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ABSTRACT

High-throughput screening based on CRISPR-Cas9
libraries has become an attractive and powerful tech-
nique to identify target genes for functional stud-
ies. However, accessibility of public data is limited
due to the lack of user-friendly utilities and up-
to-date resources covering experiments from third
parties. Here, we describe iCSDB, an integrated
database of CRISPR screening experiments using
human cell lines. We compiled two major sources of
CRISPR-Cas9 screening: the DepMap portal and Bi-
oGRID ORCS. DepMap portal itself is an integrated
database that includes three large-scale projects
of CRISPR screening. We additionally aggregated
CRISPR screens from BioGRID ORCS that is a collec-
tion of screening results from PubMed articles. Cur-
rently, iCSDB contains 1375 genome-wide screens
across 976 human cell lines, covering 28 tissues
and 70 cancer types. Importantly, the batch effects
from different CRISPR libraries were removed and
the screening scores were converted into a single
metric to estimate the knockout efficiency. Clinical
and molecular information were also integrated to
help users to select cell lines of interest readily. Fur-
thermore, we have implemented various interactive
tools and viewers to facilitate users to choose, ex-
amine and compare the screen results both at the
gene and guide RNA levels. iCSDB is available at
https://www.kobic.re.kr/icsdb/.

INTRODUCTION

High-throughput screening (HTS) has become an indis-
pensable tool for functional genomics and drug discov-
ery. Genetic loss-of-function (LoF) experiments are fre-
quently used in HTS to identify targets that confer ge-
netic vulnerability in various diseases. RNA interference
(RNAi) screening using small-interfering RNA (siRNA) li-
braries was the method of choice for LoF experiments dur-
ing the last decade (1). For example, the Dependency Map
(DepMap) project at the Broad Institute (2) used a genome-
wide pooled shRNA library to identify and catalog gene
essentiality across hundreds of genomically characterized
cancer cell lines from the Cancer Cell Line Encyclopedia
(CCLE) project (3). Similarly, drug sensitivity was mea-
sured in these cell lines for 265 drugs to provide the land-
scape of pharmacogenomic interactions in cancer (4). Sub-
sequent analysis of combining genetic screening data with
drug sensitivity data offered an unprecedented opportunity
to decipher the mechanism-of-action of drugs in a genome-
wide and unbiased way (5).

CRISPR/Cas9-mediated genome editing that generates
the double-strand breaks in the target DNA is rapidly re-
placing the RNAi method for studying LoF consequences
of target genes mainly due to high efficiency (knockout
rather than knockdown) and high specificity (i.e. low off-
target effect by the usage of relatively long sequences in
guide RNA design) (6). Genome-scale CRISPR libraries
coupled with the deep sequencing are frequently adopted
for functional screens both in negative and positive selec-
tions (7). Recently, large-scale LoF screen projects such as
the DepMap and Sanger’s GDSC (Genomics of Drug Sen-
sitivity in Cancer) have produced representative data sets of
CRISPR-Cas9 screens for the CCLE cell lines (7,8).

*To whom correspondence should be addressed. Tel: +82 2 3277 2888; Fax: +82 2 3277 6809; Email: sanghyuk@ewha.ac.kr
Correspondence may also be addressed to Byungwook Lee. Tel: +82 42 879 8531; Fax: +82 42 879 8519; Email: bulee@kribb.re.kr
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/D

1/D
956/5952197 by Jackson Laboratory user on 27 January 2021

http://orcid.org/0000-0001-9230-7461
https://www.kobic.re.kr/icsdb/


Nucleic Acids Research, 2021, Vol. 49, Database issue D957

Figure 1. Overview of iCSDB.

Currently, there are several databases in which results of
CRISPR screens are aggregated. GenomeCRISPR (9) and
PICKLES (10) are two of the earlier databases, but their
data contents are already obsolete as important results dur-
ing the last 3 years are missing. The DepMap portal (https:
//depmap.org/portal/) is the largest and latest collection
of CRISPR screens integrating three large-scale projects
(the Broad Achilles screens known as DepMap 20Q2,
Sanger CRISPR screens (7) and GeCKO libraries from
the Zhang lab (11)). It also supports an elaborate data ex-
plorer equipped with advanced analytical tools. BioGRID,
the database of protein–protein interactions, opened a new
dataset of CRISPR phenotype screens (ORCS) that would
serve as a data warehouse for the published CRISPR screen
results using human, mouse and fly cell lines (12). Such
comprehensive curation efforts are valuable but no further
analysis or analytical tools are supported. iCSDB is our
own effort to integrate virtually all of the available CRISPR
screens featuring many novel analytical tools in a user-
friendly web-based environment.

RESULTS

Data contents and aggregation

The overall contents of iCSDB consist of a collection of
genome-wide CRISPR screens, molecular characteristics of
cell lines and analytical tools (Figure 1). Molecular char-
acteristics include the mutation, expression, copy number,
gene fusion profiles from the CCLE consortium (2019 re-
lease) (13).

We have compiled two major sources of CRISPR-Cas9
screens: DepMap portal (Public 20Q2) and BioGRID
ORCS (Ver. 1.0.4). DepMap portal itself is an integrated
database of three large-scale projects (the Broad Achilles,
Sanger and GeCKO), including 1129 screens across 921 cell
lines (Figure 2A and B). BioGRID ORCS covered addi-
tional 246 screens across 106 cell lines from 62 PubMed

articles (redundant entries with DepMap portal were ex-
cluded). Collectively, iCSDB included 1375 screens across
976 cell lines, majority of those being negative selections.
Notably, positive or phenotypic screens were minor but
non-negligible (∼6.7%). Thus, the PubMed collection re-
flects more diverse types of screening. We classified cell lines
into 28 tissue types as provided by the CCLE consortium
and 70 cancer types as defined in the NCI Thesaurus (Ver.
20.04d, release date 27 April 2020) (Figure 2C and D). Cel-
losaurus information on cell lines was utilized in the manual
curation process (14).

Aggregation of data from multiple sources provides an
opportunity to compare the results from different groups,
which can be useful to confirm or validate observations in
independent data, thus yielding reliable results. In our com-
pendium dataset, we found that 246 cell lines were screened
repeatedly, with 21 cell lines screened over four times. How-
ever, direct comparison is often difficult because of batch
effects from different experimental conditions and analy-
sis methods. We carefully examined the source of batch
effects and found that CRISPR library and quantifica-
tion algorithm were the major players. Of note, our com-
pendium data set included 34 unique CRISPR libraries,
where AVANA of Broad Achilles, Sanger and GeCKO li-
braries were used most frequently. Dempster et al. (8) exam-
ined the agreement between the Broad and Sanger CRISPR
screens and concluded that two results are highly concor-
dant (in terms of ranking) after removing batch effect using
Combat in the sva R package (15).

Merging data from PubMed articles make the compari-
son even more difficult because of diverse experimental se-
tups and conditions. We converted all screen scores into
the z-scores to obtain a single uniform scale. Nevertheless,
the PCA analysis showed that batch effect was significant
even within the DepMap portal dataset that reprocessed
their whole data with CERES method accounting for the
copy number-specific effect (16) (Figure 3A). Of note, we
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Figure 2. Statistics of iCSDB. (A) Number of screens according to the source database and screen type. (B) Venn diagram of cell lines according to the
source database. (C) Cell line distribution across the tissue type. (D) Number of cell lines across tissue and cancer types. Different colors in the bar graph
indicate different cancer types.

Figure 3. Batch effect in CRISPR screens. (A) Principal component analysis (PCA) plot after z-score normalization before batch correction. Each screen
was colored according to the CRISPR library ID. Note that screens from PubMed were highly scattered and overlapped partially with the GeCKO library
(in orange color). (B) Pipeline for correcting batch effects. (C) PCA plot after the two-step batch correction. Blue dots indicate screens from DepMap
portal (DepMap 20Q2, Sanger, and GeCKO).
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Figure 4. User interface of iCSDB. (A) Query interface for screen, cell line and gene selectors. (B and C) Visualization utilities include screening view by
gene or by cell line, correlation view, guide RNA-wise view and genomic alignment of guide RNAs.

used removeBatchEffect function in the limma R package
(v3.44.3) (17) instead of Combat mainly because remove-
BatchEffect allowed missing values that occurred mainly
due to different number of target genes in different CRISPR
libraries.

Neither removeBatchEffect nor Combat removed the
batch effect successfully in a single step (Supplementary
Figure S1A) probably because the variability in the PubMed
and GeCKO data was higher than the one in DepMap or
Sanger screen data (Figure 3A). Thus, we devised a two-
step process for removing batch effects (Figure 3B). In the
first step, batch correction was performed for screen results
from the DepMap portal taking three different CRISPR li-
braries into account. The result was subsequently unified
to include all screens from PubMed articles (Supplemen-
tary Figure S1B) and the second round of batch correction
was carried out. This two-step process removed the batch ef-
fect successfully (Figure 3C). Screen results for BXPC3 cell
line whose data are available in all four data sources were
shown for example in Supplementary Figure S2. The cor-
relation between different data sets increased substantially
after our batch correction, thus demonstrating higher reli-
ability in comparing multiple screen results.

User interface and analytical tools

iCSDB supports user selection in three categories: screens,
cell lines and genes (Figure 4A). The screen selector includes
screen types, phenotype endpoints, experimental setup and
perturbagens such as treated chemicals or mutated genes,
following the annotation scheme in the BioGRID ORCS
with minor modifications. Each entry comes with up-to-
date number of database contents, where the most abun-
dant one is negative selection of cell viability without any
external exposure. The phenotype endpoint of all screens
from DepMap portal was viability, but a variety of end-
points were assayed in the PubMed screens including re-
sistance to chemicals, protein/peptide accumulation, toxin
resistance, etc. Similarly, the experimental setup category
included many different types of exposures (e.g. drug, lig-
and, toxin, etc.) from the PubMed screens. Thus, PubMed
screens show diverse applications of CRISPR screening
even though the number is rather small at this point.

Cell line selector allows users to choose cell lines ac-
cording to the tissue type, cancer type and cancer subtype.
Molecular characteristics may be used to select cell lines
with specific mutation, expression, copy number or gene fu-
sion event. For example, cell lines with BRAF mutations, or
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Figure 5. Synthetic lethal vulnerability screens for KRAS mutant cell lines. (A) Venn diagram of cell lines with KRAS mutations among different data
sources. (B) CRISPR screen scores (batch corrected) for top 6 genes. Each screen was colored according to the cell line ID. (C) Enrichment score of
Hallmark gene sets in MSigDB.

with AKL fusion genes, or with MET amplification might
be useful to study the acquired resistance to targeted drugs.
Gene selector is available when users want to examine only a
subset of genes, which could be manually typed in or chosen
from the gene sets in the MSigDB database (18).

Once the screens, cell lines and genes of interest are cho-
sen, relevant CRISPR screen results can be explored in var-
ious visualization schemes. Screening view by gene or cell
line shows the CRISPR screen score in a violin or box plot
format that supports diverse interactive features such as bal-
loon help, zooming, panning, etc. (Figure 4B). Correlation
view allows users to compare two different screens. Finally,
we devised a guide RNA (gRNA) level screen view that
shows the knockout efficiency for each gRNA with back-
ground distribution (Figure 4C). Genomic alignment of gR-
NAs is also available. Of note, gRNA information is avail-
able for most libraries in the DepMap portal (i.e. DepMap
20Q2, Sanger and GeCKO) and part (∼48%) of screens
from BioGRID ORCS PubMed.

It is often the case to browse the screen results in a cat-
egorical fashion. We support the browse function in the
statistics page, where users may click any entry (or number)
to choose the relevant cell lines and examine the screen re-
sult readily.

A case study––screen on KRAS mutant cell lines

To demonstrate the utility of iCSDB, we compared the
screen results for cell lines with KRAS mutations. KRAS
is the most commonly mutated oncogene in human cancer

including pancreatic, colon, lung and brain tumors. Numer-
ous attempts to develop drugs targeting KRAS mutants di-
rectly were unsuccessful and targeting synthetic lethal vul-
nerabilities have been widely exploited. Several genome-
scale LoF screens have been performed with siRNA,
shRNA and CRISPR libraries (19).

We identified 241 negative screens across 165 cell lines
with KRAS mutations, 61 of those screened by multiple
sources (Figure 5A). G12D mutation was the most com-
mon with 48 cell lines with 76 screens. We focused on
four cell lines with G12D mutation used in three differ-
ent sources (ASPC1, SUIT2, SU8686 from pancreatic can-
cer, and LS513 from colorectal cancer). We identified 15
screens from those four cell lines in iCSDB. Regarding genes
within top 25% quartile of each screen as positive hits, we
selected 1466 genes that were positive in >10 screens. The
violin plots of screen scores are shown for six top-scoring
genes (WEE1, MYC, CHEK1, CDC7, CDC5L and AU-
RKB) (Figure 5B). Gene set analysis using the hallmark
gene sets from MSigDB (18) showed significant associa-
tion with the E2F-mediated MYC regulation that is a typi-
cal proliferation signal of epithelial cancer cells (20) (Figure
5C). DNA repair process and PI3K-AKT-mTOR signaling
were also highlighted. All of these pathways are being in-
tensely exploited for combination therapy targets recently
(21). Of note, iCSDB includes other KRAS mutations––13
cell lines with G12V mutation, 8 cell lines with G12C muta-
tion and 6 cell lines with G13D mutation. Comparing these
data with G12D mutation may reveal context-specific com-
bination therapies, which could be the next generation treat-
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ment of KRAS mutant cancers that are notorious for its
heterogeneity.

CONCLUSION

iCSDB is a meta-database to include human CRISPR
screen data from the DepMap and BioGRID ORCS re-
sources. As demonstrated in the case study, it provides an
opportunity to identify drug targets to overcome resistance
in cancer. Combining the screen data with the drug sen-
sitivity data would open a systematic way for finding the
mechanism-of-action of drugs (5) or for identifying new
drug candidates by repurposing (22). To accommodate such
needs, we plan to upgrade iCSDB to include the drug sensi-
tivity data in the GDSC (4,23) and LINCS (24) databases.
Regular update is essential in these rapidly evolving fields of
genetic and drug screens. We plan to update our databases
biannually to keep the contents up-to-date. iCSDB would
be a useful resource for research communities in drug dis-
covery as well as in basic molecular and cellular biology.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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