

RTM-IDL 1.0
Unified IDL routines to define a coupled

water-atmosphere system and drive
Radiative Transfer Models

(FEM, Hydrolight)

MARCO CLERICI

2005 EUR 21556 EN

CORE Metadata, citation and similar papers at core.ac.uk

Provided by JRC Publications Repository

https://core.ac.uk/display/38609204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RTM-IDL 1.0
Unified IDL routines to define a coupled

water-atmosphere system and drive
Radiative Transfer Models

(FEM, Hydrolight)

MARCO CLERICI

European Commission – Joint Research Centre
Institute for Environment and Sustainability

Inland & Marine Waters Unit
TP 272, I-21020 Ispra (VA) – Italy

2005 EUR 21556 EN

LEGAL NOTICE

Neither the European Commission nor any person
acting on behalf of the Commission is responsible for

the use which might be made of the following information.

A great deal of additional information on the
European Union is available on the Internet.
It can be accessed through the Europa server

(http://europa.eu.int)

EUR 21556 EN
© European Communities, 2005

Reproduction is authorised provided the source is acknowledged
Printed in Italy

Abstract

A set of IDL routines to define a coupled water-atmosphere system and to drive

Radiative Transfer simulations is described. This application takes advantage of

IDL 6.0 Object Oriented Programming features in order to allow unified description

of the physical system, independent of the code to drive, and to ease the maintenance

of and the adaptation to a specific model (FEM, Hydrolight, ...). A common library

of routines to analyse the results of the simulations is also implemented.

Table of Contents

Introduction 3

1 Water-Atmosphere system definition and initialisation 5
1.1 General classes . 7

1.1.1 Vertical Profile . 7
1.1.2 Phase Function . 8
1.1.3 Component . 9

1.2 Atmosphere . 10
1.2.1 Atmospheric Components . 10

1.3 Water . 12
1.3.1 Water Components . 12
1.3.2 Water derived classes . 13
1.3.3 Water absorption models . 14
1.3.4 Water scattering models . 16

1.4 Other classes . 18
1.4.1 Sun . 18
1.4.2 Location . 18
1.4.3 Output angular definition . 19
1.4.4 Wavelengths . 19
1.4.5 Output layer structure . 19
1.4.6 Bottom Reflectance . 20

1.5 System Initialisation . 21
1.6 List of IDL files . 27

2 Interface to FEM (Finite Element Method) 28
2.1 System to FEM interface . 29

2.1.1 Atmosphere Optical Properties . 29
2.1.2 Water Optical Properties . 32
2.1.3 Band averaged quantities (for SeaWiFS) . 33

2.2 Example . 34
2.2.1 Input description . 36
2.2.2 Run of the example case . 39
2.2.3 Output analysis . 39

2.3 List of IDL files . 46
2.3.1 IDL environment setting . 46

1

3 Interface to Hydrolight 4.1 48
3.1 System to Hydrolight interface . 49
3.2 Example . 50

3.2.1 Input description . 52
3.2.2 Run of the example case . 54
3.2.3 Output analysis . 55

3.3 List of IDL files . 57
3.3.1 IDL environment setting . 57

Conclusions 59

Acknowledgements 60

4 Annexes 61
4.1 List of SYS-IDL routines . 62
4.2 List of FEM-IDL routines . 93
4.3 List of Hydrolight-IDL routines . 131

References 164

2

Introduction

The main idea of the package is to separate the physical description of the water-atmosphere
system from the Radiative Transfer (RT) program used to solve the radiative equation. This approach
enables the User to describe the physical problem to solve in a general way, before choosing a specific
tool, like FEM or Hydrolight. The Object Oriented features of IDL 6.0 are used to define general
classes that represent a part of the system (e.g. water) and to derive classes for every specific case
to be represented (e.g. water case 1). UML (Unified Modelling Language) notation is adopted
throughout this document for the classes and methods description (see UML Notation Guide, v1.1,
ftp://ftp.omg.org/pub/docs/ad/97-08-05.pdf as a reference document).

In Chapter 1, we describe the water-atmosphere system in terms of its physical components: Sun
position and Irradiance values, an atmosphere containing gases and aerosols, a geographical location
on the water surface, water and a physical bottom in case of finite-depth water bodies. The set of
routines developed for this task is called ’SYS-IDL’ and this level is referred to as ’System level’
throughout this document.

In order to use a specific RT model, additional routines are designed and implemented; for the
time being two Radiative Transfer models are interfaced through ’FEM-IDL’ and ’Hydrolight-IDL’
modules. In the following this level is indicated as ’RT level’, regardless of the RT tool actually used.

Chapter 2 describes IDL routines to drive the FEM code (Finite Element Method) over a water-
atmosphere system. An example of water Case 1 is also discussed, from system definition to results
analysis. Chapter 3 does the same, but for Hydrolight 4.1.

FEM−IDL Hydrolight−IDL

IDL library routines

FEM code Hydrolight 4.1 code

RT level

System levelSYS−IDL

Figure 1: Overall RTM-IDL 1.0 modules hierarchy

3

The overall hierarchy of the above mentioned modules is displayed in fig. 1: ’FEM-IDL’ and
’Hydrolight-IDL’ access functionalities of ’SYS-IDL’ module and drive the related executables. Fur-
thermore, the three ’IDL’ modules use some general purpose procedures defined as ’IDL library
routines’.

4

Chapter 1

Water-Atmosphere system definition and
initialisation

Fig. (1.1) displays the overall water-atmosphere system and its components: Sun, atmosphere,
a geographic location on water surface, water body and physical bottom. For sake of generality no
further assumption is done at this level on the nature of the ’objects’ represented, everyone of which
is modelled by an IDL base class (e.g. ’WAT’ for water). From case to case, these ’objects’ are
specified either by assigning specific properties to them or by defining a class ’derived’ from the base
one. Throughout this chapter the following notations are adopted:

• bold uppercase style indicates a CLASS name.

• italic uppercase is used to denote an OBJECT of a given class.

• italic indicates a member of a class.

Location

Sun

Water

Atmosphere

Gases (O3, O2, CO2, ..)
Aerosol

Chla

Mineral

CDOM

Bottom

s

Figure 1.1: Water-Atmosphere system description

5

The first and main class defined is called SYSTEM and aims at defining the whole physical
scenario. It contains the objects mentioned above and displayed in fig. (1.2). id and desc are ASCII
strings to identify in concise and more extended way respectively a SYSTEM object.

SYSTEM

id

desc

SUN

ATM

LOCAT

WAT

BOTTOM

BOTTOM

SUN

ATM

LOCAT

WAT

Figure 1.2: System class - 1

Additional classes not referring to the system but to the Radiative Transfer solution are defined
as part of SYSTEM as they are used by most of the RT models. These additional classes compose
figure (1.3): GRID contains the viewing zenith and azimuth angles definition, OLS (Output Layer
Structure) the vertical output layer definition and WAVE the list of spectral wavelengths. Please
note that SYSTEM is displayed in two figures for convenience, but it constitutes an unique class.

SYSTEM
(cont)

GRID

WAVE

OLS

OLS

WAVE

GRID

Figure 1.3: System class - 2

6

1.1 General classes

This section contains the so-called ’general purpose’ classes, i.e. classes that are used through-
out the RTM-IDL 1.0 in many places and can be viewed as a library of objects reusable in IDL
applications.

1.1.1 Vertical Profile

VPROFILE stays for Vertical Profile and defines a scalar quantity as function of altitude,
in atmosphere, or depth, in water. It can be used to model the vertical distribution of a gas in
atmosphere or the depth-dependent concentration of, e.g., chlorophyll in water.

VPROFILE

Status

Filename

Routine

X

Y

Figure 1.4: VPROFILE class

Members of VPROFILE are two float arrays containing the vertical values (x) and associated
variable values (y), plus additional information like object status, name of the file storing the profile
distribution and name of the routine producing the values. The two latter are non mandatory as
they are used in some VPROFILE derived classes but not always.

All classes derived from VPROFILE are listed in fig. 1.5.

xr

N

SERIE

C

UNIFORMGAUSSIAN

xm

sig

C

A

VPROFILE

Figure 1.5: VPROFILE derived classes

7

GAUSSIAN is a normally distributed variable, according to the formula:

y = C + A · e
(x−xm)2

2·sig2

UNIFORM assigns a constant value C to y, whatever values is taken by the independent
variable x.

SERIE is a generic association of x and y-values, with the only restrictions that x is monotone
increasing and the two arrays contain the same number of points. It is intended to be loaded from a
text file, whose name is specified by filename member of VPROFILE. xr represents the x-variable
range and N is the number of points.

1.1.2 Phase Function

PHF represents a spectral volume scattering phase function, as defined, e.g., in (Mobley 1994,
pg. 64). The base class PHF contains only an identifier and no normalisation condition is imposed
at this level.

PHF

Identifier

Figure 1.6: Phase Function class

Three phase function types are derived from the base class, as shown in fig. 1.7.

PHF

PHF_TTHG

g1

g2

as

PHF_RAYL

xcoef1

xcoef3

type

name

PHF_FILE

Figure 1.7: Phase Function derived classes

PHF FILE contains the file type and location. It is an ASCII file listing PHF values versus
scattering angles (type=’Angles’) or the associated Legendre coefficients (type=’Legendre’).

PHF RAYL represents Rayleigh scattering phase function whose Legendre associated coeffi-
cients of order 1 and 3 are stored in xcoef1 and xcoef3.

8

PHF TTHG is the so-called two-term Henyey-Greenstein phase function as β̃ in Henyey and
Greenstein (1941):

β̃TTHG(as, g1, g2;ψ) = as · β̃HG(g1;ψ) + (1− as) · β̃HG(g2;ψ)

and g1, g2 and as members are obviously derived from the equation and ψ is the angle of scattering.

1.1.3 Component

COMP is a physical component present in the atmosphere or in the water body, like an ab-
sorbing gas or a particles distribution in water. It refers to an identified specie, whose properties
are modelled in term of absorbing (a) and scattering (b) coefficients, spectral volume scattering
phase function (PHF). Its distribution in the medium is described by Prof that is a VPROFILE
object as in 1.1.1. Reflecting the generality of the present approach, the class COMP contains itself
quite a small amount of information and is suitable to be adapted both to marine and atmospheric
components. This is done in the following paragraphs by deriving more specific classes from COMP.

A_MOD

B_MOD

PHF

VPROFILE

COMP

ID

a

b

phf

prof

Figure 1.8: Component class

9

1.2 Atmosphere

Atmosphere is defined through the class ATM which hosts both physical parameters (e.g. Wind
Speed and Surface Pressure) and a list of COMP objects (see Section 1.1.3). In the current imple-
mentation up to 10 components can be defined, representing different species of absorbing gases or
aerosols. No cloud type is provided for the time being.

COMP

Comps

WindSpeed

SurfPres

RH

WV

WindDir

ATM

Visib

Csky

Rsky

Cloud

WindSp24

Figure 1.9: Atmosphere class

WindSpeed: wind speed at 10 meter altitude in m/s
WindDir: direction of wind at 10 meter altitude in degree
SurfPres: surface atmospheric pressure in mbar
RH: relative humidity in percent
WV: total column water vapour content in kg/m2

Visibility: average visibility in km
WindSp24: 24 hour average wind speed at 10 meter altitude in m/s
Csky: cardioidal parameter as C in Mobley (1994)
Rsky: ratio of background-sky to total scalar irradiance
Cloud: cloud coverage as in Mobley and Sundman (2000a, pg. 50).

1.2.1 Atmospheric Components

COMP base class might seem powerful enough to handle whatever kind of component, with
no need to ’specialise’ it by deriving ad hoc classes for atmosphere or water. Nevertheless this latter
approach has been chosen, in order to allow the implementation of specific methods to interface
Radiative Transfer models, as described in Chapter 2 and 3.

10

COMP_O3

O3

COMP_O2

p0

COMP_MOL

p0

COMP

COMP_AER_OPAC

aer_type

rh

vls

a865

COMP_AER

a

nu

ssa

wref

Figure 1.10: Atmospheric components

The derived classes themselves, represented in fig.1.10, add only some fields to the basic COMP
members: O3 in COMP O3 is the Ozone total column amount in DBU, p0 in COMP O2 is the At-
mospheric Surface Pressure, intended to be used for the O2 column rescaling and p0 in COMP MOL
(molecular component) has the same meaning and purpose.

COMP AER deals with aerosol particles in the atmosphere: a and nu are the Ångström co-
efficient and exponent, referred to the law expressing the spectral dependence of the aerosol optical
thickness τ :

τ(λ) = τ(λ0) · (λ
λ0

)ν

where a = τ(λ0), nu = ν and wref=λo is set by default to 865 nm. Even if this spectral dependency
imposes a constraint and is not followed by every aerosol type defined through the RTM-IDL 1.0,
these properties have been placed at the top level as this model is defined as the default one. In case
of derived classes these COMP AER members are not used.

COMP AER OPAC refers to OPAC dataset (Optical Properties of Aerosol and Clouds - see
Hess et al. (1998)). In particular aer type corresponds to Table 3 in the mentioned document and rh
is the relative humidity. Additional member vls is the name of the Vertical Layer Structure (VLS,
see 2.1) defined to extract the aerosol profile from OPAC dataset and a865 is the optical thickness
at 865. nm used to rescale the aerosol quantity at every wavelength.

11

1.3 Water

WAT class represents a finite or infinite-depth water body whose properties are defined by the
presence of internal radiation sources (ISRC) and up to 10 different components. Bioluminescence,
Chlorophyll/CDOM fluorescence and Raman Scattering are considered as water internal sources of
radiation (refer to Mobley and Sundman 2000b).

COMP

WAT

Comps

Isrc

biolum

chlflu

cdomflu

ISRC

raman

compchla

Figure 1.11: Water class

1.3.1 Water Components

As done for the atmosphere, water component classes are derived from COMP, as shown in fig.
1.12.

COMP

COMP_PW COMP_CHLA COMP_CDOM COMP_MINCOMP_CONST

Figure 1.12: Water components

COMP CONST is an non realistic component whose IOPs do not depend on depth nor wave-
length and is fully identified by constant values of absorption/scattering coefficient and phase func-
tion. COMP PW represents the interaction of the radiance with pure water, whose presence is not
taken in account from the definition of WAT class itself. COMP CHLA is a generic chlorophyll
distribution present in the water body, whose properties are defined by its members, as from fig.
1.8. Of course, different A MOD and B MOD objects can be assigned to COMP CHLA. The

12

same applies to COMP CDOM and COMP MIN, that represent dissolved organic matter and
mineral/detritus.

A good question at this point could be why we decided to derive the classes above, if they do
not add any property to the base one. The answer is twofold: on one hand, specific methods are
defined for the derived classes at ’RT level’. On the other hand, we preferred to make immediately
recognisable water components by this explicit naming in order to ease and make more transparent
the initialisation process (see 1.5). For the same reason in the following paragraph derived classes
are generated from WAT.

1.3.2 Water derived classes

Three classes are derived from the base WAT one in order to allow the User to easily create
and initialise a water object with specific properties.

WAT

WAT_CASE2WAT_CONST WAT_CASE1

Figure 1.13: Water derived classes

• WAT CONST has only 1 component of type COMP CONST

• WAT CASE1 has two components of type COMP PW and COMP CHLA

• WAT CASE2 has up to four components of type COMP PW, COMP CHLA, COMP CDOM
and COMP MIN

13

1.3.3 Water absorption models

The responsibility of A MOD class is to provide the absorption coefficient a [m−1] as function
of the wavelength, the component concentration and additional parameters whose values are stored
as class members.

A_MOD

ID

aref

wref

file

Figure 1.14: Water absorption model

ID is a non mandatory string identifier, aref the absorption coefficient in m−1 at a reference
wavelength wref and file is the name of an optional file containing absorption coefficient as function
of the wavelength. The syntax of this file is not detailed here as it depends on the RT tool used.

Several absorption models are defined deriving classes from the base A MOD, as shown in fig.
(1.15).

A_MOD

A_EXP

gamm

A_CHLA1A_CASE1A_CDOM

Sys

A_BRIA_PSMA_SeBA_PeFA_USR

value

A_CONST

Figure 1.15: Water absorption derived classes

For sake of clarity, class members meaning is explained in Table 1.1, as are the equations pro-
viding the absorption coefficient and references to literature.

14

Class Members Equation Reference
A CONST value: a. coeff. a(λ) = value

A PeF a(λ) tabulated Pure Water a coeff.
(Pope and Fry 1997)

A SeB a(λ) tabulated Pure Water a coeff.
(Smith and Baker 1981)

A PSM a(λ) = 0.06Achl(λ)Chla0.65 (1) (1) (Mobley and Sundman 2000b)
Achl tabulated (2) (2) (Prieur and Sathyendranath 1981)

A EXP gamma: spectral slope a(λ) = 0.2ap(440)e−gamma(λ−440) (Mobley and Sundman 2000b, pg. 5)
ap(440) is Chla abs. coeff.

A BRI a(λ) = Cph(λ) · Chla1−Eph(λ) (Bricaud et al. 1995)
Cph and Eph tabulated

A CDOM Sys: spectral slope a(λ) = a(λ0) · e−Sys(λ−λ0) (Bricaud et al. 1981)

A CHLA1 a = aChla + anp where (Bricaud et al. 1995 and 1998)
aChla as in A BRI
anp = 0.0124 · Chla0.744e−0.011·(λ−440)

A CASE1 a = aChla + ays + anp where (Bricaud et al. 1995 and 1998)
aChla as inABRI

ays(440) = aChla(440) · 0.2
ays = ays(440) · e−0.014·(λ−440.)

anp = 0.0124 · Chla0.744e−0.011·(λ−440)

Table 1.1: Absorption Coefficient definition

Note that A EXP is a particular case of A CDOM model where the reference absorption
coefficient is taken from the Chlorophyll one at 440 nm. Therefore it can be used only if a chlorophyll
component is defined.

15

1.3.4 Water scattering models

Particle scattering properties are modelled by B MOD class, whose definition in fig. (1.16) is
completely similar to A MOD class.

ID

wref

file

B_MOD

bref

Figure 1.16: Water scattering model

Scattering models B MOD are derived from the base class as represented in fig. (1.17). In
analysing this picture consider that some of the models use information stored in the base class
members.

B_MOD

B_CONST

value

B_SeB B_MeM

c550

e550

B_POW

m

n

m

n

i

B_GAM B_GeMB_USR

nu

B_MIN

Figure 1.17: Water scattering models

For sake of clarity, class members meaning is explained in Table 1.2, as are the equations pro-
viding the scattering coefficient and references to literature.

16

Class Members Equation Reference
B CONST value: b. coeff. b(λ) = value

B SeB b(λ) tabulated Pure Water b coeff.
(Smith and Baker 1981)

B MeM c550: ref. value b(550) = c550 · Chlae550 (Morel and Maritorena 2001)
e550: expon. decay b(λ) = b(550) · (λ

550)ν

ν = −1. if Chla < 0.02 mg m−3

ν = .5[log(Chla)0.3] if 0.02 < Chla < 2
ν = 0. if Chla > 2 mg m−3

B POW m: m of power law b(z, λ) = bo(λo

λ)mX(z)n (Mobley and Sundman 2000b, pg. 13)
n: n of power law bo = 0.3

X = comp.conc.

B GAM m: m of GAM law b(z, λ) = 0.5(mλ+i
mλo+i

)X(z)n (Mobley and Sundman 2000b, pg. 13)

n: n of GAM law λo = 550nm
i: i of GAM law

B GeM as B POW with m = 1. n = 0.62 (Mobley and Sundman 2000b, pg. 13)
(Gordon and Morel 1983)

B MIN nu: exp. decay b(λ) = b(550) · (λ
550)ν

b(550) = comp.conc.

nu = ν

Table 1.2: Scattering Coefficient definition

Note that B MIN model uses the same spectral dependency as in B MeM but it allows a free
definition of the reference scattering coefficient b(550) and spectral slope ν.

17

1.4 Other classes

1.4.1 Sun

Sun is simply modelled by its angular position Zen and Azi and the total irradiance at TOA
Edtot [Wm−2]. Alternative definitions by the universal time and the location are not implemented
in the current version of the tool.

SUN

Zen

Azi

Edtot

Figure 1.18: Sun class

1.4.2 Location

Location represents a geographical position defined by latitude and longitude, and a given time.
Its use is foreseen as an alternative to the SUN definition as in 1.4.1, but is not yet implemented in
any RT model used.

LOCAT

Time

Lat

Lon

JDay

Figure 1.19: Locat class

Lat is latitude in degree, positive North, Lon the longitude, positive East, Time UT time ex-
pressed as a float (hour and fraction of the hour), JDay Julian Day.

18

1.4.3 Output angular definition

Most of RT models have the capability to produce output of directional quantities (i.e. radi-
ance or reflectance) at given viewing angles, that in general can be independent from the internal
directional ’discretisation’. GRID class allows the setting of these angular values for the RT model
output.

GRID

nazi

azi

nzen

equi

zen

Figure 1.20: Grid class

nazi is the number of Azimuth angles and azi is the list of values. The zenith angle can be
defined either by a list of values (zen) or setting the total number of angles (nzen) and imposing a
uniform distribution in the range 0 .. 180 degree through the flag equi.

1.4.4 Wavelengths

WAVE

nwave

wave

Figure 1.21: Wave class

WAVE class defines the wavelength at which RT model computation will occur: nwave is the
number of wavelengths and wave is the list of values in nm.

1.4.5 Output layer structure

OLS

Type

ndepth

depths

Figure 1.22: OLS class

19

RT models produce outputs computed at given ’levels’ of the plane-parallel system. These levels
can be defined both in terms of geometrical height/depth in atmosphere/water or by providing the
related value of optical depth. OLS class allows both definitions, with some limitations, in the
following way:

• Type = 0: levels are defined as depths in water from the surface downward, in meter. ndepth is
the total number of levels.

• Type = 1: depths is a list of ndepth optical thickness values, starting as 0 at Top of atmosphere
and increasing downward.

1.4.6 Bottom Reflectance

The bottom boundary condition is modelled through the BOTTOM object, which can represent
both finite and infinite water bodies.

BOTTOM

Type

File

Refl

Figure 1.23: BOTTOM class

Type is an integer value used to select the boundary condition type:

• 0 : infinite water body. The IOPs at the deepest depth defined are used to compute the
reflectance of the infinitely deep layer of water below the region of interest.

• 1 : irradiance reflectance of the bottom is wavelength independent. A single value is provided
through Refl.

• 2 : irradiance reflectance of the bottom is wavelength dependent. A filename is provided
through File.

File is the file containing the bottom reflectance as function of the wavelength (if Type=2).

Refl is the wavelength independent bottom irradiance reflectance (if Type=1).

20

1.5 System Initialisation

A SYSTEM object is created and initialised through a structure that reflects the hierarchical
organisation of the class SYSTEM itself. This structure is called SYS IN and is shown in Table
(1.3), where Member is the name of each structure member, Type is its type, column 3 contains
values allowed to each member, and column 4 is a typical assignment. Type can be an IDL base
type (int, float, string, boolean, pointer to float array, ...), name of a sub-structure, in which case it
is indicated in curly braces, a named array indicated within square brackets or a string for multiple
assignment. The latter is a convenient way to create and initialise a simple object that includes only
scalar members (i.e. a single float, integer, string, boolean). An example is the SUN object (see
fig. 1.18) that is initialised by the following string for multiple assignment (called ma-string in the
following):

[SUN: ZEN=float , AZI=float, EDTOT=float].

A ma-string follows an easily recognisable syntax: square brackets as delimiter, name of class,
colon, one or more assignments done by the name of the member, equal and value. In case one of
the members is not assigned, it takes a default value during initialisation.

A water absorbing model of type A CDOM can be created by the following ma-string:

[A CDOM: id=’yellsubst’, aref=0.2, wref=440., sys=0.014]

Note that it is possible to assign in the same way values to members of the base class A MOD
and of the derived class A CDOM.

Structure SYS IN

Member Type Values allowed Example

id string any string ’Test’

desc string any string ’System initialisation for Test’

model string ’FEM’, ’HYD’ ’FEM’

sun ma-string see tab. 1.4 ’[SUN : ZEN=0., AZI=0., EDTOT=1.]’

atm {ATM IN} see tab. 1.5

grid {GRID IN} see tab. 1.7

locat ma-string see tab. 1.8 ’[LOCAT : LAT=21.3, LON=0.4, JDAY=131, HH=12.276]’

bottom ma-string see tab. 1.9 ’[BOTTOM: TYPE=2 ,REFL=.2,FILE=”GreenAlgae.txt”]’

wat {WAT IN} see tab. 1.10

ols {OLS IN} see tab. 1.13

wave {WAVE IN} see tab. 1.14

Table 1.3: SYS IN initialisation structure

21

The SUN object, part of the system as shown in fig.(1.2), is simple enough to be initialised
through a multiple assignments string. Table (1.4) contains details of type and allowed values for
each member.

ma-string SUN

Member Type Values allowed Example

ZEN float 0. .. 90. 40.

AZI float 0. .. 180. 50.

EDTOT float positive value 78.9

Table 1.4: SUN initialisation string

ATM object (see fig. (1.9)) requires a dedicated structure called ATM IN to be initialised,
containing values for the members and string arrays ([ATM COMP]) for the atmospheric components.
In the current implementation, the order of the components is fixed and is the following: Ozone,
Aerosol, molecules for Rayleigh scattering and Oxygen. Therefore there is no need to define the
component type during the initialisation phase, and it is enough to specify the members value.

Structure ATM IN

Member Type Values allowed Example

WindSpd float positive value [m/s] 2.

WindDir float 0. .. 360. 67.

SurfPres float positive value [mbar] 1013.25

RH float 0. .. 100. [%] 80.

wv float positive value [kg/m2] 40.

Visib float positive value [km] 10.

WindSp24 float positive value [m/s] 3.

cski float 0. .. 2.0 1.

rski float 0. .. 1.0 0.

cloud float 0. .. 1.0 0.

comp1 [ATM COMP]

comp2 [ATM COMP]

comp3 [ATM COMP]

comp4 [ATM COMP]

Table 1.5: ATM IN initialisation structure

22

Atmospheric components (see also paragraph 1.2.1) are initialised through a string array of the
form [n,2] containing n lines of assignments in two columns. The first column is the name of the
member and the second its value. Note that all member values are inserted as string and that the
order of the rows is not important. For instance, COMP AER OPAC can be initialised through the
string array in Table 1.6.

String array ATM COMP

First col. Second col.

’aer type’ ’MARPL70’

’rh’ ’80.’

’vls’ ’OPAC 01’

’a865’ ’0.10’

Table 1.6: ATM COMP initialisation string array

GRID IN structure contains definition of the angular directions for which we want the radiance
to be computed. Azi is the azimuthal angle referred to North direction and clockwise, while Zen is
the cosine of the zenithal angle, negative for upward radiances. Azimuthal angles must always be
provided as float array (in the example in Table 1.7 an equi spaced distribution with φ=30. is used),
while the zenithal angle can be defined either through a list of values or setting the flag equi to 1
(i.e. equi spaced) and entering the number of angles Nzen. In the example, a uniform sequence of
14 values within -1. and 1. is used.

Structure GRID IN

Member Type Values allowed Example

Azi *float 0. ... 360 [0.,30.,60.,90.,120.,150.,180.]

Equi boolean 0 or 1 1

Nzen int positive value 14

Zen *float -1. .. 1. []

Table 1.7: GRID IN initialisation structure

23

LOCAT object is initialised like SUN through a multiple assignment string delimited by square
brackets. Detailed description of each member is in Table (1.8).

String LOCAT

Member Type Values allowed Example

LAT float -90. .. 90. 40.1

LON float -180. .. 180. 50.2

JDAY integer 1 .. 366 121

HH float 0. .. 24.00 12.34

Table 1.8: LOCAT initialisation string

BOTTOM object is initialised as LOCAT and SUN. See also (1.4.6) for the member descrip-
tion and the example in Table 1.9.

String BOTTOM

Member Type Values allowed Example

Type int 0,1,2 2

File string valid filename ”GreenAlgae.txt”

Refl float 0. .. 1. 0.2

Table 1.9: BOTTOM initialisation string

24

WAT object initialisation is performed through the structure WAT IN as in Table (1.10). Note
that in this case the Name field is crucial to generate one of the water derived classes described in
(1.3.2) and that the WAT COMP must be assigned accordingly.

Structure WAT IN

Member Type Values allowed Example

Name string ’WAT CONST’ ’WAT CASE2’

’WAT CASE1’

’WAT CASE2

Isrc ma-string see tab. 1.11

comp1 {WAT COMP} see tab. 1.12

comp2 {WAT COMP} see tab. 1.12

comp3 {WAT COMP} see tab. 1.12

comp4 {WAT COMP} see tab. 1.12

Table 1.10: WAT IN initialisation structure

Internal sources are activated again using a multiple assignment string, whose members are
detailed in Table (1.11). In case an assignment is missing the default value is used (0).COMPCHLA
represents the index of the component that provides the Chlorophyll concentration profile and in the
current implementation must always be set to 2. The logic of the flags is explained in Mobley and
Sundman (2000b, pg. 47).

String ISRC

Member Type Values allowed Example

BIOLUM boolean 0,1 0

CHLFLU boolean 0,1 0

CDOMFLU boolean 0,1 0

RAMAN boolean 0,1 0

COMPCHLA integer 1 .. ncomp 0

Table 1.11: ISRC initialisation string

25

As for ATM COMP, a WAT COMP object is created on the basis of a string array of the
form [n,2]. The first column contains the COMP member name (e.g. ’phf’ for the phase function)
and the second the ma-string to be used for creation and initialisation of this member (see Table
1.12).

String Array WAT COMP

First col. Second col.

’id’ string

’amod’ ma-string

’bmod’ ma-string

’phf’ ma-string

’prof’ ma-string

Table 1.12: WAT COMP initialisation string array

OLS IN object is initialised through the structure represented in Table (1.13). It contains the
name of the OLS object, type of layer structure (see par. 1.4.5) and actual depths.

Structure OLS IN

Member Type Values allowed Example

Name string any string ’OLS 01’

Type integer 0 , 1 0

depths *float positive value

Table 1.13: OLS IN initialisation structure

The wavelengths to be used for the computation are simply defined by the structure WAVE IN
in Table (1.14), providing a symbolic name and the list of wavelengths in nanometer.

Structure WAVE IN

Member Type Values allowed Example

Name string any string ’WAVE 01’

Wave *float 250. .. 40000 412.

Table 1.14: WAVE IN initialisation structure

26

1.6 List of IDL files

• RTM TOP define.pro: defines SYSTEM class, its methods and structures for initialisation.

• RTM GEN define.pro: defines general classes and their methods as in 1.1.

• RTM ATM define.pro: defines ATM class and its methods as in 1.2.

• RTM WAT define.pro: defines WAT class and its methods as in 1.3.

• RTM OTH define.pro: defines the remaining classes and their methods as in 1.4.

• RTM Display.pro: routines to display RT computation input (IOPs) and output (Radiance,
Irradiance, ...).

• RTM Tool.pro: utility routines to process input/output files, handle IDL structures,

27

Chapter 2

Interface to FEM (Finite Element
Method)

FEM is a finite-element method applied to solving the radiative-transfer equation in a layered
medium with a change in refractive index, as described by Barbara Bulgarelli, Viatcheslav B. Kisselev
and Laura Roberti and described in Bulgarelli et al. (1999).

The ’user version’ of the code has been used in the current work, which is a version reading
directly from input files the optical properties of each homogeneous layer in atmosphere and water
(i.e. above and below the refractive index discontinuity). These properties are the optical depth,
single scattering albedo and Legendre associated coefficients of the scattering phase function.

The main issue to interface the water-atmosphere coupled SYSTEM defined in Chapter 1 with
the FEM code is thus to define a set of layers in atmosphere and water and to compute for every
layers the above optical quantities. Section 2.1 describes this process.

The rest of the activity consists in writing input files for the FEM executable, launching the
code from IDL and reading/analysing the output produced.

An example of computation on a simple Case 1 water is presented in Section 2.2.

28

2.1 System to FEM interface

SYSTEM object does not contain any vertical layer definition: both in atmosphere and water,
components are distributed according to continuous vertical profiles from the surface downward in
water and upward in atmosphere. A new class VLS (Vertical Layer Structure) in defined to set
height levels in atmosphere and water, and is displayed in fig. (2.1).

Type

VLS

Nz

Natm

Nwat

Zatm

Zwat

Figure 2.1: Vertical Layer Structure class

Type is an integer that sets the levels type as geometrical (0) or optical (1). In the first and
default case, atmospheric levels are defined in km from the Top downward to the surface and water
levels in m from the surface downward. For a correct processing, it is recommended to set the last
level in atmosphere and the first in water as 0. Nz is the overall number of levels, i.e. the sum of
levels in water (Nwat) and in atmosphere (Natm), Zatm and Zwat are two float arrays of levels in
the units specified above.

2.1.1 Atmosphere Optical Properties

Methods are defined for every atmospheric component to provide optical thickness τ(k), sin-
gle scattering albedo ω(k) and phase function Legendre associated coefficients Xj

cof (k) for each layer
k delimited by a couple of adjacent VLS levels. Obviously the total number of layers Nlyr is Natm−1.

• Ozone : it is only absorbing, therefore

ωO3(k) ≡ 0. (2.1)

XcofO3
(k) ≡ 0. (2.2)

The total optical thickness associated to the ozone column (τO3) is computed from the total
column amount in DBU (O3DBU) and tabulated wavelength-dependent conversion coefficient
KO3 :

τO3(λ) = O3DBU ·KO3(λ) (2.3)

KO3 are retrieved from ’http://oceancolor.gsfc.nasa.gov/DOCS/RSR/Nicolet o3 abs.dat’ and
derived from Nicolet (1981, Table 13). Optical thickness is ’distributed’ over the different layers
according to ozone vertical profile O3ppmv from AGFL meteorological model US76 (see, e.g.,
Thomas and Stamnes 1999).

29

τO3(k) = τO3 ·
O3ppmv(k)

∑Nlyr

i=1 O3ppmv(i)
(2.4)

where Nlyr is the total number of layers and O3ppmv(k) is computed as arithmetic average of
the concentrations at the top and bottom levels of the layer.

• Aerosols : aerosol properties are computed differently if the COMP AER or COMP AER OPAC
model is selected.

1. COMP AER: Ångström law is used to define optical thickness at a generic wavelength:

τaer(λ) = τ865 · (λ

865
)ν (2.5)

The total optical thickness is assigned to the layers according to :

τaer(k) = τaer · (e−0.5·zi − e−0.5·zi+1) (2.6)

where zi and zi+1 are the bottom and top levels of the layer k.

Single scattering albedo parameter is assumed to be 1 by default (non absorbing aerosol)
but can be modified by assigning a value to COMP AER ssa member.

Phase function Legendre associated coefficients are computed directly by PHF dedicated
methods.

2. COMP AER OPAC: a formatted dataset of aerosol properties has been produced from
the OPAC tool. For the OPAC pre-defined aerosol types (Maritime clean/polluted/tropical,
Continental clean/average/polluted, Urban and Desert) at different relative humidity
values (50/70/80/90/95/98/99%) and for different wavelengths, τ , ω and Xj

cof are pre-
computed and stored in binary files. The same has been done for the ’background’ aerosol
in troposphere and stratosphere. After loading the table corresponding to a given aerosol
type, relative humidity and wavelength, the only computation performed here is to ’rescale’
the total aerosol optical thickness to the imposed value at 865 nm. This is done modifying
the optical thickness in the boundary layer as follows:

τ
′
bnd(865) = τ

′
tot(865)− τOPAC

str (865)− τOPAC
tro (865) (2.7)

where τ
′
tot(865) is the value imposed to the total optical thickness at 865 nm and read

from the COMP AER OPAC a865 member. τ
′
bnd(865) is the imposed value of optical

thickness in the boundary layer used to compute a correction coefficient cfact as:

cfact =
τ
′
bnd(865)

τOPAC
bnd (865)

(2.8)

that is applied to the actual wavelength:

τ
′
bnd(λ) = τOPAC

bnd (λ) · cfact (2.9)

30

• Rayleigh scattering : in this case it is by definition

ωRay(k) ≡ 1. (2.10)

Rayleigh total optical thickness τRay as function of the wavelength is computed by the Hansen-
Travis formula (Hansen and Travis 1974), rescaled through the actual Surface Pressure:

τRay = 0.008569 · λ−4. · (1 + 0.0113 · λ−2. + 0.00013 · λ−4.) · P [mbar]

1013.25
(2.11)

Total optical thickness is ’distributed’ over the different layers using the air density from AGFL
meteorological model US76 profile, by the formula:

τRay(k) = τRay · ρ̃air(k) ·∆zk∑nz
i=1 ρ̃air(i) ·∆zi

(2.12)

where ρ̃air(k) is the log-average air density for the layer k and ∆zk is its depth. Rayleigh phase
function Legendre coefficients are directly assigned as :

X1
cof ≡ 1. (2.13)

X3
cof ≡ 0.5 (2.14)

• Oxygen : computation is done in the same way as for Ozone, but the oxygen is ’rescaled’
using Surface Pressure instead of a total column amount.

τO2 = KO2(λ) · P [mbar]

1013.25
(2.15)

ωO2(k) ≡ 0. (2.16)

where KO2 is the oxygen total optical thickness for standard surface pressure and single scat-
tering albedo is set to 0 as the scattering from oxygen in taken into account by the Rayleigh
component.

• Composite Atmosphere

On the basis of the above computed quantities, overall optical properties are provided by the
following equations:

τt(k) =
Ncomp∑

i=1

τi(k) (2.17)

ωt(k) =

∑Ncomp

i=1 ωi(k) · τi(k)∑Ncomp

i=1 τi(k)
(2.18)

Xj
coft

(k) =

∑Ncomp

i=1 Xj
cofi

(k) · ωi(k) · τi(k)
∑Ncomp

i=1 ωi(k) · τi(k)
(2.19)

where t subscript means ’total’, Ncomp is the number of atmospheric components and j represents
the order of the Legendre coefficient.

31

2.1.2 Water Optical Properties

Computation of optical properties for water is more straightforward than for atmosphere, as
every water component is defined through an absorption and scattering model, a scattering phase
function and a vertical profile. A MOD and B MOD include methods to provide directly a and b
coefficients, once component concentration and wavelength are defined. Thus optical properties are
computed as follows:

τ(k) = a(k) + b(k) (2.20)

ω(k) = b(k)/(a(k) + b(k)) (2.21)

A further computation is needed if the phase function is extremely forward peaked and a trun-
cation has been applied to compute Legendre coefficients. In this case, the first coefficient differs
from 1., and its value is used to compute a correction value acorr as (see Wiscombe 1977):

acorr = 1−X0
coef . (2.22)

that is applied to the optical thickness and the single scattering albedo:

τ
′
(k) = τ(k) · (1.− ω(k) · acorr) (2.23)

ω
′
(k) = ω(k) · 1− acorr

1− ω(k) · acorr

(2.24)

PHF returns directly the Legendre associated coefficients.

Total optical properties for a water layer k are computed applying the same formula as for the
atmosphere (see eq. 2.17 to 2.19).

32

2.1.3 Band averaged quantities (for SeaWiFS)

FEM-IDL allows the use of bandpass averaged quantities instead of wavelength dependent vari-
ables, which is suitable for the simulation of instrument bands behaviour with better results than
using central wavelength approximation.

This approach has been implemented for SeaWiFS bands by adding a flag ’SeaWIFS’ in the
Context definition (see 2.3) and modifying the methods involved in the variable retrieval.

The variables that can be defined as band averaged and the methods responsible for their com-
putation are shown in Table 2.1.

Values for SeaWiFS are taken from http://oceancolor.gsfc.nasa.gov/RSR tables.html.

Quantity Method Name in SeaWiFS web page
Pure Water Abs. Coeff A PeF::FEMGet a aw

Pure Water Sca. Coeff B SeB::FEMGet b bbw (*)
Ozone Absorption COMP O3::FEMGetVar koz

Rayleigh Opt. Thick. COMP MOL::FEMGetVar tauR

Solar Irradiance (**) ∗F

Table 2.1: Band averaged quantities

(*) Pure Water scattering coefficient is computed as bpw = bbw · 2
(**) Solar Irradiance band averaged values are used directly setting the SUN Edtot member in system
definition (see 1.4.1).

33

2.2 Example

This section shows a simple water Case 1 example, partially similar to one reported for Hydrolight
in 3.2. ’top ref.bat’ is an IDL batch file that contains all actions necessary to run the example.

@def_env.bat

; -----------------------------------

; **** 1. Create system object

; -----------------------------------

@sys_ref.bat

; -----------------------------------

; **** 2. Run FEM

; -----------------------------------

RID=’Ref’

sys -> FEM_input, Ctx, vls, str_in1, str_in2, str_mom

st = FEM_PP_RUN(Ctx,str_in1,str_in2,str_mom,RID=rid)

; -----------------------------------

; **** 3. Load results

; -----------------------------------

st = FEM_AC_READ_OUT3(Ctx, str_out,RID=rid)

; -----------------------------------

; **** 4. Plot IOPs

; -----------------------------------

sys -> FEM_Input, Ctx, vls, $

str_in1, $

str_in2, $

str_mom, $

DBG_ATM=1, $

DBG_WAT=1, $

EPS=1

; -----------------------------------

; **** 5. Plot computed Radiances

; -----------------------------------

FEM_DD_RADIANCE, str_out, $

DEPTH=0, $; Top of Atmosphere

RID=rid, $

THETA=[-60.],$; Add dotted line

34

EPS=1

FEM_DD_RADIANCE, str_out, $

DEPTH=1, $; Above Surface

RID=rid, $

THETA=[-60.,-120.],$; Add dotted lines

EPS=1

FEM_DD_RADIANCE, str_out, $

DEPTH=2, $; Below Surface

RID=rid, $

THETA=[-139.74,139.74],$; Add dotted lines

EPS=1

FEM_DD_RADIANCE, str_out, $

DEPTH=6, $; At 10 m depth

RID=rid, $

THETA=[-139.74],$; Add dotted lines

EPS=1

FEM_DD_RADIANCE, str_out, $

DEPTH=10, $; At 20 m depth

RID=rid, $

THETA=[-139.74],$; Add dotted lines

EPS=1

FEM_DD_RADIANCE, str_out, $

DEPTH=17, $; At 40 m depth

RID=rid, $

THETA=[-139.74],$; Add dotted lines

EPS=1

’def env.bat’ sets up the IDL environment by compiling all the needed modules, for both SYS-IDL
and FEM-IDL. This script is available at 2.3.1.

’sys ref.bat’ defines the appropriate physical system and is discussed in 2.2.1.

FEM code is driven by the IDL FEM PP RUN routine; details about selection and use of FEM
executable can be found in 2.2.2.

At the end of the run, results are loaded and displayed by the routine FEM DD RADIANCE as
explained in 2.2.3.

35

2.2.1 Input description

The sun is located at a solar zenith angle of 60o and provides a spectral irradiance at the top of
atmosphere of 1 Wm−2nm−1 on a surface perpendicular to the Sun’s rays. The atmosphere contains
absorbing gases (O2 and O3), distributed according to a standard profile U76, and aerosols. O3

concentration is rescaled to a total column amount of 350 DBU while Surface Pressure is not defined
for O2 component and the default value is used. Aerosol particles have a total optical thickness
of 0.05 at 865 nm and follow Ångström law (with nu = 1.0). Aerosol scattering phase function is
assumed to be a TTHG with g1 = 0.85, g2 = 0.7 and α = 0.95. Rayleigh scattering is also taken into
account by a fourth component.

Pure water properties are represented by Pope and Fry model for absorption and by Smith and
Baker model for scattering (refer to sect. 1.3 for details and references). Chlorophyll particles are
distributed according to a gaussian profile as in 1.1.1 with parameters sig=9. m, A=6.3831 mg m−3,
C=.2 mg m−3, xm=17. m. A BRI and B MeM models are used for the absorption and scattering
coefficients, while the Petzold phase function is assumed for particles.

Computation is performed at λ = 510 nm, using 14 layers in atmosphere and 22 in water. Output
azimuth angles are defined to be regularly distributed between 0 and 180 degree, at 45 degree step,
while zenith angles are set to 18 values in the range 0 to 180 degree with uniform step.

Here below the script ’sys ref.bat’, defining the SYS IN structure used for SYSTEM initialisation,
is reported.

; -----------------------------------

; **** Assign sys_in values

; -----------------------------------

;

RTM_TOP_DEFINE_CLASSES, sys_in

; -----------------------------------

; **** GEN values

; -----------------------------------

sys_in.id = ’Reference_case’

sys_in.desc = ’Reference case’

sys_in.sun = ’[SUN: ZEN=60.,AZI=0., EDTOT=1.]’

sys_in.bottom = ’[BOTTOM:]’

sys_in.wave.name = ’WAVE’

sys_in.wave.wave = ’[510.]’

; -----------------------------------

; **** GRID

; -----------------------------------

azi = PTR_NEW(FLTARR(5))

(*azi) = [0.,45.,90.,135.,180.]

sys_in.grid.azi = azi

36

sys_in.grid.nzen = 18

sys_in.grid.equi = 1

zen = PTR_NEW(FLTARR(sys_in.grid.nzen))

(*zen)(0) = [-1.000000, -0.982973, -0.932472, -0.850217, -0.739009, $

-0.602635, -0.445738, -0.273663, -0.092268, 0.092268, $

0.273663, 0.445738, 0.602635, 0.739009, 0.850217, $

0.932472, 0.982973, 1.0000]

sys_in.grid.zen = zen

; -----------------------------------

; **** WAT

; -----------------------------------

sys_in.wat.name = ’WAT_CASE1’

sys_in.wat.comp1(0,1) = ’’

sys_in.wat.comp1(1,1) = ’[A_PeF:]’

sys_in.wat.comp1(2,1) = ’[B_SeB:]’

sys_in.wat.comp1(3,1) = ’[PHF_FILE: NAME="PHF_pw", TYPE="Legendre"]’

sys_in.wat.comp2(0,1) = ’’

sys_in.wat.comp2(1,1) = ’[A_BRI:]’

sys_in.wat.comp2(2,1) = ’[B_MeM: c550=0.416, e550=0.766]’

sys_in.wat.comp2(3,1) = ’[PHF_FILE: NAME="PHF_petzold", TYPE="Legendre"]’

sys_in.wat.comp2(4,1) = ’[GAUSSIAN: sig=9. , A=6.3831, C=.2, xm=17.]’

; -----------------------------------

; **** ATM

; -----------------------------------

; COMP_O3

prof = ’[SERIE: file="/home/clerima/FEM/data/Ozone_U76.dat"]

sys_in.atm.comp1(0,0) = ’prof’& sys_in.atm.comp1(0,1) = prof

sys_in.atm.comp1(1,0) = ’O3’ & sys_in.atm.comp1(1,1) = ’350.0’

; COMP_AER

sys_in.atm.comp2(0,0) = ’a’ & sys_in.atm.comp2(0,1) = ’0.05’

sys_in.atm.comp2(1,0) = ’nu’ & sys_in.atm.comp2(1,1) = ’1.0’

sys_in.atm.comp2(2,0) = ’PHF’

sys_in.atm.comp2(2,1) = "[PHF_TTHG: as=0.95, g1=0.85, g2=0.7]"

; COMP_MOL

sys_in.atm.comp3(0,0) = ’PHF’ & sys_in.atm.comp3(0,1) = "[PHF_RAYL:]"

37

sys_in.atm.comp3(1,0) = ’p0’ & sys_in.atm.comp3(1,1) = ’1013.0’

; COMP_O2

prof = ’[SERIE: file="/home/clerima/FEM/data/Oxigen.dat"]

sys_in.atm.comp4(0,0) = ’prof’& sys_in.atm.comp4(0,1) = prof

; -----------------------------------

; **** Initialise system

; -----------------------------------

sys = OBJ_NEW("SYSTEM")

sys -> Initial, sys_in

; -----------------------------------

; **** VLS

; -----------------------------------

vls = {VLS}

vls.type = 0 ; geometrical

vls.nz = 38

vls.natm = 15 ; number of levels

zatm = PTR_NEW(FLTARR(15))

(*zatm)(*) = [60.,50.,40.,35.,30.,25.,20.,15.,$

10.,6.,3.,2.,1.,0.5, 0.]

vls.zatm = zatm

vls.nwat = 23 ; number of levels

zwat = PTR_NEW(FLTARR(23))

(*zwat)(*) = [0.0, 1.0, 2.0, 3.5, 5.0, $

7.5, 10.0, 12.5, 15.0, 17.5, $

20.0, 22.5, 25.0, 27.5, 30.0, $

32.5, 35.0, 40.0, 50.0, 60.0, $

70.0, 80.0, 90.0]

vls.zwat = zwat

38

2.2.2 Run of the example case

In order to run FEM, 3 ASCII input files are required, whose organisation is described in
’femwat.txt’ file, distributed together with the FEM User Version. FEM-IDL defines a structure
corresponding to each file (STR IN1, STR IN2 and STR MOM), together with routines to write the
files in the appropriate format.

Once a SYSTEM object is created, as in 2.2.1, its FEM input method is used to transfer values
to structures STR IN1, STR IN2 and STR MOM, which are then passed to FEM PP RUN, which
does the following:

• Writes FEM ASCII input files.

• Calls the FEM executable.

2.2.3 Output analysis

Optical properties of every atmosphere/water component cannot be loaded from the FEM output
files, as the code receives for each layer only total τ , ω and Legendre coefficients, computed from
equations 2.17 to 2.19. Therefore the same method used to compute IOPs (system::FEM Input)
contains keywords to display them, both for water and atmosphere. These keywords (DBG WAT
and DBG ATM) are activated in ’top ref.bat’ batch file to generate the figures 2.2 to 2.6.

Figure 2.2: Optical Thickness for atmospheric layers

Figure 2.2 represents different contributions to the optical thickness in atmosphere vs. altitude
in km. The quantity represented is the optical depth τi(k), as computed in 2.1.1, divided by the
layer height in km. This is done in order to avoid discontinuities due to the non uniform levels
spacing (layers close to surface are thinner than at TOA). Ozone absorption can be discerned, with
its maximum around 23 km, while in lower layers Rayleigh scattering and interaction with aerosol
dominate.

39

Figure 2.3: Single Scattering Albedo for atmospheric layers

As it can be seen from fig. 2.3, in the present case components are only absorbing (O2 and
O3) or only scattering (aerosols and Rayleigh), and the shape of total Single Scattering Albedo is
determined by the different optical thickness of components along the vertical profile (see eq. 2.18).

Figure 2.4: Optical Thickness for water layers

In the water body the Chlorophyll gaussian distribution with its maximum at 17 m can be
clearly seen in fig. 2.4.

40

Figure 2.5: Single Scattering Albedo for water layers

Chlorophyll component single scattering albedo varies slightly in water together with the vari-
ation of the particle concentration along the profile, as expected. Nevertheless ssa value is always
close to 0.95 and the variation cannot be appreciated from fig. 2.5.

Figure 2.6: Phase Function Legendre Coefficients for first water layer

Phase function Legendre coefficients, computed for the first water layer below the surface, are
displayed in fig. 2.6.

41

In order to understand radiance distribution computed from the FEM code, presented and
discussed hereafter, some conventions must be explained.

• Radiance : the FEM code produces as output only diffuse radiance, i.e. radiance coming
from at least one interaction with particles in water or atmosphere, and not the direct radiance.
Therefore, radiance coming directly from the Sun will not appear on plots.

• Viewing direction: it is the direction in which points an hypothetical instrument (or the eye of
the observer) and not the direction of propagation of the photons.

• Azimuth viewing angle: by definition φ = 0 refers to the semi-plane of the direct light propa-
gation while φ = 180 refers to the opposite semi-plane (containing the Sun).

• Zenith viewing angle: θ is 0 when looking straight downward at the upcoming radiation.

The convention defined for the viewing angles (see fig. 2.7) is the same as in Mobley (1994,
pp. 505-506), but the two opposite azimuthal semi planes (φ = 0 and φ = 180) are combined
differently, making adjacent the value θ = 0 rather than θ = 180 (see e.g. fig. 2.8). This is done
because the current approach is focused on the remote sensing problem, rather than the in-water
light propagation, and in most of the cases only upward radiance at TOA will be analysed with θ in
a range −θmax..+ θmax.

Sun

Phi = 180 Phi = 0

Note: the arrows point in the observation direction (opposite to photons propagation direction)

theta=90

theta=−180 theta=180

theta=−90

theta=0 theta=0

−theta_max +theta_max

Figure 2.7: Viewing angle description

42

Radiance distributions in the principal plane, plotted by the routine FEM DD RADIANCE
called several times for different levels in the script file ’top ref.bat’, are discussed in the following.

Figure 2.8: Diffuse radiance at TOA

At Top of Atmosphere diffuse radiance is obviously non-zero only in the range θ = −90o to
θ = 90o and has its maximum at these boundary values, as effect of both aerosol and Rayleigh
scattering in atmosphere. For θ = −60o a peak due to the forward scattered and water reflected
radiation can be seen.

Figure 2.9: Diffuse radiance above water Surface

Figure 2.9 illustrates radiance distribution just above water surface; in the left plane (φ = 180o)
two peaks due to forward-scattered radiation can be seen at θ = −120o and θ = −60o. The first
refers to down going radiation, the second to up going radiation after water surface reflection. Diffuse
radiation maxima at θ = −90o and θ = 90o seen in fig. 2.8 are still present.

43

Figure 2.10: Diffuse radiance below water Surface

In figure 2.10 the forward scattered peak is visible near θ = −139.74o, which is its propagation
direction after refraction. A small peak is also present at the opposite direction, as an effect of the
chlorophyll particles back-scattering.

Figure 2.11: Diffuse radiance at 10 m depth

Light propagation in water body is illustrated in figures 2.11 to 2.13. At 10 meter depth,
forward scattered radiation around θ = −139.74o is stronger than just below surface, due to particles
scattering.

44

Figure 2.12: Diffuse radiance at 20 m depth

At 20 meter depth (see figure 2.12) the peak due to forward scattering is still visible but much
lighter than before, while at 40 meter the radiance distribution is almost symmetrical and radiation
is coming only downward.

Figure 2.13: Diffuse radiance at 40 m depth

45

2.3 List of IDL files

• FEM Methods.pro: methods of the RTM classes (defined in Chapter 1) for FEM adaptation
and FEM dedicated classes definition.

• FEM Access.pro: routines to read/write input/output files.

• FEM Process.pro: routines to drive the FEM code.

• FEM Display.pro: routines to display FEM input and outputs.

• FEM Tool.pro: define the general environment (Context), which contains directory definition,
FEM executable name, error severity levels, satellite specific variables. Initialisation of the
Context is done through the files FEM Config.icl and def SeaWiFS.bat.

• FEM Config.icl: definitions for Context initialisation.

• def SeaWiFS.bat: SeaWiFS bandpass averaged quantities.

2.3.1 IDL environment setting

The attached IDL batch file (’def env.bat’) performs the following actions:

• Adds SYS-IDL library directory to IDL path.

• Compiles all SYS-IDL files and calls routines to define structures and classes.

• Compiles all FEM-IDL files and calls routines to define structures and classes.

• Creates the general context, containing directories and input/output files definition.

!QUIET=1

retall

; Get RTM IDL library dir and add to path

rtmidl=GETENV(’RTMIDL’)

pos = STRPOS(!path,rtmidl)

IF (pos LT 0) THEN BEGIN !path = !path+’:’+rtmidl & PRINT, rtmidl+’ added to path’

; Get FEM IDL library dir and add to path

femidl=GETENV(’FEMIDL’)

pos = STRPOS(!path,femidl)

IF (pos LT 0) THEN BEGIN !path = !path+’:’+femidl & PRINT, femidl+’ added to path’

; Compile IDL global library

.run ~/IDL/global_rout.pro

; Compile RTM sources and define structures/classes

.run RTM_Tool.pro

.run RTM_Display.pro

46

.run RTM_GEN_define.pro

.run RTM_OTH_define.pro

.run RTM_WAT_define.pro

.run RTM_ATM_define.pro

.run RTM_TOP_define.pro

RTM_GEN_DEFINE_CLASSES

RTM_WAT_DEFINE_CLASSES

RTM_OTH_DEFINE_CLASSES

RTM_ATM_DEFINE_CLASSES

RTM_TOP_DEFINE_CLASSES

; Compile FEM sources and define structures/classes

.run FEM_Tool.pro

.run FEM_Access.pro

.run FEM_Process.pro

.run FEM_Display.pro

.run FEM_Methods.pro

FEM_DEFINE_CLASSES

st = FEM_AC_DEFINE_STRUCT()

; Create the context

st = FEM_TL_GET_CONTEXT(Ctx,DIR=’~/FEM/IDL/’)

47

Chapter 3

Interface to Hydrolight 4.1

Hydrolight 4.1 is a radiative transfer numerical model that computes radiance distribution and
derived quantities for natural water bodies from Curtis D. Mobley (Mobley 1994). This model
solves the time-independent radiative transfer equation to obtain the radiance distribution within
and leaving any plane-parallel water body. The source code is written entirely in FORTRAN; input
and output files are ASCII files. The current IDL implementation drives the executable code by
writing the input files without the use of the ”front-end” program available as an User Interface
on Microsoft Windows systems and as a text-based ”question-and-answer” program for Unix/Linux
platforms, till Hydrolight 4.0 release.

The main issue to interface the water-atmosphere coupled system defined in Chapter 1 with the
Hydrolight 4.1 code is to transfer the information stored in SYSTEM into the Hydrolight input file.
An example of this input file is available in 3.2.2. As it can be seen it contains only values to be
read from the executable code without any comment line or keyword in assignment. File detailed
description can be found in Mobley and Sundman (2000b, App.A).

The approach followed by Hydrolight is to select during the initialisation phase some routines
to be used in run-time and to compile the executable code for every run. On one hand this process
makes the code extremely flexible and is suitable for a single run on many wavelengths. On the
other hand it is not convenient when the same routines are used for a lot of runs that differ only
for the input parameters. In order to avoid this compilation, three water cases have been identified
(’WAT CONST’, ’WAT CASE1’,’WAT CASE2’) and three corresponding executables compiled once
for all and called respectively maincode C.exe, maincode 1.exe and maincode 2.exe. The IDL driver
selects one of them in run time according to the SYSTEM defined.

The example 2 described in Mobley and Sundman (2000b, pg. 54) is presented in Section 3.2.

48

3.1 System to Hydrolight interface

Hydrolight 4.1 program is focused on the water part of the system, and the atmosphere is
considered only to compute the irradiance reaching the water surface but the radiative equation is
not solved for the atmospheric layers. This is done in Hydrolight by using different models of ’sky’
(see Mobley and Sundman 2000b, pg. 43-44). Thus a new IDL class, displayed in fig. (3.1) is inserted
to represent these sky models. This class is defined here, as part of the Hydrolight-IDL routines,
rather than at ’System level’, as it is specific to the Hydrolight code.

SKY

Sun

Atm

Locat

LOCAT

ATM

SUN

Figure 3.1: Sky class

As it can be seen from fig. (3.1) an object of SKY class contains SUN, LOCAT and ATM objects,
and it can therefore access the whole information stored in them. SKY methods have been developed
to ’translate’ the atmospheric and solar properties (accounting also for the location selected) into
the format Hydrolight expects.

SKY derived classes corresponding to the three models implemented in Hydrolight are repre-
sented in fig. (3.2).

SKY

SKY1 SKY2 SKY3

Figure 3.2: Sky derived class

A full description of the three models can be found in Mobley and Sundman (2000a, 2.5).

Unlike for FEM (see Chapter 2), no computation of optical properties has to be done by IDL
before calling the Hydrolight executable. In order to transfer information from SYSTEM to the
Hydrolight input file in the proper format, specific methods are written for all relevant classes (like
A MOD, B MOD, water components, PHF and so on). A list of these methods can be found in 4.3.

49

3.2 Example

This section shows how to run the example 2 from Mobley and Sundman (2000b, 6.2), which
is a multi-spectral Case 1 water simulation. All the needed actions are performed through a simple
IDL batch file called ”top UG2.bat” reported hereafter.

@def_env.bat

; -----------------------------------

; **** Create system object

; -----------------------------------

@sys_UG2.bat

; -----------------------------------

; **** Run Hydrolight 4.1

; -----------------------------------

st = HYD_PP_RUN(Ctx, Str_in1,SKYTYPE=2,SYSTEM=sys)

; -----------------------------------

; **** Load results

; -----------------------------------

Ctx.RID = ’Ex_UG2’

st = HYD_AC_READ_DIGITAL (Ctx, str_out)

; -----------------------------------

; **** Plot Water IOPs

; -----------------------------------

HYD_DD_WAT_COEFF, str_out, TYPE=’a’,$; Absorption coefficient

SURF=1, $; Surface (3D) plot

COMP=0, $; Only total values

iWAVE=1, $; First wavelength

EPS=1 ; Print to EPS file

; -----------------------------------

; **** Plot computed Radiances

; -----------------------------------

HYD_DD_RADIANCE, str_out, TYPE=1, $; Diffuse Radiance

DEPTH=5, $; Output layer

LOG=1, $; Log y-axis

SURF=1, $; Surface (3D) plot

REFL=0, $; Reflectance

EPS=0 ; Print to EPS file

50

’def env.bat’ sets up the IDL environment by compiling all the needed modules, for both SYS-IDL
and Hydrolight-IDL. This script is available at 3.3.1.

’sys UG2.bat’ defines the appropriate physical system and is discussed in 3.2.1.

Hydrolight 4.1 code is driven by the IDL HYD PP RUN routine; details about selection and use of
Hydrolight executable can be found in 3.2.2.

At the end of the run, results are loaded and displayed in the last part of the script as explained in
3.2.3.

51

3.2.1 Input description

SYSTEM object initialisation follows rules and syntax described in Chapter 1, whose knowl-
edge is a pre-requisite to understand actions described in the current section. The attached file
(’sys UG2.bat’) contains comments that should make understandable every definition of SYS IN
members. Therefore only few key points are highlighted here:

• The order of the assignments follows the one of the Windows GUI, as in Mobley and Sundman
(2000b, 6.2). The name of the corresponding forms is also reproduced in the comments as much
as possible.

• Water components IOP definition is exactly the same as in Hydrolight, even if it seems a lot
more complicated here than through the GUI. That is because we decided not to initialise with
the default values absorption and scattering models.

• The definition of the atmosphere here is limited to only few scalar quantities (like cloud cov-
erage, wind speed, ...) which are used by the script to define the Air-Water Surface Boundary
Conditions.

;

; Batch file to define System as in Hydrolight 4.1 User Guide

; Example 2

;

; ---

; **** Create SYS_IN structure

; ---

RTM_TOP_DEFINE_CLASSES, sys_in

; ---

; **** Define model to use

; ---

sys_in.model = ’HYD’

; ---

; **** Run Identification

; ---

sys_in.id = ’Ex_UG2’

sys_in.desc = ’Example 2: A Simulation of Case 1 water’

; ---

; **** WATER definition

; ---

sys_in.wat.name = ’WAT_CASE1’

; ** IOP specification for Component 1: pure water

52

sys_in.wat.comp1(0,1) = ’’

sys_in.wat.comp1(1,1) = ’[A_PeF: FILE="pfh2oab.txt"]’

sys_in.wat.comp1(2,1) = ’[B_SeB:]’

sys_in.wat.comp1(3,1) = ’[PHF_FILE: NAME="pureh2o.dpf", TYPE="dpf"]

; ** IOP specification for Component 2: chlorophyll

sys_in.wat.comp2(0,1) = ’’

sys_in.wat.comp2(1,1) = ’[A_PSM: FILE="../data/defaults/apstarchl.txt", wref=440]’

sys_in.wat.comp2(2,1) = ’[B_POW: wref=550, bref=0.3, m=1.0, n=.62]’

sys_in.wat.comp2(3,1) = ’[PHF_FILE: NAME="avgpart.dpf", TYPE="dpf"]’

sys_in.wat.comp2(4,1) = ’[VPROFILE: file="../data/examples/chlzdata.txt"]’

; ** Internal Source and Inelastic Scatter Selection

sys_in.wat.isrc = ’[ISRC: BIOLUM=0, CHLFLU=1, CDOMFLU=0, RAMAN=1, COMPCHLA=2]’

; ** Wavelength selection

sys_in.wave.name = ’WAVE’

sys_in.wave.wave = ’[350., 360., 370., 380., 390., 400., 410., 420., 430., 440.,’+$

’450., 460., 470., 480., 490., 500., 510., 520., 530., 540.,’+$

’550., 560., 570., 580., 590., 600., 610., 620., 630., 640.,’+$

’650., 660., 670., 680., 690., 700.]’

; ** ’Atmosphere’ definition (Sky + water surface)

sys_in.atm.csky = 1.25

sys_in.atm.rsky = 0.333

sys_in.atm.cloud = 0.3

sys_in.atm.winddir = 0.0

sys_in.atm.windspd = 2.0

sys_in.sun = ’[SUN: ZEN=20.,AZI=0.,EDTOT=1.]’

sys_in.locat = ’[LOCAT :]’

; ** Bottom Boundary Condition

sys_in.bottom = ’[BOTTOM: TYPE=1 ,REFL=.2,FILE="dummy.txt"]’

; ** Output Depths

sys_in.ols.name = ’OLS’

sys_in.ols.type = 0

sys_in.ols.depths = ’[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]’

53

; -----------------------------------

; **** Initialise system

; -----------------------------------

sys = OBJ_NEW("SYSTEM")

sys -> Initial, sys_in

3.2.2 Run of the example case

Once a SYSTEM object has been created and initialised as in 3.2.1, it is passed as keyword to
the routine HYD PP RUN, which does the following:

• Writes Hydrolight run-time input file. The file produced for the current example is attached
below.

• Calls the Hydrolight executable related to water Case 1 (maincode 1.exe).

Example 2: A Simulation of Case 1 water

Ex_UG2

0 1 2 1

2 2

1 999.0 0.9990 0.9990

3 440.0 0.9990 0.9990

pfh2oab.txt

../data/defaults/apstarchl.txt

0 1.0 0.999000 0.999000 0.999000 0.999000

1 550.0 0.300000 1.000000 0.620000 0.000000

bstardummy.txt

bstardummy.txt

0 0 0.9990 0.9990

1 0 0.9990 0.9990

pureh2o.dpf

avgpart.dpf

35

350.00 360.00 370.00 380.00 390.00 400.00 410.00 420.00

430.00 440.00 450.00 460.00 470.00 480.00 490.00 500.00

510.00 520.00 530.00 540.00 550.00 560.00 570.00 580.00

590.00 600.00 610.00 620.00 630.00 640.00 650.00 660.00

670.00 680.00 690.00 700.00

0 1 0 1 2

2 3 20.00 0.00 0.30

2.00

1 0.2000

0 11 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

18.00 20.00

pfh2oab.txt

1

ac9FileDummy.txt

54

ac9FiltDummy.txt

HydroscatDummy.txt

../data/examples/chlzdata.txt

CDOMDummy.txt

dummy.txt

PWProfileDummy.txt

../data/examples/chlzdata.txt

3.2.3 Output analysis

This section aims at illustrating just some features of the Hydrolight-IDL visualisation routines:
for an overall description of IDL functions and related keywords refer to 4.3. Run results are loaded
from ’digital’ output file by the routine HYD AC READ DIGITAL() and stored in the structure
str out. This structure is passed to some visualisation routines to display both water IOPs and
output radiance/irradiance. Fig. 3.3 displays water absorption coefficient [m−1] as a function of the
geometrical depth and wavelength.

Figure 3.3: Water Absorbing coefficient for Example 2 User Guide

55

The radiance distribution at a depth of 10 m as a function of the viewing angle and wavelength
is represented in Fig. 3.4. Note that the viewing angle convention differs from the one used in
Hydrolight User Guide. Here θ = 0 refers to downward going radiance.

Figure 3.4: Radiance field at 10 m for Example 2 User Guide

56

3.3 List of IDL files

• HYD Methods.pro: methods of the SYS classes (defined in Chapter 1) for Hydrolight adapta-
tion and Hydrolight dedicated classes.

• HYD Access.pro: routines to read/write input/output files.

• HYD Process.pro: routines to drive Hydrolight code.

• HYD Display.pro: routines to display Hydrolight input and output.

• HYD Tool.pro: define the general environment (Context).

3.3.1 IDL environment setting

The attached IDL batch file (’def env.bat’) performs the following actions:

• Adds SYS-IDL library directory to IDL path.

• Compiles all SYS-IDL files and calls routines to define structures and classes.

• Compiles all Hydrolight-IDL files and calls routines to define structures and classes.

• Creates the general context, containing directories and input/output files definition.

retall

!QUIET=1

; Get RTM IDL library dir and add to path

rtmidl=GETENV(’RTMIDL’)

pos = STRPOS(!path,rtmidl)

IF (pos LT 0) THEN BEGIN !path = !path+’:’+rtmidl & PRINT, rtmidl+’ added to path’

.run ~/IDL/global_rout.pro

; Compile RTM sources and define structures/classes

.run RTM_Tool.pro

.run RTM_Display.pro

.run RTM_GEN_define.pro

.run RTM_OTH_define.pro

.run RTM_WAT_define.pro

.run RTM_ATM_define.pro

.run RTM_TOP_define.pro

RTM_GEN_DEFINE_CLASSES

RTM_WAT_DEFINE_CLASSES

RTM_OTH_DEFINE_CLASSES

RTM_ATM_DEFINE_CLASSES

RTM_TOP_DEFINE_CLASSES

57

; Compile HYD sources and define structures/classes

.run HYD_Tool.pro

.run HYD_Access.pro

.run HYD_Process.pro

.run HYD_Display.pro

.run HYD_Methods.pro

HYD_AC_DEFINE_STRUCT

HYD_DEFINE_CLASSES

; Get Context

st = HYD_TL_GET_CONTEXT(Ctx)

58

Conclusions

RTM-IDL 1.0 package is part of a more general activity that aims at generating a dataset
of simulated radiances at TOA and water leaving reflectances for the atmospheric correction and
aerosol properties retrieval. The FEM code has been extensively exploited, while Hydrolight used
as a reference for particular cases. The approach described in the document has shown several
advantages:

• Unified definition of the coupled water-atmosphere system makes particularly easy the com-
parison of test cases to be solved with different RT models.

• Interface of the RT codes through IDL allows the writing of routines at higher level to perform
systematic runs, to load and analyse the results taking advantage of all well-known IDL features.

• The addition of other models/components (other parameterisations for the definition of sea
water IOPs, other aerosol models) is easily performed.

Some further activity is foreseen to make more convenient the use of RTM-IDL 1.0, in particular
a widget-based GUI can be written to deal with the structure SYS IN that defines the SYSTEM, as
described in Section 1.5.

59

Acknowledgements

The author would like to thank Barbara Bulgarelli for allowing the use of FEM and for her
support in the understanding of the code and Frédéric Mélin for his precious suggestions for im-
provements of the RTM-IDL 1.0.

60

Chapter 4

Annexes

61

4.1 List of SYS-IDL routines

SYS-IDL routine list and description

This page was created by the IDL library routine mk_html_help. For more

information on this routine, refer to the IDL Online Help Navigator or type:

? mk_html_help

at the IDL command line prompt.

Last modified: Mon Jan 31 17:21:45 2005.

--

List of Routines

* RTM_TL_READ_KEYWORD

* RTM_TL_PRINT_ERROR

* RTM_TL_OBJ_GET_CLASS_PAR

* RTM_TL_OBJ_GET_ARGUMENT

* RTM_DD_WAT_COEFF

* RTM_DD_RADIANCE

* RTM_DD_IRRADIAN

* RTM_TOP_DEFINE_CLASSES

* RTM_GEN_DEFINE_CLASSES

* VPROFILE::INITIAL

* VPROFILE::GETVALUE

* VPROFILE::PLOT

* GAUSSIAN::INITIAL

* GAUSSIAN::GETVALUE

* GAUSSIAN::PLOT

* UNIFORM::INITIAL

* UNIFORM::GETVALUE

* SERIE::READ

* SERIE::INITIAL

* SERIE::GETVALUE

* SERIE::GETAVGVALUE

* PHF::INITIAL

* PHF_FILE::INITIAL

* PHF_RAYL::INITIAL

* PHF_TTHG::INITIAL

* RTM_ATM_DEFINE_CLASSES

* COMP_O3::INITIAL

* COMP_AER::INITIAL

* COMP_AER_OPAC::INITIAL

* COMP_MOL::INITIAL

* COMP_O2::INITIAL

62

* ATM::INITIAL

* RTM_WAT_DEFINE_CLASSES

* ISRC::INITIAL

* A_MOD::INITIAL

* A_CONST::INITIAL

* A_USR::INITIAL

* A_PEF::INITIAL

* A_SEB::INITIAL

* A_PSM::INITIAL

* A_BRI::INITIAL

* A_CASE1::INITIAL

* A_CHLA1::INITIAL

* A_EXP::INITIAL

* A_CDOM::INITIAL

* RTM_OTH_DEFINE_CLASSES

--

Routine Descriptions

RTM_TL_READ_KEYWORD

[Next Routine] [List of Routines]

NAME:

RTM_TL_READ_KEYWORD

PURPOSE:

This function parses a string array (str_array) looking for the

definition of a keyword, and returns the value defined, as a string

(str_read)

The string array SHALL be defined as following:

’ keyword1 = string1 ’

’ keyword2 = string2 ’

’ keywordn = stringn ’

IMPORTANT : str_array SHALL NOT CONTAIN ’;’ char (otherwise disregarded)

CATEGORY:

RTM Tool

CALLING SEQUENCE:

Result = RTM_TL_READ_KEYWORD(str_array,keyword,str_read)

63

INPUTS:

str_array : array of strings to be parsed

keyword : keyword searched

KEYWORD PARAMETERS:

none

OUTPUTS:

str_read : value

RETURN : 0 - Keyword found

>0 - Keyword not found

MODIFICATION HISTORY:

Written by: Marco Clerici, 24.05.04

(See RTM_Tool.pro)

--

RTM_TL_PRINT_ERROR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_TL_PRINT_ERROR

PURPOSE:

Print an error message on the standard error output

CATEGORY:

Tool

CALLING SEQUENCE:

RTM_TL_PRINT_ERROR , Ctx , routine, level, message [,/NODATE] [,/INFO]

[,OPT_LINE=opt_line]

INPUTS:

Ctx : General Context

routine : Name of the calling routine

level : Severity level of the message : 0 - FATAL

1 - ERROR

2 - WARNING

3 - INFO

message : Error message text

KEYWORD PARAMETERS:

INFO : Flag to force the printing of the message, disregarding

64

the actual Ctx.ErrorLevel value

NODATE : Do not print the date and time

OPT_LINE: Optional line, used to make the message more detailed

OUTPUTS:

RESTRICTIONS:

MODIFICATION HISTORY:

Written by: Marco Clerici, 24.05.04

(See RTM_Tool.pro)

--

RTM_TL_OBJ_GET_CLASS_PAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_TL_OBJ_GET_CLASS_PAR

PURPOSE:

Extract from a string the class name and initialisation parameters.

Syntax is:

str = ’[CLASS_NAME: param1=val1, param2=val2 ...]’

The remaining part of the string is returned

CATEGORY:

RTM Tool

CALLING SEQUENCE:

Result = RTM_TL_OBJ_GET_CLASS_PAR(str, class, param [,CTX=ctx])

INPUTS:

str : string in format described above

KEYWORD PARAMETERS:

Ctx : general context

OUTPUTS:

class : class name

param : parameter list

65

RETURN : 0 - Success

>0 - Failure

MODIFICATION HISTORY:

Written by: Marco Clerici, 24.05.04

(See RTM_Tool.pro)

--

RTM_TL_OBJ_GET_ARGUMENT

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_TL_OBJ_GET_ARGUMENT

PURPOSE:

Extract from a string array the string associated to the

given name.

Argums is like: args(n,2)

args(0,0) = name1 args(0,1) = value1

args(1,0) = name2 args(1,1) = value2

args(2,0) = name3 args(2,1) = value3

If the name is not found, empty string is returned

CATEGORY:

RTM Tool

CALLING SEQUENCE:

Result = RTM_TL_OBJ_GET_ARGUMENT(args,name,value)

INPUTS:

args : string array in format described above

name : argument name

KEYWORD PARAMETERS:

none

OUTPUTS:

value : argument value

RETURN : 0 - Success

>0 - Failure

MODIFICATION HISTORY:

Written by: Marco Clerici, 17.05.04

66

(See RTM_Tool.pro)

--

RTM_DD_WAT_COEFF

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_DD_WAT_COEFF

PURPOSE:

Display an wat coefficient (a,b,c or Kd), with different options:

1. Plot as 3D vs. depth/wavelength (keyword SURF=1)

2. Plot as 2D vs. depth, 1 curve for each wave (only total value)

3. Plot as 2D vs. depth, 1 curve for components, at 1 wave

(keyword COMP=1 and iWAVE=i)

CATEGORY:

HYD Access

CALLING SEQUENCE:

RTM_DD_WAT_COEFF, wat, ...

INPUTS:

wat : wat coefficient [depth,wave] or [depth,wave,comp]

depths : depth array

wave : wavelength array

KEYWORD PARAMETERS:

PS : print to Postscript file

EPS : print to Encapsulated Postscript file

NAME : wat coefficient label (for title/z-axis)

UNIT : wat unit

SURF : display in 3D

OPTIC : optical depth (default is geometrical)

INS_COL : instrument specific colors (refer to wave array;

default is SEAWIFS); If -1, plot in black & white

COMP : if set, plot for each component. In this case, wat

is [depth,wave,comp] and iWAVE should be defined

When set, also defines the number of components

to be plotted

OUTPUTS:

none

67

MODIFICATION HISTORY:

Written by: Marco Clerici, 21.05.04

adapted from Hydrolight 4.1 IDL routine: ugfig6.pro

(See RTM_Display.pro)

--

RTM_DD_RADIANCE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_DD_RADIANCE

PURPOSE:

Display a radiance field as function of viewing dir and wave.

Note on view angle : the Mobley std is described in Light & Water $11.1 (p.506)

There the xrange 0-180 -> azi=180, zen=0-180

(zen=0 means looking dnw, photons upw)

xrange 180-0 -> azi=0, zen=180-0

Here we join the two ranges into 1 range 0 - 180 - 0

Both Hydrolight and FEM modules must prepare the rad array joining results of

two azimuth angles (e.g. azi=0 and azi=180 for principal plane)

CATEGORY:

HYD Access

CALLING SEQUENCE:

RTM_DD_RADIANCE, rad, ..

INPUTS:

rad : radiance [wave,zen]

wave : wavelength array

view : zenithal viewing angle (in degrees)

KEYWORD PARAMETERS:

PS : print to Postscript file

EPS : print to Encapsulated Postscript file

NAME : radiance name

68

TITLE : Plot title

UNIT : radiance unit

SURF : display in 3D

INS_COL : instrument specific colors (refer to wave array;

default is SEAWIFS); If -1, plot in black & white

LOG : display in logarithmic scale

WNBR : define the window number which to plot to

THETA : viewing zenith angles to highlight

LYR : layer number (for title and .eps filename)

RID : run Id (for .eps filename)

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 21.05.04

adapted from Hydrolight 4.1 IDL routine: ugfig7.pro

(See RTM_Display.pro)

--

RTM_DD_IRRADIAN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_DD_IRRADIAN

PURPOSE:

Display an irradiance field:

1. Plot as 3D vs. depth/wavelength (keyword SURF=1)

2. Plot as 2D vs. depth, 1 curve for each wave (only total value)

CATEGORY:

HYD Access

CALLING SEQUENCE:

RTM_DD_IRRADIAN, irr, ...

INPUTS:

irr : irradiance array [depth,wave]

depths : depth array

wave : wavelength array

69

KEYWORD PARAMETERS:

PS : print to Postscript file

EPS : print to Encapsulated Postscript file

NAME : irradiance label (for z-axis)

TITLE : display title

UNIT : irradiance unit

SURF : display in 3D

OPTIC : optical depth (default is geometrical)

INS_COL : instrument specific colors (refer to wave array;

default is SEAWIFS); If -1, plot in black & white

LOG : display in logarithmic scale

YLOG : use logarithmic y-axis

OVERP : overplot (no for SURFACE). It is also used for offset in

legend (set to 1,2,3 for multiple overplot)

COLOR : force the use of a color. It is used only for overplot,

and is intended for 1 wavelength. (no for SURFACE)

LEGEND : token to print as a legend. (no for SURFACE)

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

(See RTM_Display.pro)

--

RTM_TOP_DEFINE_CLASSES

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_TOP_DEFINE_CLASSES

PURPOSE:

Define the top level class

CATEGORY:

RTM Tool

CALLING SEQUENCE:

RTM_TOP_DEFINE_CLASSES

INPUTS:

none

70

KEYWORD PARAMETERS:

none

OUTPUTS:

sys_in : {SYS_IN} variable initialised

MODIFICATION HISTORY:

Written by: Marco Clerici, 21.05.04

(See RTM_TOP_define.pro)

--

RTM_GEN_DEFINE_CLASSES

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_GEN_DEFINE_CLASSES

PURPOSE:

Define the following basic classes:

VPROFILE <- GAUSSIAN

<- UNIFORM

<- SERIE

PHF <- PHF_FILE

<- PHF_RAYL

<- PHF_TTHG

<- PHF_RATIO

<- PHF_HYSCA

<- PHF_CDOM

COMP

CATEGORY:

RTM Tool

CALLING SEQUENCE:

RTM_GEN_DEFINE_CLASSES

INPUTS:

none

KEYWORD PARAMETERS:

none

OUTPUTS:

none

71

MODIFICATION HISTORY:

Written by: Marco Clerici, 14.05.04

(See RTM_GEN_define.pro)

--

VPROFILE::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

VPROFILE::Initial

PURPOSE:

Initialise a VPROFILE object

CALLING SEQUENCE:

VPROFILE::Initial [,TIT=tit] [,XNAME=xname] [,YNAME=yname] [,STAT=stat] $

[,Xv=xv] [,Yv=yv] [,FILE=file]

INPUT:

NONE

KEYWORD:

TIT: plot title

XNAME: x-axis title

YNAME: Y-axis title

STAT: object status

XV: x-values array (n.u.)

YV: y-values array (n.u.)

FILE: filename

ROUTINE:routine name

(See RTM_GEN_define.pro)

--

VPROFILE::GETVALUE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

VPROFILE::GetValue

PURPOSE:

72

Get the y value associated to a given x

CALLING SEQUENCE:

VPROFILE::GetValue, x, y

INPUT:

x: x value

OUTPUT:

y: y value

KEYWORD:

none

(See RTM_GEN_define.pro)

--

VPROFILE::PLOT

[Previous Routine] [Next Routine] [List of Routines]

NAME:

VPROFILE::Plot

PURPOSE:

Plot the vertical profile

CALLING SEQUENCE:

VPROFILE::Plot [,XR=xr] [,YR=yr] [,COL=col]

INPUT:

none

OUTPUT:

none

KEYWORD:

XR: x-axis range

YR: y-axis range

COL: plot color

(See RTM_GEN_define.pro)

--

GAUSSIAN::INITIAL

73

[Previous Routine] [Next Routine] [List of Routines]

NAME:

GAUSSIAN::Initial

PURPOSE:

Initialise a GAUSSIAN object

CALLING SEQUENCE:

GAUSSIAN::Initial [,TIT=tit] [,XNAME=xname] [,YNAME=yname] [,STAT=stat] $

[,C=c] [,SIG=sig] [,A=a] [XM=xm]

INPUT:

NONE

KEYWORD:

some keywords as for VPROFILE::Initial, and additionals:

C: gaussian ’background’ (asyntotic value for x=+/- oo)

XM: median x-value of the gaussian

SIG: gaussian sigma

A: y max value (at xm) is: A+C

(See RTM_GEN_define.pro)

--

GAUSSIAN::GETVALUE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

GAUSSIAN::GetValue

PURPOSE:

Get the y value associated to a given x

CALLING SEQUENCE:

GAUSSIAN::GetValue, x, y

INPUT:

x: x value

OUTPUT:

y: y value

KEYWORD:

none

74

(See RTM_GEN_define.pro)

--

GAUSSIAN::PLOT

[Previous Routine] [Next Routine] [List of Routines]

NAME:

GAUSSIAN::Plot

PURPOSE:

Plot the vertical profile

CALLING SEQUENCE:

GAUSSIAN::Plot [,XR=xr] [,YR=yr] [,XSTEP=xstep] [,COL=col]

INPUT:

none

OUTPUT:

none

KEYWORD:

XR: x-axis range

YR: y-axis range

YR: y-axis range

XSTEP: x-axis step

(See RTM_GEN_define.pro)

--

UNIFORM::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

UNIFORM::Initial

PURPOSE:

Initialise a UNIFORM object

CALLING SEQUENCE:

UNIFORM::Initial [,TIT=tit] [,XNAME=xname] [,YNAME=yname] [,STAT=stat] $

[,C=c]

INPUT:

NONE

75

KEYWORD:

some keywords as for VPROFILE::Initial, and additionals:

C: profile constant value

(See RTM_GEN_define.pro)

--

UNIFORM::GETVALUE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

UNIFORM::GetValue

PURPOSE:

Get the y value associated to a given x

CALLING SEQUENCE:

UNIFORM::GetValue, x, y

INPUT:

x: x value

OUTPUT:

y: y value

KEYWORD:

none

(See RTM_GEN_define.pro)

--

SERIE::READ

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SERIE::Read

PURPOSE:

Read a ’serie’ profile from file

CALLING SEQUENCE:

SERIE::Read, filename [,COL=col]

76

INPUT:

filename: name of the file to be read

OUTPUT:

none

KEYWORD:

COL: column hosting y-values (default is 1)

x-value alwaya is col 1

(See RTM_GEN_define.pro)

--

SERIE::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SERIE::Initial

PURPOSE:

Initialise a SERIE object

CALLING SEQUENCE:

SERIE::Initial, [,TIT=tit] [,XNAME=xname] [,YNAME=yname] [,STAT=stat] $

[,FILE=file][,COL=col]

INPUT:

NONE

KEYWORD:

some keywords as for VPROFILE::Initial, and additionals:

FILE: filename

COL: column hosting y-values (default is 1)

(See RTM_GEN_define.pro)

--

SERIE::GETVALUE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SERIE::GetValue

77

PURPOSE:

Get the y value associated to a given x

CALLING SEQUENCE:

SERIE::GetValue, x, y

INPUT:

x: x value

OUTPUT:

y: y value

KEYWORD:

none

(See RTM_GEN_define.pro)

--

SERIE::GETAVGVALUE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SERIE::GetAvgValue

PURPOSE:

Given two x-values, return the y average

CALLING SEQUENCE:

SERIE::GetAvgValue, x1, x2, y

INPUT:

x1: first x value

x2: second x value

OUTPUT:

y: y value

KEYWORD:

LOG: compute logaritmic average

(See RTM_GEN_define.pro)

--

PHF::INITIAL

78

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF::Initial

PURPOSE:

Initialise a PHF object

CALLING SEQUENCE:

PHF::Initial [,ID=id]

INPUT:

none

KEYWORD:

ID: phase function identifier

(See RTM_GEN_define.pro)

--

PHF_FILE::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_FILE::Initial

PURPOSE:

Initialise a PHF_FILE object

CALLING SEQUENCE:

PHF_FILE::Initial [,ID=id] [,TYPE=type] [,NAME=name]

INPUT:

none

KEYWORD:

ID: phase function identifier

TYPE: phf type

FILE: phf filename

(See RTM_GEN_define.pro)

--

PHF_RAYL::INITIAL

79

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_RAYL::Initial

PURPOSE:

Initialise a PHF_RAYL object

CALLING SEQUENCE:

PHF_RAYL::Initial [,ID=id] [,XCOF1=xcof1] [,XCOF1=xcof1]

INPUT:

none

KEYWORD:

ID: phase function identifier

XCOF1: first Legendre coefficient

XCOF2: third Legendre coefficient

(See RTM_GEN_define.pro)

--

PHF_TTHG::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_TTHG::Initial

PURPOSE:

Initialise a PHF_TTHG object

CALLING SEQUENCE:

PHF_TTHG::Initial [,ID=id] [G1=g1] [,G2=g2] [,AS=as]

INPUT:

none

KEYWORD:

ID: phase function identifier

G1: TTHG coefficient g1

G2: TTHG coefficient g2

AS: TTHG coefficient as

(See RTM_GEN_define.pro)

--

80

RTM_ATM_DEFINE_CLASSES

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_ATM_DEFINE_CLASSES

PURPOSE:

Define the classes related to atmosphere

CATEGORY:

RTM ATM

CALLING SEQUENCE:

RTM_ATM_DEFINE_CLASSES

INPUTS:

none

KEYWORD PARAMETERS:

none

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 14.05.04

(See RTM_ATM_define.pro)

--

COMP_O3::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_O3::Initial

PURPOSE:

Initialise a COMP_O3 object

CALLING SEQUENCE:

COMP_O3::Initial, args [,ATMO3=AtmO3]

INPUT:

args: string array[2,n], e.g. : [id, , ’O3std’]

81

[prof, [SERIE: file="Ozone_U76.dat"]]

[O3 , 333.00]

KEYWORD:

ATMO3: ozone total column [DBU], used if args.O3 undef

(See RTM_ATM_define.pro)

--

COMP_AER::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_AER::Initial

PURPOSE:

Initialise a COMP_AER object

CALLING SEQUENCE:

COMP_AER::Initial, args

INPUT:

args: string array[2,n], e.g. : [a , 0.05]

[nu , 1.5]

[PHF , [PHF_TTHG: as=0., g1=0., g2=0.]]

KEYWORD:

none

(See RTM_ATM_define.pro)

--

COMP_AER_OPAC::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_AER_OPAC::Initial

PURPOSE:

Initialise a COMP_AER_OPAC object

CALLING SEQUENCE:

COMP_AER_OPAC::Initial, args

82

INPUT:

args: string array[2,n], e.g. : [aer_type, ’MARPL’]

[rh , 95.]

[vls , ’OPAC_01’]

[a865 , 0.05]

KEYWORD:

none

(See RTM_ATM_define.pro)

--

COMP_MOL::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_MOL::Initial

PURPOSE:

Initialise a COMP_MOL object

CALLING SEQUENCE:

COMP_MOL::Initial, args [,SurfPres=SurfPres]

INPUT:

args: string array[2,n], e.g. : [id , ’mol’]

[PHF , [PHF_TTHG: as=0., g1=0., g2=0.]]

[p0 , 1013.25]

KEYWORD:

SurfPres: surface pressure, used if p0 is unset

(See RTM_ATM_define.pro)

--

COMP_O2::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_O2::Initial

PURPOSE:

Initialise a COMP_O2 object

CALLING SEQUENCE:

83

COMP_O2::Initial, args [,SurfPres=SurfPres]

INPUT:

args: string array[2,n], e.g. : [id , ’O2std’]

[prof, [SERIE: file="Ozone_U76.dat"]]

[p0 , 1013,25]

KEYWORD:

SurfPres: surface pressure, used if p0 is unset

(See RTM_ATM_define.pro)

--

ATM::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

ATM::Initial

PURPOSE:

Initialise an ATM object

CALLING SEQUENCE:

ATM::Initial, atm_in [,HYDR=hydr]

INPUT:

atm_in: structure defined in RTM_ATM_DEFINE_CLASSES

KEYWORD:

HYDR: initialisation for Hydrolight

(See RTM_ATM_define.pro)

--

RTM_WAT_DEFINE_CLASSES

[Previous Routine] [Next Routine] [List of Routines]

NAME:

RTM_WAT_DEFINE_CLASSES

PURPOSE:

Define the classes related to water

84

CATEGORY:

RTM Tool

CALLING SEQUENCE:

RTM_WAT_DEFINE_CLASSES

INPUTS:

none

KEYWORD PARAMETERS:

none

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 14.05.04

(See RTM_WAT_define.pro)

--

ISRC::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

ISRC::Initial

PURPOSE:

Initialise a ISRC object (internal sources - only for Hydrolight)

CALLING SEQUENCE:

ISRC::Initial [,BIOLUM=biolum] [,CHLFLU=CHLFLU] [,CDOMFLU=cdomflu] $

[,RAMAN=raman] [,COMPCHLA=compchla]

INPUT:

none

KEYWORD:

BIOLUM: bioluminescence

CHLFLU: chlorophyll luminescence

CDOMFLU: cdom luminescence

RAMAN: Raman Scattering

COMPCHLA: chlorophyll component used for chlorophyll luminescence

(See RTM_WAT_define.pro)

--

A_MOD::INITIAL

85

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_MOD::Initial

PURPOSE:

Initialise a A_MOD object

CALLING SEQUENCE:

A_MOD::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: a_mod file name

(See RTM_WAT_define.pro)

--

A_CONST::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CONST::Initial

PURPOSE:

Initialise a A_CONST object (set a_coeff to a

constant value)

CALLING SEQUENCE:

A_CONST::Initial [,ID=id] [,VAL=val]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

VAL: a_coeff constant value

(See RTM_WAT_define.pro)

--

A_USR::INITIAL

86

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_USR::Initial

PURPOSE:

Initialise a A_USR object (a_coeff read from a file)

CALLING SEQUENCE:

A_CONST::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: file containing a_coeff vs. wl

(See RTM_WAT_define.pro)

--

A_PEF::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_PeF::Initial

PURPOSE:

Initialise a A_PeF object (Pope & Fry model)

CALLING SEQUENCE:

A_PeF::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: file containing a_coeff vs. wl for Pope & Fry

(See RTM_WAT_define.pro)

--

A_SEB::INITIAL

87

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_SeB::Initial

PURPOSE:

Initialise a A_SeB object (Smith & Baker model)

CALLING SEQUENCE:

A_SeB::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: file containing a_coeff vs. wl for Smith & Baker

(See RTM_WAT_define.pro)

--

A_PSM::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_PSM::Initial

PURPOSE:

Initialise a A_PSM object (Prieur/Sathyenranath/Morel model)

CALLING SEQUENCE:

A_PSM::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: file containing a_coeff vs. wl for Prieur/Sathyenranath/Morel

(See RTM_WAT_define.pro)

--

A_BRI::INITIAL

88

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_BRI::Initial

PURPOSE:

Initialise a A_BRI object (Bricaud model)

CALLING SEQUENCE:

A_BRI::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: file containing a_coeff vs. wl for Bricaud

(See RTM_WAT_define.pro)

--

A_CASE1::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CASE1::Initial

PURPOSE:

Initialise a A_CASE1 object (’CASE1 model’)

This model take into account Chla Absorbtion as from

Bricaud 95 and adds CDOM/MIN cohvarying contributions

CALLING SEQUENCE:

A_CASE1::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: file containing a_coeff vs. wl for CASE1

(See RTM_WAT_define.pro)

--

89

A_CHLA1::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CHLA1::Initial

PURPOSE:

Initialise a CHLA1 object (’CHLA1 model’)

This model take into account Chla Absorbtion as from

Bricaud 95 and adds MIN absorbtion. It is conceived to

be used with case2 water

CALLING SEQUENCE:

CHLA1::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: file containing a_coeff vs. wl for CHLA1

(See RTM_WAT_define.pro)

--

A_EXP::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_EXP::Initial

PURPOSE:

Initialise a A_EXP object (only for Hydrolight)

CALLING SEQUENCE:

A_EXP::Initial [,ID=id] [,FILE=file] [,WREF=wref] [,AREF=aref] [,GAMM=gamm]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

FILE: file containing a_coeff vs. wl for CHLA1

90

WREF: reference wavelength

AREF: a coefficient at the reference wavelength

GAMM: exponential decay constant

(See RTM_WAT_define.pro)

--

A_CDOM::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CDOM::Initial

PURPOSE:

Initialise a A_CDOM object

CALLING SEQUENCE:

A_CDOM::Initial [,ID=id] [,SYS=SYS]

INPUT:

none

KEYWORD:

ID: a_mod function identifier

SYS: constant exponential decay

(See RTM_WAT_define.pro)

--

RTM_OTH_DEFINE_CLASSES

[Previous Routine] [List of Routines]

NAME:

RTM_OTH_DEFINE_CLASSES

PURPOSE:

Define the following classes:

SUN

LOCAT

GRID

WAVE

OLS

BOTTOM

91

CATEGORY:

RTM Tool

CALLING SEQUENCE:

RTM_OTH_DEFINE_CLASSES

INPUTS:

none

KEYWORD PARAMETERS:

none

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 14.05.04

(See RTM_OTH_define.pro)

--

92

4.2 List of FEM-IDL routines

FEM-IDL routines list and description

This page was created by the IDL library routine mk_html_help. For more

information on this routine, refer to the IDL Online Help Navigator or type:

? mk_html_help

at the IDL command line prompt.

Last modified: Mon Jan 31 17:21:12 2005.

--

List of Routines

* FEM_AC_DEFINE_STRUCT

* FEM_AC_INIT_STR_IN1

* FEM_AC_INIT_STR_IN2

* FEM_AC_WRITE_MAIN

* FEM_AC_WRITE_INPUT1

* FEM_AC_WRITE_INPUT2

* FEM_AC_WRITE_MOM

* FEM_AC_READ_OUT1

* FEM_AC_READ_OUT2

* FEM_AC_READ_OUT3

* FEM_AC_READ_INV

* FEM_DD_ANL_RUN

* FEM_DD_RADIANCE

* FEM_DD_REFLECT

* FEM_DD_IRRADIAN

* FEM_DD_INPUTS

* FEM_PP_RUN

* FEM_PP_LOOP

* FEM_PP_READ

* FEM_PP_SAVE

* FEM_PP_OUT3_DIFF

* FEM_PP_INV_DIFF

* FEM_TL_GET_CONTEXT

* FEM_DEFINE_CLASSES

* PHF::FEMTRUNC

* PHF_FILE::FEMGET_XCOF

* PHF_TTHG::FEMGET_XCOF

* PHF_RAYL::FEMGET_XCOF

* A_CONST::FEMGET_A

* A_PEF::FEMGET_A

* A_BRI::FEMGET_A

93

* A_CDOM::FEMGET_A

* A_CHLA1::FEMGET_A

* A_CASE1::FEMGET_A

* B_CONST::FEMGET_B

* B_SEB::FEMGET_B

* B_POW::FEMGET_B

* B_MEM::FEMGET_B

* B_MIN::FEMGET_B

* COMP::FEMGETVAR

* COMP_PW::FEMGETVAR

* COMP_CHLA::FEMGETVAR

* COMP_CDOM::FEMGETVAR

* COMP_MIN::FEMGETVAR

* WAT::FEMGETVAR

* COMP_O3::FEMGETVAR

* COMP_O3::FEMGETVAR_VALID

* COMP_AER::FEMGETVAR

* COMP_AER_OPAC::FEMGETVAR

* COMP_AER_OPAC::FEMGETVARBIN

* COMP_MOL::FEMGETVAR

* COMP_O2::FEMGETVAR

* ATM::FEMGETVAR

* SYSTEM::FEM_INPUT

* SYSTEM::FEM_OPTPRO

* SYSTEM::TEST_OPAC

--

Routine Descriptions

FEM_AC_DEFINE_STRUCT

[Next Routine] [List of Routines]

NAME:

FEM_AC_DEFINE_STRUCT

PURPOSE:

Define structures fo I/O

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_DEFINE_STRUCT([/OLDER_T004])

INPUTS:

94

none

KEYWORD PARAMETERS:

OLDER_T004: if set, a STR_INV structure suitable for

FEM outputs till simulation T003 is created

OUTPUTS:

none

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 21.04.04

(See FEM_Access.pro)

--

FEM_AC_INIT_STR_IN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_INIT_STR_IN1

PURPOSE:

Initialise structure STR_INPUT1

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_INIT_STR_IN1(str_in1)

INPUTS:

str_in1 : structure for input1 file

KEYWORD PARAMETERS:

none

OUTPUTS:

none

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

(See FEM_Access.pro)

95

--

FEM_AC_INIT_STR_IN2

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_INIT_STR_IN2

PURPOSE:

Initialise structure STR_INPUT2

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_INIT_STR_IN2(str_in2)

INPUTS:

str_in2 : structure for input2 file

KEYWORD PARAMETERS:

none

OUTPUTS:

none

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

(See FEM_Access.pro)

--

FEM_AC_WRITE_MAIN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_WRITE_MAIN

PURPOSE:

Write the FEM input file containing the name of all the I/O files

CATEGORY:

FEM Access

96

CALLING SEQUENCE:

Result = FEM_AC_WRITE_MAIN(Ctx [,DIR=dir])

INPUTS:

Ctx : global context

KEYWORD PARAMETERS:

dir : main.dat destination dir - if undef Ctx.ExecDir is used

OUTPUTS:

none

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

(See FEM_Access.pro)

--

FEM_AC_WRITE_INPUT1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_WRITE_INPUT1

PURPOSE:

Write the FEM input file 1

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_WRITE_INPUT1(Ctx,Str_in1,...)

INPUTS:

Ctx : global context

Str_in1 : structure containing data to be written

KEYWORD PARAMETERS:

DIR : input1 file directory

97

FILE : input name 1 as define for FEM in main.dat

OUTPUTS:

none

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

(See FEM_Access.pro)

--

FEM_AC_WRITE_INPUT2

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_WRITE_INPUT2

PURPOSE:

Write the FEM input file 2

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_WRITE_INPUT2(Ctx, str_in2 [,DIR=dir] [,FILE=file])

INPUTS:

Ctx : global context

str_in2 : structure containing data to be written

KEYWORD PARAMETERS:

DIR : input1 file directory

FILE : input name 2 as define for FEM in main.dat

OUTPUTS:

none

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 27.05.04

98

(See FEM_Access.pro)

--

FEM_AC_WRITE_MOM

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_WRITE_MOM

PURPOSE:

Write the FEM PHF Legendre Coefficient file

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_WRITE_MOM(Ctx, Str_mom, [,DIR=dir] [,FILE=file] [,BIN=bin])

INPUTS:

Ctx : global context

Str_mom : structure containing xcof for each layer

KEYWORD PARAMETERS:

DIR : input1 file directory

FILE : input name 1 as define for FEM in main.dat

BIN : write the file as F77_UNFORMATTED (binary)

OUTPUTS:

none

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 04.06.04

(See FEM_Access.pro)

--

FEM_AC_READ_OUT1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

99

FEM_AC_READ_OUT1

PURPOSE:

Read output 1 file

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_READ_OUT1(Ctx,str_out1 [,DIR=dir] [,FILE=file])

INPUTS:

Ctx : global context

KEYWORD PARAMETERS:

file : output name 1 (as define in main.dat)

It is the full path

OUTPUTS:

Str_out1 : structure to host read data

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 27.05.04

(See FEM_Access.pro)

--

FEM_AC_READ_OUT2

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_READ_OUT2

PURPOSE:

Read output 2 file

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_READ_OUT2(Ctx,str_out2 [,DIR=dir] [,FILE=file])

100

INPUTS:

Ctx : global context

KEYWORD PARAMETERS:

DIR : output direct; if not defined is taken from Ctx

FILE : output name 2 as define for FEM in iolist.txt

if not defined is taken from Ctx

OUTPUTS:

Str_out2 : structure to host read data

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 27.05.04

(See FEM_Access.pro)

--

FEM_AC_READ_OUT3

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_READ_OUT3

PURPOSE:

Read output 3 file (binary format)

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_READ_OUT3(Ctx,str_out3 [,DIR=dir] [,FILE=file]

[,OLD=old] [,RID=rid] [,/NODIR])

INPUTS:

Ctx : global context

KEYWORD PARAMETERS:

DIR : output direct; if not defined is taken from Ctx

FILE : output name 3 (otherwise taken from Ctx)

OLD : ’old’ binary file format (i.e. before 14.06.04,

e.g. valid_Mobley and valid_07.06.04)

RID : run id used to build up output name 3.

101

It overwrites FILE keyword!!

NODIR : if set, ’filename’ is used as a fullpath, and no any dir

is added (neither from keyword nor from default)

OUTPUTS:

Str_out3 : structure to host read data

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 27.05.04

(See FEM_Access.pro)

--

FEM_AC_READ_INV

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_AC_READ_INV

PURPOSE:

Read inversion binary file

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_AC_READ_INV(Ctx, str_inv [,DIR=dir] [,FILE=file]

[,RID=rid] [,/OLDER_T004])

INPUTS:

Ctx : global context

KEYWORD PARAMETERS:

DIR : output direct; if not defined is taken from Ctx

FILE : inversion file name

RID : run id used to build up filename

It overwite FILE keyword!!

OLDER_T004 : dataset older than T004 -> some fields missing

OUTPUTS:

Str_inv : structure to host read data

102

RETURN : 0 - OK

>0 - Error

MODIFICATION HISTORY:

Written by: Marco Clerici, 17.06.04

(See FEM_Access.pro)

--

FEM_DD_ANL_RUN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_DD_ANL_RUN

PURPOSE:

Analyse the results of a run on 1 wave. It is intended to be called

after FEM_PP_RUN

CATEGORY:

FEM Display

CALLING SEQUENCE:

FEM_DD_ANL_RUN, runid, ..

INPUTS:

Ctx : Global context

file : binary output file name (see keyword RUNID)

KEYWORD PARAMETERS:

RID : run identifier (if set, filename is rebuilt and ’file’ arg

overwritten)

IRR_UP : display irradiance upward

IRR_DW : display irradiance downward

RADI : display radiance at the given level (note: first level (TOA)

here is 1, but is passed to FEM_DD_RADIANCE as 0)

REFL : display reflectance at the given level (note:first level (TOA)

here is 1, but is passed to FEM_DD_RADIANCE as 0)

INPUT : display FEM inputs (tau-ssa)

103

DIR : directory containing results (if unset, Ctx.OutputDir is used)

LOG : rad/irrad/inputs logarithmic axis

EPS : print to eps file

PHI : define radiance/reflectance plane (def.is phi=0 -> princ. plane)

OLD : define an old binary output file format

RAD_3D : activate the rad_3d GUI module

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 10.06.04

(See FEM_Display.pro)

--

FEM_DD_RADIANCE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_DD_RADIANCE

PURPOSE:

Display a radiance field as function of viewing dir

CATEGORY:

FEM Display

CALLING SEQUENCE:

FEM_DD_RADIANCE, str_out, ..

INPUTS:

str_out : structure containing FEM results: it can be either

{STR_OUTPUT3} or {STR_INVERS} type

KEYWORD PARAMETERS:

DEPTH : index for the depth

PHI : index for the azimuth (default is principal plane)

LOG : set radiance log axis

WNBR : define the window number which to plot to

EPS : print to Encapsulated Postscript file

PS : print to Postscript file

104

RID : run Id (for .eps filename)

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 27.05.04

(See FEM_Display.pro)

--

FEM_DD_REFLECT

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_DD_REFLECT

PURPOSE:

Display a normalised reflectance field as function of viewing dir

Reflectance is computed as :

Refl = Rad / Ed*cos(SZA)*!pi (Sun-Earth distance correction missing)

CATEGORY:

FEM Display

CALLING SEQUENCE:

FEM_DD_REFLECT, str_out, ..

INPUTS:

str_out : structure containing FEM results

KEYWORD PARAMETERS:

DEPTH : index for the depth

PHI : index for the azimuth (default is principal plane)

LOG : set radiance log axis

EPS : print to Encapsulated Postscript file

PS : print to Postscript file

OUTPUTS:

none

MODIFICATION HISTORY:

105

Written by: Marco Clerici, 14.06.04

(See FEM_Display.pro)

--

FEM_DD_IRRADIAN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_DD_IRRADIAN

PURPOSE:

Display an irradiance field vs. optical depth (optionally vs.

wave as well)

CATEGORY:

FEM Display

CALLING SEQUENCE:

FEM_DD_IRRADIAN, str_out, ..

INPUTS:

str_out : structure containing FEM results (str output 1)

KEYWORD PARAMETERS:

TYPE : irradiance type (’Ed’,’Eu’,’Difd’,’Difu’,’Dird’,’Refu’)

LOG : use logarithmic x-axis

YLOG : use logarithmic y-axis

SURF : 3D plot (vs. depth/wave)

OPTIC : plot vs. optical depth (always for the time being: internally forced)

WAVE : wavelenght (is not in the FEM output file) - def. = 412

OVERP : overplot. Not foreseen together with /SURF

COLOR : force the use of a color. It is used only for overplot,

and is intended for 1 wavelenght.

XTITLE : used to force xtitle (convenient for overplot cases)

LEGEND : print a legend (convenient for overplot cases)

TITLE : title

EPS : print to Encapsulated Postscript file

PS : print to Postscript file

OUTPUTS:

106

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

(See FEM_Display.pro)

--

FEM_DD_INPUTS

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_DD_INPUTS

PURPOSE:

Display a FEM inputs (ssa/tau) vs. depth (optical)

CATEGORY:

FEM Display

CALLING SEQUENCE:

FEM_DD_INPUTS, str_out, ..

INPUTS:

str_out : structure containing FEM results (str output 3)

vls : given vls

KEYWORD PARAMETERS:

LOG : use logarithmic axis

OPTIC : plot vs. optical depth (always, for the time being)

WAVE : wavelenght (is not in the FEM output file) - def. = 412

OVERP : overplot

COLOR : force the use of a color. It is used only for overplot,

and is intended for 1 wavelenght.

XTITLE : used to force xtitle (convenient for overplot cases)

LEGEND : print a legend (convenient for overplot cases) - TBD

TITLE : title

SSA : plot ssa (default is tau)

EPS : print to Encapsulated Postscript file

PS : print to Postscript file

OUTPUTS:

none

107

MODIFICATION HISTORY:

Written by: Marco Clerici, 09.06.04

(See FEM_Display.pro)

--

FEM_PP_RUN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_PP_RUN

PURPOSE:

Write the input files and make the FEM run (for 1 wavelenght)

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_PP_RUN(Ctx,...)

INPUTS:

Ctx : global context

Str_in1 : Input1 structure (or undefined if file has not to be written)

Str_in2 : Input2 structure (or undefined if file has not to be written)

Str_mom : Legendre moments structure (or undefined if file has not to be written)

KEYWORD PARAMETERS:

RID : run ID - if set, the output files name is modified

used for valid_07.06.04, could be replaced by FEM_PP_LOOP

(many wavelenghts)

IN_DIR : input directory (if not set the one from Ctx is used)

OUT_DIR : output directory (if not set the one from Ctx is used)

SAVEIN : save the input files, by naming them according to RID

FREEMEM : do free str_out after saving

Note : if IN/OUT dir are set, Ctx values are updated

108

OUTPUTS:

none

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

19.07.04 : the executable name changes according to the nodename

(UNIX machine), unless /NOLOCAL is set

(See FEM_Process.pro)

--

FEM_PP_LOOP

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_PP_LOOP

PURPOSE:

Run the FEM over several wavelenghts. A different set of output file

(and input files, if SAVEIN set) is produced for each wavelenght, unless

RID is unset.

CATEGORY:

FEM Process

CALLING SEQUENCE:

Result = FEM_PP_LOOP(Ctx,sys,...)

INPUTS:

Ctx : global context

Sys : system object; it contains the wave description

Vls : VLS to be used for run

KEYWORD PARAMETERS:

RID : run ID - if set, the output files name is modified -

strongly recommended option

IN_DIR : input directory (if not set the one from Ctx is used)

OUT_DIR : output directory (if not set the one from Ctx is used)

SAVE_IN : if set, the input file names depend on the wavelength

(so, they are not overwritten)

109

Note : if IN/OUT dir are set, Ctx values are updated

OUTPUTS:

none

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 09.06.04

(See FEM_Process.pro)

--

FEM_PP_READ

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_PP_READ

PURPOSE:

Read the results of a FEM run

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_PP_READ(Ctx,...)

INPUTS:

Ctx : global context

Str_out1 : Output1 structure (used to read ’report’ file)

Str_out2 : Output2 structure (used to read radiance from binary file)

Str_out4 : Output4 structure (used to read fluxes from binary file)

KEYWORD PARAMETERS:

RID : run ID - if set, the output files name is modified, e.g.

output1name_RAD.TXT -> output1name_’RID’_RAD.TXT

DIR : output directory (if not set the one from Ctx is used)

OUTPUTS:

110

RETURN : 0 - File written OK

>0 - Error in file writing

NOTE: output structures are generated by the calling routines. If an output

does not have to be read, put 0 as argument instead of the structure

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

(See FEM_Process.pro)

--

FEM_PP_SAVE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_PP_SAVE

PURPOSE:

Save quantities for ’inversion’ from results of 1 FEM run

CATEGORY:

FEM Access

CALLING SEQUENCE:

Result = FEM_PP_SAVE(Ctx,...)

INPUTS:

Ctx : global context

Str_out : binary output file structure

KEYWORD PARAMETERS:

RID : run ID, which defines the output file name

DIR : output directory (if not set the one from Ctx is used)

KEEPMEM : do not free str_out after saving

OLDER_T004 : dataset older than T004 -> some fields missing

OUTPUTS:

none

RETURN : 0 - File written OK

>0 - Error in file writing

111

MODIFICATION HISTORY:

Written by: Marco Clerici, 15.06.04

(See FEM_Process.pro)

--

FEM_PP_OUT3_DIFF

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_PP_OUT3_DIFF

PURPOSE:

Compute and report differences between two STR_OUTPUT3

CATEGORY:

FEM Process

CALLING SEQUENCE:

Result = FEM_PP_OUT3_DIFF(Ctx,str1,str2 [,WL=wl)

INPUTS:

Ctx : global context

Str1 : binary output file structure

Str2 : binary output file structure

KEYWORD PARAMETERS:

WL : compare only water leaving quantities

NO_DD_TOA : do not consider in comparison downward

diffuse irrad. at TOA

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 17.06.04

(See FEM_Process.pro)

--

112

FEM_PP_INV_DIFF

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_PP_INV_DIFF

PURPOSE:

Compute and report differences between two STR_INVERS

CATEGORY:

FEM Process

CALLING SEQUENCE:

Result = FEM_PP_INV_DIFF(Ctx,str1,str2)

INPUTS:

Ctx : global context

Str1 : inversion structure

Str2 : inversion structure

KEYWORD PARAMETERS:

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 23.12.04

(See FEM_Process.pro)

--

FEM_TL_GET_CONTEXT

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_TL_GET_CONTEXT

PURPOSE:

This function creates the general context and initialises it.

The general context hosts the User Defined set-up Parameters and the

113

Global Constants used by FEM.

The User Defined set-up Parameters are initialised with default

values that can be overwritten by the values defined in the Configu-

ration File.

The Global Constants are hard-coded and SHOULD NOT be modified by the

user.

CATEGORY:

FEM Tool

CALLING SEQUENCE:

Result = FEM_TL_GET_CONTEXT(Ctx, [,DIR=dir] [,/PRINT])

INPUTS:

none

KEYWORD PARAMETERS:

DIR : Directory containing Configuration File

PRINT : Print User Defined Parameters after reading

OUTPUTS:

Ctx : General FEM context

RETURN : 0 - Success

>0 - Failure

MODIFICATION HISTORY:

Written by: Marco Clerici, 08.01.03

(See FEM_Tool.pro)

--

FEM_DEFINE_CLASSES

[Previous Routine] [Next Routine] [List of Routines]

NAME:

FEM_DEFINE_CLASSES

PURPOSE:

Define FEM specific classes, not defined at RTM (system) level:

VLS : is the vertical layer structure used in computation

GRID: computation discretisation

114

CATEGORY:

FEM Methods

CALLING SEQUENCE:

FEM_DEFINE_CLASSES

INPUTS:

none

KEYWORD PARAMETERS:

none

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 21.04.04

(See FEM_Methods.pro)

--

PHF::FEMTRUNC

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF::FEMTrunc

PURPOSE:

Correct the coefficients to take into account the

truncation

CALLING SEQUENCE:

PHF::FEMTrunc, xcof, norml

(See FEM_Methods.pro)

--

PHF_FILE::FEMGET_XCOF

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_FILE::FEMGet_xcof

PURPOSE:

Extract Legendre coefficients

115

CALLING SEQUENCE:

PHF_FILE::FEMGet_xcof, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

PHF_TTHG::FEMGET_XCOF

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_TTHG::FEMGet_xcof

PURPOSE:

Extract Legendre coefficients

CALLING SEQUENCE:

PHF_TTHG::FEMGet_xcof, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

PHF_RAYL::FEMGET_XCOF

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_RAYL::FEMGet_xcof

PURPOSE:

Extract Legendre coefficients

CALLING SEQUENCE:

PHF_RAYL::FEMGet_xcof, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

A_CONST::FEMGET_A

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CONST::FEMGet_a

116

PURPOSE:

Get a-coefficient for a given wavelength/concentration

CALLING SEQUENCE:

A_CONST::FEMGet_a, Ctx, xcof, NXCOF=nxcof

NOTE: this is used in Pure Water definition, in order to reproduce

a black water condition

(See FEM_Methods.pro)

--

A_PEF::FEMGET_A

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_PeF::FEMGet_a

PURPOSE:

Get a-coefficient for a given wavelength

(for the Pope and Fry model concentration is not used)

CALLING SEQUENCE:

A_PeF::FEMGet_a, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

A_BRI::FEMGET_A

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_BRI::FEMGet_a

PURPOSE:

Get a-coefficient for a given wavelength/concentration

CALLING SEQUENCE:

A_BRI::FEMGet_a, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

117

A_CDOM::FEMGET_A

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CDOM::FEMGet_a

PURPOSE:

Get a-coefficient for a given wavelength/concentration

CALLING SEQUENCE:

A_CDOM::FEMGet_a, Ctx, xcof, NXCOF=nxcof

NOTE: for this model, the given conc is actually the absorbtion

coefficient at a given wave lenght (440 um)

(See FEM_Methods.pro)

--

A_CHLA1::FEMGET_A

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CHLA1::FEMGet_a

PURPOSE:

Get a-coefficient for a given wavelength/concentration

This model take into account Chla Absorbtion as from

Bricaud 95 and adds MIN absorbtion. It is conceived to

be used with case2 water

CALLING SEQUENCE:

A_CHLA1::FEMGet_a, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

A_CASE1::FEMGET_A

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CASE1::FEMGet_a

118

PURPOSE:

Get a-coefficient for a given wavelength/concentration

This model take into account Chla Absorbtion as from

Bricaud 95 and adds CDOM/MIN cohvarying contributions

CALLING SEQUENCE:

A_CASE1::FEMGet_a, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

B_CONST::FEMGET_B

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_CONST::FEMGet_b

PURPOSE:

Get b-coefficient for a given wavelength/concentration

CALLING SEQUENCE:

B_CONST::FEMGet_b, Ctx, xcof, NXCOF=nxcof

NOTE: this is used in Pure Water definition, in order to reproduce

a black water condition

(See FEM_Methods.pro)

--

B_SEB::FEMGET_B

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_SeB::FEMGet_b

PURPOSE:

Get b-coefficient for a given wavelength

For the Smith and Baker concentration is not used

CALLING SEQUENCE:

B_SeB::FEMGet_b, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

119

--

B_POW::FEMGET_B

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_POW::FEMGet_b

PURPOSE:

Get b-coefficient for a given wavelength/concentration

CALLING SEQUENCE:

B_POW::FEMGet_b, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

B_MEM::FEMGET_B

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_MeM::FEMGet_b

PURPOSE:

Get b-coefficient for a given wavelength/concentration

Compute b coeff. according to Morel/Maritorena model

Conc must be in mg/m3

CALLING SEQUENCE:

B_MeM::FEMGet_b, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

B_MIN::FEMGET_B

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_MIN::FEMGet_b

PURPOSE:

Get b-coefficient for a given wavelength/concentration

For this model, the given conc is actually the scattering

120

coefficient at a given wave lenght (550 um)

CALLING SEQUENCE:

B_MIN::FEMGet_b, Ctx, xcof, NXCOF=nxcof

(See FEM_Methods.pro)

--

COMP::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength

This method returns the FEM variables for 1 comp.

It already does the phase function truncation correction

All the variables are scaled on the vertical discretisation

that will be used in the run.

CALLING SEQUENCE:

COMP::FEMGetVar, wave, tau, ssa, xcof

(See FEM_Methods.pro)

--

COMP_PW::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_PW::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength

CALLING SEQUENCE:

COMP_PW::FEMGetVar, wave, tau, ssa, xcof

PDL:

1. Get a_w and b_w from A_MOD, B_MOD (SeB or PeF -> read from file)

2. Get PHF from file

3. Compute tau, ssa

121

(See FEM_Methods.pro)

--

COMP_CHLA::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_CHLA::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength

CALLING SEQUENCE:

COMP_CHLA::FEMGetVar, wave, tau, ssa, xcof

PDL:

Get xcoef and correct

Loop over layers:

get Chla concentration from profile

get a(wave,Chla) -> A_MOD::FEMGet_a

get b(wave,Chla) -> B_MOD::FEMGet_b

compute tau, ssa

Note : keyword NOXCOF not used, as the PHF is always used for

truncation correction

(See FEM_Methods.pro)

--

COMP_CDOM::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_CDOM::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength

CALLING SEQUENCE:

COMP_CDOM::FEMGetVar, wave, tau, ssa, xcof

PDL:

122

Loop over layers:

get CDOM concentration

get a(wave,Chla) -> A_MOD::GetAcoeff(wave,Chla)

get b(wave,Chla) -> only absorbtion !!!

compute tau, ssa

compute/extract xcof -> 1.0

(See FEM_Methods.pro)

--

COMP_MIN::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_MIN::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength

CALLING SEQUENCE:

COMP_MIN::FEMGetVar, wave, tau, ssa, xcof

PDL:

Loop over layers:

get MINE concentration

get a(wave,Chla) -> only scattering

get b(wave,Chla) -> A_MOD::GetAcoeff(wave,Chla)

compute tau, ssa

compute/extract xcof

Note : keyword NOXCOF not used, as the PHF is always used for

truncation correction

(See FEM_Methods.pro)

--

WAT::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

WAT::FEMGetVar

PURPOSE:

123

Get tau, ssa, xcof for a given wavelength and vertical profile

g1, g2 and as are returned only if there is only 1 COMP, and its

phf is HG

CALLING SEQUENCE:

WAT::FEMGetVar, Ctx, wl, vls, ttau, tssa, txcof, DEBUG=debug, $

CTAU=ctau, CSSA=cssa, TIT=tit, NOXCOF=noxcof

(See FEM_Methods.pro)

--

COMP_O3::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_O3::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength and vertical profile

CALLING SEQUENCE:

COMP_O3::FEMGetVar, Ctx, wl, vls, ttau, tssa, txcof, NOXCOF=noxcof

PDL:

1. Get K_O3 (only for SEAWIFS)

2. Compute the total amount (mol/cm3) for each layer of vls

3. Rescale the optical depth according to gas amount

(See FEM_Methods.pro)

--

COMP_O3::FEMGETVAR_VALID

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_O3::FEMGetVar_valid

PURPOSE:

Get tau, ssa, xcof for a given wavelength and vertical profile

(only for validation)

CALLING SEQUENCE:

COMP_O3::FEMGetVar_valid, Ctx, wl, vls, ttau, tssa, txcof, NOXCOF=noxcof

124

PDL:

1. Get K_O3 (only for SEAWIFS)

2. Compute the total amount (mol/cm3) for each layer of vls

3. Rescale the optical depth according to gas amount

(See FEM_Methods.pro)

--

COMP_AER::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_AER::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength and vertical profile

CALLING SEQUENCE:

COMP_AER::FEMGetVar, Ctx, wave, vls, tau, ssa, xcof, NOXCOF=noxcof

PDL:

1. Get aer_ssa (only for SEAWIFS)

2. Compute tau and ssa as done in FEM

3. Get xcof from phf

(See FEM_Methods.pro)

--

COMP_AER_OPAC::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_AER_OPAC::FEMGetVar

PURPOSE:

Load from OPAC file tau, ssa, xcof for a given model, wavelength, vls

and relative humidity

CALLING SEQUENCE:

COMP_AER_OPAC::FEMGetVar, Ctx, wave, vls, tau, ssa, xcof,

NOXCOF=noxcof

PDL:

1. Initialisation

125

2. Read optical properties from ASCII or binary files

3. Rescale tau in boundary layer, according to imposed

value at 865 (self.a865)

NOTE on VLS:

1. ’vls’ object passed as argument is a FEM-IDL structure containing

the overall vertical structure (atm+wat) as vls_OPAC.bat included

in top_OPAC.bat file. It is used here to get the total number of

layers in atmosphere.

2. self.vls is the OPAC vls name, referring to file .dat in /OPAC/../ofd/

directory. This file is generated by AER_OPAC.pro->AER_OPAC_WRITE_FEM

routine, and contains the description of atm. strato/tropo/boundary

layers. It is used, ONLY in case of binary files use (NOT ASCII file),

the state the number of layers in strato/tropo/boundary.

Obviously the two description must agree. This is done following the steps

below:

a. Define FEM-IDL vls in FEM environment (see 1. above)

b. Use the same levels in opac_var.bat in OPAC environment.

c. Generate the file .dat in /OPAC/../ofd, through AER_OPAC_WRITE_FEM,

activating keyword /WRITE_VLS

d. Use the name of file at c. in initialising COMP_AER_OPAC in system file

(see sys_OPAC.bat - line : sys_in.atm.comp2(2,1) = ’OPAC_01’)

NOTE on naming/format: in the current routine, the name and format of the

ASCII/binary files is reproduced (i.e. manually copied)

from AER_OPAC.pro->AER_OPAC_WRITE_FEM.

(See FEM_Methods.pro)

--

COMP_AER_OPAC::FEMGETVARBIN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_AER_OPAC::FEMGetVarBin

PURPOSE:

Load from OPAC file tau, ssa, xcof for a given model, wavelength, vls

126

and relative humidity

CALLING SEQUENCE:

COMP_AER_OPAC::FEMGetVar, Ctx, wave, vls, tau, ssa, xcof,

NOXCOF=noxcof

PDL:

1. Open the OPAC dataset file

2. Load and return tau, ssa, xcof

(See FEM_Methods.pro)

--

COMP_MOL::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_MOL::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength and vertical profile

CALLING SEQUENCE:

COMP_MOL::FEMGetVar, Ctx, wave, vls, tau, ssa, xcof, P0=p0, NOXCOF=noxcof

PDL:

1. Compute tau according to P0, wave and VLS (as in FEM)

2. Assign xcof (only 2 moments)

(See FEM_Methods.pro)

--

COMP_O2::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_O2::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength and vertical profile

CALLING SEQUENCE:

COMP_O2::FEMGetVar, Ctx, wave, vls, tau, ssa, xcof, NOXCOF=noxcof

127

PDL:

1. Get K_O2 (derived from ~/Seawifs/spectra4.dat)

2. Compute the total amount (mol/cm3) for each layer of vls

Note that unlike 03, O2 has the same profile for each

std profile.

3. Rescale the optical depth according to gas amount

Note : can be optimized (save and restore tau,ssa,xcof)

(See FEM_Methods.pro)

--

ATM::FEMGETVAR

[Previous Routine] [Next Routine] [List of Routines]

NAME:

ATM::FEMGetVar

PURPOSE:

Get tau, ssa, xcof for a given wavelength and vertical profile

ttau[nlyr] tau for all comps/ every lyrs (tot)

tssa[nlyr] ssa for all comps/ every lyrs (tot)

/ctau[ncomp,nlyr] tau for every comps/lyrs (comp)

/cssa[ncomp,nlyr] ssa for every comps/lyrs (comp)

(See FEM_Methods.pro)

--

SYSTEM::FEM_INPUT

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SYSTEM::FEM_Input

PURPOSE:

Extract from a ’system’ object all the information needed for a

FEM run and copy to str_in1, str_in2, str_mom

CALLING SEQUENCE:

SYSTEM::FEM_Input, Ctx, vls, str_in1, str_in2, str_mom, BIN=bin, $

DBG_ATM=dbg_atm, DBG_WAT=dbg_wat, TIT=tit

128

(See FEM_Methods.pro)

--

SYSTEM::FEM_OPTPRO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SYSTEM::FEM_OPTPRO

PURPOSE:

Compute for atmosphere and water the following:

atot_tau [nlyr] atm. tau for all comps/ every lyrs

atot_ssa [nlyr] atm. ssa for all comps/ every lyrs

acmp_tau [ncomp,nlyr] atm. tau for every comps/lyrs

acmp_ssa [ncomp,nlyr] atm. ssa for every comps/lyrs

wtot_tau [nlyr] wat. tau for all comps/ every lyrs

wtot_ssa [nlyr] wat. ssa for all comps/ every lyrs

wcmp_tau [ncomp,nlyr] wat. tau for every comps/lyrs

wcmp_ssa [ncomp,nlyr] wat. ssa for every comps/lyrs

wtot_a [ncomp,nlyr] wat. a coeff for all comps/ every lyrs

wtot_b [ncomp,nlyr] wat. b coeff for all comps/ every lyrs

wcmp_a [ncomp,nlyr] wat. a coeff for every comps/lyrs

wcmp_b [ncomp,nlyr] wat. b coeff for every comps/lyrs

KEYWORDS:

NOATM: do not compute for atmosphere

NOWAT: do not compute for water

NOCOMPS: do not compute tau/ssa for components

NOXCOF: do not compute xcoeff (time/memory consuming)

Note : system is defined for 1 wavelength !!!

(See FEM_Methods.pro)

--

SYSTEM::TEST_OPAC

[Previous Routine] [List of Routines]

NAME:

SYSTEM::TEST_OPAC

129

PURPOSE:

Load and check/compare OPAC dataset files, in ASCII and BINARY format

CALLING SEQUENCE:

SYSTEM::FEM_Input, Ctx

(See FEM_Methods.pro)

--

130

4.3 List of Hydrolight-IDL routines

Hydrolight-IDL routine list and description

This page was created by the IDL library routine mk_html_help. For more

information on this routine, refer to the IDL Online Help Navigator or type:

? mk_html_help

at the IDL command line prompt.

Last modified: Mon Jan 31 17:22:07 2005.

--

List of Routines

* HYD_AC_DEFINE_STRUCT

* HYD_AC_INIT_STR_IN

* HYD_AC_ALLOC_STR_IN

* HYD_AC_INIT_STR_IN_1

* HYD_AC_WRITE_INPUT1

* HYD_AC_READ_DIGITAL

* HYD_DD_WAT_COEFF

* HYD_DD_RADIANCE

* HYD_DD_IRRADIAN

* HYD_PP_RUN

* HYD_PP_READ

* HYD_TL_GET_CONTEXT

* HYD_DEFINE_CLASSES

* SKY::HYDIN1

* SKY1::HYDGETINFO

* SKY2::HYDGETINFO

* SKY3::HYDGETINFO

* VPROFILE::HYDGETINFO

* VPROFILE::HYDWRITEFILE

* UNIFORM::HYDGETINFO

* GAUSSIAN::HYDGETINFO

* SERIE::HYDGETINFO

* ISRC::HYDGETINFO

* PHF_RATIO::INITIAL

* PHF_HYSCA::INITIAL

* PHF_CDOM::INITIAL

* PHF_FILE::HYDGETINFO

* PHF_RATIO::HYDGETINFO

* PHF_HYSCA::HYDGETINFO

* PHF_CDOM::HYDGETINFO

* A_CONST::HYDGETINFO

131

* A_USR::HYDGETINFO

* A_PEF::HYDGETINFO

* A_SEB::HYDGETINFO

* A_PSM::HYDGETINFO

* A_EXP::HYDGETINFO

* A_CDOM::HYDGETINFO

* B_CONST::HYDGETINFO

* B_USR::HYDGETINFO

* B_SEB::HYDGETINFO

* B_POW::HYDGETINFO

* B_GAM::HYDGETINFO

* B_GEM::HYDGETINFO

* B_CDOM::HYDGETINFO

* COMP_CONST::HYDGETINFO

* COMP_PW::HYDGETINFO

* COMP_CHLA::HYDGETINFO

* COMP_CDOM::HYDGETINFO

* COMP_MIN::HYDGETINFO

* WAT::HYDIN1

* WAT_CONST::HYDIN1

* WAT_CASE1::HYDIN1

* WAT_CASE2::HYDIN1

* WAVE::HYDGETINFO

* WAVE::HYDIN1

* OLS::HYDGETINFO

* OLS::HYDIN1

* BOTTOM::HYDGETINFO

* BOTTOM::HYDIN1

* ATM::HYDGETINFO

* ATM::HYDIN1

* SYSTEM::HYD_INPUT

--

Routine Descriptions

HYD_AC_DEFINE_STRUCT

[Next Routine] [List of Routines]

NAME:

HYD_AC_DEFINE_STRUCT

PURPOSE:

Define structures fo I/O

CATEGORY:

HYD Access

132

CALLING SEQUENCE:

Result = HYD_AC_DEFINE_STRUCT()

INPUTS:

Ctx : global context

KEYWORD PARAMETERS:

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 10.05.04

(See HYD_Access.pro)

--

HYD_AC_INIT_STR_IN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_AC_INIT_STR_IN

PURPOSE:

Initialise structure STR_INPUT1

CATEGORY:

HYD Access

CALLING SEQUENCE:

Result = HYD_AC_INIT_STR_IN(str_in)

INPUTS:

str_in1 : structure for input file

KEYWORD PARAMETERS:

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

133

MODIFICATION HISTORY:

Written by: Marco Clerici, 17.05.04

(See HYD_Access.pro)

--

HYD_AC_ALLOC_STR_IN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_AC_ALLOC_STR_IN

PURPOSE:

Allocate the array depending on variable dimensions

CATEGORY:

HYD Access

CALLING SEQUENCE:

Result = HYD_AC_ALLOC_STR_IN(str_in,ncomp,nconc)

INPUTS:

ncomp : number of components

nconc : number of concentrations

str_in1 : structure for input file

KEYWORD PARAMETERS:

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 17.05.04

(See HYD_Access.pro)

--

HYD_AC_INIT_STR_IN_1

[Previous Routine] [Next Routine] [List of Routines]

134

NAME:

HYD_AC_INIT_STR_IN_1

PURPOSE:

Initialise structure STR_INPUT1 for the UG example 1

CATEGORY:

HYD Access

CALLING SEQUENCE:

Result = HYD_AC_INIT_STR_IN_1(str_in)

INPUTS:

str_in1 : structure for input file

KEYWORD PARAMETERS:

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 13.05.04

(See HYD_Access.pro)

--

HYD_AC_WRITE_INPUT1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_AC_WRITE_INPUT1

PURPOSE:

Write the HYD input file 1

CATEGORY:

HYD Access

CALLING SEQUENCE:

Result = HYD_AC_WRITE_INPUT1(Ctx,Str_in1)

INPUTS:

135

Ctx : global context

Str_in1 : structure containing data to be written

KEYWORD PARAMETERS:

dir : input direct; if not defined is taken from Ctx

file : input name 1 as define for HYD in iolist.txt

if not defined is taken from Ctx

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 13.05.04

(See HYD_Access.pro)

--

HYD_AC_READ_DIGITAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_AC_READ_DIGITAL

PURPOSE:

Read the ’digital’ output file

CATEGORY:

HYD Access

CALLING SEQUENCE:

Result = HYD_AC_READ_DIGITAL(Ctx,str_out)

INPUTS:

Ctx : global context

Str_out : structure containing read data {STR_OUTDIG}

KEYWORD PARAMETERS:

dir : output direct; if not defined is taken from Ctx

file : output file name. If not defined is build based on Ctx.RID

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

136

MODIFICATION HISTORY:

Written by: Marco Clerici, 21.05.04

(See HYD_Access.pro)

--

HYD_DD_WAT_COEFF

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_DD_WAT_COEFF

PURPOSE:

Display an wat coefficient (a,b,c,kd..)

CATEGORY:

HYD Display

CALLING SEQUENCE:

HYD_DD_WAT_COEFF, str_out, ..

INPUTS:

str_out : structure containing Hydrolight results

KEYWORD PARAMETERS:

TYPE : coefficient type (’a’,’b’,...) - default is ’a’

SURF : 3D plot

COMP : display coeff. for each component (incomp. with SURF)

otherwise only total value

IWAVE : used to select a wavelength, when COMP>=1

OPTIC : plot vs. optical depth

EPS : print to Encapsulated Postscript file

PS : print to Postscript file

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 25.05.04

(See HYD_Display.pro)

--

137

HYD_DD_RADIANCE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_DD_RADIANCE

PURPOSE:

Display a radiance field as function of viewing dir and wave

CATEGORY:

HYD Display

CALLING SEQUENCE:

HYD_DD_RADIANCE, str_out, ..

INPUTS:

str_out : structure containing Hydrolight results

KEYWORD PARAMETERS:

TYPE : radiance type (0 -> diffuse, 1 -> total)

REFL : include surf. reflactance, only if depth=0 (air) Def. is 0.

DEPTH : index for the depth (0 -> in air ; 1 -> first water layer (default))

PHI : index for the azimuth (default is principal plane)

LOG : set radiance log axis

SURF : 3D plot

EPS : print to Encapsulated Postscript file

PS : print to Postscript file

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 24.05.04

(See HYD_Display.pro)

--

HYD_DD_IRRADIAN

[Previous Routine] [Next Routine] [List of Routines]

138

NAME:

HYD_DD_IRRADIAN

PURPOSE:

Display an irradiance field as function of depth and wave

CATEGORY:

HYD Display

CALLING SEQUENCE:

HYD_DD_IRRADIAN, str_out, ..

INPUTS:

str_out : structure containing Hydrolight results

KEYWORD PARAMETERS:

TYPE : irradiance type (’Ed’,’Eu’,’Eou’,Eod’)

LOG : use logarithmic axis

SURF : 3D plot

OPTIC : plot vs. optical depth

EPS : print to Encapsulated Postscript file

PS : print to Postscript file

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 26.05.04

(See HYD_Display.pro)

--

HYD_PP_RUN

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_PP_RUN

PURPOSE:

Write the input files and make the HYD run

CATEGORY:

139

HYD Access

CALLING SEQUENCE:

Result = HYD_PP_RUN(Ctx,...)

INPUTS:

Ctx : global context

Str_in1 : structure containing all the data for a run

KEYWORD PARAMETERS:

RID : run ID - if set, the output files name is modified, e.g.

output1name_RAD.TXT -> output1name_’RID’_RAD.TXT

IN_DIR : input directory (if not set the one from Ctx is used)

SYSTEM : system object to be provided if Str_in1 is not set.

SKYTYPE : passed to HYD_Input

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

MODIFICATION HISTORY:

Written by: Marco Clerici, 24.05.04

(See HYD_Process.pro)

--

HYD_PP_READ

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_PP_READ

PURPOSE:

Read the results of a HYD run

CATEGORY:

HYD Access

CALLING SEQUENCE:

Result = HYD_PP_READ(Ctx,...)

140

INPUTS:

Ctx : global context

Str_out1 : Output1 structure (used to read ’report’ file)

Str_out2 : Output2 structure (used to read radiance from binary file)

Str_out4 : Output4 structure (used to read fluxes from binary file)

KEYWORD PARAMETERS:

RID : run IF - if set, the output files name is modified, e.g.

output1name_RAD.TXT -> output1name_’RID’_RAD.TXT

DIR : output directory (if not set the one from Ctx is used)

OUTPUTS:

RETURN : 0 - File written OK

>0 - Error in file writing

NOTE: output structures are generated by the calling routines. If an output

does not have to be read, put 0 as argument instead of the structure

MODIFICATION HISTORY:

Written by: Marco Clerici, 22.04.04

(See HYD_Process.pro)

--

HYD_TL_GET_CONTEXT

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_TL_GET_CONTEXT

PURPOSE:

This function creates the general context and initialises it.

The general context hosts the User Defined set-up Parameters and the

Global Constants used by HYD.

The User Defined set-up Parameters are initialised with default

values that can be overwritten by the values defined in the Configu-

ration File.

141

The Global Constants are hard-coded and SHOULD NOT be modified by the

user.

CATEGORY:

HYD Tool

CALLING SEQUENCE:

Result = HYD_TL_GET_CONTEXT(Ctx, [,DIR=dir] [,/PRINT])

INPUTS:

none

KEYWORD PARAMETERS:

DIR : Directory containing Configuration File

PRINT : Print User Defined Parameters after reading

OUTPUTS:

ctx : General HYD context

RETURN : 0 - Success

>0 - Failure

MODIFICATION HISTORY:

Written by: Marco Clerici, 08.01.03

(See HYD_Tool.pro)

--

HYD_DEFINE_CLASSES

[Previous Routine] [Next Routine] [List of Routines]

NAME:

HYD_DEFINE_CLASSES

PURPOSE:

Define HYD specific classes, not defined at RTM (system) level:

SKY : define sky behaviour

PHF specific classes

CATEGORY:

HYD Methods

CALLING SEQUENCE:

HYD_DEFINE_CLASSES

142

INPUTS:

none

KEYWORD PARAMETERS:

none

OUTPUTS:

none

MODIFICATION HISTORY:

Written by: Marco Clerici, 21.05.04

(See HYD_Methods.pro)

--

SKY::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SKY::HydIN1

PURPOSE:

Get SKY properties and assign to structure to write

Hydrolight 4.1 ASCII Input file.

CALLING SEQUENCE:

SKY::HydIN1, str_in1

(See HYD_Methods.pro)

--

SKY1::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SKY1::HydGetInfo

PURPOSE:

Convert SKY1 properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

SKY1::HydGetInfo, flagsky, nsky, argum

(See HYD_Methods.pro)

143

--

SKY2::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SKY2::HydGetInfo

PURPOSE:

Convert SKY2 properties in Hydrolight input flags/

parameters.

argum is : sunzen, sunphi, cloud

CALLING SEQUENCE:

SKY2::HydGetInfo, flagsky, nsky, argum

(See HYD_Methods.pro)

--

SKY3::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SKY3::HydGetInfo

PURPOSE:

Convert SKY2 properties in Hydrolight input flags/

parameters.

argum is : jday, rlat, rlon, hour, sunphi, cloud

CALLING SEQUENCE:

SKY3::HydGetInfo, flagsky, nsky, argum

(See HYD_Methods.pro)

--

VPROFILE::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

VPROFILE::HydGetInfo

PURPOSE:

144

Convert VPROFILE properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

VPROFILE::HydGetInfo, itype, file, routine

(See HYD_Methods.pro)

--

VPROFILE::HYDWRITEFILE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

VPROFILE::HydWriteFile

PURPOSE:

Write Vertical Profile in Hydrolight input format

CALLING SEQUENCE:

VPROFILE::HydWriteFile, n, step

(See HYD_Methods.pro)

--

UNIFORM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

UNIFORM::HydGetInfo

PURPOSE:

Convert UNIFORM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

UNIFORM::HydGetInfo, itype, file, routine

(See HYD_Methods.pro)

--

GAUSSIAN::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

145

NAME:

GAUSSIAN::HydGetInfo

PURPOSE:

Convert GAUSSIAN properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

GAUSSIAN::HydGetInfo, itype, file, routine

(See HYD_Methods.pro)

--

SERIE::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

SERIE::HydGetInfo

PURPOSE:

Convert SERIE properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

SERIE::HydGetInfo, itype, file, routine

(See HYD_Methods.pro)

--

ISRC::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

ISRC::HydGetInfo

PURPOSE:

Convert ISRC properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

ISRC::HydGetInfo, itype, file, routine

(See HYD_Methods.pro)

146

--

PHF_RATIO::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_RATIO::Initial

PURPOSE:

Initialise a PHF_RATIO object (only for Hydrolight)

A PHF is build to match the given bb/b ratio

CALLING SEQUENCE:

PHF_RATIO::Initial [,ID=id] [RATIO=ratio]

INPUT:

none

KEYWORD:

ID: phase function identifier

RATIO: value of the bb/b ratio to match

(See HYD_Methods.pro)

--

PHF_HYSCA::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_HYSCA::Initial

PURPOSE:

Initialise a PHF_RATIO PHF_HYSCA (only for Hydrolight)

A HydroScat phase functionis chosen according to the

given name

CALLING SEQUENCE:

PHF_HYSCA::Initial [,ID=id] [,NAME=name] [,DELTA=delta]

INPUT:

none

KEYWORD:

ID: phase function identifier

147

NAME: HydroScat file name

DELTA: bb/b ratio tolerance

(See HYD_Methods.pro)

--

PHF_CDOM::INITIAL

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_CDOM::Initial

PURPOSE:

Initialise a PHF_CDOM object (only for Hydrolight)

A PHF is selected according to file name

CALLING SEQUENCE:

PHF_CDOM::Initial [,ID=id] [,FILE=file]

INPUT:

none

KEYWORD:

ID: phase function identifier

FILE: PHF file name

(See HYD_Methods.pro)

--

PHF_FILE::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_FILE::HydGetInfo

PURPOSE:

Convert PHF_FILE properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

PHF_FILE::HydGetInfo, filename, ibbopt, bbfrac, delta

(See HYD_Methods.pro)

148

--

PHF_RATIO::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_RATIO::HydGetInfo

PURPOSE:

Convert PHF_RATIO properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

PHF_RATIO::HydGetInfo, filename, ibbopt, bbfrac, delta

(See HYD_Methods.pro)

--

PHF_HYSCA::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_HYSCA::HydGetInfo

PURPOSE:

Convert PHF_HYSCA properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

PHF_HYSCA::HydGetInfo, filename, ibbopt, bbfrac, delta

(See HYD_Methods.pro)

--

PHF_CDOM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

PHF_CDOM::HydGetInfo

PURPOSE:

Convert PHF_CDOM properties in Hydrolight input flags/

parameters.

149

CALLING SEQUENCE:

PHF_CDOM::HydGetInfo, filename, ibbopt, bbfrac, delta

(See HYD_Methods.pro)

--

A_CONST::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CONST::HydGetInfo

PURPOSE:

Convert A_CONST properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

A_CONST::HydGetInfo, filename, iastropt, astarRef, astar0, asgam

(See HYD_Methods.pro)

--

A_USR::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_USR::HydGetInfo

PURPOSE:

Convert A_USR properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

A_USR::HydGetInfo, filename, iastropt, astarRef, astar0, asgam

(See HYD_Methods.pro)

--

A_PEF::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

150

NAME:

A_PeF::HydGetInfo

PURPOSE:

Convert A_PeF properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

A_PeF::HydGetInfo, filename, iastropt, astarRef, astar0, asgam

(See HYD_Methods.pro)

--

A_SEB::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_SeB::HydGetInfo

PURPOSE:

Convert A_SeB properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

A_SeB::HydGetInfo, filename, iastropt, astarRef, astar0, asgam

(See HYD_Methods.pro)

--

A_PSM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_PSM::HydGetInfo

PURPOSE:

Convert A_PSM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

A_PSM::HydGetInfo, filename, iastropt, astarRef, astar0, asgam

(See HYD_Methods.pro)

151

--

A_EXP::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_EXP::HydGetInfo

PURPOSE:

Convert A_EXP properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

A_EXP::HydGetInfo, filename, iastropt, astarRef, astar0, asgam

(See HYD_Methods.pro)

--

A_CDOM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

A_CDOM::HydGetInfo

PURPOSE:

Convert A_CDOM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

A_CDOM::HydGetInfo, filename, iastropt, astarRef, astar0, asgam

(See HYD_Methods.pro)

--

B_CONST::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_CONST::HydGetInfo

PURPOSE:

Convert B_CONST properties in Hydrolight input flags/

parameters.

152

CALLING SEQUENCE:

B_CONST::HydGetInfo, filename, ibstropt, bstarRef, bstar0, coef

(See HYD_Methods.pro)

--

B_USR::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_USR::HydGetInfo

PURPOSE:

Convert B_USR properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

B_USR::HydGetInfo, filename, ibstropt, bstarRef, bstar0, coef

(See HYD_Methods.pro)

--

B_SEB::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_SeB::HydGetInfo

PURPOSE:

Convert B_SeB properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

B_SeB::HydGetInfo, filename, ibstropt, bstarRef, bstar0, coef

(See HYD_Methods.pro)

--

B_POW::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

153

NAME:

B_POW::HydGetInfo

PURPOSE:

Convert B_POW properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

B_POW::HydGetInfo, filename, ibstropt, bstarRef, bstar0, coef

(See HYD_Methods.pro)

--

B_GAM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_GAM::HydGetInfo

PURPOSE:

Convert B_GAM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

B_GAM::HydGetInfo, filename, ibstropt, bstarRef, bstar0, coef

(See HYD_Methods.pro)

--

B_GEM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_GeM::HydGetInfo

PURPOSE:

Convert B_GeM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

B_GeM::HydGetInfo, filename, ibstropt, bstarRef, bstar0, coef

(See HYD_Methods.pro)

154

--

B_CDOM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

B_CDOM::HydGetInfo

PURPOSE:

Convert B_CDOM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

B_CDOM::HydGetInfo, filename, ibstropt, bstarRef, bstar0, coef

(See HYD_Methods.pro)

--

COMP_CONST::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_CONST::HydGetInfo

PURPOSE:

Convert COMP_CONST properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

COMP_CONST::HydGetInfo, itype, conc_file

(See HYD_Methods.pro)

--

COMP_PW::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_PW::HydGetInfo

PURPOSE:

Convert COMP_PW properties in Hydrolight input flags/

parameters.

155

CALLING SEQUENCE:

COMP_PW::HydGetInfo, itype, conc_file

(See HYD_Methods.pro)

--

COMP_CHLA::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_CHLA::HydGetInfo

PURPOSE:

Convert COMP_CHLA properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

COMP_CHLA::HydGetInfo, itype, conc_file

(See HYD_Methods.pro)

--

COMP_CDOM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

COMP_CDOM::HydGetInfo

PURPOSE:

Convert COMP_CDOM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

COMP_CDOM::HydGetInfo, itype, conc_file

(See HYD_Methods.pro)

--

COMP_MIN::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

156

NAME:

COMP_MIN::HydGetInfo

PURPOSE:

Convert COMP_MIN properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

COMP_MIN::HydGetInfo, itype, conc_file

(See HYD_Methods.pro)

--

WAT::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

WAT::HydIN1

PURPOSE:

Get WAT properties and assign to structure to write

Hydrolight 4.1 ASCII Input file.

CALLING SEQUENCE:

WAT::HydIN1, str_in1

(See HYD_Methods.pro)

--

WAT_CONST::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

WAT_CONST::HydIN1

PURPOSE:

Get WAT_CONST properties and assign to structure to write

Hydrolight 4.1 ASCII Input file.

CALLING SEQUENCE:

WAT_CONST::HydIN1, str_in1

(See HYD_Methods.pro)

157

--

WAT_CASE1::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

WAT_CASE1::HydIN1

PURPOSE:

Get WAT_CASE1 properties and assign to structure to write

Hydrolight 4.1 ASCII Input file, just calling WAT::HydIN1()

CALLING SEQUENCE:

WAT_CONST::HydIN1, str_in1

(See HYD_Methods.pro)

--

WAT_CASE2::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

WAT_CASE2::HydIN1

PURPOSE:

Get WAT_CONST properties and assign to structure to write

Hydrolight 4.1 ASCII Input file, just calling WAT::HydIN1()

CALLING SEQUENCE:

WAT_CASE2::HydIN1, str_in1

(See HYD_Methods.pro)

--

WAVE::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

WAVE::HydGetInfo

PURPOSE:

Convert WAVE properties in Hydrolight input flags/

parameters.

158

CALLING SEQUENCE:

WAVE::HydGetInfo, nwave, wave

(See HYD_Methods.pro)

--

WAVE::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

WAVE::HydIN1

PURPOSE:

Get WAVE properties and assign to structure to write

Hydrolight 4.1 ASCII Input file.

CALLING SEQUENCE:

WAVE::HydIN1, str_in1

(See HYD_Methods.pro)

--

OLS::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

OLS::HydGetInfo

PURPOSE:

Convert OLS properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

OLS::HydGetInfo, wat, nznom, znom

(See HYD_Methods.pro)

--

OLS::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

159

NAME:

OLS::HydIN1

PURPOSE:

Get OLS properties and assign to structure to write

Hydrolight 4.1 ASCII Input file.

CALLING SEQUENCE:

OLS::HydIN1, str_in1

(See HYD_Methods.pro)

--

BOTTOM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

BOTTOM::HydGetInfo

PURPOSE:

Convert BOTTOM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

BOTTOM::HydGetInfo, ibotm, rflbot, file

(See HYD_Methods.pro)

--

BOTTOM::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

BOTTOM::HydIN1

PURPOSE:

Get BOTTOM properties and assign to structure to write

Hydrolight 4.1 ASCII Input file.

CALLING SEQUENCE:

BOTTOM::HydIN1, str_in1

(See HYD_Methods.pro)

160

--

ATM::HYDGETINFO

[Previous Routine] [Next Routine] [List of Routines]

NAME:

ATM::HydGetInfo

PURPOSE:

Convert ATM properties in Hydrolight input flags/

parameters.

CALLING SEQUENCE:

ATM::HydGetInfo, wspeed

(See HYD_Methods.pro)

--

ATM::HYDIN1

[Previous Routine] [Next Routine] [List of Routines]

NAME:

ATM::HydIN1

PURPOSE:

Get ATM properties and assign to structure to write

Hydrolight 4.1 ASCII Input file.

CALLING SEQUENCE:

ATM::HydIN1, str_in1

(See HYD_Methods.pro)

--

SYSTEM::HYD_INPUT

[Previous Routine] [List of Routines]

NAME:

SYSTEM::HYD_Input

PURPOSE:

Drive the whole preparation of Hydrolight input file, calling

hierachically HydIN1() method for all System objects

161

Handle also the sky type: different ’sky’ method can be used

in Hydrolight, which correspond to the same ’system’

If SKYTYPE not set, sky must have already initialised

str_in (as in test_FEM.bat)

CALLING SEQUENCE:

SYSTEM::HYD_Input, str_in1, SKYTYPE= skytype

(See HYD_Methods.pro)

--

162

References

Bricaud, A., M. Babin, A. Morel, and H. Claustre (1995). Variability in the chlorophyll-specific
absorption coefficients of natural phytoplankton: analysis and parameterization. J. Geophys.
Res., 100, 13321–13332.

Bricaud, A., A. Morel, M. Babin, K. Allali, and H. Claustre (1998). Variations of light absorption
by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis
and implications for bio-optical models. J. Geophys. Res., 103, 31033–31044.

Bricaud, A., A. Morel, and L. Prieur (1981). Absorption by dissolved organic matter of the sea
(yellow substance) in the UV and visible domains. Limnol. Oceanogr., 26, 43–53.

Bulgarelli, B., V. Kisselev, and L. Roberti (1999). Radiative transfer in the atmosphere-ocean
system: The finite-element method. Appl. Opt., 38, 1530–1542.

Gordon, H. and A. Morel (1983). Remote assessment of ocean color for interpretation of satellite
visible imagery, a review. Lecture Notes on Coastal and Estuarine Studies 4, 114.

Hansen, J. E. and L. Travis (1974). Light scattering in planetary atmospheres. Space Science
Reviews, 16, 527–610.

Henyey, L. and J. Greenstein (1941). Diffuse radiation in the galaxy. Astrophys. J., 93, 70–83.

Hess, M., P. Koepke, and I. Schult (1998). Optical properties of aerosol and clouds: The software
package opac. Bull. Amer. Meteor. Soc., 79, 831–844.

Mobley, C. (1994). Light and Water. San Diego: Academic Press, Inc.

Mobley, C. and L. Sundman (2000a). Hydrolight 4.1 Technical Documentation (First Printing ed.).
Redmond.

Mobley, C. and L. Sundman (2000b). Hydrolight 4.1 User’s Guide (First Printing ed.). Redmond.

Morel, A. and S. Maritorena (2001). Bio-optical properties of oceanic waters: A reappraisal. J.
Geophys. Res., 106, 7163–7180.

Nicolet, M. (1981). The solar spectral irradiance and its action in the atmopsheric photodissociation
processes. Planet. Space Sci. 29, 951–974.

Pope, R. and E. Fry (1997). Absorption spectrum (380-700 nm) of pure water. II. Integrating
cavity measurements. Appl. Opt., 36, 8710–8723.

Prieur, L. and S. Sathyendranath (1981). An optical classification of coastal and oceanic waters
based on the specific absorption of phytoplankton pigments, dissolved organic matter, and
other particulate materials. Limnol. Oceanogr., 26, 671–689.

Smith, R. and K. Baker (1981). Optical properties of the clearest natural waters. Appl. Opt., 20,
177–184.

Thomas, G. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and Ocean. Cambridge:
Cambridge University Press.

163

Wiscombe, W. (1977). The delta-M method:Rapid yet accurate radiative flux calculations for
strongly asymmetric phase functions. J. Atmos. Sci., 34, 1408–1422.

164

	Rep_21556_cover.pdf
	Rep_21556_nocover.pdf

