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1. Introduction 

During the last decades coastal waters have been exposed to an increasing pressure of nutrients and 

contaminants related to agricultural, industrial and domestic activities. Input from rivers and effluents 

are one of the major sources of pollution in the coastal area from, but also inputs from atmospheric 

transport (dry and wet deposition and air-water exchange) can be a major contributor. Normally, a 

mixture of contaminants is present in transitional, coastal as well as marine waters, affecting their 

ecosystems. 

The assessment of the combined effect of eutrophication and pollution on ecosystems is not 

straightforward due to complex interactions and feedbacks. Eutrophication may increase the primary 

production, dilute the contaminant in the biomass and furthermore increase the scavenging with the 

organic matter (Koelmans et al. 2001). On the other hand contaminants can have direct and indirect 

effects on the ecosystem balance and the growth of populations (Fleeger et al. 2003). Direct effects are 

caused by the toxicity of contaminants, which increase the mortality of the affected population; 

conversely indirect effects are the consequence of reduced food availability or reduced grazing. Thus, 

while nutrient acts on the bottom level of the food chain, contaminants may affect higher trophic levels 

and the correct understanding of the relative importance of top-down versus bottom-up controls is 

essential to evaluate the system. 

The traditional approach for the modeling of contaminants in the water column is to consider two well-

mixed boxes during stratification periods and one well-mixed the rest of the time (Schwarzenbach et 

al., 2003; Meijer et al., 2006). The extensive number of 0D models for hydrophobic organic 

compounds (Wania and Mackay, 1996; Scheringer et al., 2000; Dalla Valle et al., 2003; Dueri et al., 

2005) contrasts with the lack of spatially and temporally resolved models, with the exception of the 

recently developed coastal lagoon model for herbicides (Carafa et al., 2006) and the one for HCH by 

Ilyina et al. (2006). A 1D dynamic hydrodynamic-contaminant model has been developed to analyze 

the influence of vertical mixing on the distribution of POPs in the water column (Jurado et al., 2007; 

Marinov et al., 2007). The model was applied to the organic contaminants families selected in 

Thresholds, i.e. PCBs, PAHs, and PBDEs, plus dioxins and furans, PCDD/Fs and details are presented 

in the Deliverable 2.6.2. Recently this 1D dynamic hydrodynamic-contaminant model was coupled 

with a food-web ecological model that considers phytoplankton, zooplankton, bacteria and detritus 

(Deliverable 2.6.3). The newly developed model uses nutrient concentrations as forcing and considers 

the bioaccumulation of POPs in all the ecological compartments. A first validation of the coupled 

model has been achieved using experimental data on PAHs obtained at the Finokalia Station, Island of 

Crete, Greece (Tsapakis et al., 2005 and 2006). The results showed that the model is able to reproduce 

the experimental concentrations as well as the measured fluxes. However, due to the low 
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concentrations of PAHs in the considered remote area environment, the toxic effect model could not be 

validated with those data. 

Within the framework of the Threshold project, mesocosm experiments have been carried out in the 

Isefjord (Denmark) by NERI (Deliverable 4.3.3) to elucidate the combined effects of nutrient and 

pyrene on an ecosystem composed of phytoplankton, zooplankton and bacteria (Hjorth et al. 2007). 

The experimental results are used here to validate the model presented in Deliverable 2.6.3 on a 

smaller scale, including the toxic effect model and at the same time investigate the direct and indirect 

effects observed in the system. 

2. Mesocosm experiments 

A detailed description of the experimental work and its results is reported in Deliverable 4.3.3. The 

mesocosm experiments were carried out in the Isefjord (N: 55 42 44.4, E 11 47 28.51) between 23
rd

 

April and 4
th

 May. The average depth of the fjord is 5-7 m. Twelve clear polyethylene cylindrical 

enclosures were filled with 3 m
3
 ambient water and were attached 200 m from the shore. The bags 

were 2.5 m deep, and with a diameter of 1.25 m. The average temperature of measured in the bags 

during the experiments was between 10-15 ºC and the salinity was constant at 16 ppt. Sedimentation 

was avoided by gently pumping water from the bottom of the bags. Four different experiments were 

carried out: 

1. Control experiment without any addition of nutrient or contaminant; 

2. Enriched experiment with nutrient addition on day -1 and day 6; concentrations after addition: 4.8 

µmol/L ammonia (NH3Cl), 9.6 µmol/L silicate (Na2SiO3), 0.3 µmol/L phosphate (NaH2PO4) 

and ratio of 16:32:1 (N:Si:P); 

3. Contaminant experiment with Pyrene addition (50nmol/L) on day 0 and day 7; 

4. Experiment with contaminant and nutrient addition. 

During the experiment different parameters were monitored: Chl a [µg/L], concentration of nutrients 

(Si, 3
4
−

PO PO4, +
4NH , −− + 23 NONO ) [µmol/L], primary production [dpm], bacterial activity [dpm] 

and copepod abundance [ind/L]. Also the distribution of 3 different communities of phytoplankton (2 

flagellates and 1 diatom) was recorded by means of pigment analysis.  

In addition to the experiments on the combined effect of nutrient and contaminants, another set of 

mesocosm experiments were carried out simultaneously in the Isefjord to observe the dynamics of 

attached microbial communities in an enriched system (Tang et al. 2006). Results from this study, 

which characterizes in detail the bacterial community and the zooplankton communities, were used to 

fit the bacterial part of the food web model and set the initial conditions of the micro- and 

mesozooplankton families. 
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3. Food web model 

In order to simulate the toxic effects of contaminants in marine ecosystems as well as the effects of the 

biological pump on the dynamics of contaminants a simplified model has been developed. This model 

was considered as the minimum model able to deal with effects observed in the mesocosm 

experiments carried out by NERI (D.4.3.3). Deliverable D 2.6.3 describes the model’s capabilities and 

features as well as the validation of the model using data of the Mediterranean Cruise and other 

campaigns. Hereafter we will summarize the main characteristics of the model.  

The main compartments and interactions integrated in the model are represented in Fig. 3.1. The 

phytoplankton compartment is subdivided in two groups, diatoms and flagellates (Pd, Pf). Similarly, 

zooplankton has also been split into two groups representing microzooplankton (< 200 µm) and 

mesozooplankton (0.2-2 mm) (Zs, Zl). Moreover the microbial loop which accounts for the 

mineralization of dead organic matter, called detritus (D), performed by the bacteria (B), is 

incorporated in the model. 

NO3

-
Flagellates Mesozooplankton

Bacteria

Detritus

Diatoms MicrozooplanktonNH4

+

 
Figure 3.1. Simplified flow diagram in the marine ecosystem. 

 

Nitrate and ammonium concentration in the water column are considered as forcing and therefore there 

is no dynamic interaction between the nutrient and the food web. The ordinary differential equations 

may be written as: 

PdmZlgrazingZsgrazingPdgrowth
dt

dPd
Pd

Zl

Pd

Zs

PdPd ⋅−⋅−⋅−⋅=  (1) 

PfmZlgrazingZsgrazingPfgrowth
dt

dPf
Pf

Zl

Pf

Zs

PfPf ⋅−⋅−⋅−⋅=  (2) 

( )
2

ZsmZsexcre

ZlgrazingZseffgrazingZseffgrazinggrazing
dt

dZs

ZsZs

Zl

ZsB

Zs

BP

Zs

Pf

Zs

Pd

⋅−⋅−

⋅−⋅⋅+⋅⋅+=
 (3) 
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( )
2

ZlmZlexcre

ZleffgrazingZleffgrazinggrazing
dt

dZl

ZlZl

Zs

Zl

ZsP

Zl

Pf

Zl

Pd

⋅−⋅−

⋅⋅+⋅⋅+=
 (4) 

ZsgrazingBkdBgrowth
dt

dB Zs

BBB ⋅−⋅−⋅=  (5) 

DwDuptunassimunassimunassimmort
dt

dD
sB

BZP ⋅−⋅−−+++= βdetdetdetdet
 (6) 

3.1. Phytoplankton (Pf and Pd in mmol N m
-3

) 

Phytoplankton growth is modelled as the product of the maximum specific growth rate times an 

overall limitation function as: 

)],(),(),(min[ 43321max

+−⋅= NHNOfTfIfgrowth
Px

Px µ  (7) 

The light limitation is parameterized according to Jassby and Platt (1976) by 

)],(tanh[)(1 tzIaIf p ⋅=  (8) 

]])[(exp[),( zPdPfkkItzI phywaters ⋅++−⋅=  (9) 

where ap denotes the photosynthetic quantum efficiency parameter controlling the slope of f(I) versus 

the irradiance curve and Is denotes the surface intensity of the PAR (photosynthetically active 

irradiance) taken as half of the incoming solar radiation. kwater is the extinction coefficient of the sea 

water  and kphy is the phytoplankton self-shading coefficient.  

The temperature limitation function for phytoplankton is based on Lancelot et al. (2002) 






















 −
−=

2

2 exp)(
width

opt

T

TT
Tf  (10) 

with Topt and Twidth being the optimal temperature and the range of suitable temperatures respectively.  

The nutrient limitation is the sum of ammonium and nitrate limitation: 

)()(),( 43433

+−+− += NHfNOfNHNOf ba  (11) 

where the limitations are expressed by the Michaelis-Menten uptake formulation: 

])[exp(
][

][
)( 4

3

3
3

=

−

−
− −⋅

+
= NH

NOK

NO
NOf

no

a ψ  (12) 

][

][
)(

4

4
4 +

+
+

+
=

NHK

NH
NHf

nh

b  (13) 

where Kno and Knh are half saturation constants for nitrate and ammonium uptake, respectively, and the 

exponent in Eq. (12) represents the inhibiting effect of ammonium concentration on nitrate uptake with 

ψ=3 m
3
 mmol N

-1
 (Wrobleski, 1977). 

The mortality of phytoplankton is expressed as a linear function of its biomass. 
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3.2. Zooplankton (Zs and Zl in mmol N m
-3

) 

In a similar way as in Oguz et al. (1999), we define the total food availability for each zooplankton 

group as: 

BbPdbPfbF BPdPfZs ⋅+⋅+⋅=  and ZsaPdaPfaF ZsPdPfZl ⋅+⋅+⋅=  (14) 

where aPf, aPd, aZs (0.3,0.8,0.7) and bPf, bPd, bB (0.7,0.2,0.3) are the food preference coefficients. 

Grazing rates of microzooplankton are then defined as: 

ZsG

PdZsZs

Pd
FK

Pdb
ggrazing

+

⋅
= max  (15) 

ZsG

PfZsZs

Pf
FK

Pfb
ggrazing

+

⋅
= max  (16) 

ZsG

BZs

maz

Zs

B
FK

Bb
ggrazing

+

⋅
=  (17) 

where KG is an apparent half saturation constant and Zs
gmax

 is the maximum grazing rate which is 

defined as a function of temperature as: 






















 −
−=

2

'

max exp
width

opt

Zs

Zs

T

TT
gg  (18) 

with Topt and Twidth being the optimal temperature and the range of suitable temperatures, respectively. 

The grazing of mesozooplankton is using the same type of equations. 

Following Oguz et al. (1999) the mortality terms are expressed in the quadratic form as suggested by 

Steele and Henderson (1992). The assimilation coefficients effP, effZs and effB are equal to 0.75. 

3.3. Bacteria (B in mg C m
-3

) 

Bacterial growth represents a fraction of detritus uptake: 

growthB=YB
.
uptB 

and bacterial uptake is defined as: 

B
DK

D
bupt

D

B
+

= max  (19) 

where KD is the half saturation value for detritus uptake and bmax is the maximum uptake rate of 

detritus by bacteria that depends on temperature as: 






















 −
−=

2

'
maxmax exp

width

opt

T

TT
bb  (20) 
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3.4. Detritus (D in mg C m
-3

) 

Phytoplankton, zooplankton and bacteria mortalities plus fecal pellets, constitute the unassimilated part 

of ingested food, contribute to the detritus compartment. Detritus due to mortality is expressed as: 

( ) ( ) BkdCNZlmZsmCNPfmPdmmort BZZlZsPPfPd ⋅+⋅⋅+⋅+⋅⋅+⋅= 22

det  (21) 

where CNP and CNZ are ratios of mg C/mmol N for phytoplankton and zooplankton, respectively. 

CNP=48, CNZ =63. The other component consists on the unassimilated part of ingested food by 

zooplankton, that can be written as: 

P

Zl

Pf

Zl

PdPP

Zs

Pf

Zs

Pdp

P
CNZlgrazinggrazingeffCNZsgrazinggrazingeffunassim ⋅⋅+⋅−+⋅⋅+⋅−= )()1()()1(det

 (22) 

Z

Zl

ZsZ

Z
CNZlgrazingeffunassim ⋅⋅⋅−= )1(det  (23) 

B

Zs

BB

B
CNZsgrazingeffunassim ⋅⋅⋅−= )1(det  (24) 

where CNB is the ratio of mg C/mmol N for bacteria, CNB=48. The other two terms in the mass balance 

for detritus account for the mineralization and for the settling, with a detritus decomposition rate 

β=4.17 10
-3

 h
-1

 and a sinking velocity ws=8.33 10
-2

 m h
-1

. 

3.5. Toxic effect of contaminant  

In the model the dose-response effects have been simulated using the Weibull equation: 

)]logexp(exp[1)( 1021 xxf θθ +−−=  (25) 

The mortality of the ecological compartments is changed as a function of the concentration of 

contaminant by adding to the mortality rate in the original equations, Eqs. (1)-(5), the induced pyrene 

mortality as given by Eq. (25). In addition this mortality term produces an increase in the detritus 

fraction and therefore a change in the distribution of the contaminant between dissolved and particulate 

phases. 

3.6. Parameters, initial conditions and meteorological forcing of the mesocosm experiment 

simulation  

The parameters of the food web model that have been used for the simulation of the mesocosm 

experiment are summarized in Table 3.1. 

Initial concentration of phytoplankton was calculated from the Chl a concentration reported by in D 

4.3.3 for the mesocosm experiment. Total concentration was partitioned between diatoms and 

flagellates according to the proportion observed in the system. Therefore in the simulation of the 

control experiment the initial concentration was set to 5 and 2.5 mmol N m
-3

 for the flagellates and the 

diatoms, respectively. Alternatively, in the enriched experiment they were set to 10 mmol N m
-3

 and 5 

mmol N m
-3

, respectively. The initial concentration of the large zooplankton compartment was defined 

according to the abundance of copepods at the beginning of the experiment, 3.5 ind L
-1

 . Taking a 
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mean carbon content per copepod of 2.5 µg C ind
-1

 (Van Nieuwerburgh et al. 2005) and converting to 

nitrogen the initial concentration of copepods corresponds to 0.14 mmol N m
-3

. According to Tang et 

al. (2006), rotifers are the most abundant microzooplankton population and their mean abundance 

during the experiment was 106.3 ind L
-1

. Taking a conversion coefficient of  0.6 µg C ind
-1

    (White 

and Roman 1992, Straile 1997) we obtain a mean concentration of rotifer of 1 mmol N m
-3

. The initial 

value was set to half the mean value, corresponding to 0.5 mmol N m
-3

. The initial concentration of 

bacteria was set to 10 mg C m
-3

 corresponding to the value measured at the beginning of the mesocosm 

experiment by Tang et al. 2006. Since data about the detritus concentration in the Isefjord is missing, it 

was estimated from the particulate organic carbon POC concentration measured in the Gullmar Fjord 

and Stretudden (Erlandsson et al. 2006) and was set to 200 mg C m
-3

. 

 

Table 3.1: Parameters used for the simulation of the mesocosm experiment. 

Parameter Definition Value Unit 

ap Photosynthetis efficiency   0.01 m2 W-1 

kwater Light extiction coefficient in sea water (coastal) 0.30 m-1 

kphy Phytoplankton self shading coefficient 0.08 mmol N
-1

 

µmax Pd Maximum growht rate for diatoms 0.03 h
-1

 

µmax Pf Maximum growht rate for flagellates 0.03 h-1 

Topt, Pd Optimal temperature for diatoms 10 ºC 

Topt, Pf Optimal temperature for flagellates 15 ºC 

Twidth, Pd Range of temperatures for diatoms 10 ºC 

Twidth, Pf Range of temperatures for flagellates 10 ºC 

Kno Half saturation for nitrate uptake 2 mmol N m
3
 

Knh Half saturation for ammonium uptake  1 mmol N m
3
 

ψ Ammonium inhibition parameter 3 m
3
 mmol N

-1
 

mPd Diatoms mortality rate 0.0025 h
-1

 

mPf Flagellates mortality rate 0.0025 h
-1

 

gZs’ Microzooplankton max grazing rate  0.050 h
-1

 

gZl’ Mesozooplankton max grazing rate  0.045 h
-1

 

Topt, Zs Optimal temperature for microzooplankton 14 ºC 

Topt, Zl Optimal temperature for mesozooplankton 14 ºC 

Twidth, Zs Range of temperature for microzooplankton 9 ºC 

Twidth, Zl Range of temperature for mesozooplankton 9 ºC 

KG Half saturation for zooplankton grazing  1.5 mmol N m
-3

 

mZs Microzooplankton mortality rate 0.0022 h
-1

 

mZl Mesozooplankton mortality rate 0.0024 h
-1

 

b'max Maximum uptake of detritus by bacteria 0.4 h
-1

 

KD  Half saturation for detritus uptake by bacteria 25 mg C m-3 

Topt,B Optimal temperature for bacteria 30 ºC 

Twidth,B Range of temperature for bacteria 18 ºC 

 

The model also requires meteorological data for wind (speed and direction), humidity, cloud coverage, 

temperature and rainfall. The meteorological forcing is very important for the food web model, since 

primary production is highly influenced by temperature and radiation conditions. Data from a 
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meteorological station located 7 km from the study site was used for the simulations. Air temperature 

and radiation values used for the model are represented in Figure 3.2. 
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Figure 3.2: Sun radiation and temperature forcing used for the simulations. 

 

4. RESULTS  

4.1. Water Temperature 

The hydrodynamic model simulates the temperature of the water column as a function of the 

meteorological forcing and the result is shown in Fig. 4.1. During the mesocosm experiment the water 

temperature was between 10 and 15 C which is in good agreement with the simulations. 

0 2 4 6 8 10 12

8

10

12

14

16

W
a

te
r 

T
e
m

p
e
ra

tu
re

 (
C

)

Time (days)

 
Figure 4.1: Simulated surface water temperature fluctuations during the mesocosm experiment 

 

4.2. Control and enriched mesocosm ` 

The model was first calibrated for the control experiment, using the measured nitrate and ammonia 

concentration as forcing for the system (Fig. 4.2). The output is compared to the observed total 
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phytoplankton and copepod concentration, expressed in mmol N/ m3. (Fig. 4.3) and shows a 

reasonable fit to the observed decrease of the phytoplankton and the increase of the copepod 

population. However, in the simulation in the decrease phytoplankton population is initially delayed 

compared to the experiment.  
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Figure 4.2: Observed nitrate and ammonia concentration in the control (blue) and enriched (green) 

mesocosm, used as forcing. 

 

The simulations also show that the phytoplankton biomass is strongly regulated by the grazing of the 

zooplankton populations. The decrease of phytoplankton is almost parallel to the increase of the other 

population. In this sense the mesocoms seems to be strongly top-down regulated.  

The simulation of the enriched mesocosm (Fig. 4.4) shows also an initial delay of the decrease of the 

phytoplankton population. In addition, the concentration of copepods at the end of the simulation is 

somewhat overestimated. In fact, in the experiments the concentration of copepods in the enriched 

mesocosm is lower than in the control, which is counterintuitive and the mechanism behind this 

observation is not clear. Moreover, it is interesting to remark that in both cases the simulation of the 

phytoplankton concentration shows a daily fluctuation related to the light limitation during the night.  
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Figure 4.3: Comparison of the simulated values (line) with the observed values (points) for the control 

mesocosm 
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Figure 4.4: Comparison of the simulated values (line) with the observed values (points) for the 

enriched mesocosm. 

 

The simulation of the ecological compartments (flagellates, diatoms, small and large zooplankton, 

bacteria and detritus) during the control and enriched experiments are shown in Figs. 4.5 and 4.6. 

Trends are similar for both runs. Microzooplankton grows faster than mesozooplankton, reaches a 

peak and decreases, while mesozooplankton reaches the peak only at the end of the simulation. The 

decline of diatoms is slower than the one of flagellates, due probably to different grazing and slower 

increase of their main predators, mesozooplankton. The decrease of the phytoplankton biomass is also 

related to an increase of the bacteria population, and in parallel a decrease of detritus. 
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Figure 4.5: Simulation of the biomass and detritus distribution in the food web for the control 

mesocosm. 
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Figure 4.6: Simulation of the biomass and detritus distribution in the food web for the enriched 

mesocosm 

 

 

 

4.3. Pyrene degradation  

Data from the mesocosm experiment has highlighted that pyrene disappears very quickly from the 

system (Fig. 4.7). The model considers degradation, bioaccumulation and volatilization but none of 

those processes is able to cause such a rapid decline of pyrene. Therefore it was hypothesized that high 
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sorption of pyrene to the walls of the mesocosm bags is responsible for the observed trend. In order to 

account for the decrease of the contaminant concentration during the experiment, the degradation rate 

of pyrene was set to 4*10
-5

 s
-1

 meaning that half life of pyrene is about 5 hours. Compared to the 

degradation flux, volatilization flux is 2 orders of magnitude smaller. 
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Figure 4.7: Observed (cross) and simulated (line) concentration of pyrene in the mesocosm 

 

4.4. Toxic effects of pyrene in the mesocosm 

In the model the toxicity of pyrene for each compartment of the food web model is described by the 

parameters θ1 and θ2 (Eq. 25), which define the shape of the dose-response curve (Fig. 4.8 and Table 

4.1). For diatoms and flagellates the dose-response curve was fitted to data from the mesocosm 

experiment (D 4.3.3) and data from a study on phytoplankton communities in Greenland (Hjorth, 

2005), while for zooplankton they were taken from an internet database http://www.pesticideinfo.org/ 

and other studies (Barata et al. 2005, Bellas and Thor, 2007). No data has been found for bacteria, 

therefore the toxicity data have been assumed low and comparable with unicellular species in the 

above mentioned database.  
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Figure 4.8: Dose-response curves used in the model. Dotted line represents the concentration of pyrene 

after addition. 
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Table 4.1. Parameters for the Pyrene dose-response function in the model. 

Parameter Phytoplankton: 
flagellates 

Phytoplankton: 
diatoms 

Zooplankton 
(both types) 

Bacteria 

θ1 -4.5 -5.5 -10.442 -15.8486 

θ2 5.143 5.143 5.143 5.143 

 

The simulation of the phytoplankton and mesozooplankton concentration after pyrene addition shows a 

reasonable fit with the observed values for both, the non-enriched and enriched system (Figures 4.9 

and 4.10). Also in this case the simulated final concentration of copepods is slightly overestimated in 

the enriched system while in the non enriched system it is underestimated. Moreover the model 

predicts an important decrease of the phytoplankton population after the second addition of pyrene, 

while in reality the system shows a smooth decrease.  
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Figure 4.9: Comparison of the simulated values (line) with the observed values (points) for the 

mesocosm with pyrene addition 
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Figure 4.10: Comparison of the simulated values (line) with the observed values (points) for the 

enriched mesocosm with pyrene addition 
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The effect of pyrene addition depends on the sensitivities of the different species to the pollutant and 

the strength of indirect effects (Fig. 4.11). Flagellates are more affected than diatoms; therefore the 

relative abundance of diatoms increases during the simulation. Indirect effects are observed on the 

zooplankton growth, due to lower prey availability. The fast increase of detritus during day 1 and 2 is 

caused by the death of phytoplankton after addition of pyrene, in parallel there is a smooth increase of 

the bacteria population, which feeds on detritus. It is interesting to note that both addition of 

contaminant are followed by a peak in detritus production. 

 

0 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10  Pf

 Pd

 Zs

 Zl

m
m

o
l 
N

/m
3

Time (days)

0 1 2 3 4 5 6 7 8 9 10 11

0

50

100

150

200

250

300

350

400

 Ba

 De

m
g
 C

/m
3

Mesocosm with pyrene addition

 

Figure 4.11: Simulation of the biomass and detritus distribution in the mesocosm with pyrene addition 

 

Similar trends can be observed in the simulation of the enriched mesocosm (Fig. 4.12). According to 

the results of the mesocosm experiment, the effect of pyrene is stronger in the enriched mesocosm. 

Even though the concentration of phytoplankton is the double in the enriched system, after addition of 

pyrene it decreases to the same level as the non-enriched community. These observations were 

confirmed by the simulation results. 
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Figure 4.12: Simulation of the biomass and detritus distribution for the enriched mesocosm with 

pyrene addition. 

 

5. DISCUSSION 

The simulation succeeded well in representing the main direct and indirect effect observed in the 

mesocosm, like the stronger effect on the enriched community and there is a change in the 

phytoplankton composition due to higher toxicity for flagellates. 

The simulation also highlighted that the results of the mesocosm depend on the natural conditions. 

Temperature and radiation influence the primary production, while the growth of zooplankton depends 

on the temperature and food availability, therefore choosing a different season for the experiment is 

likely to have a strong effect on the results. The system seems to be essentially top-down regulated and 

the decrease of phytoplankton in the control experiment is more likely to be caused by grazing than by 

reduced nutrient availability, since the system seems not to be limited by nitrogen concentration. On 

the other hand, the influence of enrichment was difficult to represent in the model, since the 

concentration of nutrient during the experiment was similar for the enriched and non-enriched 

mesocosm (Fig.4). Therefore in the simulations the main difference between the enriched and non 

enriched system were the initial phytoplankton concentration. 

 

6. CONCLUSIONS 

The outcome of the simulation highlighted some strengths and weaknesses of the methodology. On the 

one hand it showed that it is possible to represent the main dynamics observed in a mesocosm 
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experiment over a relatively short time (11 days) with a rather simplified food-web model. This 

confirms that the model contains the features necessary to represent the system correctly even on a 

small scale. On the other hand some of the parameters, e.g. the shape of the dose-response curve for 

phytoplankton and zooplankton, had to be fitted with a very limited amount of experimental data. 

More research is suitable in this field.  

The difference between the enriched and non enriched communities was not that obvious to represent 

in the model, because the model considers only nitrogen and the data on −− + 23 NONO  and +
4NH  

concentrations in the enriched and non-enriched systems are similar. Since the experiments should 

represent environmentally reasonable enriched conditions, excessive nutrient additions had to be 

avoided. Further development of the model is required in order to represent the effect of nutrient 

addition under these conditions.  
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Abstract 

In this report, an integrated model including fate of and effects of contaminants on an ecological model 

is presented. The aim is to simulate the dynamic behaviour of the mesocosm experiments carried out at 

NERI (see D431-D433) to elucidate the combined effects of nutrients and contaminants at ecosystem 

level. The outcome of the simulation highlighted some strengths and weaknesses of the methodology. 

On the one hand it is shown that it is possible to represent the main dynamics observed in a mesocosm 

experiment over a relatively short time (11 days) with a rather simplified food-web model. This 

confirms that the model contains the features necessary to represent the system correctly even on a 

small scale. On the other hand some of the parameters, e.g. the shape of the dose-response curve for 

phytoplankton and zooplankton, had to be fitted with a very limited amount of experimental data. 

More research would be necessary to elucidate this part of the model. The difference between the 

enriched and non enriched communities was not that obvious to represent in the model, since the data 

on −− + 23 NONO  and +
4NH  concentrations in the enriched and non-enriched systems are similar.  

 



 

 25 

The mission of the JRC is to provide customer-driven scientific and technical support 
for the conception, development, implementation and monitoring of EU policies. As a 
service of the European Commission, the JRC functions as a reference centre of 
science and technology for the Union. Close to the policy-making process, it serves 
the common interest of the Member States, while being independent of special 
interests, whether private or national. 
 

 

 

L
B

-N
A

-2
2
9

5
2-E

N
-C

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


