 

Figure 3.3 presents the marginal posterior probability distributions for the LISFLOOD 

calibration parameters constructed using 7,000 samples generated after convergence of 

the SCEM-UA algorithm. Note that for all parameters but the LZTC the limits of the x-

axis in Figure 3.6 do not correspond to the range specified for the respective prior 

uniform distributions. The summarizing statistics of the posterior parameter 

distributions together with the most likely parameter combination are presented in Table 

3.1. The posterior density for the UZTC and PPF approximate a normal distribution 
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centred around the optimal parameter values; hence, the posterior mean is close to the 

optimal parameter value. The well defined region of small values for UZTC reflects the 

short residence times in the upper groundwater zone. This means that water that has 

passed the soil zone is quickly discharged into the river channel, which can be related to 

the impervious subsoil strata present in large parts of the catchment. The high values for 

the PPF indicate that the contribution of preferential flow bypassing the soil zone is only 

significant under wet conditions. For the Xb parameter the posterior density also 

approximates a normal distribution, but it is truncated at the lower boundary of the prior 

distribution. The low posterior values for the Xb parameter show that runoff in the 

catchment is small unless the soil is nearly fully saturated. The posterior density for the 

GWPV parameter is concentrated on very low values, indicating that the amount of flow 

from the upper to the lower groundwater zone is limited. Indeed, analysis of the 

different components contributing to the total discharge showed that the outflow of the 

lower groundwater zone only accounts for 1.6%. The nearly negligible contribution of 

the lower groundwater zone also explains the approximately flat response surface for 

the LZTC parameter. The posterior distributions and standard deviations depict that the 

calibration parameters of the LISFLOOD model, except for the lower zone time 

constant, are well identifiable for the Meuse catchment using 2 years of measured daily 

discharges.  
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Figure 3.3. Marginal posterior probability distributions of the 5 LISFLOOD calibration 

parameters.  
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Table 3.1. Summarizing statistics of the posterior parameter distribution (optimal 

parameter set, posterior mean, standard deviation and correlation coefficients between 

the generated samples).  

parameter opt mean st dev UZTC LZTC GWPV Xb PPF 

UZTC 2.04 2.11 0.19 1 -0.07 0.07 0.71 -0.45 

LZTC 3142 2837 1251 - 1 -0.03 -0.01 0.01 

GWPV 0.03 0.03 0.01 - - 1 0.07 0.00 

Xb 0.11 0.12 0.04 - - - 1 -0.34 

PPF 11.8 11.6 0.62 - - - - 1 
 

 

Figure 3.4 presents scatter plots in two dimensions of the parameter space of the 7,000 

parameters sets sampled from the posterior parameter distribution. The top two plates 

are representative for the two parameters (LZTC and GWPV) that determine the slow 

groundwater response of the model. Due to the small contribution of the lower 

groundwater zone, these parameters show no correlation with the other calibration 

parameters, which is confirmed by the summarizing correlation coefficients presented in 

Table 3.1. The bottom three scatter plots and the corresponding correlation coefficients 

reveal that the parameters that affect the fast response of the model (UZTC, Xb and 

PPF), either through surface runoff or fast groundwater contribution, are correlated. 

This correlation can be explained as follows. A decrease in the value of Xb results in (i) 

more infiltration, hence an increase in soil moisture content and a higher flux out of the 

soil zone to the groundwater zone, and (ii) less surface runoff. The increased flux to the 

groundwater zone through infiltration can be compensated for by increasing the value of 

PPF, resulting in less preferential flow to the groundwater zone for the same moisture 

content (i.e., infiltration and preferential flow are ‘competing’ processes that recharge 

the upper groundwater zone). A decrease in surface runoff on the other hand is offset by 

smaller residence times in the upper groundwater zone, or lower values for the UZTC.  

 



 25

1 1.5 2 2.5 3

UZTC

0

1000

2000

3000

4000

5000

LZ
TC

1 1.5 2 2.5 3

UZTC

0

0.02

0.04

0.06

0.08

G
W

P
V

1 1.5 2 2.5 3

UZTC

0.05

0.1

0.15

0.2

0.25

bX

1 1.5 2 2.5 3

UZTC

9

10

11

12

13

14

15

P
P

F

9 10 11 12 13 14 15

PPF

0.05

0.1

0.15

0.2

0.25

bX

 

Figure 3.4. Scatter plots in 2 dimensions of parameter space of 7,000 MCMC sampled 

parameter sets for different combinations of parameters.  

 

To ensure that the posterior parameter distribution adequately describes parameter 

uncertainty we perform some diagnostic checks on the modelling residuals. Simulations 

of the hydrograph were obtained by running the LISFLOOD model for 7,000 parameter 

combinations sampled from the posterior parameter distribution. For each simulation 

the transformed residuals were obtained as the difference between the Box-Cox 

transformed observed and simulated discharge series. The normal probability plot of the 

mean transformed residuals (transformed residuals averaged over the 7,000 simulations) 
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shown in Figure 3.5 reveals that the residuals closely conform to a normal distribution. 

This was confirmed by the Kolmogorov-Smirnov and Lilliefors tests at a 5% 

significance level. The plot of the mean transformed residuals versus the transformed 

predicted runoff obtained with the most likely parameter set is shown in Figure 3.6, and 

does not display a strong dependence of the variability of the residuals on predicted 

runoff. However, the plot reveals that there is a tendency for small discharges to be 

overestimated. Figure 3.7 presents the autocorrelation function (ACF) of the mean 

transformed residuals. The ACF indicates that the transformed residuals are dependent 

in time, which could be corrected for using an autoregressive (AR), moving average or 

mixed (ARMA) model for the errors. Notwithstanding we did not apply any measures to 

correct for autocorrelation in the residuals, which could lead to reduced estimates of the 

parameter uncertainty, the MCMC approach offers a powerful tool for studying 

parameter uncertainty. 
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Figure 3.5. Normal probability plot for the mean transformed residuals. 
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Figure 3.6. Plot of mean transformed residuals against the transformed predicted runoff 

obtained with the most likely parameter set.  
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Figure 3.7. Autocorrelation function plot of the mean transformed residuals. The 

dashed lines depict the 95% confidence intervals about zero.  

 

Probabilistic predictions of the hydrograph were obtained from the discharge series 

simulated by the LISFLOOD model for 7,000 parameter combinations sampled from 

the posterior parameter distribution. Results for the calibration (10/1/1993-9/30/1995) 

and validation (10/1/1990-9/30/1992) period are presented in Figure 3.8 and Figure 3.9, 

respectively. The top plates in these figure show a plot of the observed discharges (dark 

line), the 95% prediction uncertainty associated with only parameter uncertainty (orange 

shaded area), and the 95% prediction uncertainty associated with the total error in terms 

of modelling residuals (yellow shaded area). The latter are computed as follows. The 

standard deviation of the error model, which is assumed constant in the transformed 

space, is obtained from the RMSE between the transformed observed discharges and the 

transformed simulated discharges using the most likely parameter set. For each of the 

7,000 simulations a constant error term equal to ±1.96*RMSE is added to the 

transformed discharges at each time step. The obtained prediction uncertainty limits in 

the transformed space are then transformed back to the original output space, which 

explains the varying width of the total prediction uncertainty limits with time. The 

bottom plates in Figure 3.8 and Figure 3.9 show the observed discharges (dark line) and 

prediction uncertainty expressed as a deviation from the hydrograph simulated with the 

most likely parameter set.  
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Figure 3.8 Hydrograph prediction uncertainty for the calibration period (10/1/1993-

9/30/1995) period. Observed discharges are represented by the black line. The orange 

shaded area denotes the prediction uncertainty that results from parameter uncertainty. 

The yellow shaded area denotes the additional prediction uncertainty that results from 

model and measurement uncertainty. Top plate shows absolute values, bottom plate 

shows deviations from the hydrograph simulated with the most likely parameter set. 

 

The results show that the model predictions reproduce the observed discharges 

reasonably well during the calibration and validation period. The noticeable over-

prediction for the summers of 1991 and 1992 is likely caused by the extraction of water 

upstream of Borgharen, which can amount to 50 m3/s and is not represented in the 

model. The 95% total prediction uncertainty bounds brackets the observations most of 

the time. For some periods the total prediction uncertainty is quite large, indicating that 

the model and/or measurement uncertainty is considerable. The 95% uncertainty region 

associated with parameter uncertainty is narrow and does not always bracket the 

observations, indicating that the model structure or the model input data may be in need 

of further improvement.  
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Figure 3.9. Hydrograph prediction uncertainty for the calibration period (10/1/1990-

9/30/1992) period. Observed discharges are represented by the black line. The orange 

shaded area denotes the prediction uncertainty that results from parameter uncertainty. 

The yellow shaded area denotes the additional prediction uncertainty that results from 

model and measurement uncertainty. Top plate shows absolute values, bottom plate 

shows deviations from the hydrograph simulated with the most likely parameter set. 

 

3.2. Semi-distributed calibration for the Morava catchment 

The goal of this exercise is to evaluate if spatially distributing the calibration parameters 

within the catchment improves the predictive capabilities of the model. Results are 

presented for a part of the Morava catchment, covering an area of approximately 10.000 

km2. The Morava river is situated in Central Europe, with parts in Austria, the Czech 

Republic and the Slovak Republic, and it forms one of the most important tributaries of 

the Danube River. The river springs in the forested Jeseniky Mountains; further 

downstream it flows through wide valleys and plains. The main part of the Morava 

River has typically lowland character with small slopes and alluvial floodplains on both 

sides. The Morava basin has a typical continental climate with an annual precipitation of 

about 640 mm.  
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Calibration Strategy 1: 

Uniform parameters, calibration against 

discharge at the outlet of the catchment 

(Straznice) 

 

 
 

Calibration Strategy 2: 

Uniform parameters, calibration against 

discharge at the outlet of the catchment 

(Straznice) and the internal discharge 

stations. 

 

 

Calibration Strategy 3: 

Semi-distributed parameters (uniform 

within each of the subcatchments), 

calibration against discharge at the outlet 

of the corresponding subcatchment.  

 

Figure 3.10. Overview of the 3 calibration strategies adopted for the Morava catchment.  
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To evaluate the effect of semi-distributed parameters, three different calibration 

strategies are adopted, as depicted in Figure 3.10. In the first strategy, the calibration 

parameters are uniformly distributed over the area of interest and are calibrated against 

the discharge at the outlet of the catchment (Straznice). The parameters are also 

uniformly distributed in the second strategy, but they are calibrated against the 

discharge at Straznice and the internal discharge stations. In the third strategy a semi-

distributed approach is adopted. Starting from upstream, parameters in each 

subcatchment are calibrated against the observed discharges at the outlet of the 

subcatchment. In order not to propagate upstream errors in the calibration process, 

observed discharges at upstream catchment outlets are used as inflow when calibrating 

downstream subcatchments.    

 

Results for the different gauging stations of the subcatchments are presented in Figures 

3.11 to 3.17. The plates in these figures represent the observed discharges and the 

hydrograph prediction uncertainty as a deviation from the hydrograph simulated with 

the most likely parameter set. The dark line represents the difference between the 

observed hydrograph and the hydrograph simulated with the most likely parameter set. 

The orange shaded area represents the uncertainty in the predictions due to uncertainty 

in the parameters, whereas the yellow shaded area represents the total uncertainty in the 

predictions (due to parameter, model and measurement uncertainty). The top plate in 

each figure corresponds to the first calibration strategy. The middle plates represent the 

second calibration strategy, and the bottom plates show results of the semi-distributed 

approach. On the right of each plate, based on the simulation with the most likely 

parameter set, values are presented of the following 3 statistical measures  

 

∑

∑

=

=

−

−
−= n

t
obstobs

n

t
tsimtobs

QQ

QQ

1

2
,

1

2
,,

)(

)(
1EF          (3.1) 

 

∑

∑

=

=

−
= n

t
tobs

n

t
tsimtobs

Q

QQ

1
,

1
,, ||

bias          (3.2) 

 



 32

2

1

5.0
,,

5.0
,

1
,,

2

)()(

))((
R

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−

−−
=

∑

∑

=

=
n

t
tsimtobsobstobs

n

t
simtsimobstobs

QQQQ

QQQQ
      (3.3) 

 

The coefficient of efficiency E is the ratio of the mean square error to the variance in the 

observed data, substracted from unity. It ranges from minus infinity to 1.0, with higher 

values indicating a better agreement. The coefficient of determination R2 describes the 

proportion of the total variance in the observed data that can be explained by the model. 

It ranges from 0.0 to 1.0, with higher values indicating better agreement. Because of the 

squared differences E and R2 are overly sensitive to extreme values. The bias coefficient 

reflects the absolute simulation error relative to the observations. It varies between 0.0 

and infinity, with lower values indicating a better agreement.  
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Raskov: uniform parameters - Q at outlet (Straznice)

Raskov: uniform parameters - Q outlet + internal  

Raskov: distributed parameters - Q internal  

 

 

 

EF = 0.21 

Bias = 0.46 

R2 = 0.57 

 

 

 
EF = 0.22 

Bias = 0.44 

R2 = 0.58 

 

 

 
EF = 0.75 

Bias = 0.26 

R2 = 0.75 

Figure 3.11. Hydrograph prediction uncertainty associated with the most likely 

parameter set derived using SCEM-UA for Raskov. Observed discharges are 

represented by the black line. The orange shaded area denotes the prediction uncertainty 

that results from parameter uncertainty. The yellow shaded area denotes the additional 

prediction uncertainty that results from input, model and measurement uncertainty.   
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Figure 3.12. Hydrograph prediction uncertainty associated with the most likely 

parameter set derived using SCEM-UA for Moravicany. Observed discharges are 

represented by the black line. The orange shaded area denotes the prediction uncertainty 

that results from parameter uncertainty. The yellow shaded area denotes the additional 

prediction uncertainty that results from input, model and measurement uncertainty.   
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Figure 3.13. Hydrograph prediction uncertainty associated with the most likely 

parameter set derived using SCEM-UA for Lostice. Observed discharges are 

represented by the black line. The orange shaded area denotes the prediction uncertainty 

that results from parameter uncertainty. The yellow shaded area denotes the additional 

prediction uncertainty that results from input, model and measurement uncertainty.   

 

 

 

 

 



 36

-100

-50

0

50

100

q 
(m

3 /
s)

10/1/98 2/1/99 6/1/99 10/1/99 2/1/00 6/1/00
time in days

-100

-50

0

50

100
q 

(m
3 /

s)

10/1/98 2/1/99 6/1/99 10/1/99 2/1/00 6/1/00
time in days

-100

-50

0

50

100

q 
(m

3 /
s)

10/1/98 2/1/99 6/1/99 10/1/99 2/1/00 6/1/00
time in days

Olomouc: uniform parameters - Q at outlet (Straznice)

Olomouc: uniform parameters - Q outlet + internal  

Olomouc: distributed parameters - Q internal  

 

 

 

EF = 0.82 

Bias = 0.27 

R2 = 0.83 

 

 

 
EF = 0.83 

Bias = 0.27 

R2 = 0.84 

 

 

 
EF = 0.85 

Bias = 0.26 

R2 = 0.85 

Figure 3.14. Hydrograph prediction uncertainty associated with the most likely 

parameter set derived using SCEM-UA for Olomouc. Observed discharges are 

represented by the black line. The orange shaded area denotes the prediction uncertainty 

that results from parameter uncertainty. The yellow shaded area denotes the additional 

prediction uncertainty that results from input, model and measurement uncertainty.   
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Figure 3.15. Hydrograph prediction uncertainty associated with the most likely 

parameter set derived using SCEM-UA for Dluhonice. Observed discharges are 

represented by the black line. The orange shaded area denotes the prediction uncertainty 

that results from parameter uncertainty. The yellow shaded area denotes the additional 

prediction uncertainty that results from input, model and measurement uncertainty.   
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Figure 3.16. Hydrograph prediction uncertainty associated with the most likely 

parameter set derived using SCEM-UA for Kromerir. Observed discharges are 

represented by the black line. The orange shaded area denotes the prediction uncertainty 

that results from parameter uncertainty. The yellow shaded area denotes the additional 

prediction uncertainty that results from input, model and measurement uncertainty.   
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Figure 3.17. Hydrograph prediction uncertainty associated with the most likely 

parameter set derived using SCEM-UA for Straznice. Observed discharges are 

represented by the black line. The orange shaded area denotes the prediction uncertainty 

that results from parameter uncertainty. The yellow shaded area denotes the additional 

prediction uncertainty that results from input, model and measurement uncertainty.   

 

From the above figures, the following findings should be noted. First, the calibration of 

uniform parameter values against discharges at the catchment outlet results in good 

reproductions of the hydrograph at the downstream stations, but inferior fits are 

obtained for more upstream subcatchments. Including internal discharge observations in 

the objective function slightly improves the results for all subcatchments, expect for the 

most downstream one. This can be attributed to the fact that the uniform parameter 
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values also have to reproduce internal observations, and not only those at the outlet. The 

semi-distributed approach considerably improves the predictions, especially in the 

upstream catchments. Further downstream, improvements are less pronounced, largely 

because the uniform approaches yield good results in these areas.  

 

A second important finding is the observed changes in parameter uncertainty between 

the different calibration strategies. Parameter uncertainty (and consequently the 

corresponding predictive uncertainty) is smallest for the semi-distributed approach. This 

is because calibration of the sub-catchments individually results in an improved 

identification of the ranges of parameter attraction, which can vary considerably among 

the different sub-catchments. The uniform approaches result in more parameter (and 

corresponding predictive) uncertainty because uniform parameter values are less able to 

represent the varying hydrological properties in the different subcatchments, and 

therefore are less well identifiable. Parameter uncertainty is largest for the uniform 

parameter values calibrated against the observations at the outlet and the internal 

discharge stations (strategy 2). This is because the uniform parameter values also need 

to reproduce internal observations. Uniform parameter values that reproduce discharges 

at catchment outlet well may be in conflict with internal observations, which results in a 

less pronounced region of attraction.      

 

The semi-distributed approach also results in a considerable reduction in the total 

uncertainty with respect to the uniform approaches. Since the input and measurement 

uncertainty do not differ between the calibration strategies, the increase in total 

uncertainty can be attributed to an increase in parameter and model uncertainty. It 

should be stressed that the increase in model uncertainty here reflects the change in 

parameterisation, i.e., uniform instead of semi-distributed parameter values, which can 

be assumed to be a less correct representation of the true unknown distribution of the 

hydrological properties. 
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4. Conclusions 

The current LISFLOOD model has been calibrated for several test catchments using the 

automatic Shuffled Complex Evolution Metropolis-UA optimization algorithm. The 

results indicate that SCEM-UA is able in most cases to identify the optimal parameter 

values and to infer the posterior parameter distribution that reflects the residual 

parameter uncertainty. Results of a semi-distributed approach also show the clear need 

to spatially vary the calibration parameters, especially in large catchments characterized 

by spatially varying hydrological processes and responses. Other advantages are the less 

subjective nature and a more exhaustive exploration of the parameter space compared to 

manual calibration.  

 

The drawback of SCEM-UA is that the objective function is based on the sum of 

squared errors, which implies certain assumptions on the modelling residuals (but 

allows a formal estimation of the parameter and total uncertainty). Whenever the 

underlying assumptions are not met, a transformation of the observed and simulated 

errors can be applied. However, this is not a straightforward exercise, and somewhat 

hampers the application of the technique on a routinely basis. Another limitation of this 

technique, and of single-objective methods in general, is that the assessment of fit is 

compacted into one single measure (e.g., least squares), which may not capture all the 

aspects of a time series of observations one is interested in.  
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5. Further work 

Calibration of the LISFLOOD model for all catchments in Europe is an enormous task, 

and will require much more time and effort. It will be closely linked to further 

improvements in the model structure and input data. Important issues that need to be 

addressed are:  

• Include more parameters in the calibration procedure (e.g., parameters from 

snow routine). 

• Employ multi-objective optimization tools that include different measures of fit 

favouring different aspects of discharge series to arrive at more robust 

parameter estimates. 

• Separate the individual effects of input, parameter and model uncertainty. 

• Analyze the effect of the different sources of hydrological uncertainty on   

probabilistic flood forecasts. 

• What is the robustness of optimal parameters (and parameter uncertainty) in 

relation to temporal and spatial resolution, i.e., are optimal parameters (and 

associated parameter uncertainty) transferable across temporal and spatial 

scales?  

Can regionalization techniques be applied to transfer parameter values to ungauged 

catchments? 
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